
A high performance pseudo-multi-core

elliptic curve cryptographic processor

over GF(2163)

A Thesis Submitted to the

College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the degree of Master of Science

in the Department of Electrical and Computer Engineering

University of Saskatchewan

Saskatoon

By

Yu Zhang

c⃝Yu Zhang, April 2010. All rights reserved.

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgrad-

uate degree from the University of Saskatchewan, I agree that the Libraries of this

University may make it freely available for inspection. I further agree that permission

for copying of this thesis in any manner, in whole or in part, for scholarly purposes

may be granted by the professor or professors who supervised my thesis work or, in

their absence, by the Head of the Department or the Dean of the College in which

my thesis work was done. It is understood that any copying or publication or use of

this thesis or parts thereof for financial gain shall not be allowed without my written

permission. It is also understood that due recognition shall be given to me and to the

University of Saskatchewan in any scholarly use which may be made of any material

in my thesis.

Requests for permission to copy or to make other use of material in this thesis in

whole or part should be addressed to:

Head of the Department of Electrical and Computer Engineering

57 Campus Drive

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5A9

i

Abstract

Elliptic curve cryptosystem is one type of public-key system, and it can guarantee

the same security level with Rivest, Shamir and Adleman (RSA) with a smaller

key size. Therefore, the key of elliptic curve cryptography (ECC) can be more

compact, and it brings many advantages such as circuit area, memory requirement,

power consumption, performance and bandwidth. However, compared to private-

key system, like Advanced Encryption Standard (AES), ECC is still much more

complicated and computationally intensive. In some real applications, people usually

combine private-key system with public-key system to achieve high performance. The

ultimate goal of this research is to architect a high performance ECC processor for

high performance applications such as network server and cellular sites.

In this thesis, a high performance processor for ECC over Galois field (GF)(2163)

by using polynomial presentation is proposed for high-performance applications. It

has three finite field (FF) reduced instruction set computer (RISC) cores and a

main controller to achieve instruction-level parallelism (ILP) with pipeline so that

the largely parallelized algorithm for elliptic curve point multiplication (PM) can be

well suited on this platform. Instructions for combined FF operation are proposed

to decrease clock cycles in the instruction set. The interconnection among three

FF cores and the main controller is obtained by analyzing the data dependency

in the parallelized algorithm. Five-stage pipeline is employed in this architecture.

Finally, the µ-code executed on these three FF cores is manually optimized to save

clock cycles. The proposed design can reach 185 MHz with 20, 807 slices when

implemented on Xilinx XC4VLX80 FPGA device and 263 MHz with 217,904 gates

when synthesized with TSMC .18µm CMOS technology. The implementation of the

proposed architecture can complete one ECC PM in 1428 cycles, and is 1.3 times

faster than the current fastest implementation over GF (2163) reported in literature

while consumes only 14.6% less area on the same FPGA device.

ii

Acknowledgements

I would like to take this opportunity to express my sincere appreciation to my

supervisor, Dr. Seok-Bum Ko. Without his guidance, advice and support throughout

my research, this work could not be have been realized. Besides, he helped me a

lot when I was hunting for jobs during the time of graduation, and gave me lots of

valuable advices.

I would like to thank my supervisor Dr. Li Chen for his advice for my life,

constant encouragement and support on my research and graduate studies.

I would also like to thank my lab member Dongdong Chen. Without the past

two years discussion with him on research and algorithms, I could not have intensive

understanding in research.

I would also like to thank my other friends in VLSI lab. Working with them is

an invaluable and wonderful experience in my life.

I would like to thank my family for their understanding, constant support and

encouragement throughout my study and life.

iii

This is the dedication to my grandma

iv

Contents

Permission to Use i

Abstract ii

Acknowledgements iii

Contents v

List of Tables vii

List of Figures viii

List of Algorithms ix

List of Abbreviations x

1 Introduction 1
1.1 Cryptography . 1
1.2 Previous Work . 2
1.3 Motivation . 5
1.4 Contribution . 7
1.5 Thesis Outline . 7

2 Elliptic Curve Cryptography 8
2.1 ECC Diffie-Hellman key exchange protocol 8
2.2 Elliptic Curve Geometry . 9

2.2.1 A line through Two Distinct Points On Elliptic Curve 11
2.2.2 A Tangent Line of Elliptic Curve 13
2.2.3 Point Addition on Elliptic Curve 15
2.2.4 Point Doubling on Elliptic Curve 17
2.2.5 NIST-recommended random elliptic curves over binary fields . 19

2.3 Elliptic Curve Arithmetic . 20
2.3.1 Montgomery PM . 21
2.3.2 Projective Coordinates . 23
2.3.3 Lopez-Dahab Algorithm . 24
2.3.4 Parallelized Lopez-Dahab Algorithm 28
2.3.5 Proposed Instruction-level Parallelism for Parallelized Lopez-

Dahab Algorithm . 29

3 Elliptic curve cryptographic processor 33
3.1 Finite Field Arithmetic Operations 33

3.1.1 Basic Finite Field Operations 33

v

3.1.2 Parallel Finite Field Reduction 35
3.1.3 Word-level finite field multiplier 38
3.1.4 FF square and double square 39
3.1.5 FF inversion . 40

3.2 Architecture and implementation . 41
3.2.1 Instruction Set Design of FF Cores 42
3.2.2 Register files, interconnection and swap logic 47
3.2.3 Main controller . 49
3.2.4 Critical path analysis . 49
3.2.5 Pipeline and timing . 51

4 Experiment Results 54

5 Conclusion and Future Work 58

References 60

A µ-code on FF cores 63
A.1 µ-code in ROM1 . 63
A.2 µ-code in ROM2 . 65
A.3 µ-code in ROM3 . 67

vi

List of Tables

2.1 NIST-recommended random elliptic curves over binary fields 19

3.1 Itoh-Tsujii Algorithm for GF (2163) 40
3.2 Instruction description . 44
3.3 Instruction Set Design of FF Core 1 44
3.4 Instruction Set Design of FF Core 2 45
3.5 Instruction Set Design of FF Core 3 45
3.6 Long paths and comparison . 50

4.1 Area information of different blocks 55
4.2 Performance comparison . 56

vii

List of Figures

1.1 Key size on equivalent strength between RSA and ECC [3] 2
1.2 Conventional hierarchy for ECC operation 3

2.1 An example of ECC key exchange . 9
2.2 An example of an elliptic curve in real numbers system 10
2.3 Special point on elliptic curve . 11
2.4 Intersection points on Elliptic Curve 12
2.5 Tangent line on Elliptic Curve . 14
2.6 Point Addition on Elliptic Curve . 16
2.7 Point Doubling on Elliptic Curve . 18
2.8 Data dependency inside the LOOP 27
2.9 Data dependency inside the LOOP in [11] 29
2.10 Proposed instruction set based on the data dependency 29

3.1 Architecture of finite field adder . 34
3.2 An example of FF multiplication . 34
3.3 An example of pure parallel FF multiplication 35
3.4 The architecture of finite field ALU 39
3.5 The structure of pseudo-multi-core ECC processor 42
3.6 Interconnection and register files for FF cores 43
3.7 Instruction formats in three cores . 44
3.8 Examples of LOOP instruction . 46
3.9 Swap logic and address decoding unit of DA in core 1 47
3.10 Architecture of 8-to-1 multiplexer in Fig. 3.6 (refer p. 43) 50
3.11 Timing in the loop of Algorithm 6 . 52

viii

List of Algorithms

1 Binary NAF method [19] . 20
2 Montgomery Method [18] . 21
3 Lopez-Dahab algorithm [14] . 24
4 Modified Lopez-Dahab algorithm [10] 27
5 Parallelized version of Lopez-Dahab algorithm with uniform address-

ing [11] . 28
6 Proposed ILP of parallelized Lopez-Dahab algorithm on three FF cores 32
7 82-bit word-level FF multiplier . 38

ix

List of Abbreviations

AES Advanced Encryption Standard
ALU Arithmetic Logic Unit
ASIC Application-specific integrated circuit
CMOS Complementary Metal Oxide Semiconductor
DES Data Encryption Standard
DL Data Loading
EC Elliptic Curve
ECADD Elliptic Curve Point Addition
ECC Elliptic Curve Cryptography
ECDBL Elliptic Curve Point Doubling
ECP Elliptic Curve Processor
EX Instruction Executing
FF Finite Field
FFA Finite Field Addition
FFI Finite Field Inversion
FFM Finite Field Multiplication
FPGA Field Programmable Gate Array
FFS Finite field square
ILP Instruction-level Parallelism
ID Instruction Decoding
IF Instruction Fetching
GNB Gaussian Normal Basis
GF Galois Field
LSB Least Significant Bit
MQV Menezes-Qu-Vanstone
NAF Non-adjacent Form
NIST National Institute of Standards and Technology
PB Polynomial Basis
PM Point Multiplication
RISC Reduced Instruction Set Computer
RSA Rivest, Shamir and Adleman
WB Writing Back

x

Chapter 1

Introduction

1.1 Cryptography

Cryptography plays a very important role in modern communications as it can ensure

the safety of the confidential data in the communication. Cryptography is composed

with encryption and decryption. Encryption converts plain text (ordinary informa-

tion) to cypher text (disordered information) by using a key, and decryption reverses

the process. There are two types of cryptography, symmetric cryptography and

asymmetric cryptography. In symmetric cryptography (also called as Private-Key

cryptography) like AES [1], the sender and the receiver involved in the communica-

tion share a same key, so they have to negotiate the same key before conducting the

communication. In asymmetric cryptography (also called as Public-key cryptogra-

phy) such as ECC and RSA, different keys are used in the encryption and decryption,

and both sides in the communication don’t need to share their keys each other.

RSA, which stands for Rivest, Shamir and Adleman who first publicly described

it in 1977 [2], is so far the most widely used public-key cryptography. It is based

on the fact that it is much easier to create extreme large prime numbers while it

is not practical in terms of time and money to factor the product of two primes of

1

Time to
break in

MIPS years

RSA/DSA
key size

ECC
key size

RSA/ECC
key size

ratio

10
4

512 106 5 : 1
10

8
768 132 6 : 1

10
11

1,024 160 7 : 1
10

20
2,048 210 10 : 1

10
78

21,000 600 35 : 1

Figure 1.1: Key size on equivalent strength between RSA and ECC [3]

this size. ECC was independently proposed by Miller [4] and Koblitz [5] in 1986

and 1987 respectively. ECC is based on the hardness of the elliptic curve discrete

logarithm problem. ECC can guarantee the same security level with RSA with a

smaller key size as shown in Fig. 1.1. Therefore, the key of ECC can be more

compact, and it brings many advantages such as circuit area, memory requirement,

power consumption, performance and bandwidth. ECC has also been included in

IEEE 1363 [7] and NIST [6]. Consequently, ECC is said to be the next-generation

cryptography, and a vast research has been done on its efficient implementation in

software and hardware.

1.2 Previous Work

Compared to Private-key cryptography, ECC is computationally intensive, which is

mainly caused by the computation of PM (involves arithmetic in FF of large order).

The computation of PM is normally composed of point addition (ECADD) and

doubling (ECDBL) operations, and these operations in turn rely on finite field (FF)

2

Point Multiplication

Point Addition Point Doubling

Field

Addition/Substration

Field

Multilpication

Field

 Square

Field

Inversion

(a)

Figure 1.2: Conventional hierarchy for ECC operation

operations. The conventional operation hierarchy is shown in Fig.1.2. Normally, the

complexity of these FF operations is FF inversion (FFI), FF multiplication (FFM),

FF square (FFS), FF addition (FFA) in order from the most to the least. Thus many

ECC arithmetic algorithms try to use different projective coordinates to lower FFI

operations, such as Lopez-Dahab algorithm [14]. Also, there are many finite field

arithmetic algorithms to implement FFI [17] [19], and it usually relies on FFM, FFS

and FFA.

