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ABSTRACT 

Although understanding causation is an essential part of nearly every problem 

domain, it has resisted formal treatment in the languages of logic, probability, and even 

statistics. Autonomous artificially intelligent agents need to be able to reason about 

cause and effect. One approach is to provide the agent with formal, computational 

notions of causality that enable the agent to deduce cause and effect relationships from 

observations. During the 1990s, formal notions of causality were pursued within the AI 

community by many researchers, notably by Judea Pearl. Pearl developed the formal 

language of structural models for reasoning about causation. Among the problems he 

addressed in this formalism was a problem common to both AI and law, the attribution 

of causal responsibility or actual causation. Pearl and then Halpern and Pearl 

developed formal definitions of actual causation in the language of structural models. 

Within the law, the traditional test for attributing causal responsibility is the 

counterfactual "but-for" test, which asks whether, but for the defendant's wrongful act, 

the injury complained of would have occurred. This definition conforms to common 

intuitions regarding causation in most cases, but gives non-intuitive results in more 

complex situations where two or more potential causes are present. To handle such 

situations, Richard Wright defined the NESS Test. Pearl claims that the structural 

language is an appropriate language to capture the intuitions that motivate the NESS 

test. While Pearl's structural language is adequate to formalize the NESS test, a recent 

result of Hopkins and Pearl shows that the Halpern and Pearl definition fails to do so, 

and this thesis develops an alternative structural definition to formalize the NESS test.  
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1. Introduction 

As Ashley (1990, p. 2) writes, 

The legal domain [is] an interesting one from the viewpoint of AI 
research. The legal domain is midway between logical or mathematical 
domains that are amenable to computer science techniques and the 
domains of commonsense reasoning and ordinary discourse that AI so 
wishes to tackle. Studying how knowledge is structured in this 
intermediately formalized field may lead to useful insights. 

Causation is an important and difficult concept for both law and AI. For example, 

formalizing commonsense reasoning has been a part of the programme of AI from its 

beginning (see McCarthy, 1990) and causal knowledge plays a central role in 

commonsense reasoning about action and change. Causation is important for intelligent, 

autonomous agents who reason about the effects of their actions or generate 

explanations for events occurring in their environment (see e.g. Pearl, 1994; Halpern and 

Pearl, 2000). Ortiz (1999) characterizes problems facing agents whose solution involves 

causality as ones of prediction, planning, diagnosis, induction, and what he calls the 

problem of causal attribution; that is, given an agent’s representation of the state of the 

(its) world, the agent’s causal (law-like) and non-causal (definitional and constraint) 

knowledge about the world, and the description of separate events, determining what, if 

any, causal connection exists between those events. This is just the problem faced by a 

group of human agents, a jury, in deciding whether liability (guilt) attaches to a 

defendant in a legal case. 

1.1 Actual Causation in Law—The “But-For” Test 
In law the issue of causation is complex and controversial (see e.g. Hart and Honore, 

1985; Honore, 2001). A significant aspect of the issue concerns the nature of the 

relationship that must be established between a defendant’s (legally) wrongful act or 

failure to act and the harm complained of by the plaintiff (in a civil case) or the Crown 
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(in a criminal case). According to traditional theories of corrective justice, for a 

defendant to be held liable for his wrongful conduct that conduct must have contributed 

to the injury complained of, that is, it must have been a cause-in-fact or actual cause of 

the harm.  

The generally accepted test for determining actual causation is a counterfactual 

necessity test, the “but-for” test. If the specified injury would not have occurred but-for 

the defendant’s wrongful conduct then actual causation is established. The but-for test 

assumes that it is somehow possible to remove the defendant’s wrongful conduct from 

the scenario describing the occurrence of the injury and determining whether the injury 

would have still occurred. As far as the courts are concerned, the performance of this test 

requires no special skills or knowledge and is therefore assigned to the trier of fact (the 

jury in a jury trial, otherwise the presiding judge). However, the test is not 

comprehensive. It fails in circumstances where the scenario describing the injury 

includes other potential causes that would have brought about the specified injury in the 

absence of the defendant’s wrongful conduct. These are known as cases of 

overdetermined causation. 

Wright (1975, pp. 1775-76) partitions cases of overdetermined causation into 

preemptive causation and duplicative causation cases. In preemptive causation cases, the 

effect of other potential causes is preempted by the effect of the defendant’s wrongful 

act. For example, the defendant stabs and kills the victim before a fatal dose of poison 

previously administered by a third party can take effect. In duplicative causation cases, 

the effect of the defendant’s act combines with, or duplicates, the effect of other 

potential causes where the latter were alone sufficient to bring about the injury. For 

example, the defendant and another party start separate fires that combine to burn down 

the victim’s house where each fire was independently sufficient to do so. Since in these 

cases it is not true that but for the defendant’s wrongful act the specified harm would not 

have occurred, according to the but- for test, in neither scenario is the defendant’s 

conduct an actual cause of the injury. Such a result is contrary to intuitions about 

responsibility and, by implication, about causality. Clearly, in both scenarios, the 

defendant’s act contributed to the injury. 
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To avoid these counterintuitive and unjust conclusions courts have, among a 

number of often ad hoc conceptual devices, generally relied on a substantial factor or 

material contribution test (see Wright, 1985, pp. 1777-84; Robertson, 1997, pp. 1775 

ff.).1 This test requires that the defendant’s act must have been a substantial factor or 

materially contributed to the injury complained of. As Wright (1985, p. 1782) points out, 

this provides no test of causation but merely confounds the factual issue of whether the 

defendant’s act was an actual cause of (was a factor in or contributed to) the specified 

injury and the legal issue of whether it was (material or substantial) enough of a factor 

for liability (legal responsibility) to attach. 

1.2 The NESS Test 
In an influential paper (Wright, 1985), Wright proposes what he describes as a 

comprehensive test for actual causation, the NESS (Necessary E lement of a Sufficient 

Set) test: “a particular condition was a cause of (condition contributing to) a specific 

consequence if and only if it was a necessary element of a set of antecedent actual 

conditions that was sufficient for the occurrence of the consequence” (Wright, 1985, p. 

1790).2 Wright (1988, p. 1018) adopts the view that there is an intelligible, determinate 

concept of actual causation underlying and explaining common intuitions and 

judgements about causality and that this concept explains the “intuitively plausible 

factual causal determinations” of judges and juries when “not confined by incorrect tests 

or formulas.” Wright (1985, p. 1902) contends that, not only does the NESS test capture 

                                                                 
1 In the case of Athey v. Leonati, [1996] 3 S.C.R. 458, the Supreme Court of Canada 
(per Major J.) confirmed these duo test s: 

The general, but not conclusive, test for causation is the "but for" test, which 
requires the plaintiff to show that the injury would not have occurred but for the 
negligence of the defendant.... 
The "but for" test is unworkable in some circumstances, so the courts have 
recognized that causation is established where the defendant's negligence 
"materially contributed" to the occurrence of the injury. 

2 Wright’s motivation is his concern that the absence of a comprehensive, workable 
definition of actual causation is exploited by certain “fashionable” jurisprudential camps 
(Libertarians, Legal Critics, Legal Economists, and Legal Realists) to undermine what 
Wright regards as the traditional moral basis of tort law, “a system of corrective justice 
based on individual autonomy and individual responsibility” (Wright, 1988, p. 1004). 
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the common-sense concept underlying these common intuitions and judgements, the 

NESS test defines the concept of actual causation. 

Pearl (2000, pp. 313-15) claims that while the intuitions underlying the NESS test 

are correct the test itself is inadequate to capture these intuitions. He argues that the 

NESS test relies on the logical language of necessity and sufficiency and that traditional 

logic is incapable of capturing causal concepts. Pearl (Pearl, 1995; Galles and Pearl, 

1997; Galles and Pearl, 1998; Pearl, 2000) proposes a mathematical language of 

(graphical) causal models employing structural equations for formalizing counterfactual 

and causal concepts. Pearl (1998; 2000, Chap. 10) first applies this structural language to 

define actual causation using a complex construction called a causal beam . (Halpern and 

Pearl, 2000) develops a “more transparent” definition, still using the language of 

structural models. 

1.3  Thesis Statement 
This thesis will investigate whether the definition of actual causation of Halpern and 

Pearl captures the meaning of Wright's NESS test and more generally whether the 

structural language developed by Pearl is adequate to formalize the NESS test. The 

thesis is: The Halpern and Pearl definition of actual causation fails to capture the 

meaning of the NESS test in the structural language of causal models. However, the 

alternative definition developed in this research does formalize the essential meaning of 

the NESS test in the structural language. 

1.4 Thesis Overview 
Chapter 2 presents and investigates the meaning of Wright’s NESS test as a preliminary 

to investigating whether the Halpern and Pearl definition formalizes that meaning. 

Chapter 3 introduces Pearl's structural language and the Halpern and Pearl definition, 

and discusses the implications of a recent result of Hopkins and Pearl (2003) for the 

Halpern and Pearl definition. Chapter 4 develops an alternative structural definition of 

actual causation and counters arguments raised by Hopkins and Pearl against the 

possibility of defining actual causation in the structural language. Chapter 5 concludes 

the thesis with an investigation of the relation between the new definition of actual 

causation developed in this research and the NESS test. 
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2. The Origin And Meaning Of The Ness Test 

As a necessary preliminary to exploring the possibility of a structural language 

formalization of the NESS test, this chapter explores the meaning of the NESS test by 

considering its origins, as described by Wright, and the meaning of its key concepts both 

through Wright’s explanations and by comparison with other approaches, in particular, 

Mackie’s concept of an “INUS condition” which is often identified with the NESS test. 

The chapter is organized as follows: Section 2.1 outlines Wright’s explanation of the 

origins of the NESS test. Section 2.2 compares the NESS test to the legally accepted test 

for actua l causation, the counterfactual “but-for” test. Finally, Section 2.3 then considers 

the meaning that Wright attaches to the concepts that define the NESS test and problems 

inherent in his approach. 

2.1 Wright on the Origins of NESS 
According to Wright (1985, pp. 1789-91; 1988, pp. 1019-20; 2001, p. 1102), the 

NESS test is entailed by (what he describes as) the dominant regularity account of the 

meaning of general causation of Hume as modified by Mill. Mill argues that typically 

causation is a relation between a complex of multiple antecedent conditions and the 

consequent effect. An explosion that destroys a home might be explained as having been 

caused by the lighting of a match but the lighting of matches does not invariably result 

in explosions. However, if the presence of oxygen, the presence of a gas leak, and a 

certain concentration of gas (along with doubtless numerous other conditions) are added 

to the set of conditions then, on the regularity theory of causality, an explosion 

invariably follows. Wright (1985, p. 1790) interprets Hume as believing that in cases of 

causal regularity the effect not only inevitably occurs upon the occurrence of the cause, 

the effect only occurs upon that cause, “that a certain consequence is always produced 

by the same cause—that is, that there is a unique sufficient set of antecedent conditions 

that always must be present to produce a particular consequence.” This is equivalent to 
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saying that a cause is both sufficient and necessary for its effect. Mill believes that for 

any given effect there are potentially many causes (the “plurality-of-potential-causes 

theory”; Wright 1985, p. 1790). The explosion of the house might have been caused, for 

example, in conjunction with the numerous other conditions, by the lighting of a match 

or by an electrostatic spark. Thus a particular effect may have been caused by one of 

several distinct but equally sufficient sets of conditions. 

Wright attributes to Hart and Honore (1985, pp. 112-113) the idea of a 

contributing condition or causally relevant factor for some effect as any member 

necessary for the sufficiency of the jointly sufficient set of conditions for the effect 

(required by the regularity theory as modified by Mill), and thus attributes to Hart and 

Honore the origin of the NESS test (Wright 1988, p. 109): 

A particular condition was a cause of (contributed to) a specific result if 
and only if it was a necessary element of a set of antecedent actual 
conditions that was sufficient for the occurrence of the result. 

For example, if the lighting of a match (and not an electrostatic spark) was a cause of the 

house explosion then the lighting of the match was a necessary member of the jointly 

sufficient set of actual (or realized) conditions that together caused that explosion; the 

jointly sufficient set of conditions of which an electrostatic spark is a member did not 

occur in the actual situation.  

2.2 The NESS Test vs. the “but-for” Test 
In circumstances where there is only one actual or potential set of conditions sufficient 

for the occurrence of the result, the NESS test reduces to the but-for test (Wright 1985, 

p. 1792; Wright 1988, p. 1021). While the but-for test is a necessity test, the NESS test 

subordinates necessity to sufficiency: necessity is in issue relative to an identified 

actually sufficient set of conditions (Wright 1988, p. 1019). Because of this, the NESS 

test can deal with those cases, involving multiple potential sets of sufficient conditions 

(overdetermination cases), where the but- for test failed (Wright 1988, p. 1021): 

A condition was a cause under the NESS test if it was necessary in the 
circumstances for the sufficiency of any actually sufficient set, even if, 
due to other actually or hypothetically sufficient sets, it was not—as 
required by the but-for test—necessary in the circumstances for the result. 
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(Another actually sufficient set would be present in a case of duplicative causation; a 

hypothetically or potentially sufficient set would be present in a case of preemptive 

causation—see Section 1.2.)  

Wright (1988, p. 1020) argues that the choice of tests for actual causation should 

be governed by how well a test corresponds with common intuitions about the concept. 

To illustrate that the NESS test matches common intuitions where the but- for test fails 

he considers three variations of a two-fire scenario: fire X and fire Y are independently 

sufficient to destroy house H if they reach it and they are the only potential causes of 

house H’s destruction so that if neither reach the house it will not be destroyed. In the 

first variation, fire X reaches and destroys house H and fire Y would not have reached 

house H even if fire X were absent. The common intuition here is that fire X was a cause 

of the destruction of house H but not fire Y. In this case there is a single actually 

sufficient set of conditions and no other even potentially sufficient set of conditions. 

(This assumes that actually sufficient sets of conditions are minimal; that is, every 

element of the set is necessary for the sufficiency of the set.) Fire X was a necessary 

element (necessary for the sufficiency) of that single, actually sufficient set, a NESS 

condition. It was also a but-for condition. 

In the second variation, fire X and fire Y reach house H simultaneously and 

destroy it together. Here Wright claims that the common intuition is that both 

(individually) fire X and fire Y were causes of the destruction of the house. There are two 

overlapping sets of actually sufficient conditions.3 Fire X is necessary for the sufficiency 

of the set including itself but not fire Y and fire Y is necessary for the sufficiency of the 

set including itself buy not fire X. Neither fire X  nor fire Y is a but-for cause of the 

destruction of house H but each is a duplicative NESS cause of the destruction.  

In the final variation, fire X reaches and destroys house H before fire Y can arrive 

and, if fire X had been absent, fire Y would have destroyed house H. Here intuition 
                                                                 
3 Actually, there are at least three actually sufficient sets since the set including fire X 
would not cease to be sufficient by the addition of fire Y. That addition would result in  
neither fire X nor fire Y being necessary for the sufficiency of the set containing both. 
The problem is easily avoided by requiring that actually sufficient sets be minimal. 
However, the NESS test requires only that a cause (or contributing factor) be a necessary 
element of some, not every, actually sufficient set.  
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suggests that it is fire X that caused the destruction of house H and fire Y did not. Fire Y 

is not a NESS condition for the destruction of house H since any actually sufficient set 

of conditions, given the assumptions of the scenario, must include fire X and fire Y is not 

necessary for the sufficiency of any set of conditions that includes fire X. Fire X, on the 

other hand, is necessary for the sufficiency of the actually sufficient set of which it is a 

member. Because the set containing fire Y but not fire X would have been sufficient in 

the absence of fire X, fire X is not a but- for cause of the destruction of house H. Fire X 

was a preemtpive NESS cause because it preempted the actual sufficiency of the 

potentially sufficient set including fire Y. 

2.3 The Meaning of NESS 
Before considering whether and how the NESS test can be defined in the structural 

language and whether, in particular, the Halpern-Pearl definition of actual causation 

formalizes the NESS test it is necessary to attempt to understand the meaning Wright 

attaches to the key concepts of the test, the meaning of “necessary,” “sufficiency,” and 

“actually sufficient” in “necessary for the sufficiency of an actually sufficient set.” 

2.3.1 Necessary and Sufficient Conditions  
Necessary and sufficient conditions are usually understood in terms of conditional 

statements. Conditional statements have the form “If A then B,” meaning that if A  is true 

(is the case, occurs, obtains) then B is true. A is called the antecedent and B is called the 

consequent. In traditional propositional logic, if-then statements are material 

conditionals and they mean that it is never the case that A is true and B is false. A true 

material conditional defines sufficiency and necessity relations between A and B: A is 

sufficient for B since whenever A is the case, B must be the case. (Since B can be true 

and A false, B is not sufficient for A). B is necessary for A since if B is not the case then 

A cannot be the case. (Since A can be false while B is true, A is not necessary for B). 

Material necessity and sufficiency are exceedingly weak. Material conditionals 

operate on truth values and can be true when there is no connection (or, at least, no 

obvious connection) between the antecedent and consequent. For example, “If the 

United States is over 200 years old then the capital city of Canada is north of the capital 

city of Mexico” is a true material conditional. Worse, a false antecedent is materially 
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sufficient for any consequent and a true consequent is materially necessary for any 

antecedent. Material necessity and sufficiency, while they correctly handle relationships 

between truth values, have therefore not been thought serious candidates for explicating 

causal claims. 

2.3.2 Counterfactuals 
Counterfactual conditionals have played an important part in the analysis of causation. 

Counterfactual conditionals are a type of subjunctive conditional, conditionals that state 

what would happen (what the consequent would be) given a hypothetical (or modal) 

antecedent—if A were the case then B would be the case. Subjunctives in the past tense 

that imply that the antecedent is false are known as counterfactuals. For examp le, “If the 

fire had not been started, the house would not have been destroyed” or “But for the fire 

being started, the house would not have been destroyed.” The but- for test is a 

counterfactual necessity test. 

However, the meaning of counterfactuals themselves is disputed. Hume seems to 

identify his regularity theory of causation with a counterfactual definition: 

An object followed by another, and where all the objects, similar to the 
first, are followed by objects similar to the second. Or, in other words, 
where, if the first object had not been, the second never had existed. 
(Hume An Enquiry Concerning Human Understanding, Section VII, Part 
II, quoted in (Mackie 1974, p. 30)) 

This position is generally rejected. Not only is it inconsistent with Mill’s doctrine of the 

plurality of causes (above), identifying regularities is an observational task while 

applying counterfactuals is mental task (see Pearl 2000, p. 232). Indeed, many 

empiricists argue that counterfactuals are meaningless or indeterminate because they 

cannot be verified given that they refer to unactualized possibilities (see e.g. Dawid 

2000; Menzies 2001). 

