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ABSTRACT 
 

Recent changes in climate have increased public attention and scientific 

evaluation of climate impacts on wild animals and plants.  Variation in local weather and 

regional climate may affect breeding success in birds.  Migratory species may be 

sensitive to these changes as breeding and wintering areas may experience different 

climate variations; some insectivorous species may be unable to alter timing of migration 

or laying dates and experience a mismatch between timing of nesting and peak insect 

availability for their nestlings.  Therefore, I investigated the influence of local weather 

variables and regional climate on breeding performance of an insectivorous migrant 

songbird, the Tree Swallow (Tachycineta bicolor), and tried to examine effects of a 

mismatch between the timing of breeding and food availability. 

I used a 14 year data set from St Denis, Saskatchewan, Canada, 1991-2004, to 

evaluate correlations among local weather, wetland conditions, aerial insects and regional 

climate indices and their relationships with variation in clutch initiation date, clutch size, 

and fledging success.  Swallows returned to the study site in late April each year.  Annual 

variation in median clutch initiation date was best explained by mean minimum 

temperatures during 1-15 May.  Larger clutches were laid in years with higher pond 

water levels (possibly an indication of increased insect availability) and when the 

Southern Oscillation Index (SOI) was positive (representing La Niña conditions).  

Fledging success was not influenced greatly by any explanatory variable; however, 

fledging success tended to increase in years with higher average temperatures.  Individual 

variation in clutch initiation date was examined using path analysis.  I found high 

correlations between initiation date and both local environmental variables and regional 
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climate indices; earlier nesting was associated with warmer temperatures (increased local 

temperatures, more positive North Atlantic Oscillation Index (NAOI) values and more 

negative SOI values) and decreased moisture (more positive NAOI values).  Two reduced 

data sets, including female age or insect abundance, were also examined.  Clutches were 

initiated earlier by older females and during springs with higher abundance of aerial 

insects. 

I applied two heating treatments to nest boxes used by pre-laying swallows and 

compared reproductive measures (timing of nesting, laying sequence, clutch size, egg 

weight and fledging success) of birds using heated boxes to those of females attending 

unheated control boxes.  However, I was unable to directly examine the predictions of the 

mismatch hypothesis because nest box heating failed to advance laying dates.  

Furthermore, no increases in clutch size, egg weight and fledging success were detected 

between treatment and control nests.  Although box heating increased nest temperatures 

an average of 6.1 oC (+ 0.8 SE) over controls, length of time females spent in heated 

boxes may have been too short to alleviate energetic constraints on egg production, or 

energy savings associated with box use were insufficient to supersede the influence of 

ambient environmental conditions that control food availability and energy expenditure 

of foraging swallows.  My results demonstrated that local and regional climate variation 

strongly affected timing of nesting in swallows, likely via their effects on food supply.   
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CHAPTER 1:   GENERAL INTRODUCTION  

 

 

1.1  HYPOTHESES ABOUT EFFECTS OF GLOBAL WARMING  ON MIGRATORY BIRDS 

 

Climate monitoring over the past century and long-term climate reconstructions for the 

past millennium indicate that global warming has been accelerating (Hughes 2000).  

Effects of variable weather conditions and climate change on wildlife have sparked 

considerable interest in the past decade (e.g., McCarty 2001, Walther et al. 2002).  Long-

term European studies have shown that increasing air temperatures are associated with 

changes in body size and condition of ungulates (Post et al. 1997), and timing of both 

amphibian spawning (Beebee 1995) and insect emergence (Visser et al. 1998, but see 

Walther et al. 2002, Root et al. 2003).  Climate variation also affects reproduction in bird 

populations.  Temperature has been associated with changes in timing of laying (Crick et 

al. 1997, Dunn and Winkler 1999, Winkler et al. 2002), clutch size (Brown and Brown 

1999, Lehikoinen et al. 2006), egg mass (Lessells et al. 2002, Saino et al. 2004) and 

hatching asynchrony (Ardia et al. 2006).  Both local weather variables and large-scale 

climate indices (e.g., El Niño Southern Oscillation, North Atlantic Oscillation) indirectly 

affect fecundity in migratory songbirds by affecting food supply (Sillett et al. 2000, Both 

et al. 2006, Grosbois et al. 2006, Lehikoinen et al. 2006).    

Currently, most warming in the Northern Hemisphere has occurred in Siberia and 

northwestern North America (Environment Canada 2003a).  In Canada, the prairies are 
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experiencing annual mean temperature variations of -0.1 to +1.0 oC from average 

(Hansen et al. 1998), with the greatest increases being observed in spring and summer, 

along with decreases in moisture due to reduced winter precipitation and higher 

evaporation rates (Environment Canada 2003b).  Warmer temperatures are mainly 

attributable to rising minimum temperatures (Environment Canada 2003a).  However, 

climate variation differs by region.  Since 1900, the southern USA has experienced 

annual mean temperatures -0.3 to +1.0oC from average (Hansen at al. 1998), with winter, 

spring, and summer average temperatures generally being above normal, and fall 

(September to November) temperatures slightly below normal (Hansen et al. 2001).  

Temperature increases in the Northern Hemisphere’s mid-latitudes have resulted in an 

increase in the growing season by more than 7 days since 1970 (Environment Canada 

2003a), advancing spring plant growth (Myneni et al. 1997).  Spring insect emergence is 

also occurring earlier (Ellis et al. 1997).  For insectivorous birds, a crucial determinant of 

reproductive success is insect abundance at the time of the maximum food requirements 

of their offspring (Lack 1968).  For reasons explained below, differences in timing of 

food resource availability relative to food requirements of growing nestlings can 

compromise offspring quality and survival. 

In several passerine and shorebird species, data suggest that changing temperatures 

are influencing timing of breeding (Brown et al. 1999, Dunn and Winkler 1999, Winkler 

et al. 2002, Pearce-Higgins et al. 2005, Both et al. 2006).  Data from nest records 

spanning 40 years (1952 – 1992) suggest that North American Tree Swallows 

(Tachycineta bicolor; hereafter, swallows) are breeding earlier, likely due to a long-term 

increase in spring temperatures (Dunn and Winkler 1999).  Increased spring temperatures 
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may also affect arthropod abundance (Visser et al. 1998, Visser and Holleman 2001), the 

primary food of swallows (Robertson et al. 1992).  Evidence suggests that increased 

spring temperatures may lead to a mismatch in timing of egg laying relative to food 

availability for nestlings, resulting in later-laying females producing fewer fledglings 

(Visser et al. 1998, Both et al. 2006).  This may be attributable to migrant birds being 

unable to sufficiently shift breeding date due to the timing constraints of migration 

journeys: either their migration strategy is not affected by climate variation or climates at 

breeding and wintering areas change at different rates (Both and Visser 2001).  Timing of 

laying has consequences not only for nestling food availability but also on clutch size 

which declines seasonally (DeSteven 1978, Stutchbury and Robertson 1988).  

Photoperiod, predation risk, precipitation, and individual characteristics (e.g., age, body 

condition) may also influence timing of laying (Hammer 1963, Morton 1971, Geupel and 

DeSante 1990, Nager and VanNoordwigk 1995, Lambrechts et al. 1997, Lloyd 1999, 

Dawson et al. 2001). 

The purpose of my study was to evaluate effects of local spring and regional winter 

and spring weather conditions and insect abundance on timing of nesting and productivity 

of swallows.  I used a 14 year data set to examine correlates of annual variation in timing 

of breeding and breeding success.  Also, I experimentally increased nest box temperature 

during one breeding season to attempt to advance swallow nesting dates, and 

subsequently to evaluate possible effects on breeding success. 
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1.2  RATIONALE  

 

Although mounting evidence suggests that climatic variation affects the fitness of 

animals, relatively little work has addressed this problem on the Canadian Prairies where 

winter and early spring warming has occurred and is expected to be more pronounced in 

future.  I had a unique opportunity to exploit a data set spanning 1990-2004, composed of 

swallow nest records, including clutch initiation dates, female age, breeding success, food 

abundance, and weather variables.  These data are unique for three reasons.  First, all 

birds were banded each year, so age could be controlled in some analyses.  Second, local 

and regional weather conditions could be linked to nesting date, egg production, and 

fledging success.  Third, the data set also contained aerial insect abundance records from 

1990 – 1993 and 2002 – 2003, allowing peaks in insect abundance to be compared across 

years with different weather conditions and wetland abundance (i.e., variation in aquatic 

insect emergence). 

Swallows readily nest in boxes, so it is also possible to conduct experiments 

which attempt to advance timing of nesting, thus setting the stage to test whether a 

mismatch occurs between early nesting and food supply for growing nestlings.  The 

mismatch hypothesis predicts that nestling growth and survival will be poorer in 

experimentally advanced nests relative to controls during near normal and warmer spring 

weather (Visser et al. 1998).  The mechanism is low food quality and quantity during the 

early stages of nestling growth (i.e., in the first 1-2 weeks post-hatching).  In Great Tits 

(Parus major) and Pied Flycatchers (Ficedula hypoleuca), a  mismatch of egg laying date 
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relative to nestling food availability resulted in females producing fewer surviving young 

(Visser et al. 1998 and Both et al. 2006, respectively).   

Heating nest boxes has been conducted in few experiments.  Yom-Tov and Wright 

(1993) heated nest boxes of laying Blue Tits (Parus caeruleus) and found a decrease in 

laying interruptions compared to females in unheated boxes.  Bryan and Bryant (1999) 

evaluated energetic constraints on incubation behaviour; Great Tits nesting in heated 

boxes showed increased incubation constancy compared to those nesting in control nest 

boxes.  Dawson et al. (2005a) used nest box heating to evaluate the effect of temperature 

on the population size of larval Protocalliphora Hough (Diptera: Calliphoridae) in 

swallow nests;  they found a positive correlation between nestling cell-mediated immune 

response and number of Protocalliphora within nests.  Dawson et al. (2005b) also 

experimentally heated nests during nestling-rearing and found an increase in nestling 

survival and growth of primaries compared to nestlings in control nests. 

 

1.3 THE TREE SWALLOW 

 

Swallows are cavity-nesting, migratory, aerial insectivores.  Swallows breed across 

central and northern North America, laying a single clutch per season and migrating to 

wintering areas primarily in Florida and the Gulf of Mexico (Robertson et al. 1995).  In 

natural situations, swallows typically are monogamous, forming pair bonds in breeding 

areas.  Most nest building and all incubation duties are done by the female; however, both 

members of the pair feed the young (Robertson et al. 1995).  Diet consists largely of 

insects with aquatic larval stages (Quinney and Ankney 1985).  Though aerial insects are 
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their primary food source, they eat seeds and berries during unfavourable conditions (see 

Robertson et al. 1995).  Their use of boxes makes it easy to standardize and manipulate 

nests, and allows easy capture and marking of eggs, nestlings and adults. 

 

1.4 STUDY AREA 

 

Data were collected on the St. Denis National Wildlife Area (NWA, 52o 13’N, 106o 

04’W; Figure 2.1) in south-central Saskatchewan, Canada, from May to July, 1991 to 

2004.  The 385 ha NWA contains over 100 wetland basins of varied size and 

permanency; vegetation includes annually cropped farmland, shrub land, groves of aspen 

(Populus tremuloides), and fields of native grasses and planted cover (mixes of brome 

grass, Bromus spp., and alfalfa, Medicago sativa; Clark and Shutler 1999).  In 1990, 50 

nest boxes (“Long Point” design) were set up; in both 1991 and 1992, an additional 25 

boxes were added and, in 1993, an additional 15 nest boxes were added (total 115 nest 

boxes, Figure 2.1).  Nest boxes were mounted on metal stakes 1–1.5 m above the ground, 

spaced 30 m apart along trails, most in unshaded areas, with openings facing southeast.   

 

1.5 OBJECTIVE AND ORGANIZATION OF THE THESIS 

 

My overall goal was to evaluate effects of annual climate variation on the timing of 

nesting.  In Chapter 2, I examine annual variation in timing of breeding and breeding 

success of swallows in relation to local spring weather conditions and broad-scale climate 

indices, wetlands, spring food abundance, and female age.  In Chapter 3, I compare  

6 



 

 

 

 

1 

50 

100 

115 
51Pond 

25 
- 

 

 

 
Figure 1.1  Aerial photograph of St. Denis National Wildlife Area, Canada (52o13’N, 
106o04’W) showing the trails where 115 Tree Swallow(Tachycineta bicolour) nest boxes 
were located (black lines, numbers indicate nest box numbers), Pond 25, and the location 
of the two insect traps (     ).  The top of the photo is north; the NWA is 1.6 km from 
north to south, and 2.4 km from west to east. 
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experimentally warmed nests with unmanipulated control nests in terms of clutch 

initiation date, laying sequence, clutch size (quality) and fledging success.  In Chapter 4, I 

discuss the major variables that influence swallow clutch initiation date, and suggest 

ways to improve future studies of climate impacts on birds. 
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CHAPTER 2:  TIMING OF NESTING AND BREEDING PERFORMANCE OF 
TREE SWALLOWS: EFFECTS OF SPRING WEATHER AND AERIAL 
INSECT ABUNDANCE 

 

 

2.1 INTRODUCTION 

 

Many factors influence timing of breeding and breeding performance in birds.  Both large 

and small scale climate variables may affect avian fecundity (Sillet et al. 2000, Nott et al. 

