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ABSTRACT 

 

The main objectives of this research were to examine effects of protein 

modification (protein cleavage and crosslinking) on turkey meat gelation and to evaluate 

textural properties and water holding capacity of meat gels prepared from normal and 

PSE (pale, soft, exudative) turkey breast meat. 

First, the effect of protein degradation on turkey breast meat gelation was 

studied. To create different extent of proteolysis in the meat, α-chymotrypsin (EC 

3.4.21.1) was added to normal and PSE meat batters at 0, 2.5, 5 and 10 ppm levels.  

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) of cooked 

meat gels showed progressive protein hydrolysis with increasing enzyme level. Texture 

profile analysis and torsional analysis of the cooked meat gels showed an incremental 

deterioration in texture with increasing enzyme level. This inferior texture caused by 

proteolysis was similar to that observed in the gels made from PSE turkey meat alone. 

Pearson correlation coefficients indicated gel textural properties and expressible 

moisture were highly correlated to the degree of proteolysis, especially to that of myosin 

heavy chain (p < 0.001). 

The second study focused on modifying protein size to improve meat gelation, 

especially PSE meat gelation. Transglutaminase (TGase, EC 2.3.2.13) was chosen due 

to its ability to catalyze crosslinking of proteins. Pea protein isolate, an alternative to soy 

protein, was also evaluated as a meat protein extender. Textural profile and torsional 

gelometry analyses of the cooked meat gels showed TGase alone significantly

(p < 0.05) increased gel texture, especially for those made from PSE meat. However, 

cook yield of the meat gels was compromised possibly due to steric effects. Addition of 
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pea protein isolate alone improved cook yield and gel texture, especially for the gels 

made from PSE meat. The combination of TGase and pea protein produced the strongest 

meat gels, while maintaining a similar cook yield to the control.  SDS-PAGE showed 

the disappearance of several protein bands contributed from the meat or pea protein with 

TGase addition, indicating that these likely were crosslinked and too large to enter the 

gel. Dynamic rheological analysis revealed TGase altered the viscoelastic properties of 

the meat or meat-pea protein mixtures and produced more elastic gels on cooling. 

This research indicated proteolysis had a dramatic impact on textural properties 

of turkey breast meat gels. Crosslinking of proteins catalyzed by TGase significantly 

improved gel texture, especially for the gels made from PSE meat. However, TGase-

assisted crosslinking of proteins resulted in greater cooking losses unless an 

extender/adjunct such as pea protein was added. 
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1. INTRODUCTION 

 

For the past few decades, a significant quality problem has plagued the meat 

industry. This problem is characterized as meat being pale in color, soft in texture, and 

with exudative drip loss (PSE). There is a direct monetary loss in the 2-3% drip, which 

is not merely water but water-soluble nutrients. The most significant detrimental effect 

to processors is the fact that PSE meat has lower value for further processing due to its 

poor binding properties (Cassens, 2000).  

PSE pork was first reported in the 1950s, and an enormous amount of research 

work has been devoted to this problem since. It is now known that genetics, diet, pre-

slaughter animal handling and the rate of carcass chilling can influence the incidence 

and magnitude of the PSE condition, and various strategies have been employed to 

minimize the incidence of PSE pork, such as gene screening, good pre-slaughter 

handling, quick chilling, and carbon dioxide stunning (Lee & Choi, 1999). However, 

surveys of the incidence of PSE showed the problem continues to exist today to 

approximately the same extent as when it was first found (Cassens, 2000; Kauffman et 

al., 1992). This fact indicates that the development of PSE is a complex process and 

further investigation from a deeper scientific perspective may be needed to solve this 

quality problem. 

PSE-like poultry meat was identified in the 1960s (Ferket & Foegeding, 1994). 

With the increase in poultry meat consumption, meat quality defects in poultry have also
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risen in recent years. As reviewed by McCurdy et al. (1996), the magnitude of the “light 

meat problem” observed by the turkey industry can range from 5 to 30% depending on 

the season. As experienced in pig meat, use of turkey meat with PSE properties also has 

negative consequences for processing in addition to quality issues as fresh meat. Current 

problems with the soft texture, poor cohesiveness, and poor juiciness of processed 

turkey breast muscle have resulted in multi-million dollars yearly losses to the turkey 

industry (Foegeding, 1992).  

Recent research has indicated that protein denaturation and degradation early 

postmortem are major defects of PSE turkey meat (Rathgeber et al., 1999c, 2002).  The 

poor textural properties of processed PSE meat products could be related to the inferior 

protein functionality in PSE meat. The first part of the present research was to 

investigate the effects of protein degradation on meat gelation properties. To create 

various degrees of protein degradation as in PSE meat, α-chymotrypsin (EC: 3.4.21.1), a 

serine proteinase, was used to cleave meat proteins.   

The aim of the second half of this research was to improve gelation properties of 

PSE meat. Transglutaminase (TGase; protein-glutamine γ-glutamyl transferase, EC 

2.3.2.13) is an enzyme that catalyzes an acyl-transfer reaction between the γ-

carboxyamide group of peptide-bound glutamine residues (acyl donors) and a variety of 

primary amines (acyl acceptor). TGase has been demonstrated to have the ability to 

crosslink food proteins of different origins and improve water-holding capacity and 

textural properties of meat products (Ikura et al., 1992; Kurth & Rogers, 1984; Motoki 

& Nio, 1983). Milkowski and Sosnicki (1999) filed a patent claiming transglutaminase 

can improve quality of canned or packaged hams and turkey breasts made from PSE 
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meat. But no application utilizing transglutaminase in comminuted PSE meat products 

has been documented. The main objective of the second study was to investigate the 

effect of TGase on PSE turkey meat gelation.  

A variety of non-meat proteins have been used as functional ingredients in 

comminuted muscle foods to improve the physicochemical characteristics (especially 

texture-related properties), flavour, and cooking yield (Ramírez-Suárez & Xiong 2003a; 

Xiong, 2000). Soy proteins are probably the most widely employed non-meat protein 

additives (Pietrasik & Li-Chan, 2002). However, the application of pea protein, another 

important member of legume protein family, has not yet been well documented.  

The overall objectives of this research were to evaluate textural properties and 

water holding capacity of meat gels prepared from normal and PSE turkey breast meat, 

and to investigate the effects of protein modification on turkey meat gelation properties. 
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2. LITERATURE REVIEW 
 

There have been numerous studies on PSE development in pork during the past 

five decades as reviewed by Cassens (2000). More recently, PSE in poultry has also 

been studied (Barbut, 1997; Sams & Janky, 1991). It is now known that PSE is not a 

muscle disease but rather a quality defect. PSE meat exhibits inferior quality 

characteristics in fresh, cooked, and further processed products. This literature review 

provides a basic introduction to muscle proteins, the development of PSE, and the 

mechanism of meat protein gelation. The principles of some texture-related 

measurements used in this project are also reviewed briefly.   

 

2.1 Muscle Proteins 

 
Muscle contains water, protein, lipid, carbohydrate, mineral (ash), vitamins, and 

nucleic acids (Lawrie, 1991). Muscle proteins not only constitute the major organic 

compounds of the muscle tissue, but also are responsible for the structural and 

biological properties of muscle in living animals (Bandman, 1987). Muscle proteins are 

also affected by the postmortem changes to muscle during its conversion to meat. 

Moreover, muscle proteins are the principal structural and functional components in 

processed meat systems (Smyth et al., 1999). 

Muscle proteins can be broadly divided into three groups based on their 

solubility characteristics: sarcoplasmic proteins, the metabolic proteins that are soluble 
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in water or dilute salt solutions; myofibrillar proteins, the contractile proteins that are 

soluble in concentrated salt solutions; and stromal proteins, the connective-tissue 

proteins that are insoluble in both (Lawrie, 1991). 

 

2.1.1 Sarcoplasmic Proteins 

 
Sarcoplasmic proteins represent 30-35% of the total muscle proteins or about 5% 

of the muscle weight (Asghar et al., 1985). Sarcoplasmic proteins can be separated into 

four different structural components based on sedimentation velocity in differential 

centrifugation: nuclear, mitochondria, microsomal, and cytoplasmic fractions (Xiong, 

1997). There are around 200 different proteins known to be present in the sarcoplasmic 

fraction, many of which are glycolytic enzymes responsible for the control of enzymatic 

reactions in muscle (Kijowski, 2001). Despite the various biological functions in 

muscle, sarcoplasmic proteins exhibit many common physicochemical characteristics. 

For instance, they have relatively small molecule size, appear globular or rod-shaped in 

structure, and have low viscosity (Asghar et al., 1985).  

Myoglobin is presumably the most important protein of the sarcoplasm because 

it is responsible for meat colour which is associated with product quality (Kijowski, 

2001). As reviewed by Lawrie (1991), the colour of the meat depends not only on the 

quantity of myoglobin present, but also on the type and chemical state of the myoglobin 

molecule. Miyaguchi et al. (2000) studied the thermal and functional properties of 

porcine sarcoplasmic proteins, and found that sarcoplasmic proteins had poor water 

holding properties and formed weak and fragile gels.  
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2.1.2 Myofibrillar Proteins 

 
Myofibrillar proteins are generally extracted in intermediate or high ionic 

strength buffer, so are referred to as salt-soluble proteins. They constitute about 55-60% 

of the total muscle protein, or 10% of the weight of the skeletal muscle (Asghar et al., 

1985). It is well known that myofibrillar proteins are largely responsible for the textural 

properties of processed meat products (Asghar et al., 1985; Yasui et al., 1980). The 

adequate extraction of myofibrillar proteins is particularly important for promoting gel 

formation in meat products (Li-Chan et al., 1987). Of the myofibrillar proteins, myosin 

and actin are two major proteins responsible for muscle contraction in the living animal, 

as well as many functional characteristics in processed meat products. 

 

 

2.1.2.1 Myosin  

 

The thick myofilaments of the sarcomeres are mainly composed of myosin, 

which comprises 43-45% of the myofibrillar proteins in the muscle of mammals, birds, 

and fish (Maruyama, 1985; Robson, 1995; Yates & Greaser, 1983). Myosin is a large 

fibrous molecule (~ 500 kDa), composed of two large subunits called myosin heavy 

chains (MHC) and four small subunits called myosin light chains (MLC). The two 

heavy chains form the rod portion and a large part of the myosin head. The two light 

chains are located in each of the myosin heads (Bechtel, 1986). 

In living muscle, myosin exhibits three important biological properties. First, 

myosin molecules can assemble themselves and build filaments. Second, the myosin
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head has the catalytic site for ATPase activity whose action provides the energy for 

muscle contraction. Third, myosin forms natural complexes with actin, the major 

constituent of the thin filament. This interaction is critical for the generation of the force 

that moves the thick and thin filaments past each other (Stryer, 1995).    

Myosin can be extracted with salt (e.g., NaCl, KCl) solutions of concentrations 

higher than 0.15 M. To prevent simultaneous extraction of actin, MgCl2 and ATP or 

pyrophosphate can be added into solutions. Myosin molecules tend to aggregate due to 

oxidation of thiol groups. The addition of ethylenediaminetetraacetic acid (EDTA) and 

mercaptoethanol can prevent its aggregation (Kijowski, 2001). The myosin molecule, 

under the effect of sodium dodecylsulfate (SDS), dissociates into subunits of high and 

low molecular weight that can be separated by electrophoretic techniques (Table 2.1).  

 

Table 2.1 Myosin subunit molecular weights as determined by SDS-PAGE. Modified 
from Weeds (1980) 

 
 Fast-twitch myosin (Dalton) Slow-twitch myosin (Dalton) 

Heavy chains 

Light chains (LC) 

   LC-1 

   LC-2 

   LC-3 

200,000 

 

25,000 

18,000 

16,000 

200,000 

 

27,500 

19,000 

–  

 

 

Because myosin is a large complex protein that has a tendency to aggregate, it 

would facilitate certain types of studies if myosin molecules are broken down to smaller 

fragments. One method that has been widely used is to cleave myosin with trypsin, 

papain, or chymotrypsin (Lowey et al., 1969; Weeds & Pope, 1977). Myosin can be 
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split by trypsin into functional fragments called light meromyosin (LMM) of 150 kDa 

and heavy meromyosin (HMM) of 350 kDa. After a prolonged incubation with trypsin, 

HMM can be further digested to S-1 and S-2 fragments with a molecular weight of 115 

kDa (Bechtel, 1986), and 60 kDa (Young et al., 1965), respectively (Figure 2.2). The S-

1 subfragment contains an ATPase region, a region of binding actin, and two regions of 

binding light chains (Bechtel, 1986). The S-1 subfragment has the ability to bind actin 

thin filaments and generates muscle contraction force (Stryer, 1995). It is suggested that 

S-1 may play a critical role in the functionality of myosin in processed muscle foods due 

to its excellent binding capacity (Borejdo, 1983; Borejdo & Assulin, 1980). 

 

 
 

Figure 2.1 Schematic of the generation of LMM, HMM, S-1, and S-2 fragments. 
Reproduced from Bechtel (1986) with permission. 
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Myosin contains a large amount of aspartic acid and glutamic acid residues and a 

fair amount of the basic residues histidine, lysine, and arginine (Harrington, 1979). The 

isoelectric point of myosin is ~5.3, which means under normal meat processing 

conditions where the pH value is around 6, the myosin molecule will be negatively 

charged and have the ability to bind water (Harrington, 1979). Salt will further enhance 

the water-binding ability of myosin by increasing the effective net negative charge and 

breaking ionic bonds, causing molecular swelling and water uptake (Acton et al., 1983). 

The functionality of myosin in processed meat products will be reviewed in the protein 

gelation section. 

 

2.1.2.2 Actin  

 

Actin is the major constituent of the thin myofilaments and accounts for 22% of 

the myofibrillar protein (Yates & Greaser, 1983). Actin is a globular protein (G-actin) 

composed of 376 amino acid residues with a molecular weight of 42 kDa (Kijowski, 

2001). Under physiological conditions, G-actin molecules polymerize into a double-

stranded fibrous form (F-actin) (Huxley, 1963; Steiner et al., 1952). The F-actin forms 

the backbone of the thin filament and also provides binding sites for tropomyosin and 

troponin complex which regulates the activity of myosin ATPase. Actin also has a 

binding site to myosin. When calcium is present, F-actin comes into contact with the 

myosin heads of the thick filaments and there is a rapid breakdown of ATP, ultimately 

resulting in muscle contraction (Bechtel, 1986).  
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Studies on actin in a model system have revealed that actin alone does not 

exhibit any binding property (Fukazawa et al., 1961; Samejima et al., 1969). However, 

in the presence of myosin, actin exerts a “synergistic effect”, thereby considerably 

complementing the binding characteristics of myosin. This improvement was thought to 

be due to the formation of the actomyosin complex in the system. Yasui et al. (1980) 

investigated the effects of adding F-actin to myosin preparations and observed the 

strongest gels were formed when the myosin-actin weight ratio was 2.7.  

 

2.1.3 Stromal Proteins 

 
Stromal proteins, also called connective tissue proteins, are salt insoluble in 

nature. Collagen, elastin, and lipoproteins of the cell membrane, are among the most 

important connective tissue proteins in the muscle. All of them exhibit a fibrous 

structure, and in the majority of tissues, collagen quantitatively predominates (Kijowski, 

2001). Collagen is generally associated with the toughness of the meat. Collagen is 

made of three helically twisted polypeptide chains stabilized by intramolecular and 

intermolecular bonds (e.g., hydrogen bonds). As animals age, more covalent bonds are 

formed inside and between collagen molecules, which contribute to the toughness of the 

meat (Asghar et al., 1985; Kijowski, 2001).  Ziegler and Acton (1984) indicated that the 

stromal proteins possessed no gelation ability, as the fraction only coagulated upon 

heating to 80 °C.  
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2.2 Meat Quality and PSE Meat 

 

Over the past half century, the meat industry has seen a considerable increase in 

the incidence of pale, soft, exudative (PSE) meat due to the intensive breeding selection 

for lean muscle development in pigs (Tarrant, 1993). The PSE condition is characterized 

as being pale in color, soft in texture, and with exudative drip loss. This condition was 

first found in pig meat, as two-toned color in pork ham muscle had been a controversial 

issue during the 1950s. As reviewed by Briskey (1964), this phenomenon was originally 

termed “muscle degeneration” in Denmark, where a research worker Ludvigsen 

conducted an extensive study in which he described the meat with this condition as 

having a sour smell, low pH, watery appearance and pale grayish color. Briskey et al. 

(1959) referred to this phenomenon in the United States as pale, soft, and watery tissue. 

Lawrie (1960) in England described this condition as “white muscle disease”. Numerous 

research documents about this phenomenon have been reported since then and different 

terms were given to describe the incidence. Nevertheless, it appears that the present term 

“pale, soft and exudative” would be a universally accepted term that could be applied to 

describe this condition in porcine musculature (Briskey, 1964).  

Many investigations have been conducted to determine the cause of the PSE 

problem in pork. As reviewed by Cassens (2000), pigs carrying a so-called porcine 

stress syndrome (PSS) gene are more susceptible to stress, which may result in higher 

incidence of PSE than those without this defective gene. PSS gene is a single autosomal 

recessive gene which, in its homozygous mutant form, can trigger malignant 

hyperthermia when pigs are under stress (Fujii et al., 1991; MacLennan & Phillips, 

1992). The mishandling of the animals prior to slaughter, such as high environmental 
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temperature, and too short a resting period after transportation, will place stress on the 

animals and subsequently influence meat quality (Lee & Choi, 1999). These authors also 

suggested delayed post-slaughter chilling also contributes to the PSE condition.  

Conversion of muscle to meat is a complex process during which meat quality is 

determined. Glycolysis, namely, the breakdown of glucose to produce lactic acid in the 

absence of oxygen, is the key metabolic pathway early postmortem during the 

transformation of muscle to meat (Pearson, 1987). Extensive research work has 

demonstrated that PSE development is the result of accelerated glycolysis triggered by 

preslaughter stress. This accelerated glycolysis speeds up a series of postmortem 

changes in PSE muscle. A comparison of the changes in metabolites in normal versus 

PSE muscle is shown in Table 2.2. Even at the earliest times after death the glycogen 

level in PSE muscle has been severely depleted and the muscle lactate level is nearly 

double that in normal muscle. Creatine phosphate (CP) and adenosine triphosphate 

(ATP) concentrations are also lower at death and both are depleted by 1 h postmortem. 

