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Abstract. In this paper we consider the following Toda system of equations on a compact surface: −∆u1 = 2ρ1

(
h1e

u1´
Σ h1e

u1dVg
− 1
)
− ρ2

(
h2e

u2´
Σ h2e

u2dVg
− 1
)
− 4π

∑m
j=1 α1,j(δpj − 1),

−∆u2 = 2ρ2

(
h2e

u2´
Σ h2e

u2dVg
− 1
)
− ρ1

(
h1e

u1´
Σ h1e

u1dVg
− 1
)
− 4π

∑m
j=1 α2,j(δpj − 1),

which is motivated by the study of models in non-abelian Chern-Simons theory. Here h1, h2 are smooth
positive functions, ρ1, ρ2 two positive parameters, pi points of the surface and α1,i, α2,j non-negative

numbers. We prove a general existence result using variational methods.
The same analysis applies to the following mean field equation

−∆u = ρ1

(
heu´

Σ he
udVg

− 1

)
− ρ2

(
he−u´

Σ he
−udVg

− 1

)
,

which arises in fluid dynamics.

With an appendix by Sadok Kallel (University of Lille 1)

1. Introduction

The Toda system

(1) −∆ui(x) =

N∑
j=1

aije
uj(x), x ∈ Σ, i = 1, . . . , N,

where ∆ is the Laplace operator and A = (aij)ij the Cartan matrix of SU(N + 1),

A =


2 −1 0 . . . . . . 0
−1 2 −1 0 . . . 0
0 −1 2 −1 . . . 0
. . . . . . . . . . . . . . . . . .
0 . . . . . . −1 2 −1
0 . . . . . . 0 −1 2

 ,

plays an important role in geometry and mathematical physics. In geometry it appears in the description
of holomorphic curves in CPn, see [7], [11], [15], [29]. In mathematical physics, it is a model for non-
abelian Chern-Simons vortices, which might have applications in high-temperature superconductivity and
which appear in a much wider variety compared to the Yang-Mills framework, see e.g. [58], [59] and [64]
for further details and an up-to-date set of references.

The existence of abelian Chern-Simons vortices has been quite deeply investigated in the literature,
see e.g. [10], [13], [50], [55], [57]. The study of the non-abelian case is more recent, and we refer for
example to [21], [34], [35], [41], [51], [61].

We will be interested in the following problem on a compact surface Σ. For the sake of simplicity, we
will assume that V olg(Σ) = 1.

(2)

 −∆u1 = 2ρ1

(
h1e

u1´
Σ
h1eu1dVg

− 1
)
− ρ2

(
h2e

u2´
Σ
h2eu2dVg

− 1
)
− 4π

∑m
j=1 α1,j(δpj − 1),

−∆u2 = 2ρ2

(
h2e

u2´
Σ
h2eu2dVg

− 1
)
− ρ1

(
h1e

u1´
Σ
h1eu1dVg

− 1
)
− 4π

∑m
j=1 α2,j(δpj − 1).
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Here h1, h2 are smooth positive functions, and αi,j ≥ 0. The above system arises specifically from gauged
self-dual Schrödinger equations, see e.g. Chapter 6 in [64]: the Dirac deltas represent vortices of the wave
function, namely points where the latter vanishes.

To describe the history and the main features of the problem, we first desingularize the equation using
a simple change of variables. Consider indeed the fundamental solution Gp(x) of the Laplace equation
on Σ with pole at p, i.e. the unique solution to

(3) −∆Gp(x) = δp −
1

|Σ|
on Σ, with

ˆ
Σ

Gp(x) dVg(x) = 0.

By the substitution

(4) ui(x) 7→ ui(x) + 4π

m∑
j=1

αi,jGpj (x), hi(x) 7→ h̃i(x) = hi(x)e−4π
∑m
j=1 αi,jGpj (x)

problem (2) transforms into an equation of the type

(5)


−∆u1 = 2ρ1

(
h̃1e

u1´
Σ
h̃1eu1dVg

− 1

)
− ρ2

(
h̃2e

u2´
Σ
h̃2eu2dVg

− 1

)
,

−∆u2 = 2ρ2

(
h̃2e

u2´
Σ
h̃2eu2dVg

− 1

)
− ρ1

(
h̃1e

u1´
Σ
h̃1eu1dVg

− 1

)
,

where the functions h̃j satisfy

(6) h̃i > 0 on Σ \ {p1, . . . , pm}; h̃i(x) ' d(x, pj)
2αi,j , near pj , i = 1, 2.

Problem (5) is variational, and solutions can be found as critical points of the Euler-Lagrange functional
Jρ : H1(Σ)×H1(Σ)→ R (ρ = (ρ1, ρ2)) given by

(7) Jρ(u1, u2) =

ˆ
Σ

Q(u1, u2) dVg +

2∑
i=1

ρi

(ˆ
Σ

uidVg − log

ˆ
Σ

h̃ie
uidVg

)
,

where Q(u1, u2) is defined as:

(8) Q(u1, u2) =
1

3

(
|∇u1|2 + |∇u2|2 +∇u1 · ∇u2

)
.

A basic tool for studying functionals like Jρ is the Moser-Trudinger inequality, see (15). Its analogue
for the Toda system has been obtained in [29] and reads as

(9) 4π

2∑
i=1

(
log

ˆ
Σ

hie
uidVg −

ˆ
Σ

uidVg

)
≤
ˆ

Σ

Q(u1, u2) dVg + C ∀u1, u2 ∈ H1(Σ),

for some C = C(Σ). This inequality immediately allows to find a global minimum of Jρ provided both
ρ1 and ρ2 are less than 4π. For larger values of the parameters ρi Jρ is unbounded from below and the
problem becomes more challenging. In this paper we use min-max theory to find a critical point of Jρ in
a general non-coercive regime. Our main result is the following:

Theorem 1.1. Let Λ ⊂ R2 be as in Definition 2.4. Let Σ be a compact surface neither homeomorphic
to S2 nor to RP2, and assume that (ρ1, ρ2) 6∈ Λ. Then (2) is solvable.

Let us point out that Λ ⊆ R2 is an explicit set formed by an union of straight lines and discrete points,
see Remark 2.6. In particular it is a closed set with zero Lebesgue measure.

Up to our knowledge, there is no previous existence result in the literature for the singular Toda
system. Our result is hence the first one in this direction, and is generic in the choice of parameters ρ1

and ρ2. In the regular case there are some previous existence results, see [28, 41, 44, 46], some of which
have a counterpart in [18] and [19] for the scalar case (10) (see also [20] for a higher order problem and
[2, 5, 12, 45] for the singular case). However, these require an upper bound either on one of the ρi’s or
both: hence our result covers most of the unknown cases also for the regular problem.

The main difficulties in attacking (5) are mainly of two kinds: compactness issues and the Morse-
structure of the functional, which we are going to describe below.
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As many geometric problems, also (5) presents loss of compactness phenomena, as its solutions might
blow-up. To describe the general phenomenon it is first convenient to discuss the case of the scalar
counterpart of (5), namely is a Liouville equation the form:

(10) −∆u = 2ρ

(
h eu´

Σ
h eudVg

− 1

)
,

where ρ ∈ R and where h(x) behaves as in (6) near the singularities. Equation (10) rules the change
of Gaussian curvature under conformal deformation of the metric, and that it also describes the abelian
counterpart of (2) from the physical point of view. This equation has been very much studied in the
literature; there are by now many results regarding existence, compactness of solutions, bubbling behavior,
etc. We refer the interested reader to the reviews [43, 59].

Concerning (10) it was proved in [9], [36] and [37] that for the regular case a blow-up point xR for a
sequence (un)n of solutions satisfies the following quantization property

(11) lim
r→0

lim
n→+∞

ρ

ˆ
Br(xR)

h eundVg = 4π,

and that the limit profile of solutions is that of a bubble, namely the logarithm of the conformal factor of
the stereographic projection from S2 onto R2, composed with a dilation.

For the singular case instead, it was proven in [2] and [6] that if blow-up occurs at a singular point xS
with weight −4πα then one has

(12) lim
r→0

lim
n→+∞

ρ

ˆ
Br(xS)

h eundVg = 4π(1 + α),

whereas (11) still holds true if blow-up occurs at a regular point.

This behaviour helps to explain the blow-up feature for system (5), which inherits some character from
the scalar case. Consider first the regular case, that is, (2) with αi,j = 0. Here a sequence of solutions
can blow-up in three different ways: one component blows-up and the other does not; one component
blows-up faster than the other; both components blow-up at the same rate.

It was proved in [28, 30] that the quantization values for the two components are respectively (4π, 0)
or (0, 4π) in the first case, (8π, 4π) or (4π, 8π) in the second case and (8π, 8π) in the third one. Notice
that, by the results in [17], [22] and [48], all the five alternatives may indeed happen.

When singular sources are present a similar phenomenon happens, which has been investigated in the
recent paper [38]. If blow-up occurs at a point p with values α1, α2 (we may allow them to vanish), the
corresponding blow-up values would be

(4π(1 + α1, 0)); (0, 4π(1 + α2)); (4π(1 + α1), 4π(2 + α1 + α2));

(4π(2 + α1 + α2), 4π(1 + α2)); (4π(2 + α1 + α2), 4π(2 + α1 + α2)).

Other (finitely-many) blow-up values are indeed allowed, see Theorem 2.5 for details, as more involved
situations are not yet excluded (or known to exist). As a consequence, the set of solutions to (5) is
compact whenever (ρ1, ρ2) /∈ Λ: this is the main reason for our assumption in Theorem 1.1.

Let us now show how we can study the sub-levels of the functional and conclude existence of solutions
via min-max methods. The main tool in the variational study of this kind of problems is the so-called
Chen-Li inequality, see [14]. In the scalar case, it implies that a suitable spreading of the term eu yields
a better constant in the Moser-Trudinger inequality, which in turn might imply a lower bound on the
Euler functional Iρ of (10)

(13) Iρ(u) =
1

2

ˆ
Σ

|∇gu|2dVg + 2ρ

(ˆ
Σ

u dVg − log

ˆ
Σ

h eudVg

)
, u ∈ H1(Σ).

The consequence of this fact is that if ρ < 4(k+1)π, k ∈ N, and if Iρ(u) is large negative (i.e. when lower
bounds fail) eu accumulates near at most k points of Σ, see e.g. [19]. This suggests to introduce the
family of unit measures Σk which are supported in at most k points of Σ, known as formal barycenters
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of Σ

(14) Σk =


k∑
j=1

tjδxj :

k∑
j=1

tj = 1, xj ∈ Σ

 .

One can show that, for any integer k, Σk is not contractible and that its homology is mapped injectively
into that of the low sub-levels of Iρ. This allows to prove existence of solutions via suitable min-max
schemes.

When both ρ1 and ρ2 are larger than 4π the description of the sub-levels becomes more involved, since
the two components u1 and u2 interact in a non-trivial way. See [46] on this respect. In this paper we
obtain a partial topological characterization of the low energy levels of Jρ, which is however sufficient
for our purposes. This strategy has been used in [4] and in [3] for the singular scalar equation and for a
model in electroweak theory respectively, while in this paper the general non-abelian case is treated for
the first time.

First, we construct two disjoint simple non-contractible curves γ1, γ2 which do not intersect singular
points, and define global retractions Π1,Π2 of Σ onto these two curves. Such curves do not exist for
Σ = S2 or RP2, and hence our arguments do not work in those cases.