2002, Hussell 2003, Both and Visser 2005, Both et al. 2006).  Arrival time of breeding 

birds may also be affected by weather conditions experienced on their wintering grounds 

or during migration (Nott et al. 2002).  Large scale climate indices correlate with timing 

of breeding (Forchhammer et al. 1998), fledgling success and mass (Sillett et al. 2000) 

and annual reproductive success (Nott et al. 2002, Mazerolle et al. 2005).  Variation in 

regional and local weather conditions may affect timing of breeding (Brown et al. 1999, 

Crick and Sparks 1999, Dunn and Winkler 1999), egg mass (Lessells et al. 2002), clutch 

size (Creswell and McCleery 2003), nestling growth rates (McCarty and Winkler 1999, 

McCarty 2001), and nestling survival (Tyler and Green 2004, Bolger et al. 2005).  

However, evaluations of long-term data sets that include large scale climate indices, local 

conditions and breeding variables are limited.   

Data from North American nest records collected over 40 years (1952 – 1992) 

suggest long-term increases in spring temperatures may have caused swallows to breed 

earlier (Dunn and Winkler 1999).  Hussell (2003) found that warmer temperatures in the 
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first 10 days of May were positively correlated with earlier nest initiation dates of 

swallows breeding in southern Ontario.  Experimental evidence from central British 

Columbia has linked increases in nest box temperature to increased swallow nestling 

survival (Dawson et al. 2005b).  Food availability has also been associated with the 

timing of laying by swallows; swallows in Wisconsin laid heavier eggs earlier in the 

season when insect abundance was relatively high (Nooker et al. 2005).  In addition, 

female age is correlated with earlier laying dates.  After-second-year (ASY, 2 years and 

older) swallows typically initiate nests earlier than yearlings (SY, females in their second 

calendar year; De Steven 1978, Stutchbury and Robertson 1988).  I had a unique 

opportunity to examine several of these factors in concert. 

I analyzed a 14 year (1991 – 2004) data set on swallows to assess putative effects of 

weather variables on timing of breeding and breeding success, including effects of local 

and regional weather, wetland depth and female age on timing of swallow nesting.  I 

predicted earlier clutch initiation dates, at both annual and individual levels, in years with 

one of the following: warmer temperatures (locally or regionally (Southern Oscillation 

Index and North Atlantic Oscillation Index)) or increased food availability (measured 

directly by insect abundance or indirectly via indices of wetland conditions).  I also 

expected that older females, presumably with more experience, would lay eggs earlier 

than younger females.  Similarly, I expected that annual clutch size and fledging success 

would be positively influenced by warmer temperatures, increased food availability and 

female age.   
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2.2 METHODS 

 

2.2.1 Tree Swallow breeding data 

Laying dates and clutch size.  Clean nest boxes were set up late April 1991 - 2004, prior 

to swallow arrival on the study area.  Nest boxes were subsequently checked every 1-3 

days.  Swallows usually lay one egg per day early in the morning (Robertson et al. 1992), 

so clutch initiation dates were assigned as the day the first egg was found, or in a few 

cases back-dated based on number of eggs present in the nest.  For example, if two eggs 

were found in a nest then the clutch initiation date assigned was the previous day.  Nests 

were checked daily until clutches were complete (no new eggs appeared for 3 

consecutive days).  Clutches were excluded from analyses if there was evidence of 

predation, abandonment, or two or more females laying eggs in the same nest box (see 

Quinney 1983).  Any nest that experienced low reproductive success due to human 

interference (e.g., accidental egg breakage) was also excluded.  Only first nesting 

attempts were used. 

 

Fledging success.  To reduce disturbance, nests were not visited from early to 

mid-incubation.  Nest visits recommenced just prior to hatch, 12 days after the last egg 

was laid (incubation period ranges from 11 to 19 days, 14-year mean of 14.0 days + 1.5 

SD, n = 1024) to determine hatch date and hatch success.  Disturbing nestlings near the 

time of nest departure (ranges from 15 to 22 days after hatch) can result in premature 

fledging (Robertson et al. 1992), so banding and weighing of nestlings occurred when the 

oldest nestling in each brood was 12 days old.  Nest boxes were checked at least 20 days 
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after hatch to determine how many nestlings had successfully fledged.  When no 

nestlings were present, I assumed they had fledged provided no evidence of predation 

was present (e.g., disturbed nest material, blood, feathers, or dead nestlings).  When 

nestlings were present, nests were checked during subsequent visits until fate was 

determined.  During the 14 year period other studies were conducted which included 

clutch size manipulations (Shutler et al. 2006); thus, boxes involved in egg additions or 

removals were excluded from fledging success results.   

 

Female age.  Adults were captured in boxes (see Stutchbury and Robertson 1986) 

shortly after hatching was complete.  Unmarked adults were banded (using standard 

USFWS aluminium bands), sexed by the presence of brood patch (female) or cloacal 

protuberance (male), and mass (nearest 1 g, using 100 g Pesola spring scale) was 

recorded.  Females were aged based on plumage differences as SY or ASY (Hussell 

1983) or as known age from known hatch year (i.e., females that hatched on the NWA 

and returned to breed in subsequent years, and females banded and aged initially as SY 

and recaptured in subsequent years).    

 

2.2.2 Insect biomass 

Field collection.  Daily aerial insect abundance was monitored during the breeding 

periods 1991 -1996, and 2002 - 2003; collection dates varied (start: 4 - 13 May, end: 11 

July - 8 August), but each year sampling started prior to laying and continued until hatch 

completion.  Insect collection methodology followed Quinney and Ankney (1985).  

Sampling occurred at two sites on the NWA (same locations each year, Figure 1.1).  
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Wind socks made from mosquito mesh had an opening diameter of 30 cm, were 

approximately 100 cm long and attached to a pole 2 m above ground (see Quinney and 

Ankney 1985).  Insect collection jars (60 ml, filled with 70% isopropyl alcohol) were 

attached to the closed end of each trap.  An anemometer was set up beside each wind 

sock.  Sample jars were changed daily.  In most cases, samples were collected and 

anemometer readings were recorded daily.  If jars were not collected daily, samples were 

excluded from analysis.  A total of 1019 insect samples was collected (locations pooled) 

over 8 seasons.  The number of collections each year ranged from 94 to 171 (mean = 

127).  Although I do not know the diet composition of adults or nestlings on my study 

site, I have no reason to expect it would differ greatly from that collected in traps.  

Quinney and Ankney (1985) found the taxa and size of insects collected in traps were 

similar to those adults swallows delivered to nestlings.   

 

Laboratory procedures.  Insects were removed from collection jars, placed on 

labelled filter paper, and any plant material and insects over 13 mm long were removed at 

this time (following Quinney and Ankney 1985).  Insect samples were dried at 90o C for 3 

hours (Fisher Isotemp oven).  The mass of each sample was recorded to the nearest 0.001 

g (Ohaus Analytical Plus scale), and insect biomass collected per hour was determined 

after adjusting for low wind speed following Quinney et al. (1986). 

 

2.2.3 Local climate data and wetland conditions 

A weather station on the NWA monitored temperature (oC); however there was variation 

in data collection methods and sampling intervals.  Therefore, I used Saskatoon weather 

13 



 

station temperatures (Environment Canada 2004, minimum air temperature from the 

NWA and Saskatoon locations were correlated, r2 = 0.95, P < 0.0001, n = 106 randomly 

selected days 1991-2004).  Minimum, maximum and mean May Saskatoon daily air 

temperature were correlated (1991-2004, minimum and maximum; r2 = 0.60, P < 0.0001, 

n = 465, minimum and mean; r2 = 0.92, P < 0.0001, n = 465, maximum and mean; r2 = 

0.87, P < 0.0001, n = 465).     

Wetland abundance was recorded on the NWA in the first 2 weeks of May 1991 - 

2003.  Wetlands were also counted the first 2 weeks in June except 2001 and 2004.  

Ponds were included in counts if they were holding water, regardless of water level.  

Water levels (cm) were also recorded in May, 1991 to 2004, at a semi-permanent wetland 

(Pond 25, Figure 1.1) using gauged stakes permanently located within the pond (Minzhen 

Su, Environment Canada, Saskatoon, personal communication).   

 

2.2.4 Regional climate indices 

Swallow band returns indicate that the majority of those breeding in the Canadian 

Prairies winter in the southern and southwestern U.S. (Brewer et al. 2000).  Since 

swallows are migratory, it is plausible that the climatic conditions they experience on 

wintering grounds and during migration may affect subsequent reproductive effort.  

Therefore, the Southern Oscillation Index (SOI, January - May) and the North Atlantic 

Oscillation Index (NAOI, December - March) were used as indicators of climatic 

conditions in both these areas.  

The SOI describes large-scale fluctuations in air pressure between the western and 

eastern tropical Pacific.  SOI is calculated using departures from normal surface air 
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pressure differences between Tahiti, French Polynesia and Darwin, Australia (NOAA 

2005a; data from Dept. Natural Resources and Mines, State of Queensland, Australia, 

http://www.longpaddock.qld.gov.au/SeasonalClimateOutlook/SouthernOscillationIndex/

SOIDataFiles/index.html).  SOI affects both wintering and breeding areas (i.e., southern 

U.S. and Canadian prairies); when the SOI is more positive the southern U.S. experiences 

a warm dry winter/spring (December – May), while the Canadian prairies experience a 

cooler winter/spring (McPhaden 2002, NOAA 2005a).  SOI values are also positively 

correlated with lake-ice break-up dates in Saskatchewan; with break-up occurring about 5 

days earlier in years with low SOI values (Bonsal et al. 2006).  The opposite occurs when 

the index is negative.  During El Niño episodes (warm phase of the El Niño/Southern 

Oscillation (ENSO) cycle) the SOI has a large negative value and La Niña events occur 

when the index is positive.  The extreme phases of the cycle generally last 9-12 months, 

and the period repeats every 3 to 4 years on average (McPhaden 2002).  El Niño and La 

Niña are typically strongest during December-April when the equatorial Pacific sea-

surface temperatures are normally warmest (NOAA 2005a).  

 The NAOI also affects wintering and breeding areas, and appears to be the most 

important teleconnection, or covariance structural pattern (i.e., shows the strongest 

statistical relationship between weather events) during winter and early spring (December 

to March, NOAA 2005b).  NAOI is based on normalized sea level pressure differences 

between Ponta Delgada, Azores, Portugal and Stykkisholmur, Iceland.  The climate 

impacts are presumed to be largely restricted to eastern North America through Europe 

and into central Russia (Hurrell 1995, Hurrell and Van Loon 1997) but Northern North 

America, including the Canadian prairies, are also influenced by these changes in 

15 



 

pressure (Thompson and Wallace 2001, Sheridan 2003, Coulibaly 2006, Huang et al. 

2006).  Positive (negative) NAOI values correlate with warm wet (cool dry) winters in 

the southern U.S. (Hurrell and Van Loon 1997, Sheridan 2003, NOAA 2005b).  The 

Canadian prairies experience warm dry winters during positive NAOI events and 

negative values are characterized by cold wet winters (Sheridan 2003, Coulibaly 2006, 

Thompson and Wallace 2006).  The NAOI data are calculated monthly (data from The 

National Oceanic and Atmospheric Administration, National Weather Service, Climate 

Prediction Center, U.S., ftp://ftp.cpc.ncep.noaa.gov/wd52dg/data/indices/tele_index.nh).   

 

2.2.5 Statistical Analyses 

2.2.5.1 Annual variation in reproductive output 

The 14 year data set was used to examine annual variation in timing of breeding, clutch 

size and fledging success.  I evaluated competing models that attempted to explain 

variation in (1) annual median clutch initiation date (CID), (2) annual mean clutch size 

(CS) and (3) annual mean percent of successfully fledged nestlings (number of nestling 

fledged / number of eggs laid; FLEDGE) using local conditions and regional climate 

indices from 1991 to 2004.   

Models were selected a priori based on my predictions regarding effects of climate 

indices and local weather and wetland variables.  No interactions between the variables 

were considered due to sample size constraints, and a null model was included when 

building models.  Akaike’s Information Criterion adjusted for small sample size (AICc; 

Burnham and Anderson 2002) was used to select among candidate models.  The model 

with the lowest AICc value was considered to be the most parsimonious; however, 
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models with very similar AICc values (< 2 AICc units difference) were considered well 

supported by data (Burnham and Anderson 2002).  Models in the range 2 to 4 ΔAICc 

were weakly supported and models with > 4 ΔAICc were not considered; ΔAICc was 

calculated by subtracting the minimum observed AICc value from that of a given model.  