2.3.3 Possible-Worlds Semantics for Counterfactuals 
The best-known theory of counterfactuals is that of Lewis (1993). Lewis' theory is based 

on the concept of similarity among possible worlds and relies on the primitive relation of 

comparative similarity, a (weak) ordering of worlds in which one world is closer to 

actuality than another if the first resembles our world (the actual world) more than the 
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second does, and our actual world is closest to actuality. Lewis defines a counterfactual 

operator “W→ ” so that AW→ B (read "if A had been the case then B would have been 

the case") is true just in case A is true in all of the closest possible worlds where B is true 

(B-worlds). According to this account, the counterfactual “If A were not the case, then B 

would not be the case” is true in the actual world when the closest non-A worlds are non-

B-worlds. This is the sense in which A is necessary for B. A would be sufficient for B if 

the closest A-worlds were B-worlds. 

2.3.4 Mackie’s “Nomic-Inferential” Model and the INUS Condition 
Wright (1985, p. 1806; 1988, pp. 1041-42) rejects the idea that the causal enquiry 

involves attempting to construct counterfactual possible worlds. Wright describes the 

causal enquiry as an attempt “to determine which causal generalizations have been 

instantiated in the actual world by the conditions that occurred on the particular 

occasion” (Wright, 1988, p. 1042). In this respect Wright’s approach to counterfactuals 

is most similar to that of Mackie (1993), the latter of which is dubbed the nomic-

inferential model by Kim (1993). 

Mackie (1974) follows Hume in distinguishing between our concept of causation 

(the concept supposedly underlying common causal intuitions or judgements) and 

causation in the objects by which he means relations in the objects that might justify or 

explain our concept. Mackie (1974, p. 57) argues that our concept of causation is 

inherently counterfactual: 

The key item is a picture of what would have happened if things had been 
otherwise, and this is borrowed from some experience where things were 
otherwise. It is a contrast case rather than the repetition of like instances 
that contributes most to our primitive concept of causation. 

According to Mackie (1974, p. 31 ff.), our counterfactual thinking occurs relative 

to a background of circumstances, which is why, for example, we can say that when a 

struck match alights, a flame would not have occurred if the match had not been struck 

when we know it would have occurred if the match was touched by a red-hot poker. X is 

necessary for Y when X and Y are distinct, X and Y both occur, and, in the circumstances, 

if X had not occurred, t hen Y would not have occurred. X is weakly sufficient for Y when, 
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in the circumstances, if X occurs Y occurs. X is strongly sufficient for Y when, in the 

circumstances, if Y had not been going to occur, X would not have occurred.  

Mackie (1974, pp. 53-54) argues that contrary-to-fact conditionals (or 

counterfactuals)—conditionals whose antecedent is “unfulfilled”—cannot be true or 

false. Counterfactuals are disguised arguments that rely for their validity on universal 

laws. For example, “If the match had not been struck the flame would not have 

appeared” represents the argument “The match was not struck so the flame did not 

appear” with an unstated premise to the effect matches never alight in such and such 

circumstances. This disguised-argument theory is what Kim calls the nomic- inferential 

model. 

Mackie believes that, while strong sufficiency plays a part in our concept of 

causation—so that generally we will recognize X as a cause of Y if X is strongly 

sufficient for Y4—our concept requires only that X was necessary for Y. In other words, 

he accepts that the but- for test is consistent with our concept of actual causation. In 

support of this position he posits an indeterministic chocolate-bar-dispensing machine, 

M, which invariably dispenses a bar on insertion of an appropriate coin (an English 

shilling) but sometimes, indeterministically, does so without the insertion of any coin. 

By the definition of M, the insertion of a coin is not necessary for the production of a bar 

but, since in any circumstances the insertion of a coin in M produces a chocolate bar, is 

weakly sufficient for that result. Also, by definition of M, if a bar was not going to be 

produced, the insertion of a coin could not have been going to occur: the insertion of a 

coin (a shilling, of course) is strongly sufficient for the production of a bar. Because of 

the indeterministic nature of M, we cannot know on any particular occasion when a coin 

is inserted and the bar produced whether it would have happened even if the coin were 

not inserted. However, according to Mackie (1974, pp. 42-43), 

It is just this question that we need to have answered before we can say 
whether the insertion of the shilling caused the result. If the chocolate 
would not have come out if the shilling had not been put in, then the 

                                                                 
4 Note, however, if X  is strongly sufficient for Y then Y is necessary for X in 
circumstances in which they both occur suggesting that if X  is a cause of Y then Y is a 
cause of X. Mackie (1974, p. 51) gets around this arguing that our concept of causation 
also includes the relation of causal priority. 
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insertion of the shilling caused the result. But if it would have come out 
anyway, the insertion of the shilling did not cause this. (This last ruling 
prejudges a question about causal over-determination that has still to be 
considered; but we shall reach an answer to this question which agrees 
with the present ruling. 5) And, consequently, if it is in principle 
undecidable whether the chocolate would on this particular occasion have 
come out if the shilling had not been put in, it is equally undecidable 
whether the putting in of the shilling caused the appearance of the 
chocolate. 

Machine M is contrasted with a second hypothesized, inderministic chocolate-

bar-dispensing machine, L, which only dispenses a bar when an appropriate coin (a 

shilling) is inserted but sometimes, indeterministically, does not. In any case where 

candy is produced, the insertion of the coin was necessary and weakly sufficient but not 

strongly sufficient. The bar not being produced does not mean a coin could not have 

been inserted. Mackie argues that, nevertheless, our ordinary causal concepts require us 

to agree that inserting the coin causes the bar to be produced when it is produced, even 

though sometimes it fails to cause it to happen. Contrasting machines L and M, he 

concludes that X caused Y requires that, in the circumstances, X was necessary for Y and 

(trivially) weakly sufficient for Y, but not strongly sufficient for Y. 

When Mackie turns from describing what he believes to be our ordinary concept 

of causation to causatio n “as it really exists in the objects” (Mackie, 1974, p. 59) he 

develops the concept of a cause as an INUS condition (Mackie, 1974, pp. 61-62): an 

insufficient but non-redundant part of an unnecessary but sufficient condition. Like the 

NESS test, Mackie’s concept of an INUS condition is based on the regularity theory of 

general causation as modified by Mill’s doctrine of the plurality of causes (Mackie 1974, 

pp. 61-62). According to Mackie, a causal regularity would have the form “All ABC6 are 

followed by P” where A, B, C, and P are generalized types of events rather than specific 

                                                                 
5Mackie deals with preemptive causation by arguing that our concept of causation 
requires that a cause be necessary for a result “as it came about” (Mackie, 1974, p. 46) 
and deals with duplicative causation by claiming that none of the duplicate causes are 
causes in themselves, but the aggregate of the duplicate causes satisfies the but- for test 
(Mackie, 1974, p. 47). Wright (1985, p. 1777; 1988, p. 1025) dismisses the first 
argument as proof by tautology and claims (Wright, 1985, p. 1777; 1988 p. 1027) the 
second argument allows irrelevant factors to be treated as causes. 
6 This is a conjunction of events CBA ∧∧ . 
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occurrences. If also “All DGH are followed by P” and “All JKL are followed by P” and 

ABC , DGH, and JKL are the only minimal sets of conditions that produce P—that is, 

assuming that a given event has a finitely-many distinct sets of conditions that produce 

it—and if P occurs only when one of ABC, DGH, and JKL occur—that is, every event 

has some set of conditions that produces it (every event has a cause)—then the 

disjunction of conjunctions )( JKLDGHABC ∨∨  is a necessary and sufficient condition 

for P. Respecting ABC, for example, 

ABC is a minimal sufficient condition: none of its conjuncts is redundant: 
no part of it, such as AB, is itself sufficient for P. But each single factor, 
such as A, is neither a necessary nor a sufficient condition for P. Yet it is 
clearly related to P in an important way: it is an insufficient but non-
redundant part of an unnecessary but sufficient condition (Mackie, 1974, 
p. 62). 

As Kim (1993) summarizes, Mackie’s position is that 

Singular causal assertions are explained in terms of the notion of “at least 
an INUS condition”; a cause of an event is at least an INUS condition of 
it. The notion of INUS condition in turn is explained on the basis of 
“necessary condition” and “sufficient condition”, and these are analysed 
in terms of counterfactual conditionals. Finally, counterfactuals are 
explained on the nomic- inferential model. It is at this point that laws and 
regularities enter into singular causal judgements; according to Mackie, 
his analysis can be characterized as form of regularity theory of 
causation. 

2.3.5 NESS vs. INUS 
According to Wright (1988, p. 1041), 

The only question in the causal inquiry is whether the condition being 
tested was necessary on the particular occasion for the sufficiency of a set 
of actual antecedent conditions that was sufficient for the occurrence of 
the result—as required by the NESS test. There is an obvious, 
straightforward way to resolve this question. We hypothetically eliminate 
only the condition being tested…from the sufficient set of actual 
conditions. Then without adding or subtracting any other conditions, we 
determine—by matching the remaining conditions in the set against the 
applicable causal generalization—whether the set still would be sufficient 
for the occurrence of the result. 

Wright  (1985, 1988, and 2001) describes a causal law as an “if-then” statement the 

antecedent of which lists together “all of the conditions that are together sufficient for 
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the occurrence of the consequent” (2001, p. 1102). Causal generalizations are 

“incompletely specified causal laws that list only some of the NESS conditions along 

with the result, but nevertheless assert that the listed NESS conditions combine with 

unlisted, unknown NESS conditions to form a set of conditions that is sufficient for the 

result” (Wright 1988, p. 1031). 

On the surface, it appears that the INUS and NESS accounts of actual causation 

are consistent.  The description of the sense in which a condition is necessary for an 

effect is consistent with the nomic-inferential model. Also, according to Mackie’s 

analysis, x is an actual cause of y, where x is an event of type A and y is an event of type 

P when (i) A is an INUS condition for P, (ii) all other members of at least one sufficient 

conjunct for P to which A belongs are present in the scenario in question, and (iii) at 

least one conjunct of any disjunct not containing A is absent from the scenario (Kim 

1993). For example, if )( JKLDGHABC ∨∨  is a necessary and sufficient condition for 

P, then (i) is satisfied, (ii) is satisfied if B and C are present in the scenario, and (iii) is 

satisfied if at least one element from both {D, G, H} and {J, K, L} are absent from the 

scenario. However, if the disjunc ts in )( JKLDGHABC ∨∨  were equated with the 

sufficient sets of Wright’s NESS test, condition (iii) would rule out cases of duplicative 

causation (see Section 1.1). Wright (2001, p. 1130) calls a set of conditions satisfying 

conditions (i) and (ii) “analytically and empirically sufficient” but not “causally 

sufficient.” To determine causal sufficiency Wright replaces condition (iii) with what he 

calls the “omnibus negative condition” which he again derives from Mill: 

[The failure of a sentry to be at his post] was no producing cause [of the 
army’s being surprised by the enemy], but the mere absence of a 
preventing cause: it was simply equivalent to his non-existence. From 
nothing, from a mere negation, no consequences can proceed. All effects 
are connected, by the law of causation, with some set of positive 
conditions; negative ones, it is true, being almost always required in 
addition. In other words, every fact or phenomenon which has a 
beginning invariably arises when some certain combination of positive 
facts exists, provided certain other positive facts do not exist. . . . 

The cause then, philosophically speaking, is the sum total of conditions 
positive and negative taken together; the whole of the contingencies of 
every description, which being realised, the consequent invariably 
follows. The negative conditions, however, of any phenomenon, a special 
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enumeration of which would generally be very prolix, may be all 
summed up under one head, namely, the absence of preventing or 
counteracting causes. (Mill A System of Logic, Bk. III, Ch. V, § 3, 
quoted in (Wright 2001, p. 1129)) 

(It is difficult to understand Mill’s distinction; a method by which the enemy army might 

seek to produce surprise would be to eliminate the sentry.) The negative conditions or 

“absence of preventing or counteracting causes” (the absence of preemption) is what 

Wright defines as the omnibus negative condition; positive conditions are the set of 

analytically and empirically sufficient conditions. 

Wright’s (2001) account also differs from Mackie’s with respect to the 

“complexity” which Wright allows to causal laws or generalizations. Wright’s concept 

allows for “causal priority” among the conditions within a causal generalization. This 

notion arises in the context of his discussion of a class of cases that proved problematic 

for the NESS test, the so-called double omission cases: 

Some of the most difficult overdetermined-causation cases, at least 
conceptually, are those involving multiple omissions, which usually 
involve failures to attempt to use missing or defective safety devices or 
failures to attempt to read or heed missing or defective instructions or 
warnings. (Wright 2001, pp. 1123-1124). 

Wright (1985, p. 1801; 2001, p. 1124 ff.) considers in detail the case of Saunders 

System Birmingham Co. v. Adams7 where a car rental company negligently failed to 

discover or repair bad brakes before renting a car out. The driver who rented the car then 

negligently failed to apply the brakes and struck a pedestrian. In general, courts have 

held that individuals who negligently fail to repair a device (or provide proper 

safeguards or warnings) are not responsible when (negligently) no attempt was made to 

use the device (or use the safeguards or observe the warnings). According to Wright 

(2001, p. 1124), the court’s decisions reflect a “tacit understanding of empirical 

causation in such situations”: not providing or repairing a device (or not providing 

proper safeguards or warnings) can have no causal effect when no attempt was or would 

have been made to use the device (or use the safeguard or observe the warning)—unless 

                                                                 
7 Saunders Sys. Birmingham Co. v. Adams, 117 So. 72 (Ala. 1928). 
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no attempt was made because it was known that the device was inoperative (or the 

safeguards or warnings were inadequate). 

Wright’s (1985, p. 1801) original NESS analysis (where D represents the driver, 

C represents the car rental company, and P represents the pedestrian) is as follows: 

It is clear that D's negligence was a preemptive cause of P's injury, and 
that C's negligence did not contribute to the injury. D's failure to try to 
use the brakes was necessary for the sufficiency of a set of actual 
antecedent conditions that did not include C's failure to repair the brakes, 
and the sufficiency of this set was not affected by C's failure to repair the 
brakes. A failure to try to use brakes will have a negative causal effect 
whether or not the brakes are defective. On the other hand, C's failure to 
repair the brakes was not a necessary element of any set of antecedent 
actual conditions that was sufficient for the occurrence of the injury. 
Defective brakes will have an actual causal effect only if someone tries to 
use them, but that was not an actual condition here. The potential 
negative causal effect of C's failure to repair the brakes was preempted by 
D's failure to try to use the m. 

Notice that interchanging C and D’s negligent acts in this argument results in an 

apparently equally plausible argument for C's negligence being a preemptive cause of 

P's injury. According to Wright (2001, p.1125), 

At the time that I wrote this explanation, I was aware that it was too brief 
and cryptic, relied upon an insufficiently elaborated notion of causal 
sufficiency and “negative causal effect,” and therefore could seemingly 
be reversed to support the opposite causal conclusions merely by 
switching the references to the two omissions. Nevertheless, I thought it 
roughly stated the correct analysis in very abbreviated form.  

Wright  (2001, p. 1129) argues that this argumentative symmetry exists only when 

The NESS test is viewed “mechanically” as requiring mere analytical or 
empirical sufficiency. But it is not true if the test is properly understood 
as incorporating a concept of causal sufficiency, which requires the 
complete instantiation of the potentially applicable causal generalization, 
and if proper attention is paid to the distinction between positive and 
negative causal effects and the need to take into account any causal 
priority within an applicable causal generalization when assessing 
negative rather than positive causal effects. 

In the case of the driver failing to apply defective brakes, Wright says that the issue is 

the cause of the brakes not being operated, “the failure of a causal generalization for 
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braking,” a negative causal effect; when that is the case causal priority becomes 

important in applying the NESS test (Wright 2001, pp. 1130-31): 

The failure of any causal generalization is logically or empirically 
guaranteed to occur if any one of the necessary positive conditions in the 
antecedent of the causal generalization is absent. Yet, the failure can be 
explained causally only by taking into account any relevant causal 
priority among those positive conditions. The absence of any causally 
prior necessary condition preempts the possible coming into play 
(through presence or absence) of any other necessary condition in the 
causal generalization, the operation of which was causally subsequent to 
or dependent upon the causally prior necessary condition. 

 It is not easy to see, and Wright does not explain, how a non-structured set of 

conditions, related to each other only as instantiated antecedent conditions of some 

causal generalization, can have an internal causal structure. There is nothing in Mackie’s 

account of causal laws that suggests the existence of causal priority among the elements 

of the minimal sufficient conditions or between sets of minimal sufficient conditions, 

rather, the structure of the relation between P and )( JKLDGHABC ∨∨  is logical 

identity: P iff )( JKLDGHABC ∨∨  (see Kim 1993).   

“Causal priority” is not the only sense in which, it appears, that a causal law or 

generalization can have a causal structure, as evidenced by Wright’s (1988, p. 1025) 

identification of actually sufficient sets with causal stories or chains in discussing 

Mackie’s (1974, p. 44) well-known preemptive causation example of the ill-fated desert 

traveller: 

A desert traveller has two enemies intent upon his death. Enemy A 
poisons the traveller’s water can. Enemy B, unaware of what enemy A 
has done, empties the traveller’s water can before the traveller can drink 
from it. As a result, the traveller dies of dehydration rather than from 
poisoning. 

Mackie’s purpose in considering this example is to reconcile his contention that our 

concept of actual causation requires a cause to be a necessary (but- for) condition of the 

result (see Section 2.3.4) with the (supposed) common intuition that the emptying of the 

can caused the travellers death and not the poisoning of its contents, though neither 

satisfies the but-for test. Mackie (1974, pp. 45-46) argues that we recognize that the 

emptying of the can caused the traveller’s death because we can complete the causal 
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story (or causal chain) involving the emptying of the can and death by dehydration but 

cannot complete the alternative story involving poisoning. According to Wright (1988, 

p. 1025) this account of why we recognize the emptying of the can as the cause of the 

traveller’s death has merit only because it implicitly invokes the NESS test: a 

“completed causal story or causal chain is simply an actually sufficient set.”  

2.3.6 A Language for NESS 
The idea that a single causal generalization can exist for a causal chain of events raises 

the issue of how the causal generalizations for the individual links in the chain relate to 

the causal generalization for the chain as a whole. According to Wright (1988, p. 1042), 

in applying the NESS test, 

We are trying to determine which causal generalizations have been 
instantiated in the actual world by the conditions that occurred on the 
particular occasion. Thus, we do not change any causal generalization. 
Nor do we need to worry about changing the prior conditions that 
produced the condition being tested [for actual causation]. The effects of 
these prior conditions are incorporated in the particular sufficient set of 
existing conditions, which is a time-slice view of the ongoing causal 
network. When we hypothetically eliminate the condition being tested we 
automatically hypothetically eliminate the effects of prior conditions 
insofar as they operate through the condition being tested. 