Combining arguments from [14], [44] and [46] we prove that if ρ1 < 4(k + 1)π and ρ2 < 4(l + 1)π,

k, l ∈ N, then either h̃1e
u1 is close to Σk or h̃2e

u2 is close to Σl in the distributional sense. Then we

can map continuously (and naturally) h̃1e
u1 to Σk or h̃2e

u2 to Σl; using then the retractions Πi one can
restrict himself to targets in (γ1)k or (γ2)l only. This alternative can be expressed naturally in terms of
the topological join (γ1)k ∗ (γ2)l. Roughly speaking, given two topological spaces A and B, the join A ∗B
is the formal set of segments joining elements of A with elements of B, see Section 2 for details. In this
way, we are able to define a global projection Ψ from low sub-levels of Jρ onto (γ1)k ∗ (γ2)l.

We can also construct a reverse map Φλ (where λ is a large parameter) from (γ1)k∗(γ2)l into arbitrarily
low sub-levels of Jρ using suitable test functions. Moreover, we show that the composition of both maps is
homotopic to the identity map. Finally, (γ1)k ∗(γ2)l is homeomorphic to a sphere of dimension 2k+2l−1
see Remark 3.2: in particular it is not contractible, and this allows us to apply a min-max argument.

In this step a compactness property is needed, like the Palais-Smale’s. The latter is indeed not
known for this problem, but there is a way around it using a monotonicity method from [56]. For that,
compactness of solutions comes to rescue, and here we use the results of [28] and [38]. This is the reason
why we assume (ρ1, ρ2) /∈ Λ.

In this paper we also give a general result for a mean field equation, Theorem 6.2, arising from models
in fluid dynamics and in the description of constant mean curvature surfaces: to keep the introduction
short we discuss its motivation and how our result compares to the existing literature in Section 6.

The plan of the paper is the following: in Section 2 we recall some preliminary results on Moser-Trudinger
inequalities, the notion of topological join and a compactness theorem. In Section 3 we construct a family
of test functions with low energy modelled on the topological join of (γ1)k and (γ2)l. In Section 4 we
derive suitable improved Moser-Trudinger inequalities to construct projections from low sub-levels of Jρ
into (γ1)k ∗ (γ2)l. In Section 5 we prove our existence theorem using the min-max argument and finally
in Section 6 we discuss the mean field equation.

Acknowledgment: This paper includes an appendix of Sadok Kallel which establishes that Σk is a
CW-complex. This allows us to give a self-consistent and short proof of Proposition 2.2. The authors are
deeply grateful to him for this contribution.

2. Notation and preliminaries

In this section we collect some useful notation and preliminary material. The Appendix at the end of the
paper use independent notation, which will be established there.

Given points x, y ∈ Σ, d(x, y) will stand for the metric distance between x and y on Σ. Similarly, for
any p ∈ Σ, Ω,Ω′ ⊆ Σ, we set:

d(p,Ω) = inf {d(p, x) : x ∈ Ω} , d(Ω,Ω′) = inf {d(x, y) : x ∈ Ω, y ∈ Ω′} .
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The symbol Bs(p) stands for the open metric ball of radius s and centre p, and the complement of a set
Ω in Σ will be denoted by Ωc.

Given a function u ∈ L1(Σ) and Ω ⊂ Σ, the average of u on Ω is denoted by the symbol 
Ω

u dVg =
1

|Ω|

ˆ
Ω

u dVg.

We denote by u the average of u in Σ: since we are assuming |Σ| = 1, we have

u =

ˆ
Σ

u dVg =

 
Σ

u dVg.

The sub-levels of the functional Jρ will be indicated as

Jaρ :=
{
u = (u1, u2) ∈ H1(Σ)×H1(Σ) : J(u1, u2) ≤ a

}
Throughout the paper the letter C will stand for large constants which are allowed to vary among different
formulas or even within the same lines. When we want to stress the dependence of the constants on some
parameter (or parameters), we add subscripts to C, as Cδ, etc. We will write oα(1) to denote quantities
that tend to 0 as α→ 0 or α→ +∞; we will similarly use the symbol Oα(1) for bounded quantities.

We recall next the classical Moser-Trudinger inequality, in its weak form

(15) log

ˆ
Σ

eu−u dVg ≤
1

16π

ˆ
Σ

|∇gu|2 dVg + C; u ∈ H1(Σ),

where C is a constant depending only on Σ and the metric g. For the Toda system, a similar sharp
inequality was derived in [29] concerning the regular case: indeed, since the weights αij are positive, that

inequality applies to the singular case as well, as the functions h̃i are uniformly bounded.

Theorem 2.1. ([29]) The functional Jρ is bounded from below if and only if ρi ≤ 4π, i = 1, 2.

As it is mentioned in the introduction, some useful information arising from Moser-Trudinger type inequal-
ities and their improvements are the concentration of eui when u = (u1, u2) belongs to a low sub-level.
To express this rigorously, we denote M(Σ) the set of all Radon measures on Σ, and introduce a norm
by using duality versus Lipschitz functions, that is, we set:

(16) ‖µ‖Lip′(Σ) = sup
‖f‖Lip(Σ)≤1

∣∣∣∣ˆ
Σ

f dµ

∣∣∣∣ ; µ, ν ∈M(Σ).

We denote by d the corresponding distance, which receives the name of Kantorovich-Rubinstein distance.
When a measure is close in the Lip′ sense to an element in Σk, see (14), it is then possible to map it

continuously to a nearby element in this set. The following result has been proved in [20], but we give
here a much shorter and self-consistent proof.

Proposition 2.2. Given k ∈ N, for ε0 sufficiently small there exists a continuous retraction:

ψk : {σ ∈M(Σ), d(σ,Σk) < ε0} → Σk.

Here continuity is referred to the distance d. In particular, if σn ⇀ σ in the sense of measures, with
σ ∈ Σk, then ψk(σn)→ σ.

Proof. Observe that the inclusion Lip(Σ) ⊂ C(Σ) is compact: therefore, M(Σ) = C(Σ)′ ⊂ Lip(Σ)′

is also compact. Of course, the set Σk ⊂ M(Σ), and then it is inside Lip(Σ)′. Since Σk is a Euclidean
Neighbourhood Retract (ENR) (see Appendix E of [8]), there exists a neighbourhood V ⊃ Σk in the Lip′

topology, and a continuous retraction ψk : V → Σk.
Now, if σn ⇀ σ ∈ Σk in the sense of measures, by compactness, fn → σ in Lip′, and by continuity,

ψk(fn)→ ψk(σ). But, since ψk is a retraction, ψk(σ) = σ.

Remark 2.1. In the Appendix to this paper Sadok Kallel proves that Σk is a CW-complex. As a conse-
quence it is an Euclidean Neighborhood Retract, see for instance Appendix E of [8]. And this is the key
point of the proof of Proposition 2.2.
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At some point of our proof we will be under the assumptions of Proposition 2.2 for either f = h̃1e
u1 or

for f = h̃2e
u2 . To deal with this alternative it will then be convenient to use the notion of topological

join, which we recall here. The topological join of two sets A,B is defined as the family of elements of
the form

{(a, b, r) : a ∈ A, b ∈ B, r ∈ [0, 1]}
R

,

where R is an equivalence relation such that

(a1, b, 1)
R∼ (a2, b, 1) ∀a1, a2 ∈ A, b ∈ B and (a, b1, 0)

R∼ (a, b2, 0) ∀a ∈ A, b1, b2 ∈ B.

The elements of the join are usually written as formal sums (1− r)a+ rb.

The next tool we will need is a compactness result from [38]: before stating it it is convenient to introduce
a finite set of couples of numbers, which represent possible quantization values for the concentration of
the exponential functions. Consider a point p at which (2) has singular weights α1 = α1(p), α2 = α2(p)
in the first and the second component of the equation. We give then the following two definitions.

Definition 2.3. Given a couple of non-negative numbers (α1, α2) we let Γα1,α2
be the subset of an ellipse

in R2 defined by the equation

Γα1,α2
:=
{

(σ1, σ2) : σ1, σ2 ≥ 0, σ2
1 − σ1σ2 + σ2

2 = 2(1 + α1)σ1 + 2(1 + α2)σ2

}
.

We then let Λα1,α2 ⊆ Γα1,α2 be the set constructed via the following rules:

1. the points (0, 0), (2(1 + α1, 0)), (0, 2(1 + α2)), (2(1 + α1), 2(2 + α1 + α2)), (2(2 + α1 + α2), 2(1 + α2)),
(2(2 + α1 + α2), 2(2 + α1 + α2)) belong to Λα1,α2

;

2. if (a, b) ∈ Λα1,α2 then also any (c, d) ∈ Γα1,α2 with c = a+ 2m, m ∈ N∪ {0}, d ≥ b belongs to Λα1,α2 ;

3. if (a, b) ∈ Λa1,α2
then also any (c, d) ∈ Γα1,α2

with d = b+ 2n, n ∈ N ∪ {0}, c ≥ a belongs to Λα1,α2
.

Definition 2.4. Given Λα1,α2
as in Definition 2.3, we set

Λ0 = 2π

(2p, 2q) +

m∑
j=1

nj(aj , bj) : p, q ∈ N ∪ {0}, nj ∈ {0, 1}, (aj , bj) ∈ Λα1,j ,α2,j

 ;

Λi = 4π

n+

m∑
j=1

(1 + αi,j)nj , n ∈ N ∪ {0}, nj ∈ {0, 1}

 , i = 1, 2.

We finally set

Λ = Λ0 ∪ (Λ1 × R) ∪ (R× Λ2) ⊆ R2.

From the local quantization results in [38], and some standard analysis (see in particular Section 1 in [9])
one finds the following global compactness result.

Theorem 2.5. ([38]) For (ρ1, ρ2) in a fixed compact set of R2 \ Λ the family of solutions to (5) is
uniformly bounded in C2,β for some β > 0.

Remark 2.6. The set of lines Λ1 × R, R × Λ2 refer to the case of blowing-up solutions in which one
component remains bounded, so it is not quantized. The quantization of the blowing up component was
obtained in [1] for the singular scalar case. See also [28] for the regular Toda system.

Instead, the set Λ0 refers to couples (u1, u2) for which both components blow-up. Observe that Λα1,α2

is finite, and it coincides with the five elements (4π, 0), (0, 4π), (8π, 4π), (4π, 8π), (8π, 8π) when both α1

and α2 vanish. Then, Λ0 is a discrete set.
In particular, Λ is a closed set in R2 with zero Lebesgue measure.
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3. The topological set and test functions

We begin this section with an easy topological result, which will be essential in our analysis:

Lemma 3.1. Let Σ be a compact surface not homeomorphic to S2 nor RP2. Then, there exist two simple
closed curves γ1, γ2 ⊆ Σ satisfying (see Figure 1)

(1) γ1, γ2 do not intersect each other nor any of the singular points pj, j = 1 . . .m;
(2) there exist global retractions Πi : Σ→ γi, i = 1, 2.

Proof. The result is quite evident for the torus. For the Klein bottle, consider its fundamental square
ABAB−1. We can take γ1 as the segment B, and γ2 a segment parallel to B and passing by the center of
the square. The retractions are given by just freezing one cartesian component of the point in the square.

Observe that we can assume that pi do not intersect those curves.
For any other Σ under the conditions of the lemma, Dyck’s Theorem implies that it is the connected

sum of a torus and another compact surface, Σ = T2#M . Then, one can modify the retractions of the
torus so that they are constant on M . �

Remark 3.1. Observe that each curve γi generates a free subgroup in the first co-homology group of Σ.
Then, Lemma 3.1 cannot hold for S2 or RP2.

Σ

γ1
γ2

p1

pj
p2

Figure 1. The curves γi

For ρ1 ∈ (4kπ, 4(k + 1)π) and ρ2 ∈ (4lπ, 4(l + 1)π) we would like to build a family of test functions
modelled on the topological join (γ1)k ∗ (γ2)l, involving the formal barycenters of the curves γ1, γ2, see
(14).

