
Spatial Coordination in Wireless Sensor Network

Applications

A Thesis Submitted to the

College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the degree of Master of Science

in the Department of Computer Science

University of Saskatchewan

Saskatoon

By

Anil Kumar Keela

c©Anil Kumar Keela, March/2011. All rights reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Saskatchewan's Research Archive

https://core.ac.uk/display/226146229?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the

University of Saskatchewan, I agree that the Libraries of this University may make it freely available for

inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for

scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their

absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is

understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not

be allowed without my written permission. It is also understood that due recognition shall be given to me

and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or part should

be addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5C9

i

Abstract

In distributed systems, dependency among different computations of an application leads to a problem of

deciding the locations of computations. Spatial requirements of a computation can be expressed in terms of

spatial relationships with other computations. This research presents programming abstractions and language

constructs which can be used for specifying spatial coordination requirements for distributed computations.

A spatial coordination middleware has been implemented for satisfying spatial coordination requirements

of systems implemented using the Actor model of concurrent computation. Our approach abstracts spatial

requirements of concurrent computations and provides key programming primitives for specifying these re-

quirements. We have also implemented a number of higher level spatial coordination primitives which can

be translated into the basic primitives. Spatial requirements can be specified using these primitives and then

the runtime system converts them into a constraint satisfaction problem and satisfies them. Our approach

reduces the programming complexity and provides a middleware which separates spatial requirements from

functional code and enables the application programmer to change spatial requirements at runtime without

effecting application’s functionality. We have identified some of the high level primitives and provided a

mechanism to develop high level primitives on top of the basic primitives.

This thesis presents the rationale, design, implementation, and evaluation of spatial coordination. By compar-

ing programs written with and without our spatial coordination primitives, we show how spatial coordination

enables a programmer to specify spatial requirements declaratively and simplify the programming task. Ex-

perimental results demonstrate the performance of the approach, as the number of constraints increases.

ii

Acknowledgements

I would like to take this opportunity to say thanks from the bottom of my heart to my supervisor, Dr.

Nadeem Jamali. His guidance, support, encouragement and suggestions – as well as his flexibility in allowing

me to adapt the scope and focus of this work in the face of challenges – were instrumental in completion of

this thesis. I am grateful to him for accepting me under his supervision as well as for the financial support

he provided me.

I would like to thank Professor Simone Ludwig, Professor Michael Horsch and Professor Ramakirshna

Gokaraju for being my Thesis committee members. All of them made many important suggestions to improve

the quality of this work.

I would like to thank my friend and colleague Venkat Aveen Reddy for his generous advice which was critical

during the prototyping phase of this work. I would also like to thank members of the Agents Lab, Johnson

Iyilade, Mehadi Hassan, Xinghui Zhao and Yue Zhang, for their support through the course of my studies.

Mehadi and Jonhson spared much time listening to my practice presentations and offering comments.

I am grateful to the Department of Computer Science at the University of Saskatchewan for offering a friendly

environment and partial funding during my graduate studies. Special thanks go to departmental adminis-

tration staff, especially Ms. Jan Thompson, who coordinated and helped whenever needed.

I would like to express gratitude to my parents for their unconditional support and guidance through the

challenges of graduate studies. Their emotional and financial support was critical in my successful completion

of the program.

Finally, I am indebted to my lovely wife for her patience and encouragement. She always stood by me when-

ever I needed her. She helped me in improving my writing and presentation skills. She instilled confidence

in me that I am capable of doing anything.

iii

This thesis is dedicated to my wife Manorma Anil Keela

iv

Contents

Permission to Use i

Abstract ii

Acknowledgements iii

Contents v

List of Tables vii

List of Figures viii

List of Abbreviations ix

1 Introduction 1
1.1 Motivation . 2
1.2 Research Objectives . 2
1.3 Contributions . 3
1.4 Outline . 3

2 Related Work 4
2.1 Mobile Agent Systems . 4

2.1.1 Self Migration . 4
2.1.2 Dynamic Migration . 5
2.1.3 Itinerary Based Migration . 7
2.1.4 Reactive Migration . 7

2.2 Wireless Sensor Network . 8
2.3 Applications of Spatial Coordination . 9

2.3.1 Monitoring Applications . 10
2.3.2 Network Management Applications . 10
2.3.3 Spatial Applications . 11

2.4 Summary . 11

3 Spatial Coordination 12
3.1 Introduction . 12
3.2 Spatial Coordination Primitives . 12

3.2.1 Basic Primitives . 12
3.2.2 High Level Primitives . 14
3.2.3 Pattern Based High Level Primitives . 16

3.3 Summary . 18

4 Prototype Design and Implementation 19
4.1 Actor Model . 19
4.2 System Design . 20
4.3 Implementation . 21

4.3.1 Actor Layer . 21
4.3.2 Spatial Coordination Layer . 22

4.4 Summary . 30

5 Experimental Results and Evaluation 31

v

5.1 Introduction . 31
5.2 Programmability Evaluation . 31
5.3 Agent Migration Comparison . 33
5.4 Prototype Performance Evaluation . 33

5.4.1 Experiment Environment . 34
5.4.2 Experiment Design . 34
5.4.3 Results Interpretation . 35

5.5 Summary . 40

6 Conclusion and Future Work 42
6.1 Conclusion . 42
6.2 Contribution . 42
6.3 Future Work . 43

References 44

A Sample Appendix 46
A.1 Data Used in Experiments . 46

vi

List of Tables

2.1 Sleep states of the sensor nodes . 9

5.1 Comparison of spatial coordination with mobile agent systems 34
5.2 Experiment data details of randomly generated Separate constraints 37
5.3 Experiment data details of randomly generated Colocate constraints 38
5.4 Experiment data details of randomly generated Colocate and Separate constraints 39

A.1 20 Randomly generated separate constraints . 46
A.2 30 Randomly Generated Separate Constraints . 46
A.3 40 Randomly Generated Separate Constraints . 47
A.4 50 Randomly Generated Separate Constraints . 47
A.5 60 Randomly Generated Separate Constraints . 47
A.6 70 Randomly Generated Separate Constraints . 48
A.7 20 Randomly Generated Colocate Constraints . 48
A.8 30 Randomly Generated Colocate Constraints . 48
A.9 40 Randomly Generated Colocate Constraints . 49
A.10 50 Randomly Generated Colocate Constraints . 49
A.11 60 Randomly Generated Colocate Constraints . 49
A.12 70 Randomly Generated Colocate Constraints . 50
A.13 20 Randomly Generated Colocate and Separate Constraints 50
A.14 30 Randomly Generated Colocate and Separate Constraints 50
A.15 40 Randomly Generated Colocate and Separate Constraints 51
A.16 50 Randomly Generated Colocate and Separate Constraints 51
A.17 60 Randomly Generated Colocate and Separate Constraints 51
A.18 70 Randomly Generated Colocate and Separate Constraints 52

vii

List of Figures

2.1 Single sink architecture of a WSN . 9

3.1 Colocate two actors on the same node . 13
3.2 Separate two actors on the different node . 14
3.3 Actors before group colocate and actors after group colocate 15
3.4 Colocate constraint pairs graph . 15
3.5 Separate constraint pairs graph . 16
3.6 Actor 12 visits list of actors in a specified order . 17
3.7 Actor 12 visits nodes in a random order . 18

4.1 Actor . 19
4.2 System architecture . 20
4.3 Actor grouping . 25

5.1 Time to solve constraints satisfaction of number of Separate constraints 36
5.2 Time to solve constraints satisfaction of number of Colocate constraints 36
5.3 Time to solve constraints satisfaction of randomly generated Separate constraints 37
5.4 Time to solve constraints satisfaction of randomly generated Colocate constraints 38
5.5 Time to solve constraints satisfaction of randomly generated Colocate and Separate constraints 39
5.6 Time to solve constraints satisfaction comparison of Colocate, Separate and both Colocate and

Separate . 40

viii

List of Abbreviations

WSN Wireless Sensor Network
CSP Constraint Satisfaction Problem
DCSP Distribute Constraint Satisfaction Problem
APO Asynchronous Partial Overly
B&B Branch and Bound

ix

Chapter 1

Introduction

This thesis addresses the problem of deciding where to place computations in a distributed execution

environment in general, and in wireless sensor networks in particular. In distributed systems, computations

are divided into sub-computations and distributed over a network of nodes to solve problems. These sub-

computations are dependent on each other and have partial knowledge of the entire problem, which leads to

a degree of uncertainty. A coordination mechanism manages these dependencies among distributed compu-

tations in order to reduce the uncertainty and achieve optimal results [10]. Coordination can be functional,

temporal, spatial, and resource centered [15]. Functional coordination occurs when a process is dependent

on results of other processes. Temporal coordination occurs when interdependent processes are supposed to

be coordinated in time. Resource centered coordination occurs when resources are shared among multiple

processes and each process competes for the resources to finish its task. Spatial coordination occurs when

the location of a process needs to be coordinated with other processes in order to complete its task. This

thesis relates to spatial coordination.

There are various applications which have spatial requirements. In particular, computations executing in

wireless sensor networks (WSNs) increasingly have spatial requirements expecting computations to be exe-

cuting at particular locations. In a WSN, application may require two processes to be together on the same

node because they are inter-dependent. It may also require that two processes never reside on the same node

because one is actively replicating the other for fault tolerance. It is hard to program spatial requirements due

to limitations in programming languages. The closest way is either to hard code spatial requirements in the

program or to adopt mobile agents. Mobile agents offer too low level an abstraction for programming these

spatial requirements. This thesis proposes spatial coordination as an alternative. By spatial coordination,

we mean representing spatial relationships between computations as relationships rather than as procedural

instructions to be carried out. We want to be able to specify these relationships declaratively.

This chapter is organized in four sections: the first section identifies some scenarios which motivate this

work, the second section describes the objectives of this research, the third section describes the contributions

of this work, and the last section presents an outline of the thesis.

1

1.1 Motivation

Here, we present two examples to motivate spatial coordination.

• Consider a WSN for environment monitoring of a forest. In particular, this application monitors fire

conditions of the forest. The fire occurrence in the forest is detected by measuring the variations in

various parameters such as temperature, humidity, smoke, wind speed [31]. For example, when weather

is dry (humidity) and hot (temperature), then there is a greater probability of fire [4]. The goal is to

determine the location where the fire is expected to occur. The likelihood of fire at a location can only

be accessed if both temperature and humidity data from the location are available. Let us assume that

temperature and humidity monitoring tasks are carried out by temperature and humidity agents. The

application requires that both temperature and humidity data should come from the same location. It

also requires that data should come from all different locations of the network.

From the above scenario, it is evident that there are two spatial requirements. Firstly, the temperature

monitoring agent should be placed with the humidity monitoring agent so that both types of information

are received from each location consistently. Secondly, two temperature or two humidity monitoring

agents never need to reside on the same node; this satisfies a second requirement of the application to

avoid redundant data transfer from any location.

• In case of computer networks, one way to provide fault tolerance is by actively replicating computations.

If we consider this in the context of system made up of agents, these may be a data storing agent which

stores data on a main server and another agent replicates the data storing agent for fault-tolerance.

For effective fault-tolerance, the replicating agent should be executed on a separate server. In this case,

we can observe a spatial requirement between the data storing agent and the replicating agent, which

is that both of them cannot reside on the same machine.

From the above scenarios, spatial requirements in a variety of applications are evident. In current systems,

there is no easy way to program these spatial requirements. This encouraged us to develop a middleware

service to manage spatial coordination requirements.