Suppose A is a necessary member of },...,,{ 1 nAAA , an actually sufficient set of 

conditions for a result B (the “time-slice view” from A to B) and that B is a necessary 

member of 1{ , ,..., }mB B B , an actually sufficient set of conditions for a result C.  The 

expectation is that A is an actual cause of C (e.g., A : X shoots a rope holding a piano 

being lowered from an apartment window; B: the rope holding the piano being lowered 

from the apartment window breaks; and C : the piano falls to the ground injuring a 

passing pedestrian). If },...,,,,...,,{ 11 mn BBBAAA=Ψ , then Ψ  should be an actually 

sufficient set of conditions for C (in the time-slice view from A to C). However, it does 

not seem poss ible for both elements of },...,,{ 1 nAAA  and B to be necessary elements of 

Ψ . If this intuition is correct, then relative to the causal generalization for the entire 

chain, either A or B is not a cause of C.  
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According to Pearl (2000), this problem is symptomatic of attempting to 

explicate causal intuitions in the language of logical necessity and sufficiency. He 

describes it as “syntax sensitivity.” If, for instance,   Aif f B C∨  and   D iff A E∨  then 

  D iff B C E∨ ∨ . Should we conclude, asks Pearl, that A is not a cause of D given 

  D iff B C E∨ ∨ ? Pearl (2000, p. 315) argues that the “structural information conveying 

the flow of influences in the story cannot be encoded in standard logical syntax.” 

Another limitation with a logical account, raised by Pearl, is the logical 

equivalence of  “if A then B” and ”if ¬B (not-B) then ¬A,” an inversion “not supported 

by causal implications.” According to Wright (2001, p. 1103 n. 113), however, 

I have always viewed the NESS test as embodying not merely a 
requirement of logical or even empirical necessity or sufficiency, but also 
a notion of causal directionality according to which the conditions 
specified in the antecedent (“if” pa rt) of the causal generalization are 
causally relevant conditions for the occurrence of the condition specified 
in the consequent (“then” part), but not vice versa, and a notion of causal 
sufficiency which requires that all the conditions specified in the 
antecedent and the consequent be concretely instantiated on the particular 
occasion. 

Pearl (2000, Ch. 10) argues that his “structural logic” language (see Sections 3.2 to 3.4) 

is adequate to capture and formalize the intuitions that underlie the INUS condition, 

which he (mistakenly, according to the arguments of the previous section) identifies with 

the NESS test. The remainder of the thesis will consider whether the NESS test can be 

formalized in Pearl’s structural language. 

2.3.7 The Problem of Circularity 
Fumerton and Kress (2001, p. 102) argue that 

Wright’s project is to analyze the meaning of the word or, alternatively, 
the concept of causation.  If he deploys the concept of a causal law in 
defining causation, surely his critics will charge him with a vicious form 
of circularity—his NESS test for causation is nearly tantamount to 
defining causation as causation. 

However, as explained above, Wright argues (in effect) that the NESS test is a corollary 

of the regularity theory of causation. Wright would be open to the charge of “vicious 

circularity” if he argued that the NESS test identifies causal laws or regularities, but he 
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does not. The NESS test is concerned with what it is to attribute causation to some factor 

in a specific scenario using existing causal knowledge which, he argues (see e.g. Wright, 

1988, p. 1045), contrary to Mackie, is represented as causal laws or generalizations. 

In summary, then, the NESS test requires the existence of an existing set of 

conditions, including the putative causal condition, that in some sense guarantees the 

effect in question ("actual sufficiency") but does not guarantee the effect if the putative 

cause is removed from the set ("necessary for the sufficiency"). These sufficient sets are 

recognized because of existing causal knowledge that is represented as causal laws. A 

logical interpretation of these requirements allows for transformations and substitutions 

that can "break" the test. A language for formalizing the NESS test needs to prevent such 

operations and allow for causal and temporal priority relationship among the conditions 

in a sufficient set. The next chapter introduces the Pearl's structural language, which 

appears to satisfy these criteria. 
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3. Structural Definition Of Actual Causation 

In broad outline, Pearl’s “structural language” response to Wright’s account of the NESS 

test and the problems that arise with that account might be as follows. Causal 

generalizations can have a causal structure because they are relative to (informal) causal 

models built up from internal (mental) representations of causal mechanisms, that is, 

invariant relationships between a variable representing an event (the effect) and one or 

more variables representing other events (the causes or causal factors)—invariant under 

interventions that manipulate the value of the causal variables. Causal mechanisms link 

together into causal models via shared variables; that is how causal generalizations for 

individual events can link into extended causal chains or stories. Causal mechanisms 

describe functional, one-way (non-equational) relationships between the dependent 

(effect) variable and the independent (causal) variables; that explains why causal 

generalizations are not reversible. Counterfactuals describe the response of the value of 

variables in the model to interventions fixing the value of some other variables. An 

actual causal query is fundamentally a counterfactual query relative to some 

(permissible) set of interventions fixing the value of some of the model variables (to 

their actual values or otherwise).  

This chapter elaborates on the preceding broad outline as follows. Section 3.1 

describes the manipulability account of causation to which Pearl’s structural language 

belongs. Sections 3.2 to 3.5 outline the structural language that is the basis of the 

Halpern-Pearl definition of actual causation presented in Section 3.7. Finally, Section 

3.8 considers whether, in light of recent work by Hopkins and Pearl (2003), the Halpern-

Pearl definition is adequate to formalize the NESS test. 

3.1 Manipulability Theories of Causation 
As Hausman and Woodward (1999, p. 533) write, 
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One crucial fact about causation, which is deeply embedded in both 
ordinary thinking and in methods of scientific inquiry, is that causes are 
as it were levers that can be used to manipulate their effects. If X causes 
Y, one can wiggle Y by wiggling X, while when one wiggles Y, X remains 
unchanged.... For most scientists, the crucial difference between the claim 
that X and Y are [merely] correlated and the claim that X causes Y is that 
the causal claim, unlike the claim about correlation, tells one what would 
happen if one intervened and changed the value of X. It is this feature of 
causal knowledge that is so important to action. 

The concept of causes as levers for manipulating effects is known as a “manipulability 

theory of causation” (see Woodward 2001). Different flavours of manipulability theories 

are characterized by their understanding of the nature of the manipulations that found the 

causal claims, whether manipulation is itself a causal notion. Traditional philosophical 

manipulability theories attempt to treat manipulations as primitive, non-causal concepts 

or define them in terms of other supposedly non-causal concepts such as human agency 

or acts of free will (see Woodward 1999, 2001). Non-reductionist theories accept that 

manipulations are inherently causal. That leaves them vulnerable to analogous critiques 

to that of Fumerton and Kress with respect to Wright’s NESS test, that the account is 

circular (see Section 2.3.7). Two responses are, first, that the concept of manipulation is 

used to characterized a particular relationship as causal or not without any prior 

information about that relationship (i.e., informative if non-reductive) and, second, there 

is more than one notion of causation and the causal concept assumed in the notion of 

manipulation can be used to identify related concepts (Woodward 2001).  

 Both of these responses are evident in the work of Judea Pearl, whose non-

reductionist manipulability theory relies on the “structural” notion of an “intervention” 

and the related concept of causal mechanisms. Much of Pearl’s work is dedicated to 

explaining how causal relationships can be discovered from raw statistical data and from 

raw statistical data combined with substantive causal assumptions (see Pearl 2000, 

Chapters 1-3). Equally important are issues of what can be done with causal knowledge, 

what inferences or predictions can be made; and what is done, how causal knowledge 

can justify, explain, and explicate causal thought and behaviour including counterfactual 

and actual causal assertions. Key to both aspects are interventions and causal 

mechanisms. 
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3.2 Causal Mechanisms 
According to Pearl (2000, p. 223), 

The world consists of a huge number of autonomous and invariant 
linkages or mechanisms, each corresponding to a physical process that 
constrains the behavior of a relatively small group of variables  

The invariant relationships that are causal mechanisms can range from visible and 

tangible (e.g., a car’s brake mechanism) to conceptual or theoretical based on physical, 

chemical, or social laws and conventions such as legal rules (Drudzel and Simon 1993); 

for an in-depth discussion of causal mechanisms and a comparison with traditional 

accounts of causal laws see (Woodward 2000, 2002). 

When mechanisms link together (by shared variables) into groups, the invariance 

property of causal mechanisms means that changes (interventions) to one mechanism do 

not change the other mechanisms in the group. That is not to say that disturbing a 

mechanism will not change the values of variables related by other mechanisms, but the 

relationship between the variables, the relationship that defines the causal mechanism, 

remains unaltered. Because of this autonomy property of causal mechanisms, according 

to Pearl (1999, p. 1445), identifying causal mechanisms amounts to acquiring 

“knowledge” since it identifies patterns of behaviour (regularities) transportable across 

different situations. The modularity (see Pearl 2000, p. 22) of causal knowledge encoded 

in causal mechanisms explains our familiarity with, and our ability to comprehend, 

causal relationships used in causal explanations of novel situations (see Pearl 2000, p. 

26; Pearl 1999, p. 1445). Causal mechanisms also explain why we readily teach each 

other what the normal results of actions are and why we readily predict the 

consequences of most actions: actions can be represented as local surgeries in the space 

of causal mechanisms. Actions are disturbances in the space of mechanisms. If there is a 

common understanding of how some group of mechanisms interact (or link) with each 

other for some part of the world then the effect of an action is understood as the new 

equilibrium reached by the modified group of mechanisms after the few mechanisms 
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disturbed by the action are respecified (see Pearl 2000, p. 223). Locality refers to an 

action only disturbing a few mechanisms (because of autonomy), for example, 

Tipping the leftmost tile in an array of domino tiles does not appear to be 
“local” in physical space, yet it is quite local in the mechanism domain: 
only one mechanism is perturbed, the gravitational restoring force that 
normally keeps that tile in a stable erect position; all other mechanisms 
remain unaltered, as specified, obedient to the usual equations of physics. 
Locality makes it easy to specify this action without enumerating all its 
ramifications. The listener, assuming she shares our understanding of 
domino physics, can figure out for herself the ramifications of this action, 
or any action of the type: “tip the ith domino tile to the right.” By 
representing the domain in the form of an assembly of stable 
mechanisms, we have in fact created an oracle capable of answering 
queries about the effects of a huge set of actions and action 
combinations—without us having to explicate those effects. (Pearl 2000, 
p. 224). 

Causal assertions arise as abbreviations about events related by causal 

mechanisms. Where mechanisms are unnamed, as most are in ordinary discourse, 

actions may be characterized by their immediate effects, as in, “the left-most tile is 

tipped to the right.” These abbreviations suffice when there is a common understanding 

of the domain knowledge (the relevant group of linked mechanisms) in that it should be 

possible to determine what mechanism must be perturbed to bring about the specified 

event and what the other consequences of that would be, for example, 

This linguistic abbreviation defines a new relation among events, a 
relation we normally call “causation”: Event A causes B if the 
perturbation needed for realizing A entails the realization of B. Causal 
abbreviations of this sort are used very effectively for specifying domain 
knowledge. Complex descriptions of what relationships are stable and 
how mechanisms interact with one another are rarely communicated 
explicitly in terms of mechanisms. Instead, they are communicated in 
terms of cause-effect relationships between events or variables. We say, 
for example: “If tile I is tipped to the right, it causes tile i + 1 to tip to the  
right as well”; we do not communicate such knowledge in terms of the 
tendencies of each domino tile to maintain its physical shape, to respond 
to gravitational pull and to obey Newtonian mechanics. (Pearl 2000, p. 
225-226) 
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3.3 From Causal Mechanisms to Causal Models 
The notion of autonomous causal mechanism explains the existence of systems, parts of 

the world that may be studied in isolation even though they are still linked to the rest of 

the world; for example, natural systems such as a hurricane or an eye, or artificial 

systems like a computer. Simon (1969) argued that the elements within systems are 

strongly interconnected while the connections to the outside world are relatively weak. 

The abstraction of a system is called a model, a simplified representation that 

makes it possible to study how features of the system regarded as important interact. 

Models can range in complexity from informal, mental models to formal, mathematical 

models. Often, scientists represent models of systems as sets of simultaneous , algebraic 

equations. Pearl argues that algebraic equations are inadequate to represent systems of 

causal mechanisms and gives as an (archetypal) example a model for an artificial 

system, a circuit diagram for some electric circuit (Pearl 2000, pp. 346-47). The gates in 

the diagram represent (physical) causal mechanisms—they are autonomous (or 

independent) and invariant; perturbing or changing one gate does not affect the others 

and they behave the same in one circuit as they would in another. The diagram enables 

us to predict not only how the circuit will behave under normal conditions (an 

unperturbed domain model; i.e., in equilibrium) but also how the circuit will behave 

under abnormal conditions (perturbations of one or more gates—i.e., mechanisms—

deliberately or otherwise). As Pearl (2000,  p. 344) explains, 

For example, given [a] circuit diagram, we can easily tell what the output 
will be if some input changes from 0 to 1. This is normal and can easily 
be expressed by a simple input-output equation. Now comes the abnormal 
part. We can also tell what the output will be when we set  [the input of 
some internal gate] to 0 (zero), or tie it to [the value of some external 
input], or change this and gate to an or gate, or when we perform any of 
the millions of combinations of these operations.  

However, the equations describing the input-output conditions for a given gate 

do not allow us to predict the outcome of abnormal occurrences unguided by the 

diagram. Consider the system in Figure 3.1 consisting of only a multiplier (∗2) and an 

adder (+1) (Pearl 2000, pp 346-7).  
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Figure 3.1: Unperturbed Circuit Diagram Model 

 
The equations on the left in (a) describe the input/output conditions of the gates but are 

not equivalent to the corresponding diagram: we can algebraically manipulate the 

equation into the equivalent form (b) which corresponds to a diagram representing a 

system of gates different from that in (a). In other words, the diagrams represent critical 

information about the (causal) nature of the electric circuit that the equations alone 

cannot capture. The diagram in (a) shows that if we physically manipulate (intervene, 

perturb, change) Y it will affect Z while in (b) it will affect X with no effect on Z. Figure 

3.2 demonstrates the relation between manipulations on the diagrams (representing 

physical manipulations) and the corresponding equations: setting Y to 0 removes the link 

between X and Y. The new mechanism controlling Y is represented by the equation Y = 0 

which replaces Y = 2X in (a) and Y = Z−1 in (b). The result of the manipulation is the 

solution of the new set of equations, i.e., Z = 1 in (a) and X = 0 in (b). 

 

Figure 3.2: Perturbed Circuit Diagram Model 

 

According to Pearl (2000, p. 347), 

We now see how this model of intervention leads to a formal definition of 
causation: "Y is a cause of Z if we can change Z by manipulating Y, 
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namely, if after surgically removing the equation for Y, the solution for Z 
will depend on the new value we substitute for Y". We also see how vital 
the diagram is in this process. The diagram tells us which equation is to 
be deleted when we manipulate Y. That information is totally washed out 
when we transform the equations into algebraically equivalent form. 

 

Thus, interventions correspond to the “wiping out” of or “surgery” on equations guided 

by the diagram—and causation is a linguistic summary of the consequences of the 

surgeries. 

An equation that represents an autonomous mechanism is a structural equation. 

(The identification of causal mechanisms with structural equations was made first by 

Simon (1953).) Pearl (2000, p. 160) gives the following (manipulationist) definition of a 

structural equation: An equation εβ += xy  is said to be structural if it is to be 

interpreted as follows. In an ideal experiment where we intervene to fix X to x and any 

other set Z of variables (not containing X or Y) to z, the value of Y is given by εβ +x , 

where ε  is not a function of the settings X = x and Z = z.  The equality sign ("=") in a 

(parameterized) structural equation has a dual interpretation: it is symmetrical in relating 

the variables X and Y so that observing Y = 0 implies εβ −=x ; but it is asymmetrical 

with respect to interventions. In that case the equality sign stands for "is determined by" 

and setting Y = 0 gives no information about how x and ε  are related.8 The 

nonparametric analogue has the form ),( εxfY =  and represents Y as a non-specified 

function of X. In both cases, ε  represents an error term for omitted (non-modelled) 

factors or disturbance external to the system. In this case, Y is determined by only one 

observed variable, X. In the general case, ),( εipafY = where ipa  represents the 

minimum set of variables under consideration such that if Z is any other set of variables 

                                                                 
8 As often happens in AI discussions of this problem (see Pearl 2000), the “=” sign is 
overloaded in this thesis. In addition to the dual relational/functional interpretation for 
structural equations described here, the equals sign may be used in logical equations to 
describe the truth conditions of a proposition, it may be used to represent logical 
equivalence between propositional statements, and it may be used to describe the value 
of a random variable (an event). The context of the discussion should make clear which 
usage is intended. 
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(distinct from Y and ipa ) the value of Y would be independent of z. (In other words, for 

a given ε , if the values of the ipa  are fixed, then Y will be a constant or trivial function 

of the variables in Z.) The choice of the symbol " ipa " is non-accidental since, 

graphically, they have a natural interpretation as the parents of Y and represent direct 

causes of Y. 

A system of equations in which each equation represents an autonomous 

mechanism is a structural model. When each structural equation determines the value of 

a single, distinct variable (the dependent variable) the model is a structural causal 

model. While systems of algebraic equations jointly model some part of the world, any 

subset of a system of structural equations is itself a valid model of reality “that prevails 

under some set of interventions” (Pearl 2000, p. 27). 

3.4 Structural Causal Models 
A causal model (or structural model) models a system of causal mechanisms. The 

events (or event states) that causal mechanisms relate are represented as random 

variables; a particular value (a realization) of a variable X has the form X = x. (For 

example, if X is a variable for a light switch, X = 1 might represent the event that the 

light switch is “on”, and X = 0 that it is “off”.) The variables in a causal model are either 

endogenous or exogenous. The values of exogenous variables are determined by non-

modelled factors; their values are taken as given, the model does not explain them. 9 The 

values of endogenous variables are determined entirely by the other variables 

(endogenous and/or exogenous) in the model. The relations that describe the values of 

endogenous variables as functions of the other variables are structural equations; that is, 

the system’s causal mechanism are represented in the model as structural equations.  

The following descriptions and definitions follow closely the corresponding 

expositions in (Halpern and Pearl 2000 and Pearl 2000): 

Formally, a signature S is a 3-tuple (U, V, R), where U is a finite set of 

exogenous variables, V is a set of endogenous variables, and R is a relation associating 
                                                                 
9 Pearl (2000, p. 207) calls a causal model with a particular realization for the exogenous 
variables a causal world  or theory. 



 29 

with each variable Y ∈ U ∪ V a nonempty set R(Y) of possible values for Y (the set of 

values over which Y ranges ; more typically referred to as the domain  of Y, denoted 

Dom(Y)). 

