

Group 2 resistant Cleavers Control in Peas

Ken Sapsford PAg

Dept. Plant Sciences, University of Saskatchewan

Background

- imidazolinone herbicides (Group 2) most widely used broadleaf weed control herbicides in peas
- Cleavers (Galium spurium) and possibly (Galium aparine) have evolved resistance to Group 2 herbicides
- Cleavers have increased in ranking from the 43rd most abundant weed in the 1970's to the 9th most abundant weed in 2000's.
 ("Prairie Weed Survey 1970's to the 2000's" Leeson et.al 2005)
- Research trials have been conducted at a number of locations across Saskatchewan to evaluate herbicides with alternative modes of actions to control cleavers in field peas.

Top 10 weeds in the Prairies

- Wild oat*
- Green foxtail*
- Wild buckwheat*
- Canada thistle
- Lamb's-quarters

- Chickweed*
- Stinkweed*
- Redroot pigweed*
- Cleavers*
- Kochia*

*Known resistant populations

Over Winter Cleavers

Size of Cleavers at application

Winter annual Cleaver Control

Group 2 Resistant Cleavers

k.ca

Group 2 Resistant Cleavers Control in Peas

- Sulfentrazone (Authority)
 - Registered in field pea, chickpea, flax, sunflower. Lentils are sensitive.
 - Effective on kochia, wild buckwheat, lambsquarters, redroot pigweed
 - Investigating efficacy on cleavers

Sulfentrazone for cleavers control, 2010-11

Sulfentrazone for cleavers control, Melfort

Cleavers Control with Pre-emerg Treatments

Cleavers Control with Post-emerg Treatments

Post-emergent Clomazone

Pre-emergent Clomazone

www.usask.ca

Results & Conclusions:

- Sulfentrazone (Authority®), will control Group 2-resistant cleavers on soil with less than 6% organic matter. FMC is applying for registration
- Control has been variable on soils with higher organic matter levels (black soil zone).
- Pre-emerge products saflufenicil (Heat®) and clomazone (Command®) and post-emerge product imazamox plus bentazon (Viper®) all had some activity on cleavers but none provided control of cleavers.
- Post-emergent clomazone injured cleavers, but caused too much injury to the peas.

Future work

 Investigate sequential applications or combinations of these products to provide control of cleavers in the black soil zone.

Controlling Cleavers in Cereals

- Two main products added to herbicide mixes for cleavers control:
 - Fluroxypyr
 - Dicamba
- Low rates of fluroxypyr and dicamba used in mixes to control Group 2 resistant kochia will not control cleavers

Kochia control in Cereals

Product in mix to control Kochia

Predicting weeds at risk for glyphosate resistance

- Currently 23 glyphosate-resistant weed species worldwide, but only three in Canada – giant ragweed and Canada fleabane in Ontario and kochia in Western Canada
- In the Grassland region, the top three weeds predicted at greatest potential risk of glyphosate resistance are **kochia**, **wild oat**, then **green foxtail**
- In the Parkland region the top three species are, wild oat, green foxtail, and cleavers

GR kochia in southern Alberta: 10 locations South West Saskatchewan: 3 locations

http://www.weedtool.com

- Objectives:
- (1) tool for producers to assess their risk of glyphosate resistance on a field-by-field basis;
- (2) raise awareness for proactive resistance management in western Canada
- Producer answers 10 questions related to crop production system, tillage system, and glyphosate usage (each question with four possible answers)
- Tool indicates relative risk of glyphosate resistance based on the 10 responses

Resistant management

- Strong statistical association between weed resistance and lack of crop rotation diversity
- Recent study indicates 3 or more crop types
 significantly reduce the risk of weed resistance
 vs. 2 or fewer crop types

10 Ways Australian Farmers can fight Herbicide Resistance

- 1. Act now to stop weed seed set
- 2. Capture weed seeds at harvest
- Rotate crops and herbicide mode of action
- Test for resistance
- 5. Aim for 100% control and monitor every spray event
- 6. Don't automatically reach for glyphosate
- 7. Never cut on-label herbicide rate
- Plant clean seed into clean fields
- 9. Use the double knock technique
- 10. Employ crop competitiveness to combat weeds

Harvest Weed Seed Control

Harrington Seed Destructor

Herbicide Resistant Strategies

- IPM Integrated Pest Management
 - Include Crop rotation
 - Herbicide Mixes with multiple modes of action
 - Tillage may have a place?
- Specific Weeds of concern:
 - Wild oat Group 1 and 2 resistance
 - Cleavers Group 2 resistance
 - Chickweed Group 2 resistance
 - Kochia Group 2 and 9 resistance
- Few or No New modes of action in the pipeline

Funding supplied by

and Pulse Cluster

Agriculture and Agriculture et
Agri-Food Canada Agroalimentaire Canada

Thank you for the technical support from: Gerry Stuber, Ryan Regush, Herb Schell, Cindy Gampe and Scott Sherriff