1.2 Research Objectives

Current mobile agent systems provide mobility of agents; however, application programmers have to deal

with the low level communication details in order to implement the mobility. The mobility and coordination

among agents in mobile agent systems is performed through mixing mobility code into functional codes, some

systems require list of predefined locations where an agent has to migrate to; other systems make the mobility

of an agent dependent on relationships it has with other agents.

The objective of this research was to find a good abstraction for programming mobile computations. We are

2

interested in providing a middleware service which satisfies the spatial requirements of applications and allows

the programmer to write functional requirements of the application separately from its spatial requirements.

Our approach has the following characteristics:

Easy to program: Our objective is to simplify the programmer’s task. This is done by providing the high

level programming constructs to the programmer. These high level constructs hide the low level details of

mobility from the programmer. The programmer can specify spatial requirements in a declarative way using

our programming constructs.

Modular and reusable: For software engineering reasons, we want our solution to be modular and reusable.

We achieved this objective by providing a middleware service which satisfies the spatial requirements of

applications without changing the functional code. The middleware service also allows programmers to use

our programming constructs along with existing migration service provided by the system.

Identify Spatial requirements: In addition to basic constructs we have identified a number of high level spatial

requirements which make our solution applicable for various distributed applications. Programmers can also

develop their own high level constructs on top of the basic constructs provided by our middleware.

1.3 Contributions

We intend to provide a programmable mechanism for satisfying the spatial requirements in the distributed

systems. Our approach abstracts spatial coordination requirements and provides basic spatial constructs.

The spatial constructs allows the programmers to specify spatial coordination requirements declaratively.

The programmer can also define his own high level constructs using basic constructs.

• We have identified spatial requirements in various applications and specified them using our constructs

to illustrate their expressive power.

• We have implemented prototype of spatial coordination system in wireless sensor networks.

• We have separated functional concerns from spatial concerns.

• We have developed a middleware system to satisfy the spatial constraints.

1.4 Outline

The rest of the thesis is organized as follows: existing work in related areas is reviewed in Chapter 2, spatial

coordination is described in Chapter 3, prototype design and implementation are described in Chapter 4,

experimental results and evaluation of the work are described in Chapter 5, future work and conclusion are

described in Chapter 6.

3

Chapter 2

Related Work

In this chapter, related work in mobility and spatial coordination is reviewed. Section 2.1 presents research

in mobile agent systems and how they provide mobility. Section 2.2 provides the background of the wireless

sensor networks. Section 2.3 presents relevant research in spatial coordination and applications of spatial

coordination.

2.1 Mobile Agent Systems

In mobile agent systems, agents are autonomous entities which can decide the locations to visit and the

function to execute at these locations. When an agent migrates from one location to another location it

either carries code, data and execution state, which is known as strong migration or it carries code and data,

which is known as weak migration. In strong migration, an agent can migrate at any point of its execution.

This section identifies the primitives provided by the mobile agent systems for the mobility of agents. It

classifies the mobility of agents into four classes: self migration, dynamic migration, reactive migration and

iterative migration.

2.1.1 Self Migration

In self migration, once an agent is invoked it autonomously decides when to migrate. These systems [13, 3, 25]

provide the basic migration primitives and they are either developed as a separate system or developed on

top of the existing systems.

The D’Agent [13] mobile agent system was previously known as Agent TCL. The architecture of D’Agent

is based on the server model of Telescript and it is divided into five layers: transport, server, generic core,

interpreter and agent. The transport layer supports transport mechanism, the server layer manages local and

incoming agents, the generic core layer provides function library of D’Agent, the interpreter layer provides

execution environment for each supported agent language, and the agent layer contains agents themselves.

The migration process of the agents is based on strong migration. The agent’s migration can take place

using two commands: agent jump and fork. The agent jump command captures the internal state of the

agent and sends an image to the destination node. The destination node restores agent’s state and resumes

execution immediately after agent jump statement. The fork command allows an agent to clone itself at the

4

destination nodes.

Mole [3], which was developed in Java language [12], uses notions of agents and places. The agents are

active objects that may have one or more than one thread, which can migrate from a location to another

location. The places provide an execution environment for the agents and various services which are accessed

by the agents. This system supports weak migration which transfers the data and the state of the agent. The

migration is carried out by calling the migrateTo() method provided by the system. When the agent calls the

migrateTo() method, all the threads belonging to that agent are suspended and then a system independent

representation of the agent is created through serialization. Later it is sent to the destination node. On the

destination node, the agent looks for the required classes and creates a thread to execute the agent’s code.

The Ara [25] mobile agent platform supports secure execution of the mobile agents in heterogeneous networks.

A mobile agent is a program in the system which can decide to move by its own choice. The system consists

of a runtime system known as a core, which acts as a middleware between the operating system and the

interpreter. The core provides services such as agent migration, access rights to the resources, and the

service points for the agent’s interaction etc. This system supports strong migration, which allows the agents

to migrate at any point of their execution by calling the ara go instruction.

The major trends observed in the above systems are: they provide basic agent mobility, they are modular, and

support multiple languages. However, the disadvantages of these systems are that the application programmer

has to deal with the low level agent migration: these systems mix up the migration code with the functional

code of the agents which makes them difficult to use, and there is no way to control the movement of the

agents once it is invoked.

2.1.2 Dynamic Migration

Dynamic migration introduces the concept of relative location of agents. Therefore, an agent changes its

location dynamically with respect to the location of other related agents.

In Fargo [14], agents are represented as mobile codes, which are known as complets. A complet is like a

module in a programming language with relocation capability. This system consists of two parts: application

component and runtime system. The application component allows a programmer to write an application

code whereas the runtime system consists of a distributed core object which provides mobility support and

interconnects complets across machines.

Fargo introduces the concept of relative location of the complets known as co-location. The co-location

can mean two complets on a same host or in a same local area network. The system provides a mechanism

to bind one complet with other complets through complet references. It also abstracts some other relative

references such as Link, Pull, Duplicate, Stamp and BPull. The Link reference simply links the source com-

plet to the target complet and relocation of the source will not affect the target and vice versa. The Pull

reference is a unidirectional reference, it binds the target complet to the source complet. So, if the source

complet relocates then it pulls the target complet with it. The Duplicate reference is quite similar to the Pull.

5

The difference is that it creates a copy of the target and moves it to the locality of the source. In the Stamp

reference, if the source relocates to some other locality and finds a local instance of the target there, then it

connects with that instance. The BPull is also similar to Pull except the fact that it supports bi-directional

pull and group re-location.

Multi-agent organization [28], presents a self-organization in mobile agents. It follows the concept of hierar-

chical organization used in Mobile Spaces [26]. In the hierarchical organization, a mobile agent can contain

one or more than one mobile agents inside it and can migrate to other locations with mobile agents inside

it. The mobile agents are organized in a hierarchal structure. The Parent agent has control over child agent

and the child inherits parents’ behaviors. The parent agent can move the child agent to other mobile agents

or other computers. The system is composed of two parts: run time system and mobile agent. The runtime

system is built on top of the Java Virtual Machine [20] and the mobile agents are developed using Java [12].

Multi-agent organization system provides dynamic organization of the agents by defining four migration

policies: follow, dispatch, fill and shift. In the follow policy, if agent A writes follow policy for agent B then

it implies that, as agent A moves to the other computer, then agent B will follow it. The Dispatch policy

is quite similar to the follow policy except that a clone of agent B will follow agent A. In the shift policy, if

agent A moves to the target location then agent B moves to the source location of agent A. The Fill policy

is similar to the shift except that it moves a clone of agent B to the source location of agent A.

The above systems are better than the self migration systems because they provide high level primitives for

the agent’s mobility. The problem with these systems is that they deal only with the co-location of the agents

and they are not considering separation of the agents.

VCEA [7], proposes an application consolidation engine which is based on two parts: the constraints manage-

ment and the application placement. The purpose of this technique is to find a consolidation solution which

minimizes the number of machines to place the applications and satisfy multiple constraints. The placement

of the applications is dependent on the resource usage of the applications. The constraints are identified by

observing the history of the resource usage and the application traces. The constraints are classified into

three categories: must be, should not be, and can be. The must be represents the applications which should

place on the same machine, the should not be represents the applications which should not be placed on the

same machine. The can be has no preference of placement. The user can enter the constraints from the

graphical user interface and then the system categorizes the constraints based on the requirements of the

applications. Thereafter, the system performs the constraint fusion to provide a compact representation of

the various constraints. The advantage of this technique is that it provides a way to identify and manage

the constraints between the applications. It also finds a location for an application. However, this technique

does not provide how constraints are specified and programmability aspect of these constraints .

6

2.1.3 Itinerary Based Migration

In itinerary based migration, a predefined list of locations and methods is provided to an agent. The agent

visits each location and executes the method on that location.

One example of a system supporting itinerary based migration is Concordia [30]. Concordia was developed

in Java and runs on JVM. Agents are Java objects which can migrate from one computer to another. The

migration is invoked by the agents through calling the migrate method of the server, which handles the agent’s

migration. An agent carries its state, code, data and an itinerary. The itinerary is a data structure, stored in

a separate location from the agent’s data and execution state. The itinerary consists of a list of destinations

where an agent has to go and a list of methods which it has to execute at each location. The agent can

modify its itinerary at runtime. For mobility, the agent’s state is serialized using the Java serialization object

and transfered to the destination location.

Another itinerary based approach is presented in network management [27]. This approach uses hierarchical

technique of Mobile space MobileSpace [26]; which allows a mobile agent to carry another mobile agent inside

it. This approach consists of two layers: the first layer contains the application agents which carry a list

of methods and an itinerary. The second layer contains the navigation agents, which provide navigation

services to the application agents. The application agent provides its itinerary to the navigation agent and

the navigation agent takes the application agent to the locations specified in the itinerary. The navigation

agents are carrier agents, they know the network very well and provide navigation services to the application

agents. The network keeps multiple navigator agents with the specific itineraries to give navigation services

to the application agents for different locations. The navigation agent uses two methods: moveToNext()

and moveTo() for migration. The moveToNext() takes next location from the itinerary and moves them

there. The moveTo() takes the agent back to the starting location. The advantage of itinerary based systems

is that they provide a controlled mobility of the agents, which is required in some applications where the

itinerary is already known. The disadvantages of the above systems are: they provide a basic migration

primitive and the programmers have to implement the low level itinerary details, and these systems only

support controlled migration which makes the agents less autonomous and they can not decide themselves

when to migrate.

2.1.4 Reactive Migration

Reactive migration takes place in real-time systems. In real-time systems, when an event takes place, agents

migrate in reaction to that event.

Agilla [8] was developed for fire detection in forest, using a wireless sensor networks. Its middleware consists

of he Agilla engine, which is responsible for the agent’s migration, a tuple space for storing tuples, the context

manager for storing the list of neighbors, and the reaction manager for storing reactions to the events. In the

reaction manager, reactions are registered by the agents and they are fired when a related event occurs. For

7

example, if a fire tuple appears in the tuple space of a node then a fire tracking agent executing on the node

clones and moves itself on other nodes to detect the perimeter of fire area. Agilla supports both weak and

strong migration. It provides move, clone smove and sclone instructions for the agent migration. The move

and clone are using weak migration and smove and sclone are using strong migration. The move instruction

transfers the code of the agent to the destination location, where the agent resumes its execution from the

beginning. The smove transfers data, program counter, and stack to the destination and the agent resumes

its execution where it left off. The clone copies the data and the state of the agent on the destination node

and resumes execution on both. The sclone copies data, program counter, and stack on the destination and

resumes execution on both where it left off.

