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ABSTRACT 

Quantitative computed tomography (QCT) based finite element modeling (FE) has potential to 

clarify the role of subchondral bone stiffness in osteoarthritis. The limited spatial resolution of 

clinical CT systems, however, results in partial volume (PV) artifacts and low contrast between 

the cortical and trabecular bone, which adversely affect the accuracy of QCT-FE models. Using 

different cortical modeling and partial volume correction algorithms, the overall aim of this 

research was to improve the accuracy of QCT-FE predictions of stiffness at the proximal tibial 

subchondral surface. 

For Study #1, QCT-FE models of the human proximal tibia were developed by (1) separate 

modeling of cortical and trabecular bone (SM), and (2) continuum models (CM). QCT-FE models 

with SM and CM explained 76%-81% of the experimental stiffness variance with error ranging 

between 11.2% and 20.2%. SM did not offer any improvement relative to CM. The segmented 

cortical region indicated densities below the range reported for cortical bone, suggesting that 

cortical voxels were corrupted by PV artifacts. For Study #2, we corrected PV layers at the cortical 

bone using four different methods including: (1) Image Deblurring of all of the proximal tibia 

(IDA); (2) Image Deblurring of the cortical region (IDC); (3) Image Remapping (IR); and (4) 

Voxel Exclusion (VE). IDA resulted in low predictive accuracy with R2=50% and error of 76.4%. 

IDC explained 70% of the measured stiffness variance with 23.3% error. The IR approach resulted 

in an R2 of 81% with 10.6% error. VE resulted in the highest predictive accuracy with R2=84%, 

and 9.8% error. For Study #3, we investigated whether PV effects could be addressed by mapping 

bone’s elastic modulus (E) to mesh Gaussian points. Corresponding FE models using the Gauss-

point method converged with larger elements when compared to the conventional method which 

assigned a single elastic modulus to each element (constant-E). The error at the converged mesh 

was similar for constant-E and Gauss-point; though, the Gauss-point method indicated this error 

with larger elements and less computation time (30 min vs 180 min). 

This research indicated that separate modeling of cortical and trabecular bone did not improve 

predictions of stiffness at the subchondral surface. However, this research did indicate that PV 

correction has potential to improve QCT-FE models of subchondral bone. These models may help 

to clarify the role of subchondral bone stiffness in knee OA pathogenesis with living people. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Overview 

Osteoarthritis (OA) is a debilitating joint disease affecting 13 percent of Canadians, roughly half 

exhibiting knee OA [1]. The direct medical cost of arthritis and joint pain in the United States was 

estimated to be US$580.9 billion in 2011 [2]. The disease is characterized by non-uniform and 

progressive loss of articular cartilage in areas of increased load [3]. However, OA cannot be solely 

treated as a disease of cartilage as it affects other components of the joint such as ligaments, 

tendons and underlying subchondral bone [3, 4]. Although there is no clear treatment for OA, 

understanding the role of bone in disease progression can help us to better understand the 

etiopathogenesis of OA and possibly in reducing joint pain. 

Bone undergoes various alterations during the course of OA, both morphologically and 

mechanically. Sclerosis of subchondral bone (e.g., increased thickness and density), the formation 

of marginal osteophytes and subchondral cysts, as well as micro-crack formation in the bone tissue 

are dominant changes to the subchondral bone during OA progression [5, 6]. Increased thickness 

and stiffness of the subchondral bone leads to more energy being transferred through cartilage 

which would elevate internal cartilage stresses and expedite disease progression [7, 8]. Altered 

mechanical and morphological properties of the subchondral bone might also distort joint 

mechanics and cause pain [9]. Findings, however, are controversial, with some studies showing 

that OA lowers the stiffness at the subchondral bone [10] while others believe there is no 

significant difference in the mechanical properties of the OA and healthy bone [11]. These findings 

are based on in-vitro cadaveric or animal studies, while in-vivo studies are required to be performed 

on living people to further validate proposed mechanisms with OA.  