Remark 3.2. Since each γi is homeomorphic to S1, it follows from Proposition 3.2 in [5] that (γ1)k
is homeomorphic to S2k−1 and (γ2)l to S2l−1 (the homotopy equivalence was found before in [33]). As
it is well-known, the join Sm ∗ Sn is homeomorphic to Sm+n+1 (see for example [25]), and therefore
(γ1)k ∗ (γ2)l is homeomorphic to the sphere S2k+2l−1.

Let ζ = (1− r)σ2 + rσ1 ∈ (γ1)k ∗ (γ2)l, where:

σ1 :=

k∑
i=1

tiδxi ∈ (γ1)k and σ2 :=

l∑
j=1

sjδyj ∈ (γ2)l.

Our goal is to define a test function modelled on any ζ ∈ (γ1)k ∗ (γ2)l, depending on a positive parameter
λ and belonging to low sub-levels of J for large λ, that is a map

Φλ : (γ1)k ∗ (γ2)l → J−Lρ ; L� 0.

For any λ > 0, we define the parameters

λ1,r = (1− r)λ; λ2,r = rλ.

We introduce Φλ(ζ) = ϕλ,ζ whose components are defined by

(17)

(
ϕ1(x)
ϕ2(x)

)
=

 log
∑k
i=1 ti

(
1

1+λ2
1,rd(x,xi)2

)2

− 1
2 log

∑l
j=1 sj

(
1

1+λ2
2,rd(x,yj)2

)2

− 1
2 log

∑k
i=1 ti

(
1

1+λ2
1,rd(x,xi)2

)2

+ log
∑l
j=1 sj

(
1

1+λ2
2,rd(x,yj)2

)2

 .
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Notice that when r = 0 we have that λ2,r = 0, and therefore, as
∑l
j=1 sj = 1, the second terms in both

rows are constant, independent of σ2; a similar consideration holds when r = 1. These arguments imply
that the function Φλ is indeed well defined on (γ1)k ∗ (γ2)l.

We have then the following result.

Proposition 3.3. Suppose ρ1 ∈ (4kπ, 4(k + 1)π) and ρ2 ∈ (4lπ, 4(l + 1)π). Then one has

Jρ(ϕλ,ζ)→ −∞ as λ→ +∞ uniformly in ζ ∈ (γ1)k ∗ (γ2)l.

Proof. We define v1, v2 : Σ→ R as follows;

v1(x) = log

k∑
i=1

ti

(
1

1 + λ2
1,rd(x, xi)2

)2

, v2(x) = log

l∑
j=1

sj

(
1

1 + λ2
2,rd(x, yj)2

)2

.

With this notation the components of ϕ(x) are given by(
ϕ1(x)
ϕ2(x)

)
=

(
v1(x)− 1

2 v2(x)
− 1

2 v1(x) + v2(x)

)
.

We first prove two estimates on the gradients of v1 and v2.

(18) |∇vi(x)| ≤ Cλi,r, for every x ∈ Σ and r ∈ [0, 1], i = 1, 2,

where C is a constant independent of λ, ζ ∈ (γ1)k ∗ (γ2)l, and

(19) |∇vi(x)| ≤ 4

d i,min(x)
, for every x ∈ Σ, i = 1, 2,

where d1,min(x) = min
i=1,...,k

d(x, xi) and d2,min(x) = min
j=1,...,l

d(x, yj).

We show the inequalities just for v1, as for v2 the proof is similar. We have that

∇v1(x) = −2λ2
1,r

∑k
i=1 ti

(
1 + λ2

1,rd
2(x, xi)

)−3∇
(
d2(x, xi)

)∑k
j=1 tj

(
1 + λ2

1,rd
2(x, xj)

)−2 .

Using the estimate
∣∣∇(d2(x, xi)

)∣∣ ≤ 2d(x, xi) and the following inequality

λ2
1,rd(x, xi)

1 + λ2
1,rd

2(x, xi)
≤ Cλ1,r, i = 1, . . . , k,

with C a fixed constant, we obtain (18). For proving (19) we observe that if λ1,r = 0 the inequality is
trivially satisfied. If instead λ1,r > 0 we have

|∇v1(x)| ≤ 4λ2
1,r

∑k
i=1 ti

(
1 + λ2

1,rd
2(x, xi)

)−3
d(x, xi)∑k

j=1 tj
(
1 + λ2

1,rd
2(x, xj)

)−2 ≤ 4λ2
1,r

∑k
i=1 ti

(
1 + λ2

1,rd
2(x, xi)

)−2 d(x,xi)
λ2

1,rd
2(x,xi)∑k

j=1 tj
(
1 + λ2

1,rd
2(x, xy)

)−2

≤ 4

∑k
i=1 ti

(
1 + λ2

1,rd
2(x, xi)

)−2 1
d 1,min(x)∑k

j=1 tj
(
1 + λ2

1,rd
2(x, xj)

)−2 =
4

d 1,min(x)
,

which proves (19).
We consider now the Dirichlet part of the functional Jρ. Taking into account the definition of ϕ1, ϕ2

we haveˆ
Σ

Q(ϕ1, ϕ2) dVg =
1

3

ˆ
Σ

(
|∇ϕ1|2 + |∇ϕ2|2 +∇ϕ1 · ∇ϕ2

)
dVg

=
1

3

ˆ
Σ

(
|∇v1|2 +

1

4
|∇v2|2 −∇v1 · ∇v2

)
dVg +

1

3

ˆ
Σ

(
|∇v2|2 +

1

4
|∇v1|2 −∇v2 · ∇v1

)
dVg +

+
1

3

ˆ
Σ

(
−1

2
|∇v1|2 −

1

2
|∇v2|2 +

5

4
(∇v1 · ∇v2)

)
dVg

=
1

4

ˆ
Σ

|∇v1|2 dVg +
1

4

ˆ
Σ

|∇v2|2 dVg −
1

4

ˆ
Σ

∇v1 · ∇v2 dVg.
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We first observe that the part involving the mixed term ∇v1 · ∇v2 is bounded by a constant depending
only on Σ. Indeed, we introduce the sets

(20) Ai =

{
x ∈ Σ : d(x, xi) =

k
min
j=1

d(x, xj)

}
.

Using then (19) we haveˆ
Σ

∇v1 · ∇v2 dVg ≤
ˆ

Σ

|∇v1||∇v2| dVg ≤ 16

ˆ
Σ

1

d1,min(x) d2,min(x)
dVg(x)

≤ 16

k∑
i=1

ˆ
Ai

1

d(x, xi) d2,min(x)
dVg(x).

We take now δ > 0 such that

δ =
1

2
min

{
min

i∈{1,...k},j∈{1,...l}
d(xi, yj), min

m, n∈{1,...k},m 6=n
d(xm, xn)

}
and we split each Ai into Ai = Bδ(xi)∪ (Ai \Bδ(xi)), i = 1, . . . k. By a change of variables and exploiting
the fact that d2,min(x) ≥ 1

C in Bδ(xi) we obtain

k∑
i=1

ˆ
Bδ(xi)

1

d(x, xi) d2,min(x)
dVg(x) ≤ C.

Using the same argument for the part Ai \ Bδ(xi) with some modifications and exchanging the role of
d1,min and d2,min we finally deduce that

(21)

ˆ
Σ

∇v1 · ∇v2 dVg ≤ C.

We want now to estimate the remaining part of the Dirichlet energy. For convenience we treat the cases
r = 0 and r = 1 separately. Consider first the case r = 0: we then have ∇v2(x) = 0 and we getˆ

Σ

Q(ϕ1, ϕ2) dVg =
1

4

ˆ
Σ

|∇v1(x)|2 dVg(x).

We divide now the integral into two parts;

1

4

ˆ
Σ

|∇v1(x)|2 dVg(x) =
1

4

ˆ
⋃
i B 1

λ
(xi)

|∇v1(x)|2 dVg(x) +
1

4

ˆ
Σ\

⋃
i B 1

λ
(xi)

|∇v1(x)|2 dVg(x).

From (18) we deduce that ˆ
⋃
i B 1

λ
(xi)

|∇v1(x)|2 dVg(x) ≤ C.

Using then (19) for the second part of the integral, recalling the definition (20) of the sets Ai, one finds
that

1

4

ˆ
Σ\

⋃
i B 1

λ
(xi)

|∇v1(x)|2(x) dVg ≤ 4

ˆ
Σ\

⋃
i B 1

λ
(xi)

1

d2
1,min(x)

dVg(x) + C

≤ 4

k∑
i=1

ˆ
Ai\B 1

λ
(xi)

1

d2
1,min(x)

dVg(x) + C

≤ 8kπ
(
1 + oλ(1)

)
log λ+ C,

where oλ(1)→ 0 as λ→ +∞. Therefore we have

(22)

ˆ
Σ

Q(ϕ1, ϕ2) dVg ≤ 8kπ
(
1 + oλ(1)

)
log λ+ C.

Reasoning as in [43], Proposition 4.2 part (ii), it is possible to show thatˆ
Σ

v1 dVg = −4
(
1 + oλ(1)

)
log λ; log

ˆ
Σ

ev1 dVg = −2
(
1 + oλ(1)

)
log λ

log

ˆ
Σ

e−
1
2v1 dVg = 2

(
1 + oλ(1)

)
log λ,
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and clearly ˆ
Σ

v2 dVg = O(1); log

ˆ
Σ

ev2 dVg = O(1); log

ˆ
Σ

e−
1
2v2 dVg = O(1).

Therefore we getˆ
Σ

ϕ1 dVg = −4
(
1 + oλ(1)

)
log λ; log

ˆ
Σ

eϕ1 dVg = −2
(
1 + oλ(1)

)
log λ;

ˆ
Σ

ϕ2 dVg = 2(1 + oλ(1)) log λ; log

ˆ
Σ

eϕ2 dVg = −2(1 + oλ(1)) log λ.

Inserting the latter equalities in the expression of the functional Jρ and using the fact that h̃i ≥ 1
C , i = 1, 2

outside a small neighbourhood of the singular points (which are avoided by the curves γ1, γ2), we obtain

Jρ(ϕ1, ϕ2) ≤
(
8kπ − 2ρ1 + oλ(1)

)
log λ+ C,

where C is independent of λ and σ1, σ2.
For the case r = 1, by the same argument we have that

Jρ(ϕ1, ϕ2) ≤
(
8lπ − 2ρ2 + oλ(1)

)
log λ+ C.

We consider now the case r ∈ (0, 1). By (21) the Dirichlet part can be estimated byˆ
Σ

Q(ϕ1, ϕ2) dVg ≤
1

4

ˆ
Σ

|∇v1(x)|2 dVg(x) +
1

4

ˆ
Σ

|∇v2(x)|2 dVg(x) + C.

For general r one can just substitute λ with λ1,r in (22) (and similarly for the v2), to get the following
estimate

(23)

ˆ
Σ

Q(ϕ1, ϕ2) dVg ≤ 8kπ
(
1 + oλ(1)

)
log
(
λ1,r + δ1,r

)
+ 8lπ

(
1 + oλ(1)

)
log
(
λ2,r + δ2,r

)
+ C,

where δ1,r > δ > 0 as r → 1 and δ2,r > δ > 0 as r → 0, for some fixed δ. The same argument as for
r = 0, 1 leads toˆ

Σ

v1 dVg = −4
(
1 + oλ(1)

)
log
(
λ1,r + δ1,r

)
+O(1);

ˆ
Σ

v2 dVg = −4
(
1 + oλ(1)

)
log
(
λ2,r + δ2,r

)
+O(1),

therefore we obtainˆ
Σ

ϕ1 dVg = −4
(
1 + oλ(1)

)
log
(
λ1,r + δ1,r

)
+ 2
(
1 + oλ(1)

)
log
(
λ2,r + δ2,r

)
+O(1),(24)

ˆ
Σ

ϕ2 dVg = 2
(
1 + oλ(1)

)
log
(
λ1,r + δ1,r

)
− 4
(
1 + oλ(1)

)
log
(
λ2,r + δ2,r

)
+O(1).(25)

We consider now the exponential term. We have

ˆ
Σ

eϕ1 dVg =

k∑
i=1

ti

ˆ
Σ

1(
1 + λ2

1,rd(x, xi)2
)2
 l∑
j=1

sj
1(

1 + λ2
2,rd(x, yj)2

)2
− 1

2

dVg(x).