MARS [6] is a tuple space based mobile agent system. The tuple space is a shared memory model where every

datum is a tuple. In this system, the tuple spaces are reactive; they can trigger a computational activity in

the response to accesses, made to them by the agents. It does not implement its own mobile agent system.

Indeed, it uses current mobile agent systems. The architecture of the MARS consists of mobile agents, an

agent server, and the local MARS tuple space. The mobile agent server accepts incoming agents on a node

and provides reference to the local tuple space. The tuple space is accessed through well-defined Linda [11]

like primitives by the agents. Each tuple space can react to access made to it with differentiated behaviors.

These systems introduce the potential reason for the agent’s mobility. However these systems are limited to

application level reactions. They do not consider resource or spatial reasons for the agent migration.

2.2 Wireless Sensor Network

A Wireless sensor network is composed of a number of resource constrained sensor nodes, which are capable of

sensing the environment, processing the data, and communicating on wireless medium with their neighboring

sensor nodes. Sensor nodes have very limited resources such as memory, processor power and battery power.

Current advancements in the sensor node devices have increased the demand of the wireless sensor networks

in many fields. Some of the application areas are: health monitoring, military surveillance, environmental

monitoring, industrial monitoring, structural health monitoring, and home security. The basic architecture

of sensor networks is given in Figure 2.1. The sensor nodes are scattered in the sensor field. They collect the

data and route them to the sink through multi-hop communication architecture.

A Sensor node consists of sensors, battery board, and a mote. One sensor node can have multiple sensors

(temperature, barometer, acoustic). A mote has a radio, processor and memory.

A Sink performs the task of gateway between the users and the sensor network. The sink collects data and

disseminates multiple tasks in the form of queries into the sensor network.

Sensor field is an area of interest where sensor nodes are deployed to collect the data. Sinks can communicate

with each other and they can communicate with users via the Internet or satellite.

The Battery resource is a primary resource for a sensor node because all other resources are dependent on

8

Figure 2.1: Single sink architecture of a WSN

battery power. Once a sensor node runs out of the battery power, it is dead. It is not feasible to recharge or

replace the batteries of thousands of sensor nodes, deployed in the remote sensor field. Current techniques,

whether it is routing technique or bandwidth congestion reduction technique or data aggregation technique,

have to compromise with the battery utilization and other factors such as network performance, data accuracy,

and data delay.

Table 2.1: Sleep states of the sensor nodes

Sleep state Processor Memory Sensor Radio

S0 Active Active On Tx, Rx

S1 Idle Sleep On Rx

S2 Sleep Sleep On Rx

S3 Sleep Sleep On off

S4 Sleep Sleep Off Off

There are various sleep states identified [29] based on power consumption and wake up time which are

shown in Table 2.1. S0 in table represents the working state of a sensor node. During the active state a

sensor node keeps its processor, memory, sensors, and radio on. The states from S1 to S4 belong to different

level of sleep states. S1 is the lowest level sleep state and S4 represents the deepest sleep state. The deeper

the sleep state the less power it consumes and higher is the wakeup time overhead.

2.3 Applications of Spatial Coordination

In this section, we study spatial requirements of various applications and how these requirements can be

translated into spatial coordination requirements.

9

2.3.1 Monitoring Applications

There are various types of monitoring applications. For example, environmental monitoring, habitat monitor-

ing [22] or structural health monitoring [17]. These applications operate in two scenarios: event monitoring

and long term periodic monitoring. During an event such as a fire condition in environmental monitoring,

earthquake in structural health monitoring, and moment of animal in habitat monitoring requires real time

data from the network. In the long term period monitoring, application continuously receives data from the

network, after some specified time period.

Let us consider a structural health monitoring application which is a periodical monitoring application. In

the structural health monitoring application, sensors are deployed on a bridge to monitor the response of the

structure in different environmental conditions such as ambient load from wind or traffic over its life span.

The application requires data from each location of the bridge to determine the response of the different

portions of the bridge. This requirement can be satisfied in the spatial coordination by colocating an agent

with a list of locations. For example, a data collecting agent colocates with the agent executing on node 1,

collects data and then it colocates with the agent executing on node 2 and so on. At last, it comes back to

the base station with the collected data. In this way, an application would not receive the redundant data

and it does not have to maintain the wake up time of the nodes. In extreme events, higher priority should

be given to the data of the nodes which are close to the event region. In events like fire, only nodes which

are close to the fire should perform data collection process and other node should create a path for data

transfer to the base station. This scenario can be satisfied in the spatial coordination by colocating the data

collecting agent with the agents on the nodes which are close to the fire.

2.3.2 Network Management Applications

In WSN, applications running in a network can be updated through reprogramming of the nodes. Different

techniques have been developed to address the network reprogramming problem [23, 18, 16]. TinyCubus [23]

distributes the compiled code to reprogram the network. It also makes sure that code does not affect any

other functionality, and reaches at the correct location. It only updates the nodes which satisfy the hardware

constraints. Mate [18] transmits the scripts to reprogram the network. Incremental update approach [16]

compares the difference between old and new code and transmits their difference to reprogram the node.

These techniques, one or the other way, are sending code to reprogram the nodes. The new code is received

by the node and then executed on it. There are situations when some nodes should be updated and others

should not be updated. For example, multiple applications such as environment monitoring and fire detection

are executing in a network. In this case, if a new version of the code comes for the fire detection application

then nodes which carry the fire detection application should be updated. For the above reprogramming

scenarios it can be observed that there exists spatial requirements between mobile code and nodes. For

example, the new code can be carried by the mobile agents. These agents can also have a list of destinations

10

to visit and execute the new version of the code on the nodes to update them. These mobile agents can also

have a requirement that they cannot visit certain nodes to avoid the unnecessary updates on some of the

nodes.

2.3.3 Spatial Applications

Smart message system is a space-aware programming model which provides a virtual name space over outdoor

networks of embedded systems [5]. It allows resources to be referenced by their physical locations and

properties. For example, “Hill1:camera[1]” represents Hill1 as a virtual name space and camera1 is a resource

in the virtual name space. The virtual name space represents the location, where as the resource is a property

contained by the location. The spatial programming is developed using a mobile agent like system known

as smart messages. The smart messages consist of code, data, and execution state. In order to achieve

the resources from a node smart messages are moved to the location using virtual name of the node. The

advantage of this approach is that it hides the migration details, data access and services from the programmer

and it encapsulates the physical resource into a virtual name space for accessing it. This application represents

a spatial coordination requirement which is: the locations or service can be encapsulated within the agents

and other agents can access the service.

SpatialViews [24] is another technique which uses virtual naming scheme. In SpatialViews, a spatialview is

a collection of virtual nodes named by the services and locations. A programmer can define a spatialview

of a group of nodes of interest and perform the operation on it. For example, a group may contain camera

and image processing nodes because camera captures the image and image processing node processes the

image to perform some search. This kind of scenario shows another spatial requirement which is: the group

of related agents or computations should reside in the same place.

2.4 Summary

In this chapter, we focused on three issues: mobility, WSN and applications. In the mobility, we studied

different mobile agent systems to determine how they provide the mobility, how they deal with the spatial

aspect with the mobility, and the primitives these systems provide for mobility. In the WSN, we reviewed the

background of the sensor networks, their resources and the limitations. In the applications, we tried to identify

the various applications requirements which can be converted into the spatial coordination requirements.

11

Chapter 3

Spatial Coordination

This chapter develops programming constructs and presents the mechanism to specify an application’s

spatial coordination requirements declaratively. This chapter is organized in three sections: Section 3.1

presents the introduction, Section 3.2 describes the mechanism to construct the spatial coordination primitives

and Section 3.3 presents the summary of the chapter.

3.1 Introduction

Communication requirements of applications in a distributed system can lead to a variety of spatial dependen-

cies. However, there is no general way to manage these spatial dependencies. We specify these dependencies

using spatial coordination requirements.

Spatial coordination separates the spatial concerns of an application from its functional concerns. Spatial

coordination avoids the mixing of functional code and spatial coordination code, which enables the pro-

grammer to change spatial requirements at runtime without affecting its functionality. To program spatial

coordination, a programmer writes the functional code of an application and then separately specifies the

spatial requirements of the application declaratively. At run time, a middleware system monitors dynamically

changing spatial requirements and ensures that they are satisfied.

3.2 Spatial Coordination Primitives

We have divided spatial primitives into two categories: basic primitives and high level primitives.

3.2.1 Basic Primitives

We refer to simple primitives involving only two actors as basic primitives. There are two basic primitives:

colocate and separate.

Colocate

The colocate primitive specifies colocation constraint between two actors. The colocate constraint specifies

the requirement to bring two actors on the same node, perhaps because they frequently communicate. If

12

Figure 3.1: Colocate two actors on the same node

either of these actors attempts to relocate, the other must follow it. The colocate primitive ensures that the

two actors are colocated so long as the constraint is in place. For example, in the fire monitoring application

described in Chapter 1, the temperature and humidity actors should be on same node. This would be specified

using a colocate constraint. If either of them changes its location (due to application or resource reasons)

then the other is also moved to the same location by the spatial coordination middleware. If the temperature

actor and the humidity actor had names 11 and 12, respectively, then the following code would specify the

colocate requirement to keep them together.

Colocate(11, 12);

Colocate primitive can also be useful for network bandwidth management. It brings two actors close

to each other by reducing the network distance between them, so that they can satisfy the communication

requirement of an application and reduce the bandwidth utilization of the network. The notion of network

distance is defined so that if network bandwidth is low then distance between two actors is large, creating

an inverse relationship between the network distance and the bandwidth. As shown in Figure 3.1, when two

actors are on the same node, the network distance between them is reduced and the bandwidth increased.

When two actors are placed on the same computer then they can have the highest bandwidth.

Separate

The separate primitive specifies the separation constraint between two actors. The goal of the separate

constraint is to specify the requirement of executing two actors on different nodes. For example, these actors

may not be allowed to reside on the same node because of the requirements of a fault-tolerance or redundant

data generation protocol. The separate primitive keeps two actors away from each other by increasing the

network distance between them. The network distance can be increased by reducing the bandwidth between

the two actors. As shown in Figure 3.2, two actors reside on the separate nodes and they are connected

13

Figure 3.2: Separate two actors on the different node

through a network link. Recall, the active replication and fault-tolerance introduced in Chapter 1, where

dataStoringActor is an actor executing on the main server, and dataReplicationActor actively replicates it.

The fault-tolerance protocol requires that dataStoringActor and dataReplicationActor should always reside

on different servers so that if the main server goes down, the dataReplicationActor can provide the service

without any interruption. The following code shows how the separate requirements can be specified in an

application program for two actors named 21 and 22.

Separate(21, 22);

3.2.2 High Level Primitives

We refer to primitives involving more than two actors or other primitives that can be represented in terms

of basic primitives as high level primitives.

Group Colocate

The group colocate primitive allows us to specify that a group of actors to be colocated. When group colocate

is specified, the spatial coordination middleware breaks down the requirement into a number of basic colo-

cate requirements for pairs of actors. For example, let us say that actors 11, 21, 31, and 41 need to be

group colocated as shown in Figure 3.3.