Non-invasive tools such as subject-specific finite element (FE) models have potential to be 

used clinically on living people to measure altered subchondral bone stiffness during disease 

progression. Quantitative computed tomography (QCT) is commonly used to provide information 

for subject-specific FE models. It is well-known that the reconstructed volume from QCT images 

provides reasonably accurate geometrical information for FE models [12-14]. CT linear 

attenuation coefficient (Hounsfield units, HU) can also be calibrated to bone mineral density 
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(BMD) using standard QCT phantoms and is linked to bone’s elastic modulus (E) via empirical 

density-modulus relationships known as E-BMD equations [15-21]. The approach by which FE 

models are constructed from QCT images is known as QCT-FE modeling. The predictive accuracy 

of QCT-FE models depends on accurate modeling of cortical and trabecular bone. A global cutoff 

value has been commonly used in the literature to detect the cortical and trabecular boundary [22-

27]. While a global threshold can separate cortical and trabecular tissue at the diaphysis and 

metaphysis, the approach fails at regions with a thin cortical shell where limited resolution of the 

CT image results in low contrast (i.e., low BMD difference) between the cortical and trabecular 

bone. Consequently, a small elastic modulus is often assigned at these regions, which can adversely 

affect the predictive accuracy of the QCT-FE model. Hence, it is necessary to develop an accurate 

framework for identifying and modeling cortical bone. 

Thin laminar structures such as cortical bone are not depicted accurately in clinical CT image 

because of the limited spatial resolution associated with clinical CT systems (0.33 mm to 0.5 mm 

voxel size). The limited resolution of the CT image results in partial volume (PV) artifacts leading 

to thickness overestimation and intensity underestimation [28, 29]. It has been shown that 

structures below 2.5 mm thickness are depicted entirely inaccurate in CT images [30] with errors 

exceeding 100% for sub-millimeter cortices [31]. The PV-affected bone appears as blurred edges 

in CT images and results in low contrast between the cortical and trabecular bone. As mentioned 

earlier, application of straightforward techniques such as a global threshold or half maximum 

height method (i.e., the 50% intensity across the cartilage and bone) [29, 32] are unreliable when 

the cortical thickness is low in relation to the imaging resolution. The application of semi-

automatic segmentation with manual correction and separate modeling of cortical and trabecular 

bone might better visualize the cortical bone but will not restore intensity information at the blurred 

image. The corrupted PV layer indicates intensities below the range reported for cortical bone [33]. 

Consequently, when developing an FE model, this will result in an E which is equivalent to soft-

tissue or low-density trabecular bone. Accordingly, methods are required to retrieve intensity 

information at the corrupted PV layer. This would make it possible to use straightforward tissue-

separation techniques (e.g., threshold-based methods) and would enhance QCT-FE models of 

laminar-shaped thin cortical structures. 

A primary step in QCT-FE modeling of long bones is to map elastic moduli at CT voxels on 

FE nodes and elements. This step is somewhat complicated and requires custom in-house codes. 
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The common approach with QCT-FE models is to assign a single elastic modulus to each element 

by integrating the elastic modulus field throughout tetrahedral or hexahedral elements [34]. Given 

the heterogeneity of bone tissue and large number of elements used to discretize bone geometry, 

assigning a single E for each element results in massive number of materials in the FE model which 

often makes FE solutions unattainable. Material binning is generally used to tackle this problem, 

where an elastic modulus is averaged over specific intervals. Binning results in another source of 

averaging within QCT-FE models which can adversely affect the predictive accuracy. A more 

efficient material assignment approach is required to account for spatial variation of elastic 

modulus over the element volume and eliminate the need for material binning.  

The overall aim of my thesis is to enhance modeling of thin cortical structures at the human 

proximal tibia and to identify the modeling approach which best predicts in-situ stiffness 

measurements at the subchondral surface. The improved model might help clinicians and 

orthopedic researchers better understand the role of subchondral bone in OA initiation and 

progression and tailor potential treatment strategies.  