Clearly it is enough to estimate the term

ˆ
Σ

1(
1 + λ2

1,rd(x,Bx)2
)2
 l∑
j=1

sj
1(

1 + λ2
2,rd(x, yj)2

)2
− 1

2

dVg(x)

with Bx ∈ {x1, . . . xk}. Letting δ =
minj{d(Bx, yj)}

2
we divide the domain into two regions as follows:

Σ = Bδ(Bx) ∪ (Σ \Bδ(Bx)). When we integrate in Bδ(Bx) we perform a change of variables for the part
involving λ1,r and observing that 1

C ≤ d(x, yj) ≤ C, j = 1, . . . , l, for every x ∈ Bδ(Bx), we deduce

ˆ
Bδ(Bx)

1(
1 + λ2

1,rd(x,Bx)2
)2
 l∑
j=1

sj
1(

1 + λ2
2,rd(x, yj)2

)2
− 1

2

dVg(x) =

(
λ2,r + δ2,r

)2(
λ1,r + δ1,r

)2 (1 +O(1)
)
.

On the other hand for the integral over Σ \ Bδ(Bx) we use that 1
C ≤ d(x,Bx) ≤ C to get that this part

is a higher-order term and can be absorbed by the latter estimate. Recall now that h̃1 stays bounded
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away from zero in a neighbourhood of the curve γ1 (see the beginning of the section). Therefore, since
the contribution of the integral outside a neighbourhood of γ1 is negligible, we can conclude that

(26) log

ˆ
Σ

h̃1e
ϕ1 dVg = 2 log

(
λ2,r + δ2,r

)
− 2 log

(
λ1,r + δ1,r

)
+O(1).

Similarly we have that

(27) log

ˆ
Σ

h̃2e
ϕ2 dVg = 2 log

(
λ1,r + δ1,r

)
− 2 log

(
λ2,r + δ2,r

)
+O(1).

Using the estimates (23), (24), (25), (26) and (27) we finally obtain

Jρ(ϕ1, ϕ2) ≤
(
8kπ − 2ρ1 + oλ(1)

)
log
(
λ1,r + δ1,r

)
+
(
8lπ − 2ρ2 + oλ(1)

)
log
(
λ2,r + δ2,r

)
+O(1).

Recalling that ρ1 > 4kπ, ρ2 > 4lπ and observing that max
r∈[0,1]

{λ1,r, λ2,r} → +∞ as λ → ∞, we conclude

the proof.

4. Moser-Trudinger inequalities and topological join

In this section we are going to give an improved version of the Moser-Trudinger inequality (9), where

the constant 4π can be replaced by an integer multiple under the assumption that the integral of h̃ie
ui

is distributed on different sets with positive mutual distance. The improved inequality implies that if

Jρ(u1, u2) attains very low values, then h̃ie
ui has to concentrate near a given number (depending on ρi)

of points for some i ∈ {1, 2}. As anticipated in the introduction, we will see that this induces a natural
map from low sub-levels of Jρ to the topological join of some sets of barycenters. This extends some
analysis from [28] and [44], where the authors considered the case ρ2 < 4π, and from [46], where both
parameters belong to the range (4π, 8π). We start with a covering lemma:

Lemma 4.1. Let δ > 0, θ > 0, k, l ∈ N with k ≥ l, fi ∈ L1(Σ) be non-negative functions with ‖fi‖L1(Σ) = 1
for i = 1, 2 and {Ω1,i,Ω2,j}i∈{0,...,k},j∈{0,...,l} ⊂ Σ such that

d(Ω1,i,Ω1,i′) ≥ δ ∀ i, i′ ∈ {0, . . . , k} with i 6= i′;

d(Ω2,j ,Ω2,j′) ≥ δ ∀ j, j′ ∈ {0, . . . , l} with j 6= j′,

and ˆ
Ω1,i

f1dVg ≥ θ ∀ i ∈ {0, . . . , k};
ˆ

Ω2,j

f2dVg ≥ θ ∀ j ∈ {0, . . . , l}.

Then, there exist δ > 0, θ > 0, independent of fi, and {Ωn}kn=1 ⊂ Σ such that

d(Ωn,Ω
′
n) ≥ δ ∀ n, n′ ∈ {0, . . . , k} with n 6= n′

and
|Ωn| ≥ θ ∀ n ∈ {0, . . . , k};ˆ

Ωn

f1dVg ≥ θ ∀ n ∈ {0, . . . , k};
ˆ

Ωn

f2dVg ≥ θ ∀ n ∈ {0, . . . , l}.

Proof. We set δ =
δ

8
and consider the open cover

{
Bδ(x)

}
x∈Σ

of Σ; by compactness, Σ ⊂
H⋃
h=1

Bδ(xh)

for some {xh}Hh=1 ⊂ Σ, H = H
(
δ,Σ

)
.

We choose {y1,i, y2,j}i∈{0,...,k},j∈{0,...,l} ⊂ {xh}Hh=1 such that

ˆ
Bδ(y1,i)

f1dVg = max

{ˆ
Bδ(xh)

f1dVg : Bδ(xh) ∩ Ω1,i 6= ∅

}
;

ˆ
Bδ(y2,j)

f2dVg = max

{ˆ
Bδ(xh)

f2dVg : Bδ(xh) ∩ Ω2,j 6= ∅

}



12 LUCA BATTAGLIA(1), ALEKS JEVNIKAR(1), ANDREA MALCHIODI(2), DAVID RUIZ(3)

Since d(y1,i,Ω1,i) < δ, we have that d(y1,i, y1,i′) ≥ 6δ for i 6= i′. Analogously, d(y2,j , y2,j′) ≥ 6δ if j 6= j′.

In particular, this implies that for any i ∈ {0, . . . , k} there exists at most one j(i) such that d(y2,j(i), y1,i) < 3δ.
We relabel the index i so that for i = 1, . . . l such j(i) exists, and we relabel the index j so that j(i) = i.
We now define:

Ωn :=

{
Bδ(y1,n) ∪Bδ(y2,n) if n ∈ {0, . . . , l}
Bδ(y1,n) if n ∈ {l + 1, . . . , k}.

In other words, we make unions of balls Bδ(y1,n) ∪ Bδ(y2,n) if they are close to each other: for separate
balls, we make arbitrary unions. If k > l, the remaining balls are considered alone.

It is easy to check that those sets satisfy the theses of Lemma 4.1.

To show the improved Moser-Trudinger inequality, we will need a localized version of the inequality (9),
which was proved in [46].

Lemma 4.2. ([46]) Let δ > 0 and Ω b Ω̃ ⊂ Σ be such that d
(

Ω, ∂Ω̃
)
≥ δ.

Then, for any ε > 0 there exists C = C(ε, δ) such that for any u = (u1, u2) ∈ H1(Σ)×H1(Σ)

log

ˆ
Ω

eu1−
ffl
Ω̃
u1dVgdVg + log

ˆ
Ω

eu2−
ffl
Ω̃
u2dVgdVg ≤

1

4π

ˆ
Ω̃

Q(u1, u2)dVg + ε

ˆ
Σ

Q(u1, u2)dVg + C.

Here comes the improved inequality: basically, if the mass of both h̃1e
u1 and h̃2e

u2 is spread respectively
on at least k + 1 and l + 1 different sets, then the logarithms in (9) can be multiplied by k + 1 and l + 1
respectively.
Notice that this result was given in [44] in the case l = 0 and in [46] in the case k = l = 1.

Lemma 4.3. Let δ > 0, θ > 0, k, l ∈ N and {Ω1,i,Ω2,j}i∈{0,...,k},j∈{0,...,l} ⊂ Σ be such that

d(Ω1,i,Ω1,i′) ≥ δ ∀ i, i′ ∈ {0, . . . , k} with i 6= i′;

d(Ω2,j ,Ω2,j′) ≥ δ ∀ j, j′ ∈ {0, . . . , l} with j 6= j′.

Then, for any ε > 0 there exists C = C (ε, δ, θ, k, l,Σ) such that any u = (u1, u2) ∈ H1(Σ)×H1(Σ) sat-
isfying ˆ

Ω1,i

h̃1e
u1dVg ≥ θ

ˆ
Σ

h̃1e
u1dVg ∀ i ∈ {0, . . . , k};

ˆ
Ω2,j

h̃2e
u2dVg ≥ θ

ˆ
Σ

h̃2e
u2dVg ∀ j ∈ {0, . . . , l}

verifies

(k + 1) log

ˆ
Σ

h̃1e
u1−u1dVg + (l + 1) log

ˆ
Σ

h̃2e
u2−u2dVg ≤

1 + ε

4π

ˆ
Σ

Q(u1, u2)dVg + C.

Proof. In the proof we assume that u1 = u2 = 0. After relabelling the indexes, we can suppose k ≥ l

and apply Lemma 4.1 with fi =
h̃ie

ui´
Σ
h̃ieuidVg

to get {Ωj}kj=0 ⊂ Σ with

d(Ωi,Ωj) ≥ δ ∀ i, j ∈ {0, . . . , k} with i 6= j

and ˆ
Ωi

h̃1e
u1dVg ≥ θ

ˆ
Σ

h̃1e
u1dVg ∀ i ∈ {0, . . . , k};

ˆ
Ωj

h̃2e
u2dVg ≥ θ

ˆ
Σ

h̃2e
u2dVg ∀ j ∈ {0, . . . , l}.

Notice that:

log

ˆ
Σ

h̃ie
uidVg =

 
Ω̃j

uidVg + log

ˆ
Σ

h̃1e
ui−

ffl
Ω̃j
uidVg

dVg, i = 1, 2.

The average on Ω̃j can be estimated by Poincaré inequality:
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Ω̃j

uidVg ≤
1∣∣∣Ω̃j∣∣∣

ˆ
Σ

|ui|dVg ≤ C
(ˆ

Σ

|∇ui|2dVg
)1/2

≤ C + ε

ˆ
Σ

|∇ui|2dVg, i = 1, 2.(28)

We now apply, for any j ∈ {0, . . . , k} Lemma 4.2 with , Ω = Ωj and Ω̃ = Ω̃j :=

{
x ∈ Σ : d(x,Ωj) <

δ

2

}
:

for j ∈ {0, . . . , l} we get

log

ˆ
Σ

h̃1e
u1−

ffl
Ω̃j
u1dVg

dVg + log

ˆ
Σ

h̃2e
u2−

ffl
Ω̃j
u2dVg

dVg(29)

≤ 2 log
1

θ
+ log

ˆ
Ωj

h̃1e
u1−

ffl
Ω̃j
u1dVg

dVg + log

ˆ
Ωj

h̃2e
u2−

ffl
Ω̃j
u2dVg

dVg

≤ C + log

ˆ
Ωj

e
u1−

ffl
Ω̃j
u1dVg

dVg + log

ˆ
Ωj

e
u2−

ffl
Ω̃j
u2dVg

dVg

≤ C +
1

4π

ˆ
Ω̃j

Q(u1, u2)dVg + ε

ˆ
Σ

Q(u1, u2)dVg, j = 1, . . . l.