The immediate result of this accelerated glycolysis is a rapid pH decline rate. Enfält et 

al. (1993) reported that pig carcasses naturally developing the PSE condition had muscle 

pH values of below 5.7 at 45 min postmortem, while normal muscle had pH values of 

above 6.3 at 45 min postmortem. 
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Table 2.2 Comparison of postmortem levels of metabolites in normal and PSE pig 
muscle 

 
Metabolite  Normal  PSE 

Glycogen, 3 min (μmol glucose equivalent /g) 

                 180 min (μmol glucose equivalent /g) 

Lactate, 3 min (μmol /g) 

              60 min (μmol /g) 

              180 min (μmol /g) 

Creatine phosphate, 3 min (μmol /g) 

                                60 min (μmol /g) 

                                180 min (μmol /g) 

Adenosine triphosphate, 3 min (μmol /g) 

                                        60 min (μmol /g) 

                                        180 min (μmol /g) 

35-100 

20 

30-40 

40-60 

60-80 

6.0 

3.0 

2.0 

5.5 

4.5 

2.5 

23 

0.8 

60 

105 

105 

3.0 

1.0 

1.0 

3.5 

< 0.5 

< 0.5 

 
Modified from Kastenschmidt et al. (1968) 

 

The pH decline is due to the accumulation of lactic acid resulting from anaerobic 

metabolism, and PSE muscle demonstrates a more rapid pH decline than normal muscle. 

The rapid metabolism early postmortem results in a low muscle pH while the carcass 

temperature is still high, leading to the denaturation of muscle proteins. Offer (1991) 

suggested that denaturation of sarcoplasmic proteins (e.g. myoglobin) in the PSE muscle 

had a major influence on the increase in paleness, while denaturation of the myofibrillar 

proteins was responsible for the decrease in water holding capacity. Such protein 

denaturation leads to the inferior quality characteristics of PSE pork (Bowker et al., 

1999). It has been reported that PSE pork muscle has significant lower protein 

extractability compared to the normal pork muscle (Warner et al., 1997). As reviewed 

by Bechtel (1986), in extreme cases, muscles with a rapid pH fall while the muscle 
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temperature is still high may show ~ 50% lower sarcoplasmic protein solubility and 

75% lower myofibrillar protein solubility than comparable values for normal meat. In 

particular, myosin (Penny, 1967) and the sarcoplasmic proteins phosphorylase and 

creatine kinase (Fischer et al., 1979) are denatured in PSE pork.    

Recently, the turkey industry has been faced with an increasing problem similar 

to PSE conditions found in pork. Barbut (1993 & 1997) and McCurdy et al. (1996) 

observed discoloration in turkey breast meat due to exposure to pre-slaughter stress 

(struggling or heat), and the pale colour has been correlated with poor water holding 

capacity and gel strength. Pietrzak et al. (1997) reported turkey breast meat that 

proceeds through rigor at an accelerated rate exhibits reduced protein extractability, 

water holding capacity, and cook yield. McKee and Sams (1998) suggested elevated 

post-mortem temperatures contribute to the pale, exudative meat characteristics of 

turkey breast fillets by accelerating the development of rigor mortis. These studies 

indicated the denaturation of muscle proteins at low pH and high carcass temperature 

conditions was responsible for the above-mentioned inferior meat quality. Moreover, 

Rathgeber et al. (1999c) found rapid postmortem glycolysis and delay chilling of turkey 

carcasses caused myosin degradation. Myofibrillar proteins (e.g. myosin) are important 

in determining water holding capacity of the myofilament lattice and subsequently play 

a critical role in protein gelation (Offer & Trinick, 1983). Results of this study 

(Rathgeber et al., 1999c) provided insight into the molecular basis for previously 

reported reductions in meat quality of rapid glycolyzing and delay chilled turkey meat. 

Overall, these studies indicated that turkey breast muscle exhibits various degrees of a 

PSE condition.  
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It is generally accepted that the PSE condition is closely associated with pre-

slaughter stress. As previously reviewed, meat scientists have identified the porcine 

stress syndrome (PSS) gene which triggers an abnormal stress response in pigs and 

subsequently leads to a PSE condition (Lee & Choi, 1999). The syndrome is also 

triggered following exposure of animals to volatile halogenated anesthetics, such as 

halothane (Hall et al., 1980). The similar rapid postmortem glycolysis in pigs and 

turkeys suggests that there may be a defect in either or both of the turkey skeletal muscle 

ryanodine receptors. Owens et al. (2000) conducted a study aimed at identifying a 

similar mechanism for the triggering of the PSE condition in poultry. At 2-4 weeks of 

age, turkeys from commercial strains were subjected to 3% halothane gas and classified 

as either halothane positive (HAL+) or negative (HAL−) based on muscle rigidity 

within the legs. All birds were raised under the same conditions and then slaughtered at 

20 weeks of age. The authors found the incidence of PSE was significantly higher in 

HAL+ birds compared with HAL−. These results suggested that halothane screening 

may also be used in predicting the development of PSE meat in poultry. However, 

Cavitt et al. (2004) found halothane sensitivity had no effect on rigor development, 

muscle colour, or water-holding capacity in the tested broiler strains, which means 

halothane sensitivity was not able to identify birds prone to developing PSE meat. 

Nevertheless, other research has found that genetic factors might play an important role 

in stress susceptibility. Sante et al. (1991) showed that the rate of pH decline was faster 

in a high performance turkey breed compared to a slow growing breed. Dransfield and 

Sosnicki (1999) explained that higher growth rates may induce morphological 

abnormalities, induce larger fiber diameters and a higher proportion of glycolytic fibers, 
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and a lower proteolytic potential in the muscles. After death, the faster development of 

rigor mortis increases the likelihood of paler colour and reduced water holding capacity 

and poorer quality of further processed products.  

Based on the current appreciation of PSE conditions in poultry, various strategies 

have been employed to increase the quality of poultry meat, such as good pre-slaughter 

management, gas stunning (Savenije et al., 2002), and quick chilling (Alvarado & Sams, 

2002). However, observations by the turkey industry indicated that the incidence rate of 

the “light meat problem” (as they refer to it) still could reach as high as 30% (McCurdy 

et al., 1996). This fact indicates that the development of PSE is a complex process and 

further study is needed. On the other hand, the existing high PSE occurrence rate 

requires new processing techniques to improve the poor binding ability of PSE meat. 

 

2.3 Thermally Induced Meat Protein Gelation  

 
Gelation, according to Glicksman (1969 & 1982), is “the association or cross-

linking of randomly dispersed polymer chains in solution to form a three-dimensional 

continuous network which immobilizes liquid in the interstitial structure which resists 

flow under pressure”. Protein gelation is important for imparting desirable sensory 

characteristics and textural properties in foods. The characteristics of each gel are 

different and dependent upon factors such as protein concentration, degree of 

denaturation caused by pH, temperature, ionic strength and/or pressure (Totosaus et al., 

2002). Protein gelation can be achieved by many means, among which, heat-induction is 

the most widely used method.  

 16



Upon heating, meat proteins can form a three-dimensional gel network which 

provides both structural and functional properties to meat products (Acton et al., 1983). 

Thermally induced gelation involves both intramolecular (conformational) and 

intermolecular changes in proteins. The mechanism of gel formation may differ among 

proteins due most likely to the type of molecular interactions that stabilize the gel of 

different protein systems. Functionally, these events involve protein-water interaction, 

protein-fat interaction and protein-protein interaction (Acton & Dick, 1989). These 

interactions may consist of multiple hydrogen bonds (Eldridge & Ferry, 1954), and 

disulfide linkages (Huggins et al., 1951) or peptide bonds (Bello, 1965). They may also 

involve electrostatic and hydrophobic interactions (Wolf & Tamura, 1969). Ferry (1948) 

proposed an interpretation for protein gelling: firstly, the unfolding or dissociation of 

protein molecules is provoked by heat or other means, followed by the second step in 

which the association and aggregation reactions result in a gel system. It is important 

that the rate of the second step remains slower than the first one, because protein 

aggregation will then be ordered enough to allow gel formation (Kinsella et al., 1994). 

Of the three major protein groups in muscle, myofibrillar proteins are the most 

important to the ultimate development of the gel structure in heat-processed products 

(Smith, 1988). Gelation of myofibrillar proteins is the most important functional 

property that occurs in restructured, formed and comminuted products and is also 

responsible for texture, viscoelastic traits, juiciness, and stabilization of fat emulsions in 

processed meat products (Xiong, 1997).   
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2.3.1 Protein Denaturation  

 
Most proteins, in their native states, are folded into well-defined, usually 

essentially rigid, three-dimensional structures. For most proteins, this structure is 

compact and globular, such as myoglobin (Kendrew et al., 1961), lysozyme (Blake et 

al., 1965), and chymotrypsin (Matthews et al., 1967). In a few proteins the native 

structure is rod-like, or it may consist of a mixture of rod-like and globular proteins, 

such as myosin (Woods et al., 1963). The native structure of the protein may undergo 

conformational changes in response to various conditions. For instance, during food 

processing, meat proteins may denature due to the exposure to heat, change of the pH 

and ionic strength, etc. 

Kauzmann (1959) proposed denaturation as “a process (or sequence of 

processes) in which the spatial arrangement of the polypeptide chains within the 

molecule is changed from that typical of the native protein to a more disordered 

arrangement.”  Tanford (1968) supplemented Kauzmann’s definition by requiring that 

there be no alteration in the protein’s primary structure. Denaturation can therefore be 

restricted to the “continuous process of native protein structural changes involving the 

secondary, tertiary, or quaternary structure during which alteration of hydrogen bonding, 

hydrophobic interactions, ionic linkages and oxidation-reduction or interchange 

reactions of covalent disulfide bonds occur without alteration of the amino acid 

sequence” (Anglemier & Montgomery, 1976). For food scientists, denaturation is of 

great importance because it has a significant influence on protein functionality, such as 

water holding capacity, protein solubility, emulsification and gelation.  
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Proteins are peptide chains composed of amino acids which possess hydrophilic 

or hydrophobic characteristics depending on the polarity of the side chain. During the 

formation of protein molecules, native proteins tend to orient the hydrophobic portions 

into the interior side of the molecule and the hydrophilic portions into the exterior side 

of the molecule to reach its most stable configuration. Upon heating, the energy 

imparted to the protein molecules can break the relatively weak forces that hold the 

proteins in their folded and helical tertiary and secondary configurations. As a result, the 

protein molecules unfold and the internally directed hydrophobic regions are exposed to 

the outside of the molecules. This process is called denaturation. When too many 

hydrophobic sites are exposed, the interactions become inevitable between the exposed 

hydrophobic sites, resulting in protein aggregation (gelation) (Nakai, 1983).     

The thermal denaturation of a protein is usually accompanied by several 

conformational transitions in structure (Lesiów & Xiong, 2001). Transition temperatures 

(designated as Tm) for various muscle proteins have been used to identify points where 

conformational changes in the protein occur upon the absorption of thermal energy. The 

transition temperatures of the major muscle protein, myosin, have been extensively 

studied (Dudziak & Foegeding, 1988; Liu & Foegeding, 1996; Smyth et al., 1996). It is 

now generally accepted that the myosin molecule undergoes two major transitions 

during heating: the first one is denaturation and aggregation of myosin heads, and the 

second one is disassociation of myosin rods (Burke et al., 1973; Samejima et al., 1976). 

The variations among transition temperatures reported in the literature were attributed to 

different experimental conditions such as muscle type, batter composition, ionic 

strength, and pH (Lesiów & Xiong, 2001). It is also generally accepted that the second 
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transition (~ 55 °C) is possibly the most crucial, since gels do not attain appreciable 

strength until this temperature is reached (Ziegler & Acton, 1984).  

 

2.3.2 Protein Aggregation 

 
While heating, the denatured, unfolded protein molecules re-orient themselves, 

interact at specific points, and finally form an ordered three-dimensional network 

structure (Foegeding, 1988a). On the basis of observations of the heat-induced gelling 

properties of myosin and its proteolytic subfragments, Samejima et al. (1981) proposed 

that the heat-induced gelation of myosin consists of two reactions: (1) aggregation of the 

globular head segments of the myosin molecule, which is closely associated with the 

oxidation of sulfhydryl groups; and (2) network formation of the unfolded helical tail 

segments. In addition, the authors suggested that the head portions associate to form 

“super-junctions” which provide extra cross-linking to the gel network.  

Although the mechanism of gel formation may differ among proteins, it appears 

that the heat-induced gelation occurs in two phases. At temperatures below 55 °C, the 

major events are changes in protein conformation (denaturation). The subsequent 

aggregation and gelation begin at approximately 55 °C when the myosin rods start to 

aggregate. It is essential that the rate of the aggregation remains lower than the 

denaturation step to allow an ordered gel formation (Totosaus et al., 2002). 
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2.3.3 Factors Affecting Meat Protein Gelation 

 
Protein gelation can be viewed as a process during which protein interact with 

the surrounding environment. The interactions mainly include protein-water, protein-fat, 

and protein-protein interactions (Acton & Dick, 1989). These interactions are influenced 

by factors that can affect protein gelation, as well as affecting the type and properties of 

gels (Totosaus et al., 2002).  

 

2.3.3.1 Protein Type and Concentration 

 
Many different model systems have been used to study the functional properties 

of meat proteins. It is now clear that the main proteins responsible for meat product 

binding are myofibrillar proteins, of which myosin and actin are the most important 

(Barbut, 2001; Smith, 2001). Myosin and actin have high content of basic, acidic and 

polar amino acids (Whiting, 1988a). This characteristic contributes to the binding 

properties and water-holding capacity of comminuted products, forming a desired gel 

strength system. Different muscle fiber types contribute to different characteristics of 

protein gelation. For instance, chicken breast muscle myosin formed stronger gels than 

myosin from leg muscle (Morita et al., 1987), and red muscle myosin formed gel 

networks composed of finer filamentous structures than white muscle myosin gels 

(Asghar et al., 1984). It is accepted that discrepancies in gelation between white and red 

fiber types or muscles are attributed to isoforms of myofibrillar proteins, particularly 

myosin, and more immediately, to their different protein aggregation patterns during gel 

formation (Xiong, 1994). Protein concentration is the major factor in determining 
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fracture properties and water holding capacity in protein gels (Hongsprabhas & Barbut, 

1997). There must be a minimal concentration of the protein itself, below which a 

continuous three-dimensional structure cannot be formed (Ferry, 1948).  

 

2.3.3.2 Temperature 

 
Temperature is one of the most important factors in gel formation because it is a 

driving force to unfold protein domains (Totosaus et al., 2002). Several studies have 

reported an increase in surface hydrophobicity, followed by a decrease in the second 

stage of thermal gelation (Wang & Smith, 1994). These results indicated the two stages 

of gel formation, which corresponded to Ferry’s (1948) conclusion: unfolding and 

aggregation stage. First, the unfolding or dissociation of protein molecules provoked by 

heat, followed by the second step in which the association and aggregation reactions 

resulted in a gel system. It is important that the rate of the second step remains lower 

than the first one, because protein aggregation will then be ordered enough to allow gel 

formation. Wang and Smith (1994) suggested that low temperatures (slow heating rate) 

favored the aggregation process, whereas high temperatures (fast heating rate) weakened 

the intramolecular and cross-linking bonds of myosin gels. For example, Camou et al. 

(1989) evaluated the effects of heating rates and protein concentrations on gels made of 

extracted salt-soluble proteins. They found at all protein concentrations, the slowest 

heating rate resulted in the greatest gel strength, and gel strength decreased with 

increasing heating rate. The authors concluded that a slower heating rate allowed 

proteins to unfold and re-orient themselves and therefore form a more ordered and 

higher strength gel network. 
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2.3.3.3 Ionic Strength 

 
Myofibrillar proteins are salt-soluble proteins. The addition of salt enhances 

electrostatic repulsions between protein molecules and therefore increases the 

interactions between proteins and water, namely, protein extractability, solubility and 

water binding capacity (Huxley, 1963). Salt concentration plays an important role in the 

amount of extracted protein and later textural properties of the product. Barbut and 

Findlay (1989) indicated that reducing the salt level from 2.5 to 1.5% (w/w) in 

commercial type poultry meat batters could result in a substantially lower final rigidity 

value of the final products. Commercially 2-3% (w/w) salt is applied in meat products.  

Alkaline phosphates are widely used to improve protein functionality in meat 

products. They can provide high ionic strength to help extract meat proteins, as well as 

increase the pH about 0.2 units, which is beneficial (Trout & Schmidt, 1986). 

Phosphates cause the dissociation of the actomyosin complex, the predominant protein 

complex in postrigor meat (Wang et al., 2005), into actin and myosin (Torigai & Konno, 

1996). When phosphate at optimal concentration was added, actomyosin was dissociated 

and a strong gel network was formed (Ellinger, 1975). The most commonly used 

phosphates in meat products are sodium acid pyrophosphate (SAPP), tetra sodium 

pyrophosphate (TSPP), and sodium tripolyphosphate (STPP) (Whiting, 1988b). 

 

2.3.3.4 pH Value 

 
The pH of the meat also affects gel formation. At the isoelectric point (pI), 

proteins have a net charge of 0 and retain the least amount of water. This results in poor 
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gels or even prevents gel formation (Smith, 2001). Under normal meat processing 

conditions where the pH value is around 6, myofibrillar proteins will be negatively 

charged and have the ability to bind water. In muscle tissue exhibiting PSE 

characteristics, the low pH while meat is still warm denatures proteins and therefore 

causes poor gel texture. Xiong and Brekke (1991) indicated that the optimum pH for 

gelation of chicken muscle in 0.6 M NaCl (or KCl) was about 6.0 for breast myofibrils 

and 5.5 for leg myofibrils.  

