Evaluation of a Closed-Path Fourier Transform Infra-Red (FTIR) Multi-Component Gas Analyzer for the Simultaneous Measurement of Nitrous Oxide, Carbon Dioxide and Methane

UNIVERSITY OF SASKATCHEWAN Engage · Enlighten · Explore

Frank Krijnen¹, Darin Richman¹, Reynald Lemke² and Richard Farrell¹ ¹Soil Science, University of Saskatchewan, Saskatoon, SK, Canada ²Saskatoon Research Centre, Agriculture & Agri-Food Canada, Saskatoon, SK, Canada

ntroduction

- Measuring GHG (N_2O , CH_4 , and CO_2) emissions from soils often involves the collection of discrete gas samples from chamber-based sampling systems, with the samples subsequently analyzed in a laboratory setting using gas chromatography.
- There is a need to deploy gas analysis systems in the field, especially in remote locations.
- Field-based measurements include micrometeorological techniques (e.g., Eddy covariance) and *in*-situ chamber-based systems that employ infrared gas analysis (IRGA), photoacoustic spectroscopy (PAS) or Fourier transform infrared (FTIR) spectroscopy.

Objectives

• Evaluate the performance of a FTIR-multi-gas analyzer in terms of its response (including accuracy, precision, and linearity) to N_2O_1 , CH_4 , and CO_2 ; the effects of water vapor on gas concentration measurements; and comparison of gas fluxes measured using FTIR and GC techniques.

FTIR multi-gas analyzer

- Automated GHG Flux Measurements
- The automated soil greenhouse gas flux measurement system consisted of: (1) Gasmet DX-4015 FTIR-MGA
- 2 Li-Cor LI-8150-16 multiplexer (operating 16 Li-Cor LI-8150-104 long-term flux chambers)
- (3) Custom-built zero-air and calibration gas valve
 - ④ Laptop computer running the Calcmet[™] software and custom control software to operate the multiplexer and zero-air/calibration gas valve
 - (5) Custom-built communications interface for the PC/multiplexer

- IRGA systems are well established for the quantification of CO_2 fluxes from soils.
- PAS and FTIR analyzers are capable of the simultaneous measurement of N_2O , CH_4 , and CO_2 .
- Whereas performance of PAS has been demonstrated, the performance of FTIR methods of measuring near-ambient GHG concentrations has yet to be validated under either controlled or field conditions.

- Gasmet DX-4015 multi-component gas analyzer (FTIR-MGA; Gasmet Technologies Inc. Helsinki, Finland)
 - FTIR spectrometer (resolution = 8 cm^{-1} ; scan frequency = 10 scans s^{-1} ; wave number range = 900-4200 cm⁻¹)
 - rhodium-gold coated sample cell (multi-pass with a fixed path length of 9.8 m and a volume of 0.45 L)
 - built-in sample pump (2.8 L min⁻¹)
- sample processing electronics and Calcmet[™] software
- rugged, field portable aluminum case

(6) Trailer to house system in the field

Automated GHG Flux Measurements

Fig 1. Nitrous oxide (N₂O), carbon dioxide (CO₂) and methane (CH₄) concentrations measured using a Gasmet DX-4015 FTIR-MGA vs. the

Fig 4. Daily precipitation and soil water content (@ 5 cm) were measured throughout the automated flux chamber deployment period

Fig 5. Greenhouse gas (N₂O, CO₂ & CH₄) emissions measured with the Gasmet DX-4015 FTIRmultigas analyzer connected to a Li-Cor 8100-104 long-term flux chamber via a LI-8150-16 multiplexer.

Fig 3. Effect of increasing CO_2 concentration on stability of the N₂O measurement (A); effect of increasing water vapor concentration on stability of the N_2O measurement (B) or CO_2 measurement (C).

- N₂O emissions were generally quite low, but were in the range normally encountered in Saskatchewan agricultural soils.
- CO₂ emissions exhibited a diurnal pattern (except during and immediately following a precipitation event) and decreased as both the soil temperature and water content decreased.
- CH₄ emissions generally were not observed; rather, the soil acted as a small sink for CH_4 .

Fig 6. Greenhouse gas $(N_2O, CO_2 \& CH_4)$ emissions measured following a late-season fertilizer application.

• Soil disturbance and the application of fertilizer-N resulted in a short burst of activity, during which N_2O and CO_2 emission were significantly greater than background levels (see Fig. 5; days 242 - 284).

 Evidence of a diurnal pattern was present during periods of peak N_2O emission.

Conclusions

- The Gasmet DX-4015 FTIR multi-component gas analyzer is capable of making accurate measurements of N_2O , CO_2 and CH_4 at near-ambient concentrations.
- The accuracy and precision of the FTIR-MGA was comparable to that attainable using conventional gas chromatography.
- Increases in CO_2 concentration, from ambient to about 5-times ambient, had no significant effect on N_2O_2 measurements over the range of N₂O concentrations normally encountered when measuring emissions from Saskatchewan agricultural soils.
- Water vapor interferences with N_2O and CO_2 measurements were generally small (i.e., <4%).

• Simultaneous measurements of N_2O_1 , CO_2 and CH_4 emissions from soils in the field can be automated by interfacing the Gasmet FTIR-MGA with a Li-Cor multiplexer and long-term flux chambers.

• Operational and maintenance requirements of the automated soil greenhouse gas system are comparable to those of a conventional automated soil CO_2 flux measurement system.