As we can see in Fig.1.2, the lowest level of PM operation is the FF operations,

and there are different algorithms for them in either hardware or software imple-

mentations. Elliptic curve arithmetic means the algorithm to calculate PM by using

ECADD and ECDBL. Therefore, before implementing the PM, several choices have

to be made, and they include the selection of underlying finite field, field represen-

tation, elliptic curve, algorithms for finite field arithmetic, and algorithm for elliptic

curve arithmetic. Different systems have different selections, which are determined

by the system requirements (gate count, power consumption) and resources (avail-

3

ability of microprocessor, performance of microprocessor, ROM size and RAM size).

These selections are tightly related to the implementation approaches, in turn, the

implementation approaches (hardware, software, or hardware/software co-design)

will rely on these selections, and it is very hard to make the “best” choice on these

selection.

Normally, ECC in prime field is implemented in software due to that the opera-

tions in prime field are very similar with that in real number system except an extra

modular operation needed in prime field. Algorithms for software implementation

can be found in [8]. Hardware/software co-design implementation is an alternative

approach to implement ECC when the hardware resource is tight [26]. In some high

performance oriented applications like network servers and cellular sites, software

ECC implementation will definitely cause a bottleneck of the entire system when

the number of the services increases in a second. Therefore, the hardware PM core

implementation on FPGA or ASIC is a solution for these applications. Many papers

[10] [11] [12] [14] [15] [16] focus on the hardware implementation of PM on GF(2163)

defined in NIST curve over binary fields, and intensively compare their performance

with others. In [10], the data dependency of Lopez-Dahab algorithm was analyzed

in detail, and finally, a single FF multiplier in the elliptic curve processor (ECP)

was employed to run with no rest, and other FF operations were finished in par-

allelism with the FF multiplier. As [10] did not introduce Lopez-Dahab algorithm

with the largest parallelism, in [11], three 55-bit word level Gaussian normal basis

(GNB) FF multipliers were employed to parallelize Lopez-Dahab algorithm to the

largest extent. Besides, by using the GNB finite field representation, the operation

4

of A2s in Itoh-Tsujii’s FF inversion [17] can be simply accomplished by s-bit cyclic

shift. The whole system is composed of two FF arithmetic atomic blocks, namely,

point doubling&addition unit and coordinate conversion unit. Also, ECC hardware

implementation on Koblitz curves can be found in [13], and they belong to a special

class of binary curves, and the PM can be computed very efficiently. However, they

are often vulnerable to side channel attacks [24].

1.3 Motivation

Efficient ECC hardware implementation depends on all the factors mentioned above.

However, the above works only consider either elliptic curve arithmetic [14] or algo-

rithms for finite field arithmetic [11], which is usually not the best case for hardware

implementation. This work focuses on hardware implementation of PM on FPGA

and ASIC on a NSIT proposed random curve over GF(2163).

In ECC hardware implementations, there is usually no dedicated hardware for

FFI, and it is implemented by a large number of other FF operations. FFM usually

is the second time-consuming FF operation after FFI, and there are large numbers

of FFMs involved in a PM operation. However, high speed FF multiplier by FF

arithmetic algorithms doesn’t necessarily mean high performance of the entire ECC

system, which is determined by the following relationship, where the delay of the

critical path is the period of the clock.

System performance = Total clock cycles× Delay of the critical path. (1.1)

5

For example, if the computation of FFM only consumes one cycle, some other simple

FF operations that also consume one cycle, such as FFA, will be as expensive as FFM.

As a result, the total clock cycle reduced, the system performance may remain low

because of the long system critical path in the system architecture caused by the FF

multiplier. On the other hand, if the FF multiplier has a short critical path, and the

FFM consumes several cycles, the system performance may still be low because of

the large amount of clock cycles in total.

In order to improve the system performance, ECC arithmetic algorithm level,

FF arithmetic level and system hardware architecture level should be considered

simultaneously, and it requires to make a balance between total clock cycles and

critical path, which usually refers to adding pipeline and increasing parallelism.

In [11], the critical path of the system is not analyzed in detail. The GNB based

FF multiplier has a relative longer critical path than the polynomial based coun-

terpart. Therefore, the performance may still be improved by analyzing the system

critical path when using polynomial presentation. In order to increase the system

performance, this thesis will consider the following three aspects simultaneously:

1. ECC arithmetic algorithm level: largely parallelize the Lopez-Dahab al-

gorithm.

2. FF arithmetic level: make the FF multipliers run as often as possible, and

other operations performed in parallel with FF multiplier.

3. System hardware architecture level: try to combine simple operations,

and make the system critical path lie in the polynomial based FF multiplier.

6

1.4 Contribution

The main contributions of this thesis include:

1. Proposed a customized instruction set for parallel version of Lopez-Dahab al-

gorithm;

2. Architected a three-FF-cores based architecture with five-stage pipeline, and

analyzed the critical path in detail;

3. µ-code on three FF cores is given based on this proposed architecture;

4. Both FPGA and ASIC implementation results are provided. In FPGA imple-

mentation, this work is 1.3 times faster than the current fastest implementation

over GF (2163) reported in literature while consumes only 85.4% of their area

on the same FPGA device.

1.5 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 gives the background

knowledge in cryptography, and presents the ECC algorithms used in this work;

Chapter 3 describes the architecture of the proposed ECC processor, and the critical

path of system is analyzed in detail; Chapter 4 shows the implementation results on

FPGA and ASIC of this work, and the comparison with some latest works as well.

Some analysis is given on this result, and finally the conclusion and future work will

be given.

7

Chapter 2

Elliptic Curve Cryptography

ECC system has different protocols, which contains ECC Diffie-Hellman key

exchange protocol, Elliptic Curve Digital Signature Algorithm, and elliptic curve

Menezes-Qu-Vanstone (MQV) [19] [21]. As this thesis is not mainly concerned with

protocols, and it will only briefly introduce the ECC Diffie-Hellman key exchange

protocol. Elliptic curve arithmetic algorithms are the main concern in this chap-

ter. We will present how we propose an algorithm based on previous elliptic curve

arithmetic algorithms in the literature [10] [11] [14] [18].

2.1 ECC Diffie-Hellman key exchange protocol

The ECC Diffie-Hellman key exchange protocol [19] [21] relies on the fact that the

scalar of point P on elliptic curve (kP) is relatively easier while retrieving k knowing

kP and P is a discrete logarithm problem. The mechanism of ECC Diffie-Hellman

key exchange is shown in Fig. 2.1, where Alice and Bob are two persons who are

involved in the communication, and Eva is a cracker. The key exchange mechanism

procedure is described as follows:

1. Alice generates a random private key integer ka , computes a public key Pa =

8

kaP

kbP

Alice Bob

Eva

Private key: ka

 Public key: kaP

Private key: kb

Public key: kbP

M
o
n

it
o
ri

n
g

Figure 2.1: An example of ECC key exchange

kaP , and sends Pa to Bob

2. Bob generates a random private key integer kb , computes a public key Pb =

kbP , and sends Pb to Alice

3. Alice computes kaPb = kakbP

4. Bob computes kbPa = kbkaP

5. Finally, Alice and Bob arrive at the same key kakbP

In this communication, the information exposed to public (Eva) are only Pa, Pb, and

P , and it is a discrete logarithm problem [21] to retrieve ka and kb.

2.2 Elliptic Curve Geometry

First, we will present the basic mathematics deduction of elliptic curve in real number

system, describe how the ECADD and ECDBL are defined, and how the cryptogra-

phy is defined on elliptic curve as well.

9

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Figure 2.2: An example of an elliptic curve in real numbers system

NIST recommends the elliptic curve E in Eq. 2.1 , where a, b, x and y are all

finite field numbers [6] [19] [20] . The prime field and binary finite field are two finite

fields used in ECC.

y2 + xy = x3 + ax2 + b (2.1)

In real number system, this type of equation stands for an elliptic curve in ge-

ometry as the example shown in Fig. 2.2, where the equation is

y2 + xy = x3 − 2x2 + 1 (2.2)

In the following, we will analyze the elliptic curve geometry in real number system.

10

O O O O OO

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Figure 2.3: Special point on elliptic curve

2.2.1 A line through Two Distinct Points On Elliptic Curve

Given two distinct points P1 = (x1, y1) and P2 = (x2, y2) on the elliptic curve E , and

L is the line through them, we can obtain the third intersection point T = (Tx, Ty)

on the E . As the slope of L may not exist if x1 equals to x2 as shown in Fig. 2.3, the

third intersection does not physically exist on the E . Therefore, a special point O is

defined as the third intersection point for this situation, and it is located at infinity

as shown in Fig. 2.3.

If x1 ̸= x2 as shown in Fig. 2.4, we can get the slope of line L,

λ1 =
y2 − y1
x2 − x1

, (2.3)

11

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Figure 2.4: Intersection points on Elliptic Curve

then, the line L is

y = λ1(x− x1) + y1. (2.4)

By substituting Eq. 2.4 into Eq. 2.1,

(λ1(x− x1) + y1)
2 + x(λ1(x− x1) + y1) = x3 + ax2 + b. (2.5)

At the first glance, we need to solve a quadratic and cubic equation. However,

knowing x1 and x2, we can compare the parameters of the following equation with

Eq. 2.5,

(x− x1)(x− x2)(x− Tx) = 0, (2.6)

12

and after the normalization, we have,

x3 − (x1 + x2 + Tx)x
2 + (Txx1 + Txx2 + x1x2)x− x1x2Tx = 0. (2.7)

Then, we can compare the parameter of x2 between Eq. 2.7 and Eq. 2.5,

a− λ1 − λ1
2 = −(x1 + x2 + Tx) (2.8)

Tx = λ1
2 + λ1 − (x2 + x1)− a. (2.9)

Finally, from Eq. 2.9 and Eq. 2.4,

Ty = λ1(Tx − x1) + y1. (2.10)

2.2.2 A Tangent Line of Elliptic Curve

If P1 and P2 are the same, and the line L is a tangent line through it as shown in

Fig. 2.5, the third intersection point T can be obtained similarly. It can also be the

infinite point O as shown in the Fig. 2.3 if the slope of the tangent line L does not

exist. If the slope λ of L exists, it is the derivative of E in P1,

det(y2 + xy) = det(x3 + ax2 + b)

2yy′ + y + xy′ = 3x2 + 2ax

y′ =
3x2 + 2ax− y

2y + x

(2.11)

13

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Figure 2.5: Tangent line on Elliptic Curve

Then,

λ2 =
3x2

1 + 2ax1 − y1
2y1 + x1

(2.12)

and the line L is

y = λ2(x− x1) + y1. (2.13)

By substituting Eq. 2.13 into Eq. 2.1, we have

(λ2(x− x1) + y1)
2 + x(λ2(x− x1) + y1) = x3 + ax2 + b. (2.14)

As we have two same points, then

(x− x1)(x− x1)(x− Tx) = 0, (2.15)

14

and after the normalization, it is

x3 − (2x1 + Tx)x
2 + (2Txx1 + x2

1)x− x2
1Tx = 0 (2.16)

By comparing the parameters between Eq. 2.16 and Eq. 2.14, we can get,

Tx = λ2
2 + λ2 − 2x1 − a. (2.17)

Ty = λ2(Tx − x1) + y1. (2.18)

2.2.3 Point Addition on Elliptic Curve

In the above sections, we have described some mathematic background of elliptic

curve in geometry in real number system, now we are going to know how the PM is

defined on the elliptic curve in binary finite field number system. The reason why

the number used in ECC is in finite field is that the operations over real number

system on elliptic curve refer to rounding, and the result will be inaccurate. Besides,

in binary finite field using polynomial representation, the addition operation is a

simple exclusive OR operation of each corresponding bits between two operands,

and this work also chooses this number system. In the following, all the numbers are

in binary finite field.

As shown in Fig. 2.6, ECADD is defined by taking two distinct points (P1 and

P2) on the elliptic curve and drawing a straight line connecting them. Using the third

point (T) at which the straight line intersects the elliptic curve, take a reflection on

15

P1

P2

T

P3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Figure 2.6: Point Addition on Elliptic Curve

the x-axis and the resulting point (P3) is the definition of the ECADD. We defined a

special point O previously, and it is also used here for point calculating operations.

Now, let’s first see the rules of ECADD.