 

2.3.3.5 Non-Meat Protein Additives 

 
Non-meat proteins are extensively used in formulated meat products to improve 

yield and texture by enhancing water-binding properties (Pietrasik et al., 2007). For 

instance, whey and caseinate have high viscosity in solution that can contribute to water 

and fat binding (Ramírez-Suárez & Xiong, 2002). Other protein substitutes such as soy 

proteins can be used as water binders and possible gelling agents to enhance the 

emulsion stability upon heating (Renkema & van Vliet, 2002). However, most of the 

non-meat protein components undergo very little structural changes under normal meat 

processing conditions (65-73 ºC, pH 5.5-6.0, and ionic strength 0.1-0.6). For example, 

β-lactoglobulin, the most abundant constituent in whey protein, denatures at abut 80 ºC 

(Ramírez-Suárez & Xiong, 2002), and glycinin from soy protein denatures at 90-94 ºC 

(Ramírez-Suárez & Xiong, 2003a). Hence, there usually is a lack of interaction between 

non-meat proteins and muscle proteins in processed meat proteins. As a result, these 

non-meat proteins do not participate in the protein structure or can even negatively 
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affect texture by a diluting effect or by interference with the gelation of the myofibrillar 

proteins (Foegeding & Lanier, 1989).  

As an important member in the legume family, pea proteins have not received 

adequate attention in both research and industrial applications. The protein fraction 

extracted from field peas is a valuable ingredient with a high nutritional value and useful 

functional properties such as emulsification and film forming ability. Pea protein is 

neutral in taste and colour and can be incorporated into a variety of food products (Qi & 

Hydamaka, 2004). It was one of the objectives in the present study to evaluate the 

functionality of pea proteins in a comminuted meat system.  

 

2.3.3.6 Endogenous and Exogenous Enzymes 

 
Gel weakening, commonly known as modori, occurs in many fish protein gels 

during thermal processing. The primary cause for this gel weakening is believed to be 

certain enzymes that hydrolyze myofibrillar proteins, especially myosin, into small 

fragments, and consequently affects gel properties (Wasson, 1992). Similar gel-

softening phenomena in materials prepared from low-grade meat or meat byproducts 

were observed from beef and pork (Park et al., 1996; Wang & Xiong, 1998). More 

recently, Rathgeber et al. (1999c & 2002) have found early postmortem myosin 

degradation in PSE pork and poultry meat and indicated gels with impaired texture and 

water holding capacity result when made from PSE meat.  

There are a number of ingredients that can be used to modify or improve the 

rheology and textural properties of protein gels. Transglutaminase has been one of the 

agents widely used in recent studies. Transglutaminase (amine γ-glutamyl transferase, 
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EC 2.3.2.13) catalyzes a protein cross-linking reaction through an acyl transferase 

mechanism involving protein-bound glutaminyl residues (acyl donor) and primary 

amines (acyl acceptors), including the ε-amino group of lysine residues in certain 

proteins (De Jong & Koppelman, 2002). The covalent cross-linking of proteins 

catalyzed by transglutaminase can cause dramatic changes in the size, conformation, 

stability, and other properties of proteins (Motoki & Nio, 1983). The enzyme has been 

used for modifying the functionalities of various proteins including soy proteins, 

myosin, gluten, globulin, casein, whey, and pea proteins (Abourmahmoud & Savello, 

1990; Siu et al., 2002; Takinami et al., 1984; Truong et al., 2004; Ya, 2004). Addition 

of 0.1-0.3% (w/w) of transglutaminase may be applied to improve textural 

characteristics and product cohesiveness (Keeton, 2001). Due to its excellent cross-

linking ability, transglutaminase can be used as a binding agent in products where salt 

reduction is desired (Chin & Chung, 2003; Tsao et al., 2002). Milkowski and Sosnicki 

(1999) demonstrated that transglutaminase can improve quality of canned or packaged 

hams and turkey breasts made from PSE meat. But no application utilizing 

transglutaminase in comminuted PSE meat products has been documented. 

 

2.3.3.7 Processing Factors  

The time and temperature of chopping and mixing of meat batter must be 

carefully monitored during processing. Excessive chopping can lead to protein 

denaturation due to the heat generated from chopping. In practice, low temperature 

chopping and mixing are used to help extraction of salt-soluble proteins and avoid 

melting of fat droplets (Keeton, 2001). 
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It must be emphasized that gelation is a complex process that involves the 

incorporation of all the factors mentioned above. The optimum formulation and 

processing techniques are product-dependent.  

 

2.4 Methods Used to Measure Gelation Texture and Rheology  

 
It is indisputable that texture is an important attribute affecting consumer 

acceptance of food (Szczesniak, 1998). Texture, by definition, “is the sensory and 

functional manifestation of the structural and mechanical properties of foods, detected 

through the senses of vision, hearing, touch, and kinesthetics” (Szczesniak, 1963 & 

1998). Thus, it is only the human being that can perceive, describe and quantify texture. 

Furthermore, it is generally recognized that texture, just like flavour, is a multi-

parameter attribute (Szczesniak, 1987). Szczesniak (1963) also suggested textural 

characteristics of the food could be grouped into three main classes: mechanical, 

geometrical, and other characteristics. According to Szczesniak (1963), mechanical 

characteristics are the most important in determining the organoleptic properties of food 

in the mouth.  

The traditional sensory evaluation of food quality involves substantial time and 

money expenditures, and often exhibits poor reproducibility. There has been a demand 

both in designing instrumental tests that could predict consumer acceptance, and in 

having instrumentation that could replace descriptive panels (Szczesniak, 1987). The 

history of efforts to measure texture by instrumental methods can be dated back to 1861 
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(Bourne, 1982). Instrumental methods for texture measurement can be divided into three 

classes, i.e., empirical, imitative, and fundamental tests (Bourne, 1978). 

Empirical tests include a series of tests that have been found from practical 

experience to be correlated with textural quality (Bourne, 1978). A number of 

instruments have been developed that give good correlations with sensory evaluation of 

texture on a limited number of foods, but these instruments are not considered precise 

due to the arbitrary test conditions and the results are difficult to compare with those 

obtained from more rigorous procedures (Rao & Skinner, 1995). 

Imitative tests are tests that attempt to imitate the conditions to which the food is 

chewed in the mouth or cut on the plate (Bourne, 1978). It is in this area that textural 

profile analysis (TPA) falls. TPA is a useful tool for obtaining a general indication of 

texture and for making comparisons. A number of instruments such as the General 

Foods Texturometer (Friedman et al., 1963), the Instron Universal Testing Machine 

(Bourne, 1978), and the Texture Analyzer (Szczesniak, 1998), have been developed and 

are widely used to measure a variety of food products. A detailed discussion is provided 

in section 2.4.1.  

Fundamental tests measure properties that reflect mechanical characteristics of 

the testing sample such as ultimate strength, shear stress, and various moduli (Bourne, 

1978). Large strain methods, such as torsional gelometry and small strain methods, such 

as dynamic oscillatory rheology, which will be discussed in section 2.4.2 and 2.4.3, are 

examples of fundamental tests.  
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2.4.1 Texture Profile Analysis (TPA) 

 
The origin of TPA was derived from Szczesniak’s classification of textural 

characteristics (Szczesniak, 1963). The key principle was to serve as a bridge between 

the instrumental and sensory evaluation of texture. The major breakthrough came with 

the development of the General Foods (GF) Texturometer (Friedman et al., 1963). This 

equipment was designed to simulate the masticating action of the human mouth. A 

typical TPA test uses a small flat-bottomed cylinder to compress a bite-size piece of 

food, usually a cube approximately 1.2 cm along each side, to 25% of its original height 

(75% compression) two times in a reciprocating motion that imitates the action of the 

jaw. By means of strain gauges and a strip-chart recorder, a force-time curve that 

portrays the entire force history of the simulated masticatory action is plotted. 

Nowadays, modern computer-assisted texturometers can directly obtain all TPA 

parameters by means of its software, providing much faster and more precise results 

than those with manual readout (Pons, 1996).   

Bourne (1978) modified the definitions of some of the TPA parameters proposed 

by Szczesniak (1963). The definitions of the parameters (shown in Figure 2.3) are listed 

as follows:  

a. Fracturability (originally called brittleness), defined as “the force at the first 

significant break in the curve”. 

b. Hardness, defined as “the peak force during the first compression cycle”.  

c. Cohesiveness, defined as “the ratio of the positive force area during the 

second compression portion to that during the first compression (area 2 / area 1), 

excluding the areas under the decompression portion in each cycle”. 
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d. Adhesiveness, defined as “the negative force area for the first bite, 

representing the work necessary to pull the plunger away from the food sample”. 

e. Springiness (originally called elasticity), defined as “the height that the food 

recovers during the time that elapses between the end of the first bite and the start of the 

second bite”. 

f. Gumminess, defined as “the product of hardness x cohesiveness”. 

g. Chewiness, defined as “the product of gumminess x springiness”. 

 

 

 

Figure 2.2 Generalized TPA curve obtained from the Instron Universal Testing 
Machine. Reproduced from Bourne et al. (1978) with permission. 
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Bourne’s procedure has been adopted by many popular instruments for objective 

texture analysis and the basis for practically all the subsequent instrumental TPA studies 

(Pons, 1996). Instrumental TPA has been extensively used to evaluate the texture of 

various protein gels, such as sausages (Ziegler et al., 1987), soy protein gels (Lin et al., 

2000), low-fat bologna (Shand, 2000), and pork batters with transglutaminase treatment 

(Pietrasik & Li-Chan, 2002). However, compression is not always suitable for highly 

deformable elastic materials because failure cannot be achieved. Moreover, the 

compressive forces applied may dictate the failure mode of the specimen and cause 

specimen slumping due to water excretion (Truong & Daubert, 2001). When performing 

TPA, attention should be paid to proper selection of testing and sampling conditions in 

order to obtain reliable data (Pons, 1996).   

 

2.4.2 Torsional Gelometry 

 
Torsion analysis is widely used for textural measurements of fruits, vegetables, 

seafoods, and other foods including protein gels (Diehl et al., 1979; Foegeding et al., 

1998; Lanier, 1986). In torsional gelometry, a capstan-shaped specimen is twisted, and 

the generated stress and strain are measured up to the point of material fracture, 

describing structural changes and textural properties of the tested material (Hamann, 

1991). Shear stress is the force applied in parallel to the sample surface, and the 

corresponding deformation of the test sample is called shear strain (Daubert & 

Foegeding, 1998). Shear stress is strongly influenced by protein types and 

concentrations, processing conditions, and ingredients. Shear strain is affected mainly 

by protein quality and may be considered an evaluation of protein functionality 
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(Hamann, 1988). Since shear stress and shear strain can be measured independently of 

one another, a texture map can be plotted using shear stress against shear strain (Figure 

2.4). Information from a texture map is useful since it provides “insight into ingredient 

effects and impact of processing conditions on mechanical properties relating to product 

texture” (Truong & Daubert, 2001). This torsion texture map could be used for practical 

applications in the food industry for quality control and new product development.  
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Figure 2.3 A typical torsional texture map. Modified from Lanier (1986). 

 

For gels, TPA hardness and shear stress at failure are highly correlated, whereas 

shear strain correlated with TPA cohesiveness (Shie & Park, 1999). According to Claus 

(1995), using a single TPA method for assessing textural characteristics is not sufficient; 

other instrumental measurements, such as the torsional gelometry test, should be used to 

conform observations found with TPA or sensory evaluation. 
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2.4.3 Dynamic Oscillatory Rheology 

 
Rheology is the study of the “deformation and flow of material under well-

defined conditions” (Hamann, 1988). Rheological properties of gels can be determined 

at low strains (deformations), where care is taken to prevent sample destruction. These 

conditions permit a dynamic measure of viscoelastic behaviour which can be monitored 

with respect to time and temperature (Hamann, 1987). In dynamic rheology, low 

frequency oscillations are used so as to avoid structural damage and the parameters 

reflect molecular structures rather than a response to destruction (Savoie & Arntfield, 

1996). Rheological analysis can determine rigidity or shear modulus (stress/strain), 

storage modulus (describes the elastic nature of the material), and loss modulus 

(describes the viscous nature of the material), which are physical properties of the 

material that are not dependent on sample size or shape (Foegeding, 1988b).  From the 

perspective of globular protein gelation, the increase in storage modulus has been 

attributed to increased cross-linking within the network. Increases in loss modulus 

reflect the increased protein-protein interactions without formation of an elastic structure 

(Arntfield et al., 1990). 

While the evaluation of rheological properties at non-destructive strains is 

beneficial in understanding gelation, the results are not always pertinent to textural 

properties perceived by sensory analysis (Hamann, 1987). This is because sensory 

texture is determined by deforming the sample to fracture.  
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3. MATERIALS AND METHODS 

3.1 Chemicals  

 
The α-chymotrypsin (EC 3.4.21.1) was purchased from Sigma Chemical Co. (St. 

Louis, MO).  Transglutaminase (EC 2.3.2.13, Activa® TI, 99% maltodextrin and 1% 

TGase, contains 100 units of enzyme activity per gram powder) was a gift from 

Ajinomoto (Ajinomoto USA Inc., Teaneck, NJ) and distributed by Thomas Large & 

Singer Inc. (Woodbridge, Ontario, Canada). Pea protein isolate (PPI) was provided by 

Nutri-Pea Limited (Portage la Prairie, Manitoba, Canada). All other chemical reagents 

were of analytical grade. 

 

3.2 Meat Sample Selection  

 
Tom turkey carcasses weighing about 9-10 kg were selected from a commercial 

processing line at Lilydale Inc., Edmonton, Alberta. A portable pH meter (Hanna 

Instruments, Sigma Chemical Co., St. Louis, MO) equipped with a spear tip electrode 

was used to measure muscle pH. The electrode was inserted into the Pectoralis major 

muscle at the edge of the feather tract directly ventral to the wing joint. Carcasses with a 

20 min postmortem pH < 5.8 and > 6.0 were initially classified as PSE and normal, 

respectively. A sample core of 5 g was taken (using a 22 mm diameter coring device) at 

20 min postmortem next to the location of pH measurement and frozen in liquid 
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nitrogen for later use. The carcasses were immersed in ice water for 2 h (until the 

temperature of carcasses was below 10 °C), packed with ice, and then transferred to the 

University of Saskatchewan. The temperature of the carcasses was maintained at ~5 °C 

during transportation.  

Upon arrival at the university (~12 h postmortem), breast meat (Pectoralis 

major) was immediately removed from carcasses and then cut into half to obtain left and 

right sides. After a drip loss test and measurement of the meat surface colour (described 

below), the meat was trimmed of connective tissue and fat, vacuum packed in 

polyethylene storage bags (400 x 300 x 0.15 mm) using a Bizerba Model RD 66 vacuum 

packing machine (Bizerba Canada, Mississauga, Ontario) set at the maximum vacuum 

level (seal time 2 sec), and stored in a – 30 °C freezer until use. 

 
 
3.3 Classification of Normal and PSE Turkey Meat 

 
3.3.1 Muscle pH Measurement 
 

3.3.1.1 Iodoacetate pH 

 
Iodoacetate pH of meat samples was measured in duplicate according to 

Jeacocke (1977). Approximately 2 g of each frozen core sample (frozen at 20 min 

postmortem) was homogenized with a buffer consisting of 5 mM sodium iodoacetate 

(brought to pH 7 with 0.1 M potassium hydroxide) at a ratio of 1:10 to arrest glycolysis. 

Homogenization was carried out with a polytron (PT-MR 3100, Kinematica Inc., 

Switzerland) on #6 setting (15,000 rpm) in a 50 ml Falcon polypropylene conical tube 

for 20 seconds. The pH of the homogenate was then measured with a pH meter equipped 
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with an Accumet temperature-compensated pH electrode (Fisher Scientific, Nepean, 

Ontario). 

 

3.3.1.2 Ultimate pH 

 
Muscle ultimate pH was measured according to Solomon (1987) with 

modification. At 48 h postmortem, 20 g of breast meat sample was taken for slurry pH 

determination. The meat was blended (high speed on blend setting) with 80 ml 

deionized water for 60 seconds (Osterizer 12 speed blender, Sunbeam Corporation Ltd., 

Canada). The pH of the mixture was measured using an pH meter equipped with an 

Accumet temperature-compensated pH electrode (Fisher Scientific, Nepean, Ontario).  

 

3.3.2 Assessment of Drip Loss  

 
At 12 h postmortem, left and right sides of breast meat (Pectoralis major) from 

each bird were separately set on a soaker pad (Ultra Zap®, Paperpak Holdings Ltd., 

USA) on individual Styrofoam® trays, wrapped with plastic film, and stored at 4 ºC for 

24 h. The meat was weighed before and after 24 h storage and drip loss was calculated 

as the percentage of weight loss. 

 

3.3.3 Colour Measurement  

 
Immediately after the drip loss test, which was at ~36 h postmortem, the colour 

of the meat was measured in duplicate on the intact Pectoralis major muscle on the left 

side of each bird at the point where the Pectoralis minor was attached. The instrument 
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(HunterLab MiniScan, Reston, VA, USA) was set to measure CIE L*, a*, b* using 

illuminant A and 10º standard observer. Before use, the instrument was standardized 

using white and black tiles. A duplicate measurement was taken at a 90º angle to the 

first measurement. 

 

3.3.4 Classification of Normal and PSE Meat 

 
Measurements of pH and drip loss were used to confirm the classification of 

normal and PSE turkey meat based on the following categories: 

For study 1: 

Normal: probe pH > 6.0, iodoacetate pH > 6.2, drip loss < 0.7% 

PSE: probe pH < 5.8, iodoacetate pH < 6.1, drip loss > 0.7% 

Seven birds matching the criteria were selected from each group.  

For study 2: 

Normal: probe pH > 6.0, iodoacetate pH > 6.0, drip loss < 0.5% 

PSE: probe pH < 5.7, iodoacetate pH < 5.8, drip loss > 0.7% 

Four birds matching the criteria were selected from each group. 