Normalized Akaike model weights, wi, were calculated to provide a measure of the extent 

of the weight of evidence in favour of model i (Burnham and Anderson 2002).  Weights 

were used to calculate evidence ratios, wi/wj, to provide a measure of relative likelihood 

of model i versus model j, suggesting which models were better representations of the 

data (Burnham and Anderson 2002).  Within the set of candidate models, a measure of 

relative importance of a variable can be determined by summing the weights of all the 

models that include that particular variable (Burnham and Anderson 2002).  General 

linear models (PROC GLM, SAS Institute Inc. 2001) were used to calculate residual 

sums of squares for use in calculating AICc values (Burnham and Anderson 2002). 

 

Clutch initiation date.  Variation in annual median CID was examined using female 

age, temperature, wetland water depth, number of wetlands present on the study area, 

spring SOI and winter NAOI.  Since ASY generally nest earlier than SY (De Stevens 

1978, Stutchbury and Robertson 1988), percent of breeding adult (ASY) females in the 

nesting population was included in analysis of annual variation in mean CID; unknown-

age females were excluded.  Given that swallows usually arrive on the study area in late 

April and early May, swallow activity decreases in temperatures below 15 oC (Stocek 

1986), and climate change spring temperature increases are mainly due to a rising 

minimum temperature (Environment Canada 2003a), I included yearly mean minimum 
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Saskatoon temperature (oC) from 1 - 15 May (MINMAY).  Swallows feed on aerial 

insects with an aquatic juvenile stage (Quinney and Ankney 1985).  Wetland depth 

affects the total number of aquatic insects (Orians 1980) and NWA wetland water levels 

are moderately correlated with annual aerial insect biomass (1990 – 1996, 2002 – 2003, r2 

= 0.68, P = 0.08, n = 7).  Also, insect abundance may vary with the previous winter’s 

rainfall patterns (Blancher and Robertson 1987).  Wetland water depth (cm) was recorded 

for Pond 25 in early May (DEPTH).  May pond count is the number of wetlands holding 

water in early May each year (#WETMAY).  Both variables were also included in the 

data set as an index of wetland condition and relative spring precipitation.  Spring SOI 

(average January – May) and winter NAOI (average December – March) were used to 

provide information on broad-scale weather conditions on wintering and breeding areas.   

 

 Clutch size.  Variation in annual mean CS was also examined using AGE, 

MINMAY, DEPTH, #WETMAY, SOI and NAOI.  Percent of adult breeding females 

was included; Stutchbury and Robertson (1988) found ASY females laid larger clutches 

than did SYs early in the breeding season.  Since egg production takes 6 to 11 days 

(Johnson 2000) and laying usually starts in late May (14-year mean = 30 May), 

MINMAY was used.  Aerial insect abundance during the laying period has been shown 

to correlate positively with clutch size in swallows (Hussell and Quinney 1987) and was 

weakly correlated with NWA wetland water levels; DEPTH and #WETMAY were 

included in the analyses.  Spring SOI and winter NAOI were also included.   

Since CS decreases with advancing CID (Stutchbury and Robertson 1988) and 

MINMAY appeared in all of the top 4 models for CID (see results), it was possible that 
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MINMAY was interacting with CID.  To determine if there was added variation in CS 

explained by MINMAY after variation due to median CID was controlled, median CID 

was added to all candidate models when MINMAY was included, and a model with only 

median CID was added to the initial set of candidate models.   

 

 Fledging success.  Annual variation in mean FLEDGE was modeled using 

MINJUNE, MAXJUNE (mean minimum and mean maximum temperatures during 10 – 

30 June, respectively), DEPTH, #WETJUNE (June pond counts were unavailable for 

2001 and 2004; therefore May pond count (#WETMAY) data was used for those years), 

and median CID.  Temperature while nestlings are still in the nest can affect their 

survival; nestlings in experimentally warmed (5oC) nest boxes had increased survival 

over those in control boxes (Dawson et al. 2005b).  Experimentally increased nest 

temperature improved nestling survival, increased 16 day old mass and length of 9th 

primary of nestlings in central British Columbia (Dawson et al. 2005b).  Most swallows 

hatch on the NWA in mid June (mean = 16 June + 4.5 days SD, range 13 – 23 June), and 

are present in nest boxes for at least 20 days prior to fledging (Robertson et al. 1992).  

McCarty and Winkler (1999) also found that daily maximum temperatures had the 

greatest influence on growth of nestlings younger than five days old.  Therefore, the two 

temperatures variables (MINJUNE, MAXJUNE) include the period when most nests 

contained young on the study area.  Two local wetland values, DEPTH and #WETJUNE, 

were also included.  SOI was not included in this analysis because it has little effect on 

summer weather patterns in the northern hemisphere, especially the Canadian Prairies 

(McPhaden 2002).  Since the NAOI most strongly influences winter weather, with low 
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influence in the summer, it was also not included as a variable in this analysis (NOAA 

2005b).   

 

2.2.5.2 Individual variation in clutch initiation date 

I evaluated CID of individual female swallows by developing structural equation models 

to link response and explanatory variables (i.e., temperature, wetland water depth, female 

age, insect biomass, spring SOI and winter NAOI; see below for details).  I used path 

analysis (PROC CALIS, SAS Institute Inc. 2001) to illustrate causal relationships among 

explanatory variables and provide information about how much variation in the data is 

explained by a priori hypotheses (Figure 2.1).  Path analysis uses simultaneous, multiple 

linear regressions to test if the hypothesis adequately describes the observations (Mitchell 

1992).  The standardized partial regression coefficients (or path coefficients, direct 

effects), correlation estimates and residual (unexplained) variance are obtained.  Indirect 

effects are calculated by multiplying partial regression coefficients along all indirect 

paths.  For example, using Figure 2.1, the indirect effect of spring SOI on CID, was 

calculated by multiplying the direct effect of spring SOI on CIDTEMP by the direct 

effect of CIDTEMP on CID.  Total indirect effects for a variable are the sum of all 

indirect pathways.  

The goodness of fit (GOF) of different combinations of the variables to data was 

directly tested.  Direct, indirect and total effects of variables were also estimated.  To 

assess the GOF of the a priori model and different alternative models, I used indices 

provided by PROC CALIS including chi-square test, Bentler and Bonnet’s normed fit  
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Figure 2.1  Path diagram indicating a priori hypotheses about relationships (direction of 
effect) among explanatory variables on clutch initiation date (CID) of Tree Swallows 
(Tachycineta bicolor).  Dashed lines represent expected negative relationships, whereas 
solid lines represent positive relationships.  Path coefficients (direct effects of one 
variable on another) are represented by single headed straight arrows, two-headed curved 
arrows represent correlations, and arrows not originating at a variable represent the 
residual variance for endogenous variables, R (unexplained).  Variable definitions and 
deviations are described in Methods.   
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index (NFI) and non-normed fit index (NNFI), and Bentler’s comparative fit index (CFI).  

The chi-square statistic tests the null hypothesis that the model fits the data.  The NFI and 

CFI values range from 0 to 1, with values over 0.9 representing an acceptable fit of the 

model to the data (Hatcher 1998).  Values for NNFI may range above 1 and below 0.  I 

initially tested the a priori hypothesis for each data set (see below); alternative models 

were subsequently tested based on modifications and model fit indices.  

 

Environmental variables.  Explanatory environmental variables, spring SOI, 

winter NAOI, DEPTH, and CIDTEMP (see below for definition), were used in the path 

analyses to describe variation in the main response variable, CID.  They included three 

previously described variables: spring SOI, winter NAOI (of the winter prior to the 

breeding season), and DEPTH.  #WETMAY was not included in this analysis since it is 

highly correlated with DEPTH (r2 = 0.86, P < 0.0001, n = 1395) and DEPTH was an 

important variable in explaining variation in CID based on AIC results (see Results 

section 2.2.9 and Table 2.1).  An assumption of path analysis is that none of the 

endogenous variables be highly correlated (Hatcher 1998).  Saskatoon minimum daily 

temperature was used to calculate a 10-day running mean deviation from the 14-year 

average for each initiation date (i.e., deviation of an initiation date’s 10-day running mean 

from the 14 year 10-day running mean for that date, CIDTEMP).  This analysis included 

1395 nest initiations over 14 years.   

 

 Female age and environmental variables.  AGE (only females with a known 

hatch year), along with explanatory environmental variables, spring SOI, winter NAOI, 
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DEPTH, and CIDTEMP, were used in path analyses to describe variation in the main 

response variable, CID.  The reduced data set including only known-age females was 

initially modelled using the final model from the environmental variables analysis (i.e., 

Figure 2.4, see Results) with the addition of AGE which directly affected CID, and was 

directly affected by spring SOI, winter NAOI and DEPTH.   

Two key assumptions of path analysis are that the minimum number of 

observations is greater than 200 individuals and each endogenous variable has at least 

four values (Hatcher 1998).  To satisfy these criteria, this analysis included 221 nests 

initiated by a sub-sample of females aged as 1, 2, 3 and 4 years old (most females 

appeared only 1-2 times in the data set).  

 

 Insect biomass and environmental variables.  Insect biomass along with 

explanatory environmental variables spring SOI, winter NAOI, DEPTH, and CIDTEMP, 

were used in path analyses to describe variation in CID.  Due to variation in insect 

collection initiation dates over the study, I was limited by number of insect collection 

days prior to clutch initiation.  Insect monitoring started at least 5 days prior to the first 

CID; therefore, daily insect biomass (mg / (km/hr)) was used to calculate a 5-day running 

average prior to the onset of laying (BUG).  The initial model including insect biomass 

was initially modelled using the final model from the environmental variables analysis 

(i.e., Figure 2.4, see Results) with the addition of BUG which directly affected CID, and 

was directly affected by spring SOI, winter NAOI, CIDTEMP and DEPTH.  The analysis 

was run using 725 nest initiations from 1991 – 1996, and 2002 - 2003.     
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2.3 RESULTS 

 

2.3.1. Nesting chronology and breeding success 

Annual mean clutch initiation date, clutch size and number of fledglings varied over the 

duration of the study (Figure 2.2).  A total of 1694 clutches was initiated, but due to 

incomplete clutches, predation, abandonment and human disturbance, only 1395 clutches 

were used in analyses.  Over the 14 years, annual median CID varied by a maximum of 

10 days, ranging from 23 May 1998 to 3 June 2002 (14-year median = 28 May).  The 14-

year mean CS was 6.2 (+ 0.03 SE) eggs per nest, with the smallest average clutch of 5.6 

(+ 0.07 SE) in 2002, and the largest of 6.7 (+ 0.09 SE) in 2000.  The mean number of 

fledglings per nest (includes failed nests) ranged from 0.1 (+ 0.05 SE) in 1993 to 5.5 (+ 

0.2 SE) in 1997, with an overall average of 4.4 (+ 0.1 SE, n = 1380) fledglings per nest.  

 

2.3.2. Environmental conditions 

MINMAY averaged 1.6 oC (+ 0.3 SE) and ranged from averages of -2.4 oC in 2002 and 

2004 to +4.9 oC in 1993.  Temperature during hatch also varied; MINJUNE ranged from 

minima of 6.0 oC in 2004 to 11.6 oC in 2002 (14-year mean 9.2 oC + 0.2 SE), and 

MAXJUNE ranged from 19.1 oC in 2004 to 25.7 oC in 2002 (14-year mean = 22.4 oC + 

0.3 SE).  DEPTH (Pond 25) also varied among years, from 0 cm in 2002 to 186 cm in 

1997.  #WETMAY varied from 3 to 101 and #WETJUNE ranged from 1 to 96 during the 

duration of the study.  Spring SOI was mostly positive (mean = 3.88, range -18.78 (1998) 
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Figure 2.2 Annual median clutch initiation date (top, + 10th & 90th percentile), mean 
clutch size (middle, + 95% CL) and mean number of fledglings (bottom, + 95% CL) for 
Tree Swallows (Tachycineta bicolor) breeding at St. Denis National Wildlife Area, 
Canada, 1991 – 2004 (average annual sample size = 93, range = 67 to 113).  Horizontal 
line denotes 14-year median (top) and mean (middle, bottom). 

25 



 

to +9.42 (1999)), predominated by the La Niña phase with the southern U.S. experiencing 

a warm dry winter/spring, and the Canadian prairies experiencing a cooler winter/spring 

(NOAA 2005a).  The winter NAOI was generally positive during the winter periods of 

the study (mean = 0.35, range -0.45 (1996) to +1.18 (1999)), characterized by warm wet 

winters in the southern U.S. (Sheridan 2003, Coulibaly 2006, Thompson and Wallace 

2006).    