1. P1 + P2 = P2 + P1

2. P1 + (−P1) = O

3. P1 + P2 = O if P1 = −P2

As P3 equals to −T , it has the same x-coordinate with T .

y2 + xy = x3 + ax2 + b

y2 + xy − x3 − ax2 − b = 0

(2.19)

16

From Eq. 2.19, we can get the relation of the y-coordinate between Ty and y3,

Ty + y3 = −Tx

P3 = (Tx,−Tx − Ty)

(2.20)

Based on the previous sections, given P1 and P2, we already know how to get the

third intersection T in real number system. In binary finite field, the operations are

slightly different, and some equations can be simplified. The addition and subtraction

are the same, and are all bitwise XOR operations. Finally, we have,

x3 = (
y1 + y2
x1 + x2

)2 +
y1 + y2
x1 + x2

+ x1 + x2 + a

y3 = (
y1 + y2
x1 + x2

)(x1 + x3) + x3 + y1

(2.21)

2.2.4 Point Doubling on Elliptic Curve

Point doubling is defined similarly with ECADD, except instead of using two distinct

points to draw the straight line, it uses the tangent line of a single point (P1) as shown

in Fig. 2.7.

The slope λ can be further simplified in binary finite field

λ =
3x2

1 + 2ax1 + y1
2y1 + x1

λ =
x2
1 + y1
x1

λ = x1 +
y1
x1

(2.22)

17

P1

T

P3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Figure 2.7: Point Doubling on Elliptic Curve

By substituting Eq. 2.22 into Eq. 2.17 and Eq. 2.18 respectively, we have,

Tx = (x1 +
y1
x1

)2 + x1 +
y1
x1

+ a

Tx = x2
1 +

y21
x2
1

+ x1 +
y1
x1

+ a

Tx = x2
1 + x1 +

y1 + x1y1
x2
1

+ a

Tx = x2
1 + x1 +

x3
1 + ax2 + b

x2
1

+ a

Tx = x2
1 + x1 + x1 + a+

b

x2
1

+ a

Tx = x2
1 +

b

x2
1

(2.23)

Ty = (x1 +
y1
x1

)(Tx + x1) + y1

Ty = (x1 +
y1
x1

)Tx + x2
1.

(2.24)

18

Finally, the ECDBL result P3 is obtained as follows,

x3 = x2
1 +

b

x2
1

y3 = x2
1 + (x1 +

y1
x1

)x3 + x3.

(2.25)

2.2.5 NIST-recommended random elliptic curves over bi-

nary fields

Table 2.1: NIST-recommended random elliptic curves over binary fields

B-163: m = 163, f(z) = z163 + z7 + z6 + z3 + 1, a = 1, h = 2
b = 0x 00000002 0A601907 B8C953CA 1481EB10 512F7874

4A3205FD
B-233: m = 233, f(z) = z233 + z74 + 1, a = 1, h = 2
b = 0x 00000066 647EDE6C 332C7F8C 0923BB58 213B333B

20E9CE42 81FE115F 7D8F90AD
B-283: m = 283, f(z) = z283 + z12 + z7 + z5 + 1, a = 1, h = 2
b = 0x 027B680A C8B8596D A5A4AF8A 19A0303F CA97FD76

45309FA2 A581485A F6263E31 3B79A2F5
B-409: m = 409, f(z) = z409 + z87 + 1, a = 1, h = 2
b = 0x 0021A5C2 C8EE9FEB 5C4B9A75 3B7B476B 7FD6422E

F1F3DD67 4761FA99 D6AC27C8 A9A197B2 72822F6C
D57A55AA 4F50AE31

B-571: m = 571, f(z) = z571 + z10 + z5 + z2 + 1, a = 1, h = 2
b = 0x 02F40E7E 2221F295 DE297117 B7F3D62F 5C6A97FF

CB8CEFF1 CD6BA8CE 4A9A18AD 84FFABBD 8EFA5933
2BE7AD67 56A66E29 4AFD185A 78FF12AA 520E4DE7
39BACA0C 7FFEFF7F 2955727A

NIST recommends five random elliptic curves on binary fields [6] [19], and they

are listed in Table 2.1. The f(z) is the reduction polynomial of degree m, and as the

key size (m) increases from 163 to 571, security level is increased correspondingly,

19

Algorithm 1 Binary NAF method [19]

Input: a point over E(GF (2m)), a positive l-bit integer k =
∑l−1

i=0 ki2
i, ki ∈

{−1, 0, 1}.
Output: Q = kP .
//*Initialization*//
P1 ← P, P2 ← O.
//*PM Loop Process*//
for i = l − 1 down to 0 do
P2 ← 2P2

if ki = 1 then
P2 ← P2 − P1

end if
if ki = −1 then
P2 ← P2 − P1

end if
end for
return (Q = P2)

and the computation time and complexity of the system increase as well. NIST also

recommends five random elliptic curves on prime fields, and it is more suitable to

software implementations as its numbers are rational numbers in finite field, and can

employ general microprocessor to do the rational number arithmetic operations. In

hardware implementation, the binary finite field is more popular as its finite field

arithmetic can be very simple. For example, the addition and subtraction is only

exclusive operation on two operands’ corresponding bits. Therefore, there is no carry

propagation delay, which is usually the bottleneck of the critical path in prime field

number system in hardware implementation.

2.3 Elliptic Curve Arithmetic

The algorithms for calculating PM on elliptic curve are also called elliptic curve

20

Algorithm 2 Montgomery Method [18]

Input: a point P (x, y) over E(GF (2m)), a positive l-bit integer k =
(kl−1, · · · , k1, k0)2 .
Output: Q = kP .
//*Initialization*//
P1 ← P, P2 ← 2P .
//*PM Loop Process*//
for i = l − 2 down to 0 do
if ki = 1 then
P1 ← P1 + P2, P2 ← 2P2.

else
P2 ← P1 + P2, P1 ← 2P1.

end if
end for
return (Q(x0, y0) = P1)

arithmetic, and it has a conventional hierarchy as shown in Fig. 1.2. There are many

methods for calculating kP . The most common one is the binary method, which is

the same with the method when we do the multiplication in binary numbers (e.g.

11P = 2(2(2P) + P) + P). Similar with the multiplier design in binary hardware,

there exist many methods to recode the k so that the number of operations of

ECADD and ECDBL can be reduced. Signed-digit (SD) representation [19] of k is,

k =
∑l−1

i=0 ki2
i, and ki ∈ {−1, 0, 1}. If there is no adjacent non-zero digits, the SD

form is called as non-adjacent form (NAF) [19]. NAF form is the least weight of any

SD representation of k, and it is also unique for every integer k.

2.3.1 Montgomery PM

Montgomery method is a variant of binary method, and it is based on keeping an in-

variant relationship during the whole kP calculation process, that is, P2− P1 = P .

By using this relationship, only 2P x-coordinate is needed in the kP loop calcu-

21

lation process, and the final result point’s y-coordinate can be obtained from its

x-coordinate.

From Eq. 2.21, if P1 ̸= P2 we have

x3 = (
y1 + y2
x1 + x2

)2 +
y1 + y2
x1 + x2

+ x1 + x2 + a

=
x1y2 + x2y1 + x1x

2
2 + x2x

2
1

(x1 + x2)2

(2.26)

Here P = (x0, y0), and as P = P2 − P1, then,

x =
x1y2 + x2(x1 + y1) + x1x

2
2 + x2x

2
1

(x1 + x2)2
. (2.27)

By combining Eq. 2.26 and Eq. 2.27, the x-coordinate of P3 is

x3 = x+ (
x1

x1 + x2

)2 +
x1

x1 + x2

(2.28)

Finally, we have

x3 =

x+ (x1

x1+x2
)2 + x1

x1+x2
ifP1 ̸= P2

x2
1 +

b
x2
1

ifP1 = P2

(2.29)

Therefore, y-coordinate is not involved in the calculation during the LOOP process.

In the following, the y-coordinate can be calculated based on x-coordinate in the

final stage. As P2 = P1 + P , then from Eq. 2.26,

x2 =
x1y + xy1 + x1x

2 + xx2
1

(x1 + x)2
(2.30)

22

y1 = (
x1

x
+ 1){(x1 + x)(x2 + x) + x2 + y}+ x (2.31)

Therefore, we only need to calculate the x-coordinate in the loop process, and it can

significantly decrease the number of finite field operations.

2.3.2 Projective Coordinates

So far, all the calculations are defined in conventional affine coordinates, and the

problem with the Montgomery method in affine coordinates is that there are lots

of finite field inversion operations involved in the loop process. As the iteration

number of the LOOP is 162 in this work, it means by using Montgomery method,

it will consumes nearly 2 × 162 finite field inversions in total. As the finite field

inversion is usually the most time-consuming operation in finite field, many works

tried to use projective coordinate [22][25] to reduce the number of inversions.

In standard projective coordinates [8], the projective point on the elliptic curve

has the following relationship with its corresponding point on elliptic curve, where

Z ̸= 0.

(X, Y, Z)⇐⇒ (X/Z, Y/Z). (2.32)

By substituting (X/Z, Y/Z) into Eq. 2.32, the projective form of the EC is

ZY 2 +XY Z = X3 + aX2Z + bZ3 (2.33)

23

Algorithm 3 Lopez-Dahab algorithm [14]

Input: a point P (x, y) over E(GF (2m)), a positive l-bit integer k =
(kl−1, · · · , k1, k0)2 with kl−1 = 1.
Output: Q = kP.
//*Affine To Projective Coordinate Initialization*//
(X1, Z1)← (x, 1), (X2, Z2)← (x4 + b, x2).
//*PM Loop Process*//
for i = l − 2 down to 0 do
if ki = 1 then
(X1, Z1)←Madd(X1, Z1, X2, Z2, x),
(X2, Z2)←Mdouble(X2, Z2, b).

else
(X2, Z2)←Madd(X1, Z1, X2, Z2, x),
(X1, Z1)←Mdouble(X1, Z1, b).

end if
end for
//*Projective To Affine Coordinate Conversion*//
Q←Mxy(X1, Z1, X2, Z2, x, y).
return Q(x0, y0).

Similarly, there are also other projective coordinates such as Jacobian projective

coordinates [23], Chudnovsky Jacobian coordinates [23], and Lopez-Dahab projective

coordinates. For example, in Jacobian projective coordinate, the projective point

(X,Y, Z), Z ̸= 0 corresponds to (X/Z2, Y/Z3) in affine coordinate, and its projective

form of elliptic curve is Y 2 +XY Z = X3 + aX2Z2 + bZ6.

2.3.3 Lopez-Dahab Algorithm

Lopez-Dahab projective coordinates is one of the most effective way to lower the

number of the FF inversion operations. In Lopez-Dahab projective coordinates, each

point on elliptic curve is also in the form of (X, Y, Z). However, they have different

relation in affine coordinates as (X, Y, Z) ⇐⇒ (X/Z, Y/Z2). Then, its projective

24

form of the elliptic curve is

Y 2 +XY Z = X3 + aX2Z2 + bZ6 (2.34)

After we have obtained the Lopez-Dahab projective coordinates, let’s see how

Lopez-Dahab algorithm optimizes the Montgomery method by using its projective

coordinates. From Eq. 2.29, we can rewrite it in Lopez-Dahab projective coordinates.

If P1 = P2,

X3/Z3 = (X1/Z1)
2 + b(Z1/X1)

2

X3/Z3 = x4
1 + bZ4

1/Z
2
1X

2
1

(2.35)

Then,

X3 = X2
1 + bZ4

1

Z3 = Z2
1X

2
1 .

(2.36)

Similarly, if P1 ̸= P2,

X3 = xZ3 + (X1Z2)(X2Z1)

Z3 = (X1Z2 +X2Z1)
2.