 

3.4 Proximate Chemical Composition of Raw Meat 

 

Ground breast meat from each bird was analyzed for proximate chemical 

composition according to AOAC methods (AOAC, 1990). Namely, moisture was 

determined by measuring weight loss after drying in a 105 °C oven for 16-18 h (AOAC 

950.46, 1990), protein content was determined using the Kjeldahl method (AOAC 
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981.10, 1990), and crude fat was determined using petroleum ether as the solvent 

(AOAC 960.39, 1990). Protein content of pea protein isolate (PPI) was also measured 

by the Kjeldahl method. The nitrogen-to-protein conversion factor was 6.25. All 

samples were analyzed in duplicate. 

 

3.5 Enzymatic Assay of Chymotrypsin 
 
 

The activity of chymotrypsin was measured according to the procedure provided 

with the purchased product (Sigma Chemical Co., St. Louis, MO). N-benzoyl-L-tyrosine 

ethyl ester (BTEE) can be hydrolyzed by chymotrypsin and the hydrolysate N-benzoyl-

L-tyrosine can absorb ultraviolet light at 256 nm. The absorbance was continuously 

monitored and the rate of change was used to calculate enzyme activity. One unit of 

chymotrypsin can hydrolyze 1.0 µmole of BTEE per minute at pH 7.8 at 25 °C. The 

activity of chymotrypsin was measured once a month throughout the study. 

 

3.6 Preparation of Meat Gels 
 
 
3.6.1 Meat Batter Preparation 

 
The vacuum-packed breast meat from each bird was first thawed at –1 °C 

overnight and then ground through a plate with 3 mm diameter orifices before use. 

Temperature after grinding remained below 2 °C. For study 1, the formulation included 

turkey breast meat, sodium chloride (NaCl), sodium tripolyphosphate (STPP), and 

deionized water (DW). The formulations are shown in Table 3.1. This resulted in meat 

batters with ~ 14% protein.  
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Table 3.1 Formulations for study 1 (%, w/w). 

Formulation  Meat  NaCl STPP1 Chymotrypsin DW2

Control  

2.5 ppm 

5 ppm 

10 ppm 

60 

60 

60 

60 

3 

3 

3 

3 

0.3 

0.3 

0.3 

0.3 

0 

2.5 ppm 

5 ppm 

10 ppm 

36.7 

36.7 

36.7 

36.7 

 

1STPP: sodium tripolyphosphate 
2DW: deionized water 
 

Ground meat and non-meat ingredients (salt, STPP and water) were placed in the 

food processor (Braun UK100, Germany) and then mixed for 3 x 80 sec at speed 2. 

Then the meat batter was transferred into a plastic bag and vacuum pulled (Komet 

Vacuboy, Germany) at maximum level to remove air bubbles. For enzyme treatments, 

α-chymotrypsin was first made into stock solution (10 mg/ml), and then appropriate 

quantities of the chymotrypsin solution was added into the formulations at an 

enzyme/batter ratio of 2.5 ppm, 5 ppm and 10 ppm level on a weight basis. The mixing 

and vacuuming procedures were the same as described above. Each meat batter size was 

500 g. The enzyme solution was made fresh each time. Enzyme levels applied were 

determined during preliminary work to result in different degrees of proteolysis.

For study 2, the ingredients in the meat batter formulations included turkey 

breast meat, NaCl, STPP, pea protein isolate (PPI), transglutaminase (TGase), and DW. 

Specific compositions of each meat batter are shown in Table 3.2. 
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Table 3.2 Formulations for study 2 (%, w/w).  
 
Formulation  Meat  NaCl STPP1 PPI2 TGase3 DW4

Treatment A 

Treatment B 

Treatment C 

Treatment D 

Treatment E 

Treatment F 

42 

33 

33 

33 

33 

33 

2 

2 

2 

2 

2 

2 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0 

0 

0 

2.6 

2.6 

2.6 

0 

0 

0.5 

0 

0.5 

0.5 

55.7 

64.7 

64.2 

62.1 

61.6 

61.6 

 

1STPP: sodium tripolyphosphate 
2PPI: pea protein isolate 
3TGase: transglutaminase 
4DW: deionized water 
 
 

According to proximate analysis, the protein content of turkey breast meat was 

24%, and that of PPI was 76% (as is basis).  The particular ingredient percentage in each 

formulation was selected to provide 10% meat protein (42% meat), 8% meat protein 

(33% meat), and 2% pea protein (2.6% PPI) to the formulation (Table 3.2). TGase level 

(0.5%) was chosen according to the guidelines recommended by the supplier and 

confirmed during preliminary experiments. Ground meat and non-meat ingredients (salt, 

STPP, PPI, TGase, and water) were mixed as previously described in study 1. For 

treatment F, PPI and TGase were dispersed in ~ 80 g water and incubated at 50 ºC for 30 

min before mixing with meat and other ingredients. After mixing the meat batter was 

degassed using the vacuum method as previously described. Each meat batter size was 

500 g. 
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3.6.2 Meat Gel Preparation  

 
For study 1, each batter was stuffed manually into 50 ml Falcon polypropylene 

conical tubes (30 x 115 mm), centrifuged (Beckman, J2-HC, USA) at 910 g (2,000 rpm) 

at 4 ºC for 5 min to further remove air bubbles. After centrifugation, the tubes (generally 

6 per batch) were weighed and incubated in a 40 ºC water bath for 15 min to bring the 

temperature of the stuffed meat batter to 37 °C, which is the optimal temperature for 

chymotrypsin activity (Simpson et al., 1998). The temperature of the water bath was 

adjusted to 37 °C and the batter matter was incubated for another 15 min to ensure the 

function of the enzyme, and then cooked in a water bath (set at 80 ºC) for 20 min to 

achieve a final internal temperature of 80 ºC. Chymotrypsin was inactivated during 

heating (Simpson et al., 1998). After cooking, the tubes were set in ice water for 1 h to 

cool and kept in a 4 ºC refrigerator overnight.  

For study 2, each batter was handled the same way as in study 1 described 

above. After centrifugation, the tubes (generally 6 per batch) were weighed and stored in 

a 4 ºC fridge overnight. The next day the raw batters were cooked the same way as in 

study 1. TGase was inactivated during heating (Kuraishi et al., 2001). After cooking, the 

tubes were stored as in study 1. 

 

3.7 Evaluation of Water Holding Capacity (WHC) 

3.7.1 Assessment of Cook Loss 

 
For both study 1 and 2, following overnight storage, chilled gels were removed 

from the Falcon tubes, blotted with paper towels and weighed. Overall cook loss was 
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calculated as a percentage based on the raw stuffed batter weight. The average cook loss 

of six tubes was calculated for each replicate (bird). 

 

3.7.2 Determination of Expressible Moisture (EM) 

 
EM measurement of cooked gels was modified from Jauregui et al. (1981) as 

reported by Trout (1988). Cooked gel samples (1.5 ± 0.3 g) were cut into cylinders by 

using a 12 mm diameter coring device to keep the shape and size consistent. The gel 

cylinders were then placed in a Falcon 50 ml tube fitted with a thimble consisting of two 

layers of Whatman # 3 filter papers (90 mm) folded around one piece of Whatman # 50 

(70 mm) filter paper. The tubes were capped and then centrifuged at 228 g (1,000 rpm) 

(Beckman, J2-HC, USA) for 10 min at 4 ºC. EM was expressed as a percentage of the 

moisture released to original sample weight. Each treatment was measured in triplicate 

for each replicate. 

 

3.8 Methods Used to Measure Gel Texture and Rheology 

 
3.8.1 Texture Profile Analysis (TPA) 

 
TPA was determined using a Food Technology Corporation TMS-TP Texture 

Press (Rockville, MD, USA). Cooked gel samples were cut into cylinders (22 mm in 

diameter and 15 mm in height) and left to equilibrate at room temperature for 60 min. 

Then gel samples were compressed to 25% of original height (75% compression) for 2 

cycles at a speed of 100 mm/min using a 50 lb transducer (Shand, 2000). Data were 
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recorded and analyzed automatically by software provided with the machine. Six 

samples of each treatment were tested. 

 

3.8.2 Torsional Gelometry Analysis 

  
Torsional gelometry was measured according to the method described by 

Rathgeber et al. (1999a). Cyanoacrylate glue (Loctite® 404, Loctite Corporation, Rocky 

Hill, CT) was used to attach styrene discs to both ends of the prepared gel cores (15 mm 

in diameter, 30 mm in height). The capstan-shaped samples were kept at 4 °C for at least 

60 min (to facilitate milling) before being milled into dumbbell-shaped samples using a 

modified bench grinder. The final specimen had a center diameter of 10 mm. Before 

testing, the samples were placed in plastic bags (to prevent moisture loss) and left  to 

equilibrate at room temperature for 30 min. Samples were twisted to fracture with a 

torsion gelometer (Brookfield digital viscometer, Model DV-I, Brookfield Engineering 

Labs Inc., Stoughton, MA, U.S.A.) at a speed of 2.5 rpm. Shear stress and strain values 

at failure were calculated on the basis of torque and angular displacement (Hamann, 

1983). 

 

3.8.3 Dynamic Rheological Analysis  

 
Sample preparation for rheological analysis was similar to the procedure 

described above in meat batter preparation except for the protein level (meat level) was 

reduced by half in order to reduce the interference caused by air bubbles trapped in the 

meat batter. The reduced meat portion was replaced with deionized water.  
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Heat-induced structural changes in meat batters were monitored by using an AR 

1000 rheometer (TA Instruments, New Castle, DE). Samples were loaded in the space (1 

mm gap, covered with paraffin oil to prevent moisture evaporation) between the parallel 

plates and heated from 25 ~ 80 °C at a rate of 1 °C/min and then cooled down to 20 °C 

at a rate of 5 °C/min. The samples were continuously monitored in an oscillatory mode 

at a fixed frequency of 1 Hz with a maximum strain of 0.02 (Ramírez-Suárez & Xiong 

2003a). Changes in the storage modulus (G′, rigidity due to elastic response of the 

testing material) were recorded throughout the heating and cooling process. 

 

3.9 Protein Extractability of Meat Gels 

 
3.9.1 Protein Extraction 

 
Protein extraction was performed according to De Backer-Royer et al. (1992) 

with modifications. The cooked meat gel was ground with a mortar and pestle. 

Approximately 0.5 g of each gel sample was mixed with 5 ml extraction buffer (8 M 

urea and 0.6 M sodium chloride, ratio 1:10) and extracted for 12 h at 4 ºC. Samples were 

continually stirred with a magnetic stirring bar. The extraction solution was centrifuged 

(Eppendorf 5415C) at 16,000 g for 10 min and the supernatant was kept at –20 ºC for 

electrophoresis.  

 

3.9.2 Protein Assay 

 
The protein content of the extract supernatant was determined according to the 

Bradford procedure (Bradford, 1976) using a kit provided by Bio-Rad (Bio-Rad 
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Laboratories, Inc., Hercules, CA). Bovine serum albumin (BSA) was used as the 

standard. Measurements were done in duplicate. 

 

3.10 Analysis of Protein Profiles of Cooked Meat Gels 

 
3.10.1 Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

 
SDS-PAGE was performed to investigate protein degradation (study 1) and 

protein crosslinking (study 2). The procedures were modified from Rathgeber et al. 

(1999b) and Pérez-Mateos et al. (2002). A Bio-Rad (Bio-Rad Laboratories, Inc., 

Hercules, CA) mini slab gel unit was used as the electrophoresis device. Acrylamide 

concentration of the resolving gel and stacking gel was 12.5% and 5% (study 1), and 

10% and 5% (study 2), respectively. Samples were loaded at a level of 10 μg of protein 

per lane. Electrophoresis was run at 176 v constant voltage, until the dye front reached 

the bottom of the frame. Gels were stained for 15 min in 0.1% coomassie brilliant blue 

R-250, 10% acetic acid, and 50% methanol. Gels were then destained in 10% acetic acid 

and 7.5% methanol solution until the background was clear. A standard molecular 

weight marker (Bio-Rad Laboratories, Inc., Hercules, CA) with molecular weight 

ranging from 6.5 ~ 205 kDa was used. 

 

3.10.2 Gel Image Analysis   

 
Protein profiles of electrophoresis gels were scanned using a densitometer 

(Model GS 700, Bio-Rad Laboratories, Inc.) and quantitatively analyzed with Quantity 

 45



One® software (Version 4.6, Bio-Rad Laboratories, Inc., Hercules, CA). Peak density 

was chosen as an indicator of the protein content of each band.  

 

3.11 Statistical Analysis 
 

Both study 1 and 2 were a split plot in a completely random design. Analysis of 

variance included quality group (normal and PSE for both studies) and treatment (4 

chymotrypsin levels for study 1, and 6 treatments for study 2). Analysis of variance was 

conducted using the General Linear Models procedure of Statistical Analysis System 

(SAS 9.1, SAS Institute Inc.) for Windows. Data were presented as mean values. In 

addition to the analysis of variance of the overall experiment, data sets were split by 

quality group or treatment level and rerun as one way ANOVA. Duncan’s procedure 

was used to carry out multiple comparisons. There were seven replicates in each quality 

group (normal and PSE) for study 1, and four replicates in each quality group for study 

2. 
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4. RESULTS AND DISCUSSION 
 
 
4.1 Study 1. Effect of Proteolysis on Textural Properties and Water Holding 

Capacity of Heat Induced Turkey Breast Meat Gels 

 

4.1.1 Classification of Normal and PSE Meat 

After animal death, the metabolism shifts from aerobic to anaerobic respiration 

in muscle tissues due to the unavailability of oxygen carried by blood circulation. The 

transformation of muscle to meat is a complex process during which meat quality is 

affected. Due to the rapid glycolysis rate, PSE muscle exhibits different characteristic 

changes in pH decline rate, colour, and drip loss, which can be used to identify PSE 

from normal meat (Warner et al., 1997). 

Fourteen turkeys were eventually chosen (twenty-one were initially selected 

based on probe pH) and classified into two categories according to the following 

criteria:  Normal: probe pH > 6.0, iodoacetate pH > 6.2, drip loss < 0.7% and  

 PSE: probe pH < 5.8, iodoacetate pH < 6.1, drip loss > 0.7% 

Measurements of pH are fundamental to the study of meat quality. As shown in 

Table 4.1.1, probe pH and iodoacetate pH of the PSE group were significantly lower (p 

< 0.05) than that of the normal group at 20 min postmortem, which indicated the PSE 

meat had undergone an accelerated glycolysis compared to normal meat. Owens et al. 

(2000) reported pH dropped to 5.72 at 1.5 h postmortem in PSE turkey breast muscle 
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while normal turkey breast muscle still maintained pH at 6.09. The iodoacetate pH 

tended to be higher than probe pH. Bendall and Wismer-Pedersen (1962) attributed this 

discrepancy to the difference in sample temperature at the time of measurement (i.e. 

probe pH in a warm muscle on the carcass at 37-40 °C vs. iodoacetate pH at 20 ºC in 

this study). They suggested that the effect was mainly due to changes in the Ka values 

(dissociation constant) of charged groups on the muscle proteins. When temperature 

rises, the Ka value increases, and so does the hydrogen ion content in the solution, 

therefore pH drops. At 48 h postmortem, there was no significant difference (p > 0.05) 

in ultimate pH between normal and PSE groups, which means there was a similar 

amount of glycogen in the muscle that had been converted to lactic acid.  

 

Table 4.1.1 Quality measurements of normal and PSE turkey breast meat used in study 1 

Measurements  Normal (n = 7) PSE (n = 7) LSD1    P 

Probe pH (20 min)       

Iodoacetate pH (20 min) 

 
1LSD: least significant difference 
ab Within the same row, means with different letters are significantly different (p < 0.05). 

 

PSE turkey meat showed significantly higher drip loss (p <0.05) than normal 

meat (Table 4.1.1), which was consistent with that reported by McKee and Sams (1998) 

Ultimate pH (48 h) 

Drip loss % 

Colour L* (lightness) 

a* (redness) 

b* (yellowness) 

6.20 ± 0.17 a 

6.30 ± 0.11 a  

5.82 ± 0.08 a 

0.48 ± 0.13 b 

57.46 ± 1.97 a 

12.85 ± 0.81 a 

11.43 ± 0.65 a 

5.72 ± 0.12 b 

5.96 ± 0.14 b 

5.72 ± 0.10 a 

0.85 ± 0.11 a 

57.73 ± 1.74 a 

13.08 ± 0.89 a 

11.88 ± 0.70 a 

0.17 

0.15 

0.14 

0.10 

2.16 

0.99 

0.78 

0.001 

0.001 

0.072 

0.001 

0.793 

0.620 

0.234 
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and Wynveen et al. (1999) for turkeys, indicating poor water-holding capacity of PSE 

muscle. Myosin denaturation has been suggested to be the cause of the high rate of drip 

loss in PSE pork (Offer, 1991). Denaturation of myosin results in shrinkage of the 

myosin head, drawing the thick and thin filaments closely together. This shrinkage, in 

addition to the shrinkage of the myofilaments due to the low ultimate pH in PSE pork, 

can result in more fluid being expelled between fibers and fiber bundles (Irving et al., 

1989). 

Pale colour is an obvious characteristic of PSE pork. Lawrie (1991) stated in 

PSE meat, the meat colour pigment – myoglobin is exposed to low pH conditions and 

becomes oxidized to metmyoglobin which has a low colour intensity. In addition, the 

surface structure of the meat becomes more “open” under the influence of lower pH and 

scatters light. McCurdy et al. (1996) and Wynveen et al. (1999) found that some turkey 

breast meat had significantly higher lightness (P < 0.05) than others. Barbut (1993) 

reported lightness in turkey breast meat could be correlated with cook loss (r = 0.87) and 

gel strength (r = -0.84) of the final products. However, Rathgeber et al. (1999a) did not 

observe any colour difference in ground turkey breast meat between normal and 

designated PSE muscle. In the present study (Table 4.1.1), no difference in colour was 

observed (p > 0.05) in turkey breast meat between normal and PSE group, possibly 

because the sample size was not great enough to show the subtle difference (14 samples 

in the current study vs. thousands of samples in studies conducted by McCurdy et al. 