 

2.3.4. Annual timing of breeding, clutch size and fledging success in relation to 

environmental variables 

Clutch initiation date.  Model selection based on AICc indicated that the most 

parsimonious model with respect to median CID included only variation in minimum 

May temperature (MINMAY; Table 2.1).  The parameter estimates for the top model 

show that median annual clutch initiation date was earlier in years with warmer minimum 

May temperatures (Figure 2.3).  This approximates a seasonal advancement in CID of 

one day for every one degree increase of the mean minimum temperature during 1-15 

May.  This model was 3 times better supported than a model that also included wetland 

water depth (MINMAY, DEPTH; 0.40 / 0.13 = 3.1; Table 2.1).  The second two models, 

including MINMAY, DEPTH and MINMAY, % Adult received some support (ΔAICc < 

2.76; Table 2.1).  A rank of importance of each variable is determined by summing the 

AICc weights, indicating that MINMAY was the most important variable followed by 

DEPTH (∑wi = 0.98 and 0.26, respectively). 
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Table 2.1  Summary of models developed to explain annual median clutch initiation date 
of Tree Swallows (Tachycineta bicolor) in relation to effects of the annual MINMAY 
temperatures, % Adults, pond DEPTH, #WETMAY, spring SOI and winter NAOI (see 
text for descriptions of variables).  Only the four most parsimonious models are shown, 
as selected using AICc model selection.  Data from St. Denis National Wildlife Area, 
Canada, 1991 – 2004.   

 
 

MODEL ∆AICc
a weightb Kc

MINMAY 0.00 0.40 3 

MINMAY, DEPTH 2.19 0.13 4 

MINMAY, % Adult 2.76 0.10 4 

MINMAY, DEPTH, #WETMAY 3.52 0.07 5 
 

a ∆ AICc = difference in AICc between model and one with minimum AICc
b Normalized Akaike weight (weight of evidence in favour of model i) 
c Number of parameters estimated in model 
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Y = 150.25 (SE = 0.81) – 1.03 (SE = 0.29) X 
 
r2 = 0.51 

 

Figure 2.3  Relationship between Tree Swallow (Tachycineta bicolor) annual median 
clutch initiation date and annual MINMAY temperature (mean, oC).  See text for 
description of variables.  Data from St. Denis National Wildlife Area, Canada, 1991 – 
2004. 
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Clutch Size.  Model selection based on AICc indicated that the most parsimonious 

model with respect to mean CS included only variation in spring DEPTH (Table 2.2).  

The parameter estimates for the most parsimonious model show a small tendency for 

larger mean annual clutches to be laid in years with deeper wetland water levels (r2 = 

0.28, mean CS = 5.90 [SE = + 0.12] + 0.006 [SE = + 0.003] DEPTH).  This model 

accounts for 0.16 of the model weights and was 1.5 times better supported by the data 

than the model that included spring SOI (0.16 / 0.11 = 1.5) and nearly 2 times better 

supported than the model that included only median CID (0.16 / 0.09 = 1.8).  Three other  

models received comparable support, including the null model (ΔAICc < 2; Table 2.2).   

Effects of spring SOI and median CID also received support; larger annual mean clutches 

were laid in years with higher spring SOI values, deeper water levels and earlier median 

clutch initiation date (r2 = 0.43, mean CS = 5.95 [SE = + 0.12] + 0.014 [SE = + 0.009] 

spring SOI + 0.006 [SE = + 0.002] DEPTH; r2 = 0.22, mean CS = 12.6 [SE = + 3.5] - 

0.04 [SE = + 0.02] CID).  

 
Fledging success.  The most parsimonious model for mean FLEDGE is the null 

model (Table 2.3), suggesting the explanatory variables I considered had little correlation 

with productivity.  However, the model that includes MAXJUNE is well supported by the 

data (ΔAICc < 2.0, Table 2.3).  The parameter estimates for this model exhibit a small 

tendency for increased fledgling survival in years with higher maximum June 

temperatures (r2 = 0.14, mean FLEDGE = -0.07 [SE = + 0.57] + 0.04 [SE = + 0.04] 

MAXJUNE).  
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Table 2.2  Summary of models developed to explain annual mean clutch size of Tree 
Swallows (Tachycineta bicolor) in relation to effects of the annual MINMAY 
temperatures, % Adults, pond DEPTH, #WETMAY, spring SOI, winter NAOI and 
median CID (see text for descriptions of variables).  Only the five most parsimonious 
models are shown, as selected using AICc model selection.  Data from St. Denis National 
Wildlife Area, Canada, 1991 – 2004.   

 
 

MODEL ∆AICc
a weightb Kc

DEPTH 0.00 0.16 3 

DEPTH, spring SOI 0.85 0.11 4 

median CID 1.14 0.09 3 

Null 1.31 0.08 2 

MINMAY, median CID 1.42 0.08 4 

#WETMAY 2.71 0.04 3 
 

a ∆ AICc = difference in AICc between model and one with minimum AICc
b Normalized Akaike weight (weight of evidence in favour of model i) 
c Number of parameters estimated in model 
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Table 2.3  Summary of models developed to explain annual mean percent of successfully 
fledged Tree Swallow (Tachycineta bicolor) nestlings to include effects of annual 
MINJUNE & MAXJUNE temperatures, % Adults, pond DEPTH, #WETJUNE and 
median CID (see text for descriptions of variables).  Only the four most parsimonious 
models are shown, as selected using AICc model selection.  Data from St. Denis National 
Wildlife Area, Canada, 1991 – 2004.   

 
 

MODEL ∆AICc
a weightb Kc

Intercept only 0.00 0.31 2 

MAXJUNE 1.23 0.17 3 

median CID 2.73 0.08 3 

#WETJUNE 2.82 0.08 3 
 

a ∆ AICc = difference in AICc between model and one with minimum AICc
b Normalized Akaike weight (weight of evidence in favour of model i) 
c Number of parameters estimated in model 
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2.3.4. Timing of breeding in relation to environmental variables, female age and 

insect abundance  

Environmental variables.  The final model (Figure 2.4), which included additional 

pathways from DEPTH to CID and the removal of a pathway from spring SOI and 

CIDTEMP, fit the data (CFI = 0.98, NFI = 98, NNFI = 0.93, χ2 = 6.26, P = 0.01, all 

standardized residuals < 2.50, n = 1395; r2 = 0.09) when compared to the a priori model 

(Figure 2.1, CFI = 0.96, NFI = 96, NNFI = 0.59, χ2 = 14.95, P = 0.0001, standardized 

residuals < 3.86).  CIDTEMP, winter NAOI and spring SOI all had strong direct effects 

on CID (Table 2.4).  The direct path of DEPTH on CID was not significant at P = 0.05; a 

modified model without this pathway had similar model fit (CFI = 0.99, χ2 = 6.39, df = 2, 

P = 0.04, all standardized residuals < 2.50) to the final model.  I performed a chi-squared 

difference test between the final model and modified model and found that the removal of 

this path resulted in no improvement in model fit (χ2 = |6.26 -6.39| = 0.13, df = |1 - 2| = 1, 

P < 0.5).    

Overall, winter NAOI had a negative correlation, spring SOI had a positive 

correlation and CIDTEMP had moderate direct, negative correlation with CID (Table 

2.4).  This suggest that individuals generally start laying earlier in breeding seasons 

associated with warmer spring temperatures (higher CIDTEMP and low SOI values) and 

warmer, wetter wintering area conditions (high NAOI values). 

 

Female age and environmental variables.  The final model that included female 

age showed similar effects to the model with only environmental effect variables
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Figure 2.4  Path diagram summarizing relationships of environmental variables (see text 
for description) on Tree Swallow (Tachycineta bicolor) clutch initiation date.  Path 
coefficients (single headed arrows; positive – solid line, negative – dashed line) and a 
correlation (double-headed curved arrow) are reported.  Statistical significance of path 
coefficients: all P < 0.05, except † where P > 0.05.  Data from St. Denis National Wildlife 
Area, Canada, 1991 – 2004.  
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Table 2.4  Direct, indirect and total effects from path analysis (see Figure 2.4) of 
environmental variables (see text for description) on clutch initiation date of Tree 
Swallows (Tachycineta bicolor, n = 1395) nesting on St. Denis National Wildlife Area, 
Canada, 1991 – 2004.  Statistical significance of path coefficients: all P < 0.05, except † 
where P > 0.05.   

 

Variable Direct Effect Indirect Effect Total Effect 

DEPTH   -0.09† - -0.09 

CIDTEMP -0.14 0.01 -0.13 

winter NAOI -0.24 0.03 -0.21 

spring SOI  0.23 0.01 0.24 
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(Figure 2.5).  The model fit to the data was significant (CFI = 1.00, NFI = 1.12, NNFI = 

0.99, χ2 = 1.18, df = 3, P = 0.76, all standardized residuals < 0.94, n = 221, r2 = 0.14).  

The direct path of DEPTH on CID was not significant at P = 0.20; a modified model 

without this pathway had similar model fit (CFI = 1.00, NFI = 1.12, NNFI = 0.98, χ2 = 

1.67, df = 4, P = 0.80, all standardized residuals < 0.94) to the final model (Figure 2.5).  

A chi-squared difference test between the final model and modified model found that the 

removal of this path resulted in a little improvement in model fit (χ2 = |1.18 - 1.67| = 

0.49, df = |3 - 4| = 1, P < 0.50).  

AGE had a total negative direct affect on CID (Figure 2.5, Table 2.5), suggesting 

that older females initiated nests earlier.  Similar to the model with only environmental 

effect variables, clutches were initiated later when breeding areas experienced warmer 

spring temperatures (high CIDTEMP and low SOI values) and warmer, wetter wintering 

area conditions (high NAOI values).   

 

Insect abundance and environmental variables.  The a priori model fit the data 

(Figure 2.6, CFI = 1.00, NFI = 1.00, NNFI = 0.97, χ2 = 4.17, P = 0.04, all standardized 

residuals < 2.03, n = 725; r2 = 0.24).  BUG was negatively associated with CID, 

indicating clutches were initiated earlier when insect abundance was higher (Figure 2.6, 

Table 2.6).  Again females initiated clutches earlier when the breeding area had increased 

spring temperatures (low SOI values) and experienced warmer wetter wintering  area 

conditions (high NAOI values).  Generally, clutches were initiated earlier with increased 

wetland water levels (Figure 2.6, Table 2.6). 
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Figure 2.5  Path diagram summarizing associations of female age and environmental 
variables (see text for description) on Tree Swallow (Tachycineta bicolor) clutch 
initiation date.  Path coefficients (single headed arrows, positive – solid line, negative – 
dashed line) and correlations (double-headed curved arrow) are reported.  Statistical 
significance of path coefficients: all P < 0.05, except † where P > 0.05 and †† where P > 
0.20.  Data from St. Denis National Wildlife Area, Canada, 1992 – 2004.  
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Table 2.5  Direct, indirect and total effects from path analysis (see Figure 2.5) of 
environmental variables and female age (see text for description) on clutch initiation date 
of Tree Swallows (Tachycineta bicolor) nesting on St. Denis National Wildlife Area, 
Canada, 1991 – 2004.  Statistical significance of path coefficients: all P < 0.05, except † 
where P > 0.05 and †† where P > 0.20.   
 
 

Variable Direct Effect Indirect Effect  Total Effect 

AGE -0.16  - -0.16  

DEPTH     0.05††  0.03   0.08 

CIDTEMP  -0.10†  -0.01 -0.11 

winter NAOI -0.29  0.01 -0.28 

spring SOI  0.26     0.002     0.26 
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Figure 2. 6  Path diagram summarizing associations of aerial insect abundance and 
environmental variables (see text for description) on Tree Swallow (Tachycineta bicolor) 
clutch initiation date.  Path coefficients (single-headed arrows; positive – solid line, 
negative – dashed line) and a correlation (double-headed curved arrow) are reported.  
Statistical significance of path coefficients: all P < 0.05, except † where P > 0.05.  Data 
from St. Denis National Wildlife Area, Canada, 1991 - 1996 and 2002 - 2003. 
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Table 2. 6  Direct, indirect and total effects from path analysis (see Figure 2.6) of 
environmental variables and insect abundance (BUG; see text for description) on clutch 
initiation date of Tree Swallows (Tachycineta bicolor, n = 613) nesting on St. Denis 
National Wildlife Area, Canada, 1991 – 1996 and 2002 – 2003.  Statistical significance 
of path coefficients: all P < 0.05, except † where P > 0.05. 