For j ∈ {l + 1, . . . , k} we have

log

ˆ
Σ

h̃1e
u1−

ffl
Ω̃j
u1dVg

dVg ≤ log
1

θ
+
∥∥∥h̃1

∥∥∥
L∞(Σ)

+ log

ˆ
Ωj

e
u1−

ffl
Ω̃j
u1dVg

dVg(30)

≤ C − log

ˆ
Ωj

e
u2−

ffl
Ω̃j
u2dVg

dVg +
1

4π

ˆ
Ω̃j

Q(u1, u2)dVg + ε

ˆ
Σ

Q(u1, u2)dVg.

The exponential term on the second component can be estimated by using Jensen’s inequality:

log

ˆ
Ωj

e
u2−

ffl
Ω̃j
u2dVg

dVg = log |Ωj |+ log

 
Ωj

e
u2−

ffl
Ω̃j
u2dVg

dVg(31)

≥ log |Ωj | ≥ −C.
Putting together (31) and (32), we have:

(32) log

ˆ
Σ

h̃1e
u1−

ffl
Ω̃j
u1dVg

dVg ≤
1

4π

ˆ
Ω̃j

Q(u1, u2)dVg + ε

ˆ
Σ

Q(u1, u2)dVg + C, j = l + 1 . . . k.

Summing over all j ∈ {0, . . . , k} and taking into account (29), (32), we obtain the result, renaming ε
appropriately.

We will now use a technical result that gives sufficient conditions to apply Lemma 4.3. Its proof can be
found for instance in [19, 44].

Lemma 4.4. ([44, 46]) Let f ∈ L1(Σ) be a non-negative function with ‖f‖L1(Σ) = 1 and let m ∈ N be
such that there exist ε > 0, s > 0 withˆ

⋃m
j=0 Bs(xj)

fdVg < 1− ε ∀ {xj}mj=0 ⊂ Σ.

Then there exist ε > 0, s > 0, not depending on f , and {xj}mj=1 ⊂ Σ satisfyingˆ
Bs(xj)

fdVg > ε ∀ j ∈ {1, . . . ,m},

B2s (xi) ∩B2s (xj) = ∅ ∀ i, j ∈ {1, . . . ,m}, i 6= j.

Now we have enough tools to obtain information on the structure of very low sub-levels of Jρ:

Lemma 4.5. Suppose ρ1 ∈ (4kπ, 4(k + 1)π) and ρ2 ∈ (4lπ, 4(l + 1)π). Then, for any ε > 0, s > 0, there
exists L = L(ε, s) > 0 such that for any u ∈ J−Lρ there are either some {xi}ki=1 ⊂ Σ verifying´⋃k

i=1 Bs(xi)
h̃1e

u1dVg´
Σ
h̃1eu1dVg

≥ 1− ε
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or some {yj}lj=1 ⊂ Σ verifying ´⋃l
j=1 Bs(yj)

h̃2e
u2dVg´

Σ
h̃2eu2dVg

≥ 1− ε.

Proof. Suppose by contradiction that the statement is not true, that is there are ε1, ε2 > 0, s1, s2 > 0,
and {un = (u1,n, u2,n)}n∈N ⊂ H1(Σ)×H1(Σ) such that Jρ(u1,n, u2,n) −→

n→+∞
−∞ and

´⋃k
i=1 Bs1 (xi)

h̃1e
u1,ndVg´

Σ
h̃1eu1,ndVg

< 1− ε1;

´⋃l
j=1 Bs2 (yj)

h̃2e
u2,ndVg´

Σ
h̃2eu2,ndVg

< 1− ε2, ∀ {xi}ki=1, {yj}lj=1 ⊂ Σ.

Then, we may apply twice Lemma 4.4 with f =
h̃ie

ui´
Σ
h̃ieuidVg

, ε̃ = εi, s̃ = si and find ε1, ε2 > 0, s1, s2 > 0

and {xi}ki=0, {yj}lj=0 withˆ
Bs1 (xi)

h̃1e
u1dVg ≥ ε1

ˆ
Σ

h̃1e
u1dVg ∀ i ∈ {0, . . . , k};

ˆ
Bs2(yj)

h̃2e
u2dVg ≥ ε2

ˆ
Σ

h̃2e
u2dVg ∀ j ∈ {0, . . . , l},

and

B2s1 (xi) ∩B2s1 (xj) = ∅ ∀ i, j ∈ {0, . . . , k} with i 6= j;

B2s2

(
yj
)
∩B2s2

(
yj
)

= ∅ ∀ i, j ∈ {0, . . . , l} with i 6= j.

Hence, we obtain an improved Moser-Trudinger inequality for un = (u1,n, u2,n) applying Lemma 4.3 with

δ̃ := 2 min{s1, s2}, θ̃ := min{ε1, ε2} and Ω1,i := Bs1 (xi), Ω2,j := Bs2
(
yj
)
.

Moreover, Jensen’s inequality givesˆ
Σ

h̃ie
ui,n−ui,ndVg =

ˆ
Σ

elog h̃i+ui,n−ui,ndVg ≥ e
´
Σ

log h̃idVg ,

so, choosing

ε̃ ∈
(

0,min

{
4π(k + 1)

ρ1
− 1,

4π(l + 1)

ρ2
− 1

})
we get

−∞ ←−
n→+∞

Jρ(u1,n, u2,n)

≥
(

4π(k + 1)

1 + ε̃
− ρ1

)
log

ˆ
Σ

h̃1e
u1,n−u1,ndVg

+

(
4π(l + 1)

1 + ε̃
− ρ2

)
log

ˆ
Σ

h̃2e
u2,n−u2,ndVg − C

≥
(

4π(k + 1)

1 + ε̃
− ρ1

)ˆ
Σ

log h̃1dVg +

(
4π(l + 1)

1 + ε̃
− ρ2

)ˆ
Σ

log h̃2dVg − C

≥ −C

that is a contradiction.

An immediate consequence of the previous Lemma is that at least one of the two h̃ie
ui ’s (once normalized

in L1) has to be very close respectively to the sets of k-barycenters or l-barycenters over Σ:

Proposition 4.6. Suppose ρ1 ∈ (4kπ, 4(k + 1)π) and ρ2 ∈ (4lπ, 4(l + 1)π). Then, for any ε > 0, there
exists L > 0 such that any u ∈ J−Lρ verifies either

d

(
h̃1e

u1´
Σ
h̃1eu1dVg

,Σk

)
< ε or d

(
h̃2e

u2´
Σ
h̃2eu2dVg

,Σl

)
< ε.
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Proof. We apply Lemma 4.5 with ε̃ =
ε

4
, s̃ =

ε

2
; it is not restrictive to suppose that the first al-

ternative occurs and that

ˆ
Σ

h̃1e
u1dVg = 1. Hence we get L and {xi}ki=1 and we define, for such an

u = (u1, u2) ∈ J−Lρ ,

σ1(u) =

k∑
i=1

ti(u)δxi ∈ Σk where ti(u) =

ˆ
Bs̃(xi)\

⋃i−1
j=1 Bs̃(xj)

h̃1e
u1dVg +

1

k

ˆ
Σ\

⋃k
j=1 Bs̃(xj)

h̃1e
u1dVg.

Then, for any φ ∈ Lip(Σ),∣∣∣∣∣
ˆ

Σ\
⋃k
i=1 Bs̃(xi)

(
h̃1e

u1´
Σ
h̃1eu1dVg

− σ1(u)

)
φdVg

∣∣∣∣∣ =

=

ˆ
Σ\

⋃k
i=1 Bs̃(xi)

h̃1e
u1φdVg ≤

ˆ
Σ\

⋃k
i=1 Bs̃(xi)

h̃1e
u1dVg‖φ‖L∞(Σ) < ε̃‖φ‖L∞(Σ)

and ∣∣∣∣∣
ˆ
⋃k
i=1 Bs̃(xi)

(
h̃1e

u1´
Σ
h̃1eu1dVg

− σ1(u)

)
φdVg

∣∣∣∣∣
=

∣∣∣∣∣
ˆ
⋃k
i=1 Bs̃(xi)

h̃1e
u1φdVg −

k∑
i=1

(ˆ
Bs̃(xi)\

⋃i−1
j=1 Bs̃(xj)

h̃1e
u1dVg +

1

k

ˆ
Σ\

⋃k
j=1 Bs̃(xj)

h̃1e
u1dVg

)
φ(xi)

∣∣∣∣∣
=

∣∣∣∣∣
ˆ
⋃k
i=1(Bs̃(xi)\

⋃i−1
j=1 Bs̃(xj))

h̃1e
u1(φ− φ(xi))dVg −

ˆ
Σ\

⋃k
j=1 Bs̃(xj)

h̃1e
u1dVgφ(xi)

∣∣∣∣∣
≤ s̃‖∇φ‖L∞(Σ)

ˆ
⋃k
i=1(Bs̃(xi)\

⋃i−1
j=1 Bs̃(xj))

h̃1e
u1dVg + ‖φ‖L∞(Σ)

ˆ
Σ\

⋃k
j=1 Bs̃(xj)

h̃1e
u1dVg

< s̃‖∇φ‖L∞(Σ) + ε̃‖φ‖L∞(Σ).

Hence we can conclude the proof:

d

(
h̃1e

u1´
Σ
h̃1eu1dVg

,Σk

)
≤ d

(
h̃1e

u1´
Σ
h̃1eu1dVg

, σ1(u)

)
= sup
‖φ‖Lip(Σ)=1

∣∣∣∣∣
ˆ

Σ

(
h̃1e

u1´
Σ
h̃1eu1dVg

− σ1(u)

)
φdVg

∣∣∣∣∣
= sup

‖φ‖Lip(Σ)=1

∣∣∣∣∣
ˆ

Σ\
⋃k
i=1 Bs̃(xi)

(
h̃1e

u1´
Σ
h̃1eu1dVg

− σ1(u)

)
φdVg

∣∣∣∣∣
+ sup

‖φ‖Lip(Σ)=1

∣∣∣∣∣
ˆ
⋃k
i=1 Bs̃(xi)

(
h̃1e

u1´
Σ
h̃1eu1dVg

− σ1(u)

)
φdVg

∣∣∣∣∣
< sup

‖φ‖Lip(Σ)=1

2ε̃‖φ‖L∞(Σ) + s̃‖∇φ‖L∞(Σ) ≤ 2ε̃+ s̃ = ε,

as desired.

With the previous estimates, it is now easy to define a projection map in the following form:

Proposition 4.7. Suppose ρ1 ∈ (4kπ, 4(k + 1)π), ρ2 ∈ (4lπ, 4(l + 1)π) and let Φλ be as in (17). Then
for L sufficiently large there exists a continuous map

Ψ : J−Lρ → (γ1)k ∗ (γ2)l

such that the composition

(γ1)k ∗ (γ2)l
Φλ−→ J−Lρ

Ψ−→ (γ1)k ∗ (γ2)l

is homotopically equivalent to the identity map on (γ1)k ∗ (γ2)l provided that λ is large enough.

The rest of this section is devoted to the proof of this proposition.
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By Propositions 4.6 and 4.7 we know that either ψk

(
h̃1e

u1´
Σ
h̃1eu1dVg

)
or ψl

(
h̃2e

u2´
Σ
h̃2eu2dVg

)
is well defined

(or both), since either d

(
h̃1e

u1´
Σ
h̃1eu1dVg

,Σk

)
< ε or d

(
h̃2e

u2´
Σ
h̃2eu2dVg

,Σl

)
< ε (or both).