(1996) and Wynveen et al. (1999)). 
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4.1.2 Proximate Analysis of Raw Meat  

 
As shown in Table 4.1.2, the raw meat from normal and PSE turkeys was similar 

(P > 0.05) in protein, moisture and fat content. These values were within the typical 

range for turkey according to the USDA National Nutrient Database for Standard 

Reference, Release 20 (2007). The pH values of raw meat from these two groups were 

essentially the same (shown in Table 4.1.1). These results were desirable, as this assured 

that the starting materials (i.e. the meat) were of similar composition and allowed 

comparisons between these two categories later.  

 
Table 4.1.2 Proximate analysis of raw meat from normal and PSE turkey (as is basis) 

Normal (n=7) PSE (n=7) Measurements 
 Mean  SE Mean  SE 

   P 

Moisture % 
 

 
SE: standard error  
 

4.1.3 Activity of Chymotrypsin 

 
The assays of chymotrypsin were conducted monthly and the results indicated 

the enzyme activity was about 57-62 units/mg solid, which was close to the claimed 66 

units/mg solid on the label. Chymotrypsin solution was made fresh for each replicate to 

ensure consistent enzymatic activity.  

The optimal conditions for maximum activity of chymotrypsin are 37 °C at pH 

8.0 according to the information provided by the supplier (Sigma Chemical Co., St. 

Protein % 
 
Fat % 

75.33  
 
23.03  
 
0.64 

0.15 
 
0.18 
 
0.12 

75.34  
 
23.02 
 
0.81 

0.33 
 
0.25 
 
0.19 

0.976 
 

0.975 
 

0.490 
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Louis, MO).  In this study, it took about 15 ~ 16 min to bring the temperature of the 

stuffed meat batter from ~ 10 °C up to 37 °C in a 40 °C water bath. Then the 

temperature of the water bath was adjusted to 37 °C and the batter matter was incubated 

for another 15 min to ensure the function of the enzyme.  

 
 

4.1.4 Effect of Meat Quality and Proteolysis on Water Holding Capacity  

 
Data analysis showed there were no interactions (p > 0.05) between the two 

main effects: quality group (normal and PSE) and treatment (chymotrypsin level), for all 

the measurements (WHC and textural properties) conducted in this study. This result 

demonstrated the meat (meat proteins) responded to chymotrypsin digestion to the same 

extent no matter what kind of meat was used (normal or PSE). This leads to the 

speculation that the conformation of the proteins in both normal and PSE turkey meat 

was similar that the chymotrypsin had equal accessibility to the proteins in both normal 

and PSE turkey meat used in this study.  

In the present study, cook loss was not significantly different between meat gels 

made from normal and PSE groups, and within the same group, cook loss did not show 

significant differences (p > 0.05) with different concentrations of chymotrypsin (Table 

4.1.3). Woelfel et al. (2002) reported PSE broiler breast fillets had significant higher 

cook loss (p < 0.05) than normal ones.  But Rathgeber et al. (1999a) did not observe any 

difference in cook yield between rapid and normal glycolyzing turkey meat. This 

contradiction can be attributed to the different sample preparations and cooking methods 

used. The former authors used a convection oven to directly cook the intact whole 
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fillets, where the water expelled from the whole muscle was calculated as cook loss. 

Whereas in the latter case and the present study, the breast meat was ground and 

formulated into meat batters, and then cooked in capped tubes. It is possible that the 

expelled water was re-absorbed by the cooked gels during the storage period before 

testing. It was also noted that the surface of the cooked gels made from untreated (0 

ppm) normal meat was firm and smooth, whereas that from PSE and enzyme-treated 

meat appeared soft and porous, suggesting inferior textural properties.  

 

Table 4.1.3 Water holding capacity of cooked meat gels made from normal and PSE 
turkey meat with α-chymotrypsin treatment  

 
Normal (n=7) PSE (n=7) WHC  Chymotrypsin 

ppm  Mean  SE Mean  SE 

 P value       

Cook loss 

% 

0  

2.5  

5  

10 

P value 

3.52 a 

4.05 a 

3.69 a 

3.54 a 

0.852 

0.51 

0.63 

0.54 

0.32 

4.26 a 

4.36 a 

4.43 a  

4.02 a 

0.816 

0.68 

0.72 

0.73 

0.52 

0.401 

0.751 

0.431 

0.448 

Expressible 

moisture % 

 

0  

2.5  

5  

10 

P value 

10.26 b 

10.73 b 

11.00 b 

14.53 a 

< .0001 

0.31 

0.32 

0.22 

0.69 

11.41 b 

11.47 b 

12.05 b 

16.60 a 

0.0002 

0.38 

0.48 

0.68 

1.73 

0.038 

0.225 

0.163 

0.289 

 
SE: standard error 
abData with different letters in the same column are significantly different (p < 0.05) 

 

Expressible moisture of meat gels prepared from PSE meat was significantly 

higher (p < 0.05) than that from normal meat for the control treatment (without enzyme 
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addition), which indicated that gels made from normal meat had greater ability to hold 

water than PSE meat. Camou and Sebranek (1991) reported similar findings in PSE pork 

gels, but Rathgeber et al. (1999a) found no difference between normal and PSE turkey 

breast meat gels in terms of expressible moisture. This difference, however, became 

insignificant upon enzyme addition at 2.5 to 10 ppm (Table 4.1.3). For both normal and 

PSE meat gels, there was a general trend that expressible moisture increased with 

enzyme addition, which indicated water was less tightly retained in enzyme-treated 

protein gels. At 10 ppm level, the values were significantly higher (p < 0.05) than the 

other three levels for both groups. According to Schmidt et al. (1981), a meat gel is a 

“three-dimensional interlinked protein network”. This protein network both physically 

(due to capillarity) and chemically (such as hydrogen bonds and disulfide bonds) 

stabilizes water (Schmidt et al., 1981). In this experiment, it was observed that the gels 

made from chymotrypsin-treated meat tend to have more visible pores on the surface of 

the gels compared to the untreated samples. It is possible that chymotrypsin cleaved 

meat proteins (e.g. myosin and actin) to smaller peptides and hence fewer crosslinkings 

were formed within the protein network. This then resulted in a more open (larger pore 

size) and less tightly restrained matrix to retain water. Even though there was no 

difference in cook loss, under certain external force, the less tightly restrained water was 

expelled out of the protein matrix, as was observed for expressible moisture.  

 

4.1.5 Effect of Meat Quality and Proteolysis on Texture Profile Analysis 

 
The poor texture of PSE meat and its products is well known. Camou and 

Sebranek (1991) reported gels made from PSE pork showed considerably less 
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functionality because gel strength was weaker (55% lower) than gels made from normal 

pork. They suggested that proteins in PSE muscle were less functional, which led to 

reduced protein extractability and hence poor binding ability. Alvarado and Sams (2004) 

reported slower chilling rate postmortem contributed to higher incidence of PSE 

conditions in turkey and subsequently resulted in reduced gel strength. 

The results of texture analysis in this study showed that with no enzyme 

addition, meat gels made from normal turkey breast meat had significantly higher 

hardness values (p < 0.05) than those made from PSE meat (Table 4.1.4). No significant 

difference (p > 0.05) in hardness was observed for 2.5, 5, and 10 ppm enzyme addition 

between these two groups. It is interesting to note, however, that at 2.5 and 5 ppm levels 

of chymotrypsin addition, although hardness was not significantly different between 

normal and PSE meat gels, the relatively low P values (p = 0.097 and 0.087) indicated a 

trend that the PSE gels were softer than comparable normal ones; and eventually at 10 

ppm level, normal meat gel hardness deteriorated to the similar extent as the PSE meat 

gels (Table 4.1.4). Within the same group, increasing chymotrypsin addition produced 

softer gels as the hardness value decreased. For instance, compared to the control (0 

ppm), hardness of meat gels decreased 9%, 22%, and 71% under increasing enzyme 

addition (2.5, 5, and 10 ppm) for the normal group, and that of the PSE group decreased 

9%, 22%, and 69%, respectively.  
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Table 4.1.4 TPA hardness and cohesiveness of cooked meat gels from normal and PSE 
turkey meat with α-chymotrypsin treatment  

 
Normal (n=7) PSE (n=7) TPA Chymotrypsin 

ppm  Mean  SE Mean  SE 

P value

Hardness  N 0  

2.5 

5 

10 

P value 

169.71 a 

153.91 ab 

131.86 b 

  49.63 c 

< .0001 

12.23 

12.92 

12.50 

  4.95 

132.41 a 

120.01 ab 

103.35 b 

  41.07 c 

< .0001 

 9.69 

13.68 

  8.82 

  5.75 

0.034 

0.097 

0.087 

0.282 

Cohesiveness 

 

0  

2.5  

5  

10 

P value 

0.34 a 

0.31 ab 

0.26 b 

0.07 c 

< .0001 

0.02 

0.03 

0.03 

0.05 

0.26 a 

0.23 ab 

0.18 b 

0.02 c 

< .0001 

0.02 

0.03 

0.02 

0.01 

0.023 

0.074 

0.074 

0.319 

 
SE: standard error 
abcData with different letters in columns are significantly different (p < 0.05)  
 
 
 

As mentioned in the literature review, myofibrillar proteins such as myosin can 

be digested by proteolytic enzymes such as trypsin and chymotrypsin (Segal et al., 

1967; Weeds & Pope, 1977). Since myosin is the most abundant and most functional 

muscle protein, any alterations in myosin molecules would be expected to affect texture 

and water holding capacity of the meat products. Lanier et al. (1981) noted a decrease in 

gel strength in minced fish gels and concluded that a heat-stable proteinase present in 

the raw material (fish tissue) was responsible for the degradation of myosin, which 

resulted in textural weakness of processed fish gels. Makinodan and Hujita (1990) 

showed a similar finding by adding an edible Judas’ ear mushroom (Auricularia 

auriculajudae (Fr.) Quel), which has been proven to contain a proteinase, into fish meat 
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paste during the processing of kamaboko. They concluded that the proteinase that 

exudes from the mushroom hydrolyzes the fish meat proteins, causing textural 

degradation of kamaboko. Wang and Xiong (1998, 1999) studied the effect of 

proteolysis on gelation of a myofibrillar protein concentrate from bovine cardiac muscle. 

They concluded that prolonged incubation at 50 °C caused marked loss in gel strength 

and water holding capacity of beef heart surimi and this gel weakening most likely 

resulted from the action of endogenous proteases which presumably consisted mainly of 

lysosomal proteases (cathepsins).  

Significantly higher (p < 0.05) cohesiveness values were also observed for meat 

gels made from normal turkey breast meat than from those made from PSE meat with no 

enzyme addition (0 ppm) (Table 4.1.4). There was no significant difference (p > 0.05) 

between gels made from normal and PSE meat at any chymotrypsin addition level, but 

there was a trend (p = 0.074) that the PSE gels were slightly less cohesive than 

comparable normal ones (at 2.5 and 5 ppm). Within the same quality group, increased 

chymotrypsin addition produced progressively less cohesive gels. 

Cohesiveness, according to Szczesniak (1963), is defined as the “strength of the 

internal bonds making up the body of the product”. As mentioned in the literature 

review, it is the protein bonding that is responsible for the textural properties of the 

processed meat products (Xiong, 1997). According to Samejima et al. (1969), any 

damage to myofibrillar proteins, especially to myosin, will affect textural properties of 

the product. In this study, at 0 ppm level (control), the lower cohesiveness value 

(compared to that of normal meat gels) observed in PSE meat gels indicated inferior 

meat protein quality of PSE meat. Likewise, within the same quality group, as 
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chymotrypsin addition increased, cohesiveness value decreased, indicating myofibrillar 

proteins had been digested further by chymotrypsin. 

Gelation studies suggest that gels do not reach appreciable strength until the 

myosin tail portion has undergone helix-coil transformation and subsequent cross-

linking and the complete myosin molecule is necessary for attaining appreciable 

continuity and strength in the protein matrix (Acton & Dick, 1989). As previously 

discussed, meat proteins especially myosin can be broken down to smaller peptides by 

hydrolytic enzymes such as trypsin and chymotrypsin. This was confirmed in this study 

upon observation of the protein profiles on SDS gels (to be discussed in section 4.1.8).  

These smaller peptides exhibited less functional behavior, and were likely “suspended” 

in the protein matrix rather than forming a crosslinked structure, consequently leading to 

impaired gel texture. With 5 ppm chymotrypsin addition, hardness of gels made from 

normal meat was similar to that of gels made from PSE meat without enzyme treatment. 

This result demonstrated the inferior quality of PSE meat and also suggested besides 

protein denaturation, protein degradation could contribute to the impaired gelation in 

PSE meat. 

 

4.1.6 Effect of Meat Quality and Proteolysis on Torsional Gelometry 

 
The results of torsional gelometry showed that meat gels made from normal 

turkey breast meat had significantly higher shear stress and strain value (p < 0.05) than 

those made from PSE meat at both 0 (control) and 2.5 ppm enzyme addition, but there 

was no significant difference (p > 0.05) for 5 and 10 ppm enzyme treatment (Table 

4.1.5). 
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Table 4.1.5 Torsional analysis of cooked meat gels from normal and PSE turkey meat 
with α-chymotrypsin treatment  

 
Normal (n=7) PSE (n=7) Torsional 

gelometry  

Chymotrypsin 

ppm  Mean  SE Mean  SE 

 P value 

Shear stress 
at failure kPa  

0  

2.5  

5  

10  

P value 

47.06 a 

42.41 b 

38.46 b 

16.43 c 

< .0001 

2.19 

2.57 

2.47 

1.88 

39.39 a 

34.17 b 

31.64 b 

12.86 c 

< .0001 

2.63 

2.24 

2.31 

1.78 

0.045 

0.033 

0.067 

0.194 

Shear strain 

at failure 

 

0  

2.5  

5  

10 

P value 

2.02 a 

1.97 a 

1.71 b 

1.28 c 

< .0001 

0.06 

0.05 

0.06 

0.14 

1.85 a 

1.76 ab 

1.68 b 

1.15 c 

< .0001 

0.05 

0.04 

0.06 

0.10 

0.049 

0.006 

0.058 

0.439 

 
SE: standard error 
abcData with different letters in the same column are significantly different (p < 0.05) 

 

Compared to the control (0 ppm α-chymotrypsin), shear stress of meat gels 

decreased 10%, 18%, and 65% with increasing enzyme concentration (2.5, 5, and 10 

ppm) for meat from the normal group, and that of gels made from PSE meat decreased 

13%, 20%, and 67%, respectively. Within the same group, shear strain value decreased 

2%, 15%, and 37% upon increasing enzyme addition for normal group, while these 

values were 5%, 9%, and 38% for the PSE group, respectively. Rathgeber et al. (1999a) 

reported lower shear strain values at fracture were found in gels made from PSE-like 

turkey meat compared to normal ones. The current experiment not only confirmed their 

findings but also found lower stress values at fracture for PSE gels. This fact suggested 

the proteins in PSE meat formed a softer and less elastic gel than proteins from normal 
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meat. It has been suggested that protein denaturation is responsible for the poor gelation 

in PSE meat products (Offer, 1991; Pietrzak et al., 1997). Rathgeber et al. (1999b) 

further demonstrated that myosin degradation could attribute to the poor gelation in PSE 

meat. In this study, untreated PSE meat gels had a similar shear stress value compared 

with normal meat gels treated with 5 ppm chymotrypsin, which suggested possible 

protein degradation in PSE meat used for this study.  

 

 
4.1.7 Protein Extractability in Cooked Turkey Breast Meat Gels 

 
Loss of protein functionality is the major defect in PSE meat. For instance, low 

protein extractability is typically found in PSE pork meat (Boles et al., 1992; van Laack 

et al., 1993). More recently, this problem has been identified in PSE turkey meat 

(Pietrzak et al., 1997; Rathgeber et al., 1999a & 1999c). However, there is no data 

regarding protein extractability from cooked PSE meat gels. The current study showed 

cooked gels made from PSE turkey breast meat had a significantly lower protein 

extractability than those made from normal turkey breast meat (Table 4.1.6).  

 

Table 4.1.6 Protein extractability in cooked gels made from normal and PSE turkey 
meat (without α-chymotrypsin addition) 

 
Normal (n = 7) PSE (n = 7) Measurement  

Mean SE Mean SE 

P 

Total soluble protein 
content in extract 
(mg/ml) 

 
9.43 a 

 
0.43 

 
8.00 b 

 
0.31 

 
0.019 

 
SE: standard error 
abData with different letters are significantly different (p < 0.05) 
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According to Irving et al. (1989) and Offer et al. (1989), shrinkage of myosin 

heads combined with their denaturation causes the thick and thin filaments to be drawn 

together more closely at rigor in PSE than in normal meat. Consequently, extracting 

salts may be less effective in dissociating myosin heads and actin filaments, resulting in 

a low myosin extractability (Offer, 1991). Pietrzak et al. (1997) reported that 

precipitation of the sarcoplasmic protein phosphorylase onto the myofibrillar proteins 

also contributed to the reduced solubility of myosin molecule in PSE meat. If such 

precipitation results in decreased myofibrillar protein solubility, then it could result in 

decreased water-holding capacity and gel strength (Alvarado & Sams, 2004). The results 

from the current study for TPA and torsional gelometry provided evidence to support 

this hypothesis. 

The extractability of protein increased (p > 0.05) after chymotrypsin digestion 

(data not shown), which is not surprising because smaller proteins generally have larger 

accessible surface areas to interact with surrounding solution and result in greater 

solubility (Ooi et al., 1987). 

 
 
4.1.8 SDS-PAGE Profile of Cooked Meat Gels 

 
SDS-PAGE was performed to examine the protein profile of the cooked meat 

gels and densitometry was applied to quantify protein degradation. Peak density is 

proportional to protein content and therefore used as an indicator of protein degradation. 

As shown in Figure 4.1.1, overall protein profiles from normal (A) and PSE (B) meat 

gels are essentially the same. Rathgeber et al. (1999b) found myofibrillar protein 

samples from rapid postmortem glycolyzing (PSE like) turkey breast muscle contained 
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extra protein bands in SDS-PAGE banding patterns compared to that of normal turkey 

breast meat samples. Western blot analysis identified these protein fragments were from 

myosin degradation in PSE meat. However, SDS-PAGE results in the current study did 

not show myosin degradation in PSE meat. This discrepancy indicated the existence of 

physiological differences among PSE turkeys and possibly the PSE conditions of the 

samples used in the current study were less severe than that of the samples used in 

above-mentioned study (Rathgeber et al., 1999b).  