 
 

Variable Direct Effect Indirect Effect  Total Effect 

BUG -0.19 - -0.19 

DEPTH -0.22  0.02 -0.20 

CIDTEMP  -0.03†  0.07  0.04 

winter NAOI -0.31  0.09 -0.22 

spring SOI  0.29 -0.13   0.16 
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Insect abundance was also related to weather variables in the model.  Insects were 

more abundant in years with warmer local temperatures, and shallower pond depth 

(Figure 2.6, Table 2.6).  The effect of CIDTEMP was strengthened by its indirect effect 

(via DEPTH, indirect effect = 0.03, total effects = 0.37, Figure 2.6).  The regional climate 

indices were also correlated with insect abundance when the area experienced a warm 

winter/spring (low SOI values) or cold wet winter (low NAOI values) insect biomass was 

higher (Figure 2.6).    

 

 

2.4 DISCUSSION 

 

 

When examining both annual and individual variation in clutch initiation dates, my 

results suggest that, as anticipated, temperature and moisture were the most influential 

factors for swallows nesting at the NWA.  Increases in temperature and moisture levels, 

either indicated by wetland water depth or by indices values, resulted in earlier initiation 

dates.  A larger proportion of adults and an increase in insect biomass were also 

correlated with earlier laying dates.  Swallow clutch size and fledging success also 

appeared to vary with environmental conditions.  There was a tendency for larger 

clutches to be laid in years with deeper wetland water levels and for greater fledging 

success to occur in years with warmer maximum June temperatures. 
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2.4.1. Effects of annual spring weather 

Clutch initiation date.  Much of the annual variation in clutch initiation dates was 

explained by temperatures in early May, immediately after most swallows had arrived on 

the study site (Table 2.1).  Swallows generally nested earlier in years with warmer early 

May minimum temperatures, consistent with Dunn and Winkler (1999) and Hussell 

(2003).  A mechanism driving the relationship between early May temperatures and 

clutch initiation dates could be an increase in insect abundance which also correlates with 

temperature (Roeder 1953, Visser et al. 1998, Visser and Holleman 2001).  Swallows 

may use sufficient food resources as a cue to commence laying.  If true, this lends support 

to Winkler and Allen’s (1996) theory that swallows are income breeders (i.e., base their 

reproduction on resources acquired just prior to laying, Drent and Daan 1980).  If 

swallows need to feed on the breeding area to acquire sufficient resources for clutch 

formation then their dependence on food prior to laying would be expected.  I could not 

directly determine if MINMAY influenced insect biomass at NWA, since aerial insect 

biomass was not monitored long enough before clutch initiation dates.  The relationship 

between temperature and clutch initiation date could also be mediated by effects of 

temperature on swallow and insect activity; at air temperatures <15 oC, swallows are 

observed less often in their nesting colony and aerial insects are less active (Stocek 

1986). 

Wetland water depth had a weak but positive relationship with median CID; this 

relationship may also be an indication of food availability.  Wetland depth may affect the 

total number of aquatic insects (Orians 1980) and insect abundance may vary with the 

previous winter’s precipitation (Blancher and Robertson 1987).  However, the 
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relationship between water depth and insect abundance was weak.  This may be because 

some of the aerial insects captured in traps lacked an aquatic life stage (e.g., Homoptera); 

Quinney and Ankney (1985) reported up to 39 % of samples from traps and up to 21 % of 

swallow boluses contained Homoptera.   

Timing of nesting may also be influenced by factors such as long-term cues, 

including photoperiod, temperature and endogenous rhythms that stimulate reproduction 

in birds (Immelman 1971).  For example, photoperiod is thought to be partly responsible 

for the timing of gonad development (Immelman 1971).  Predation risk, mate and nest 

site availability and female experience, age, and condition, may also fine-tune timing of 

laying (Perins 1970, Morton 1971, Meijer at al. 1990, Geupel and DeSante 1990, Nager 

and VanNoordwijk 1995, Winkler and Allen 1996, Lloyd 1999, Pap 2002, Hussell 2003).   

 

Clutch Size.  Swallow clutch size did not vary greatly over the 14 years, with most 

females laying six eggs.  Swallows generally produced larger clutches in years with 

deeper water levels (DEPTH), presumably via wetland or precipitation effects on food 

availability.  Again, this result lends support to the theory that swallows are income 

breeders; swallows laying larger clutches when breeding area food availability is 

increased.  Females were also more likely to lay larger clutches in La Niña years, which 

are typified by winters and springs that are generally warmer and dryer in the southern 

U.S. and cooler in the Canadian prairies (NOAA 2005b).  This is consistent with previous 

research on Yellow Warblers (Dendroica petechia, another migrant insectivore) which 

indicated that populations breeding in the Canadian prairies had higher productivity in La 

Niña years (Mazerolle et al. 2005).  This effect may be due to a carry over effect from 
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wintering areas (Blums et al. 1997, Smith and Moore 2003).  When swallows experience 

dryer and warmer winters they may arrive either earlier or in better condition compared 

to cool, wet winters.  However, swallows are thought to be income breeders (Winkler and 

Allen 1996), so a cross-seasonal or carryover effect from the wintering area may be less 

influential.  Conversely, the relationship between clutch size and SOI may be due to a 

mismatch occurring in El Niño years.  Warmer spring conditions are related to earlier 

spring insect emergence (Ellis et al. 1997), so when the breeding area experiences 

increased temperatures swallow breeding activity may be mis-timed in relationship to 

insect abundance, possible resulting in smaller clutches being laid.    

 

Fledging success.  Annual percent of nestlings that successfully fledged from nest 

boxes varied annually, but none of the variables I considered had a large influence on 

fledging success (Table 2.3).  However, swallow nestlings were more likely to fledge 

successfully in years with higher maximum temperatures.  This result is consistent with 

Dawson et al.’s (2005b) report that experimentally increased nest box temperatures 

(approximately 5oC) for nestlings 4 to 16 days old resulted in increased nestling survival.  

I found weak support for an effect of clutch initiation date, suggesting that early clutches 

may successfully fledge more young than those laid later in the season; this is consistent 

with results from other studies on swallows (Winkler and Allen 1991, Stutchbury and 

Robertson 1998, McCarty and Winkler 1999) and higher recruitment reported among 

earlier-hatched nestlings (Shutler et al. 2006).  Perhaps use of nestling growth rates rather 

than percent fledge may give more meaningful results, as growth rates may be a better 

indicator of subsequent survival and reproductive success (Richner 1989, Magrath 1991, 
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Lindén et al. 1992).  It is possible that some of the other variables used also affect 

nestling survival, but the unit of measure used was too large.  For example, the minimum 

temperature variable used was a 20-day mean that included the period when most nests 

contained young.  It is possible that a short cold period may not be evident over this 

extended period of time; this could have a large impact on fledging success when 

offspring are not only dependent on their parents for food but are still unable to 

thermoregulate (nestlings are able to thermoregulate at day 7 or 8; Robinson et al. 1992).  

For example, in 1993 nestling survival was extremely low due to a cold wet 3-day period 

(R. G. Clark pers. obs.; Shutler and Clark 2003) but this short-term, extreme event was 

not evident in the 20-day mean.  In contrast, 2004 had the coolest mean temperatures (see 

results) but normal fledging rates.   

 

2.4.2. Effects of seasonal weather, female age and insect abundance  

The path model including insect abundance and environmental variables explained 24% 

of the variation in CID.  The model including age and environmental variables explained 

14%, whereas the model including only environmental effects explained only 9% of 

variation in CID.  Clutches were initiated earlier in years with warmer temperatures, 

increased moisture and insect biomass.  Timing of nesting of swallows has also been 

found to correlate positively with temperature (Dunn and Winkler 1999, Hussell 2003) 

and precipitation (Nooker et al. 2005).  

Environmental variables.  Among the environmental variables included in all 

three models, SOI and NAOI consistently had the strongest direct effects.  Timing of 

breeding in swallows was positively correlated with spring SOI values, suggesting that 

44 



 

birds nest earlier in El Niño years.  This is consistent with research on reproductive 

output indices of temperate and neotropical wintering migrants breeding in the U.S. 

Pacific Northwest (Nott et al. 2002).  Nott et al. (2002) suggested that El Niño may 

positively affect conditions on the wintering grounds and migration routes.  However, 

Sillet et al. (2000) and Mazerolle et al. (2005) reported that La Niña years correlate 

positively with apparent adult survival and nestling mass in Black-Throated Blue 

Warblers (Dendroica caerulescens) and apparent adult survival and production of 

juveniles in Yellow Warblers, respectively.   

 Swallow initiation dates are negatively correlated with winter/spring NAOI 

values (nesting earlier in years with relatively high values).  This contrasts with 

Weatherhead (2005), who reported that Red-Winged Blackbirds (Agelaius phoeniceus) in 

eastern Ontario started nesting later in years with higher winter NAOI values.  However, 

Weatherhead (2005) found that higher winter NAOI values were associated with cooler 

spring temperatures in eastern Ontario which is consistent with the weak relationship I 

found (Figures 2.4, 2.5, 2.6).  However, this is contrary to general patterns predicted from 

meteorological assessments which suggest higher winter NAOI values should correspond 

to warmer spring temperatures in central Canada (Thompson and Wallace 2001, Sheridan 

2003, Coulibaly 2006, Huang et al. 2006).  I could not verify the relationship between 

local precipitation and NAOI values (due to the unavailability of local precipitation data).  

Since the influence of NAOI and SOI is not limited to the Canadian prairies, the 

influence on timing of breeding in swallows may extend to wintering areas and migration 

routes.  For example, swallows generally nested earlier in springs with positive NAOI 

values which correlates with warm wet conditions in the southeast U.S. (NOAA 2005a, 
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2005b, Coulibaly 2006).  Swallows may be able to take advantage of favourable 

environmental conditions during migration (weather or food availability) and arrive at 

breeding areas earlier or in better condition.  Females in poor condition are likely to 

initiate nesting later (Hipfner et al. 1999), lay smaller clutches (Goodburn 1991) and have 

fewer young fledge (Wendeln and Becker 1999).  I was unable to evaluate female pre-

laying body condition; female body mass was measured post-hatch and may not be 

indicative of arrival condition.  However, if swallows are income breeders, as suggested 

by Winkler and Allen (1996), then conditions upon arrival at the breeding area may be 

more influential on reproductive output (Winkler and Allen 1996, Nooker et al. 2005). 

 

Insect abundance.  I found that insect biomass was negatively associated with 

initiation date; swallows nested earlier in years with higher insect biomass.  This is 

consistent with Hussell and Quinney (1987) and Nooker et al. (2005) who also found 

aerial insect abundance correlated positively with swallow clutch size.  Insect abundance 

was correlated with both local and regional variables.  Insects were generally more 

abundant in springs with warmer temperatures (positive CIDTEMP, and negative spring 

SOI values) and cool wet winters (negative winter NAOI values).  Surprisingly, wetland 

water levels had a relatively small influence on insect abundance.  Local spring 

precipitation amounts may explain a larger amount of variation in insect abundance since 

wetland water levels can be influenced by precipitation and evaporation in previous 

seasons.  NAOI was negatively correlated with insect abundance (Figure  2.6) and CID 

(Figure  2.6 and Table 2.6), suggesting that when the breeding area experienced cooler 

wet winters/springs (when NAOI values were low) subsequent spring insect abundance 
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was higher but swallows nested relatively late (NAOI values had a stronger influence on 

BUG, see Figure  2.6).  However, the climatic conditions simplified by the NAOI values 

are complicated by their predicted and actual relationship reported with temperature (see 

above and Chapter 4).  

 

Female age.  Female age had a negative effect on CID, suggesting earlier breeding 

by older females as reported by others (De Stevens 1978, Stutchbury and Robertson 

1988, Winkler and Allen 1996, Robertson and Rendell 2001).  Although female age 

influenced timing of breeding, female experience (e.g., comparing unbanded females 

with no previous experience with the NWA to recaptures from the area) may be more 

informative than age alone (Winkler and Allen 1996, Pyle et al. 1991).  AGE correlated 

negatively with both DEPTH and spring SOI; younger breeding females were 

encountered more often in years with higher spring SOI values and deeper wetlands.  

More positive spring SOI values are associated with warmer dryer conditions in the 

winter areas, possibly increasing survival.  Apparent annual survival of Yellow Warblers 

breeding in southern Manitoba correlated positively with SOI (Mazerolle et al. 2005).  

The negative relationship between DEPTH and AGE may be related to the previous 

year’s wetland condition, and subsequent insect abundance and likelihood of offspring 

survival.  This is not supported by the results from the reduced model that included BUG, 

which shows that insect abundance was higher during springs with lower water levels. 

The reduced AGE data set had some limitations (see methods); therefore these results 

should be considered cautiously.  
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2.5 CONCLUSIONS 

 

Local and regional weather conditions had a strong effect on measures of reproductive 

performance in swallows nesting on the NWA.  Annual and individual variation in timing 

of nesting were influenced by temperature and wetland conditions, and swallow clutch 

size and fledging success also varied with environmental conditions.  Generally, annual 

CID advanced one day with each approximately one degree increase in mean minimum 

May temperature.  For individual females, warmer local temperatures correlated with 

earlier clutch initiation dates.  Regional climate indices and local temperature data also 

indicated that warmer conditions correlated with earlier swallow laying dates.  Increases 

in both female age and local insect abundance also correlate with earlier CID.  When 

insect abundance was included with environmental variables, clutches were generally 

initiated earlier in springs with deeper wetland water levels.  