The middleware divides the group colocate into basic pair-wise colocates (11,21),(11,31), and (11,41),

because so long as these pair-wise requirements are satisfied, so will the group colocate requirement. However,

note that the two are not equivalent. If actors 11, 21, 31, and 41 are to be colocated, then the actual constraints

would be each actor has colocate requirements with all other actors in the group, thereby giving n(n-1)/2

pairs (where n= number of actors). However, the resolution of the constraints simply requires each actor in

the group to get colocated with one other actor in the group, creating n-1 pairs, as shown in Figure 3.4, to

14

Figure 3.3: Actors before group colocate and actors after group colocate

create a minimally connected graphtree.

Figure 3.4: Colocate constraint pairs graph

So we can consider its pairs such as {(11,12),(11,13),(11,14)} or {(12,11),(12,13),(12,14)}. The resolution

of the constraints and actual constraints are not equivalent to each other. A group colocate declaration

identifies the actors to be colocated as its parameters. The following code shows how the group colocate can

be specified in an application program for a group of actors named 11, 12, 13 and 14.

Group Colocate(11, 12, 13, 14);

Group Separate

The group separate primitive allows us to specify that a group of actors to be separated. The group separate

primitive can be specified in the same way as group colocate. When group separate is specified, the spatial co-

ordination middleware breaks down the requirement into a number of basic separate requirements for pairs of

15

actors. For example, let us say that actors 11, 12, 13 and 14 need to be group separated as shown in Figure 3.5.

The middleware divides group separate into basic pair-wise separates (11,12),(11,13),(11,14),(12,13),(12,14),

(13,14). The difference between group colocate and group separate is that in group separate, actual con-

straint pairs are considered whereas in group colocate resolution of the constraint is considered. The reason

behind using actual pairs is that each actor cannot reside with any other actor in the group, which results

in n(n-1)/2 pairs.

Figure 3.5: Separate constraint pairs graph

A group separate declaration identifies the actors to be separated as its parameters. The following code

shows how the group separate can be specified in an application program for a group of actors named 11, 12,

13 and 14.

Group Separate(11, 12, 13, 14);

3.2.3 Pattern Based High Level Primitives

In distributed systems, application programmers do not care about where a computation is physically located

during execution; however, they care about its geographical location. The geographical location can be

considered as a location from where data is collected, resources or services can be acquired in a network.

The resources or services provided by a computer or a group of computers in a geographical location can be

encapsulated into actors and these actors represent a geographical location or a service. Consider a computer

network in which each node is encapsulated by an actor, which represents a node. If a network administrator

has to install a chat client in the network, the administrator creates an actor of the chat client and colocates

it with the list of actors which encapsulates the nodes in the network to perform the installation of the chat

client.

Itinerary

Itinerary primitive enables an actor to migrate to different destinations, which are specified in the itinerary.

The actor migrates to each of the destination; one by one, in a specified order. The itinerary primitive is built

16

Figure 3.6: Actor 12 visits list of actors in a specified order

on top of the basic primitives. In order to convert the itinerary primitive into basic primitives, the destination

nodes are encapsulated into actors and the actors represent the nodes in the network. In Figure 3.6, the

number under the big circle represents the node id. The node is encapsulated by the actor inside it and

represents the node in the network. For example, Actor 11 represent the Node 1. Therefore, if an application

requires an actor to execute certain functionality on the list of locations then the programmer can specify

the itinerary in the following way in an application program:

Itinerary (actor12,(destActor21, destActor61, destActor81));

In itinerary, the middleware takes the source actor and colocates it with the list of destination actors,

specified in the itinerary. The following code shows a break down of the itinerary primitive into basic pair-wise

colocate requirements. The middleware takes a destination from the list and inserts the colocate requirement

between the source and the destination. Once the first requirement is satisfied then the middleware removes

the first colocate requirement and then takes the next destination from the itinerary and inserts another

colocate requirement. It keeps performing it until the itinerary is exhausted.

Colocate (actor12 , destActor21)

˜ Colocate (actor12 , destActor21)

Colocate (actor12 , destActor61)

˜ Colocate (actor12 , destActor61)

Colocate (actor12 , destActor81)

˜ Colocate (actor12 , destActor81)

17

Figure 3.7: Actor 12 visits nodes in a random order

Visit

The Visit primitive is like the Itinerary primitive, but it can be useful when it is important that an actor

visits a number of nodes once but not that it visits them in a particular order. Consider a case of data

gathering in wireless sensor networks. The programmer injects a data gathering actor into the network to

collect data from the sensor nodes. The data gathering actor collects data from the list of locations, in any

order. The middleware makes sure that the actor has visited all the actors which are specified in the visit

list. The data gathering actor can begin data collection from any of the actors in the list and then move to

the next location. Figure 3.7 shows one example of the path that actor 12 could take. The visit primitive

can be specified in the following way:

Visit(actor12, (destActor41, destActor81, destActor51, destActor61));

3.3 Summary

In this chapter, we presented the formalization of the spatial coordination. The application examples and

formalization details of the constraints are presented. The list of constraints presented in this chapter, are

by no means exhaustive; however, the programmers can build their own primitives. There is an overhead

of using high level primitives, however they are necessary and yet useful in some scenarios. We allow the

programmers to use the basic migration provided by the communication layer along with spatial coordination.

18

Chapter 4

Prototype Design and Implementation

This chapter describes the design and proof of concept prototype implementation of spatial coordination.

The prototype is developed by simulating the Actor model [1] of concurrent computation.

The organization of this chapter is as follows: Section 4.1 briefly describes the Actor model, Section 4.2

presents the system design, Section 4.3 describes the implementation details of spatial coordination and

includes formalization of spatial coordination as a constraint satisfaction problem. Section 4.4 presents the

summary of the chapter.

Figure 4.1: Actor

4.1 Actor Model

The Actor model is a flexible model for concurrent computation in distributed systems [1]. As shown in

Figure 4.1, an actor can be viewed as an independent process, encapsulating a state, a number of procedures

which can change the state, and a thread of control. Actors execute concurrently and communicate with

each other through asynchronous message passing. Each actor has a globally unique name and a message

queue for buffering the received messages. The messages received by an actor are processed in the order of

their arrival. The Actor model defines three basic primitives of an actor:

• An actor can create new actors

19

• An actor can send messages to other actors whose addresses are known

• An actor can change its behavior

In our approach, we simulate actors and use actors to model primitive agents which carry out computations.

Figure 4.2: System architecture

4.2 System Design

In order to separate concerns, we design the system in a modular way. This system is divided into three

layers: actor layer, resources layer, and spatial coordination layer; as shown in the Figure 4.2. The actor layer

is where an application’s functional code resides. It consists of three parts actor creations, specification of

constraints and specification of application’s functionality. The actor layer interacts with spatial coordination

layer by using the spatial primitives provided by the spatial coordination layer.

The resource coordination layer is an optional layer, it maintains the availability of the resources such

as memory, processor cycles, and battery power on a node. The battery power is a key resource in a sensor

node because the life of a node depends on it [2]. This layer also provides the spatial requirements on the

actors. For example, if node1 does not have a light sensor on it then it can specify the spatial requirement

that light actor should never come to node1 because it does not have the required resources.

The spatial coordination layer implements the spatial coordination middleware. It takes spatial require-

ments from the lower layers and provides the best solution which satisfies these requirements. This layer

provides spatial coordination primitives to the other layers and hides implementation details from them. The

20

spatial coordination layer has four components: constraints assignment to the actors, colocate constraint

satisfaction, separate constraint satisfaction, and actors migration. These four components work in a se-

quence, which reduces the complexity of the problem as the program executes. For example, the constraint

assignment process assigns constraints to the actors and selects a head for the actors in a Group Colocate

or Colocate constraint, which simplifies the Colocate constraint satisfaction process. The Colocate constraint

satisfaction brings actors on the same node and the head actor represents the group which reduces the number

of actors participating in the separate constraint satisfaction.

Moreover, there is a coordinator node which basically acts as a barrier in order to synchronize the spatial

coordination algorithm at different stages. The coordinator node only interacts with the spatial coordination

layer, other layers do not know about it.

4.3 Implementation

This section covers the implementation of the actor layer and the spatial coordination layer and their details.

4.3.1 Actor Layer

The actor layer creates actors and defines the functionality of an application in the actors. Let us recall the

example of the environment monitoring application in Chapter 1. If temperature monitoring task is carried

out by actor 11 and humidity monitoring task is carried out by actor 12 then Program 1 shows the code of

the actors. In our implementation, each actor has a unique name and it cannot be changed even if the actors

migrate to any other node in the system. The name of an actor is composed of two parts: the first part

represents the node id where the actor was created and the second part is the id of the actor which makes

actor’s name unique in the system. Multiple actors can also reside on one node. Once actors are created

then constraints can be specified on the created actors through spatial coordination primitives, which are

provided by the spatial coordination layer. Here, the assumption is that the constraints are specified only on

the existing actors.

Actor Communication

Actors communicate with each other by message passing. There are two types of messages in the system:

application and system messages. The application messages are exchanged between the actors for passing

application level information. The system messages are used by the spatial coordination layer, to satisfy the

spatial requirements. An actor can send a message to its neighbor actors with whom it has spatial relation.

Driver Function

The driver function allows the programmer to specify constraints on the created actors. The code in Pro-

gram 2 explains the driver function, showing the name of the actors which currently exist in the system.

21

Program 1 Actors code

void Actors(id)

{

switch(id)

{

//actor definition

case:11

TemperatureActor();

break;

case:12

PressureActor();

break;

}

}

The constraints are specified on the existing actors using spatial coordination primitives. The Spatial.init()

method triggers the spatial coordination layer to satisfy the constraints. The Spatial.init() is a call back

function which means that when it finishes its execution, it informs the actor layer by calling the Spa-

tial.spatialDone() event. The application’s functionality executes only after the Spatial.spatialDone() event

is received.

Program 2 Constraints specification in the actor layer

void Driver()

{

//actors in the systems

actors 11, 12, 21, 22, 31, 32;

//Spatial constraints

Group_Colocate(31, 12, 21);

Separate(11, 31);

//satisfy requirements

call Spatial.init();

}

event result_t Spatial.spatialDone(result_t success)

{

// Execute Application’s functionality

}

4.3.2 Spatial Coordination Layer

Spatial coordination layer handles the spatial requirements, which may come from the actor layer or the

resource layer. It consists of a middleware, which satisfies the spatial constraints of the actors running on a

node. It exports the Spatial.init() and spatial coordination primitives, which are used by the actor layer. Its

22

operations are divided into three parts: actor’s data structure creation and constraints assignment, colocate

constraints satisfaction, and separate constraints satisfaction.

Actor Structure and Constraints Assignment

The actor layer passes the total number of actors on the node information to the spatial coordination layer.

The spatial coordination layer creates an actor structure for each actor on the node. The actor structure has

following fields: actorid, head, location, mediate, desire to mediate m, domains, constraint list, good list, and

agent view. Each node initializes the actor structure with initial values. Program 3 shows the initialization

of the actor structure.

Program 3 Actor structure initialization

procedure initProc

actorid → actor name

headid → group head

location → current node id

mediate → FALSE

m → TRUE

priority → sizeof(constraint list)

end procedure;

The process of constraints assignment takes place in two steps: firstly, breaking down the group wise

constraints into basic pair-wise constraints, secondly assigning of constraints to the concerned actors.