As shown in Figure 4.1.1, some proteins, such as myosin heavy chain (MHC, ~ 

200 kDa), actin (~ 42 kDa), 154, 48, 38 and 26 kDa peptide bands were digested by 

chymotrypsin as the peak density decreased with increasing chymotrypsin concentration 

(Table 4.1.7). Some proteins (e.g. 94 and 60 kDa bands) were not cleaved by 

chymotrypsin as there was no density change detected. The content of the 78 kDa 

protein fragment actually increased, which means it probably was obtained from the 

breakdown of a larger protein such as MHC upon chymotrypsin digestion.



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

MW (kDa)   0 ppm        2.5 ppm    5 ppm      10 ppm    

 97 
66 

45

31 

21

14
  6.5 
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116 
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     MHC 

   Actin 

      94 kDa 

     78 kDa
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     154 kDa 
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Figure 4.1.1 SDS-PAGE (12.5%) profile of cooked meat gels prepared from normal (A) and PSE (B) turkey breast meat. 

MW: molecular weight marker. MHC: myosin heavy chain. Each lane contains 10 μg of protein. 0-10 ppm: 
chymotrypsin concentration in the meat batter. 

A: normal            B: PSE 
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Table 4.1.7 Analysis of peak density* of major protein bands observed on SDS-PAGE 

 
Normal (n=7) PSE (n=7) Measurement  α-chymotrypsin 

Mean  SE Mean  SE 

 P value 

 

~200 kDa 

(MHC) 

0 ppm 

2.5 ppm 

5 ppm 

10 ppm 

P value  

0.54 A 

0.54 A 

0.49 A 

0.35 B 

< .0001 

0.01 

0.02 

0.02 

0.04 

0.53 a 

0.54 a 

0.53 a 

0.32 b 

< .0001 

0.03 

0.01 

0.02 

0.05 

0.644 

0.778 

0.163 

0.661 

~154 kDa 

 

0 ppm 

2.5 ppm 

5 ppm 

10 ppm 

P value 

0.34 A 

0.34 A 

0.32 AB 

0.29 B 

0.032 

0.01 

0.02 

0.02 

0.02 

0.34 a 

0.33 a 

0.34 a 

0.24 b 

0.009 

0.03 

0.02 

0.02 

0.04 

0.936 

0.865 

0.447 

0.323 

~94 kDa 0 ppm 

2.5 ppm 

5 ppm 

10 ppm 

P value 

0.25 A 

0.24 A 

0.24 A 

0.26 A 

0.496 

0.02 

0.03 

0.03 

0.03 

0.26 a 

0.26 a 

0.27 a 

0.21 a 

0.202 

0.03 

0.01 

0.02 

0.04 

0.915 

0.532 

0.345 

0.304 

~78 kDa 0 ppm 

2.5 ppm 

5 ppm 

10 ppm 

P value 

0.05 C 

0.13 B 

0.15 B 

0.24 A 

< .0001 

0.03 

0.02 

0.02 

0.03 

0.08 b 

0.10 b 

0.16 a 

0.17 a 

0.002 

0.03 

0.03 

0.03 

0.04 

0.427 

0.290 

0.827 

0.189 

~60 kDa 0 ppm 

2.5 ppm 

5 ppm 

10 ppm 

P value 

0.31 A 

0.29 A 

0.28 A 

0.30 A 

0.308 

0.02 

0.03 

0.02 

0.03 

0.31 a 

0.31 a 

0.30 a 

0.24 b 

0.054 

0.02 

0.01 

0.02 

0.03 

0.833 

0.618 

0.583 

0.210 

 
* Unit: optical density unit (ODU) 
ABabData with different letters in each group are significantly different (p < 0.05) 
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Table 4.1.7 Analysis of peak density* of major protein bands observed on SDS-PAGE 
(continued) 

 
Normal (n=7) PSE (n=7) Measurement  α-chymotrypsin 

Mean  SE Mean  SE 

 P value  

 

~48 kDa 0 ppm 

2.5 ppm 

5 ppm 

10 ppm 

P value 

0.38 A 

0.35 AB 

0.33 B 

0.32 B 

0.011 

0.03 

0.03 

0.02 

0.03 

0.38 a 

0.37 a 

0.36 a 

0.27 b 

0.003 

0.02 

0.02 

0.02 

0.03 

0.912 

0.654 

0.396 

0.234 

~43 kDa 

(Actin) 

0 ppm 

2.5 ppm 

5 ppm 

10 ppm 

P value 

0.55 A 

0.55 A 

0.52 B 

0.51 B 

0.001 

0.02 

0.02 

0.02 

0.02 

0.56 a 

0.55 a 

0.54 a 

0.47 b 

0.001 

0.01 

0.01 

0.01 

0.03 

0.854 

1.000 

0.344 

0.281 

~38 kDa 
 

0 ppm 

2.5 ppm 

5 ppm 

10 ppm 

P value 

0.46 A 

0.44 AB 

0.42 B 

0.36 C 

< .0001 

0.03 

0.03 

0.03 

0.03 

0.45 a 

0.44 a 

0.43 a 

0.33 b 

0.001 

0.02 

0.01 

0.02 

0.03 

0.730 

0.932 

0.645 

0.564 

 ~26 kDa 
 

0 ppm 

2.5 ppm 

5 ppm 

10 ppm 

P value 

0.15 A 

0.14 A 

0.11 B 

0.04 C 

< .0001 

0.02 

0.02 

0.01 

0.02 

0.12 a 

0.10 a 

0.10 a 

0.03 b 

< .0001 

0.02 

0.01 

0.01 

0.01 

 

0.208 

0.148 

0.635 

0.494 

 
* Unit: optical density unit (ODU) 
ABabData with different letters in each group are significantly different (p < 0.05) 
 

 

Results in Table 4.1.7 showed MHC was one of the proteins most affected by 

chymotrypsin. At 10 ppm chymotrypsin addition level, MHC was hydrolyzed up to 35% 

and 40% by chymotrypsin for normal and PSE samples, respectively. It is not surprising 
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that chymotrypsin-treated meat gels exhibited deteriorated texture (as the results of TPA 

and torsional gelometry analysis have already indicated) since myosin is largely 

responsible for the textural properties of processed meat products (Asghar et al., 1985; 

Yasui et al., 1980). The purpose of this part of study was to determine which muscle 

protein(s) can be hydrolyzed by chymotrypsin and if there is any difference in protein 

digestibility between normal and PSE meat for chymotrypsin. There is no visible 

difference in SDS-PAGE protein banding patterns observed for normal and PSE 

samples. Data in Table 4.1.7 showed there was no significant difference (p > 0.05) in 

band density for individual bands between the gels made from normal and PSE meat at 

any chymotrypsin level, which suggests chymotrypsin had equal accessibility to the 

proteins in both normal and PSE meat samples in this study. 

 

 

4.1.9 Rheology Analysis of Meat Batters Treated with Chymotrypsin 

 
Rheological changes of meat batters treated with chymotrypsin during heating 

are shown in Figure 4.1.2. The rheograms obtained from normal and PSE samples 

displayed essentially the same pattern, therefore only one set of data is presented. There 

was no crossover point observed throughout the whole heating range between storage 

modulus (G′), an indicator of material elasticity, and loss modulus (G″, data not shown), 

an indicator of material viscosity. This indicated that there was a network structure 

formed in the sample prior to rheological testing, and the meat batters exhibited a 

stronger elastic response than viscous response. 
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Figure 4.1.2 Rheological changes of meat batters treated with 0 to 10 ppm α-
chymotrypsin during heating. Protein level: 5%. Heating rate: 1 ºC/min.  

 

 

Upon heating, all samples first showed a slow and steady increase in G', and then 

underwent a series of structural changes at the range of 45 ~ 55 ºC, after which the G' 

continuously increased throughout the rest of the whole heating process.  

It was clear that chymotrypsin-treated meat batters had a reduced elasticity even 

at the beginning of heating (25 ºC). The higher the chymotrypsin concentration, the 

lower the elasticity of the meat batter. For instance, at the beginning of heating (25 ºC), 

with 10 ppm chymotrypsin addition, G′ of meat batter was ~74 Pa, which is almost 1/3 

of that (207 Pa) of the control batter (0 ppm). This result indicated meat batter elasticity 

was affected by the protein’s molecular size. As expected, the meat batter composed of 
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intact myofibrillar proteins exhibited higher elasticity, whereas the chymotrypsin-treated 

meat batters had progressively lower elasticity as concentration of chymotrypsin 

increased.  

The untreated sample (0 ppm) showed a G′ peak at ~ 48 ºC, which is the typical 

transition caused by denaturation and aggregation of myosin heads during heating 

(Fernández et al., 1996). It is noted that the treated samples showed either lower peak 

values (2.5 and 5 ppm chymotrypsin addition) at 45 ~ 50 ºC or no peak at all (10 ppm 

chymotrypsin addition), indicating the myosin head region had already been altered by 

chymotrypsin. The untreated sample also showed a substantially higher G′ value than 

the treated ones during the second transition (~ 52 ºC) where myosin rods form a more 

permanent, irreversible complex (Egelandsdal et al., 1986). The treated samples either 

showed a lower transition G′ value (2.5 ppm chymotrypsin addition) or no clear 

transition point (5 and 10 ppm chymotrypsin addition). This result suggested that the 

myosin rods had been cleaved by chymotrypsin and could not form strong crosslinkings 

during gelation as the intact myosin molecules did. The untreated sample exhibited a 

much higher G′ value than the treated ones at the end of heating (80 ºC), indicating more 

elastic gels were formed. 

 

4.1.10 Correlation Between Gel Textural Properties and Proteolysis 

Table 4.1.8 shows the content of some proteins correlated with meat gel textural 

properties and water-holding capacity. For instance, intact myosin heavy chain (MHC) 

and 26 kDa protein content was highly (p < 0.001) and positively correlated with TPA 
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hardness and cohesiveness, shear stress and shear strain, and negatively correlated with 

expressible moisture. The content of actin (43 kDa), proteins of 154, 48 and 38 kDa size 

was also positively correlated with gel texture and expressible moisture to a less 

significant extent. However, the protein fragment with a mass of 79 kDa, which was 

probably hydrolyzed from higher molecular weight protein(s), had a negative correlation 

to textural properties and a positive correlation with expressible moisture, indicating 

breakdown of myofibrillar proteins may be responsible for poor gelation and water 

holding capacity. This result demonstrated intact meat proteins played a very important 

role in maintaining textural properties and water-holding capacity of cooked products. 

 
Table 4.1.8 Correlation coefficients between meat gel texture, water holding properties 

and protein degradation (n = 56) 
 

 TPA 

Hardness 

TPA 

Cohesiveness

Shear 

Stress 

Shear 

Strain 

Cook 

Loss 

Expressible 

Moisture 

200 kDa 

(MHC) 

0.61*** 0.63*** 0.67*** 0.77*** NS -0.54*** 

154 kDa 0.34* 0.36** 0.39** 0.50*** NS NS 

94 kDa NS NS NS NS -0.29* NS 

79 kDa -0.34* -0.46** -0.44** -0.43** NS 0.38** 

60 kDa NS NS NS NS NS NS 

48 kDa 0.32* 0.45** 0.47** 0.49** NS -0.28* 

43 kDa 

(Actin) 

0.44** 0.34* 0.43** 0.44** NS NS 

38 kDa 0.56*** 0.44** 0.57*** 0.52*** NS -0.37** 

26 kDa 0.71*** 0.55*** 0.73*** 0.66*** NS -0.54*** 

 
*, **, and *** denotes p < 0.05, 0.01, and 0.001, respectively. NS means not significant.  
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4.1.11 Summary of Study 1  

 
PSE problems with the soft texture, poor cohesiveness, and reduced processing 

yield are major defects facing the turkey industry. While most studies attributed the 

cause of PSE to protein denaturation (Barbut, 1993 & 1997; McCurdy et al., 1996; 

McKee & Sams, 1998; Pietrzak et al., 1997), Rathgeber et al. (1999b & 2002) indicated 

degradation of myofibrillar proteins, especially that of myosin may also be responsible 

for the inferior quality of PSE meat. In this study, in order to create different extents of 

protein degradation, multiple levels of chymotrypsin addition were chosen to simulate 

various severities of PSE incidence.     

In the current study, gels made from normal turkey meat exhibited textural 

properties superior to that made from PSE turkey meat due to the inferior protein 

functionality (e.g. as indicated by excessive drip loss) in PSE meat. Meat gels made 

from PSE meat showed reduced protein extractability, possibly due to protein 

denaturation. Upon chymotrypsin treatment, proteins in both normal and PSE turkey 

meat exhibited proteolysis to varying degrees. Consequently, gel texture increasingly 

deteriorated with incremental chymotrypsin addition for both quality groups. The 

changes in rheograms indicated the alternation of myosin heads transition at ~ 48 ºC 

when chymotrypsin was present and the resulting meat gels were less elastic than 

untreated samples. SDS-PAGE protein profile also revealed muscle proteins such as 

myosin and actin were digested by chymotrypsin. This study showed the retention of 

primary structure of muscle proteins, e.g. intact myosin heavy chain, was highly 

correlated with meat gel textural properties and water-holding capacity.    
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4.2 Study 2. Effect of Protein Crosslinking on Textural Properties and Water 
Holding Capacity of Heat Induced Turkey Breast Meat Gels   

 

4.2.1 Classification of Normal and PSE Turkey Meat 

 
Twenty-four turkeys were initially selected at the processor based on probe pH 

values, eight of which were eventually chosen and classified into two categories 

according to the final criteria: 

Normal: probe pH > 6.0, iodoacetate pH > 6.0, drip loss < 0.5% and 

PSE: probe pH < 5.7, iodoacetate pH < 5.8, drip loss > 0.7% 

These criteria are slightly different from those used in study 1. For instance, the 

pH cut-off point is lower than in the previous study for the PSE category, and the drip 

loss cut-off point is lower than in the previous study for selection of birds in the normal 

category. These criteria indicated a greater difference in raw meat quality between the 

two quality groups than in the first study, which is beneficial for the purposes of 

comparing textural characteristics of the products made from these two categories.  

As shown in Table 4.2.1, the probe pH and iodoacetate pH of the PSE group 

were significantly lower (p < 0.05) than that of the normal group at 20 min postmortem. 

There was no significant difference (p > 0.05) in ultimate pH between normal and PSE 

groups. PSE meat showed a significantly higher drip loss (p < 0.05) than normal meat. 

No difference (p > 0.05) in raw meat colour (L*, a*, b*) was observed between normal 

and PSE groups. These results are essentially the same as those in the first study. 
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Table 4.2.1 Quality measurements of normal and PSE turkey breast meat used in study 2 

   P Measurements  Normal (n = 4) PSE (n = 4) LSD1

Probe pH (20 min)       

Iodoacetate pH (20 min) 

Ultimate pH (48 h) 

Drip loss % 

Colour L* (lightness) 

 
1LSD: least significant difference 
abWithin the same row, means with different letters are significantly different (p < 0.05). 

 

 

4.2.2 Proximate Chemical Composition of Raw Turkey Meat  

 
The results of proximate chemical composition of raw turkey breast meat are 

shown in Table 4.2.2. As observed in study 1, the raw meat from normal and PSE 

turkeys was similar (p > 0.05) in protein, moisture and fat content.  

 

Table 4.2.2 Proximate analysis of raw meat from normal and PSE turkey (as is basis) 

 
SE: standard error 

 

 

a* (redness) 

b* (yellowness) 

6.12 ± 0.15 a 

6.04 ± 0.05 a  

5.81 ± 0.08 a 

0.36 ± 0.05 b 

55.18 ± 2.76 a 

12.37 ± 0.96 a 

11.84 ± 1.05 a 

5.68 ± 0.04 b 

5.77 ± 0.10 b 

5.73 ± 0.11 a 

1.03 ± 0.22 a 

56.53 ± 1.69 a 

14.54 ± 2.43 a 

13.27 ± 2.17 a 

0.19 

0.14 

0.16 

0.27 

3.95 

0.001 

0.003 

0.315 

0.001 

0.435 

3.20 

2.95 

0.148 

0.282 

Normal (n = 4) PSE (n = 4) Measurements 
 Mean  SE Mean  SE 

P 

Moisture % 
 
Protein % 
 
Fat % 

74.89  
 
23.98  
 
0.44 

0.08 
 
0.20 
 
0.08 

74.58  
 
24.09 
 
0.37 

0.25 
 
0.13 
 
0.02 

0.288 
 
0.659 
 
0.378 
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4.2.3 Effect of PPI and TGase on Water Holding Capacity 

 
Cook loss was not significantly different (p > 0.05) between normal and PSE 

meat gels, but within the same quality group, cook loss varied among the treatments 

(Table 4.2.3).  There is a general trend for both normal and PSE groups even though not 

always significant: the treatment containing 8% meat protein and 0.5% TGase 

(treatment C) exhibited the highest cook loss, followed by the samples with 8% meat 

protein (treatment B), and then the samples with 10% meat protein (treatment A), the 

samples with 8% meat protein, 2% pea protein and 0.5% TGase (treatment E and F), and 

the samples with 8% meat protein and 2% pea protein (treatment D).  

The low cook yield of treatment B can be simply attributed to the low total 

protein content in the formulation (8% versus 10% in others), and the reason treatment 

C (8% meat protein + 0.5% TGase) had the lowest cook yield is due, on one hand, to 

low protein content (8%) and, on the other hand, possibly to the crosslinking of proteins 

catalyzed by TGase that made the meat matrix structure more compact, therefore 

expelling more water out of the gel network.  