We then set

d1 = d

(
h̃1e

u1´
Σ
h̃1eu1dVg

,Σk

)
; d2 = d

(
h̃2e

u2´
Σ
h̃2eu2dVg

,Σl

)
,

and consider a function r̃ = r̃(d1, d2) defined as

(33) r̃(d1, d2) = f

(
d1

d1 + d2

)
,

where f is such that

(34) f(z) =

 0 if z ∈ [0, 1/4],
2z − 1

2 if z ∈ (1/4, 3/4),
1 if z ∈ [3/4, 1].

Consider the global retractions Π1 : Σ→ γ1 and Π2 : Σ→ γ2 given in Lemma 3.1, and define:

(35) Ψ(u1, u2) = (1− r̃)(Π1)∗ψk

(
h̃1e

u1´
Σ
h̃1eu1dVg

)
+ r̃(Π2)∗ψl

(
h̃2e

u2´
Σ
h̃2eu2dVg

)
,

where (Πi)∗ stands for the push-forward of the map Πi. Notice that when one of the two ψ’s is not
defined the other necessarily is, and the map is well defined by the equivalence relation.

In what follows, we are going to need the following auxiliary lemma:

Lemma 4.8. Given n ∈ N, define χλ as χλ(x) =

n∑
i=1

ti

(
λ

1 + λ2d(x, xi)2

)2

. Take a L∞ function τ :

Σ→ R satisfying:

i) τ(x) > m > 0 for all x ∈ B(xi, δ).
ii) |τ(x)| ≤M for all x ∈ Σ.

Then, there exist constants c > 0, C > 0 depending only on Σ, m, M , such that for every λ > 0,

c0 min

{
1,

1

λ

}
< d

(
τ χλ´

Σ
τ χλ dVg

,Σn

)
<
C0

λ
.

Proof.
We show the proof for n = 1; the general case uses the same ideas and will be skipped. We also assume

λ > 1. First of all, observe that

C >

ˆ
Σ

χλ(x) dVg(x) > c > 0

for some positive constants c, C.
For the upper estimate, it suffices to show that for any f Lipschitz, ‖f‖Lip(Σ) ≤ 1,

ˆ
Σ

τ(x)

(
λ

1 + λ2d(x, x0)2

)2

(f(x)− f(x0)) dVg(x) ≤ C

λ
.

Indeed, by ii), ˆ
(Bδ(x0))c

τ(x)

(
λ

1 + λ2d(x, x0)2

)2

dVg(x) ≤ C

λ2
,

and using geodesic coordinates x centered at x0, we find∣∣∣∣∣
ˆ
Bδ(x0)

τ(x)

(
λ

1 + λ2d(x, x0)2

)2

(f(x)− f(x0)) dVg(x)

∣∣∣∣∣
≤ C

ˆ
Bδλ(0))

τ
(
x0 +

y

λ

)( 1

1 + |y|2

)2 ∣∣∣f (x0 +
y

λ

)
− f(x0)

∣∣∣ dy
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≤ C
ˆ
R2

(
1

1 + y2

)2 ∣∣∣ y
λ

∣∣∣ dy ≤ C

λ
.

We now prove the estimate from below. Given p ∈ Σ, we estimate d(χλ, δp). Define the Lipschitz
function f(x) = d(x, p). We now show that:

min
p∈Σ

ˆ
Σ

τ(x)

(
λ

1 + λ2d(x, x0)2

)2

d(x, p) dVg(x) ≥ c

λ
.

As above, the integral in the exterior of Bδ(x0) is negligible. Moreover, in the same coordinates as
above, and taking into account i), we obtain:

ˆ
Bδ(x0)

τ(x)

(
λ

1 + λ2|x− x0|2

)2

d(x, p) dVg(x) ∼
ˆ
Bδλ(0)

τ(x)
(
x0 +

y

λ

)( 1

1 + |y|2

)2 ∣∣∣x0 − p+
y

λ

∣∣∣ dy
≥ m

λ

ˆ
Bδ(0)

(
1

1 + |y|2

)2

|y + λ(x0 − p)| dy.

It suffices to show that we cannot choose pλ so that

(36)

ˆ
Bδ(0)

(
1

1 + |y|2

)2

|y + λ(x0 − pλ)| dx→ 0 as λ→ +∞.

Indeed, if λ|x0 − pλ| → +∞, the expression (36) diverges. If not, we can assume that λ(x0 − pλ) →
z ∈ R2. Then, (36) converges to ˆ

Bδ(0)

(
1

1 + |y|2

)2

|y + z| dx > 0.

which concludes the proof.

From the previous lemma we deduce the following

Proposition 4.9. Let ϕi be defined by (17). Then there exist constants c > 0, C > 0 such that for every
λ > 1 and every r ∈ (0, 1) one has

c0 min

{
1,

1

λ1,r

}
≤ d

(
h̃1e

ϕ1´
Σ
h̃1eϕ1 dVg

,Σk

)
≤ C0

λ1,r
; c0 min

{
1,

1

λ2,r

}
≤ d

(
h̃2e

ϕ2´
Σ
h̃2eϕ2 dVg

,Σl

)
≤ C0

λ2,r
.

Proof. Clearly, it suffices to prove the estimates for ϕ1 in the case λ1,r > 1. By the normalization, it
suffices to prove it to the function ς = ϕ1 − 2 log (λ1,r max{1, λ2,r}).

Observe now that we can write eς = χλ1,r (x) τ(x), with:

τ(x) = h̃1(x)

 l∑
j=1

sj

(
max{1, λ2,r}2

1 + λ2
2,rd(x, yj)2

)2
−1/2

.

It suffices to show that τ satisfy the conditions of Lemma 4.8 to conclude.

We are now in position to prove that the composition Ψ ◦Φλ is homotopic to the identity, where Ψ is as
in (35) and Φλ(ζ) = ϕλ,ζ is as in (17). Take ζ = (1− r)σ1 + rσ2 ∈ (γ1)k ∗ (γ2)l, with

σ1 =

k∑
i=1

tiδxi , σ2 =

l∑
j=1

sjδyj .

Set d1 = d

(
h̃1e

ϕ1´
Σ
h̃1eϕ1dVg

,Σk

)
, d2 = d

(
h̃2e

ϕ2´
Σ
h̃2eϕ2dVg

,Σl

)
. By the previous proposition and the

definition of λ1,r, λ2,r, there exist constants 0 < c0 < C0 such that

c0 min

{
1,

1

λ(1− r)

}
≤ d1 ≤

C0

λ(1− r)
, c0 min

{
1,

1

λr

}
≤ d2 ≤

C0

λr
.
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Observe then that at least one between d1 and d2 must be smaller than 2C0

λ . Given δ > 0 sufficiently
small, we have:

r < δ ⇒


d1

d1+d2
≤

C0

λ(1−r)
c0

λ(1−r) + c0
λr

=
C0

c0
r if λ r ≥ 1;

d1

d1+d2
≤

C0

λ(1−r)

c0 + c0
λ(1−r)

≤ C0

c0

1

λ
if λ r ≤ 1.

In any case, by choosing λ, δ adequately, we obtain that r̃ = 0. This fact is important, since the

projection ψl

(
h̃2e

ϕ2´
Σ
h̃2eϕ2dVg

)
could not be well defined.

Analogously, we have that if r > (1 − δ), then the projection ψk

(
h̃1e

ϕ1´
Σ
h̃1eϕ1dVg

)
could not be

well defined, but r̃ = 1. Moreover, if δ ≤ r ≤ (1 − δ), then di ≤ C
δλ , and hence both projections

ψk

(
h̃1e

ϕ1´
Σ
h̃1eϕ1dVg

)
, ψl

(
h̃2e

ϕ2´
Σ
h̃2eϕ2dVg

)
are well defined.

Letting ζ̃λ = Ψ ◦ Φλ(ζ) = (1− r̃λ)σ̃1,λ + r̃λσ̃2,λ, we consider the following homotopy:

H1 : (0, 1]× ((γ1)k ∗ (γ2)l)→ ((γ1)k ∗ (γ2)l) ,

H1(µ, (1− r)σ1 + rσ2) = (1− rµ,λ)σ̃1,λµ
+ rµ,λσ̃2,λµ

,

where rµ,λ = (1− µ)f(r) + µr̃λ, and f is given by (34). Observe that H1(1, ·) = Ψ ◦ Φλ.

Suppose now µ tends to zero. Then, as λ is fixed, λ
µ → +∞, and hence

h̃ie
ϕ
i, λ
µ´

Σ
h̃ie

ϕ
i, λ
µ dVg

⇀ σi.

Proposition 2.2 implies that ψk

(
h̃1e

ϕ1´
Σ
h̃1eϕ1dVg

)
→ σ1, ψl

(
h̃2e

ϕ2´
Σ
h̃2eϕ2dVg

)
→ σ2. Since Πi are retractions,

we conclude that σ̃i,λµ
→ σi. In other words,

lim
µ→0

H1(µ, (1− r)σ1 + rσ2) = (1− f(r))σ1 + f(r)σ2.

We now define:

H2 : [0, 1]× ((γ1)k ∗ (γ2)l)→ ((γ1)k ∗ (γ2)l) ,

H2(µ, (1− r)σ1 + rσ2) = [1− (µf(r) + (1− µ)r)]σ1 + (µf(r) + (1− µ)r)σ2.

The concatenation of H1 and H2 gives the desired homotopy.

5. Min-max scheme

We now introduce the variational scheme which yields existence of solutions: this remaining part follows
the ideas of [18] (see also [42]).

By Proposition 3.3, given any L > 0, there exists λ so large that Jρ(ϕλ,ζ) < −L for any ζ ∈ (γ1)k∗(γ2)l.
We choose L so large that Proposition 4.7 applies: we then have that the following composition

(γ1)k ∗ (γ2)l
Φλ−→ J−Lρ

Ψ−→ (γ1)k ∗ (γ2)l

is homotopic to the identity map. In this situation it is said that the set J−Lρ dominates (γ1)k ∗ (γ2)l (see
[25], page 528). Since (γ1)k ∗ (γ2)l is not contractible, this implies that

Φλ((γ1)k ∗ (γ2)l) is not contractible in J−Lρ .

Moreover, we can take λ larger so that Φλ((γ1)k ∗ (γ2)l) ⊂ J−2L
ρ .

Define the topological cone with basis (γ1)k ∗ (γ2)l via the equivalence relation

C =
(γ1)k ∗ (γ2)l × [0, 1]

(γ1)k ∗ (γ2)l × {0}
:
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notice that, since (γ1)k ∗ (γ2)l ' S2k+2l−1, then C is homeomorphic to a Euclidean ball of dimension
2k + 2l.

We now define the min-max value:

m = inf
ξ∈Γ

max
u∈C

J(ξ(u)),

where

(37) Γ = {ξ : C → H1(Σ)×H1(Σ) : ξ(ζ) = ϕλ,ζ ∀ ζ ∈ ∂C}.
Observe that tΦλ : C → H1(Σ)×H1(Σ) belongs to Γ, so this is a non-empty set. Moreover,

sup
ζ∈∂C

Jρ(ξ(ζ)) = sup
ζ∈(γ1)k∗(γ2)l

Jρ(ϕλ,ζ) ≤ −2L.

We now show that m ≥ −L. Indeed, ∂C is contractible in C, and hence in ξ(C) for any ξ ∈ Γ. Since
∂C is not contractible in J−Lρ , we conclude that ξ(C) is not contained in J−Lρ . Being this valid for any
arbitrary ξ ∈ Γ, we conclude that m ≥ −L.

From the above discussion, the functional Jρ satisfies the geometrical properties required by min-max
theory. However, we cannot directly conclude the existence of a critical point, since it is not known
whether the Palais-Smale condition holds or not. The conclusion needs a different argument, which has
been used intensively (see for instance [18, 20]), so we will be sketchy.