(2.37)

Finally, we can get the Lopez-Dahab method in Algorithm 3, where theMadd stands

for ECADD as in Eq. 2.37, and Mdoubling stands for ECDBL as in Eq. 2.36. As

we can see, there are no FF inversion operation involved in the LOOP process, and

25

the FF inversions are only need in the final stage in Mxy. Therefore, Lopez-Dahab

method can significantly improve the performance if the FF inversion operation is

very expensive. To summarize, Madd, Mdoubling and Mxy are defined as follows,

Madd(X1, Z1, X2, Z2, x0)

{

X ← X1Z2X2Z1 + x(X1Z2 +X2Z1)
2;

Z ← (X1Z2 +X2Z1)
2;

Return(X,Z);

}

Mdouble(X1, Z1, b)

{

X ← X4
1 + bZ4

1 ;

Z ← X2
1Z

2
1 ;

Return(X,Z);

}

Mxy(X1, Z1, X2, Z2, x, y)

{

xk = X1/Z1;

yk = [x2 + y + (x+X1/Z1)(x+X2/Z2)](x+ xk)/x+ y;

Return(xk, yk);

}

In [10], a slight modification was made to move the condition evaluation to the

end of the LOOP as shown in Algorithm 4. By doing so, Madd() and Mdouble()

26

Algorithm 4 Modified Lopez-Dahab algorithm [10]

Input: a point P (x, y) over E(GF (2m)), a positive l-bit integer k =
(kl−1, · · · , k1, k0)2 with kl−1 = 1.
Output: Q = kP.
//*Affine To Projective Coordinate Initialization*//
(X1, Z1)← (x, 1), (X2, Z2)← (x4 + b, x2).
if kl−2 = 1 then
Swap(X1, X2), Swap(Z1, Z2)

end if
//*PM Loop Process*//
for i = l − 2 down to 0 do
(X2, Z2)←Madd(X1, Z1, X2, Z2, x),
(X1, Z1)←Mdouble(X1, Z1, b).
if (i ̸= 0 and ki ̸= ki−1) or (i = 0 and ki = 1) then
Swap(X1, X2), Swap(Z1, Z2)

end if
end for
//*Projective To Affine Coordinate Conversion*//
Q←Mxy(X1, Z1, X2, Z2, x, y).
return Q(x0, y0).

* * *

+

^2

*

+

*

^2

*

+

^2

^2

^2

^2

x Z2 X1 Z1 X2 Z1 X1b

Z2 X2 Z1 X1

Figure 2.8: Data dependency inside the LOOP

27

have uniform inputs, and we can easily analyze the data dependency before the swap

operation inside the LOOP as shown in Fig. 2.8.

2.3.4 Parallelized Lopez-Dahab Algorithm

In hardware implementations, parallelism is always a good way to improve the per-

formance at the cost of circuit area and power consumption. In [11], the Algorithm

5 is fully parallelized based on its data dependency. The two uniform steps are used

to support the data dependency as shown in Fig. 2.9, and as the GNB is used,

the square operation is simply a shift operation. Therefore, a uniform block with a

addition appended to the output of multipliers is architected in [11].

Algorithm 5 Parallelized version of Lopez-Dahab algorithm with uniform address-
ing [11]

Input: P = (x, y) ∈ E(GF (2m)), an l-bit integer k, k ← (kl−1, · · · , k1, k0)2.
Output: kP = (x0, y0).
//*Affine To Projective Coordinate Initialization*//
(X1, Z1)← (x, 1), (X2, Z2)← (x4 + b, x2).
//*PM LOOP Process*//
if kl−2 = 1 then
Swap(X1, X2), Swap(Z1, Z2),

end if
for i = l − 2 down to 0 do
1. T1 ← (X1Z2), T2 ← (X2Z1), T3 ← (X1Z1)

2, Z3 ← (T1 + T2)
2, Z2 ← Z3;

2. X2 ← T1T2 + xZ3, X1 ← bZ4
1 +X4

1 , Z1 ← T3

if (i ̸= 0 and ki ̸= ki−1) or (i = 0 and ki = 1) then
Swap(X1, X2), Swap(Z1, Z2)

end if
end for
//*Projective To Affine Coordinate Conversion*//
x0 ← X1

Z1
,

y0 ← 1
x
(x+ X1

Z1
){(x+ X1

Z1
)(x+ X2

Z2
) + x2 + y}+ y.

return kP = (x0, y0).

28

Figure 2.9: Data dependency inside the LOOP in [11]

* * *

+

^2

*

+

*

^2

*

+

^2

^2

^2

^2

x Z2 X1 Z1 X2 Z1 X1b

Z2 X2 Z1 X1

Longest FF

operation Path

Figure 2.10: Proposed instruction set based on the data dependency

2.3.5 Proposed Instruction-level Parallelism for Parallelized

Lopez-Dahab Algorithm

In this work, a processor based architecture is employed to improve the system

performance. The advantages of using processor based architecture are that it can

be flexible, also it would be easier for us to control the system critical path as the

control path and data path can be easily separated and pipelined.

29

As the program executed on cryptoprocessor is fixed for a certain type of elliptic

curve arithmetic algorithm, we can generate a customized instruction set for the algo-

rithm to accelerate the system performance. First, let’s review the data dependency

as shown in Fig. 2.10. Conventionally, there are only FFM, FFA, FFS instruction

available. If so, the longest FF operation path will include two FFM operations,

two FFA, and a FFS operation. As we know, these operations are all inside of the

LOOP, the total number of the clock cycles to finish the longest FF operation path

has significant impact on the system’s performance. In this work, we combined FFA

and FFS, and instruction (A + B)2 is proposed to finish them in one clock cycle.

Therefore, we can save one clock cycle in one iteration, and save 162 in total of PM

calculation. An instruction A4 is also proposed to finish two square operations in

one clock cycle, and it can significantly decrease clock cycles by nearly half in FFI

operation as it will be describe in Chapter 3.

In this work, the ILP for the parallelized Lopez-Dahab algorithm is achieved on

three FF cores as in Algorithm 6. There are three columns of FF operations to

execute on each FF core by using the customized FF arithmetic instruction set AB,

A + B, (A + B)2 and A4. The NOP in the algorithm stands for empty operation.

Apparently, we can replace this customized instruction set by AB, A + B and A2,

but when calculating (A+B)2 and A4, it would cost two clocks for both. Therefore,

instructions (A+B)2 andA4, which are both done in one clock cycle in the customized

instruction set, can decrease the clock cycles. The customized instruction set can

also meet the hardware level aspect mentioned above, and it will be described later

in critical path analysis. As a FFM costs several clock cycles, the operation A4 in

30

the loop is computed in parallel with FF multiplication to meet the instruction level

aspect mentioned above. The interconnections among three cores are needed for

data dependency in the operations in each core. For instance, when arriving step

2 in the loop, core 1 needs the data V 2 from core 2, which is generated in step 1.

Thus an interconnection between core 1 and core 2 is needed to support such data

dependency. Similarly, other necessary interconnections can be also obtained.

31

Algorithm 6 Proposed ILP of parallelized Lopez-Dahab algorithm on three FF
cores

Input: P = (x, y) ∈ E(GF (2m)), an l-bit integer k, k ← (kl−1, · · · , k1, k0)2.
Output: kP = (x0, y0).
//Affine To Projective Coordinate Initialization
// core 1 core 2 core 3

1. X1 ← (x+ 0); NOP ; Z2 ← (x+ 0)2;
2. Z1 ← (1 + 0); NOP ; X2 ← x4;
3. NOP ; NOP ; X2 ← X2 + b;

//PM LOOP Process
for i = l − 2 down to 0 do
// core 1 core 2 core 3

1. V1 ← X1Z2; V2 ← X2Z1; V3 ← X1Z1;
R3 ← Z4

1 ;
2. Z2 ← (V1 + V2)

2; NOP ; Z1 ← (V3 + 0)2;
3. V1 ← V1V2; V2 ← xZ2; V3 ← bR3;

R3 ← X4
1 ;

4. X2 ← V1 + V2; NOP ; X1 ← V3 +R3;

if (i ̸= 0 and ki ̸= ki−1) or (i = 0 and ki = 1) then
Swap(X1, X2), Swap(Z1, Z2)

end if
end for
//Projective To Affine Coordinate Conversion
// core 1 core 2 core 3

1. V1 ← Inv(Z1); V2 ← Inv(Z2); V3 ← Inv(x);
2. R1 ← X1V1; V2 ← X2V2; R3 ← (x+ 0)2;

R3 ← R3 + y;
3. V1 ← x+R1; V2 ← x+ V2; NOP ;
4. V1 ← V1V3; V2 ← V2V1; NOP ;
5. NOP ; V2 ← V2 +R3; NOP ;
6. NOP ; V2 ← V1V2; NOP ;
7. NOP ; R2 ← V2 + y; NOP ;

return kP = (x0, y0) = (R1, R2).

32

Chapter 3

Elliptic curve cryptographic processor

3.1 Finite Field Arithmetic Operations

In this section, we present the algorithms used in this design to implement FF

arithmetic instructions. The corresponding critical paths of each FF arithmetic

operations are also given for analysis. Before looking into the implementation each

FF operations, we will introduce the basic operations in binary finite field.

3.1.1 Basic Finite Field Operations

Binary finite field has two representations: Gaussian Normal Basis (GNB) and Poly-

nomial Basis (PB) representation. As this work focuses on PB representation, here

we only describe the number in PB representation. Each binary number has its cor-

responding PB representation, and an example is shown as follows. In the following,

all the operations are based on PB representation.

11010010→ x7 + x6 + x4 + x (3.1)

FF addition and subtraction are the same operation in binary finite field, it only

33

A B

163 163

163

C

a162 a161 a160 a2 a1 a0
b162 b161 b160 b2 b1 b0

Figure 3.1: Architecture of finite field adder

needs to do the bitwise XOR on two operands. Therefore, the FF adder can be

finished in one clock cycle with only a delay of TXor as shown in Fig. 3.1.

FF multiplication is similar with normal multiplication in real number system

except a modular operation is involved in the calculation, and the addition has no

propagation delay. Also, an example of FF multiplication is shown in Fig 3.2, where

the f(x) is the irreducible polynomial.

x
6

x
5

x
4

x
3

x
2

x
1

x
0

0 0 0 0

1 0 1 0

1 0 1 0

+

+

+

0 0 0 0

0 1 0 1 0

0 1 1 1 1 0

C = A * B mod f(x)

 = x
5

+ x
4

+ x
2

+ x mod f(x)

B = 0x
3

+ x
2

+ x + 1

A = x
3

+ x1010
f(x) = x

4
+ x + 1

+

1 1 0 1 1 0

0 0 0 0

1 0 1 0

Figure 3.2: An example of FF multiplication

34

x
6

x
5

x
4

x
3

x
2

x
1

x
0

1 0 1 0

1 0 1 0

1 0 1 0+

 0

+

1 1 0 1 1 0 C = A * B mod f(x)

 = x
5

+ x
4

+ x
2

+ x mod f(x)

f(x) = x
4

+ x + 1

+

0 0 0 0

+

B = 0x
3

+ x
2

+ x + 1

A = x
3

+ x1010

Figure 3.3: An example of pure parallel FF multiplication

From this example, we can easily figure out that there can be bit-serial or full

parallel in the hardware implementation of FF multiplier. In bit-serial FF multi-

plication, it takes one clock cycle to calculate each intermediate result. Therefore,

it will take four clock cycles to finish the above calculation (the modular operation

is not considered here). In the pure parallel FF multiplier, all the operations are

finished in one clock cycle as shown in the Fig. 3.3.

3.1.2 Parallel Finite Field Reduction

So far, we have not considered the modular operation in Fig.s 3.2 and 3.3. The

modular operation is also called as FF reduction. It can be calculated after each

intermediate step of other FF operations or at the end of them. For example, if a

FFM consumes 10 cycles, and we calculate a modular operation after each interme-

diate cycle of FFM, there will be 10 modular operations in total. On the contrary,

we can also calculate only one modular operation when the FFM is finished after 10

35

cycles, but its hardware complexity is much higher as illustrated in this section.