• Step 1: the spatial coordination requirements received from the actor layer through basic or high level

primitives are stored in a global constraint data structure of the node. The global constraint data

structure has three fields: name of the actor one, name of the actor two, and the constraints between

the actors. If spatial requirements are received from basic pair-wise primitives then constraint pairs

are stored as it is in the global constraint data structure. If constraints are received from high level

primitives then they are broken down into pair-wise constraints and stored in the global constraint data

structure. As discussed in Chapter 3, if there are n actors in a Group Colocate then they are broken

down into n-1 pair-wise Colocate constraints. For example, if constraint is Group Colocate(11, 21, 31)

then the system takes the first actor of the group as a head of the group which is actor 11 in this case

and creates Colocate(11, 21), Colocate(11, 31) pairs. if there are n actors in a Group Separate then

they are broken down into n(n-1)/2 pair-wise Separate constraints.

• Step 2: this step has two parts: the selection of the group head actor and the assignment of constraints

to the actors. The head field of an actor structure may contain any one of the following values: its own

name, group head’s name or empty. An actor can be a head in two situations either it is a first element

in the Colocate constraint pair or it has only Separate constraints with other actors. For example, if the

23

constraint is Colocate(21, 22) then 21 is considered as a head of the group. An actor has group head’s

name in its head field when it is a member of a group. The head field remains empty when actor does

not have any constraint. In constraints assignment process, each actor executes the InsertConstraints()

function which extracts constraint pairs from the global constraint structure and checks if the pair has

its name in it then stores the pair into its constraint list.

Communication Protocol

The communication protocol uses messages of type system in the spatial coordination layer. There are two

types of communication between actors: local communication and remote communication.

• The communication between the actors residing on the same node is known as local communication.

• The communication between the actors residing on the different nodes is known as remote communi-

cation.

In both, remote and local communication, a message send is handled by the initSend() method, as shown

in Program 4. An actor creates a message packet, which consists of packet header and data part. The data

is inserted into data part of the message packet then it is inserted into an out going message queue. The

initSend() function takes that message from the queue and checks the destination location. If the destination

location is the same as the current location then the message is sent by a function call, otherwise the message

is transmitted through radio to the destination location. A sendDone event is fired when the message is

transmitted to the destination node.

Program 4 Message send procedure

procedure initSend

msg = NULL ;

if msgQueue != empty do

msg= get message from msgQueue;

if msg.destination == node id do

localReceive(msg);

else

send(msg) to msg.destination;

end procedure;

For the message receive, there are two functions localReceive() and SpatialReceive.receive(). The local-

Receive() function receives the local incoming messages and finds the name of the recipient actor from the

message and passes the message to it. The SpatialReceive.receive() receives the message from the source node

and enqueues it in the received message queue. The message() method checks received message queue for

any new message. If there is a new message in the received message queue then it takes the message and

extracts the recipient’s name from the message and passes it to the concerned actor.

24

Colocate Constraints Satisfaction

As discussed in Chapter 3, colocation of actors means to bring the colocated constraint actors on the same

node. In Colocate constraint satisfaction, all the member actors of the group provide their constraints list to

the head of the group and the head represents the group.

Figure 4.3: Actor grouping

Consider a scenario of colocation in Figure 4.3. There are three nodes and six actors in the system and

colocate requirements are Group Colocate(11,21,31) and Colocate(32,12). In this scenario, there will be two

groups: group 1 has three actors and actor 11 would be the head of the group, group 2 has two actors

and actor 32 would be the head of the group. The entire group can be considered as one actor which is

represented by the group head. Before going into details of the colocate constraints satisfaction, let us look

at the messages which are required to satisfy the colocate constraints.

Messages

• MEMBER UPDATE: is exchanged between the members of the group and their separate constraint

neighbors. This message contains the name of the group head.

• HEAD UPDATE: is sent to the head of the group by the member of the group. This message contains

the constraints of the member actors.

• COL DONE: is sent by the AgentsColocateDone method of the spatial coordination layer to the coor-

dinator. This message informs the coordinator about the completion of colocate process of the actors

on its node.

25

There are two steps to satisfy the colocate constraints: the first step involves the members of the group

updates their separate constraint neighbors about their head. The second step involves the members of the

group send their constraint list to the head of the group.

• In Step 1, each actor looks into the head field of its actor structure. If it contains the name of the head

then it implies that the actor is a member of a group, if it contains its own id then the actor is a head

of the group. If it is a head then it waits for the members to send their constraint list. If an actor is

a member of the group then it sends its group head name to the actors with whom it has a separate

constraint using the MEMBER UPDATE message and also adds the actor’s name into its init list, as

shown in Program 5. On the receiving side, receiver finds the sender’s name in its constraint list and

replaces it with the sender’s group head name. If the receiver actor has an empty head field then it

sends an acknowledgment message to the sender which informs the sender that receiver itself is a head.

When the sender receives replies from its separate constraint neighbors then it finds the name of the

neighbor in its init list and removes the name from the list. By doing this the actor confirms that all

the separate neighbors have sent their head information.

• In Step 2, the member actors send their updated constraint list along with their initial information

to their concerned head using the HEAD UPDATE message. They also call the AgentColocateDone()

method of the spatial coordination layer. The head receives the message, adds member information

into its agent view and waits until all the member actors have sent their initial information message.

As soon as all the messages are received from neighbors then the head performs two tasks. Initially, it

updates its constraint list by merging the member’s constraint lists. During the merging process if the

group head finds any conflicting requirement between actors then it sends a message to the coordinator

node to stop the coordination process. Otherwise, it calls the AgentColocateDone() method of the

spatial coordination layer. The AgentColocateDone() method checks whether all the actors residing

on the node have finished the colocate process. If all the actors have not finished the colocate process

then it waits for a half second and sends a message to the remaining actors to resend the COL DONE

message. Once all of the actors have finished colocate process then the node sends a COL DONE

message to the coordinator.

Coordinator Node

The purpose of the coordinator node is to synchronize the actors at different steps of the algorithm. When each

node in the system completes its colocate process then it sends a SEND DONE message to the coordinator.

The coordinator collects all the COL DONE messages and makes sure that all the nodes have finished the

colocate process. As soon as all the COL DONE messages are received from the nodes then the coordinator

broadcasts a START SEPARATE message. When the nodes receive the START SEPARATE message then

they move on to separate constraints satisfaction.

26

Program 5 Colocate procedure

//initialize actors

//assign constraints

procedure member_update

counter 0;

for each xj constraint list do

if xj.relation == SEPARATE do

send(MEMBER_UPDATE(xi,xi.head))to xj;
counter++;

end do;

end member_update;

When receive(MEMBER_UPDATE(xj.xj.head)) do

update constraint list with (xi with xj.head);
if xi.head == Null do

send(MEMBER_UPDATE(xi,Null)) to xj;
counter--;

if counter == 0 do

send(HEAD_UPDATE(xi,xi.constraint_list, location, m, priority)) to xi.head;
AgentsColocateDone();

end do;

When receive(HEAD_UPDATE(xj,xj.constraint_list)) do

update constraint list with (xj,xj.constraint list);

update agent view with (xj,xj.constraint list);

if HEAD UPDATE receive from all Colocate do

AgentsColocateDone();

end do;

procedure AgentsColocateDone

update agent list with colocate done

agent list= colocate Done;

if agent list has colocate done from all actors do

Send(Col Done(Coordinator));

end AgentsColocateDone;

27

Separate Constraints

The last part of the algorithm is to solve the separate requirements. In the separate constraints satisfaction,

only the head actors can participate. Before going into the details of the separate constraints, let us discuss

what is a constraint satisfaction problem (CSP) and then we formalize our problem into CSP.

A Constraint Satisfaction Problem consists of the following:

• a set of n variables V= {x1,.....,xn};

• discrete, finite domains for each of the variables D={D1, ...,Dn};

• a set of constraints R ={R1,...Rn} where each Ri(di1,...,dij) is a predicate on the Cartesian product

Di1 ×x....×x Dij that returns true iff the value assignments of the variables satisfy the constraint.

The problem is to find an assignment A= {d1....,dn | di ε Di} such that each of the constraints in R is

satisfied. CSP has been shown to be NP-complete, making some form of the search a necessity.

In our case,

• a set of n variables are locations of the actors.

• discrete, finite domains are number of nodes in the network.

• a set of constraints are predicates on Cartesian product.

The identified problem is to find the location of the actors in such a way so that all of the constraints in the

system are satisfied.

In order to solve this problem, we applied the Asynchronous Partial Overlay(APO) [21]. The APO is based on

a cooperative mediation process. The agents in the algorithm construct a connection with other agents. Each

agent tries to solve the subproblem within its own constraints. An agent performs the role of the mediator

based on its priority. Once an agent becomes the mediator it tries to resolve the conflicts by changing its

own value, if a conflict is resolved then it sends its new value to the connected agents. Otherwise this process

continues until all the conflicts have been removed or there is no solution for the problem. The algorithm’s

worst-case runtime complexity, in domains that are exponential, is exponential. The APO algorithm is

implemented in several steps. The messages used by the coordination layer of the node to communicate with

each other which helps to find out the best solution, are explained below:

Messages

• INIT: is an initialization message which is sent by all the actors to their separate neighbors. It contains

the initial information such as name, location, constraints, priority, and m flag.

• EVALUATE: is sent by the actor who wants to be the mediator of the session to its neighbors for their

membership in the session.

28

• MEVALUATE: is sent to the session mediator by the members to inform about their membership in

the session.

• WAIT: is sent by the neighbors which are currently involved in a session and cannot be part of any

other session.

• ACCEPT: is sent by the mediator to the members and contains the future location of the actor.

• OK: is exchanged between the mediator and members, it contains the updated information of the actors.

APO Algorithm Implementation

The APO algorithm consists of following steps:

• Step 1: Each actor starts sending its initial information to its separate constraint neighbors using the

INIT message. Each sender actor maintains the init list, which records the name of the destination

actors to which it has sent the messages. On the receive of the INIT message, the receiver actor adds

the information of the sender into its agent view and checks its init list whether it has sent initial

information to the sender or not. If the information has already been sent then it removes the name

of the actor from the init list. If the initial information has not been sent then it sends its initial

information to the sender actor. Each time when an actor removes the name of the sender actor from

its init list then it checks whether the init list is empty or not. If init list is empty then it moves on to

the next step otherwise waits for the remaining actors to send their initial information.

• Step 2: Each actor checks its agent view for any conflict with its separate neighbors. If an actor finds

any conflict with one or more than one neighbor then it checks if any higher priority agent is not

mediating then the actor assumes the role of mediator.

• Step 3: Once an actor decides to be a mediator for the session then it sends an EVALUATE message

to its separate neighbors. On receive, each receiving actor checks whether it is already in a session

or expecting a higher priority actor to mediate. If there is no higher priority actor to mediate then

the actor sends a MEVALUATE and sets its m flag true. If there is a higher priority actor or m

flag is already true then it sends a WAIT message to the mediator. When the mediator receives the

MEVALUATE message from the neighbors then it includes the neighbors into find solution process,

otherwise it drops the actor from the current session.

• Step 4: The mediator uses Branch and Bound (B&B) [9] search algorithm to find the best solution.

The mediator considers the list of constraints received from the neighbors, list of locations available in

the system and sets bound N to 1. It runs the B&B algorithm which finds a perfect solution with N’

< N constraint violations. If it cannot find the perfect solution then returns the N’ which represents

that there is no solution for the problem. Once it finds the best solution then it sends its neighbor’s

29

future location through an ACCEPT message. On the receive, the neighbor changes its value of current

location to the future location and session variable to false. Once again each actor checks its agent view

for any conflict, in case of any conflict Step 3 is repeated again. Once all the conflicts have been resolved

then each actor calls the AgentSeparateDone() method, which maintains the information of how many

actors on its node have finished their separate process. As soon as it receives separate done from all

the actors on the node then it informs the coordinator about completion of the separate process.