A causal model over a signature S is a 2-tuple M = (S, F), where F is a relation 

associating each X ∈V  with a function denoted XF  such that, 

: ( ( )) ( ( )) ( )X U Y XF U Y X∈ ∈ −× × × →U VR R R  (or : ( ) ( )XF DomW Dom X→ , where 

(W = ∪U V –X) ). 

The function XF  for X is the structural equation describing the mechanism that 

determines the value of X (Typically, the FX is expressed as an equation for X.)  

Reflecting the assumption that an effect cannot precede its cause, the models 

considered here are recursive (or acyclic), meaning that there is a total ordering10 ≺  of 

the variables in V such that if X ≺ Y, then the value of XF  is independent of Y (i.e., 

XF (…, y, …) = XF (…, y´, …) for all , ( )y y Y′∈ R ). Recursive models have a unique 

solution for a given setting u
r

 of the variables in U (such a setting u
r

 is called a context). 

If XPA  is the minimal set of variables in V - X and XU  the minimal set of values in U 

that together suffice to represent XF  (i.e., if Y ∈V  (Y ∈ U ) and XY PA∉  ( XY U∉ ) 

then XF  is independent of Y), then the causal model gives rise to a causal diagram, a 

directed acyclic graph (DAG) where each node corresponds to a variable in V and the 

directed edges point from members of XPA  and XU  toward X. The set XPA , connoting 

the parents of X, are the direct causes of X. Causal diagrams encode the information that 

the value of a variable is independent of its other ancestor variables in the diagram given 

the values of its parents and, also, that the value of a variable can only affect the value of 

                                                                 
10 A total ordering is a relation R that is reflexive (xRx ), transitive (xRy and yRz implies 
xRz), and asymmetric (xRy and yRx  implies x = y), and such that for any two elements x 
and y, either xRy or yRx . 
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its descendents in the diagram. The edges in a causal diagram represent the non-

parameterized (or arbitrary) form of the function for a variable, ( , )X X XX F U PA= . 

An external intervention (or perturbation or surgery) setting X = x (representing 

contingencies outside of the model perturbing a causal mechanism), where X  ∈ V, is 

denoted )( xXdo =  or X x←  and amounts to pruning the equation for X from the 

model and substituting X = x in the remaining equations. In the corresponding causal 

diagram, it amounts to removing the edges from   X XPA U∪  to X. An intervention that 

forces the values of a subset of variables in V  (represented sometimes by the ordered-set 

or vector notation, X
r ⊆ V: )( xXdo

rr
=  or X x←

r r
) prunes a subset of equations, one for 

each variable in the set and substitutes the corresponding forced values in the remaining 

equations. That the resulting model is still a valid representation of reality “that prevails 

under some set of interventions” (Pearl 2000, p. 27). 

Interventions map causal models into causal models. The model resulting from 

an intervention is a submodel: Given a causal model M =  (S, F), a (possibly empty) 

subset X
r

 of variables in V, and vectors xr  and ur  of values for X
r

 and U respectively, 

X xM ←
r r  denotes a new causal model over the signature X

rS X
rS  = (U, V - X

r
, X−

r
VR ). 

X xM ←
r r  is called a submodel of M. Formally, X xM ←

r r  = ( , )X x
X

←
r r

rS F  where, for 

Y X∈
r

V – , X x
YF ←

r r
 is obtained from FY by setting the values of the variables in X

r
 to 

xr . The submodel X xM ←
r r  represents the effect of action )( xXdo

rr
=  on the model M. 

3.5 Structural Definition of Counterfactuals 
Pearl (2000, pp. 217-220) regards the word “counterfactua l” as a misnomer to the extent 

it implies that counterfactual statements are contrary to facts or are not amenable to 

empirical verification. Pearl argues that counterfactuals are a “roundabout” way or 

“conversational shorthand” for stating predictions based on empirical causal knowledge. 
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Pearl gives the example of Ohm’s law V = IR the empirical content of which can, he 

argues, can be represented in a predictive or counterfactual form: 

Predictive form: If the current at time 0t  is 0I , 00 )( ItI = , then, with all else held equal, 

at any future time 0tt >  

)()(
0

0 tI
I
V

tV = . 

Counterfactual form: If at time 0t  00 )( ItI =  and 00 )( VtV = then, had )( 0tI  been I′  

instead of 0I , the voltage would have been 

0

0

I
IV

V
′

=′ . 

According to Pearl, both forms allow an infinite number of predictions from the single 

measurement ),( 00 VI  and both depend upon a scientific law ascribing a time- invariant 

property (the ratio I
V ) to any object conducting electricity. 

Pearl suggests two reasons why the counterfactual form is used. The first reason 

is to convey the logical consequences of a prediction. The intent of saying, “If you had 

left the lights on, the battery would be dead” may be to convey that the lights were not 

left on; that implicit assertion is explicitly justified by a logical implication (prediction) 

based on a general law. The second reason relates to the “all else held equal” 

requirement in the predictive form (above). In the case of predictive claims, what must 

be held equal needs to be carefully specified. On the other hand, many of these 

specifications are implicit (and do not need to be stated) in counterfactual expressions, 

especially when the underlying causal model is agreed upon. 

If a counterfactual statement is to be interpreted as conveying a set of predictions 

then, according to Pearl, two components must remain invariant: the laws (or causal 

mechanisms) and the boundary conditions. In a causal model, these correspond to the 

functions XF  (for X ∈ V) and the background variables U. This means that the validity 

of the predictive interpretation of counterfactuals requires the assumption that variables 
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in U remain invariant when interventions in the model are made to represent the set of 

conditions in the prediction. 

Formally, given sets of variables X
r

 and Y
r

 in V and a context u
r

, the 

counterfactual sentence, “The value that Y
r

 would have obtained, had X
r

 been x
r

” is 

interpreted as denoting the potential response for Y
r

 and u
r

 under the intervention 

)( xXdo
rr

=  (denotable as ( , )YF u xr r
), the solution for Y

r
 in the (sub)model X xM ←

r r  (see 

Pearl 2000, p. 204).  

Pearl believes the reason why counterfactuals play an important part in causal 

explanations is that the utility of a causal explanation “is proven not over standard 

situations but rather over novel settings that require innovative manipulation of the 

standards” (Pearl 2000, p. 219). Submodels, which describe counterfactual worlds, result 

from the manipulation of causal mechanisms, whose autonomy is an “open invitation” to 

remove or replace them. The explanatory value of sentences is judged by how well they 

predict the ramifications of these interventions; that is, the validity of the counterfactuals 

they give rise to. 

3.6 The Halpern-Pearl Structural Definition of Actual Causation 
The following descriptions and definitions follow closely the exposition in (Halpern and 

Pearl 2000): 

For a given signature S = (U, V, R): A primitive event is a formula of the form X = x, 

where X ∈ V and x ∈ R(X). A basic causal formula  is of the form 

1 1[ ,..., ]k kY y Y y ϕ← ←  where ϕ  is a Boolean combination of primitive events,11 

1,..., kY Y  are distinct variables in V, and ( )i iy Y∈R . Basic causal formulas are 

abbreviated as ϕ][ yY
rr

←  or just ϕ  when k = 0. A causal formula  is a Boolean 

combination of basic causal formulas. 

                                                                 
11 A combination of primitive events produced from repeated application of the negation 
(“¬”) and conjuction (“ ∧ ”) connectives. 
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A basic causal formula is true or false in a causal model given a context ur . 

Where ψ  is a causal formula, ),( uM
r

 � ψ means that ψ  is true in the causal model M in 

the context ur . ),( uM
r

 � )]([ xXyY =←
rr

 means that the variable X has value x in the 

unique solution to the equations in the submodel Y yM ←
r r  in context u

r
. (In other words, 

in the counterfactual world Y yM ←
r r , resulting from the intervention )( yYdo

rr
= , X has the 

value x.) When ϕ  is an arbitrary Boolean combination of primitive events ),( uM
r

 � ϕ  

is treated similarly; for example, ),( uM
r

 � 1 1 2 2[ ]( ( ))Y y X x X x← = ∧ ¬ =
r r

 means that 

X1 has the value x1 and X2 does not have the value x2 in the unique solution to the 

equations in Y yM ←
r r  given context ur . 

The types of events that count as causes are conjunctions of primitive events of 

the form 1 1 ... k kX x X x= ∧ ∧ = , which may be abbreviated as xX
rr

= . (In practice, 

Halpern and Pearl considered only singular primitive events as causes; it was later 

proven that the definition requires this in the case of finite models. See below.)  Events 

caused can be any Boolean combination of primitive events. 

Definition (actual cause; Halpern-Pearl version): xX
rr

=  is an actual cause of ϕ  in a 

model M in the context u
r

 (i.e., in ),( uM r ) if the following conditions hold: 

C1. ),( uM
r

 � ϕ∧= )( xX
rr

. 

C2. There exists a partition ),( WZ
rr

 of V with ZX
rr

⊆  and some setting ),( wx ′′ rr
 of the  

 variables in ),( WX
rr

 such that, where ),( uM
r

 � Z = z* for each Z ∈ Z
r 12, 

 (a)  ),( uM r  � ϕ¬′←′← ],[ wWxX rrrr
, and 

 (b) ),( uM
r

 � ϕ*],,[ zZwWxX
rrrrrr

←′′←←  for every subset Z ′
r

 of Z
r

. 

                                                                 
12 In other words, for any variable Z in Z

r
 the actual value of Z in the model M given the 

setting u
r

 is represented as z*. 
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C3.  X
r

 is minimal; no subset of X
r

 satisfies conditions C1 and C2. 

Condition C1 is just the requirement that xX
rr

=  (the putative cause) and ϕ  (the 

effect whose cause is being investigated) be true in the original model given the setting 

ur  of the exogenous variables. Condition C2 has its origins in the concept of sustenance  

developed by Pearl (2000, Section 10.2) to represent what Hall (2003) identifies as the 

two concepts of causation, dependence and production. The dependence aspect of 

causation refers to the necessity (but-for) of a cause in maintaining an effect relative to 

interventions in the actual world. The production aspect refers to the capacity of a cause 

to bring about an effect in a context in which both are absent. Pearl conceives of the 

notion of sustenance as dependence “enriched” with features of production in a world 

(context) where both are true. 

Condition C2(a) represents the dependence aspect according to  which, where 

xX
rr

=  is a cause of ϕ , if xX
rr

≠  then ϕ  should be false ( ϕ¬ ). However, unlike the 

traditional but- for test, C2(a) allows interventions in the model (structural contingencies) 

that make ϕ  false—the identification of a set of variables W
r

 and a setting wr′  that 

makes ϕ  false—when otherwise ϕ  would still be true despite setting xX
rr

≠ . 

Remembering the premptive causation cases, the motivation for allowing such 

interventions should be clear; for example, in the two-fire cases, where fire X arrives and 

destroys the house H before fire Y can arrive and do so (see Section 2.2), C2(a) allows 

for testing the dependence on the presence of fire X of the destruction of H under the 

contingency that fire Y is not present. If xX
rr

=  is a cause of ϕ  then necessarily there are 

some structural modifications of the model under which ϕ  is false when xX
rr

≠ . 

Condition C2(b) represents the production aspect. If xX
rr

=  is an actual cause of 

ϕ  then when X
r

 is returned to its actual value under setting ur  then ϕ  should once again 

be true, both despite the structural changes made in C2(a) to make ϕ  false (the 

intervention wW
rr

′← ) and not as the result of those contingencies; that is, it is necessary 

to guard against ϕ  being true when X
r

 is returned to its actual value because of changes 



 35 

in the values of the other variables in Z
r

 )( XZ
rr

− . Restoring the values of the variables 

in any subset of Z
r

 to their original values in context ur  should not make ϕ  false. C2(b) 

ensures that xX
rr

=  alone is sufficient for maintaining ϕ  in context ur . 

The variables in a set Z
r

 satisfying condition C2 mediate between X
r

 and ϕ , and 

should be thought of as describing the “active causal process” from X
r

 to ϕ . A minimal 

set Z
r

 satisfying condition C2 is defined by Halpern and Pearl as an active causal 

process and they show that every variable in an active causal process lies on a path from 

a variable in X
r

 to a variable in ϕ  and changes value when ),( WX
rr

 is set to ),( wx
rr

 in 

C2.  

According to Halpern and Pearl (2000), the minimality condition C3 forced the 

cause to be a single conjunct of the form X = x in every example they considered. They 

conjectured that it is in fact a consequence of the definition. Hopkins (2002) and Eiter 

and Lukasiewcz (2001) showed independently that for finite-variable models (the only 

kind considered in this thesis) condition C3 forces the cause to be a single conjunct of 

the form X = x. 

The following example taken from Pearl and Halpern (2000) illustrates the 

application of their definition of actual causation: 

Example (two arsonists) Two arsonists drop lit matches in different parts of a 

dry forest, and both cause trees to start burning. Consider two scenarios. In the first, 

“disjunctive” scenario, the lighting of each match is independently sufficient to burn 

down the whole forest. In the second, “conjunctive” scenario, the forest will burn down 

only if both matches are lit. 

The following causal model describes the “essential structure” of the two scenarios. 

There are four variables: 

• an exogenous variable U which determines, among other things, the motivation 

and state of mind of the arsonists. For simplicity, assume that R(U) = 

0,0 1,0 0,1 1,1{ , , , }u u u u ; if U = ,i ju , then the first arsonist intends to start a fire if and 
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only if (iff) i = 1 and the second arsonist intends to start a fire iff j = 1. In both 

scenarios described here, U = 1,1u ; 

• endogenous variables ML1 and ML2, each either 0 or 1, where 0=iML  if arsonist 

i does not drop the match and 1=iML  if he does; 

• an endogenous variable FB for “forest burns down”, with values 0 (the forest 

does not burn down) and 1 (it does). 

The equation for 1 2( , , )FBFB F U ML ML=  in the first scenario is: 

( , , ) 1  x 1 or y 1FBF u x y iff= = = . 

In the second scenario, ( , , ) 1  1 1FBF u x y iff x y= = ∧ = . Figure 3.3 is the 

corresponding causal diagram for both scenarios. 

 

Figure 3.3: Two Arsonists 

 
Let 1M  and 2M  denote the model in the disjunctive and conjunctive scenarios, 

respectively. Symmetry guarantees that an argument for 1 1ML =  as an actual cause of 

1FB =  (represent ing ϕ ), in either scenario, gives rise to a symmetrical argument for 

2ML . So it is only necessary to consider ML1: For the (disjunctive) model M1, let 

1{ , }Z ML FB=
r

 and therefore 2{ }W Z ML= − =
r r

V . Even if 1 0ML = , 2 1ML =  gives 

1FB = . ( 1,1U u=  in both scenarios means that both arsonists intend to start a fire.) Thus 

),( WZ
rr

 = 1 2( , )ML ML  must be set to (0,0) to satisfy condition C2(a). When 1ML  is 
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returned to its original value ( 1 1ML = ) FB returns to its original value ( 1FB = ), which 

in this case means that every subset of Z
r

 returns to its original value even though 2ML  

retains its altered value. Thus C2(b) is satisfied. Conditions C1 and C3 are trivially 

satisfied. Therefore, 1 1ML =  is an actual cause of 1FB =  in actual world 1 1,1( , )M u . 

For the conjunctive scenario 2M , again let 1{ , }Z ML FB=
r

 and 2{ }W ML=
r

. In 

this case, if 1 0ML =  then 0FB =  and ML2 may be left at its original value to satisfy 

C2(a). This means C2(b) is trivially satisfied, as again are C1 and C3. Therefore, 

1 1ML =  is an actual cause of 1FB =  in actua l world 2 1,1( , )M u . 

3.7 The Role of Causal Modelling 
Halpern and Pearl (2000) emphasize the critical role that causal modelling plays in 

actual causal queries. They admit that two closely related structural models for the same 

system or scenario may give different answers to the same causal query; A might be an 

actual cause of B in one model but not in the other. They argue that this is a feature of 

their approach (not a “bug”) reflecting that the truth of any claim must be evaluated 

relative to a particular model of the world: 

It moves the question of actual causality to the right arena—debating 
which of two (or more) models of the world is a better representation. 
This, indeed, is the type of debate that goes on in informal (and legal) 
arguments all the time. (Halpern and Pearl 2000, p. 2) 

Among the choices that must be made in modelling some scenario is which 

variables to treat as endogenous and which to treat as exogenous. Since the values of 

exogenous variables are assumed to be given, they can be used to represent the 

background situation, or background assumptions may be implicitly encoded in the 

structural equations themselves. Halpern and Pearl give an example where the issue is 

whether a lightning strike or the lighting of a match caused a forest fire. That the wood 

was dry enough, that there was sufficient oxygen present, and numerous other conditions 

necessary for a forest fire to occur as a result of either lightning strike or a match are not 

the focus of interest and are assumed present, part of the background. The modeller 

chooses to model the dryness by an exogenous variable D with values 0 (the wood was 
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too wet to burn) and 1 (the wood was dry enough), but he does not model the presence 

of oxygen at all. He models the fire as WB (0: wood is not burning; 1: wood is burning), 

the lighting of the match as ML (0: the match is not lit; 1: the match is lit), and the 

occurrence of lightning as L (0: there is no lightning; 1: there is). Then 

( , { }) ( , , )WB WBWB F WB F D L ML= − =U V . 

For example, 1 (1,0,1)WBF=  says that in the context in which the wood is dry 

enough ( 1D = ), if the match is lit the wood will burn even if there is no lightning. The 

equation implicitly models the assumption that oxygen is present. Alternatively, the 

modeller might have included oxygen as an exogenous variable. By not doing so, the 

modeller does not contemplate contexts in which oxygen is not present; it might, as 

Pearl and Halpern say, be different if he were modelling scenarios involving fires on 

Mount Everest. 

The choice of endogenous variables reflects not only the choice of which causal 

mechanisms to represent but which contingencies affecting the model are contemplated. 

For example, an identical scenario (or part of it) might be modelled by both Figure 

3.4(a) and Figure 3.4(b). Figure 3.4(a) does not allow for contingencies affecting C; 

causal assertions that may depend upon such contingencies might not be accurately 

represented. Halpern and Pearl consider an example from (Hall 2003) involving railroad 

tracks in the configuration represented by Figure 3.5(a). There is a switch at X where the 

track diverges. If the switch is flipped, then the train follows the left-side track. The 

track converges again at Y and the train eventually ends up at Z whether it follows the 

left-hand or right-hand track. Hall argues that this example shows the difference between 

causation and determination: flipping the switch at X cannot cause the train to arrive at Z 

because it will arrive there in any case; rather, the switch at X merely determines how the 

arrival comes about (by the right-hand or left-hand track). 
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Figure 3.4: Differing Models for the Same Scenario 

 

Halpern and Pearl model this scenario as follows (unless otherwise stated, the 

context u
r

 here and subsequently is assumed to be such that it “ensures that the right 

things happened;” here, that the switch was flipped.): 

• F for “flipping the switch”, with values 0 (the switch is not flipped) and 1 (it is); 

• T for “track”, with values 0 (the train follows the left track) and 1 (the train 

follows the right track); and 

• A for “arrival”, with values 0 (the train does not arrive at the point of re-

convergence) and 1 (it does). 