FF reduction is performed after every FF operation, and the maximum size of

the polynomial result that needs FF reduction operation is 325, which is caused by

C(x) = [A(x)×B(x)]mod f(x)

= [
162∑
i=0

162∑
j=0

aibjx
i+j]mod f(x),

(3.2)

where the irreducible polynomial f(x) = x163 + x7 + x6 + x3 + 1, and the C(x) =

c325.x
m + · · ·+ c1.x+ c0, ci ∈ {0, 1}. C(x) can be decomposed as

C(x) = H(x)f(x) +R(x), (3.3)

where the maximum size of H(x) is 162, and R(x) is the reduced result. In this

equation, it is easy to find that the parameters ci with i > 162 in C(x) are not

determined by reduced variable R(x) but H(x)f(x), then we have

hi =

ci+163 7 ≤ i ≤ 161;

ci+163 ⊕ hi+156 i = 6;

ci+163 ⊕ hi+157 ⊕ hi+156 3 ≤ i ≤ 5;

ci+163 ⊕ hi+160 ⊕ hi+157 ⊕ hi+156 0 ≤ i ≤ 2.

(3.4)

from Eq. 3.3, the following equations can be obtained,

R(x) = C(x) +H(x)f(x). (3.5)

36

ri =

ci ⊕ hi−3 ⊕ hi−6 ⊕ hi−7 i = 162;

ci ⊕ hi ⊕ hi−3 ⊕ hi−6 ⊕ hi−7 7 ≤ i ≤ 161;

ci ⊕ hi ⊕ hi−3 ⊕ hi−6 i = 6;

ci ⊕ hi ⊕ hi−3 3 ≤ i ≤ 5;

ci ⊕ hi 0 ≤ i ≤ 2.

(3.6)

Finally, by combining Eq. 3.4 and Eq. 3.6, the final reduced result can be obtained,

W = ci ⊕ ci+157 ⊕ ci+160,

M = ci ⊕ ci+163 ⊕ ci+319,

ri =

W ⊕ ci+156 i = 162;

W ⊕ ci+156 ⊕ ci+163 13 ≤ i ≤ 161;

W ⊕ ci+156 ⊕ ci+163 ⊕ ci+312

11 ≤ i ≤ 12;

W ⊕ ci+156 ⊕ ci+163 ⊕ ci+312 ⊕ ci+314

7 ≤ i ≤ 10;

W ⊕ ci+163 ⊕ ci+313 ⊕ ci+314 ⊕ ci+316 i = 6;

M ⊕ ci+160 ⊕ ci+316 ⊕ ci+317; 3 ≤ i ≤ 5;

M ⊕ ci+320 i = 2;

M ⊕ ci+320 ⊕ ci+323 0 ≤ i ≤ 1.

(3.7)

37

Generally, the delay of FF reduction presented above is ⌈log2 7⌉TXor. However,

in some specific FF operations, some parameters of C(x) are zero, thus the FF

reduction can be further simplified. For example, if ci = 0, ci⊕ cj = cj. The specific

delay of FF reduction in each FF operation will be analyzed respectively later in the

following.

3.1.3 Word-level finite field multiplier

Algorithm 7 82-bit word-level FF multiplier

Input: A(x), B(x) ∈ E(GF (2m)), and B(x) =
[
B3(x)x

41 +B2(x)
]
x82 + B1(x)x

41 +
B0(x).
Output: C(x) ∈ E(GF (2m)).

R(x) = 0; //Initialize
for i = 1 down to 0 do

1. T1 = A(x)B2i(x);T2 = A(x)B2i+1(x);
2. C(x) = T1 + x41 ∗ T2 + x82 ∗R(x);

R(x) = Reduction(C(x));
end for
return R(x).

The algorithm of FF multiplier used in this thesis is from [10]. In our design,

an 82× 163 word-level FF multiplier is used, where two 41× 163 FF multipliers are

employed in the first level, and the two sub products are summed up in the second

level as in Fig. 3.4. In order to support the data loading stage in five-stage pipeline,

a 2-input multiplexer is added to select input data registers F and S. The delay of

path 1 in the FF multiplier is TMux + TAnd + ⌈log2 41⌉TXor. In path 2, the length

of the summed result is 245, therefore, the reduction can be simplified with a delay

of ⌈log2 5⌉TXor in this FF multiplier. As the summarization and reduction unit are

synthesized together, the delay of path 2 is ⌈log2(3 ∗ 5)⌉TXor.

38

S TF

× ×

M0 M1

+

R

Reduction

R0 R1

+

A
2

A
4

Mux

DB

ASout SSoutMout

DA

Mux

*x
82

8282

163 163

41 41163 163

*x
41

163 163 163

203

245

163

245

203

244

203 203

163
163

163163

P
a
th

1
P

a
th

2

P
a
th

3

P
a
th

4

AB A+B

(A+B)
2 A

4

Figure 3.4: The architecture of finite field ALU

3.1.4 FF square and double square

As in Eq. 3.8, A(x) is a binary FF number in PB presentation, and its FF square

can be performed by FF multiplication. However, due to its special property (i.e.

A× A), it can be simplified by inserting zeros in-between the bits of A as shown in

Eq. 3.9, and then do the FF reduction.

A(x) = a162x
162 + a161x

161 + · · ·+ aix
i + · · ·+ a0x

0; (3.8)

39

A2(x) = a162x
324 + 0 + a161x

322 + · · ·+ aix
2i

+ · · ·+ a2x
4 + 0 + a1x

2 + 0 + a0x
0;

(3.9)

As there are many zeros in A2(x), the FF reduction of FF square is further sim-

plified by eliminating XOR operations with zeros. Finally the FF square operation

has a delay of ⌈log2 5⌉TXor. By combining A2 with A+ B as in Fig. 3.4, path 3 for

(A+B)2 has a delay of ⌈log2(2× 5)⌉TXor + TMux.

In order to accelerate FF inverse operation, we propose a new operation, A4(x).

It can be obtained by combining two A2(x) together, and its simplification refers to

ai ⊕ 0 = ai and ai ⊕ ai = 0. Finally, the FF operation C(x) = Reduction(A4(x)) is

performed in one cycle with a delay of ⌈log2 12⌉Txor.

3.1.5 FF inversion

Table 3.1: Itoh-Tsujii Algorithm for GF (2163)

i µi [βµi1
(a)]2

µi2 × βµi2
(a) βµi

(a) = a2
µi−1

0 1 - βµ0(a) = a2
1−1

1 2 [βµ0(a)]
2µ0 × βµ0(a) βµ1(a) = a2

2−1

2 3 [βµ1(a)]
2µ0 × βµ0(a) βµ2(a) = a2

3−1

3 5 [βµ2(a)]
2µ1 × βµ1(a) βµ3(a) = a2

5−1

4 10 [βµ3(a)]
2µ3 × βµ3(a) βµ4(a) = a2

10−1

5 20 [βµ4(a)]
2µ4 × βµ4(a) βµ5(a) = a2

20−1

6 40 [βµ5(a)]
2µ5 × βµ5(a) βµ6(a) = a2

40−1

7 41 [βµ6(a)]
2µ0 × βµ0(a) βµ7(a) = a2

41−1

8 81 [βµ7(a)]
2µ6 × βµ6(a) βµ8(a) = a2

81−1

9 162 [βµ8(a)]
2µ8 × βµ8(a) βµ9(a) = a2

162−1

Compared to other FF operations, FF inversion is the most time-consuming

40

operation. In this thesis, we adopt Itoh-Tsujii algorithm [17] for FF inversion and

in the following we briefly describe the Itoh-Tsujii Algorithm.

In GF (2163), any nonzero element a has a cyclic order of 2163− 1. Therefore, the

inverse of a can be obtained by a−1 = a2
163−2. Here, we define βk(a) = a2

k−1, k ∈ N ,

and it has the following property.

βk+j(a) = a2
k+j−1

=

(
a2

k

a

)2j

a2
j

a
=
(
a2

k−1
)2j

a2
j−1

= βk(a)
2jβj(a)

(3.10)

Now, we can decompose a2
163−2 = (a2

162−1)2 by a sequence of FF operations as listed

in Table 3.1.

As a2
s
is frequently performed, by employing A4, we can decrease the clock cycles

needed in FF inversion by nearly half. For example, when calculating a2
16
, we can

calculate it with eight successive A4 instructions in 8 cycles while 16 cycles are needed

when using A2.

3.2 Architecture and implementation

The proposed architecture consists of a main controller and three FF cores as shown

in Fig. 3.5. The five-stage pipeline, instruction fetching (IF), instruction decod-

ing (ID), data loading (DL), instruction executing (EX) and writing back (WB),

is employed in each FF core. These three FF cores are almost same except some

41

Main Controller

CORE1 CORE2 CORE3

Interconnection

ROM1 ROM2 ROM3

ECC_TOP

Control path

Data path

Instruction

{x,y,b}{x0,y0}enable done
rstclk

Figure 3.5: The structure of pseudo-multi-core ECC processor

differences in arrangement of register files and interconnection as shown in Fig. 3.6.

As there are only several variables involved in the fixed program in Algorithm 6

executed on three cores, the register files of each core in Fig. 3.6 are enough to store

the middle results. The instruction set in three finite cores are very similar except

some minor differences as shown in Table 3.3, Table 3.4, and Table 3.5.

3.2.1 Instruction Set Design of FF Cores

In order to reduce the complexity caused by the instruction set design, all the in-

structions in each core have the same length as in Fig. 3.7. As the double square

SS need only one source operator, source 2 is used in this design.

The LOOP instruction is used to control the program counter in each core. It

42

R
x

M
u
x A

1
_
Z

A
1
_

X

A
1

_
G

A
3

_
Z

A
3

_
X

R
x

R
b

A
3

_
Z

A
3
_

X

A
3

_
G

A
1

_
Z

A
1

_
X

A
3

_
Z

A
1
_

X

A
2
_

G

R
x

A
3
_

X

A
1

_
Z

A
1
_
w

e

1
2

A
2
_

w
s

A
3
_
w

s

A
2

_
w

e

A
3
_
w

e

C
o
r
e
 1

C
o

r
e
 2

C
o

r
e
 3

A
1

_
D

A

A
2

_
D

A

A
3
_

D
A

M
u
x

R
y

A
1

_
w

s

A
1
_
A

S
o

u
t

A
2
_

M
o

u
t

A
1
_

M
o

u
t

A
1

_
S

S
o

u
t

A
1

_
A

S
o

u
t

A
1
_

S
S

o
u
t

A
1

_
R

A
o
u
t

A
2
_
R

A
o

u
t

M
u

x

M
u
x

A
2
_
A

S
o
u
t

A
2

_
S

S
o

u
t

M
u
x

M
u

x

A
3

_
A

S
o

u
t

A
3

_
S

S
o

u
t

A
3

_
S

S
o
u
t

A
3

_
M

o
u
t

A
1
_
A

S
o

u
t

A
1

_
A

S
o

u
t

A
3

_
A

S
o

u
t

A
3

_
A

S
o

u
t

A
3
_
A

S
o

u
t

D
O

U
T

D
O

U
T

D
O

U
T

R
y

R
y

A
2
_

A
S

o
u
t

A
1
_

M
o
u
t

A
2

_
M

o
u
t

A
3

_
M

o
u
t

A
2

_
S

S
o

u
t

A
2

_
M

o
u

t

2

A
2

_
G

A
3
_
R

A
o
u

t

D
A

_
S

[5
:7

]

3

D
A

_
S

[0
]

D
A

_
S

[1
]

D
A

_
S

[2
]

D
A

_
S

[4
]

D
A

_
S

[3
]

MuxMux

Mux Mux

Mux

Mux

Mux Mux

Mux

Mux

Mux

Mux

Mux

Mux

8-to-1 Mux

8-to-1 Mux

8-to-1 Mux

A
L

U
1

A
1

_
A

S
o

u
t

A
1

_
S

S
o
u

t

A
1

_
D

A
A

1
_

D
B

A
1

_
M

o
u

t

A
L

U
2

A
2

_
D

A
A

2
_
D

B A
2
_

A
S

o
u

t

A
2

_
S

S
o
u
t

A
2

_
M

o
u
t

A
L

U
3

A
3

_
D

A
A

3
_
D

B A
3

_
A

S
o

u
t

A
3
_
S

S
o
u
t

A
3

_
M

o
u
t

Dec

Dec

Dec

F
ig
u
re

3
.6
:
In
te
rc
on

n
ec
ti
on

an
d
re
gi
st
er

fi
le
s
fo
r
F
F
co
re
s

43

Table 3.2: Instruction description

Operation Clock cycles Description
MUL 2 FF multiplication. The bit width is 163 x 163
SMUL 2 Special FF multiplication, and it is used for swap purpose
SQA 1 FF Square and addition. It is a combined operation
ADD 1 FF addition
SS 1 Double square (finish two square operations in one cycle)

LOOP 1 For iteration purpose
NOP 1 IDLE status for one cycle

Table 3.3: Instruction Set Design of FF Core 1

Operation Destination Source
3’b111 MUL 2’b11 DA1 S 8’b00000 111 SA1 Z
3’b110 SMUL 2’b10 DA1 X 8’b00000 110 SA3 Z
3’b101 SQA 2’b01 DA1 Z 8’b00000 101 SA1 X
3’b100 ADD 2’b00 Res. 8’b00000 100 SA3 X
3’b011 SS - - 8’b00000 011 Rx
3’b010 LOOP - - 8’b00000 010 Ry
3’b001 Res. - - 8’b00000 001 SA1 S
3’b000 NOP - - 8’b00000 000 SA2 S

- - - - 8’b10000 xxx A3 BP OUT2
- - - - 8’b01000 xxx A1 BP OUT2
- - - - 8’b00100 xxx A1 SS OUT
- - - - 8’b00010 xxx A1 BP OUT1
- - - - 8’b00001 xxx A2 BP OUT1

Operation Destination Source 1 Source 2

LOOP Parameter 1 Parameter 2

SS Destination Res. Source 2

Res.