Coordinator Node

This time coordinator node waits for all the head actors to send a SEPARATE DONE message to it. Once

it receives the messages from all the head actors then it broadcasts the MIGRATE message. When actors

receive the migrate message then they start migrating to their future locations.

Once migration is done then the spatial coordination layer calls the Spatial Done event of the actor layer.

The functionality of the application is executed thereafter.

Actor Migration

The actor migration is simulated using the system messages. The migration process is carried out in three

steps:

• Source node sends a message of type MIGRATION to the destination node. The message includes

actor information such as: name of the actor, name of the actor’s group head, agent view, constraints,

priority, and desire to mediate flag.

• On the receive of the MIGRATION message, the destination node creates a new actor with the same

name and assigns the values.

• Later, the source node removes the actor from its node.

4.4 Summary

In our implementation, actors are simulated as functions. We have implemented the algorithm in three steps:

colocate constraints satisfaction, separate constraints satisfaction and actor migration. The APO algorithm

is modified according to our program’s need. The algorithm trades off between the correctness and the

number of messages send and receive. The number of messages increases because each actor has to inform

the coordinator it has completed a certain stage, which helps to synchronize the actors across the network.

The number of messages depends on the number of actors participating in the spatial constraints satisfaction

process.

30

Chapter 5

Experimental Results and Evaluation

5.1 Introduction

This chapter analyzes our approach to spatial coordination and the prototype implementation which was

discussed in the previous chapter. Section 5.2 analyzes the programmability aspect by comparing the lines

of code with and without spatial coordination primitives. Section 5.3 describes the comparison of agent’s

mobility in spatial coordination with the mobile agent systems reviewed in Chapter 2. Section 5.4 evaluates

the performance of the prototype and interprets the result of the experiments carried out using simulated

workload. The summary of the chapter is presented in Section 5.5.

5.2 Programmability Evaluation

The objective of spatial coordination was to make programming easier for programmers by hiding the low

level details from them and providing them high level constructs. In the chapter on implementation, we

have described the details of how these primitives have been implemented. These primitives achieve the

objective of improved programmability. Let us re-consider a system back-up application which was discussed

in Chapter 1. We are considering only 2 nodes and three actors, 11, 12, 21. The actors 11 and 12 cannot

reside on the same node because actor 12 is replicating actor 11. Program 6 shows the lines of code required

to write the application without using spatial coordination primitives and Program 7 represents the code

using these primitives.

The code without spatial coordination requires a programmer to write the functional code of the agent, low

level migration code and agent communication code. All these functions increase the programming task of a

programmer. On the other hand, spatial coordination code divides the code mainly into two parts: spatial

coordination requirements and actor definitions. In the requirement part, a programmer has to specify the

spatial coordination requirements. In the actor definition part, functionality of the actors has to be defined.

The Spatial.spatial() event is fired by the runtime system once the spatial requirements have been satisfied

then actors can execute their functionality. The programmer has to write only two lines of code to perform

the task with spatial coordination.

31

Program 6 Without spatial coordination

void BackUpApplication()

{

//create node

create_Agent();

}

void Agent()

{

//actor’s spatial requirements (Separate, Colocate)

Separate(A, B);

//agent sends its initial information to neighbors

SendInitialInfo();

//agent receives initial information from neighbors

ReceiveInitialInfo();

//check for any constraint violations

if(agent11.location == agent12.location)

{

//find new location to satisfy the constraints

constraint_satisfaction_algorithm();

//update neighbors with new location information

update_neighbors();

}

//agent receives updated information from neighbors

Receive_update_info()

//migration of the agent

migrate(agent, location);

//functionality of the agent

RelpicationAgent();

}

32

Program 7 With spatial coordination

void Driver()

{

//actors in the systems

actors A, B,.. ;

//Spatial constraints

Separate(A, B);

//Start constraint satisfaction

call Spatial.init();

}

//This method is called back once constraints satisfaction done

event result_t Spatial.spatial(result_t success)

{

//Start Actor’s runtime

return SUCCESS;

}

5.3 Agent Migration Comparison

Table 5.1 shows the comparison between four approaches for agent migration - reviewed in the related work -

in terms of migration, primitives, modularity and high level primitives. Migration refers to how programmers

have to deal with the agent’s mobility in that system. Primitives refers to the systems employing it - to provide

ways to specify spatial requirements. Modularity refers to whether the system separates the functionality

and mobility of agents. High level primitives refers to the systems incorporating the ways to create high level

primitives using basic primitives. After reviewing all these systems we found out that self migration and

spatial coordination have opposite features.In self migration, a programmer has to use migration to satisfy

spatial requirements, whereas in spatial coordination a programmer does not have to use migration; spatial

coordination provides some of the high level primitives and defines the way to create more primitives on top

of the basic primitives. Spatial coordination also includes modularity, which self migration does not. Self

migration and reactive migration systems have a slight difference in that reactive migration incorporates the

concept of primitives while self migration does not. However neither has the concept of modularity nor high

level primitives. Dynamic migration system, however, includes the primitives and modularity but does not

provide how to develop high level primitives out of given primitives.

5.4 Prototype Performance Evaluation

We carried out a number of experiments to assess the performance and scalability of the implemented pro-

totype. Section 5.4.1 describes the environment of these experiments. Section 5.4.2 discusses the experiment

33

Table 5.1: Comparison of spatial coordination with mobile agent systems

Type Migration Primitives Modularity High Level Primitives

SelfMigration Yes No No No

DynamicMigration No Yes Yes No

ReactiveMigration Yes Yes No No

SpatialCoordination No Yes Yes Yes

design and Section 5.4.2 discusses the experimental results.

5.4.1 Experiment Environment

Experiments were carried out using Windows XP running a TOSSIM 1.x simulator and TinyViz plug-in.

The machine has a Core2 Duo processor and 2GB of memory. TOSSIM is a discrete event simulator which

runs on TinyOS operating system [19]. It provides a scalable, high fidelity simulation, of a sensor network.

TinyViz is a GUI tool to interact with the simulation. We are using it to measure the simulation time. The

constraints on the actors have been selected in two ways: uniform and random. In uniform selection, each

actor has the same number of constraints; for example, if a node has 10 actors named 11, 12, 13,..., 110 and

each actor has 1 constraint then for Separate constraint pairs would be (11,12), (13,14), (15,16), (17,18),

(19,110) and for Colocate, we choose constraints involving actors on different nodes then Colocate constraints

would be (11,21), (12, 22),(13, 23), (14, 24) and so on. In random selection, we run a random number

generator function to generate random numbers between 11 and 110. When selecting random constraints,

the runtime system often found some conflicting constraints. For example, actor 12 has Colocate constraint

with actor 14 and it also has a Separate constraint with actor 14. The runtime system also found some

complex conflicting constraints. For example, actor 29 has Colocate constraint with actor 45, 64, but actor

45 has Separate constraint with actor 64. In case of conflicting constraints, the runtime system determines

this conflicting requirements and stops its execution.

5.4.2 Experiment Design

The scalability of the system is determined by how well the system scales as the number of actors and the

number of constraints increases.

1. We designed the first set of experiments to evaluate the performance as the number of uniformly

generated Separate constraints vary between 100 and 600 to determine the number of constraints that

could be handled by our system. We carried out experiments with 10 nodes and 100 actors, 20 nodes

and 200 actors and 30 nodes and 300 actors in the system.

2. We carried out the second set of experiments to evaluate the performance as average number of uni-

formly generated Colocate constraints vary between 100 and 600 to determine the number of constraints

34

that could be handled by our system. We carried out experiments with 10 nodes 100 actors, 20 nodes

200 actors and 30 nodes 300 actors in the system.

3. The third set of experiments is designed to evaluate the performance as number of randomly gener-

ated Separate constraints vary between 20 and 70. This set of experiments also determines the affect

on the time taken by the system to solve the constraints when the total number of constraints differs

from the total number of violated constraints. We carried out experiments on 10 nodes and 100 actors.

4. The fourth set of experiments was carried out on randomly generated Colocate constraints to evaluate

the performance as the number of constraints vary between 20 and 70. It also determines the time

taken by the system to solve the constraints when the total number of constraints differs from the total

number of violated constraints. The constraints on each actor are selected randomly. We kept the

number of actors 100 and number of nodes 10 as constants.

5. The fifth set of experiments involves randomly generated Separate and Colocate constraints. We carried

out experiments on 10 nodes and 100 actors to evaluate the performance as the number of constraints

vary between 20 and 70.

6. Finally, we compared random colocate, random separate with randomly chosen constraints of both

types to determine the overhead incurred by the both types as compared to single type of constraints.

5.4.3 Results Interpretation

1. Time to Solve Constraints Satisfaction vs. Number of Separate Constraints

In this set of experiments, we determined the scalability of the system by simulating the time taken

to solve the number of uniformly generated Separate constraints. There is only one coordinator node

and we uniformly increased the number of constraints on each actor. Figure 5.1 shows the affect of

increasing the number of constraints with 10 nodes and 100 actors, 20 nodes and 200 actors, and 30

nodes and 300 actors.

We can see that when the number of constraints are increased then the time taken to solve Separate

these constraints also increases linearly. However, the time to solve constraints is also affected by

the location of the actors involved in the constraints because if the actors are on the same node then

there is no use of radio which in result takes less time to solve the constraints. We can observe this

behavior in 10 nodes 100 actors at constraints 100, 200 and 400; at 400 constraints, time taken to

solve the constraints drops because the constraint actors reside on the same node, therefore no remote

communication, no message collisions and no message resend between the constraint actors. That is

why time taken to solve the constraints drops significantly.

2. Time to Solve Constraints Satisfaction vs. Number of Colocate Constraints

In this set of experiments, we selected the uniformly generated Colocate constraints. We kept the same

35

Figure 5.1: Time to solve constraints satisfaction of number of Separate constraints

Figure 5.2: Time to solve constraints satisfaction of number of Colocate constraints

configuration as used in the previous experiments. Figure 5.2 shows the affect of increasing the number

of constraints with 10 nodes and 100 actors, 20 nodes and 200 actors, and 30 nodes and 300 actors. We

can see that when the number of constraints are increased then the time taken to solve the Colocate

constraints increases linearly. Another observation in 30 nodes 300 actors is that it takes more time

as compare to 10 nodes 100 actors and 20 nodes 200 actors. This behavior is caused because actors

are on different nodes which results in network delay in communication between actors to solve the

constraints.

3. Time to Solve Constraints Satisfaction vs. Separate Random Constraints and Number of

Constraint Violations

In this set of experiments, we are considering two parameters: the time taken to process the randomly

36

Figure 5.3: Time to solve constraints satisfaction of randomly generated Separate constraints

Table 5.2: Experiment data details of randomly generated Separate constraints

Participating Actors Constraints Time to Solve Constraints Constraint Violations

25 20 7.10 4

28 30 10.24 2

33 40 12.20 5

36 50 15.06 10

38 60 18.23 5

40 70 27.89 10

chosen Separate constraints and the affect of the number of violated constraints. There is only one

coordinator node and 100 actors, we varied the number of constraints. The number of nodes and the

number of constraint sets both are 10 (see Appendix). Table 5.2 presents data used in the experiments.