As reviewed by Motoki and Seguroy (1998), TGase has been shown to have the 

ability to crosslink food proteins from different origins. TGase catalyzes an acyl transfer 

reaction between a carboxyamide of peptide or protein-bound glutamine and a primary 

amine, forming ε-(γ-glutamyl)lysine bonds between crosslinked proteins. Reports of the 

effect of TGase on water holding capacity have been controversial. Some researchers 

have found that TGase enhances water binding capacity in muscle-based products 

(Pietrasik & Li-Chan, 2002; Tseng et al., 2000). Dondero et al. (2006) observed that 

cook yield of beef meat gels decreased significantly (p < 0.05) as TGase level increased, 
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and they concluded this was probably due to stronger interactions between protein 

molecules excluding water. The results of the present study confirmed their findings. It 

was interesting that TGase alone detrimentally decreased cook yield of the meat gels, 

while a small portion of pea protein in the meat batter formulation significantly 

increased cook yield. The combination of pea protein and TGase also improved cook 

yield, especially for products made from PSE meat (p < 0.05). 

 

Table 4.2.3 Water holding capacity of cooked meat gels with added PPI and TGase  

Normal (n = 4) PSE (n = 4) WHC  Treatment1

Mean  SE Mean  SE 

 P value 

Cook loss 

% 

A 

B 

C 

D 

E 

F 

P value 

 9.55 c 

12.67 b 

15.70 a 

 7.90 c 

 8.12 c 

 8.37 c 

< .0001 

0.29 

0.52 

0.71 

1.12 

1.49 

2.20 

10.67 c 

13.51 b 

18.13 a 

 5.54 e 

 7.54 de 

 8.58 cd 

< .0001 

1.05 

1.23 

1.54 

1.91 

2.34 

2.62 

0.343 

0.555 

0.202 

0.327 

0.842 

0.955 

EM % 

 

A 

B 

C 

D 

E 

F 

P value 

15.59 c 

21.84 a 

20.62 ab 

19.68 b 

19.69 b 

21.43 a 

< .0001 

0.66 

0.73 

0.84 

1.01 

1.27 

1.23 

17.13 c 

27.48 a 

20.48 bc 

22.03 b 

20.55 bc 

22.17 b 

0.0007 

0.95 

3.02 

0.84 

1.18 

0.97 

0.98 

0.230 

0.119 

0.906 

0.181 

0.609 

 

0.654 

SE: standard error 

abcdeData with different letters in each column are significantly different (p < 0.05) 
1A: 10% meat protein; B: 8% meat protein; C: 8% meat protein + 0.5% TGase; D: 8% 
meat protein + 2% pea protein; E: 8% meat protein + 2% pea protein + 0.5% TGase; F: 
8% meat protein + (2% pea protein + 0.5% TGase).  
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Treatment A, D, E, and F all had the same total protein content in the 

formulation (10%), however, they exhibited different cook yields after cooking. The 

general trend for cook loss was A>F>E>D, but there was no significant difference 

within the normal group. However, there were appreciable differences (p < 0.05) among 

treatments in the PSE group (Table 4.2.3). Samples containing meat and pea proteins 

(treatment D) had the lowest cook loss probably due to the more open structure (bigger 

pore size within the meat matrix) resulting from the inclusion of the pea proteins, and 

therefore this treatment had physically retained more free water within the matrix 

system. Another possible reason is that pea protein isolate contains some carbohydrates 

(~ 10%, w/w) such as starch and fiber, which have the ability to interact with the free 

water (Almond, 2005). For the same reasons, the sample containing meat protein, pea 

protein and 0.5% TGase (treatment E and F) had lower cook loss than the sample 

containing meat only (treatment A). However, crosslinking catalyzed by TGase may 

have made the gel structure more compact (smaller pore size within the meat matrix), so 

treatment E and F had a slightly higher cook loss than treatment D. But there was no 

significant difference between treatment E and F, suggesting pre-incubation of pea 

protein and TGase (treatment F) did not help gels retain more water.  

Expressible moisture (EM) data (Table 4.2.3) showed a rather different trend 

from the cook loss results. Samples containing 8% meat protein (treatment B) had the 

highest EM value, whereas samples containing 10% meat protein (treatment A) had the 

lowest. This result demonstrated protein content still played a major role in EM with 

more water retained under external force at a higher protein content. It was noted that 

samples containing meat only (treatment A) had a lower EM value than samples 
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containing meat and PPI (treatment D), as well as samples containing meat, PPI, and 

TGase (treatment E and F) even though they all contained the same overall protein 

content. This suggested pea protein had a weaker ability to interact with water verses 

meat protein, even following crosslinking catalyzed by TGase. It should also be pointed 

out, however, that treatment A had lost more water during cooking than the other 

treatments containing the same total protein content (especially for gels made from PSE 

meat), and therefore there was less moisture to be lost during EM test.   

 

4.2.4 Effect of PPI and TGase on Texture Profile Analysis 

 
The results of textural analysis showed that treatments A and B, the gels made 

from normal turkey breast meat, had significantly higher hardness values (p < 0.05) than 

those made from PSE meat (Table 4.2.4), which is not surprising as the poor texture of 

PSE meat and its products is well known. Camou and Sebranek (1991) suggested the 

proteins in PSE muscle were in a less functional form so meat gels made from PSE meat 

had a lower gel strength. Compared to study 1, the hardness of untreated normal and 

PSE meat gels was much lower in the current study, mainly due to the reduced protein 

content in the formulation (8-10% vs. 14%). This again provides evidence that total 

protein content is very important to maintain meat product texture.  
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Table 4.2.4 Texture profile analysis of cooked meat gels with added PPI and TGase 

Normal (n = 4) PSE (n = 4) TPA Treatment1  

Mean  SE Mean  SE 

P value

Hardness N A 

B 

C 

D 

E 

 

SE: standard error 
abcdeData with different letters in each column are significantly different (p < 0.05) 
1A: 10% meat protein; B: 8% meat protein; C: 8% meat protein + 0.5% TGase; D: 8% 
meat protein + 2% pea protein; E: 8% meat protein + 2% pea protein + 0.5% TGase; F: 
8% meat protein + (2% pea protein + 0.5% TGase).  
 

Many authors have reported TGase addition produces stronger gels (Pietrasik & 

Li-Chan, 2002; Sakamoto et al. 1995). Motoki and Seguroy (1998) also reported 

proteins that are not gelled by heating can be gelled by addition of TGase. In this study, 

at 8% meat protein level, TGase addition increased gel hardness by 75% for the normal 

group, and 136% for the PSE group (treatment C vs. B). There have been no reports in 

the literature regarding how TGase would affect the strength of meat gels made from 

PSE meat. In this study, gels made from TGase-treated PSE meat (8% protein) were 

F 

P value 

62.49 b 

37.08 d 

64.72 b 

46.15 c 

76.02 a 

72.60 a 

< .0001 

1.54 

3.07 

1.19 

3.66 

3.34 

4.15 

44.16 bc 

22.59 d 

53.42 b 

37.76 c 

69.84 a 

66.48 a 

< .0001 

5.29 

2.92 

5.00 

1.54 

2.07 

1.59 

0.016 

0.014 

0.070 

0.079 

0.167 

0.218 

Cohesiveness 

 

A 

B 

C 

D 

E 

F 

P value 

0.47 bc 

0.43 c 

0.55 a 

0.47 bc 

0.54 a 

0.51 ab 

0.007 

0.01 

0.04 

0.01 

0.01 

0.01 

0.03 

0.37 cd 

0.30 d 

0.48 ab 

0.41 bc 

0.53 a 

0.52 a 

0.001 

0.05 

0.04 

0.06 

0.03 

0.02 

0.01 

0.102 

0.066 

0.287 

0.071 

0.563 

0.705 
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even harder than those made from normal meat alone (53.42 N vs. 37.08 N) (Table 

4.2.4). 

Pea protein addition significantly improved gel strength (treatment D vs. B), 

especially for PSE gels. The reason could be attributed to higher total protein content 

(10% vs. 8%). But samples with 8% meat protein and 2% pea protein (treatment D) still 

had a softer texture compared to the 10% meat protein control (treatment A), which 

suggests that pea protein had an inferior gelling function than meat protein under the 

current conditions even though the total protein content was the same. Shand et al. 

(2007) reported the optimal temperature for pea protein to form a strong gel was 93 ºC. 

Therefore under the heating condition of the current study (80 ºC), pea protein may not 

gel and contribute to gel texture.       

Samples containing both pea protein and TGase (treatment E and F) exhibited 

superior textural properties among all treatments. For example, hardness increased 65% 

and 85% for normal and PSE groups (treatment E vs. D), respectively. In the presence of 

TGase, with the same total protein content in the formulation, gel hardness changed 

from inferior (treatment D vs. A) to superior (treatment E and F vs. A). Shand et al. 

(2008) reported TGase could catalyze the crosslinking of pea proteins and enhance the 

strength of pea protein gels. It is reasonable to postulate that TGase catalyzed the 

crosslinking of meat and pea proteins in the gel network and these crosslinkings are 

strong and hard to break. It is also important to note that after TGase treatment, the 

strength of the gels made from PSE meat (with pea protein substitution) was brought up 

to a similar hardness as the gels made from normal meat (without substitution). 

Likewise, cohesiveness measurement showed a similar trend: TGase alone or combined 
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with pea protein helped produce more elastic meat gels. For instance, at 8% protein 

level, TGase addition increased cohesiveness up to 28% and 60% for normal and PSE 

meat gels (treatment C vs. B), respectively. At 10% total protein level, meat alone 

(treatment A) and meat plus pea protein isolate (treatment D) had a similar level of 

cohesiveness, while that of TGase-treated samples (treatment E and F) increased 15% 

and 43% compared to treatment A and D for normal and PSE meat gels, respectively. 

This observation suggested that protein crosslinking catalyzed by TGase helped produce 

a matrix structure in which internal bonds were stronger and connected adjacent 

particles more closely than TGase-free meat gels. The data also revealed the 

improvement for gels made from PSE meat was more dramatic than that of gels made 

from normal meat. There was no significant difference between treatment E and F in 

terms of TPA results, indicating pre-incubation of pea protein and TGase did not help 

produce more cohesive gels.  

 

4.2.5 Effect of PPI and TGase on Torsional Gelometry 
 
The results of torsional gelometry showed that meat gels made from normal 

turkey breast meat had significantly higher shear stress and strain value (p < 0.05) than 

those made from PSE meat with protein content of 10% and 8% (treatment A and B) 

(Table 4.2.5), indicating gels made from normal meat were harder and more elastic than 

those made from PSE meat. Compared to study 1, the shear stress value of respective 

untreated normal and PSE meat gels was much lower in the current study, mainly due to 

the reduced protein content in the formulation (8-10% vs. 14%). But the respective shear 

strain value was not much different. These observations are in agreement with the 
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statement made by Hamann (1988) as cited previously in the literature review: shear 

stress is strongly influenced by protein concentration, whereas shear strain is affected 

mainly by protein quality and may be considered an evaluation of protein functionality. 

In both study 1 and 2, untreated PSE meat gels had a lower shear strain value (p < 0.05) 

than corresponding normal meat gels, indicating PSE meat was inferior to normal meat 

in terms of protein functionality.  

 

Table 4.2.5 Torsional gelometry analysis of the cooked meat gels with added PPI and 
TGase 

Normal (n = 4) PSE (n = 4) Torsional 

gelometry  

Treatment1

Mean  SE Mean  SE 

 P value 

Shear stress 
at failure kPa  

A 

B 

C 

D 

E 

SE: standard error 
abcdeData with different letters in each column are significantly different (p < 0.05) 
1A: 10% meat protein; B: 8% meat protein; C: 8% meat protein + 0.5% TGase; D: 8% 
meat protein + 2% pea protein; E: 8% meat protein + 2% pea protein + 0.5% TGase; F: 
8% meat protein + (2% pea protein + 0.5% TGase).  

F 

P value 

24.18 c 

14.07 d 

31.10 b 

18.32 d 

39.64 a 

41.96 a 

< .0001 

1.09 

0.73 

2.10 

1.62 

1.62 

2.65 

15.58 b 

11.25 c 

27.92 a 

16.06 b 

32.69 a 

31.55 a 

1.68 

1.29 

2.39 

1.53 

3.25 

4.34 

< .0001 

0.005 

0.016 

0.357 

0.350 

0.104 

0.087 

Shear strain 

at failure 

 

A 

B 

C 

D 

E 

F 

P value 

2.01 b 

1.99 b 

2.34 a 

2.11 b 

2.38 a 

2.36 a 

0.0004 

0.04 

0.06 

0.08 

0.08 

0.04 

0.06 

1.87 b 

1.80 b 

2.21 a 

1.93 b 

2.20 a 

2.16 a 

0.07 

0.05 

0.10 

0.08 

0.08 

0.09 

< .0001 

0.030 

0.040 

0.322 

0.159 

0.088 

0.105 
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Pérez-Mateos et al. (2002) reported squid muscle gels with added TGase 

exhibited significantly higher hardness and elasticity than control samples. In the present 

experiment, at 8% meat protein level (treatment C vs. B), crosslinking of proteins 

catalyzed by TGase resulted in an increase of 121% and 148% in shear stress, and 18% 

and 23% in shear strain, for gels prepared from normal and PSE meat, respectively. 

More importantly, after TGase treatment, 8% protein gels made from PSE meat had 

much higher shear stress and shear strain values than those made from normal meat. 

These values were even higher than that seen for 10% protein gels made from normal 

meat (treatment A). 

Pea protein alone (treatment D) did not significantly (p > 0.05) improve gel 

strength for normal meat (treatment D vs. B). In fact substituting meat protein with pea 

protein produced gels that were softer than the unsubstituted formulation (treatment D 

vs. A). For PSE meat, pea protein addition only improved gel hardness not elasticity 

(treatment D vs. B), and pea protein substitution did not improve gel texture when 

compared to the unsubstituted sample (treatment A). The results showed pea protein 

alone was not effective in improving gel texture. 

Samples containing both pea protein and TGase (treatment E and F) prepared 

from meat of normal quality exhibited the highest (p < 0.05) gel strength. For 

formulations made with PSE meat, TGase-treated samples (treatment C, E, and F) had 

significantly higher (p < 0.05) gel strength than those without TGase.  For example, 

shear stress increased 64% and 110% for normal and PSE groups, respectively, and 

shear strain increased 17% and 18% (treatment E vs. A), respectively, with substitution 

of 2% pea protein and addition of 0.5% TGase. These results showed that with the 
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combined action of pea protein and TGase, the strength of the gels made from PSE meat 

became superior to the gels made from normal meat without substitution, which 

confirmed the previous TPA findings. These results suggested, in the presence of 

TGase, one could substitute meat protein with pea protein, and expect to improve or at 

least maintain the same gel strength as the unsubstituted products would have, even for 

PSE meat. 

 

 
4.2.6 Effect of TGase Treatment on Protein Crosslinking 

 
 

The SDS-PAGE profiles of the six treatments are shown in Figure 4.2.1. SDS-

PAGE protein banding patterns of normal and PSE meat gels were essentially the same, 

therefore only a representative image was shown. 

Many authors reported TGase can catalyze the formation of glutamyl-lysine 

bonds in myosin and between myosin and actin (De Backer-Royer et al., 1992), and 

proteins of lower molecular weight (e.g. tropomyosin and troponin) (Pérez-Mateos et 

al., 2002) depending on the origin of TGase. The efficiency with which a protein can be 

utilized as a substrate by TGase is known to be influenced by the amino acid sequence 

adjacent to the reactive glutaminyl residues (Gorman & Folk, 1980).  
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Figure 4.2.1 SDS-PAGE profiles of the cooked meat gels with added PPI and TGase. 

MW: molecular weight standard. A: 10% meat protein, B: 8% meat 
protein, C: 8% meat protein + 0.5% TGase, D: 8% meat protein + 2% pea 
protein, E: 8% meat protein + 2% pea protein + 0.5% TGase, F: 8 % meat 
protein + (2% pea protein + 0.5% TGase). P: 10% pea protein. 
Approximately 10 μg protein was loaded. L: legumin subunits. V: vicilin 
subunits.  

 
 

In the present study, some bands (shown in ellipses) in TGase treated samples 

(lane C, E, and F) disappeared or became lower in density when compared to respective 

bands in control lanes A and B (Figure 4.2.1). For instance, after TGase treatment (lane 

C, E, and F), MHC (~ 200 kDa) was completely gone, and a ~ 33 kDa protein band 
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almost disappeared, but actin (~ 42 kDa) was largely unaffected, which means the 

currently used TGase had less specificity for actin than for MHC and other affected 

proteins. The content of some protein fractions from pea protein (shown in rectangles) in 

TGase treated samples (lane E and F) also decreased when compared to lane P, 

indicating pea proteins were also crosslinked either within themselves or with meat 

proteins by TGase. These proteins appeared to be legumin subunits (labeled as L) and 

vicilin subunits (labeled as V), according to Shand et al. (2007). When comparing only 

lane E and F, it was observed that the bands in rectangles were lighter in lane F than in 

lane E, probably because the action of pre-incubating pea protein and TGase (treatment 

F) resulted in more crosslinked proteins which were not extracted into the soluble 

protein fraction. 

Pérez-Mateos et al. (2002) concluded fish gels treated with TGase had a greater 

prevalence of covalent cross-linking where mainly myosin heavy chain (MHC) was 

involved, and these covalent bonds were so strong that most denaturants could not 

cleave them.  In this experiment, it is possible that the crosslinked MHC or pea proteins 

were not soluble and subsequently not extracted into the solution, and therefore did not 

get into the SDS-PAGE system. 

It is interesting to note that the addition of pea protein somehow increased the 

protein extractability of the cooked meat gels as protein bands were shown to be darker 

in lane D when compared to other lanes, yet the reason is unknown.  
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4.2.7 Protein Extractability of TGase-Treated Meat Gels 

 

Due to the absence of some bands in the SDS-PAGE profiles shown above, it is 

reasonable to suspect some proteins have been crosslinked and not extracted into the 

solution. To verify this speculation, protein extractability of the cooked gels was 

evaluated for the last two replications of the study. 

Cooked meat gels were ground and extracted with 8 M urea and 0.6 M sodium 

chloride overnight and the protein content was determined by Bradford method 

(Bradford, 1976) with modifications. The objective of this experiment was to examine 

the effect of adding pea protein and TGase on protein solubility and not that of meat 

quality (i.e. normal vs. PSE), so data obtained for meat gels made from normal and PSE 

turkey meat were pooled together when presenting the results (Table 4.2.6). 