1.2 Scope 

Chapter 2 highlights the anatomy of the knee joint, literature related to the osteoarthritic knee, and 

QCT-FE modeling of long bones. In Chapter 3, research questions are outlined and objectives are 

defined. Chapter 4 presents a novel method for modeling cortical bone via semi-automatic 

segmentation with manual correction and separate modeling approach (SM). The results of SM 

are then compared to continuum-based methods (CM), and the best cortical modeling approach is 

identified in terms of the highest explained variance and lowest error in relation to experimental 

in-situ local stiffness measurements. Chapter 5 applies and compares different PV correction 

algorithms for restoring intensity information at the PV layer and identifies the best method in 

relation to experimental in-situ local stiffness measurements. In Chapter 6, the variation of elastic 

modulus within elements are taken into account using advanced QCT-FE material mapping 

strategies. The convergence of QCT-FE models is assessed by determining the average percent 

difference in stiffness between different mesh sizes. The model accuracy is assessed in terms of 

highest explained variance and lowest error in relation to in-situ local stiffness measurements. 

Limitations of this research and potential future work are outlined in Chapter 7. 
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CHAPTER 2 

2  LITERATURE REVIEW 

2.1 Functional anatomy of the knee joint 

2.1.1 Knee joint 

An anatomical view of the knee joint is shown in Figure 2-1. The knee is the largest and most 

complex joint in the body, comprised of three bony parts, namely: proximal tibia, distal femur, and 

patella. The joint has two articulations: one between femur and tibia and the other between femur 

and patella. The tibiofemoral joint is the most important joint in terms of load transfer, transmitting 

loads as high as nine times (human) body weight [35]. The proximal tibia frequently indicates OA 

symptoms (described in 2.2.1), and is the bone of interest for this study. 

 

 

Figure 2-1. Functional anatomy of the knee joint. From Wikimedia Commons [36]. 

2.1.2 Articular cartilage 

Cartilage is a connective tissue in the body which covers joint surfaces of the proximal tibia, distal 

femur as well as the posterior patella at the knee. It is a poroviscoelastic composite material which 

reduces friction in the joint and prevents direct contact between articulating bones. Articular 
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cartilage is comprised of a dense extracellular matrix (ECM) including proteoglycans (responsible 

for bearing compressive forces) and highly specialized cells called chondrocytes. The matrix is 

reinforced predominantly by type II collagen fibers which are responsible for bearing tensile and 

shear loads [37]. Together, these components retain water within the matrix and enable the 

cartilage to maintain its unique mechanical properties.   

2.1.3 Subchondral bone 

The bone underlying cartilage consists of five distinct layers (Figure 2-2) including: calcified 

cartilage, which is distinguishable from the overlying articular cartilage by the tide-mark; 

subchondral cortical bone with thickness of 0.01-3.3 mm [38-40],  also known as the subchondral 

cortical endplate; subchondral trabecular bone, which is a spongy bone supporting the overlying 

subchondral cortical bone; and epiphyseal and metaphyseal trabecular bone which form the tibial 

epiphysis and metaphysis respectively. Mechanically, subchondral bone bends under dynamic 

impact loading and alongside the menisci helps in minimizing cartilage deflection and related 

internal stresses [41].  
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Figure 2-2. Sagittal CT image of the proximal tibia (a). Layers of the subchondral bone include 

subchondral cortical endplate, subchondral trabecular bone, epiphyseal and metaphyseal 

trabecular bone and the cortical shaft. Different layers of the cartilage-subchondral bone 

complex (b). Articular cartilage is distinguishable from the underlying calcified cartilage and 

subchondral bone by the tidemark. From Madry et al. [42] with permission from Springer.  

2.2 Osteoarthritis  

Osteoarthritis is a debilitating joint disease which affects both cartilage and subchondral bone. It 

is believed that the OA is the primary cause of pain and disability in the elderly [9, 43]. Clinically, 

the disease is characterized by several morphological alterations at the joint including joint 
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misalignment, tidemark advancement and associated cartilage thinning, altered subchondral bone 

thickness and stiffness, joint space narrowing and osteophytes formation [3, 4] (Figure 2-3). OA 

subchondral cortical and trabecular bone undergo severe structural and mechanical changes. There 

is increasing evidence that these alterations are associated with a change in bone turnover which 

results from the action of osteoblasts and osteoclasts continuously forming and removing bone [7, 

11]. OA subchondral cortical and trabecular bone indicate altered bone volume fraction, tissue 

density, BMD and degree of anisotropy as well as different microstructural changes when 

compared to healthy bone [10, 11, 43-46]. 