In Table 5.2, Participating Actors refers to number of actors involved in the constraint satisfaction

process, Constraints refers to total number of constraints in the system, Time refers to time taken to

solve these constraints, and Constraint Violations refers to number of violated constraints to be solved.

For example, 25 actors had 20 constraints and there were 4 violations need to be solved and it took

7.10 sec to solve the constraints. Figure 5.3 shows the affect of increasing the number of constraints

and the numbers on the top of the graph line represent the number of violations. We can observe

that time is not affected by the number of violated constraints. Because at 40 constraints there are

10 violations, the system takes less time and at 70 constraints there also 10 violation but the system

took more time. Hence the time taken to solve the constraints increase linearly as the total number of

constraints increases.

37

Figure 5.4: Time to solve constraints satisfaction of randomly generated Colocate constraints

Table 5.3: Experiment data details of randomly generated Colocate constraints

Participating Actors Constraints Time to Solve Constraints Constraint Violations

30 20 5.01 17

39 30 8.07 26

49 40 12.17 34

58 50 14.07 49

63 60 23.21 55

80 70 24.48 64

4. Time to Solve Constraints Satisfaction vs. Colocate Random Constraints and Number of

Constraint Violations

We also conducted set of experiments on the randomly selected Colocate constraints. We kept the

same configuration used in Experiment 3, only constraints have been changed. The selected constraints

have been provided in Appendix. Figure 5.4 shows the time taken to the solve random constraints.

The numbers at each point on the graph line representing the number of violations. The result shows

as the number of constraints increases the time taken to the solve constraints increases linearly.

Table 5.3 provides the detail of data used in the experiment and time taken to solve the constraints.

For example, 30 actors had 20 constraints and there were 17 violations and the system took 5.01 sec

to solve the constraints. The result suggests that the time to solve the Colocate constraint is also not

affected by the number of violations. The time to solve constraints is proportional to the total number

of constraints.

38

Figure 5.5: Time to solve constraints satisfaction of randomly generated Colocate and Separate

constraints

Table 5.4: Experiment data details of randomly generated Colocate and Separate constraints

Participating Actors Constraints Time to Solve Constraints Constraint Violations

24 20 6.95 9

30 30 10.29 13

41 40 15.71 23

43 50 19.95 27

45 60 25.51 25

47 70 23.43 24

5. Time to Solve Constraints Satisfaction vs. Colocate and Separate

This set of experiments is carried out with both random Colocate and random Separate constraints.

In this set of experiments, we determined the performance of the system when Colocate and Separate

constraints are mixed. The experimental setup kept same as used in previous experiments, we increased

the number of constraints between 20 and 70. Table 5.4 shows the experimental data and the time

taken to solve the constraints. Figure 5.5 shows the affect of increasing the number of constraints. We

can see that the time taken to solve the constraints is not affected by the number of violated constraints.

The time to solve constraints is affected by two factors: the number of constraints and how many actors

are part of the Colocate group. As group size increases, communication between actors also increases

which affects the time taken to solve the constraints. This can be observed at 60 constraints and 70

constraints. The constraint solving time of the both is same but the number of constraints is different.

39

Figure 5.6: Time to solve constraints satisfaction comparison of Colocate, Separate and both Colocate

and Separate

6. Time Comparison of Colocate, Separate and Both Colocate and Separate

Finally, we compared the time to solve the constraints in random separate experiments and random

colocate experiments, with the simulation time of both types of constraints experiment to determine the

overhead incurred when both types of constraints are involved as compared to single type of constraints.

Figure 5.6 shows that there is not a significant simulation time difference when both type of constraints

are used as compared to when only one type of constraints are used. When any of the participating

actor has both types of constraints then time taken to solve constraints increases linearly because in

that scenario the colocate constraint is solved first which creates the group of colocated actors and

one actor represents the group. The group formation takes more time which affects the time to solve

the constraints. In separate part, the number of actors decreases which decreases the time to solve

separate constraints.

5.5 Summary

This chapter discussed the evaluation of our approach. We evaluated programmability, performance and

scalability. Our approach improves the programmability by providing the high level primitives which reduces

the line of code and the complexity of the program. Experimental results show the scalability of the approach.

The first two sets of experiments suggests that with one coordinator node system can perform well up to

200 actors with 600 constraints. It is also evident from the results that remote communication plays a major

40

role because if the constraint actors are on the same node then time taken to solve constraints decreases

dramatically. Another observation is that the time taken to solve spatial constraints increases as the total

number of constraints increases. The number of violated constraints does not affect the time taken to solve

the constraints.

41

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In current mobile agent systems, application programmers have to deal with the low level communication

details to implement the mobility of agents. Moreover, programmers have to mix code for the functionality

of the application and low level communication in order to find the location of the computations. The mixing

of code increases the complexity of the programming task. This work, spatial coordination, provides an

alternative to deal with mobility and coordination.

Spatial coordination middleware is constructed for wireless sensor networks, which provides high level pro-

gramming primitives to specify the spatial requirements of the application and decides the location of the

computations. The middleware separates the spatial concerns from functional concerns of the application. In

our work, an application’s functionality is carried out by actors. The spatial requirements of the application

draw the relationships among the actors. These relationships are presented in the form of spatial primitives.

The programmer specifies the spatial requirements of the application through spatial primitives and the

middleware accordingly finds the best location for those actors. A prototype implementation provides basic

primitives and this thesis presents how to develop high level primitives on top of the basic primitives. The

system also allows programmers to built their own high level primitives using basic primitives.

6.2 Contribution

Following are the key contributions of this work:

• Prototype implementation of a mechanism to declaratively specify the spatial requirements of applica-

tions which separates spatial concerns of applications from their functional concerns.

• High level programming constructs which hide details of individual migrations from the programmer,

reducing programming complexity.

• Experimental results which show that the system can handle a large number of constraints without

42

affecting performance and that network delay dominates the overhead.

6.3 Future Work

This work attempts to provide a way to handle mobility of mobile agents through spatial coordination. The

list of spatial coordination primitives is by no means exhaustive; however, more of these types of primitives

can be developed for different situations and implemented for real systems. The prototype implementation

uses simulated tasks; real task would lead to authoritative results. We implemented prototype system for

wireless sensor networks. However, our approach is not limited to wireless sensor networks, it can also be

applied in other distributed systems such as computer networks. Since the prototype system is built for

wireless sensor networks, which support unreliable communication, it causes lots of message retransmission

as the number of constraints increases. A reliable communication protocol such as those found in computer

networks, or an improved message re-transmission mechanism can reduce the message re-transmission and

also reduce the time to satisfy spatial constraints.

In current system, constraints can be installed only once which can be extended to runtime installation and

de-installation of constraints.

Our implementation is based on one coordinator node which causes a bottleneck when the number of actors

increases. This problem can be solved by introducing multiple coordinator nodes so that communication of

the actors with coordinator can be divided among multiple coordinator nodes. The multiple coordinators

can be implemented in a similar way as multiple sinks in network in sensor networks. In the future, a large

prototype system can be built with multiple coordinator nodes and a reliable communication mechanism to

execute on real systems.

43

References

[1] Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press, Cambridge,
MA, USA, 1986.

[2] Ian F. Akyildiz, Weilian Su, Yogesh Sankarasubramaniam, and Erdal Cayirci. A Survey on Sensor
Networks. Communications Magazine, IEEE, 40(8):102–114, March 2002.

[3] Joachim Baumann, Fritz Hohl, Kurt Rothermel, and Markus Straer. Mole – Concepts of a Mobile Agent
System. World Wide Web, 1(3):123–137, 1998.

[4] Sanja Bonevska, Andrijana Jankova, Aleksandra Mateska, Vladimir Atanasovski, and Liljana
Gavrilovska. Early Fire Detection with WSN. In 17th Telecommunication forum TELFOR, pages
1428–1485, 2009.

[5] Cristian Borcea, Chalermek Intanagonwiwat, Porlin Kang, Ulrich Kremer, and Liviu Iftode. Spatial
Programming Using Smart Messages: Design and Implementation. In ICDCS ’04:Proceedings of the
24th International Conference on Distributed Computing Systems, pages 690–699, Washington, DC,
USA, 2004. IEEE Computer Society.

[6] Giacomo Cabri, Letizia Leonardi, and Franco Zambonelli. MARS: A Programmable Coordination Ar-
chitecture for Mobile Agents. IEEE Internet Computing, 4(4):26–35, 2000.

[7] Haifeng Chen, Hui Kang, Guofei Jiang, Kenji Yoshihira, and Akhilesh Saxena. VCAE: A Virtualization
and Consolidation Analysis Engine for Large Scale Data Centers. IEEE International Conference on
Self-Adaptive and Self-Organizing Systems , 0:1–10, 2010.

[8] Chien-Liang Fok, Roman G.-C., and Chenyang Lu. Rapid Development and Flexible Deployment of
Adaptive Wireless Sensor Network Applications. Proceedings of the 25th IEEE International Conference
on Distributed Computing Systems, pages 653–662, June 2005.

[9] Eugene C. Freuder and Richard J. Wallace. Partial constraint satisfaction. Journal Artificial Intelligence,
58:21–70, December 1992.

[10] Les Gasser. DAI Approaches to Coordination, pages 31–51. Kluwer Academic Publishers, Norwell, MA,
USA, 1992.

[11] David Gelernter. Generative Communication in Linda. ACM Transactions on Programming Languages
and Systems, 7:80–112, 1985.

[12] James Gosling, Bill Joy, and Guy L. Steele. The Java Language Specification. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1996.

[13] Robert S. Gray, Cybenko, George, Kotz, David, Peterson, Ronald A., Rus, and Daniela. D’Agents:
Applications and Performance of a Mobile-agent System. Software–Practice & Experience, 32(6):543–
573, 2002.

[14] Ophir Holder, Israel Ben-Shaul, and Hovav Gazit. Dynamic Layout of Distributed Applications in FarGo.
In ICSE ’99: Proceedings of the 21st International Conference on Software Engineering, pages 163–173,
New York, NY, USA, 1999. ACM.

44

[15] Nadeem Jamali. Cyberorgs: A Model for Resource Bounded Complex Agents. PhD thesis, University of
Illinois at Urbana-Champaign, Champaign, IL, USA, 2004.

[16] Jaein Jeong and David Culler. Incremental Network Programming for Wireless Sensors. In Proceedings
of the First IEEE International Conference on Sensor and Ad Hoc Communications and Networks, pages
25–33, 2004.

[17] Venkata A. Kottapalli, Anne S. Kiremidjian, Jerome P. Lynch, Ed Carryer, Thomas W. Kenny, Kincho H.
Law, and Ying Lei. Two-tiered Wireless Sensor Network Architecture for Structural Health Monitoring.
volume 5057, pages 8–19. SPIE, 2003.

[18] Philip Levis and David Culler. Mate: A Tiny Virtual Machine for Sensor Networks. SIGPLAN Notices,
37:85–95, October 2002.

[19] Philip Levis, Nelson Lee, Matt Welsh, and David Culler. TOSSIM: Accurate and Scalable Simulation of
Entire TinyOS Applications. In Proceedings of the 1st International Conference on Embedded Networked
Sensor Systems, pages 126–137, New York, NY, USA, 2003. ACM.

[20] Tim Lindholm and Frank Yellin. Java Virtual Machine Specification. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 1999.

[21] Roger Mailler and Victor R. Lesser. Asynchronous Partial Overlay: A New Algorithm for Solving
Distributed Constraint Satisfaction Problems. Journal of Artificial Intelligence Research, 25(1):529–
576, 2006.