I found both local and regional environmental variables influenced swallow 

breeding.  Higher spring temperatures and more frequent El Niño events are predicted by 

some climate models (Timmermann et al. 1999); this may result in earlier nesting but 

smaller clutches for swallows nesting in southern Saskatchewan.  Furthermore, because 

of the unknown effects of continued local and regional climate change on swallow 

breeding, further study is needed to fully understand the importance of long-term climate 

variation.  Swallows may use cues such as temperature and wetland condition to initiate 

nesting, given their influence on other factors such as insect abundance.  I found 

correlations between variables, not cause and effect.  Unfortunately, experiments 
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manipulating ambient temperature, wetland condition and aerial insect abundance are 

logistically difficult.  The relationships between aerial insect abundance, wetland 

condition (i.e., number of wetlands, pond depth) and weather variables need to be 

examined in greater detail, including possible lag effects from previous years.  The use of 

other long-term data sets to explore similar questions would be an important first step in 

furthering our understanding of the role of climate in breeding success of migratory 

animals.  These results begin to examine the complicated interplay between 

environmental variables at various scales and swallow breeding.   

 

 

49 



 

 

CHAPTER 3.  EFFECTS OF HEATING NEST BOXES ON TIMING OF 
NESTING, REPRODUCTIVE INVESTMENT AND BREEDING SUCCESS OF 
TREE SWALLOWS  

 

 

3.1 INTRODUCTION  

 

There is growing interest in effects of climate change on wild animals and plants.  

Changes in seasonal patterns of warming and precipitation, and increases in the 

frequency of intense storms may seriously reduce survival and breeding success of wild 

plants and animals (see Hughes 2000).  Timing of nesting by swallows varies with spring 

temperatures; females lay later in years with lower spring temperature (Dunn and 

Winkler 1999, Hussell 2003, Chapter 2).  This delay may be due to low ambient 

temperatures increasing the costs of body maintenance at the expense of egg formation 

or, because flying arthropod abundance has been shown to be directly (Roeder 1953) and 

indirectly (Chapter 2) related to air temperature, food may be insufficient to allow body 

maintenance and egg formation, suggesting an energetic constraint on laying early 

(Perrins 1970).   

Presumably due to the energy savings which acrued,Yom-Tov and Wright (1993) 

found that artificial night-time heating of nest boxes increased incubation consistency in 

Great Tits.  Similarly Blue Tits had fewer laying interruptions (Bryan and Bryant 1999).  

Given that energy is likely limited during egg laying, I hypothesized that female 

swallows exposed to increased over-night nest box temperatures would lay earlier than 

females using unheated boxes.  I also expected that nest-box heating would cause one or 
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more of the following: larger clutch size, heavier eggs (due to energy savings), and lower 

fledging success (due to decreased food availability during fledgling period; mismatch 

hypothesis, e.g., Visser et al. 1998, Both et al. 2006).  I applied two heating treatments, 

heat until the appearance of the first egg in the nest and until after the third egg was laid, 

to determine if heating would reduce laying interruptions.  I expected that females nesting 

in boxes that were heated until after the laying of the  third egg (i.e., females provided 

with energy savings during part of laying) would have the highest laying consistency 

compared to the other treatments (control, equipment control, and heated to first egg).  

 

3.2  METHODS 

 

3.2.1. Experimental heating 

Nest box heating occurred during May 2003, prior to and during swallow laying on the 

NWA (Figure 1.1).  Subsets of the available nest boxes were randomly allocated to 3 

treatments: (1) warmed until first egg was laid (hereafter, H1: n = 35), (2) warmed until 

third egg was laid (hereafter, H3; n = 35) and (3) boxes equipped with the heating 

materials but not warmed (Equipment control (hereafter, EC), n = 15).  Unmanipulated 

boxes served as controls (hereafter, control, n = 30).  Based on average spring 

temperatures (Environment Canada 2003c), a swallow arrival date of 24 April 2003 and 

nest building progress, box heating started on 12 May.  Due to predation and box use by 

other species, 30 swallow nests were available in H1, 29 were in H3, 15 were EC, and 27 

were controls. 
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 In treatment boxes, a layer of reflective foam insulation was stuck to the box bottom 

and covered by a heating pack (contained charcoal, iron power, vermiculite, salt, sawdust 

and moisture, Heat Factor Inc., Vista, CA.) placed between two sheets of 0.64 cm wire 

mesh.  The reflective insulation helped to direct heat upward and the wire mesh allowed 

air flow, so heating packs could function.  Swallows constructed nests directly on top of 

the wire mesh.  In heated boxes (H1 & H3), heating packs were replaced daily during late 

afternoon to reduce disturbance to swallows, as nest building and egg laying generally 

occurs in the morning (Robertson et al. 1992).  In EC boxes, used heating packs (i.e., 

packs that did not produce heat) were removed and immediately replaced in the same box 

to mimic the disturbance to heated boxes.   

 Temperature loggers (HOBOtm XT Temperature Logger, Onset Corp., Pocasset, MA) 

were tested to ensure consistent temperature readings (within 0.1 oC) and then placed 

nightly in randomly-selected nest boxes from heated (n = 2 /night) and unheated groups 

(control, n = 2/night; EC, n = 1/night).  Loggers recorded temperature every 5 min.  One 

thermister was placed within the nesting material at the same height as the bottom of the 

nest cup (within 2-3 cm the nest cup), and the second thermister was taped on the back 

wall, 2-3 cm above the nest cup centre.  Temperature loggers were also placed 1.5 m 

above the ground at two locations in the study area to record ambient air temperature 

(hereafter, Ta).   

 Over-night box occupancy by females was recorded in 2002 and 2003.  On one night 

during the nest building period (i.e., the experimental period in 2003), 53 (2002) and 23 

(2003) randomly selected active boxes (evidence of nest building noted during previous 

afternoon’s nest visit) were checked for female swallows.   
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3.2.2. Swallow reproductive investment and breeding success 

Nest boxes were set up and heating equipment was installed in late April - early May, 

prior to the arrival of swallows.  Nest boxes were checked every 2-3 days for activity.  

When nesting material appeared in approximately 10% of available nest boxes, all nest 

boxes were checked daily to determine laying dates.  Swallows usually lay one egg per 

day early in the morning (Robertson et al. 1992), so clutch initiation dates were assigned 

to the day when the first egg was found.  Laying dates were recorded for each egg, and 

eggs were weighed within 24 hrs of laying to determine fresh egg mass (nearest 0.01 g, 

using a Mettler PE 400 balance).  Nests were checked daily until clutches were complete 

(no new eggs for 3 consecutive days).  Laying rate was calculated for boxes that initiated 

during the heating experiment by dividing the total number of eggs by total number of 

days laying per female (see Wiebe and Martin 1995).   

To reduce disturbance, nests were not visited during early and mid incubation.  

Nest visits recommenced just prior to hatch, 12 days after the last egg was laid 

(incubation period ranges 11 to 19 days at study area, 14 – year mean of 14.0 days + 1.5 

days, n = 1024).  Since eggs usually hatch within 1 to 2 hr from when evidence of hatch 

is first present (i.e., eggs pipping; Robertson et al. 1992) nests were visited twice a day to 

determine hatch duration (within 15 hours). 

Adults were captured in boxes shortly after hatching was complete (see 

Stutchbury and Robertson 1986).  Unmarked adults were banded (using standard USFWS 

aluminium bands), sexed by the presence of a brood patch (female) or cloacal 

protuberance (male), and wing cord (nearest 0.1 cm, using a wing ruler), tarsus (nearest 
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0.01 mm, using dial calipers) and mass (nearest 1 g, using 100 g Pesola spring scale) 

were recorded.    

Disturbing nestlings near the time of fledging (ranges from 15 to 22 days after 

hatch) can result in premature departure (Robertson et al. 1992), so banding and 

measuring (same as adults) occurred when the oldest nestling in each brood was 12 days 

old.  Nest boxes were checked 20 days after hatch to determine how many nestlings had 

successfully fledged if no evidence of predation was present (e.g., disturbed nest material, 

blood, feathers, or dead nestlings).  When no nestlings were present on day 20, it was 

assumed they had fledged; when nestlings were present, nests were checked every 3 days 

until fate was determined.   

 

3.3.1. Statistical analysis 

I tested for effects of nest box heating on clutch initiation date, laying rate, clutch size, 

total clutch mass, total brood mass (when the oldest nestling was 12 days old) as well as 

number of young fledged.  Variation in clutch initiation date and clutch size due to 

treatment was analyzed using a G-test (PROC FREQ, SAS Institute Inc. 2001).  I tested 

for effects of treatment on laying rate, total clutch mass and number of young fledged, 

accounting for possible effects of clutch initiation date and clutch size (laying rate only); 

Analysis of Variance (ANOVA) included interactions between treatment and clutch 

initiation date, and clutch initiation date and clutch size (Zar 1984, PROC GLM, SAS 

Institute Inc. 2001).  I also evaluated differences in laying rate, clutch mass, total brood 

mass and number of young fledged between treatments using Multivariate Analysis of 

Variance (MANOVA; PROC GLM, SAS Institute Inc. 2001).   
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 Analysis was restricted to those nests that were initiated during the heating 

experiment (i.e., did not include any clutches that were initiated after 29 May).  Means 

and standard errors (+1 SE) are presented throughout unless indicated otherwise. 

 

3.3 RESULTS 

 

3.3.1. Experimental heating 

Experimental heating began on 12 May; boxes were heated for 12 - 19 nights before 

laying started.  During the heating period, swallows initiated 24 clutches in H1, 23 in H3, 

9 in EC and 21 in control boxes.  

 Mean nightly (2200 - 0700) temperature recordings from the box side and nest 

bottom were significantly correlated in control (r2 = 0.78, P = 0.003, n = 10) and EC (r2 = 

0.92, P < 0.001, n = 11) boxes.  In heated boxes, mean nightly temperatures varied more 

between the two thermister locations (r2 = 0.41, P = 0.41, n = 6); overall, nest bottoms 

(13.3 + 7.1 SD oC, n = 11) were slightly warmer than sides (12.5 + 4.6 SD oC, n = 6) but 

thermister location was not a significant predictor (F = 0.07, P = 0.80, n = 18).  Since 

females often removed side thermisters from their original location during the night, I 

only used nest bottom temperatures in subsequent analysis.   

 Nest box temperature deviation from average nightly (2200 – 0700) Ta (average 

5-minute temperature from two locations within study site) was calculated by subtracting 

mean Ta from mean nest box temperature (average 5-minute temperature by treatment).  

Heated nest box temperatures ranged from 5.3 to 20.4o C, control from 3.3 to 16.3 oC, and 

EC from 2.0 to 13.6 oC above ambient air temperature.  Mean nightly nest temperature 
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was significantly higher than ambient temperature in heated nests (6.1 + 0.8 oC) when 

compared to control (1.7 + 0.5 oC) and EC (0.5 + 0.3 oC, Tukey’s test, P = 0.05, see 

Figure 3.1 for an example). 

 

3.3.2. Nest box occupancy 

Approximately half of the nest boxes were occupied by a female over-night during the 

pre-laying period in 2002 (42%, 22/53, non-treatment year) and 2003 (48%, 11/23, 

heating experiment year).  In 2002, 72.7% (16/22) of females were recaptured post-hatch 

in the same box, 22.7% (5/22) were recaptured in a different box, and 4.5% (1/22) were 

not recaptured later in the season.  Similar results were found for 2003; 63.6% (7/11) 

were recaptured in the same box, 18.2% (2/11) were recaptured in a different box, and 

18.2% (2/11) were not recaptured.  Raw recapture rate was not related by year (Fisher’s 

exact, P = 0.69).   

 In 2003, probability of recapture was weakly related to treatment group (Fisher’s 

exact, P = 0.06); two of 11 females initially in heated boxes were recaptured in a different 

box, and two others were not recaptured later in the season.  Pre-laying occupancy of 

boxes in 2003 did not differ between the four treatments (Fisher’s exact, P = 0.68).   

 

3.3.3. Clutch initiation date 

A total of 101 boxes were available to swallows during the experiment; 82 females 

initiated nests during the heating experiment in all four groups.  Five clutches were 

excluded from analysis due to eggs lost to predators (3/5), abandonment (1/5), or 

evidence of two or more females laying in the same box (1/5, see Quinny 1983).  Of 

these five clutches, 3 were in heated boxes and two were in control.  Since heating  
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Figure 3.1  An example of mean hourly night temperatures (oC + SE; recorded in boxes 
during 16 – 17 May 2003) for experimentally heated (open circle, n = 2 boxes), 
equipment control (open square, n = 1 box), and control (closed square, n = 2 boxes) Tree 
Swallow (Tachycineta bicolor) nests on the St. Denis National Wildlife Area, Canada.   
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treatment (H1 & H3) did not differ prior to laying, heated nest boxes were combined for 

clutch initiation date analysis.   