 

Figure 2-3. A schematic view of the osteoarthritic bone. Several morphological alterations are 

observed at the subchondral region. From Felson et al. [47]. Reproduced with permission from 

(scientific reference citation), Copyright Massachusetts Medical Society. 

2.2.1 Osteoarthritic bone  

To date, research on the etiology of OA has been primarily concentrated on articular cartilage 

deterioration. However, it is now evident that OA cannot be solely treated as a disease of cartilage 

as it affects other components of the joint such as subchondral cortical and trabecular bone [6, 7, 
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10, 48, 49]. Mechanical and microstructural alterations to bone, however, differ by the depth from 

the subchondral surface and the disease stage. While the OA subchondral endplate and 

subchondral trabecular bone indicate increased thickness, apparent density and bone volume 

fraction (bone volume divided by total specimen volume, BV/TV), epiphyseal bone located at a 

more distal region contains trabecula of lower density and thickness [10, 44]. The degree of 

mineralization at the bone tissue (bone mass divided by bone volume, BM/BV) is also affected by 

OA progression, resulting in hypo-mineralization (i.e., low mineralization) [5, 6]. The combined 

effect of these alterations often increases BMD (BMD = BM/TV = (BM/BV)(BV/TV)). BMD and 

microarchitectural parameters together have been shown to account for large variance in trabecular 

bone stiffness [50]. Hence, altered microarchitecture and BMD at the trabecular bone can 

eventually change bone stiffness at the subchondral surface. Overlying articular cartilage is a 

congruent material and its integrity is depended on mechanical properties of the subchondral bone. 

Increased stiffness and steep stiffness gradients at the subchondral bone can impose higher 

dynamic stresses on cartilage and expedite degeneration. 

2.2.2 OA pathogenesis 

The conventional research hypothesis regarding OA pathogenesis is that dynamic loading beyond 

normal physiological loads deteriorates chondrocytes and ECM at the cartilage. Prolonged loading 

is anticipated to further destroy cartilage, leading to complete cartilage loss and OA [51]. In this 

hypothesis, subchondral bone alterations are assumed to be secondary to OA. Conversely, more 

recent studies highlight the role of subchondral bone in OA progression. According to these 

theories, varied joint contact forces and load distribution at the subchondral surface in early OA 

alters bone turnover [3, 7, 8, 41]. Increased bone turnover is believed to be responsible for higher 

stiffness and thickness at the subchondral surface [7, 8]. The stiffened subchondral bone will be 

less able to deform, leading to the more energy being transferred through the cartilage. This may 

raise internal mechanical stresses at the cartilage and accelerate disease progression. The latter 

hypothesis, however, is based on ex-vivo animal studies and needs to be corroborated with in-vivo 

findings from living people.  
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2.3 Methods for assessing subchondral bone stiffness 

2.3.1 In-vitro methods 

 Mechanical testing 

The most common method to assess bone stiffness is mechanical testing. Excised cubic or 

cylindrical bone samples from the epiphyses or metaphysis are located between two platens in the 

material testing system to apply a tensile or compressive load [15-20, 52-54]. Uniaxial 

displacement is applied and read directly from the machine while the load cell measures the applied 

load. Stiffness is then calculated as the slope of the most linear region on the load-displacement 

curve. Stiffness measurement by mechanical testing, however, is not free from errors. In particular, 

the friction between platens and the specimen leads to increased shear stresses at the connective 

surface, which adversely affects measured bone stiffness. Also, reading the strain data from 

excised trabecular samples disconnected from the whole bone network indicate stiffness 

underestimation [21]. In addition, cutting and testing bone samples from the thin subchondral bone 

(thickness less than 5 mm [39]) is challenging and measured stiffness values from large trabecular 

samples do not represent net stiffness at the desired subchondral surface (the hallmark of OA).    

 Ultrasound  

Application of ultrasound waves to measure bone elastic properties is well known [55-58]. 