(The corresponding causal diagram is Figure 3.5(b).) 

It is easy to see that the value of A does not depend on the value of F since 1A =  

whether 0T =  or 1T = . In other words, condition C2(a) fails and flipping the switch 

does not actually cause the train to arrive. This is a valid model of Hall’s scenario, which 

does not contemplate contingencies (interventions) preventing the train’s arrival once it 

reaches the switch: the trains will arrive since the tracks converge. 
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Figure 3.5: Three Train Models 

 

Halpern and Pearl propose an alternative model, replacing the variable T with the 

following two variables: 

• LT for “left track”, with values 1 (the train follows the left track) and 0 (it does 

not); and 

• RT for “right track”, with values 1 (the train follows the right track) and 0 (it 

does not). 

(The corresponding causal diagram is Figure 3.5(c).) Letting },,{ ALTFZ =
r

 and 

}{RTW =
r

 it is easy to see that, in this model, F  = 1 is an actual cause of A = 1. This 

model depicts the tracks as separate mechanisms and therefore contemplates (or 

advertises) contingencies interfering with the tracks (e.g., a landslide). If the switch is 

not flipped ( 0F = ) and the left-track mechanism is perturbed ( ( 0)do RT = ), then the 

train will not arrive ( 0A = ). Because of the possibility of such contingencies, flipping 

the switch ( 1F = ) is a cause of the train’s arrival ( 1A = ). According to Halpern and 

Pearl (2000, p. 24), 

Causal models earn their value in abnormal circumstances, created by 
structural contingencies, such as the possibility of a malfunctioning track. 
It is this possibility that should enter our mind whenever we decide to 
designate each track as a separate mechanism (i.e., equation) in the model 
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and, keeping this contingency in mind, it should not be too odd to name 
the switch position a cause of the train arrival (or non-arrival). 

3.8 The Halpern-Pearl Definition and Formalizing the NESS Test 
As suggested in the introduction to this chapter, there is an almost straightforward 

interpretation for the NESS test in Pearl’s structural language. Recall, according to 

Wright’s description of the application of the NESS test (Wright 1988, p. 1042; see 

Section 2.3.6), that the purpose of the NESS test is to “determine which causal 

generalizations have been instantiated in the actual world by the conditions that occurred 

on the particular occasion.” The relative part of the actual world is readily identified 

with a causal world, a causal model with a particular context. The causal model itself is 

a complex of causal generalizations, incompletely specified causal “laws” (see Section 

2.3.5) as determined by the choice of model variables (which variables to include or 

exclude, which included variables to treat as endogenous or exogenous).  The causal 

generalizations that have been instantiated on a particular occasion naturally suggest the 

sets Z of the Halpern-Pearl definition. The sets Z, active causal processes or “sustaining” 

sets of variables, appear to satisfy the concept of “actual sufficiency” Wright is striving 

for in defining the NESS test and inadequately (according to Pearl; see Section 2.3.6) 

realizing using the language of logical necessity and sufficiency. 

 However, Hopkins and Pearl (2003) have shown that even locally, between a 

variable (the effect) and its parents (direct causes), the Halpern-Pearl definition does not 

require that an active causal process (a set Z satisfying condition C2 of the definition) be 

actually sufficient; the ability of an active causal process to produce the effect in 

question, as tested by condition C2(b), is (unintentionally) allowed to depend on non-

actual conditions. 

 To see this, consider a causal model M with context u= rU . For simplicity, 

assume that all U ∈U  are trivial in the structural equation XF  for X (i.e., XU  is empty; 

see Section 3.4) so that : ( ) ( )X XF Dom PA Dom X→ . Now consider an assignment 

X XPA pa←
uuur uur

 (recall that the vector notation is used in this context to represent an 

ordered assignment—see Section 3.4) such that X x= . If 1{ , }X nPA V V=
uuur

…,  and 
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1{ , , }nXpa v v=
uur

…  then the logical sentence consisting of a conjunction of the literals 

i iV v=  (i.e., 1 1 n nV v V v= ∧ ∧ =… ) implies X x= . If such a sentence is formed for each 

value assignment X XPA pa←
uuur uur

 such that X x=  and a new sentence, denoted 

( )X x=∆ , is formed as a disjunction of all such sentences (so that the resulting logical 

sentence is in disjunctive normal form), then X x=  iff ( )X x=∆ . To illustrate, Hopkins 

and Pearl give the following example. 

Example (firing squad) There is a firing squad consisting of two shooters B and 

C, one of whom, B, is too lazy to load his own gun. Shooter C loads and shoots his own 

gun while shooter B has A load his gun for him. The prisoner D will die (D = 1) if, and 

only if, either A loads B’s gun (A = 1) and B shoots (B = 1) or C loads his gun and shoots 

(C = 1); that is, ( )D A B C= ∧ ∨ . 

 

Figure 3.6: Firing Squad 

 
For this example, if ( , ) ( 1)M u D =

r �  then 

( 1) ( 1 1 1) ( 1 1 0) ( 0 1 1)D A B C A B C A B C= = = ∧ = ∧ = ∨ = ∧ = ∧ = ∨ = ∧ = ∧ =∆
         ( 1 0 1) ( 0 0 1)A B C A B C∨ = ∧ = ∧ = ∨ = ∧ = ∧ =  

A term (conjunction of literals) that entails a sentence S is an implicant of S; an 

implicant that does not entail any other implicant is a prime implicant. The prime 

implicant form  of a sentence is a disjunction of all its prime implicants and is unique. 

The prime implicant form of ( 1)D =∆  is ( 1) ( 1 1) ( 1)D A B C= = = ∧ = ∨ =∆ . 

 With these preliminaries, Hopkins and Pearl (2003) prove the following theorem: 

Theorem (prime implicant) In a causal model M with context u=
rU , let 

,X Y ∈V  with YX PA∈ . If ( , ) ( )M u X x Y y= ∧ =r �  and the literal X x=  occurs in 
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any prime implicant of ( )Y y=∆  then the Halpern-Pearl definition of actual causation 

will classify X x=  as an actual cause of Y y= . 

Note that the prime implicant theorem does not require that any other literals (if 

they exist) in any of the prime implicants of ( )Y y=∆  to which X x=  belongs be 

satisfied (true) in ( , )M u
r

. For example, assume the context ur  in the firing squad 

example is such that C shoots and A loads B’s gun, but B does not shoot. Since 

( , ) ( 1 1)M u A D= ∧ =
r �  and 1A =  occurs in the prime implicant ( 1 1)A B= ∧ =  for 

( 1)D =∆ , according to the prime implicant theorem, the Halpern-Pearl theorem should 

(counter- intuitively) classify A’s loading of B’s gun as a cause of D’s death though B 

does not shoot. Indeed, taking ( , )Z A D=
r

 and ( , )W B C=
r

 and setting W w=
r r

 = (1,0)) 

satisfies conditions C2(a) and (b) of the definition. 

Hopkins and Pearl (2003) point out the similarity of the  prime implicant form of 

a sentence with Mackie’s INUS condition (see Section 2.3.4): 

For instance, A loading B’s gun is a necessary part of a sufficient 
condition to ensure the prisoner’s death. In terms of the prime implicant 
logical form, sufficient conditions map to implicants. For instance, 

1 1A B= ∧ =  is a sufficient condition for 1D = . Furthermore, since 
1 1A B= ∧ =  is a prime implicate13 (hence no subset of its conjuncts is an 

implicate), we observe that both 1A =  and 1B =  are necessary parts of 
this sufficient condition. Hence any atomic expression that appears in a 
prime implicate satisfies the INUS condition. 

Accepting the mapping of sufficient conditions to implicants, then Mackie’s analysis 

(see Section 2.3.5) requires that for 1A =  to be a cause of 1D = , not only must 1A =  

occur as an atomic proposition (or literal) in some prime implicant for 1D =  (i.e., be an 

INUS condition for 1D = ) but also that every other atomic proposition in that implicant 

be satisfied. Recall also that this part of Mackie’s analysis is consistent with the NESS 

test. It follows then that the Halpern-Pearl definition is less restrictive than both 

Mackie’s INUS analysis and the Wright’s NESS test. As Hopkins and Pearl say, their 

prime implicant theorem exposes that the Halpern-Pearl definition is over permissive. It 

is at least too permissive to formally capture the meaning of the NESS test. 
                                                                 
13 Hopkins and Pearl are apparently using “implicate” synonymously with “implicant” 
here. 
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 Having shown that the Halpern-Pearl definition is too permissive, Hopkins and 

Pearl (2003) go on to question the general validity of the “counterfactual strategy”—that 

“event C causes event E iff for some appropriate G, E is counterfactually dependent on 

C when we hold G fixed.” They also question whether it is possible at all, given what 

they believe to be representational limitations of the structural language, to give a 

satisfactory definition of actual causation within the structural model framework. In 

response, the next chapter of this thesis develops a new structural definition of actual 

causation, inspired by the manner in which the Halpern-Pearl definition fails to capture 

the NESS test (as shown by Hopkins and Pearl), and with it argues that the Hopkins and 

Pearl critique of the counterfactual strategy and the so-called limitations of the structural 

language are not conclusive. 
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4. A New Structural Definition of Actual Causation 

This chapter develops an alternative structural definition of actual causation and defends 

the validity of the counterfactual strategy, and the structural mode approach in general, 

from criticisms in Hopkins and Pearl (2003). The definit ion of actual causation 

developed in this chapter continues the basic counterfactual strategy while avoiding 

problems with this approach identified by Hopkins and Pearl. This new definition 

attempts to formalize Wright’s NESS test in the structural language and differs from the 

Halpern-Pearl (2000) approach by syntactically encoding causal information in causal 

models interpretable as describing sufficient conditions or sets of sufficient conditions 

for some effect. 

 This chapter is organized as follows. Section 4.1 argues that the Halpern-Pearl 

approach to defining actual causality ignores important causal information encoded in 

structural equations. Section 4.2 attempts to elicit what that causal information is with 

the help of the concept of “coefficient invariance” developed by Hausman and 

Woodward (1999). Section 4.3 introduces a concept derived from Hausman and 

Woodward’s explanation of coefficient invariance that is then used to develop a new 

definition of actual causation in Section 4.4. Section 4.5 considers objections raised by 

Hopkins and Pearl (2003) to the general counterfactual strategy for defining actual 

causation in the language of structural models. Finally, Section 4.6 considers what 

Hopkins and Pearl (2003) describe as “ontological concerns” that they suggest call into 

question the suitability of the causal model framework for defining actual causality.  

4.1 Recalling Lost Structure 
Recall (Section 3.3) that a structural equation ( , )x x xx f pa ε=  for x represents a causal 

mechanism determining the value of x where xpa  represents modelled direct causes 

(parents in the corresponding graphical representation) and xε  represents non-modelled 
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factors directly affecting x. For a given set of values for xpa  and xε , the structural 

equation for x defines an equilibrium state (Pearl 2000). What makes the equation 

“structural” is that under an intervention that changes the value of some xY pa∈  from 

the (pre- intervention) value Y y=  to Y y ′=  ( y y′≠ ), in the resulting new equilibrium 

state the relationship described by xf  between X, xpa  and xε  continues to hold. 

Hausman and Woodward (1999) call this invariance property level invariance. A system 

of equations that admits a structural interpretation (as a causal model) must satisfy level 

invariance and what Hausman and Woodward call modularity (cf. Pearl’s autonomy; see 

Section 3.2): 

It says that each structural equation in a system of structural equations 
that correctly captures the causal relation among a set of variables is 
invariant under interventions that disrupt other equations in the system by 
setting the values of their dependent variables.... 

The effect of fixing the value of an endogenous variable X to x is to replace the equation 

for X with the constant function X x= . Graphically, this corresponds to breaking all 

arrows directed into X in a graphical representation of a system of equations (model) 

including the equation for X. Modularity means that this does not break arrows directed 

from X to other endogenous variables in the model. 

 A system of equations satisfying level invariance and modularity encodes an 

interventional function (Hopkins and Pearl 2003); that is, for a particular causal world 

(i.e., causal model with a specified context, a setting for the exogenous variables) it is 

possible to determine the value of any endogenous variable given that some other 

endogenous variables have their value fixed at some non-actual values (i.e., an 

intervention). It is the interventional function that gives causal models their ability to 

answer counterfactual queries (see Section 1.5) and makes the structural language 

attractive for formalizing a counterfactual definition of actual causation, as in the 

Halpern-Pearl definition.  

 Hopkins and Pearl (2003) suggest that it is only in the choice of a causal model’s 

endogenous variables and the corresponding interventional function that a causal world 

“essentially” encodes causal information. Pearl (2000) points out, however, the 
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importance of the structural information conveyed by structural equations. Consider the 

desert traveller example (see Section 2.3.5), where a traveller has two enemies, one who 

poisons (p = 1) the traveller’s water canteen and the other, unaware of the poisoning, 

shoots and empties the traveller’s canteen (x = 1) as a result of which the traveller dies. 

Pearl (2000, p. 312) considers the structural equations y x x p′= ∨  ( x′  is equivalent to 

x¬ ) and the logically equivalent y x p= ∨  and states, 

Here we see in vivid symbols the role played by structural information. 
Although it is true that x x p′∨  is logically equivalent to x p∨ , the two 
are not structurally equivalent; x p∨  is completely symmetric relative to 
exchanging x and p, whereas x x p′∨  tells us that, when x is true, p has no 
effect whatsoever—not only on y, but also on any of the intermediate 
conditions that could potentially affect y. It is this asymmetry that makes 
us proclaim x and not p to be the cause of death. 

Whatever this structural information is, it plays no part in Halpern and Pearl’s (2000) 

explication of their definition of actual causation. Consider their analysis of the 

following example from Hall (2003). 

 Example (rock-throwing) Suzy and Billy accurately throw rocks at the same 

bottle and with sufficient force to shatter the bottle. Suzy’s throw arrives first and 

shatters the bottle before Billy’s throw can arrive and shatter the bottle. 

 Intuitively, Suzy’s throw causes the bottle to shatter and not Billy’s. Halpern and 

Pearl first consider a “coarse” model with three propositional variables ST (Suzy 

Throws), BT (Billy Throws), and BS (Bottle Shatters) and single structural equation 

BS ST BT= ∨ . Halpern and Pearl (2000, p. 14) say, 

In this simple causal network, BT and BS play absolutely symmetric 
roles, with BS ST BT= ∨ , and there is nothing to distinguish one from 
the other. Not surprisingly, both Billy’s throw and Suzy’s throw are 
classified [by the Halpern-Pearl definition] as causes of the bottle 
shattering. 

It is not surprising since, by analogy with the desert traveller example, it is the 

asymmetry between the roles played by ST and BT in the actual scenario that “makes us 

proclaim” ST and not BT  to be the cause of the bottle shattering. BS ST BT= ∨  is a 

truth-conditional equation for BS, distinct from the structural equation 
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( )BS ST ST BT= ∨ ¬ ∧ . Indeed, Halpern and Pearl in applying their definition to 

example scenarios frequently do not even bother to explicitly provide structural 

equations for their models, instead implying a truth-conditional equation based 

intuitively on the provided model variables. 

 Suppose that Billy’s throw was actually earlier than Suzy’s and would have 

shattered the bottle if not for the presence of a translucent net ( 1N = ) in the path of 

Billy’s throw. It is still the case, logically, that BS ST BT= ∨  but it is harder to confuse 

that logical equation with the structurally distinct ( ) ( )BS ST N BT N= ∨ ∨ ∧ ¬ . Yet, 

with respect to the causal structure of the scenario, ST plays an analogous role to that of 

N in the modified scenario.  

Perhaps the reason Halpern and Pearl are insensitive to the structural information 

conveyed by structural equations is that their definition is insensitive to it. For example, 

if the equation for BS in the Halpern and Pearl model for the rock-throwing example is 

replaced by the structurally distinct ( )BS ST ST BT= ∨ ¬ ∧  then the Halpern-Pearl 

definition will still classify 1BT =  as a cause of 1BS =  even when 1ST = (for condition 

C2 of the Halpern-Pearl definition take { , }Z BT BS=
r

, { }W ST=
r

, and set 0ST = ). 

Generally, the insensitivity of the Halpern-Pearl definition of actual causation to the 

structural information that the causal relation between two variables depends on the 

value of one or more other variables is a corollary of the Hopkins and Pearl prime 

implicant theorem (see Section 3.8). 

 Thus, while it may be true that the choice of endogenous variables and the 

corresponding interventional function (the structural contingencies) comprise the 

information encoded in causal worlds relevant to the Halpern-Pearl definition’s 

determination of actual causation, it is not all the information that is encoded. The next 

section will consider what meaning can be attached to the structural information that the 

causal relation between an independent variable and dependent variable in a structural 

equation depends (or does not depend) on one or more other independent variables in the 

equation (e.g., the difference between BS ST BT= ∨  and ( )BS ST ST BT= ∨ ¬ ∧ ) and 

what, if any, role that information plays in the determination of actual causation. 
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4.2 Coefficient Invariance 
A key to understanding the meaning of the structural information encoded in structural 

equations is the realization that a single structural equation can describe more than one 

distinguishable mechanism. As Hausman and Woodward (1999, p. 548 n. 15) state, 

Although we speak of the mechanism an equation captures, we do not 
interpret modularity14 as ruling out the possibility that a single structural 
equation might describe the operation of more than one mechanism. In 
the case of additive relations a single structural equation may express 
several mechanisms that are distinct from one another and which can be 
separately disrupted. 

If in a system of structural equations with additive terms each term in each equation 

represents a distinct causal mechanism (“and thus acts independently of the mechanisms 

registered by other terms”) Hausman and Woodward (1999, p. 547) say that the system 

exhibits coefficient15 invariance: 

Coefficient invariance is a restrictive condition: it will be violated 
whenever additivity is, or when the causal relationship between two 
variables depends on the level of a third variable. If one thinks of 
individual causes of some effect Y as conjuncts in a minimal sufficient 
condition for Y (or the quantitative analogue thereof)—that is, as 
‘conjunctive causes’—then the relationship between an effect and its 
individual causes will not satisfy coefficient invariance. Removing the 
arrow between an individual cause X and one of its effects Y will not 
leave the coefficients relating Y to its other causes unaffected. Coefficient 
invariance can be expected to hold only when the vertices in a graph that 
represent causes of Y in fact represent (components of) separate minimal 
sufficient conditions— i.e., ‘disjunctive causes.’ 