 Of the available boxes (n=101), slightly more clutches were initiated in heated boxes 

(79.7 %, 47/59) than unheated (control and EC; 71.4%, 30/42), but this was not 

significant (Chi-square, χ2 = 0.92, P = 0.33, n = 101).  There was no significant difference 

between number of nests initiated in control (77.8 %, 21/27), H1 (82.8 %, 24 /29), H3 

(76.7 %, 23/29) and EC boxes (60.0 %, 9/15; Chi-square, χ2 = 2.90, P = 0.41, n = 101). 

Mean clutch initiation date for both heated (n = 47) and EC (n = 9) boxes was 27 May 

(range 23 to 29 May, 25 to 29 May, respectively).  Control boxes (n = 21) had nests 

initiated on average one day earlier (26 May, range 24 to 29 May).  Clutch initiation date 

was not advanced by nest box heating (F 2, 74 = 1.45, P = 0.24) and initiation dates did not 

differ among the treatments (Tukey’s, P > 0.05).  Nest initiation for all treatments 

spanned a 6 day period; therefore, differences in variance of clutch initiation date were 

not evaluated.         

 

3.3.4. Laying interruptions and rate 

Ten laying interruptions occurred in nests that were initiated during the heating period 

(i.e., clutch was initiated before heating stopped).  Duration of laying interruptions was 

one (n = 7) or two days (n = 3).  One female had two, one-day laying interruptions.  Half 

of the laying interruptions occurred on the night of 28 May (5/10), and all occurred 

between 27 and 31 May.  Laying interruptions occurred in 12.5 % (3/24) of H1, 13.0 % 

(3/23) of H3, 11.1 % (1/9) of EC and 14.3 % (3/21) of control boxes.  Of heated boxes, 

85.7 % (6/7) of interruptions occurred after heating had finished (e.g., in H3 interruptions 
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occurred after egg 3 was laid).  The interruptions that occurred during nest box heating 

lasted for two nights (29 – 30 May).   Laying rate was not associated with treatment (F 13, 

52 = 0.16, P = 0.92), after controlling for clutch initiation date and clutch size.   

 

3.3.4. Clutch size and egg mass 

Clutch size varied from 3 to 8 eggs.  Due to small sample size, clutches of 3 and 4, and 7 

and 8 were pooled for analysis.  Average clutch size for each of the four treatments was 

6, and was not affected by treatment group (G-test, G1 = 6.30, P = 0.71, df = 9, Table 

3.1).  Fresh egg mass ranged from 1.18 to 2.30 g (n = 445).  Accounting for variation in 

clutch initiation date, total clutch mass did not vary with treatment (F 4, 62 = 0.16, P = 

0.92, Figure 3.2).  In heated nests, duration of box heating (12 to 16 days in H1, 13 to 19 

days in H3), had no effect on total clutch mass (F 3, 38 = 1.13, P = 0.30).   

 

3.3.5. Nestling mass and fledging success 

Hatching was asynchronous in boxes with all four treatments.  Mean hatching time for 

control (n = 14) and EC (n = 7) was equal (1.3 + 0.2 days).  Nests heated until after the 

3rd egg was laid took slightly longer to hatch; mean hatch time for H1 nests was 1.3 days 

(+ 0.2, n = 18 clutches) and for H3 nests was 1.7 days (+ 0.2, n = 18 clutches), but 

hatching duration was not associated with treatment (F 3, 53 = 1.28, P = 0.29).  I found a 

positive relationship between fresh egg mass and nestling mass at hatch in unheated 

(linear regression, r2 = 0.85, P = 0.03, n = 5), and heated (r2 = 0.65, P = 0.001, n = 13) 

nests.  Total clutch nestling mass when oldest nestling in box was 12 days when nestling 

age varied from 10 to 
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Table 3.1  Average Tree Swallow (Tachycineta bicolor) clutch size in heated to first egg, 
heated to third egg, equipment control, and control nest boxes on the St. Denis National 
Wildlife Area, Canada, 2003.   
 

  Clutch Size 

Treatment n Mean (mode) Standard Error  Range 

Heat to 1st egg 24 6.0 (6.0) 0.2  3 - 8 

Heat to 3rd egg 23 6.0 (6.0) 0.1 4 - 7 

Equipment Control 9 6.0 (6.0) 0.3 3 - 8 

Control 21 6.0 (6.0) 0.2 5 - 7 
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Figure 3.2  Mean fresh egg mass (+ 95% confidence intervals) in Tree Swallow 
(Tachycineta bicolor) clutches of various sizes by treatment; control (closed circle), 
equipment control (closed square), heated to first egg (open circle), and heated to third 
egg (open square).  Clutches laid on the St. Denis National Wildlife Area, Canada, 2003. 
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 12 days old at time of banding) in successful boxes was 114.1 g (+ 5, n = 16) for control, 

114.5 g (+ 7.3, n = 18) for H1 boxes, 111.7 g (+ 5.6, n = 19) for H3 boxes, and 114.3 g (+ 

4, n = 5) for EC.  Total brood mass in each successful box was not significantly related to 

treatment, regardless of clutch initiation date and clutch size (F 5, 52 = 0.15, P = 0.93).  

Duration of nest heating, accounting for clutch initiation date, did not affect total clutch 

nestling mass at banding in heated boxes (F 3, 37 = 0.35, P = 0.56).  Fledging success 

(number of nestlings fledged/number of eggs laid per box) was not related to treatment, 

controlling for clutch initiation date and clutch size (F 13, 52 = 0.29, P = 0.83).  Mean 

fledging success for heated nest boxes was 0.74 + 0.07 fledglings (H1) and 0.79 + 0.06 

fledglings (H3), and for unheated was 0.75 + 0.09 fledglings (control) and 0.71 + 0.11 

fledglings (EC).   

Similarly, results from the MANOVA analysis show that females nesting in 

warmed nests (H1 and H3 boxes) had the same laying rate (fewer laying interruptions), 

the same total clutch mass, total brood mass, and fledging success compared to females 

who nested in either control or EC boxes (MANOVA, Wilks’ Lambda =  0.91, P = 0.94). 

 

3.4  DISCUSSION 

 

Warming boxes during the pre-laying period created a more consistent and warmer nest 

environment.  I predicted females would redirect energy saved by staying over-night in 

heated boxes to advance laying date, increase clutch size, egg mass or take fewer laying 

interruptions.  However, nest box heating did not advance laying date of swallows, had 
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no observable effect on clutch size (Table 3.1) or mean fresh egg mass (Figure 3.2).  

Laying rates for females exposed to the four different treatments did not differ.   

Swallows nested successfully in all four treatment boxes, with more nests initiated 

in control, H1 and H3 when compared to EC nests.  This difference was not significant 

but may suggest a possible disturbance effect in these boxes that could have been 

mediated in the other treatment boxes by heating.  A larger sample of EC nest would be 

needed to more fully examine this.   

Nests heated until the laying of the 3rd egg took only slightly longer to hatch (i.e., 

were more asynchronous).  Egg(s) in heated boxes were exposed to increased over-night 

temperatures prior to the onset of incubation which usually begins on the day the 

penultimate egg is laid (Robertson et al. 1992).  This increased over-night temperature 

could cause egg development to begin prior to female incubation or it may have caused 

some females to begin incubation earlier.  Ardia et al. (2006) found that females were 

more likely to begin incubating prior to clutch completion when temperatures were >26 

oC and that clutches experiencing early incubation coupled with warmer temperatures 

were more likely to hatch asynchronously (+ 24 hours).  Temperatures recorded in heated 

nests did exceed 26 oC during the experiment; however, since temperature was not 

recorded in each box on each night during the experiment, I could not determine if this 

was a factor.   

During the study period, 8.2% (10/82) of breeding females had a laying 

interruption.  Laying rate is not reported in many studies, however, swallows have been 

reported to interrupt laying up to 7 days (without egg viability loss; see Robertson et al. 

1992).  The laying rate of swallows’ I recorded is lower than that of Blue Tits (20 – 40 %; 
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Nilsson and Svensson 1993, Yom-Tov and Wright 1993) and White-Tailed Ptarmigan 

(Lagopus leucurus), but similar to that found for Willow Ptarmigan (L. lagopus; Wiebe 

and Martin 1995).  Half of all interruptions occurred on the same night (28 May), 

potentially meaning an effect of weather rather than individual females.  Laying 

interruptions in Blue Tits correlated with low nightime temperature five days before the 

laying interruption occurred; however, when minimum temperature at night was warmer 

than 6 oC no interruptions occurred (Yom-Tov and Wright 1993).  Wiebe and Martin 

(1995) found cooler temperatures and snowfall was a factor in decreased laying rates of 

white-tailed and willow Ptarmigan.  Nilsson and Svensson (1999) found that female Blue 

Tits had fewer laying interruptions when they were supplied experimentally with extra 

food. 

Heating of nest boxes used by swallows and other species modifies some breeding 

variables (Yom-Tov and Wright 1993, Bryan and Bryant 1999, Dawson et al. 2005b).  

Heating nest boxes increased the laying rate of Blue Tits (heated during the laying period, 

Yom-Tov and Wright 1993), the incubation consistency of Great Tits (heated during 

incubation period, Bryan and Bryant 1999) and the survival of swallow nestlings (heated 

during the nestling period, Dawson et al. 2005b).  Heating was not conducted during the 

incubation or nestling period in this study.  Yom-Tov and Wright (1993) found Blue Tits 

nesting in boxes heated during the laying period had fewer laying interruptions.  The 

different responses of tits compared to the swallows may be due to different life history 

strategies.  Blue Tits, like swallows, are cavity nesters with females building the nest, 

both sexes feed young, and rarely having two broods per season (Harrap and Quinn 1995, 

Snow and Perrins 1998).  However, Blue Tits are non-migratory where these studies were 
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conducted, have a more varied diet which includes insects but also spiders, seeds, nectar, 

and nuts and the males feed the females during laying and incubation (Harrap and Quinn 

1995, Snow and Perrins 1998).  These differences may allow tits to react to energy saving 

events.  

Bryan and Bryant (1999) estimated that heating nest boxes over-night by an average 

of 6o C saved female Blue Tits the equivalent of 35% of an egg in energetic terms.  When 

compared to similar-sized birds that either are ground-foraging insectivores, picivores, or 

flycatchers, aerial foragers (hirundines) use 16 to 38% more energy during the nestling 

period (Williams 1988), and swallows have a higher field metabolic rate than Savannah 

Sparrows (Passerculus sandwichensis), a ground forager, even when sparrows were 

feeding one more nestling (Williams 1987, Williams 1988).  If these results are indicative 

of energy use of pre-nesting and laying females, then swallows may have used any saved 

energy from the heated nest boxes to increase foraging time.  

There is evidence that increasing spring temperatures may create a mismatch in 

timing of egg laying relative to food availability for nestlings, resulting in later-laying 

females producing fewer fledglings due to low food quality and quantity during the early 

stages of nestling growth (i.e., in the first 2 weeks post-hatching; Visser et al. 1998, Both 

et al. 2006).  In order to test how a timing mismatch between nestling-rearing and food 

supply would affect swallow nestlings, the reproductive success of females with 

advanced laying dates would be compared to those in control boxes, accounting for 

variation in aerial insect abundance.  The mismatch hypothesis predicts that nestling 

growth and survival will be poorer in experimentally advanced nests relative to controls 

during near normal and cooler spring weather (Visser et al. 1998).  I was unable to test 
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predictions of the mismatch hypothesis and examine the effects of advancement of laying 

on female productivity as there was no difference in timing of breeding between 

treatments.  

 There are several explanations for why the timing of breeding and breeding 

performance of female swallows did not differ from those using control boxes.  

Explanations may include insufficient heating in experimental boxes, low over-night nest 

box occupancy, use of other cues to determine when to initiate, use of ‘saved’ energy on 

variables not measured such as nest defence, or increased foraging.    