Figure 3.7: Instruction formats in three cores

44

Table 3.4: Instruction Set Design of FF Core 2

Operation Destination Source
3’b111 MUL 1’b0 Res. 8’b00000 111 SA1 Z
3’b110 SMUL 1’b1 DA2 S 8’b00000 110 SA3 Z
3’b101 SQA - - 8’b00000 101 SA1 X
3’b100 ADD - - 8’b00000 100 SA3 X
3’b011 SS - - 8’b00000 011 Rx
3’b010 LOOP - - 8’b00000 010 SA2 S
3’b001 Res. - - 8’b00000 001 Ry
3’b000 NOP - - 8’b00000 000 Res.

- - - - 8’b10000 xxx A3 BP OUT2
- - - - 8’b01000 xxx A1 BP OUT2
- - - - 8’b00100 xxx A2 SS OUT
- - - - 8’b00010 xxx A2 BP OUT2
- - - - 8’b00001 xxx A2 BP OUT1

Table 3.5: Instruction Set Design of FF Core 3

Operation Destination Source
3’b111 MUL 2’b11 DA3 S 7’b0000 111 SA1 Z
3’b110 SMUL 2’b10 DA3 X 7’b0000 110 SA3 Z
3’b101 SQA 2’b01 DA3 Z 7’b0000 101 SA1 X
3’b100 ADD 2’b00 Res. 7’b0000 100 SA3 X
3’b011 SS - - 7’b0000 011 Rx
3’b010 LOOP - - 7’b0000 010 SA3 S
3’b001 Res. - - 7’b0000 001 Rb
3’b000 NOP - - 7’b0000 000 Ry

- - - - 7’b1000 xxx A3 BP OUT2
- - - - 7’b0100 xxx A1 BP OUT2
- - - - 7’b0010 xxx A3 SS OUT
- - - - 7’b0001 xxx A3 BP OUT1

45

LOOP 9, 0

Ins 1

Ins 2

Ins 3

LOOP 9, 1

Ins 1

Ins 2

Ins 3

Execution

Direction

LOOP 9, 0

Ins 1

Ins 1

Ins 3

(a) (b) (c)

Figure 3.8: Examples of LOOP instruction

has two parameters, the first one is the number of the loops, and the other one is

the offset address. The bit length of the parameter 1 and parameter 2 in core 1 and

core 2 just follow the bit length of source 1 and source 2 correspondingly. As the

maximum iterations are this design is 162, and the bit length of source 1 in core 3

is 7 bits (maximum value is 127), one bit is borrowed from the ref. field to accom-

plish maximum number of LOOPs. Due to the instruction fetching and instruction

decoding used in the 5-stage pipeline, the LOOP instruction has a limit that it can

not control the immediately followed instruction. For example, in Fig. 3.8(a), the

instruction LOOP 9, 0 set the number of loops (9) of the instruction Ins2, and it

can never include the Ins1 in the LOOP although its offset address is 0. However,

sometimes we need the LOOP operation on Ins1 due to the tight data dependency

and limited register files, we can simply accomplish it by the implementation in Fig.

3.8(c), where the Ins1 will run 10 times. In Fig. 3.8(b), the offset address is 1, and

the LOOP operation will affect the instructions from Ins2 to Ins3.

46

SMUL

swap2

swap1

D
A

_
A

d
d
re

ss
[0

:7
]

D
A

_
S

[7
:0

]

M
u

x
M

u
x

Registers&

Interconnection

8-bit

address

A1_Z 00000_111

A3_Z 00000_110

A1_X 00000_101

A3_X 00000_100

Rx 00000_011

Ry 00000_010

A1_G 00000_001

A2_G 00000_000

A3_ASout 1xxxx_xxx

A1_ASout 01xxx_xxx

A1_SSout 001xx_xxx

A1_Mout 0001x_xxx

A2_Mout 00001_xxx

Figure 3.9: Swap logic and address decoding unit of DA in core 1

3.2.2 Register files, interconnection and swap logic

As register files, interconnection and swap logic are tightly related, we analyze them

together in this section. In Fig. 3.6, we present the architecture of register files and

interconnection for DA. Above the dashed line in each core are the local registers,

which can only be written by local core. Ai Z and Ai X are special registers to store

Zi and Xi in Algorithm 6 (refer to p. 32). Ai G is the only general register. Under

the dashed line in each core are the interconnection and by-pass results from local

FF ALU result, which are determined by the ILP data dependency in Algorithm 6.

Rx, Ry and Rb are interconnections from the main controller for accessing x, y and

47

b.

The address of data path is divided into two levels as shown in Fig. 3.9. The

first level has a higher priority, and uses five most-significant bits to distinguish five

non-register data paths. The second level uses the rest three least-significant bits

to decode register data paths. If the second level is valid, and the third bit from

least-significant bit (lsb) of the address is “1”, it represents a special register. By

using the arrangement in Fig. 3.9, swap operation between special registers can be

easily performed by changing the lsb of the address. In our design, A1 X and A1 Z

are chosen as the default source for accessing X1 and Z1 while X2 and Z2 are stored

in them at the end of each loop in core 1, which is similar with core 3. Therefore,

a swap operation exists by default. The swap logic is composed with two swap

signals, swap1 and swap2, which are generated from the main controller. swap1

is used to swap special registers by changing the LSB of the address, and swap2

is used to swap by-pass data A1 ASout and A3 ASout, which are the result of Xi

at the end of each loop in Algorithm 6. The first FFM in the loop is defined as

swap multiplication (SMUL) to differentiate itself from the common FFM, and with

swap2, swap operation between A1 ASout and A3 ASout can be done. Then, one

cycle is saved in one loop when we load the data directly from ALU by-pass output

A Sout for SMUL.

The address unit of DB in core 1 is nearly the same with DA except no need of

swap2 and SMUL. Similarly, the address units in core 2 and core 3 can be obtained.

48

3.2.3 Main controller

The main controller has two main tasks: provides three data paths Rx, Ry and Rb

for the data x, y, b, 0, and 1 to three FF cores, and generates two swap signals swap1

and swap2. As we have described the swap operation in the previous section, here

we only refer to the first task. In order to decrease complexity of the FF cores and

interconnection, in our instruction set, there is no data move operation as shown in

Algorithm 6. In the initialization stage, we move the data x to A1 X with the help

of the main controller by setting Ry to constant 0, and performing a FF addition

between x and 0. Then, the data x is moved into A1 X. Similarly, x2 is moved into

A3 Z, and this is also the way we perform FF square operation in this design. As

the data y is only needed in the final coordination conversion stage, Ry is always

set with 0 till y is needed in the calculation. The main controller is implemented by

using finite state machine.

3.2.4 Critical path analysis

The address unit and interconnection described above is carefully designed by con-

sidering the hardware level aspect. In Fig. 3.4, the critical path, path 1 in FF

multiplier is TMux+TAnd+ ⌈log2 41⌉TXor, and the three by-pass delays path2, path3

and path4 from the FF ALU in Fig. 3.4 are ⌈log2 15⌉TXor, ⌈log2 10⌉TXor + TMux

and ⌈log2 12⌉TXor respectively. As the data path DA is similar with DB in core 1,

core 2 and core 3, we only need to consider the critical path in DA. As the three

by-pass delays in ALU finally go to Ai DA, then, by adding the previous delay in

49

Table 3.6: Long paths and comparison

No. Logic delaya Description
1 TMux+TAnd+⌈log2 41⌉TXor path1b

2 ⌈log2 10⌉TXor + 4TMux path3b + {A2 ASout to A2 DA}
3 ⌈log2 12⌉TXor + 3TMux path4b + {A1 SSout to A1 DA}
4 ⌈log2 15⌉TXor + 3TMux path2b +{A1 Mout to A1 DA}
5 6TMux {registers to A1 DA}
6 2TAnd + 9TXor critical path in [11]
a In TSMC18 standard cell library [27], TAnd is 0.101ns, TXor is 0.183ns and TMux is
0.153ns.

b Refer to Fig. 3.4 (refer to p. 39)

MuxMuxMuxMux

MuxMux

Mux

S2

S0

S1

Figure 3.10: Architecture of 8-to-1 multiplexer in Fig. 3.6 (refer p. 43)

ALU with the delay between the by-pass output and Ai DA, we can get the total

delay of three paths. For instance, A1 ASout goes through two 2-to-1 multiplexers

to arrive A1 DA, the total delay is ⌈log2 10⌉TXor +3TMux. Similarly, other cases are

all obtained in the Table 3.6. The 5th long path is from the second part address

decoder unit, which is an 8-to-1 multiplexer and can be implemented by seven 2-to-1

multiplexers as shown in Fig. 3.10. Also, we compare these long paths with the crit-

ical path of [11] in the Table 3.6. The longest logic delay path is determined by the

ratio of TAnd, TXor, and TMux. Based on the delay parameters provided in TSMC18

50

technology [27], we can easily get the longest logic delay path in the proposed archi-

tecture is path1 in the FF multiplier, and it is approximately 3TXor shorter than the

critical path in [11].

3.2.5 Pipeline and timing

Five-stage pipeline (IF, ID, DL, EX and WB) with ILP is employed to increase the

performance. In the IF stage, instruction is fetched from each ROM for corresponding

core, and stored in the instruction register. During the ID stage, instruction is

decoded to generate control signals to FF ALU, and the swap operation is also

accomplished in this stage by using the address decoding unit in Fig. 3.9. In the DL

stage, data needed for calculation is loaded to the input registers (F, S, T,R0 and

R1) of FF ALU. In the EX stage, instructions are executed, and the corresponding

by-pass results Mout, ASout and SSout are generated. In the final stage WB, the

result is written into the register.

In the following, we present the timing of loop process of Algorithm 6 in Fig. 3.11

to show how the µ-code is optimized and executed based on the given architecture

and pipeline. In this design, FF multiplication AB costs two clock cycles, and other

FF operations need only one cycle. There are three features to generate the µ-code:

1. The special register Ai X is only used to store Xi, and Ai Z is for Zi so that

other cores can access them. Ai G is used to store other intermediate data.

2. If the next FF operation needs the result from the present FF operation, it can

load the by-pass result at the end of the EX stage in the present FF operation

51

DL AB

DL

DL AB

DL AB

DL

DL

(A+B)^2

Z1^4 WB

DL AB

DL AB

(A+B)^2

DL AB

DL

DL

A+B

A+B

DL Z1^4

1 2 3 4 5 6 7 8

Cycle

DL

DL

DL

9

Next loop
First loop

IF ID

IF ID

IF ID

IF ID

IF ID

IF ID

IF ID

IF ID

IF ID

IF ID

IF ID

IF ID

IF ID

IF ID

IF ID

Core1

Core2

Core3

WB

WB

WB

WB

WB

WB

WB

Write A1_G

Write A1_Z

Write A1_X

Write A2_G

Write A3_G

Write A3_Z

Write A3_G

Write A3_X

IF ID

Figure 3.11: Timing in the loop of Algorithm 6

to save one clock cycle. For example, the operation A + B in core 1 can load

the by-pass result AB from FF ALUs in core 1 and core 2 at the end of EX

stage.