 There is something of a contradiction in the way Hausman and Woodward 

explain coefficient invariance; at least, as a means of identifying distinguishable (if not 

distinct in the sense of shared variables) mechanisms within a single structural equation, 

it is too strict. To illustrate this, recall Hopkins and Pearl’s firing squad example (see 

                                                                 
14 The sense in which Hausman and Woodward use “modularity” here includes level 
invariance (see Hausman and Woodward 1999, p. 545). 
15 “Coefficient” invariant because it requires that  “individual coefficients be separately 
invariant under interventions that change the value of other coefficients” (Hausman and 
Woodward 1999, p. 547). While it is not critical for this discussion, for a discussion of 
what it means for an intervention to change the value of a coefficient see (Hausman and 
Woodward 1999, Section 5). 
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Section 3.8) with structural equation ( )D A B C= ∧ ∨ . ( )A B∧  and C represent distinct 

mechanisms (minimal sufficient conditions) for the prisoners death, D. However, for the 

term A B∧  the existence of a causal relation between B ( 1B = ) and D ( 1D = ) depends 

on the value of A. Hausman and Woodward’s explanation would require the minimal 

sufficient conditions that represent separate individual causes consist of a single 

variable; that is, the individual terms in the structural equations would contain a single 

variable and the structural equations would be sums of these terms. This is confirmed by 

Hausman and Woodward when they say (1999, p. 547), “When one has additive 

relations, one can interpret individual edges as representing separate mechanisms.” 

 Even requiring that the mechanisms represented by individual terms act 

“independently of the mechanisms registered by other terms” is too restrictive. In the 

case of the rock-throwing example (see Section 3.8), where the structural equation is 

( )BS ST ST BT= ∨ ¬ ∧ , the terms describe separate minimal sufficient conditions for 

the bottle shattering ( 1BS = ). This is even clearer with another example with the same 

causal struc ture, Pearl’s (2000, p. 311) two-switches example: 

Consider an electrical circuit consisting of a light bulb and two switches, 
as shown in…[Figure 4.1]. From the user’s viewpoint, the light responds 
symmetrically to the two switches; either switch is sufficient to turn the 
light on. Internally, however, when switch 1 is on it not only activates the 
light but also disconnects switch 2 from the circuit, rendering it 
inoperative. 

 

Figure 4.1: Pearl’s (2000) Two Switches scenario. 
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With (propositional) variables S1 (“Switch 1”), S2 (“Switch 2”), and L (“Light”) the 

structural equation is 1 ( 1 2)L S S S= ∨ ¬ ∨  (i.e., the Light is “ON” when Switch 1 is 

“ON” or Switch 1 is “OFF” and Switch 2 is “ON”). It seems clear that the disjuncts S1 

and 1 2S S¬ ∨  in the equation for L represent distinguishable mechanisms. When Switch 

1 is “ON,” the mechanism by which L is “ON” involves power flowing through path P1 

(see Figure 4.1); it does not matter whether the path P2 from Switch 1 to L is connected 

(i.e., Switch 2 is “ON”) or not. On the other hand, if Switch 1 is “OFF” then the 

mechanism by which L is “ON” involves power flowing through path P2 only and path 

P1 could be cut, or removed, without effect. Though the mechanisms cannot act 

independently, in the sense that only one can be active at a time, they are 

distinguishable. Distinct mechanisms can share components (variables).  

 The requirements of separate disruption of individual terms in a structural 

equation and additivity of terms (i.e., the causal relationship between a variable in a term 

and the dependent effect variable cannot depend on the level of another variable in the 

same term) are more restrictive than necessary to have distinct terms in additive 

structural equations represent distinct mechanisms (separate minimal sufficient 

conditions). Suppose instead that the requirement that “the vertices in a graph that 

represent causes of Y in fact represent (components of) separate minimal sufficient 

conditions—i.e., ‘disjunctive causes’” is interpreted literally to mean that for a set of 

additive structural equations, expressed in sum of products form, 16 each term in an 

equation represents a separate mechanism, a separate set of minimal sufficient 

conditions (“or the quantitative analogue thereof”). Call this property term modularity. 

The next section uses this property to originate and develop a concept of relative 

coefficient invariance as a criterion for deciding what variables should be held fixed and 

what variables may be altered in testing for counterfactual dependence between a effect 

variable and one of its (putative) causal variables in the model. This, in turn, will allow 

for a new structural definition of actual causation that avoids the problem identified by 

Hopkins and Pearl (see Section 3.8) and that formalizes the NESS test in the structural 

language for a scenario modelled by a causal world. 

                                                                 
16 Recall that a disjunction (“∨ ”) is a Boolean sum and a conjunction (“∧ ”) is a 
Boolean product. 
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4.3 coin ur (Z;X|Y) 
For the parents of a variable, the “term modularity” criterion encodes the relationship of 

being components of distinct component causal mechanisms (or elements of minimal 

sufficient conditions for the variable). For distinct variables X, Y, and Z, where X and Y 

occur as independent variables in the structural equation (parents) for Z in a causal 

world ( , )M u
r

, X is coefficient invariant to Y for term T if (1) ( , ) ( 0)M u T¬ =
r �  (i.e., 

the term is satisfied, or non-zero in quantitative contexts, in ( , )M u
r

), (2) X occurs as a 

literal in T, and (3) Y is not a variable in T (symbolically, ( ; | )T
ucoin Z X Yr ; note that X is 

a literal of the form X x=  where ( , ) ( )M u X x=r �  while Y is a variable). When 

( ; | )T
ucoin Z X Yr  the causal relation between X and Z does not depend on the value of Y 

in context u
r

. The reason for developing this definition is to avoid satisfying actually 

unsatisfied terms (minimal sufficient sets) when changing the values of variables not in 

the causal process being tested, as happens with the Halpern-Pearl definition (see 

Section 3.8). This is accomplished by requiring that between a variable X and its parents 

( 1, , nY Y… ), in testing whether i iY y=  is an actual cause of X = x, i iY y=  should belong 

to a satisfied term T and only parent variables jY  that iY  is coefficient invariant to for T 

in the equation for X  ( ( ; | )T
u i jcoin X Y Yr ) should be allowed to have their values altered.  

Returning to Hopkins and Pearl’s firing squad example (see Section 3.8), with 

structural equation ( )D A B C= ∧ ∨  and context such that A = C = 1 and B = 0, 

( , ) ( )M u A B¬ ∧r �  and it is not the case that A is coefficient invariant to B for 

( )T A B= ∧  in the equation for D ( ( ) ( ; | )A B
ucoin D A B∧¬ r ) because T is not satisfied. 

Therefore, in the context such that A = C = 1 and B = 0, to test whether D = 1 is 

counterfactually dependent on A = 1, the value of B may not be altered. Since ( )A B∧  is 

the only term in the equation for D in which A (i.e., 1A = ) occurs, contrary to the 

Halpern-Pearl approach, it is not possible to modify the model so that D is 

counterfactually dependent on A in a scenario where B = 0.  
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 Globally in a causal model with context U  = ur , when distinct variables 1Y  and 

2Y  occur as common parents of distinct variables 1X  and 2X  it can happen that there 

exists a term 1XT  in the equation for 1X  such that 1
1 1 2( ; | )

TX
ucoin X Y Yr  but any satisfied 

term 2XT  in the equation for 2X  that includes 1Y  also includes 

2Y ( 2
2 1 2( ; | )

TX
ucoin X Y Y¬ r ); that is, 1Y  is coefficient invariant to 2Y  for some term in the 

equation for 1X  but not in the equation for 2X . In that case, if 1Y  is part of the “active 

causal process” being tested, before allowing the va lue of 2Y  to be altered, it is 

necessary to interfere directly in the equation for 2X  by substituting a constant 2y  for 

2Y  in the equation for 2X  where 2 2Y y=  in the unaltered model (i.e., fix 2Y  at its actual 

value, 2 2( , ) ( )M u Y y=r � ). This avoids the possibility of the counterfactual or original 

values of 1Y  interacting with non-actual values to satisfy non-actually satisfied minimal 

sufficient sets for some variable, the problem that plagues the Halpern-Pearl definition 

(see Sections 3.8 and 4.5). This process must be repeated for all iX  where for all 

satisfied term XiT  including  1 2( ; | )
TXi

iucoin X Y Y¬ r . Only then should altering the value 

of 2Y  be allowed. 

4.4 A New Structural Definition of Actual Causation  
Before showing how these concepts can be applied to a new definition of actual 

causation two further definitions are required: 

 A causal route 1, , , ,nR C D D E=
r …  between two variables C and E in V is an 

ordered sequence of variables such that each variable in the sequence is in V and a 

parent of its successor in the sequence. 

 The following (original) definition deals with the issue that 1Y  may be coefficient 

invariant to 2Y  for some term in the equation for 1X  but not in the equation for 2X . For 

a causal mode M with route 1, , , ,nR C D D E=
r …  and a sequence of terms 
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1
, , ,D D En

T T T T=
r

… , where XT  is a satisfied term in the equation for X, the submodel 

relative to R
r

 and T
r

 in context u
r

 (denoted [ , ]
T
R uM
r
r r ) is derived from (M, u

r
) as follows: 

for distinct , ,X Y W ∈ V  with X R E∈
r

– , Y R∉
r

, and W C≠ , if ( ; | )TW
ucoin W X Y¬ r  

replace the function WF  for W  (see Section 3.4) by the function that results when V is 

replaced with a constant v where (M, ur ) � (V = v). 

Definition (actual cause; new version) C = c is an actual cause of E = e in (M, u
r

) if the 

following conditions hold: 

AC1. (M, u
r

) � (C c E e= ∧ = ) 

AC2. There exists a route 1, , , ,nR C D D E=
r …  in M, a sequence of satisfied terms 

1
, , ,D D En

T T T T=
r

… , and a setting wr  for W
r

= V − R
r

 and a setting c′ ≠ c for C such 

that: 

(a) ( [ , ]
T
R uM
r
r r , ur ) � [ , ] ( )C c W w E e′← ← ¬ =

r r
, and 

(b) ( [ , ]
T
R uM
r
r r , u

r
) � [ , ]( )C c W w E e← ← =

r r . 

Because there are no causal interaction effects between variables in R
r

 and W
r

 in 

[ , ]
T
R uM
r
r r , by the construction of [ , ]

T
R uM
r
r r  (variables in R

r
 are coefficient invariant to all 

variables in W
r

by definition of [ , ]
T
R uM
r
r r ), the setting W w←

r r
 cannot “contaminate” the 

test of counterfactual dependence in AC2 in the sense of satisfying a non-actually 

satisfied minimal sufficient set of conditions. 

 In practice, it rarely happens that a literal X occurs in more than one satisfied 

term in a structural equation; a non-quantitative equation having more than one satisfied 

term with distinct literals only occurs itself in cases of duplicative causation (see Section 

1.1). To avoid the cumbersome and somewhat confusing terminology, subsequently, 

unless the context requires otherwise (as in the analysis of the pollution cases in Section 
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5.3), the choice of the sequence T
r

 will be left as implied by the analysis of the scenario 

and the superscript T
r

 left out of the notations ( ; | )T
ucoin Z X Yr  and [ , ]

T
R uM
r
r r . 

 As an example of how this definition is applied, consider the rock-throwing 

example of Section 4.1 with the single structural equation ( )BS ST ST BT= ∨ ¬ ∧ 17. To 

show that 1ST =  is a cause of 1BS = , let ,R ST BS=
r

. Since ( , ) ( 1)M u ST =r � , the 

term consisting of the single literal ST is satisfied in ( , )M ur . Therefore 

( ; | )ucoin BS ST BTr  and the model’s only structural equation is unchanged in 

[ , , ]ST BS uM r . Since ( , ) ( 1 1)M u ST BS= ∧ =
r � , condition AC1 is satisfied. For condition 

AC2, { }W R BT= =
r r

V – . Setting 0BT ←  (W w←
r r

) and 0ST ←  ( C c′← ) satisfies 

condition AC2(a) (i. e., if 0ST BT= =  then 0BS = ). Keeping 0BT =  and setting ST  

back to its actual value, 1ST ← , results in 1BS =  satisfying condition AC2(b) . Thus 

the definition classifies 1ST =  as a cause of 1BS = . 

 To show that 1BT =  is not a cause of 1BS =  in ( , )M u
r

, take ,R BT BS=
r

, the 

only route from BT to BS. Note that the only term containing BT (i.e., 1BT = ), 

ST BT¬ ∧ , is not satisfied in ( , )M u
r

 as ( , ) ( )M u ST BT¬ ¬ ∧
r � . Therefore, 

( ; | )ucoin BS BT ST¬ r  and 1ST ←  in the equation for BS in [ , , ]BT BS uM r  where the 

equation for BS becomes 1 (0 ) 1BS BT= ∨ ∧ = . Clearly it is not possible for condition 

AC2 to be satisfied; the definition will not classify 1BT =  as a cause of 1BS = . 

(Note that, strictly speaking, the equation for condition for BS  would be of the 

form ( )( ) ( )ST ST BT BSBS ST u ST BT u u¬ ∧′ ′= ∧ ¬ ∨ ¬ ∧ ∧ ¬ ∨  where Xu′  stands for 

inhibiting abnormalities; for example, STu′  stands for inhibiting abnormalities that 

would prevent the bottle shattering from Suzy’s throwing the rock. BSu  stands for 

triggering abnormalities that might cause the bottle to shatter even if neither Suzy nor 

Billy throw their rocks (see Pearl 2000, p. 29). Thus in [ , , ]BT BS uM r  the equation for BS 

                                                                 
17 Recall Suzy and Billy throw rocks (ST and BT) at a bottle and Suzy’s arrives first to 
shatter the bottle (BT) before Billy’s can arrive to do the same. 
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would becomes ST BSBS u u′= ∨ . Generally, unless otherwise stated, the assumption is 

that these abnormalities are not present and are left out of the equations.) 

4.5 Validity of the “Counterfactual Strategy” 
The counterfactual strategy“Event C causes event E iff for some appropriate G, E is 

counterfactually dependent on C when we hold G fixed”—is at least as old as Mackie’s 

counterfactual account of causation as that which makes a difference in relation to some 

background or causal field (Mackie 1974). The strategy is pursued famously by Lewis 

(1979) with his account of what must be held fixed in applying his similarity metric for 

possible worlds (see Section 2.3.3), and is pursued as recently as Yablo’s (2003) account 

of effects being de facto dependent on their causes modulo some fixed infrastructure. 

According to Halpern and Pearl, the key element of the counterfactual strategy is the 

identification of which G are appropriate to hold fixed: “Intuitively, we would like to 

screen out the other causes of E, such that the only causal mechanism responsible for E 

is C. In the case of the Halpern-Pearl definition (see Section 3.6), condition C2 defines 

G as a particular setting, relative to a causal model ),( uM
r

, of a group of endogenous 

variables (W
r

) not in the “active causal process” ( Z
v

) that together with the active causal 

process partition the endogenous variables (V = ZW
v∪r

) so that C2(a) and C2(b) are 

satisfied.  

That condition C2 of the Halpern-Pearl definition is unintuitive does not need 

argument (and Hopkins and Pearl do not provide one; though by comparison with 

Pearl’s (2000) original “causal beam” definition, the Halpern-Pearl definition is 

positively crystalline). In arguing that the restrictions on possible G,embodied in 

condition C2(b)are too permissive, Hopkins and Pearl (2003) rely on two example 

scenarios for which they claim the Halpern-Pearl definition gives counterintuitive causal 

answers. In what follows, it is argued that the first (“loanshark”) example considered by 

Hopkins and Pearl (Section 4.5.1) exploits the same flaw in the definition identified in 

their prime-implicant theorem that the new definition of actual causation (“new 

definition”) eliminates. Additionally, in Section 4.5.2 it is argued that Hopkins and 

Pearl’s use of the second (“bomb”) example illustrates how their approach to 
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undermining the counterfactual strategy (“the problem illustrated by this example is 

simply a representative of any number of situations where it is possible to choose an 

inappropriate G to keep fixed”) fails to distinguish between the distinct issues of 

inappropriate G’s and inappropriate causal models. 

4.5.1  Condition C2(a) or C2(b) which is too permissive? 

Recall that Halpern and Pearl (2000) intended that the variables in the set Z
v

 of 

condition C2 of their structural model definition of actual causatio n should mediate 

between the (putative) cause X = x and the effect in question, ϕ , and that the set Z
v

 

should be thought of as describing the “active causal process” from X to ϕ  (see Section 

3.6). The choice of the set W
r

 and the setting wW ′= vr
 is intended to isolate this causal 

process in testing the causal influence of X by shutting off other potential causal 

processes for ϕ ; that is, for some setting x ≠ x', when X = x' and wW ′= vr
, ϕ  is false 

( ϕ¬ , condition C2(a)). Condition C2(b) is then intended to show that the causal process 

from X = x to ϕ  is “active”: other causal processes (if any) are shut off ( wW ′= vr
) and the 

presumed causal process from X = x, mediated by Z
v

, is shut off (X = x') so that when 

the latter process is restarted (X = x), should ϕ  become true again it can be attributed to 

the causal influence of X = x. 

 Halpern and Pearl (2000) recognize, however, that if it is to be ensured that the 

original causal process mediated by Z
v

 in the unaltered model is the same process that 

produces ϕ  in the altered model (the submodel W wM ′←
r v ) then any influences on Z

v
 

resulting from the interventions in the model described by the setting wW ′←
rr

 must be 

screened. Therefore the requirement of condition C2(b) that not only should returning 

X
v

 to its original value X = x make ϕ  true again but also restoring the original values of 

any subset of variables in Z
v

 should leave ϕ  true. However, condition C2(b) is not only 

unintuitive, it is insufficient. Halpern and Pearl apparently failed to recognize that 

condition C2(a) does not ensure that ϕ¬  is the result of the (putative) active causal 

process involving X = x being “shut off” when X is set to the counterfactual X = x′ ; nor 
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does it ensure that in W wM ′←
r v  it is a “causal process” within Z

v
 that produces the change 

back from ϕ¬  to ϕ  when X is returned to its original value X = x in condition C2(b).  

The intent of condition C2(a) is to test the dependence of ϕ  on X = x by 

screening off alternative causes for ϕ  masking the effect of X = x and the intent of 

condition C2(b) is to test the ability of X = x to produce ϕ  (see Section 3.6). However, 

because there is no consideration paid to interaction effects in deciding what variables 

can belong to W
r

 (i.e., nothing corresponding to ( ; | )ucoin Z X Yr ) and have their values 

fixed, it can happen that the setting X = x′ in C2(a) or X = x in C2(b), together with the 

setting wW ′←
rr

, satisfies a minimal sufficient condition (mechanism) for some variable 

between X and ϕ  unsatisfied except for the setting wW ′←
rr

. It is this non-actual 

mechanism that causes the change from ϕ  to ϕ¬  or from ϕ¬  to ϕ , then the Halpern-

Pearl definition can lead to counterintuitive causal conclusions. Hopkins and Pearl’s 

(2003) firing squad example (in the context where B does not shoot; see Section 3.8) 

illustrates the latter case; their first example of an inappropriate Goriginally 

considered by Halpern and Pearl (2000)18 illustrates the former: 

Example (loanshark) Larry the Loanshark contemplates lurking outside Fred's 

workplace to cut off his finger, as a warning to him to repay his loan quickly. If Larry 

cuts off Fred's finger, he will throw it away so that it cannot be reattached. Something 

comes up, however, so that Larry is not waiting and Larry does not cut off Fred's finger. 