[22] Alan Mainwaring, David Culler, Joseph Polastre, Robert Szewczyk, and John Anderson. Wireless Sensor
Networks for Habitat Monitoring. In WSNA ’02: Proceedings of the 1st ACM Iinternational Workshop
on Wireless sensor Networks and Applications, pages 88–97, New York, NY, USA, 2002. ACM.

[23] Pedro Jos Marrn, Andreas Lachenmann, Daniel Minder, Jrg Hhner, Robert Sauter, and Kurt Rothermel.
TinyCubus: A Flexible and Adaptive Framework Sensor Networks. In EWSN’05: Proceeedings of the
Second European Workshop on Wireless Sensor Networks, pages 278–289, 2005.

[24] Yang Ni, Ulrich Kremer, and Liviu Iftode. A Programming Language for Ad-hoc Networks of Mobile
Devices. In LCR ’04: Proceedings of the 7th Workshop on Languages, Compilers, and Run-time Support
for Scalable Systems, pages 1–12, New York, NY, USA, 2004. ACM.

[25] Holger Peine and Torsten Stolpmann. The Architecture of the Ara Platform for Mobile Agents. In
Proceedings of the First International Workshop on Mobile Agents, pages 50–61, London, UK, 1997.
Springer Verlag.

[26] Ichiro Satoh. MobileSpaces: A Framework for Building Adaptive Distributed Applications Using a
Hierarchical Mobile Agent System. pages 161–168, 2000.

[27] Ichiro Satoh. Building and Selecting Mobile Agents for Network Management. Journal of Network and
Systems Management, 14(1):147–169, 2006.

[28] Ichiro Satoh. Bio-Inspired Deployment of Software over Distributed Systems. IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences, E90-A:2449–2457, November
2007.

[29] Amit Sinha and Anantha Chandrakasan. Dynamic Power Management in Wireless Sensor Networks.
IEEE Design & Test, 18:62–74, March/April 2001.

[30] David Wong, Paciorek a d Noemi, Walsh, Tom, DiCelie, Joe, Young, Mike, Peet, and Bill. Concordia:
An Infrastructure for Collaborating Mobile Agents. In MA ’97: Proceedings of the First International
Workshop on Mobile Agents, pages 86–97, London, UK, 1997. Springer-Verlag.

[31] Liyang Yu, Neng Wang, and Xiaoqiao Meng. Real-time Forest Fire Detection with Wireless Sensor
Networks. In Proceeding of the International Conference on Wireless Communications, Networking and
Mobile Computing, volume 2, pages 1214–1217. IEEE, 2005.

45

Appendix A

Sample Appendix

A.1 Data Used in Experiments

Table A.1: 20 Randomly generated separate constraints

Actor1 Actor2 Actor3 Actor4
105 44 34 17
24 42 - -
87 84 45 48
85 37 - -
14 61 15 -
25 102 - -
74 21 27 -
47 79 - -
210 108 - -
66 83 - -

Table A.2: 30 Randomly Generated Separate Constraints

Actor1 Actor2 Actor3 Actor4 Actor5
56 910 58 - -
67 24 - - -
99 34 33 77 56
25 57 - - -
53 37 108 - -
89 101 - - -
29 76 55 - -
56 45 - - -
89 39 17 210 -
96 47 - - -

46

Table A.3: 40 Randomly Generated Separate Constraints

Actor1 Actor2 Actor3 Actor4 Actor5
12 32 55 - -
13 14 56 - -
16 18 66 77 -
78 81 71 - -
52 25 45 - -
21 65 58 55 -
310 410 910 - -
56 57 - - -
21 110 17 11 49
29 39 15 - -

Table A.4: 50 Randomly Generated Separate Constraints

Actor1 Actor2 Actor3 Actor4 Actor5
74 32 55 - -
13 14 53 - -
16 18 66 77 66
78 81 71 - -
52 46 45 - -
21 56 58 91 33
310 410 910 - -
56 57 21 - -
21 110 17 210 49
49 42 47 - -

Table A.5: 60 Randomly Generated Separate Constraints

Actor1 Actor2 Actor3 Actor4 Actor5 Actor6
45 64 710 - - -
57 85 65 - - -
61 48 62 62 17 -
51 81 95 - - -
104 28 910 - - -
109 53 77 103 28 33
86 104 19 - - -
78 48 21 - - -
26 43 25 81 32 103
17 510 58 - - -

47

Table A.6: 70 Randomly Generated Separate Constraints

Actor1 Actor2 Actor3 Actor4 Actor5 Actor6
41 32 45 410 - -
13 74 56 - - -
36 26 68 77 71 98
82 81 89 - - -
52 54 45 - - -
21 15 58 97 19 99
310 510 - - - -
56 57 21 95 - -
11 110 94 210 49 41
49 62 15 - - -

Table A.7: 20 Randomly Generated Colocate Constraints

Actor1 Actor2 Actor3 Actor4 Actor5
105 44 34 - -
24 42 - - -
87 84 45 48 39
85 37 - - -
14 61 15 - -
25 102 - - -
74 21 27 106 17
47 79 43 - -
210 108 - - -
66 83 71 - -

Table A.8: 30 Randomly Generated Colocate Constraints

Actor1 Actor2 Actor3 Actor4 Actor5 Actor6
56 910 58 16 25 -
67 24 85 82 - -
99 34 33 - 86 -
25 57 11 51 - -
53 37 108 79 - -
89 101 73 - 59 610
29 76 55 - - -
78 45 - 95 - -
13 39 17 210 14 -
96 47 310 - - -

48

Table A.9: 40 Randomly Generated Colocate Constraints

Actor1 Actor2 Actor3 Actor4 Actor5 Actor6 Actor7 Actor8
12 32 59 53 710 89 104 108
13 14 56 - - - - -
96 18 66 77 24 48 - -
78 81 71 - - - - 68
52 25 45 51 - 37 - -
102 65 58 55 44 - - -
310 410 910 510 - - - -
56 57 38 - - - - -
21 101 17 11 49 1010 - -
29 39 15 94 31 79 - -

Table A.10: 50 Randomly Generated Colocate Constraints

Actor1 Actor2 Actor3 Actor4 Actor5 Actor6 Actor7 Actor8 Actor9 Actor10
101 74 32 55 19 12 - - - -
72 63 14 53 11 - - - - -
99 107 18 66 77 61 510 87 - -
810 78 81 71 - - - - - -
89 52 46 45 29 - - - - -
102 23 65 58 91 33 92 34 62 22
78 310 410 910 - - - - - -
104 56 57 31 51 - - - - -
46 21 110 17 210 49 98 109 106 -
18 48 42 47 82 79 - - - -

Table A.11: 60 Randomly Generated Colocate Constraints

Actor1 Actor2 Actor3 Actor4 Actor5 Actor6 Actor7 Actor8 Actor9 Actor10
46 310 52 104 17 32 16 61 92 38
78 110 58 106 51 210 57 48 710 -
19 39 27 810 19 47 29 96 63 -
32 81 95 89 - - - - - -
108 28 910 84 29 - - - - -
109 53 77 103 91 33 99 - - -
86 105 19 - - - - - - -
97 98 21 42 66 - - - - -
26 43 25 88 410 1010 72 - - -
17 510 58 37 87 45 41 34 - -

49

Table A.12: 70 Randomly Generated Colocate Constraints

Actor1 Actor2 Actor3 Actor4 Actor5 Actor6 Actor7 Actor8 Actor9 Actor10
75 11 23 61 97 44 67 - - -
25 85 56 88 76 51 55 37 18 -
63 59 46 35 99 108 79 64 610 32
103 27 36 510 89 47 - - - -
74 48 45 42 96 210 38 - - -
69 104 22 65 17 310 98 410 82 -
31 910 12 13 34 41 52 72 - -
101 102 86 66 43 106 91 - - -
26 87 110 14 93 77 54 1010 710 19
21 71 49 16 15 33 39 - - -

Table A.13: 20 Randomly Generated Colocate and Separate Constraints

Constraint Type Actor1 Actor2 Actor3 Actor4 Actor5
Separate 105 44 34 - -
Separate 24 42 - - -
Separate 87 84 45 48 -
Separate 85 37 - - -
Separate 14 61 15 - -
Colocate 25 102 - - -
Colocate 74 21 27 106 48
Colocate 47 79 43 - -
Colocate 210 108 - - -
Colocate 66 83 71 - -

Table A.14: 30 Randomly Generated Colocate and Separate Constraints

Constraint Type Actor1 Actor2 Actor3 Actor4 Actor5
Separate 66 910 58 - -
Separate 67 42 - - -
Separate 99 34 33 77 56
Separate 25 57 - - -
Separate 53 37 108 - -
Colocate 87 101 - - -
Colocate 29 76 55 68 -
Colocate 65 45 - - -
Colocate 89 39 17 210 56
Colocate 96 47 67 11 -

50

Table A.15: 40 Randomly Generated Colocate and Separate Constraints

Constraint Type Actor1 Actor2 Actor3 Actor4 Actor5 Actor6 Actor7 Actor8
Separate 12 32 55 - - - - -
Separate 13 14 56 - - - - -
Separate 16 18 66 77 - - - -
Separate 78 81 71 - - - - -
Separate 52 25 45 - - - - -
Colocate 31 65 58 56 99 101 - -
Colocate 310 410 810 39 - - - -
Colocate 68 57 - - - - - -
Colocate 21 102 17 11 49 34 36 37
Colocate 29 35 15 55 78 910 210 33

Table A.16: 50 Randomly Generated Colocate and Separate Constraints

Constraint Type Actor1 Actor2 Actor3 Actor4 Actor5 Actor6 Actor7 Actor8
Separate 12 32 55 910 - - - -
Separate 13 14 56 27 - - - -
Separate 16 18 66 77 - - - -
Separate 78 81 71 - - - - -
Separate 52 25 45 - - - - -
Colocate 31 65 58 56 99 101 12 -
Colocate 310 410 810 39 - - - -
Colocate 68 57 79 1010 - - - -
Colocate 21 102 17 11 49 34 36 37
Colocate 29 38 15 55 78 91 210 62

Table A.17: 60 Randomly Generated Colocate and Separate Constraints

Constraint Type Actor1 Actor2 Actor3 Actor4 Actor5 Actor6 Actor7 Actor8
Separate 49 64 710 91 42 - - -
Separate 57 85 65 27 - - - -
Separate 61 48 11 46 17 - - -
Separate 51 81 95 99 - - - -
Separate 104 28 91 - - - - -
Colocate 109 53 77 103 88 33 12 -
Colocate 86 104 19 64 - - - -
Colocate 78 48 21 37 1010 - - -
Colocate 26 43 25 81 32 102 106 -
Colocate 29 38 15 55 910 210 45 -

51

Table A.18: 70 Randomly Generated Colocate and Separate Constraints

Constraint Type Actor1 Actor2 Actor3 Actor4 Actor5 Actor6 Actor7 Actor8 Actor9
Separate 41 32 45 510 88 34 - - -
Separate 13 74 56 - - - - - -
Separate 36 26 68 77 71 98 - - -
Separate 82 81 89 19 610 - - - -
Separate 52 54 45 - - - - - -
Colocate 109 53 77 103 28 33 - - -
Colocate 86 104 19 44 - - - - -
Colocate 78 48 21 37 1010 - - - -
Colocate 26 43 25 81 32 102 - - -
Colocate 29 38 15 55 64 910 210 45 14

52