3. If the result from the present FF operation is needed in the next FF operation,

and is not needed in the future, it does not need to be written into register file.

Thus, we can decrease the number of registers to the given number shown in

Fig. 3.6. For instance, as the second multiplication result AB in core 1 is only

needed in the next A+B operation and not needed anymore in the future, the

WB stage of this instruction can be omitted.

As the loop instruction is used in our instruction set to control the program

52

counter directly, it is apparent that the clock cycles needed for one loop in Algorithm

6 is 8.

Similarly, the µ-code of the initialization stage and the projective to affine co-

ordinate conversion stage in Algorithm 6 can be obtained except the following re-

quirements. During the step 2 in the projective to affine coordinate conversion stage,

R3← R3 + y in core 3 needs main controller to change the value in Ry from 0 to y.

Besides, as the result R3 is needed in core 2, R3 can not be stored in general register

as there is no interconnection A3 G to core 2, and it must be stored in a special

register. As Xi and Zi are not needed after step 2, special registers can be used for

general use afterwards, which can be done by disabling swap1 (swap1 ← 0) by the

main controller. Therefore, R3 can be stored in a special register in core 3. For the

same reason, in the step 4 of core 1, V 1 is stored in a special register to meet the

data dependency of core 2. Finally, the PM results (x0, y0) are obtained in A1 X

and A2 G in Fig. 3.6 respectively when the calculation ends.

53

Chapter 4

Experiment Results

The µ-code in each ROM is presented in Appendix section. When the FF cores

are not enabled, they keep fetching the NOP at the address 0 in the ROM, and they

remain IDLE. When the input enable signal is set, three FF cores start fetching the

instruction in the ROM at the same time. The size of ROM1, ROM2 and ROM2 are

128×21 bits, 128×20 bits, 128×19 bits respectively. All the ROMS are implemented

by using combinational logic block. As three ROMs have different length of the valid

µ-code, three cores will stop their works at different time, and FF core2 ends its work

after the end of FF core1 and FF core3. After each FF core finish their work, they

have to remain IDLE to ensure the result not to be altered. Therefore, the µ-code

of ROM1 after address 69 are all NOP , the µ-code of ROM2 after address 76 are all

NOP , and the µ-code of ROM3 after address 66 are all NOP .

The total clock cycles are composed with three parts. First, 5 clock cycles are

needed in the affine to projective coordinate initialization. Then, 8× 162 clocks are

consumed in the PM loop process. The final coordinate conversion stage consumes

123 cycles, where the FF inversion costs 111 cycles. Therefore, the total clock cycles

required for one PM are 5 + 8 × 162 + 123 + 4 = 1428, in which the last 4 cycles

results from the five-stage pipeline.

54

Table 4.1: Area information of different blocks

Block ROM1 ROM2 ROM3 AB (A+B)2 A4

Occupied slices 54 50 55 5,037 232 181
Block FF ALU core 1 core 2 core 3 Main controller Total

Occupied slices 5,437 6,993 6,830 6,994 616 20,847

The proposed architecture is coded using verilog HDL, and the µ-code in each

ROM is translated to machine code by using Perl script. We firstly verified each

submodules in our design in Modelsim by using some direct testcases, and then, we

verified the top level of our design by using some direct testcases. All these direct

testcaes are elaborately chosen to consider both the corner cases and the ordinary

cases. The whole system is simulated in Modelsim. Finally, we implement it on both

Xilinx XC4VLX80 FPGA device and TSMC18 technology. We use Xilinx ISE 11.1

to do the synthesis, place and route, and the highest frequency it can reach is 185

MHz with 20, 807 slices. In order to compare the area among different blocks, we

synthesize them separately, and the areas of each block are obtained from synthesis

report of ISE except the total area, which is obtained after place and route. As we

can see, the total area is not equal to the summed area of its components, which

is caused by two aspects: there are some global optimizations when synthesizing

the whole design together, and some slices are used for routing through. In this

table, we can see three FF multipliers occupy nearly three quarter of the total area.

When synthesized by Synopsys Design Compiler in TSMC18 CMOS technology [27],

the highest frequency it can reach is 263 MHz, and occupies 217, 904 gates. Both

implementation results show the critical path lies in the path1 FF multiplier.

55

Table 4.2: Performance comparison

Work Technology/ Clk(MHz)/ Time for kP/
area #clk cycles Remarks

Kazuo [12] (2007) 0.13µm CMOS 555.6 12µs
GF (2163) 154K gates - TNAF method

Kim [11] (2008) XC4VLX80 143 10µs
GF (2163) 24,363 slices 1446 Three 55-bit GNB mul.

Bijan [10] (2008) XC2V2000 100 41µs
GF (2163) 3,416 slices 4050 One 41-bit Karatsuba mul.

Kimmo [16] (2008) Stratix II - 49µs
GF (2163) - - -
This work XC4VLX80 185 7.7 µs
GF (2163) 20,807 slices 1428 Three FF cores
This work TSMC18 263 5.4 µs
GF (2163) 217,904 gates 1428 -

We compare our work with several recent works in Table 4.2. To our best knowl-

edge, our work is the fastest implementation over GF (2163) in the literature reported.

When implementing on Xilinx XC4VLX80 FPGA, our work consumes 77% total time

of the work of [11] while the area is only 85.4% of their design. The performance of

our work is better than the result in [11] mainly attributes to our higher frequency,

which is determined by the short critical path in FF multiplier. Besides, the total

clock cycles of our work (1428) is less than that in [11] (1446). Our work uses the

same number of FF multiplier (3) with [11]. As the most area-consuming block is

the FF multiplier, and the complexity of the FF multiplier using PB presentation is

smaller than its counterpart using GNB presentation, the area of our work is sightly

smaller than [11].

As the area of our design can not be suited to the FPGA device used in [10],

it is hard to accurately compare our result using XC4LX80 with the result in [10]

56

using XC2V2000. Therefore, we only briefly compare them. In [10], only one 42-bit

FF multiplier is used, this is why their area is much smaller (6 times) than ours. In

turn, the performance gain of our work (5 times faster) mainly result from highly

parallel architecture using 3 FF multipliers.

As many papers [12] only use the synthesized result from Synopsys Design Com-

piler for comparison, we also compare our work in the same way. The TSMC18 ASIC

result of our work is faster than that in [12], which uses 0.13µm CMOS technology.

Therefore, our work can be faster than [12] when using a same technology.

From the above comparison, we can see our performance gain mainly results from

three factors: high frequency caused by the short critical path of the whole system,

highly parallel architecture using three FF multipliers, and small clock cycles caused

by using ILP and proposed instruction set, especially A4.

57

Chapter 5

Conclusion and Future Work

In this thesis, we proposed a FF arithmetic instruction set AB, A + B, (A +

B)2 and A4 for parallelized algorithm for ECC PM, where the (A + B)2 and A4

are proposed to decrease clock cycles needed in the loop of algorithm and Itoh-

Tsujii’s finite field inversion respectively while not affecting the system critical path.

Then, the register files and interconnection of three FF cores are carefully designed

to minimize the critical path and support the data dependency in the proposed

algorithm. Finally, a pseudo-multi-core architecture with five-stage pipeline (IF, ID,

DL, EX and WB) in each core is obtained to finish the ECC PM.

The implementation of the proposed architecture can finish one ECC PM in 1428

cycles, and is 1.3 times faster than the current fastest implementation over GF (2163)

reported in literature while consumes only 85.4% of their area on the same FPGA

device. Therefore, the proposed architecture and algorithm can be well suited to

high performance applications.

As the elliptic curve arithmetic algorithm is largely parallelized based on the data

dependency, and three FF cores are employed to support this data dependency in the

proposed architecture, the circuit area is still very large. Some potential approaches

can still make an optimum trade-off between performance and area can be analyzed

58

to meet different applications as follows:

1. If one FF core, we need to re-analyze the data dependency based on one FF

core. The FFM needs to be re-designed to make a balance between the critical

path and total clock cycles. The elliptic curve arithmetic algorithm needs to be

modified so that it only consumes one FFI as there is only one core available.

Otherwise, several FFI operations need to be calculated serially, and hence

consume many cycles.

2. If we use two FF cores, the data dependency also needs to be re-analyzed, and

FFM needs to be re-designed to make a balance between the critical path and

total clock cycles. The elliptic curve arithmetic algorithm needs to be modified

to include either one FFI or two FFIs.

3. Also, some FF arithmetic algorithms in [19] can be employed, especially algo-

rithm for FFI, such as extended Euclidean algorithm, to decrease clock cycles.

4. As we only consider the architecture for GF(2163), similar analysis can be used

on other curves recommended by [6], especially Kobliz curves as the value of b

in the Eq. 2.1 equals to 1 for Kobliz curves. Therefore, some special methods

can be employed to simplify the PM calculation based on this feature.

59

References

[1] Joan Daemen, Vincent Rijmen, “The Design of Rijndael: AES - The Advanced
Encryption Standard”. Springer, 2002.

[2] Rivest RL, Shamir A, Adleman L (1978) “A method for obtaining digital sig-
natures and public-key cryptosystems”. Commun ACM pp. 120-126.

[3] The Elliptic Curve Cryptosustem for smart cards, A Certicom White Paper
Published: May 1998.

[4] V.S. Miller, “Use of elliptic curves in cryptography”, CRYPTO85: Proceedings
of the Advances in Cryptology, Springer-Verlag, pp. 417-426, 1986.

[5] N. Koblitz, “Elliptic curve cryptosystems”, Mathematics of Computation, vol.
48, no.177, pp. 203-209, 1987.

[6] NIST, “Recommended elliptic curves for federal government use”, May 1999.

[7] IEEE 1363, Standard Specifications for Publickey Cryptography, 2000.

[8] D. Hankerson, J. Hernandez, A. Menezes, “Software implementation of ellip-
tic curve cryptography over binary fields”, in: Proceedings of the CHES 2000,
Lecture Notes in Computer Science, vol. 1965, 2000, pp. 1 - 24.

[9] J. Huang, H. Li, and P. Sweany, “An FPGA Implementation of Elliptic Curve
Cryptography for Future Secure Web Transaction”, International Conference
on Parallel and Distributed Computing Systems, pp. 296-301, Sept. 2007.

[10] B.Ansari and M.Anwar, “High-Performance Architecture of Elliptic Curve
Scalar Multiplication”, IEEE Trans. on Computers, vol. 57, no. 11, pp. 1443-
1452, Nov. 2008.

[11] C.H. Kim, S. Kwon and C.P. Hong, “FPGA implementation of high performance
elliptic curve cryptographic processor over GF (2163)”, Journal of Systems Ar-
chitecture, vol. 54, no. 10, pp. 893-900, Apr. 2008.

[12] K. Sakiyama, L. Batina and B. Preneel, “High-performance Public-key Crypto-
processor for Wireless Mobile Applications”, Mobile Networks and Applications,
vol. 12, no. 4, pp. 245-258, Oct. 2007.

60

[13] Kimmo J., Jorma S., “Fast point multiplication on Koblitz curves: Paralleliza-
tion method and implementations”, Journal of Microprocessors and Microsys-
tems, Elsevier, 2009.

[14] J. Lopez and R. Dahab, “Fast Multiplication on Elliptic Curves over GF (2m)
without Precomputation”, Proc. First Int’l Workshop Cryptographic Hardware
and Embedded Systems, C.K. Koc and C. Paar, eds., pp. 316-327, 1999.

[15] Louis Dupont, Sebastien Roy and Jean-Yves Chouinard, “A FPGA Implemen-
tation of an Elliptic Curve Cryptosystem”, IEEE International Symposium on
Circuits and Systems, 2006.