That same day, Fred has his finger severed by a machine at the factory. He is rushed to 

the hospital, where the finger is reattached, so if Larry had shown up, he would have 

missed Fred. At day's end, Fred's finger is functional, which would not have been true 

had Larry shown up and Fred not had his accident. 

Consistent with the lack of consideration paid to structure, neither Halpern and 

Pearl (2000) nor Hopkins and Pearl (2003) provide structural equations for their models 

of the scenario. Instead, they provide variables, their values, and leave the structure of 

the scenario to be inferred from the intuitive truth-functional relations. The following 

                                                                 
18 Halpern and Pearl attribute the origin of the example to Eric Hiddleston. 
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causal model is consistent with the implied causal model. The propositional endogenous 

variables, with values 1 (“true”) or 0 (“false”), are 

• LL for “Larry the loanshark lurks outside Fred’s workplace”; 

• LC for “Larry cuts off Fred’s finger and throws it away”; 

• A for “Fred suffers an accident at work where his finger is caught in machinery”; 

• FA for “Fred’s finger is available”;  

• FS for “Fred’s finger is severed”; 

• FR for “Fred’s finger is reattached”; and  

• FF for “Fred’s finger is functional at day’s end”. 

The structural equations are 

• LC LL A= ∧ ¬ ; 

• FS LC A= ∨ ; 

• FA LC= ¬ ; 

• FR FA FS= ∧ ; and 

• FF FR FS= ∨ ¬ . 

As usual (see Section 3.7), the context u
r

 is assumed to be such that the endogenous 

variables have their actual values in the scenario. In this context LL = 0 and A = 1 so that 

LC = 0 and FS, FA, FR, and FF are all equal to 1. The corresponding causal diagram is 

given in Figure 4.2. 
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Figure 4.2: Causal Diagram for the Loanshark model. 

 

According to the Halpern-Pearl definition, FS = 1 is (counter- intuitively) an 

actual cause of FF = 1; that is, Fred’s finger being severed earlier in the day is a cause of 

his finger being functional later in the day: Letting W
r

= {LL} and setting LL = 1 

( wW ′←
rr

) gives FF = 0 ( ϕ¬ ) when A = 0 ( xX ′←
rr

) satisfying condition C2(a). Then 

returning A to its original value A = 1 ( xX
rr

← ) in ( 1LLM ← ,u
r

) gives FF = 1 (ϕ ) and, 

since every variable in Z
r

= V - W
r

 returns to its original value in ),( uM r , condition 

C2(b) is satisfied. (Conditions C1 and C3 are trivially satisfied.) 

Notice that it is the interaction of the non-actual LL = 1 (outside of Z
r

) with the 

condition C2(a) counterfactual, A = 0, that accounts for FF = 0. If the (intuitively) 

causally irrelevant Larry scenario were absent from the model, or if LL and LC are fixed 

at their actual values (LL = 0 ∧  LL = 0), then FF does not counterfactually depend on 

FS. Halpern and Pearl (2000) were troubled that the addition of a non-actual, “fanciful” 

contingency, as in the loanshark example, could change the result of the causal query—

in this case, making it counterintuitive. They accepted that if it was a “reasonable 

possibility” that Larry would show up to cut off and throw away Fred’s finger should 
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Fred appear then it was proper to include the Larry scenario in the model. In that case, 

even if in fact Larry doesn’t show up, according to the structural contingency theory 

underlying the Halpern-Pearl definition (see Sections 3.6 and 3.7), we are bound to 

contemplate the interventional contingency that he does; and being so bound, the 

conclusion that Fred’s workplace accident (FS = 1) was a cause of his finger functioning 

at the end of the day (FF = 1) is acceptable. Halpern and Pearl (2000) propose to avoid 

“truly” fanciful scenarios being included in an appropriate model with a calculus of 

fancifulnessa ranking of contingencies based on the degree of surprise they elicit. As 

Hopkins and Pearl (2003) show, this is not a very appealing solution19: 

Consider what happens if the story is amended such that Larry fully 
intends to show up at the factory, but is improbably struck by lightning 
such that he doesn't arrive. Hence the prior probability of LL = 1 is high, 
and yet we still intuitively would like to conclude that Fred's accident did 
not cause his finger's functionality. In fact, we would only want to 
conclude that Fred's accident was a cause of his finger being functional at 
day's end in the event that Larry shows up in actuality. 

 Because the possibility of interaction effects, which plagues the Halpern-Pearl 

definition, does not arise with the new definition, neither does the problem of non-actual 

contingencies. In the loanshark example, the only routes R
r

 from A to FF must pass 

through FA or FS but not both (see Figure 4.2). Since ( ; | )ucoin FR FS FA¬ r , if R
r

 passes 

through FS then FA will be fixed at its actual value in [ , ]R uM r r , FA = 1 and it is not 

therefore possible that FF = 0 so that condition AC2(a) of the new definition will fail. 

On the other hand, if R
r

 passes through FA then R
r

 must include LC. Since 

( ; | )ucoin LC A LL¬ r , LL will be fixed at LL = 0 in [ , ]R uM r r  and it is not therefore possible 

for FS = 1 when A = 0 so that once again condition AC2(a) will fail. According to the 

new definition of actual causation, A = 1 is not a cause of FF = 1. As Hopkins and Pearl 

require, if Larry does not show up, he is irrelevant to whether the finger functions. 

                                                                 
19 In an unpublished, revised version of their paper, Halpern and Pearl (2002) take a 
different approach to unreasonable scenarios. They propose to amend the definition of 
actual causation by permitting the inclusion of an explicit set of disallowed settings to 
screen out contingencies that tamper with the causal processes to be uncovered. 
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4.5.2 Definition or Model? 
Hopkins and Pearl’s (2003) second example of an inappropriate G reintroduces Billy 

and Suzy; this time Billy is up to no good: 

 Example (bomb) Billy, apparently upset with Suzy’s superior rock-throwing 

ability, places a bomb under Suzy’s chair. For some reason Suzy sees fit to look under 

the chair and notices the bomb. Of course she flees, but is sufficiently undaunted to 

attend a pre-scheduled medical appointment where she is pronounced healthy.  

 

Figure 4.3: Hopkins and Pearl (2003) causal model for the Bomb scena rio. 

 

 The model provided by Hopkins and Pearl in this case consists of just the 

diagram in Figure 4.3. Though in this case the structural and (implied) truth- functional 

equations coincide, it is still useful to flesh out the model in a way that preserves 

Hopkins and Pearl’s point. Let the (propositional) endogenous variables be: 

• BPB for “Billy plants the bomb;” 

• BBSC for “There is a bomb beneath Suzy’s chair;” 

• SL for “Suzy looks under the chair;” 

• SNB for “Suzy notices the bomb;” 

• SF for “Suzy flees;” 

• CE for “The chair explodes;” 

• SI for “Suzy is injured;” and 

• SDH for “Suzy is declared healthy.” 



 63 

The structural equations are: 

• BBSC BPB= ; 

• SNB BBSC SL= ∧ ; 

• CE BPB= ; 

• SF SNB= ; 

• SI CE SF= ∧ ¬ ; and 

• SDH SI= ¬ . 

The corresponding causal diagram is given by Figure 4.4. 

 

Figure 4.4: Causal diagram for the modified Bomb model. 

 

As Hopkins and Pearl suggest, it seems counterintuitive to classify Billy’s 

planting of the bomb as a cause of Suzy being declared healthy; however, according to 

the Halpern-Pearl definition it is (for condition C2 let { }W CE=
r

 and set 1CE ← ). This 

is also the case with the new definition since for the path 

, , , , ,R BPB BBSC SNB SF SI SDH=
r

 CE must be fixed 1CE ←  in [ , ]R uM r r  

( ( ; | )ucoin SI SF CE¬ r ) and so condition AC2 will be satisfied. 

Hopkins and Pearl assume this result is a problem for the Halpern-Pearl 

definition and, by implication, for the new definition. However, this assumes that the 

model described corresponds to the mental model presumed by the structural language 

(see Section 3.2) to underlie the intuition that Billy’s planting of the bomb is not an 

actual cause of Suzy being declared healthy. In both the original and elaborated models, 

Billy’s bomb planting is not part of the mechanism for Suzy being injured; Billy’s 

misbehaviour is modelled as an indirect participant in any injury suffered by Suzy. In 
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terms of Pearl’s structural contingency theory (see Sections 3.6 and 3.7), the model 

contemplates the possibility that the chair will explode though no bomb was planted. 

However, the assumption underlying the intuition that Billy’s planting of the bomb does 

not cause Suzy to avoid injury is that but for the planting of the bomb the chair would 

not have exploded. Therefore, an equally valid explanation—to the suggestion that there 

is a problem with the definition— for the counterintuitive result is that the model is 

inaccurate: in the model underlying the intuition the intermediate variable CE between 

BPB and SI is factored out by the assumption that the chair does not explode if Billy 

does not plant the bomb. The “intuitive” model leaves out the variable CE and replaces 

the equation for SI with SI BPB SF= ∧ ¬  in which case it is not possible to show with 

either definition that 1BPB =  is a cause of 1SDH = . (Of course, if the assumption that 

the chair would not explode if Billy does not plant the bomb is incorrect, then the 

intuition and revised model are wrong.) 

4.6 Actual Causal Subtleties 
Hopkins and Pearl (2003) raise some general, “ontological” concerns with respect to any 

attempt to define actual causation within the  structural model framework. While in the 

previous section it was suggested that Hopkins and Pearl fail to distinguish the separate 

issues of defective definitions and inaccurate models, here it will be argued that they fail 

to distinguish between the difficulties in identifying or determining what is an 

appropriate model for a scenario with the issue of whether the determination of an actual 

causal query involves the application of a structural definition to a (informal mental or 

formal) causal model. 

 Hopkins and Pearl seem to argue that the determination of an actual causal query 

cannot be merely structural (the application of a counterfactual query to some properly 

modified structure of events) if there are scenarios about which there are settled causal 

intuitions but which defy modelling in the structural framework. If there are such 

scenarios, that would be a problem. Fortunately, a small library of causal structures 

seems to be able to deal effectively with most scenarios and causal intuitions settled 

when sufficient information is provided to infer the causal dynamics of the scenario. 

 Hopkins and Pearl first consider the following example. 
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 Example (magic) The laws of magic require that at midnight the first spell cast 

the previous day—i.e., since the previous midnight—will take effect. The first spell cast 

on a given day is by Merlin, who casts a spell to turn the prince into a frog. That 

evening, Morgana also casts a spell to turn the prince into a frog. At midnight the prince 

duly becomes a frog. 

Hopkins and Pearl (2003) say 

Intuitively, Merlin’s spell is a cause of the prince’s transformation and 
Morgana’s is not. In this case, although there is preemption, there are no 
intermediating events that we can really play with and model. Spells 
work directly, and without Merlin’s spell, the prince’s transformation 
would have occurred at precisely the same time and in the same manner. 
Hence it is far from clear how we could model this story appropriately 
with a structural model. One concise way to express this story uses first-
order constructs. For example, we could neatly express the rule that a 
spell works iff there does not exist  [original italics] a previous spell cast 
that day. 

Halpern and Pearl (2002, p. 30) have no difficulty discerning a causal structure for this 

scenario: ”Either spell would have done the job, had it been the only spell of the day; but 

Merlin’s spell was first, so it was his spell that caused the transmogrification. Merlin’s 

spell trumped Morgana’s.” Halpern and Pearl recognize that this is just the rock-

throwing (Section 4.1) or two-switches (Section 4.2) scenario, where there are two 

causes present in the scenario for the same effect except that one preempts (“trumps”) 

the other: ( )Frog Mer Mer Mor= ∨ ¬ ∧  (Frog = “The prince turns into a frog” and 

( )Mer Mor = ”Merlin (Morgana) casts spell”). The “rule of magic,” peculiar as it is, is 

sufficient to enable the determination of an appropriate causal structure for the scenario, 

“to ensure that the structural equations properly represent the dynamics of the story” 

(Halpern and Pearl 2002, p. 30). Formalizing the modelling process, the process by 

which the information about a scenario is translated into an appropriate causal model, 

may require a more feature-rich language than the structural language (e.g., to formalize 

the rule of magic that explains the causal dynamics of the magic scenario), but that is 

different than arguing that it is more than the causal structural dynamics of the scenario 

that determines the outcome of an actual causal query. The structural language is 

adequate to represent the latter. 
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4.6.1 Temporal Constructs 
Hopkins and Pearl (2003) suggest that the structural framework would benefit from 

temporal constructs, a “fine distinction” difficult to phrase in the  structural model 

framework. They give as an example the difficulty of expressing the difference between 

an event causing another event and hastening another event as in “a strong wind that 

causes Suzy’s rock to hit the bottle earlier than anticipated, but does not cause the bottle 

to shatter.” It is not clear why such a hastener would be included in a causal model, 

informal or formal, if it plays no role in the causal dynamics of the scenario. For 

instance, suppose in the rock-throwing scenario (see Sectio n 4.1) that Billy’s rock would 

have reached and shattered the bottle if the wind had not sped up Suzy’s throw so that 

the latter arrived first. In that case, the wind (W) is a necessary part of the causal 

dynamics of the scenario:  

( ) ( ) ( ) ( )BS ST W ST BT ST BT W BT= ∧ ∨ ∧ ¬ ∨ ¬ ∧ ∨ ¬ ∧ . 

However, if Suzy’s throw would have reached the bottle first and shattered it whether or 

not the wind blew her rock there sooner, then there would be a reason for including the 

wind as part of a causal mechanism for the rock shattering the bottle at a certain time, 

but there would be no reason for including it in a model for the bottle shattering. Both an 

informal mental model and a formal model would factor the wind out; this latter 

modelling process could perhaps benefit from having a means of representing the 

distinction between genuine causal factors and mere hasteners. 

4.6.2 Conditions and Transitions  
Hopkins and Pearl (2003) use the example of the difference between a man being dead 

and a man dying to illustrate the distinction between enduring conditio ns and transitional 

events—a distinction they say can be modelled with specialized classes of random 

variables not available in the structural framework. They suggest the importance of this 

distinction to the determination of actual causal issues by wondering whether we would 

be willing to ascribe a heart attack causing the man’s death as the cause of him being 

dead in the year 3000. Elsewhere, Hopkins and Pearl (2002) give the example of a man 

blowing out a candle ( 1B = ) when the wax would have run out in 5 minutes in any case 

( 1WRO = ) and ask whether the man blowing out the candle is the cause of the room 
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being dark one hour later ( 1RD = ). The model provided has structural equations 

WRO B= ¬  and RD B WRO= ∨ . The Halpern-Pearl definition concludes, counter-

intuitively, that blowing out the candle is a cause of the room being dark one hour later 

( 1B =  is a cause of 1RD = ) even though the candle would have gone out anyway.  

 First, note that this model does not satisfy coefficient invariance (see Section 

4.2): the value of WRO depends on the value of B. The model confuses the wax running 

out with there being 5 (or less than 60) minutes of wax left to burn ( 1WL = ). A more 

“appropriate” model would have equations WRO B WL= ¬ ∧  and RD B WRO= ∨  (see 

Figure 4.5). However, it is still the case that even for the new definition that 1B =  is a 

cause of 1RD =  (since ( ; | )ucoin RD B WROr , the value of WRO can be changed to 

0WRO = in [ , , ]B R D uM r , which makes 1RD =  counterfactually dependent on 1B = ). 

 

Figure 4.5: Causal diagram for a room being dark? 

 

 The model still seems odd because the information provided only describes the 

causal dynamics for the room becoming dark, not for causing the room to stay dark. 

Intuitively, the cause of an enduring condition is a factor in the absence of which the 

condition would no longer endure. In the dark room scenario, this would require 

information that would allow for inferences about lurking mechanisms that would cause 

the transition from RD  to RD¬ . The same analysis applies to the “being dead” 

example, where the analogue of WRO would be all manners of deaths that could have 

befallen the heart attack victim but for the heart attack, including old age; though, in the 

case of being dead, the mechanisms available for becoming not dead are apparently few. 
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4.6.3 Presence and Absence of an Event 
Finally, Hopkins and Pearl (2003) say that in the structural model framework the 

distinction between the presence and absence of an event is lost. It is not clear that this is 

the case, at least with the new definition of actual causation. Consider Hopkins and 

Pearl’s firing squad example (see Section 3.8) where the single structural equation is 

( )D A B C= ∧ ∨ . Suppose the context ur  is such that 0A B C= = =  and therefore 

0D = . According to the new definition, 0A =  (the absence of the event “A loads B’s 

gun”) is not a cause of 0D =  (the absence of the event “the prisoner dies”) since 

( ; | )ucoin D A B¬ r  means effectively D C=  in [ , , ]A D uM r . ( 0A =  is a cause of 0D =  

for the Halpern-Pearl definition.) On the other hand, if the structural equation for D was 

given in the logically equivalent form ( ) ( )D C A C B¬ = ¬ ∧ ¬ ∨ ¬ ∧ ¬ , 0A =  will be 

classified as an actual cause of 0D =  (since ( ; | )ucoin D A Br , 1B ←  is allowed in 

[ , , ]B D uM r  making 0D =  counterfactually dependent on 0A = ). The significance of the 

presence or absence of an event is not lost when structure is returned to “structural 

equations.” 
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5. Formal NESS Sets, Comparisons, and Conclusion 

The straightforward interpretation for the NESS test in the structural language, 

suggested in Section 3.8, fails in the identification of Wright’s concept of causal 

generalizations with the sets Z
r

 of the Halpern-Pearl definition. The Halpern-Pearl 

definition fails to formalize the NESS test in a causal world defined by a causal model 

with a specific context as it can ascribe actual causality to necessary conditions of non-

satisfied (non-actual) sets of sufficient conditions. Guided by Hausman and Woodward’s 

(1999) explanation of coefficient invariance, the previous chapter demonstrated how the 

concept of minimal sufficient sets, identified with component mechanisms in structural 

equations satisfying what was called “term modularity” in Section 4.2, could be encoded 

in the structural language. The concept of ( ; | )ucoin Z X Yr , along with the dependent 

concept of [ , ]R uM r r , was developed in Sections 4.3 and 4.4 to use that encoded 

information to isolate an actually active causal process—linked sets of satisfied minimal 

sufficient conditions (chains of active mechanisms)—along a route. This allowed for a 

new way of defining an appropriate G for the counterfactual strategy (see Section 3.8): 

depending on its role in a particular equation, a variable can be fixed at its actual value 

or allowed to vary. Thus, the problem of being too permissive or too strict, a problem for 

the all-or-nothing choice of appropriate G with the Halpern-Pearl approach, is avoided 

with the new definition of Section 4.4. 