We take ν > 0 such that

[ρ1 − 2ν, ρ1 + 2ν]× [ρ2 − 2ν, ρ2 + 2ν] ⊂ R2\Λ,
where Λ is the set defined as in Definition 2.4.

Consider now the parameter µ ∈ [−ν, ν]. It is clear that the min-max scheme described above works
uniformly for any µ in this range. In other words, for any L > 0, there exists λ large enough so that

(38) sup
ζ∈∂C

Jρ̃(ξ(ζ)) < −2L; mµ := inf
ξ∈Γ

sup
ζ∈C

Jρ̃(ξ(ζ)) ≥ −L, ρ̃ = (ρ1 + µ, ρ2 + µ).

In this way, we are led to a problem depending on the parameter µ that satisfies a uniform min-max
structure. In this framework, the following Lemma is well-known, usually taking the name monotonicity
trick. This technique was first used by Struwe in [56]; a first abstract version was made in [26] (see also
[18, 40]).

Lemma 5.1. There exists Υ ⊂ [−ν, ν] satisfying:

(1) |[−ν, ν] \Υ| = 0.
(2) For any µ ∈ Υ, the functional Jρ̃ possesses a bounded Palais-Smale sequence (u1,n, u2,n)n at level

mµ.

Conclusion. Consider first µ ∈ Υ. Passing to a subsequence, the bounded Palais-Smale sequence can
be assumed to converge weakly. Standard arguments show that the weak limit is indeed strong and that
it is a critical point of Jρ̃.

Consider now µn ∈ Υ, µn → 0, and let (u1,n, u2,n) denote the corresponding solutions. It is then
sufficient to apply the compactness result in Theorem 2.5, which yields convergence of (u1,n, u2,n) to a
solution of (5).

6. The mean field equation

In this section we consider the mean field equation, namely the Liouville-type equation

(39) −∆u = ρ1

(
heu´

Σ
heudVg

− 1

)
− ρ2

(
he−u´

Σ
he−udVg

− 1

)
where ρ1, ρ2 are two non-negative parameters and h is a smooth positive function. Applying the same
analysis developed for the Toda system we give a general existence result.

This equation arises in mathematical physics as a mean field equation of the equilibrium turbulence
with arbitrarily signed vortices. The mean field limit was first studied by Joyce and Montgomery [32] and
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by Pointin and Lundgren [54] by means of different statistical arguments. Later, many authors adopted
this model, see for example [16], [39], [49] and the references therein. The case ρ1 = ρ2 plays also an
important role in the study of constant mean curvature surfaces, see [62], [63].

Equation (39) has a variational structure with associated functional Ĩρ : H1(Σ)→ R, with ρ = (ρ1, ρ2),
defined by

(40) Ĩρ(u) =
1

2

ˆ
Σ

|∇gu|2 dVg − ρ1

(
log

ˆ
Σ

h eu dVg −
ˆ

Σ

u dVg

)
− ρ2

(
log

ˆ
Σ

h e−u dVg +

ˆ
Σ

u dVg

)
.

In [53] the authors derived a Moser-Trudinger inequality for eu and e−u simultaneously, namely

log

ˆ
Σ

eu−Bu dVg + log

ˆ
Σ

e−u+Bu dVg ≤
1

16π

ˆ
Σ

|∇gu|2 dVg + C,

with C depending only of Σ. By this result, solutions to (39) can be found immediately as global minima

of the functional Ĩρ whenever both ρ1 and ρ2 are less than 8π. For ρi ≥ 8π the existence problem becomes
subtler and there are very few results.

The blow-up analysis of (39) was carried out in [53], [52] and [31], see in particular Theorem 1.1,
Corollary 1.2 and Remark 4.5 in the latter paper. The following quantization property for a blow-up
point x and a sequence (un)n of solutions relatively to (ρ1,n, ρ2,n) was obtained:

(41) lim
r→0

lim
n→+∞

ρ1,n

ˆ
Br(x)

h eundVg ∈ 8πN, lim
r→0

lim
n→+∞

ρ2,n

ˆ
Br(x)

h e−undVg ∈ 8πN.

As for the Toda system, the case of multiples of 8π may indeed occur, see [23] and [24].

Let now define the set Λ̃ by

Λ̃ = (8πN× R) ∪ (R ∪ 8πN) ⊆ R2.

Combining (41) and the argument in Section 1 of [5] one finds the following result.

Theorem 6.1. Let (ρ1, ρ2) be in a fixed compact set of R2 \ Λ̃. Then the set of solutions to (39) is
uniformly bounded in C2,β for some β > 0.

Before proving our main result we collect here some known existence results. The first one is given in
[31] and treats the case ρ1 ∈ (8π, 16π) and ρ2 < 8π. Via a blow up analysis the authors proved existence
of solutions on a smooth, bounded, non simply-connected domain Σ in R2 with homogeneous Dirichlet
boundary condition. Later, this result is generalized in [65] to any compact surface without boundary by
using variational methods. The strategy is carried out in the same spirit as in [43] and [44] for the Liouville
equation (10) and the Toda system (5), respectively. The proof relies on some improved Moser-Trudinger
inequalities obtained in [14]. The idea is that, in a certain sense, one can recover the topology of low

sub-levels of the functional Ĩρ just from the behaviour of eu. Indeed the condition ρ2 < 8π guarantees
that e−u does not affect the variational structure of the problem.

The doubly supercritical regime, namely ρi > 8π, has to be attacked with a different strategy. The
only existence result concerning this case has been proved in [27] via variational methods where the
author adapted the analysis developed to study the Toda system in [46] for this framework. The main
tool is an improved Moser-Trudinger inequality under suitable conditions on the centre of mass and the
scale of concentration of both eu and e−u.

We will give here a general existence result.

Theorem 6.2. Suppose Σ is not homeomorphic to S2 nor RP2, and that ρi /∈ 8πN for i = 1, 2. Then
(39) has a solution.

The proof is an adaptation of the argument introduced for the Toda system. Roughly speaking the
role of the function u2 is played by −u.

We start by considering the topological set (γ1)k∗(γ2)l, on which we will base the min-max scheme. We
take then two curves γ1, γ2 ∈ Σ with the same properties as before. Let ζ ∈ (γ1)k∗(γ2)l, ζ = (1−r)σ1+rσ2,
with

σ1 :=

k∑
i=1

tiδxi ∈ (γ1)k and σ2 :=

l∑
j=1

sjδyj ∈ (γ2)l.
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We define now a test function labelled by ζ ∈ (γ1)k ∗ (γ2)l, namely for large L we will find a non-trivial
map

Φ̃λ : (γ1)k ∗ (γ2)l → Ĩ−Lρ .

We set Φ̃λ(ζ) = ϕλ,ζ given by

ϕλ,ζ(x) = log

k∑
i=1

ti

(
1

1 + λ2
1,rd(x, xi)2

)2

− log

l∑
j=1

sj

(
1

1 + λ2
2,rd(x, yj)2

)2

,

where λ1,r = (1− r)λ, λ2,r = rλ.
The following result holds true.

Proposition 6.3. Suppose ρ1 ∈ (8kπ, 8(k + 1)π) and ρ2 ∈ (8lπ, 8(l + 1)π). Then one has

Ĩρ(ϕλ,ζ)→ −∞ as λ→ +∞ uniformly in ζ ∈ (γ1)k ∗ (γ2)l.

Proof. The proof is developed exactly as in Proposition 3.3. Here we just sketch the main features.
We define ṽ1, ṽ2 : Σ→ R by

ṽ1(x) = log

k∑
i=1

ti

(
1

1 + λ2
1,rd(x, xi)2

)2

,

ṽ2(x) = log

l∑
j=1

sj

(
1

1 + λ2
2,rd(x, yj)2

)2

,

so that ϕ = ṽ1 − ṽ2.

The Dirichlet part of the functional Ĩρ is given by

1

2

ˆ
Σ

|∇ϕ|2 dVg =
1

2

ˆ
Σ

(
|∇ṽ1|2 + |∇ṽ2|2 − 2∇ṽ1 · ∇ṽ2

)
dVg ≤

1

2

ˆ
Σ

|∇ṽ1|2 dVg +
1

2

ˆ
Σ

|∇ṽ2|2 dVg + C,

where we have used ∣∣∣∣ˆ
Σ

∇ṽ1 · ∇ṽ2 dVg

∣∣∣∣ ≤ C.
We first study the cases r = 0 and r = 1, starting from r = 0. The case r = 1 can be treated in the same
way and will be omitted. Observing that ∇ṽ2 = 0 and taking into account the estimates (18), (19) on
the gradient of ṽ1 we get

1

2

ˆ
Σ

|∇ϕ|2 dVg ≤ 16kπ
(
1 + oλ(1)

)
log λ+ C,

where oλ(1)→ 0 as λ→ +∞.
Reasoning as in Proposition 3.3 we obtainˆ

Σ

ϕdVg = −4
(
1+oλ(1)

)
log λ; log

ˆ
Σ

eϕ dVg = −2
(
1+oλ(1)

)
log λ; log

ˆ
Σ

e−ϕ dVg = 4
(
1+oλ(1)

)
log λ.

Therefore we get

Ĩρ(ϕλ,ζ) ≤
(
16kπ − 2ρ1 + oλ(1)

)
log λ+ C,

where C is independent of λ and σ1, σ2.
We consider now the case r ∈ (0, 1). We can reason as before to estimate the Dirichlet part by

1

2

ˆ
Σ

|∇ϕ|2 dVg ≤ 16kπ
(
1 + oλ(1)

)
log
(
λ1,r + δ1,r

)
+ 16lπ

(
1 + oλ(1)

)
log
(
λ2,r + δ2,r

)
+ C,

where δ1,r > δ > 0 as r → 1 and δ2,r > δ > 0 as r → 0. Following the argument in Proposition 3.3 we
obtain ˆ

Σ

ϕdVg = −4
(
1 + oλ(1)

)
log
(
λ1,r + δ1,r

)
+ 4
(
1 + oλ(1)

)
log
(
λ2,r + δ2,r)

)
+O(1),

log

ˆ
Σ

eϕ dVg = 4 log
(
λ2,r + δ2,r

)
− 2 log

(
λ1,r + δ1,r

)
+O(1),

log

ˆ
Σ

e−ϕ dVg = 4 log
(
λ1,r + δ1,r

)
− 2 log

(
λ2,r + δ2,r

)
+O(1).
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Using these estimates we get

Ĩρ(ϕλ,ζ) ≤
(
16kπ − 2ρ1 + oλ(1)

)
log
(
λ1,r + δ1,r

)
+
(
16lπ − 2ρ2 + oλ(1)

)
log
(
λ2,r + δ2,r

)
+O(1).

By assumption we have ρ1 > 8kπ, ρ2 > 8lπ and exploiting the fact that max
r∈[0,1]

{λ1,r, λ2,r} → +∞ as

λ→∞, we deduce the thesis.

Once we have this result we can proceed exactly as in Section 4. One gets indeed an analogous
improved Moser-Trudinger inequality as in Lemma 4.3. We have just to observe that a local Moser-
Trudinger inequality still holds in this case, as pointed out in [27].

Lemma 6.4. Fix δ > 0, and let Ω b Ω̃ ⊂ Σ be such that d
(

Ω, ∂Ω̃
)
≥ δ. Then, for any ε > 0 there exists

a constant C = C(ε, δ) such that for all u ∈ H1(Σ)

log

ˆ
Ω

eu−
ffl
Ω̃
u dVg dVg + log

ˆ
Ω

e−u+
ffl
Ω̃
u dVg dVg ≤

1 + ε

16π

ˆ
Ω̃

|∇gu|2 dVg + C.