[16] K. Jarvinen, and J. Skytta, “On Parallelization of High-Speed Processors for El-
liptic Curve Cryptography”, IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 16, no 9, pp. 1162-1175, Sept. 2008.

[17] T. Itoh and S. Tsujii, “A Fast Algorithm for Computing Multiplicative Inverses
in GF (2m) Using Normal Bases”, Information and Computation, vol. 78, no. 3,
pp. 171-177, 1988.

[18] P.L. Montgomery, “Speeding the Pollard and Elliptic Curve Methods of Factor-
ization”, Math of Computation, vol. 48, pp. 243-264, 1987.

[19] Hankerson D, Menezes A, Vanstone S, Guide to elliptic curves cryptography.
Springer, 2004.

[20] Henk C.A. van Tilborg, Fundamentals of Cryptology, Eindhoven University of
Technology, Kluwer Academic Publishers, 2000.

[21] Roberto M. Avanzi, Henri Cohen, Christophe Doche, Gerhard Frey, Tanja
Lange, Kim Nguyen, Frederik Vercauteren, Handbook of Elliptic and Hyper-
elliptic Curve Cryptography, Published by Chapman & Hall/CRC, 2006.

[22] J. Lopez and R. Dahab, “Algorithms for Elliptic Curve Arithmetic in GF(2n)”,
SAC’98, LNCS Springer Verlag, 1998.

[23] D. Chudnovsky and G. Chudnovsky, “Sequences of numbers generated by ad-
dition in formal groups and new primality and factoring tests”, Advances in
Applied Mathematics, 7 (1987), 385-434.

[24] Okeya, K., Takagi, T., Vuillaume, C.: “Efficient representations on Koblitz
curves with resistance to side channel attacks”. In: Boyd, C., Gonzalez Nieto,
J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 218-229. Springer, Heidelberg,
2005

[25] A. Menezes, Elliptic curve public key cryptosystems, Kluwer Academic Pub-
lishers, 1993.

61

[26] M. Koschuch, J. Lechner, A. Weitzer, J. Grobschadl, A. Szekely, S.Tillich, and J.
Wolkerstorfer, “Hardware/Software Co-Design of Elliptic Curve Cryptography
on an 8051 Microcontroller”, Cryptographic Hardware and Embedded Systems,
vol. 4249, pp. 430–444. Springer Verlag, 2006.

[27] TSMC 0.18µm Process 1.8-Volt SAGE-XTM Standard Cell Library Databook,
2001.

62

Appendix A

µ-code on FF cores

A.1 µ-code in ROM1

//Stay idle when the enable signal for point mulitplication is not set

0 NOP

//Begin initialization

1 ADD DA1_X, Rx, Ry

2 NOP

3 ADD DA1_Z, Rx, Ry

// Start the Loop, and it begins from address 6 to 13

// The number of Loop is 161

4 LOOP RES, 161, 7

5 MUL DA1_S, SA1_X, SA3_Z

6 NOP

7 NOP

8 SQA DA1_Z, A1_BP_OUT1, A2_BP_OUT1

9 MUL RES, SA1_S, SA2_S

10 NOP

11 NOP

12 ADD DA1_X, A1_BP_OUT1, A2_BP_OUT1

13 SMUL DA1_S, A1_BP_OUT2, SA3_Z

// The last Loop is from address 13 to 20

14 NOP

15 NOP

16 SQA DA1_Z, A1_BP_OUT1, A2_BP_OUT1

17 MUL RES, SA1_S, SA2_S

18 NOP

19 NOP

20 ADD DA1_X, A1_BP_OUT1, A2_BP_OUT1

// FF inversion calculation is from address 21 to 64

21 SQA RES, SA1_Z, Ry

22 MUL DA1_S, A1_BP_OUT2, SA1_Z

23 NOP

24 NOP

25 SQA RES, A1_BP_OUT1, Ry

26 MUL RES, A1_BP_OUT2, SA1_Z

27 NOP

28 NOP

29 SS RES, XXXX, A1_BP_OUT1

63

30 MUL DA1_S, A1_SS_OUT, SA1_S

31 NOP

32 NOP

33 SS RES, XXXX, A1_BP_OUT1

34 SS RES, XXXX, A1_SS_OUT

35 SQA RES, Ry, A1_SS_OUT

36 MUL DA1_S, A1_BP_OUT2, SA1_S

37 NOP

38 LOOP RES, 4, 0

39 SS RES, XXXX, A1_BP_OUT1

40 SS RES, XXXX, A1_SS_OUT

41 MUL DA1_S, A1_SS_OUT, SA1_S

42 NOP

43 LOOP RES, 9, 0

44 SS RES, XXXX, A1_BP_OUT1

45 SS RES, XXXX, A1_SS_OUT

46 MUL DA1_S, A1_SS_OUT, SA1_S

47 NOP

48 NOP

49 SQA RES, A1_BP_OUT1, Ry

50 MUL RES, A1_BP_OUT2, SA1_Z

51 NOP

52 LOOP RES, 19, 0

53 SS RES, XXXX, A1_BP_OUT1

54 SS RES, XXXX, A1_SS_OUT

55 MUL DA1_S, A1_SS_OUT, SA1_S

56 NOP

57 LOOP RES, 39, 0

58 SS RES, XXXX, A1_BP_OUT1

59 SS RES, XXXX, A1_SS_OUT

60 SQA RES, A1_SS_OUT, Ry

61 MUL RES, A1_BP_OUT2, SA1_S

62 NOP

63 NOP

64 SQA RES, A1_BP_OUT1, Ry

// End of FF inversion

65 MUL DA1_X, A1_BP_OUT2, SA1_X

66 NOP

67 NOP

68 ADD RES, A1_BP_OUT1, Rx

69 MUL DA1_Z, A1_BP_OUT2, SA3_X

64

A.2 µ-code in ROM2

//Stay idle when the enable signal for point mulitplication is not set

0 NOP

//Begin initialization

1 NOP

2 NOP

3 NOP

// Start the Loop, and it begins from address 6 to 13

// The number of Loop is 161

4 LOOP RES, 161, 7

5 MUL DA2_S, SA3_X, SA1_Z

6 NOP

7 NOP

8 NOP

9 MUL RES, Rx, A1_BP_OUT2

10 NOP

11 NOP

12 NOP

13 SMUL DA2_S, A3_BP_OUT2,SA1_Z

// The last Loop is from address 13 to 20

14 NOP

15 NOP

16 NOP

17 MUL RES, Rx, A1_BP_OUT2

18 NOP

19 NOP

20 NOP

// FF inversion calculation is from address 21 to 64

21 SQA RES, SA3_Z, Ry

22 MUL DA2_S, A2_BP_OUT2, SA3_Z

23 NOP

24 NOP

25 SQA RES, A2_BP_OUT1, Ry

26 MUL RES, A2_BP_OUT2, SA3_Z

27 NOP

28 NOP

29 SS RES, XXXX, A2_BP_OUT1

30 MUL DA2_S, A2_SS_OUT, SA2_S

31 NOP

32 NOP

33 SS RES, XXXX, A2_BP_OUT1

34 SS RES, XXXX, A2_SS_OUT

35 SQA RES, Ry, A2_SS_OUT

36 MUL DA2_S, A2_BP_OUT2, SA2_S

65

37 NOP

38 LOOP RES, 4, 0

39 SS RES, XXXX, A2_BP_OUT1

40 SS RES, XXXX, A2_SS_OUT

41 MUL DA2_S, A2_SS_OUT, SA2_S

42 NOP

43 LOOP RES, 9, 0

44 SS RES, XXXX, A2_BP_OUT1

45 SS RES, XXXX, A2_SS_OUT

46 MUL DA2_S, A2_SS_OUT, SA2_S

47 NOP

48 NOP

49 SQA RES, A2_BP_OUT1, Ry

50 MUL RES, A2_BP_OUT2, SA3_Z

51 NOP

52 LOOP RES, 19, 0

53 SS RES, XXXX, A2_BP_OUT1

54 SS RES, XXXX, A2_SS_OUT

55 MUL DA2_S, A2_SS_OUT, SA2_S

56 NOP

57 LOOP RES, 39, 0

58 SS RES, XXXX, A2_BP_OUT1

59 SS RES, XXXX, A2_SS_OUT

60 SQA RES, A2_SS_OUT, Ry

61 MUL RES, A2_BP_OUT2, SA2_S

62 NOP

63 NOP

64 SQA RES, A2_BP_OUT1, Ry

// End of FF inversion

65 MUL RES, A2_BP_OUT2, SA3_X

66 NOP

67 NOP

68 ADD RES, A2_BP_OUT1, Rx

69 MUL RES, A1_BP_OUT2, A2_BP_OUT2

70 NOP

71 NOP

72 ADD DA2_S, A2_BP_OUT1, SA3_Z

73 MUL RES, A2_BP_OUT2, SA1_Z

74 NOP

75 NOP

76 ADD DA2_S, A2_BP_OUT1, Ry

66

A.3 µ-code in ROM3

//Stay idle when the enable signal for point mulitplication is not set

0 NOP

//Begin initialization

1 SQA DA3_Z, Rx, Ry

2 SS RES, Ry, Rx

3 ADD DA3_X, A3_SS_OUT, Rb

// Start the Loop, and it begins from address 6 to 13

// The number of Loop is 161

4 LOOP RES, 161, 7

5 MUL RES, SA1_X, SA1_Z

6 SS DA3_S, XXXX, SA1_Z

7 NOP

8 SQA DA3_Z, Ry, A3_BP_OUT1

// The last Loop is from address 13 to 20

9 MUL RES, SA3_S, Rb

10 SS DA3_S, XXXX, SA1_X

11 NOP

12 ADD DA3_X, A3_BP_OUT1, SA3_S

13 SMUL RES, A1_BP_OUT2(X1), SA1_Z

14 SS DA3_S, XXXX, SA1_Z

15 NOP

// FF inversion calculation is from address 21 to 64

16 SQA DA3_Z, Ry, A3_BP_OUT1

17 MUL RES, SA3_S, Rb

18 SS DA3_S, XXXX, SA1_X

19 NOP

20 ADD DA3_X, A3_BP_OUT1, SA3_S

21 SQA RES, Rx, Ry

22 MUL DA3_S, A3_BP_OUT2, Rx

23 NOP

24 NOP

25 SQA RES, A3_BP_OUT1, Ry

26 MUL RES, A3_BP_OUT2, Rx

27 NOP

28 NOP

29 SS RES, XXXX, A3_BP_OUT1

30 MUL DA3_S, A3_SS_OUT, SA3_S

31 NOP

32 NOP

33 SS RES, XXXX, A3_BP_OUT1

34 SS RES, XXXX, A3_SS_OUT

35 SQA RES, Ry, A3_SS_OUT

36 MUL DA3_S, A3_BP_OUT2, SA3_S

67

37 NOP

38 LOOP RES, 4, 0

39 SS RES, XXXX, A3_BP_OUT1

40 SS RES, XXXX, A3_SS_OUT

41 MUL DA3_S, A3_SS_OUT, SA3_S

42 NOP

43 LOOP RES, 9, 0

44 SS RES, XXXX, A3_BP_OUT1

45 SS RES, XXXX, A3_SS_OUT

46 MUL DA3_S, A3_SS_OUT, SA3_S

47 NOP

48 NOP

49 SQA RES, A3_BP_OUT1, Ry

50 MUL RES, A3_BP_OUT2, Rx

51 NOP

52 LOOP RES, 19, 0

53 SS RES, XXXX, A3_BP_OUT1

54 SS RES, XXXX, A3_SS_OUT

55 MUL DA3_S, A3_SS_OUT, SA3_S

56 NOP

57 LOOP RES, 39, 0

58 SS RES, XXXX, A3_BP_OUT1

59 SS RES, XXXX, A3_SS_OUT

60 SQA RES, A3_SS_OUT, Ry

61 MUL RES, A3_BP_OUT2, SA3_S

62 NOP

63 NOP

64 SQA DA3_X, A3_BP_OUT1, Ry

// End of FF inversion

65 SQA RES, Rx, Ry

66 ADD DA3_Z, A3_BP_OUT2, Ry

68