 This chapter concludes the thesis and is organized as follows. Section 5.1 

redefines Halpern and Pearl’s “active causal process” (see Section 3.6) using the new 

definition of actual causation and applies it in comparison with NESS sufficient sets in 

analysis of cases of duplicative causation (Section 5.2), preemptive causation (Section 

5.3), and of double omissions (Section 5.4). Finally, the chapter concludes with an 
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evaluation of the thesis that the structural language is adequate to formalize the NESS 

test and suggests directions for future research (Section 5.6). 

5.1 An Actually Sufficient Set in a Causal World—NESS Formalized? 
Suppose that C is an actual cause of E in ( , )M u

r
. Then there exists a route 

1, , , ,nR C D D E=
r …  and a sequence of satisfied terms 1

, , ,D D En
T T T T=
r

… satisfying 

condition AC2 of the new definition of actual causation. The active causal process 

relative to R
r

 and T
r

 in u
r

 (denoted [ , ]
T
R uACP
r
r r ) is the set { }iR X

r ∪  where iX R∈
r

–V , 

Y R E∈
r

– , Z R A∈
r

– , and ( ; | )TZ
iucoin Z Y X¬

r
r . That is to say, [ , ]

T
R uACP
r
r r  is the subset of 

variables in V that have their valued fixed in forming [ , ]
T
R uM
r
r r  that are parents of a 

variable in R
r

. (Again, the term specific terminology and the accompanying superscripts 

will be discarded where the context does not require them; see Section 4.4.) 

 By construction of T
r

, if every variable X in [ , ]
T
R uACP E−
r
r r  is set to its actual 

value (i.e., for all [ , ]
T
R uX ACP∈
r
r r , X x←  where ( , ) ( )M u X x=

r � ), then the resulting set 

of variable assignments is actual, includes the actual value of C, and is sufficient for the 

actual value of E. Also, since R
r

 and T
r

 satisfy the counterfactual test of condition AC2 

of the new definition, the actual va lue of C is necessary for the sufficiency of the set. 

Thus, if causal models are interpreted as the causal generalizations that Wright argues 

define sufficient sets, then the new structural definition of actual causation will classify 

C c=  as an actual cause of E e=  only if C c=  is a necessary member of a sufficient 

set of actual conditions. The NESS test is satisfied (formalized) in a causal world. 

For example, consider a causal model with the following structural equations: 

• D A B= ∧ ¬ ; 

• C B= ¬ ; and 

• E C D= ∨  
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Figure 5.1: Causal diagram for ( , )M u
r

 

 

The causal diagram for this model is represented in Figure 5.1. Assume that ur  is such 

that 1A =  and 0B = , and therefore 1C D E= = = . To show that 1A =  is an actual 

cause of 1E = , note that condition AC1 is satisfied and let , ,R A D E=
r

 for condition 

AC2. Since ( ; | )ucoin E D Cr  and ( ; | )ucoin D A B¬ r , the structural equations in [ , ]R uM r r  are 

D A= , C B= ¬ , and E C D= ∨ . The corresponding causal diagram is represented in 

Figure 5.2. Letting ( , )W B C=
r

 and setting (0,0)W w= =
r r

 satisfies conditions AC2(a) 

and (b). 

 

Figure 5.2: Causal diagram for [ , ]R uM r r  

 

 [ , ]R uACP r r  tells a complete causal story for 1E =  in the scenario modelled by 

( , )M u
r

; it says if A a= , B b= , and D d= , where ( , ) ( )M u A a B b D d= ∧ = ∧ =
r � , 

then E e=  irrespective of what happens in the rest of the causal world ( , )M u
r

. The 

remaining links into E in Figure 5.2 (the route , ,B C E ) could be removed without 

effect. { , , }A a B b D d= = =  is a sufficient set of conditions to guarantee E e= . 
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Condition AC2 says that A a=  is a necessary condition for that set. In other words, the 

actual values of [ , ]R uACP Er r –  define a NESS set for E e= , an actually sufficient set, in 

the causal world ( , )M u
r

. In the above example, 1A =  is a necessary condition for the 

sufficiency of the set { 1, 0, 1}A B D= = = . It is also possible to give meaning to Wright’s 

“omnibus negative condition” (see Section 2.3.5): the variables in [ , ]R uACP Rr r
r–  are the 

potentially preemptive variables whose values must be checked to ensure the “absence 

of preventing or counteracting causes.” Thus the variables not in [ , ]R uACP r r  can be 

ignored in telling the causal story (the NESS set)—as Wright does in describing the 

NESS sets in duplicative causation cases (see Section 5.2)—the variables in [ , ]R uACP r r  

must be included in telling the causal story in preemption cases. 

5.2 Preemptive Causation Cases 
Wright (1985, p 1795) considers two preemptive scenarios: in the first, D shoots and 

kills P before P can drink tea fatally poisoned by C and, in the second, D shoots and 

instantly kills P after P drinks tea fatally poisoned by C but before the poison can take 

effect. With respect to the first scenario (poisoned tea), in Wright’s (1985, p 1795) 

NESS analysis, 

D's shot was necessary for the sufficiency of a set of actual antecedent 
conditions that did not include the poisoned tea. Conversely, C's 
poisoning of the tea was not a necessary element of any sufficient set of 
actual antecedent conditions. A set that included the poisoned tea but not 
the shooting would be sufficient only if P actually drank the tea, but this 
was not an actual condition. The shooting preempted the potential causal 
effect of the poisoned tea. 

In this scenario, the story of death by poisoning would have occurred (the intake of 

the poison through consumption of the tea will have occurred) but for D shooting P. 

This is reflected in the following causal model. The model has the following 

propositional variables: 

• DS represents “D shoots;” 

• PT represents “C poisons the tea;” 
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•  CP represents “P consumes poison;” and 

• PD for “P dies.” 

 The structural equations are: 

• CP DS PT= ¬ ∧  and 

• PD DS CP= ∨ . 

The causal diagram corresponding to these equations is represented in Figure 5.3. 

 To show that 1DS =  is an actual cause of 1PD = , let ,R DS PD=
r

 for 

condition AC2. Since ( ; | )ucoin PD DS CPr , [ , ] ( , )R uM M u=r r r
 and therefore 

( , )W PT CP=
r

. Setting (0,0)W =
r

 then satisfies conditions AC2(a) and (b). Note that 

[ , ]R uACP R=r r
r

 and the NESS set including 1DS =  for 1PD =  in ( , )M u
r

 is just 

{ 1}DS = , as it is with Wright’s analysis. 

 

Figure 5.3: Causal diagram for the poisoned tea scenario 

 

Suppose that the context was such that D does not shoot ( DS¬ ) but P still poisons the 

tea. Then 1CP =  and 1PD =  and it is straightforward to show that 1PT =  is a cause of 

1PD =  by letting , ,R PT CP PD=
r

 in condition AC2. Note, however, that since 

( ; | )ucoin CP PT DS¬ r , [ , ] { , , , }R uACP PT CP DS PD=r r  and the NESS set including 

1PT =  for 1PD =  in ( , )M u
r

 is { 1, 1, 0}PT CP DS= = = : the absence of the preempting 

condition DS must be included. 
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For the second example, Wright’s (1985, p 1795) NESS analysis of why D’s 

shooting was a cause of P’s death is the same as that for the first example; as to whether 

C’s poisoning of the tea was a cause: 

Even if P actually had drunk the poisoned tea, C's poisoning of the tea 
still would not be a cause of P's death if the poison did not work 
instantaneously but the shot did. The poisoned tea would be a cause of P's 
death only if P drank the tea and was alive when the poison took effect. 
That is, a set of actual antecedent conditions sufficient to cause P's death 
must include poisoning of the tea, P's drinking the poisoned tea, and P's 
being alive when the poison takes effect. Although the first two 
conditions actually existed, the third did not. D's shooting P prevented it 
from occurring. Thus, there is no sufficient set of actual antecedent 
conditions that includes C's poisoning of the tea as a necessary element. 
Consequently, C's poisoning of the tea fails the NESS test. It did not 
contribute to P's death. 

 A causal model for this scenario differs from the previous one by the addition of 

a variable PTE for “the poison takes effect.” The structural equation for PD becomes 

PD DS PTE= ∨  and the equation for CP becomes CP PT=  (see Figure 5.4). As with 

Wright’s NESS analysis, the proof that 1DS =  is an actual cause of 1PD =  would be 

essentially the same as with the previous example. The interesting aspect of this example 

is that it shows how the NESS test allows Wright to “solve” the causal issue by fitting it 

into the preemptive scenario, illustrating again that the difficult aspect of actual causal 

queries is deriving the correct model. Given the model, the determination of the actual 

causal query is stra ightforward. 

5.3 Duplicative Causation Cases 
Among the duplicative causation cases, of particular interest are a group of 

pollution cases where defendants were found liable though none of their individual acts 

(their “contributions” to the pollution) was sufficient, or necessary given the 

contributions of the other defendants, to produce the plaintiff’s injuries (some adverse 

effect on the use of his property).20 Wright (1985, p 1793) applies the NESS test to an 

                                                                 
20 For example, Wright (2001, p 1100) cites the case of Warren v. Parkhurst, 92 N.Y.S. 
725 (N.Y. Sup. Ct. 1904), aff’d, 93 N.Y.S. 1009 (A.D.1905), aff’d, 78 N.E. 579 (N.Y. 
1906), where each of twenty-six defendants discharged “nominal” amounts of sewage 
into a creek which individually were not sufficient to destroy the use of downstream 
plaintiff’s property but the stench of the combined discharges was sufficient. 
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idealized example in which, five units of pollution are necessary and sufficient for the 

plaintiff’s injury and seven defendants discharge one unit each. The NESS test requires 

only that a defendant’s discharge be necessary for the sufficiency of a set of actual 

antecedent conditions, and that (Wright 1985, p 1795) 

Each defendant's one unit was necessary for the sufficiency of a set of 
actual antecedent conditions that included only four of the other units, 
and the sufficiency of this particular set of actual antecedent conditions 
was not affected by the existence of two additional duplicative units. 

In fact, in this sense, for each defendant’s discharge there are fifteen distinct actually 

sufficient sets of antecedent conditions, one for each possible choice of any four of the 6 

remaining defendant’s units of pollution.  

The causal model for this example has variables iX , 1, ,7i = … , representing 

whether defendant i contributed his one unit of pollution ( 1)iX =  or not ( 0)iX = . The 

single structural equation  

1 2 3 4 5

7 6 5 4 3

( 1 1 1 1 1)

         ( 1 1 1 1 1)

DP X X X X X

X X X X X

= = ∧ = ∧ = ∧ = ∧ = ∨ ∨

= ∧ = ∧ = ∧ = ∧ =

…
 

consists of 21 terms where each term is a conjunction of 5 of the 7 literals 1iX = . Since 

each literal 1iX =  is satisfied in the given scenario ( , )M u
r

, each literal occurs in 15 

satisfied terms in conjunction with 4 of the remaining 6 iX  or, equivalently, each literal 

1iX =  occurs in 15 terms without conjuncts involving 2 of the remaining 6 variables. 

Thus, for any 1iX =  and variables kX , lX  ( )i k l≠ ≠ , there exists some term DPT  with 

( ; | , )TDP
i k lucoin DP X X Xr . 

 Without loss of generality, to show that each defendant’s pollution discharge is 

an actual cause of 1DP = , let 1i =  and choose DPT  so that 1 6 7( ; | , )TDP
ucoin DP X X Xr  

(i.e., 1 2 3 4 5( 1 1 1 1 1)DPT X X X X X= = ∧ = ∧ = ∧ = ∧ = ). Then with 1,R X DP=
r

 and 

T DP=
r

, the equation for DP in [ , ]
T
R uM
r
r r  is  
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 1 6 7 1 6 1 7

6 7 1 6 7

( 1) ( 1) ( 1) ( 1 1) ( 1 1)

         ( 1 1) ( 1 1 1)

DP X X X X X X X

X X X X X

= = ∨ = ∨ = ∨ = ∧ = ∨ = ∧ =

∨ = ∧ = ∨ = ∧ = ∧ =
. 

Since, in [ , ]
T
R uM
r
r r , DP is a trivial function of the variables in 2 5{ , , }X X… , for 

{ }, 2, , 7iW R X i= = =
r r

– …V , of condition AC2 of the new definition, only the settings 

for 6X  and 7X  matter. Setting 6 7( , ) (0,0)X X = , 1 1X =  is easily seen to satisfy the 

counterfactual test of conditions AC2. 

 Note that 1 2 5[ , ]
{ , , , }TDP

R u
ACP X X X DP=

r
r r …,  and, in the causal world ( , )M u

r
, 

1 1X =  is necessary for the sufficiency of the set including defendant one’s discharge 

( 1 1X = ) and only four other discharges. 

5.4 Double Omission Cases 
Recall (see Section 2.3.5) a class of cases that proved difficult for Wright’s NESS test 

analysis, the so-called “double omissions cases.” At this point in the thesis the suspicion 

should arise that the difficulty in these cases is likely one of modelling, and that is the 

case. 

 Wright’s (1985, p. 1801) analysis of the braking case described in Section 2.3.5 

is reproduced here for convenience: 

It is clear that D's negligence was a preemptive cause of P's injury, and 
that C's negligence did not contribute to the injury. D's failure to try to 
use the brakes was necessary for the sufficiency of a set of actual 
antecedent conditions that did not include C's failure to repair the brakes, 
and the sufficiency of this set was not affected by C's failure to repair the 
brakes. A failure to try to use brakes will have a negative causal effect 
whether or not the brakes are defective. On the other hand, C's failure to 
repair the brakes was not a necessary element of any set of antecedent 
actual conditions that was sufficient for the occurrence of the injury. 
Defective brakes will have an actual causal effect only if someone tries to 
use them, but that was not an actual condition here. The potential 
negative causal effect of C's failure to repair the brakes was preempted by 
D's failure to try to use them. 

The causal model implied by this analysis has variables: 

• RB for “repairs brakes;” 
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• AB for “applies brakes;” 

• BO for “brakes operate;” and 

• PH for “pedestrian is hit.” 

The question is, what are the structural equations? Recall it was argued against the 

NESS analysis that the roles of C and D are symmetrical and that a NESS argument for 

one’s negligent act being an actual cause of the pedestrian being hit would work equally 

well as argument for the other’s negligent act. The structural equations suggested by this 

might be 

• BO RB AB¬ = ¬ ∨ ¬  and 

• PH BO= ¬ . 

It is easy to see that the new definition will classify both RB¬  and AB¬  as actual 

causes of PH for this model. On the other hand, suppose the structural equations are 

• BO RB AB= ∧  and 

• PH BO= ¬ . 

In that case the new definition will classify neither RB nor AB as a cause of PH. This 

model captures the intuition that not repairing the brakes is not a cause of the pedestrian 

being hit if the brakes are not applied but also suggests that not applying the brakes 

cannot cause the striking of the pedestrian if the brakes are not operative. But notice that 

in Wright’s analysis there is the suggestion of a mechanism that neither of these models 

includes: “A failure to try to use brakes will have a negative causal effect whether or not 

the brakes are defective.” In other words, there are two distinct mechanisms for the 

pedestrian being hit; the confusion arises because not braking just happens to play a part 

in both. The causal model matching Wright’s original model would have equations 

• BO RB AB= ∧  and 

• PH BO AB= ¬ ∨ ¬ . 

The causal diagram for this model is represented in Figure 5.4. 
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Figure 5.4: Causal diagram for the braking scenario 

 

Indeed, for this model the new definition will classify AB¬  as a cause of PH but 

not RB¬ . It is this missing mechanism that lies behind the intuitive and analytic 

confusion in the double omission cases. The double omission cases illustrate again that 

the difficult actual causal issues arise when the causal dynamics of the scenario are not 

clear or not understood. Once the causal dynamics are understood, the determination of 

the actual causal query is mechanical. 

5.5 Conclusion and Future Work 
If the counterfactual strategy for defining actual causation in Pearl's structural language 

is to succeed, the rules controlling which variables may have their values altered must be 

cognizant of the mechanisms (the sufficient sets) to which the variables belong and be 

able to treat variables differently depending on the roles they play as direct causes of 

dependent variables. Variables may have to be fixed at their actual values in the equation 

for some variables to avoid activating non-actual causal processes and also have there 

values set at non-actual values in the equation for some other variables to screen an 

actual causal process from other causal processes that mask the counterfactual 

dependency in cases of overdetermination. Previous approaches failed or were limited in 

their application because they did not observe these requirements. 

A definition, such as the one developed in this thesis, which satisfies the first 

requirement, recognizes the intuition that underlies the NESS test. Not only is it possible 

to adequately represent the NESS test in Pearl’s structural language, as has been done 

here, it is likely required for a successful definition of actual causation: the limitations of 
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the Halpern-Pearl definition result from its insensitivity to the relation among variables 

of being elements of sufficient cond itions. 

A formal representation of the NESS test in the structural language avoids the 

conceptual contradictions inherent in Wright’s exposition of the concept of the NESS 

test. However, as Halpern and Pearl emphasized (see Section 3.7), the outcome of an 

actual causal query still will depend on the accuracy, or appropriateness, of the causal 

model employed to represent the scenario under consideration. Indeed, the application of 

the definition developed in this thesis is limited to scenarios whose causal structure can 

be faithfully modelled by causal models exhibiting what is called here "term 

modularity." 

Thus, among the issues to be explored in the future is whether there are 

scenarios, as Hopkins and Pearl have suggested (see Section 4.6), that cannot be 

adequately modeled in the structural language, in particular, cannot be represented by 

models satisfying term modularity; or whether there are general principles concerning 

the nature of actual causal queries that rule out such scenarios. (It could be tha t the 

ability of individuals to comprehend a scenario in terms of actual causal relations 

requires the scenario to be internally represented in a way that is naturally amenable to 

term-modular causal modelling.) 

Finally, if the approach developed in this thesis is to be of practical use in 

artificial intelligence (for example, as a means of providing autonomous intelligent 

agents with a concept of singular causation) then it needs to be treated algorithmically 

and its computational complexity characteristics determined. Even then, to be useful, 

there have to be models. Where those models come from and how the choice of model 

relates to the context of the inquiry (recall the bomb example of Section 4.5.2 where two 

apparently valid models of the same scenario resulted in different answers to the actual 

causal query) are issues that ultimately have to be understood for the definition to be 

useful. These latter issues "move the issue to the right arena" (Halpern and Pearl 2000, p. 

2; see Section 3.7), causal modelling. 
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