 

Table 4.2.6 Protein extractability* of the cooked meat gels with added PPI and TGase 

Protein content in extract (mg/ml) Total protein content 

Normal 

(n=2) 

PSE  

(n=2) 

Pooled 

(n=4) 

A (10% meat protein) 

B (8% meat protein) 

C (8% meat protein + TGase) 

D (8% meat protein + 2% pea protein) 

E (8% meat protein + 2% pea protein + TGase) 

F (8% meat protein + 2% pea protein + TGase) 

6.12 

6.15 

4.27 

7.95 

7.07 

7.09 

6.36 

6.10 

4.35 

7.83 

6.95 

7.09 

6.24 c 

6.13 c 

4.31 d 

7.89 a 

7.01 b 

 

7.09 b 

*Extraction buffer: 8 M urea and 0.6 M NaCl. Extraction ratio: 1:10.   
abcdData with different letters are significantly different (p < 0.05) 
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In Table 4.2.6, treatment A, D, E, and F initially had similar total protein content 

(10%), but protein solubility of the final product was significantly different. The sample 

made from meat only (treatments A and B) had the lowest (p < 0.05) protein 

extractability, indicating heat denatured meat protein was more difficult to solubilize 

than pea protein. It is noted that the sample with added pea protein only (treatment D) 

had a significantly higher extractability than others (e.g. 7.95 in treatment D vs. 6.15 in 

treatment B), indicating untreated pea protein was almost all solubilized in the 

extraction buffer. Protein extractability of TGase-treated samples (treatment E and F) 

were significantly lower (p < 0.05) than that of TGase free sample (treatment D), 

indicating some pea proteins must have been crosslinked by TGase to each other or with 

meat proteins or both so that the crosslinked proteins did not solubilize.  

Treatment B and C started with the same protein content (8%) from the same 

origin (meat), yet protein solubility of TGase-treated sample (treatment C) was much 

lower (p < 0.05) than that of the control (treatment B), which suggested TGase must 

have crosslinked some meat proteins together. Because these crosslinked bonds were so 

strong, they could not be cleaved by urea and salt. Therefore gels containing TGase had 

a significantly smaller percentage of soluble protein than those without TGase.  

Pérez-Mateos et al. (2002) studied effects of TGase on frozen squid muscle gels. 

They found gels treated with TGase contained a significantly reduced amount of soluble 

protein than the gels without TGase. The authors concluded that the insoluble protein 

was highly aggregated by means of covalent bonds, which were not readily cleaved by 

most denaturants. The formation of covalent bonds has been largely attributed to TGase 

activity (Pérez-Mateos et al., 2002). This low protein extractability in the present study 
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confirmed that the absence of some of the protein bands in the SDS-PAGE profiles was 

the result of unavailability of certain proteins after crosslinking in the loading buffer 

(Figure 4.2.1).   

 
 

4.2.8 Effect of PPI and TGase on Rheological Properties 

 

Overall heat-induced rheological changes of meat batters with added pea protein 

and TGase are displayed in Figure 4.2.2a. The rheograms obtained from normal and 

PSE samples displayed essentially an identical pattern, and hence, only one set of data is 

presented. There was no observation of crossover between storage modulus (G′) and 

loss modulus (G″, not shown in the graph) within the range of temperatures followed, 

indicating that there was a network structure formed in the sample prior to rheological 

testing, and the meat batters exhibited a stronger elastic response than viscous response. 

To better display some details, a different scale was used in Figure 4.2.2b. 
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Figure 4.2.2 Representative rheological changes of meat batters during thermal 

processing. a). Standard G′ plot. b). Enlarged G′ scale region. Heating 
rate: 1 ºC/min. Cooling rate: 5 ºC/min. Formulations – A: 5% meat 
protein; B: 4% meat protein; C: 4% meat protein + 0.5%TGase; D: 4% 
meat protein + 1% pea protein; E: 4% meat protein + 1% pea protein + 
0.5% TGase; F: 4% meat protein + (1% pea protein + 0.5% TGase). 
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Samples containing 5% meat protein (treatment A) showed a higher viscosity at 

the starting point (25 ºC) (see Figure 4.2.2b) than other samples, which may be 

attributed to the higher percentage of protein extracted out into solution during batter 

preparation.  During heating, all samples first showed a slow and steady increase in 

viscoelasticity. When heated to ~ 46 ºC, all treatments (with or without TGase and pea 

protein) exhibited a sharp increase in storage modulus (G′), likely due to protein 

aggregation (Xiong & Blanchard, 1994). For samples without TGase, the magnitude of 

G′, after reaching a maximum at ~ 48.5 ºC, decreased sharply to a minimum at 51 ~ 53.5 

ºC range, and then sharply increased throughout the rest of the whole heating process. 

The transitions were not as obvious, however, for TGase-treated samples, and thereafter 

the G′ increased at a steeper rate than the ones without TGase. During cooling, the G′ 

values continued to increase for all samples, indicating an elastic gel structure was being 

formed. 

The first transition at ~ 48.5 ºC was likely caused by denaturation and 

aggregation of myosin heads associated with the initial stages of helix-coil transition of 

the myosin molecule (Fernández et al., 1996). Egelandsdal et al. (1986) suggested that 

the G′ decrease was attributed to denaturation of light meromyosin, leading to increased 

filamental “fluidity”. The G′ increase thereafter probably resulted from formation of 

more permanent, irreversible myosin filaments or complex. The transition temperatures 

reported in the literature were slightly different than the present study due to different 

experimental conditions (e.g. batter composition, ionic strength, and pH).  

Samples containing 5% meat protein (treatment A) had a significantly higher 

peak G′ (~ 1002 Pa) at ~ 48 ºC than others. This may be due to the higher percentage of 

 88



myofibrillar protein content, mainly myosin. After reaching a minimum at ~ 53.5 ºC, G′ 

started rising again and reached ~ 1350 Pa at 80 ºC, and then ended at ~ 3560 Pa after 

cooling. Samples with 4% meat protein only (treatment B) exhibited an identical curve, 

but as expected the G′ was always lower because the protein content was lower. 

The maximum value of G′ at ~ 48.5 ºC was slightly lower for treatment C (4% 

meat protein + TGase) than for control B (meat only), possibly because TGase already 

started crosslinking proteins during heating so the structure became more compact and 

affected further gel network formation (Oakenfull et al., 1997). It is observed that the 

second increase of G′ for treatment C started at ~ 51 ºC versus ~ 53.5 ºC for control B, 

and the increasing slope was steeper, which means probably TGase helped produce 

more intramolecular crosslinks and these crosslinked proteins had a lower temperature 

requirement for producing an elastic structure (Ramírez-Suárez & Xiong, 2003a).  

Treatment D (4% meat protein + 1% pea protein) showed a substantially reduced 

G′ peak at ~ 48.5 ºC, and did not produce a stronger network than the meat treatment 

with 4% protein (control B) even though the total protein content was higher. Ramírez-

Suárez and Xiong (2002 and 2003b) reported similar findings with other nonmuscle 

additives. This indicates untreated exogenous proteins (pea protein in this case) had a 

detrimental effect on muscle protein gelation probably by interfering with protein-

protein interaction that is responsible for the formation of elastic structure (Ramírez-

Suárez & Xiong, 2003a).  

Rheograms obtained for treatment E and F (4% meat protein + 1% pea protein + 

TGase) basically followed the same pattern. The curves did not have a clear peak, 

instead they both showed a small shoulder at ~ 48 ºC and then increased sharply, ending 
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up with a much higher G′ value (~ 3000 Pa) at 80 ºC than other treatments (p < 0.05). 

After cooling, the G′ reached ~ 6,000 Pa, which is significantly higher than all others (p 

< 0.05).  It is possible that TGase catalyzed the crosslinking of meat and pea proteins, 

changed the gelling pattern during protein gelation and produced more elastic gels. Pre-

incubation of pea protein with TGase (treatment F) did not seem to produce a better 

result for protein gelation compared to treatment E because the G′ value was slightly 

lower at 80 ºC. The reason could be that pea proteins were already crosslinked during 

pre-incubation and could not interact with meat proteins as completely.  

Overall rheological changes revealed that TGase can improve gel strength of 

meat or meat-pea protein systems, pea protein alone could not improve gel strength, and 

combination of TGase and pea protein can produce the strongest gels under the current 

conditions. These results basically agreed with the findings obtained from TPA and 

torsion measurements. 

 

4.2.9 Summary of study 2 

 

Many efforts have been undertaken in an attempt to augment the inferior 

processing ability of the PSE meat. Transglutaminase (TGase) has been shown to 

improve textural characteristics of fish surimi and meat products through its ability to 

catalyze crosslinking of proteins. The purpose of the present study was to determine if 

the ability of TGase to crosslink proteins could improve textural properties of 

comminuted PSE turkey meat products. Pea protein isolate was found to be a useful 

extender to the meat system.  
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SDS-PAGE patterns showed that 0.5% TGase catalyzed the crosslinking of not 

only meat proteins but also pea proteins. Dynamic rheological analysis revealed TGase 

altered the gelation pattern of the meat proteins and produced more elastic meat gels. 

Non-muscle proteins generally have been found to be inferior to myofibrillar 

proteins for functionality in comminuted meat systems. This study indicated that 

substituting of the meat proteins with pea proteins resulted in meat gels which were less 

hard and elastic, and had poorer binding capacities, which means pea protein alone 

could not replace meat proteins in the formulation. Transglutaminase alone significantly 

improved meat gel texture but released more water as well. The reason could be the 

crosslinking function of transglutaminase made the meat matrix structure more compact, 

and expelled more water out of the system. The combination of TGase and pea protein 

eliminated the adverse effect of pea proteins on muscle protein gelation, produced a 

rigid mixed protein gel at a reduced myofibrillar protein concentration, and maintained a 

similar cook yield as in the un-substituted formulation. Hence, in comminuted muscle 

foods that contain low-cost functional ingredient such as pea proteins, transglutaminase 

may serve as an excellent agent for producing an adhesive mixed protein gel structure. 

Another significant finding of this study is that the crosslinking of meat proteins 

catalyzed by transglutaminase was shown to be an effective strategy to compensate for 

the inferior properties of PSE meat in comminuted meat systems, thereby improving the 

quality of finished products made from PSE meat. 
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5. GENERAL SUMMARY AND CONCLUSION 
 

 
The occurrence of the PSE condition in the pork industry has been documented 

for more than 50 years. With the increasing demand for poultry meat, PSE-like quality 

defects in poultry have also risen in recent years. Extensive research work has 

demonstrated that PSE development is the result of accelerated glycolysis post mortem 

triggered by preslaughter stress. It is generally believed that the rapid decline of pH in 

PSE muscle, combined with high carcass temperature within the first few hours after 

slaughter, causes the muscle proteins to denature (Fernández et al., 1994). Protein 

denaturation has a detrimental effect on protein functionality. Therefore not only will 

the fresh PSE meat have excessive drip loss, but more significantly, the PSE meat has 

lower value for further processing due to the poor binding properties (Cassens, 2000).  

More recently, Rathgeber et al. (1999b) found rapid postmortem glycolysis and 

delay chilling of turkey carcasses caused myosin degradation. Myofibrillar proteins (e.g. 

myosin) are important in determining water holding capacity of the myofilament lattice 

and subsequently play a critical role in protein gelation (Offer & Trinick, 1983). Results 

of the study by Rathgeber et al. (1999b) provided insight into the molecular basis for 

previously reported reductions in meat quality of rapid glycolyzing and delay chilled 

turkey meat.  

The present research evaluated the effects of protein modification on turkey 

breast meat gelation, especially on PSE meat gelation. 

 92



In study 1, different levels of α-chymotrypsin (EC: 3.4.21.1), a serine proteinase 

that has the ability to cleave meat proteins, were used to treat turkey breast meat, in the 

hope to create various degrees of protein degradation as in PSE meat.  

As expected, proteolysis of meat proteins with chymotrypsin addition had a 

significant impact on textural properties of the turkey meat gels. For instance, compared 

to the control (0 ppm chymotrypsin addition), TPA hardness and cohesiveness of meat 

gels decreased dramatically under increasing chymotrypsin addition (2.5, 5, and 10 

ppm) for both normal and PSE groups. Similarly, torsional gelometry revealed shear 

stress and shear strain also decreased significantly with increasing chymotrypsin 

addition. These results demonstrated chymotrypsin treatment (protein degradation) 

adversely affected textural properties of turkey meat gels. 

The SDS-PAGE protein profiles of the cooked meat gels revealed, with 

chymotrypsin treatment, both normal and PSE turkey meat exhibited various extents of 

proteolysis. Myofibrillar proteins such as myosin were among the most affected muscle 

proteins. The changes in rheograms further proved chymotrypsin-treated meat batters 

exhibited altered transition pattern during gelation and subsequently produced meat gels 

that were less elastic than untreated samples. Correlation analysis indicated that the 

amount of intact myosin heavy chain was highly correlated with meat gel textural 

properties and water-holding capacity, suggesting the completeness of muscle proteins 

such as MHC is important to gelation. 

In study 2, strategies to augment the inferior processing ability of the PSE meat 

were sought. Transglutaminase (TGase, EC 2.3.2.13), an enzyme that has been proven 

to have the ability to crosslink various food proteins, was used to improve the poor 
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binding ability during PSE meat gelation. Meanwhile, pea protein was also added into 

the formulation to improve textural properties and water holding capacity of meat 

products.  

This study showed TGase crosslinked not only meat proteins but also pea 

proteins. SDS-PAGE patterns revealed some large proteins, such as myosin heavy chain 

from meat protein and lypoxygenase from pea protein, were crosslinked by TGase and 

became insoluble in the extraction solution.  Dynamic rheological analysis revealed 

TGase altered meat protein gelation pattern and produced more elastic meat gels. 

Texture analysis suggested TGase alone significantly improved meat gel texture but 

released more water as well. The reason could be that the crosslinking of proteins 

catalyzed by transglutaminase made the meat matrix structure more compact, and 

expelled more water out of the system. The combination of TGase and pea protein 

produced a rigid mixed protein gel at a reduced myofibrillar protein concentration, and 

maintained a similar cook yield as in the unsubstituted formulation. Hence, in 

comminuted muscle foods that contain low-cost functional ingredient such as pea 

proteins, transglutaminase may serve as an excellent agent for producing an adhesive 

mixed protein gel structure.  

As a conclusion, this study suggested protein degradation is closely associated 

with the inferior processing ability occurred in PSE meat. This study indicated that 

crosslinking of proteins catalyzed by TGase improved the functionality of PSE meat and 

improved textural properties of turkey breast meat gels with reduced meat protein 

content. The combination of pea protein and TGase not only produced the strongest gel 

texture but also prevented high cook loss resulting by TGase addition alone. 
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Although textural properties of PSE meat products have been improved through 

protein modification in this study, the water holding capacity has not seen much 

improvement. Further research could be focused on exploring the strategies to improve 

water holding capacity of processed PSE meats. 
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	Turkey Breast Meat Gels 
	There have been numerous studies on PSE development in pork during the past five decades as reviewed by Cassens (2000). More recently, PSE in poultry has also been studied (Barbut, 1997; Sams & Janky, 1991). It is now known that PSE is not a muscle disease but rather a quality defect. PSE meat exhibits inferior quality characteristics in fresh, cooked, and further processed products. This literature review provides a basic introduction to muscle proteins, the development of PSE, and the mechanism of meat protein gelation. The principles of some texture-related measurements used in this project are also reviewed briefly.   
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	3. MATERIALS AND METHODS 
	3.1 Chemicals  
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	Ground breast meat from each bird was analyzed for proximate chemical composition according to AOAC methods (AOAC, 1990). Namely, moisture was determined by measuring weight loss after drying in a 105 °C oven for 16-18 h (AOAC 950.46, 1990), protein content was determined using the Kjeldahl method (AOAC 981.10, 1990), and crude fat was determined using petroleum ether as the solvent (AOAC 960.39, 1990). Protein content of pea protein isolate (PPI) was also measured by the Kjeldahl method. The nitrogen-to-protein conversion factor was 6.25. All samples were analyzed in duplicate. 
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	4.1.1 Classification of Normal and PSE Meat 
	After animal death, the metabolism shifts from aerobic to anaerobic respiration in muscle tissues due to the unavailability of oxygen carried by blood circulation. The transformation of muscle to meat is a complex process during which meat quality is affected. Due to the rapid glycolysis rate, PSE muscle exhibits different characteristic changes in pH decline rate, colour, and drip loss, which can be used to identify PSE from normal meat (Warner et al., 1997). 
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	Expressible moisture of meat gels prepared from PSE meat was significantly higher (p < 0.05) than that from normal meat for the control treatment (without enzyme addition), which indicated that gels made from normal meat had greater ability to hold water than PSE meat. Camou and Sebranek (1991) reported similar findings in PSE pork gels, but Rathgeber et al. (1999a) found no difference between normal and PSE turkey breast meat gels in terms of expressible moisture. This difference, however, became insignificant upon enzyme addition at 2.5 to 10 ppm (Table 4.1.3). For both normal and PSE meat gels, there was a general trend that expressible moisture increased with enzyme addition, which indicated water was less tightly retained in enzyme-treated protein gels. At 10 ppm level, the values were significantly higher (p < 0.05) than the other three levels for both groups. According to Schmidt et al. (1981), a meat gel is a “three-dimensional interlinked protein network”. This protein network both physically (due to capillarity) and chemically (such as hydrogen bonds and disulfide bonds) stabilizes water (Schmidt et al., 1981). In this experiment, it was observed that the gels made from chymotrypsin-treated meat tend to have more visible pores on the surface of the gels compared to the untreated samples. It is possible that chymotrypsin cleaved meat proteins (e.g. myosin and actin) to smaller peptides and hence fewer crosslinkings were formed within the protein network. This then resulted in a more open (larger pore size) and less tightly restrained matrix to retain water. Even though there was no difference in cook loss, under certain external force, the less tightly restrained water was expelled out of the protein matrix, as was observed for expressible moisture.  
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