 The nest box heating systems warmed boxes over-night with mean over-night nest 

box temperatures of 6.1 oC (+ 0.8) above Ta.  This amount of warming above Ta is 

similar to other studies (6 oC, Yom-Tov and Wright 1993; 6.15 + 0.92 oC, Bryan and 

Bryant 1999; 5.1 + 0.81 oC laboratory control conditions, Dawson et al. 2005b).  These 

studies reported increases in laying rate (Yom-Tov and Wright 1993), incubation 

consistency (Bryan and Bryant 1999) and enhanced survival, larger nestlings (Dawson et 

al. 2005b).  Assuming that nest bottom temperature recordings are a reasonable index of 

box air temperature, then the heating equipment not only heated nest bottoms, but also 

increased the air temperature within heated boxes.  The heating system performance was 

variable as in the other studies (Yom-Tov and Wright 1993, Bryan and Bryant 1999, 

Dawson et al. 2005b).  Given the similar temperatures and consistency, it is reasonable to 

assume that the nest boxes in this study were heated sufficiently.  However, swallows 

experience a wide variety of weather conditions during the pre-laying and laying period 

(Hussell 2003, Winkler et al. 2002, Chapter 2) and a increase of 6 oC over-night may be 

insufficient to alter investment in the clutch.  Swallows nesting at Long Point Bird 
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Observatory, Ontario, Canada, experience pre-laying temperatures which vary by up to 

10 oC between four sites and 1969 - 2001 median clutch initiation date was best predicted 

by maximum daily temperature (Hussell 2003), not over-night lows.   

 Female over-night nest attendance may have also reduced their exposure to increased 

roosting temperatures.  Over-night nest box occupancy did not differ between years 

(2002 and 2003) or between the four treatments (2003), suggesting that swallows were 

not choosing to roost in heated or unheated boxes.  Since over-night nest occupancy 

checks occurred only once, it is unknown for how much time and how many nights 

females spent in boxes during the over-night period.  Therefore, I could not determine 

with certainty if females were exposed to sufficient heating to allow them to advance 

their clutch initiation, since it is unknown how many nights prior to laying each female 

spent in heated boxes, the nest temperature they experienced and the length of time spent 

in a box each night.  Yom-Tov and Wright (1999) did not report nest attendance rates for 

laying Blue Tits in heated boxes; however Great Tits incubating in heated nest boxes 

increased their incubation period by an average of 55 minutes a day compared to 

unheated control incubating females (Bryan and Byrant 1999).  Recent results show that 

pre-nesting female swallows may roost at great distances from their nest box (Dunn and 

Whittingham 2005, Stapleton and Robertson 2006).  Dunn and Whittingham (2005) 

found that six radio-marked pre-laying female swallows roosted > 2 km away from their 

nest box.  Similarly, Stapleton and Robertson (2006) found that four radio-marked pre-

laying females roosted at locations that ranged from 0 m to > 2300 m from nest boxes.  

Both studies reported a large amount of individual variation.  Females did roost in their 

nest box (Stapleton and Robertson 2006) and if they roosted away from their nest box, 
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they often returned to them early in the morning (Dunn and Whittingham 2005).  

However, duration of time spent in their box during the morning was not reported (Dunn 

and Whittingham 2005).  The results from both studies suggest that females roost at 

locations other than their nest box during the pre-laying period; this is consistent with the 

observation that swallows in my study did not always spend nights in the boxes and may 

explain the lack of an effect of over-night heating during the pre-laying period.   

Winkler et al. (2002) suggested that changes in temperature affect later laying 

females, allowing them to lay earlier with increased clutch size but that early laying 

females do not change laying date or clutch size (shown by a decreased variation in warm 

years).  Therefore, it is possible that the early nesting females in heated boxes could not 

advance their initiation date.  This may be due to the use of photoperiod as a dominant 

cue (Rowan 1962), with other cues being used to ‘fine tune’ the timing of egg laying 

(Wingfield 1980).   

In theory, female swallows should not be sensitive to the type of energy supplied or 

removed (e.g., changes in temperature or food supply), but should respond to the overall 

amount.  If swallows did experience energy saving in heated nest boxes they may have 

used this energy on variables not measured, such as foraging activity, nest defence, and / 

or other body maintenance activities.   

 

 

3.5  CONCLUSIONS 

The inability of heating to advance laying date may be due to insufficient heating of 

boxes or low over-night nest box use by pre-laying females.  Swallows may also be 
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responding to other constraints or cues (such as food availability) to determine when to 

initiate laying (Hussell 2003, Nooker et al. 2005).  If timing of nesting coincides with 

optimum conditions for raising nestlings, as Lack (1964) suggested, then swallows could 

be using environmental cues to optimize their reproductive output.  However, swallows 

experience variation in environmental conditions between years and may depend on short 

term cues, such as temperature and food availability just prior to breeding, to determine 

when to lay (Nooker et al. 2005; see also Chapter 2: Discussion).  Hussell (2003) found 

that swallow clutch initiation date correlated with prelaying temperature, but noted that 

temperature may only be a proximate cause of this relationship. 

 
 

 

69 



 

 

CHAPTER 4: SYNTHESIS AND RECOMENDATIONS 

 
 

4.1 CLIMATE VARIABILITY, TIMING OF NESTING AND BRESSDING SUCCESS 

 
Migratory birds may be sensitive to differences in local and regional climate as 

breeding and wintering areas may experience different climatic conditions.  Some species 

may be incapable of alter timing of migration or laying dates and experience a mismatch 

between timing of nesting and peak insect availability for their nestlings.  I investigated 

the influence of local conditions and regional climate indices on breeding performance of 

an insectivorous migrant songbird and tried to examine effects of a mismatch between the 

timing of breeding and food availability. 

I found that annual variation in median clutch initiation date was best described 

by temperatures during the pre-laying period (early May).  Larger clutches were laid in 

years with higher pond water levels (possibly an indication of increased insect 

availability) and under La Niña conditions.  Fledging success tended to increase in years 

with higher temperatures during the fledging period (mid June); however, it was not 

substantially influenced by any explanatory variable.  Individual variation in clutch 

initiation date was correlated with both local environmental variables and regional 

climate indices.  Earlier nesting generally occurred in years when the breeding area 

experienced warmer early spring temperatures (warmer local May temperatures and more 

negative SOI values) and increased moisture (increased wetland water depth).  Later 

initiation dates in years with negative NAOI values may be due to the cool dry conditions 
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in the wintering areas, which may result in delayed timing of migration.  If this occurs, 

then birds may arrive at breeding areas relatively late, and even with favourable 

conditions they may be unable to initiate clutches early relative to other years.  Also, 

clutches were initiated earlier by older females and during springs with greater aerial 

insect abundance. 

I compared timing of nesting, laying sequence, clutch size, egg mass and fledging 

success of birds that experienced experimentally heated boxes in the pre-laying period to 

those females in unheated control boxes.  However, nest box heating failed to advance 

laying dates; therefore I was could not directly examine the predictions of the mismatch 

hypothesis.  Although box heating increased nest temperatures an average of 6.1 oC (+ 

0.8 SE) over controls, no increases in clutch size, egg mass or fledging success were 

detected between treatment and control nests.  Females may not have spent sufficient 

time in experimentally heated boxes to alleviate energetic constraints of egg production.  

Alternatively, energy savings associated with box use may have been insufficient to 

overcome the influence of environmental conditions that influence energy expenditure 

and food availability for breeding swallows.  My results suggest that both local and 

regional climate variation affect swallow clutch initiation dates, likely via effects on food 

supply.   

 

4.2 IMPLICATIONS 

 

It is clear that the effects of variable weather on the reproductive timing and performance 

of swallows cannot be easily explained.  However, the fact that timing of clutch initiation 
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correlates with changing local and regional weather suggests that climate warming may 

lead to earlier nesting of swallows and higher fledging success (Winkler and Allen 1991, 

Stutchbury and Robertson 1998, McCarty and Winkler 1999).  As discussed in Chapter 3, 

swallows may be unable to shift their laying date due to limited phenotypic plasticity, 

especially if arrival on the breeding area is constrained by migration schedules and clutch 

initiation date is partly controlled by cues unchanged by varying climate (e.g., 

photoperiod) and/or has a genetic basis.  If increasing spring temperatures lead to 

advances in aerial insect peak abundance, swallows, like some other species, may be 

unable to shift migration and breeding schedules and that find rapid climate change leads 

to population declines (Visser et al. 1998, Both et al. 2006).  

Timing of nesting is an important variable in the context of avian reproductive 

success; breeding late in the season may incur high costs in terms of lower reproductive 

output, and decreased amount of time to accumulate energy reserves for molt and 

migration (DeSteven 1980), while early initiation typically increases annual fecundity 

(Bollmann et al. 1997).  There is a relationship between climate variation and breeding 

parameters in other migratory aerial insectivores (Nott et al. 2002, Sillett et al. 2002, 

Mazerolle et al. 2005, Weatherhead 2005).  Generally, local increases in temperature are 

correlated with advances in clutch initiation dates (Brown et al. 1999, Crick and Sparks 

1999, Dunn and Winkler 1999, Hussell 2003), egg mass (Lessells et al. 2002), clutch size 

(Creswell and McCleery 2003), nestling growth rates (McCarty and Winkler 1999, 

McCarty 2001), and nestling survival (Tyler and Green 2004, Bolger et al. 2005).  

However, the relationship with regional climate indices is not so straight forward.  One 

current climate model predicts that there will be increases in the El Niño phase of the 
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Southern Oscillation (Timmermann et al. 1999).  If this is correct, then swallows may 

benefit with earlier clutch initiation dates but with reduced clutch sizes.  The El Niño 

phase is positively correlated with improvements in breeding success in some species 

(Nott et al. 2002) but not in others (Sillett et al. 2000, Mazerolle et al. 2005); this may be 

due to different life history traits of the species or different climate variables may 

influence species differently.  This could potentially create a trade-off between 

reproductive success and survival.  For example, in swallows, an increased frequency of 

El Niño could result in earlier laying, leading to a greater number of successfully fledged 

young (Winkler and Allen 1991, Stutchbury and Robertson 1998, McCarty and Winkler 

1999) which could in turn have higher recruitment (Shutler et al. 2006).  However, these 

adults and nestlings could have decreased survival rates in the winter due to the wet cold 

conditions in the southern U.S. (i.e., winter El Niño conditions).  

Climate indices have been linked to changes in stream flow (Coulibaly and Burn 

2005) and ice break-up dates (Bonsal et al. 2006).  Increases in clutch size and fledging 

success are negatively correlated with the timing of sea ice break-up in Common Eiders 

(Somateria mollissima, Lehikoinen et al. 2006) but has detrimental effects on available 

food resources for fulmars and puffins (Thompson and Ollason 2001, Gjerdrun et al. 

2003).  Changes in climate variables will influence many different taxa from advancing 

plant growing seasons and flowering dates to earlier hibernation termination dates and 

altered sex-ratios in mammals (see McCarty 2001 for review).  Martin and Wiebe (2004) 

found delayed snow melt related to later laid clutches in alpine ptarmigan.  This variation 

in influence complicates scientists’ abilities to make long-term predictions about the 

implications of changes in such indices. 
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4.3 RECOMMENDATIONS 

Recently, climate indices have been used to describe the effects of large-scale 

climate variability on many animals (birds, Nott et al. 2002, Sillett et al. 2002, Mazerolle 

et al. 2005, Weatherhead 2005; amphibians, Beebee 1995; red deer, Post et al. 1997).  

Climate indices, by definition, reduce complex space and time variability into a simpler 

unit (Stenseth et al. 2003).  They not only correlate with temperature and precipitation, 

but have been linked to storm frequency and intensity (Hurrell and Van Loon 1997, 

Wang et al. 2006), and direction and intensity of wind (Hurrell et al. 2001, Sheridan 

2003).  Also, they allow for models of future climatic conditions to be developed which 

can be used to predict how animals may react to different climate scenarios.  However, 

relationships between these indices and local weather vary geographically.  Both 

Weatherhead (2005) and I found that NAOI correlated negatively with local 

temperatures, contradicting other reported relationships between the index and local 

conditions (Thompson and Wallace 2001, Huang et al. 2006).  Given the contradictory 

results, other studies should exercise caution when using climate indices and, where 

possible, should use local data to better understand how these climate indices relate to 

local weather events and patterns.  The need to use both climate indices and local weather 

conditions may help to clarify the complicated relationships between climate fluctuations 

and ecological patterns.  

I found relationships between environmental variables and nesting of swallows; 

this is a relatively short time period in their annual life cycle.  Using long-term data sets 
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that include information about entire life cycles and cover a variety of geographic regions 

will provide a greater understanding of the relationships between climate indices, 

ecological effects and local weather.  Also, expanding our focus beyond local conditions 

and regional variables to include both carryover effects on individuals (e.g., previous 

years reproductive success, previous year / season body condition) and the area (e.g., 

previous year’s precipitation, wetland condition, insect abundance) where they are 

studied will enhance our understanding of climatic effects on avian life cycles.  

Since swallows are a relatively easily studied species, using them as model 

organisms will help us to understand how climate change may affect other migratory 

insectivorous passerines.  Understanding how large scale climate indices and local 

weather events affect migratory birds on their wintering grounds, during migration and 

on their breeding grounds, will lead to further understanding about how changes in 

climate impact all populations.   
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