Therefore, considering ρ1 ∈ (8kπ, 8(k+1)π) and ρ2 ∈ (8lπ, 8(l+1)π), we deduce that on low sub-levels

of the functional Ĩρ at least one of the component of

(
heu´

Σ
heudVg

,
he−u´

Σ
he−udVg

)
has to be very close to

the sets of k- or l- barycenters over Σ, respectively, see Proposition 4.6 for details. It is then possible to
construct a continuous map

Ψ̃ : Ĩ−Lρ → (γ1)k ∗ (γ2)l

with L sufficiently large, such that the composition

(γ1)k ∗ (γ2)l
Φ̃λ−→ Ĩ−Lρ

Ψ̃−→ (γ1)k ∗ (γ2)l

is homotopically equivalent to the identity map on (γ1)k ∗ (γ2)l provided that λ is large enough. Ψ̃ is
defined as in (35), where basically eu2 is replaced by e−u:

Ψ̃(u) = (1− r̃)(Π1)∗ψk

(
heu´

Σ
heudVg

)
+ r̃(Π2)∗ψl

(
he−u´

Σ
he−udVg

)
.

With this at hand we argue as in Section 5 introducing a min-max scheme based on the set (γ1)k ∗ (γ2)l.
Allowing (ρ1, ρ2) to vary in a compact set of (8kπ, 8(k + 1)π)× (8lπ, 8(l + 1)π) we obtain a sequence of
solutions (un)n corresponding to (ρ1,n, ρ2,n)→ (ρ1, ρ2). We finally get a solution for (ρ1, ρ2) by applying
the compactness result in Theorem 6.1.

7. Appendix: On the CW structure of Barycenter Spaces, by Sadok Kallel

In this appendix we show that barycenter spaces of CW-complexes are again CW. The notation of this
appendix is independent of the rest of the paper, and the proofs use arguments from algebraic topology.

We adopt the notation Bn for barycenter and Sym∗n for symmetric join, see [33]. We also need the
notation

∆k−1 = {(t1, . . . , tk) ∈ [0, 1]k |
∑

ti = 1}
for the (k− 1)-dimensional complex. This we view as a CW-complex with faces being subcomplexes. For
k < n, we write as ∆k−1 ↪→ ∆n−1 the standard face inclusion given by adjoining trivial coordinate entries
(t1, . . . , tk) 7→ (t1, . . . , tk, 0, . . . , 0). Similarly for based X, with basepoint x0, we embed Xk ↪→ Xn by
adjoining basepoints.

Proposition 7.1. If X is a based connected CW-complex, then Bn(X) can be equipped with a CW
structure so that all vertical projections in the following diagram are cellular maps and all horizontal
maps are subcomplex inclusions

∆k−1 ×Xk �
� //

��

∆n−1 ×Xn

��
Bk(X) �

� // Bn(X).

The proof uses standard facts about CW complexes which we now review.
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(1) If (X,A) is a relative CW complex, then the quotient space X/A is a CW complex with a vertex
corresponding to A.

(2) More generally if A is a subcomplex of a CW complex X,Y is a CW complex, and f : A −→ Y is
a cellular map, then the pushout Y ∪fX has an induced CW complex structure that contains Y as
a subcomplex and has one cell for each cell of X that is not in A. We represent this construction
by a diagram

A �
� i //

f

��

X

��
Y // X ∪f Y

with the understanding that all maps arriving at X ∪f Y are cellular with respect to the induced
cell structure there.

(3) A finite group, or more generally a discrete group G acts cellularly on X means that: (i) if σ is
an open cell of X then gσ is again an open cell in X for all g ∈ G, and (ii) if g ∈ G fixes an
open cell σ, that is gσ = σ, then it fixes σ pointwise (i.e. gx = x for all x ∈ σ). A CW-complex
is a cellular G-space if G acts cellularly on X. If a finite group G acts cellulary on X, then
X/G is a CW-complex. Furthermore, if f : X −→ Y is a G-equivariant cellular map between
cellular G-spaces, then the induced map X/G −→ Y/G is cellular with respect to the induced
CW-structures.

Properties (1) and (2) can be found in ([47], Chapter 10.2). Property (3) follows from Prop. 1.15 and
Ex. 1.17 of [60] (Chapter 2). Throughout we endow X with a CW-structure so that the permutation
action of Sn on Xn is cellular, and so that x0 is a 0-cell or vertex.

Proof of Proposition 7.1. We recall the definition of the barycenter spaces. Given X a space, then its
n-th barycenter space is the quotient space

Bn(X) :=

n∐
k=1

∆k−1 ×Sk X
k/∼

where ∆k−1 ×Sk X
k is the quotient of ∆k−1 × Xk by the symmetric group Sk acting diagonally, and

where ∼ is the equivalence relation generated by:

(i) [t1, . . . , ti−1, 0, ti+1, . . . , tn;x1, . . . , xi, . . . xn]

∼ [t1, . . . , ti−1, ti+1, . . . , tn;x1, . . . , x̂i, . . . xn]

(here x̂i means the i-th entry has been suppressed), and by

(ii) [t1, . . . , ti, . . . , tj , . . . , tn;x1, . . . , xi, . . . , xj , . . . , xn]

∼ [t1, . . . , ti−1, ti + tj , ti+1, . . . , t̂j , . . . , tn;x1, . . . , xi, . . . , x̂j , . . . , xn] if xi = xj .

An intermediate construction is to consider the symmetric join Sym∗n(X) which is the quotient of∐n
k=1 ∆k−1 ×Sk X

k by the equivalence relation (i) only. There are quotient projections

∆n−1 ×Xn −→ ∆n−1 ×Sn X
n −→ Sym∗n(X) −→ Bn(X)

and it is convenient to write an equivalence class in ∆n−1 ×Sn X
n or any of its images in Sym∗nX and

Bn(X) by
n∑
i=1

tixi := [t1, . . . , tn;x1, . . . , xn].

Addition means the sum is abelian and this reflects the symmetric group action. The relation (i) means
the entry 0xi is suppressed, and relation (ii) means that tix+ tjx = (ti + tj)x.

To show that Bn(X) is CW, we proceed by induction. When n = 1, B1X = X so there is nothing to
prove. For the general case, write

BnX = Bn−1X ∪ (∆n−1 ×Sn X
n) /∼

and write Xn
fat ⊂ Xn the fat diagonal consisting of all n-tuples (x1, . . . , xn) with xi = xj for some i 6= j.

Denote by

Wn = (∂∆n−1 ×Sn X
n)
⋃ (

∆n−1 ×Sn X
n
fat

)
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the subspace of ∆n−1 ×Sn X
n consisting of all classes

∑
tixi with ti = 0 for some i or xi = xj for some

i 6= j. Then Wn is a CW subcomplex of Xn because the Sn-equivariant decomposition of Xn can always
be arranged so that ∆fat is a subcomplex. There is a well-defined quotient map f : Wn −→ Bn−1 sending∑

tjxj 7−→
∑
j 6=i

tjxj if ti = 0

∑
tjxj 7−→ t1x1 + · · ·+ (ti + tj)xi + · · ·+ t̂jxj + · · ·+ tnxn if xi = xj

and we have the pushout diagram

(∗) Wn
� � //

f

��

∆n−1 ×Sn X
n

��
Bn−1X // Bn(X).

If we can show that f is cellular, then by property (2) and induction, Bn(X) will be CW as desired.
The map f has two restrictions f1 and f2 on the pieces ∂∆n−1 ×Sn X

n and ∆n−1 ×Sn X
n
fat ⊂ Wn

respectively. To see that f1 is cellular, write ∂∆n−1 as a union of faces Fi = {(t1, . . . , tn), ti = 0} each
homeomorphic to ∆n−2. Write Xn

i = {(x1, . . . , xn) ∈ Xn | xi = x0} where x0 ∈ X is the basepoint. The
maps Fi ×Xn −→ Fi ×Xn

i , (t1, . . . , tn;x1, . . . , xn) 7→ (t1, . . . , tn;x1, . . . , x0, . . . , xn); which for a given i
replaces xi by x0, are cellular and so is their union⋃

i

Fi ×Xn −→
⋃
i

Fi ×Xn
i .

This map is Sn-equivariant and so passes to a cellular map between quotients

(
⋃
i Fi ×Xn) /Sn // (

⋃
i Fi ×Xn

i ) /Sn

∂∆n−1 ×Sn X
n g // ∆n−2 ×Sn−1

Xn−1.

The restriction f1 is now the composite of cellular maps

∂∆n−1 ×Sn X
n g // ∆n−2 ×Sn−1

Xn−1 // Bn−1(X)

thus it is cellular. We proceed the same way for the restriction f2. Write Xn
fat =

⋃
i<j X

n
ij where

Xn
ij = {(x1, . . . , xn) ∈ Xn | xi = xj , i < j}. Each Xn

ij is identified with Xn−1. There are maps
τij : ∆n−1 ×Xn

ij −→ Fi ×Xn
i sending

(t1, . . . , tn, x1, . . . , xn)

7−→ (t1, . . . , ti−1, 0, ti+1, . . . , tj−1, ti + tj , tj+1, . . . , tn;x1, . . . , xi−1, x0, xi+1, . . . , xn)

which are cellular being the product of cellular maps (i.e it can be checked that the map ∆n−1 −→ ∂∆n−1

sending (t1, . . . , tn) −→ (t1, . . . , ti−1, 0, ti+1, . . . , tj−1, ti + tj , tj+1, . . . , tn) sends faces to faces and hence
is cellular). The map

⋃
τij is not Sn-equivariant, but the composite⋃
i<j ∆n−1 ×Xn

ij
// ⋃

i Fi ×Xn
i

// (
⋃
i Fi ×Xn

i ) /Sn

factors through the Sn-quotient. More precisely, we have the diagram(⋃
i<j ∆n−1 ×Xn

ij

)
/Sn

// (
⋃
i Fi ×Xn

i ) /Sn

∆n−1 ×Sn X
n
fat

τ // ∆n−2 ×Sn−1
Xn−1 // Bn−1(X)

with all maps in this diagram cellular. The bottom composite f2 must therefore be cellular.
In conclusion, the map f = f1 ∪ f2 in the diagram (*) is cellular and this completes the proof. 2
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Example 7.2. We take a special look at B2(X). Consider Sym∗2X which consists of elements of the
form t1x + t2y with t1 + t2 = 1 and the identification 0x + 1y = y. By using the order on the ti’s in
I = [0, 1], this can be written as

Sym∗2(X) = {(t1, t2, x1, x2) | t1 ≤ t2, t1 + t2 = 1}/∼
= J × (X ×X)/∼

where J = {0 ≤ t1 ≤ t2 ≤ 1, t1 + t2 = 1} is a copy of the one-simplex, and the identification ∼ is such
that (0, 1, x, y) ∼ (0, 1, x′, y) and ( 1

2 ,
1
2 , x, y) ∼ ( 1

2 ,
1
2 , y, x). Note that (0, 1) and ( 1

2 ,
1
2 ) are precisely the

faces or endpoints of J . This is saying that Sym∗2X is precisely the double mapping cylinder

X2 × {(0, 1)} tX2 × {( 1
2 ,

1
2 )} �
� //

p2tπ
��

X2 × J

��
X t SP2X // Sym∗2X

where p2 is the projection onto the second factor X2 −→ X, and π is the Z2-quotient map X2 −→ SP2X
(see [33]). Both maps p2 and π are cellular (Property (3)). This gives Sym∗2(X) a CW-structure according
to property (3). We can now consider the pushout diagram

(42) J ×X //

��

Sym∗2X

��
X // B2X

where the left vertical map J×X −→ X is projection hence cellular, while the top map J×X −→ Sym∗2X,
((t1, t2), x) 7→ t1x+ t2x, is a subcomplex inclusion. By property (2), B2(X) is CW.
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