Anisotropic elastic properties of the cortical and trabecular bone can be measured by monitoring 

the wave velocity/time propagating in a particular direction within the bone specimen. Ultrasonic 

techniques have been successfully used to derive cortical and trabecular bone orthotropic constants 

and has been shown to have several advantages over conventional mechanical testing [55]. The 

method has been applied to cylindrical or parallelepiped specimens as small as 5 mm for cortical 

and 10 mm for trabecular bone [55]. This makes it possible to measure stiffness from samples 

excised from the subchondral endplate and to study OA subchondral bone alterations. Also, a 

single specimen could be used to derive anisotropic properties rather than cutting and testing 

various samples excised from different anatomical directions. Even though using ultrasound to 

measure elastic properties of the cortical bone is quite straightforward, the porous structure of the 

trabecular bone makes it challenging to capture waves traveling through its complex network. 

Waves are attenuated within the porous structure, and a proper frequency setting is required to 

obtain meaningful values for the elastic properties of the trabecular tissue [55, 57]. Another 
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inherent drawback with this approach is its dependence on excised samples. Excised samples do 

not accurately represent mechanical properties of the tissue within the whole bone owing to the 

disconnected trabecular structure.  

 In-situ macro indentation 

Stiffness measurements using compression tests and the ultrasound method are performed on 

excised bone samples from epiphyseal and metaphyseal regions located distally from the 

subchondral surface (greater than 5 mm) [15, 17, 54]. Hence, stiffness measurement with these 

methods do not represent actual stiffness at the subchondral surface which is most relevant to OA 

pathogenesis. In-situ macro indentation tests, on the other hand, can be directly performed at the 

subchondral surface to measure overall structural stiffness, which is more representative of the in-

vivo condition between the bone and overlying articular cartilage. Macro indentation has been used 

in literature to measure stiffness from different articulating surfaces including the proximal tibia 

[59-63].   

The destructive nature of these experiments prevents their application on living people. Hence, 

surrogate non-invasive tools are required to make in-vivo measurements from the subchondral 

bone in living people. In-vivo measurements might better elucidate the structural role of 

subchondral bone in initiation and progression of OA.    

2.3.2 In-vivo methods  

 Imaging 

Imaging techniques such as dual-energy X-ray absorptiometry (DXA) have been applied to 

investigate the relationship between imaged BMD and the severity of OA [64, 65]. More recently, 

measured volumetric BMD from computed tomography (CT) has been mapped on the joint surface 

via a depth-specific image processing tool (termed CT-TOMASD, computed tomography 

topographic mapping of subchondral density) [46]. As opposed to 2D techniques, the depth-

specific approach measures complex three dimensional (3D) BMD from critically relevant regions 

including subchondral cortical and trabecular bone. Nonlinear power-law regression models 

resulted in relatively strong correlations between in-situ stiffness measurements at the subchondral 

cortical endplate with depth-specific measures of BMD to a depth of 2.5 mm beneath the 

subchondral surface, with R2 between 65%-71%  depending on the disease stage [60].   
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The depth-specific method measures BMD directly beneath the indentation site and neglects 

the contribution of adjacent regions on structural stiffness of the subchondral bone. This is 

important as trabecular orientation with respect to the applied load has also been shown to affect 

measured stiffness which is not accounted by measured BMD [43, 66]. Hence, other non-invasive 

tools are required to account for the exact geometry and heterogeneous mechanical properties of 

bone tissue.   

2.4 Finite element (FE) modeling 

2.4.1 Overview 

The finite element (FE) method is a numerical approach used to calculate approximate solutions 

for differential equations. Physical processes can be formulated as boundary value problems using 

the system of differential equations alongside appropriate boundary and initial conditions. These 

equations are generally complex and cannot be solved analytically, with numerical methods 

needed to derive approximate solutions for desired field variables. FE analysis is a robust 

numerical method for obtaining such approximate solutions with reasonable accuracy. The 

principal step in FE modeling is to discretize the field of interest into small elements such that the 

solution in each segment is relatively traceable. The discretization procedure is known as meshing.  

In structural mechanics, in order to guarantee that the elastic body is in equilibrium the total 

potential energy needs to be minimized with respect to the field variable (usually displacement). 

In other words, the extrema of the total potential energy characterize the state of equilibrium of 

the system. Total potential energy is the sum of elastic energy stored in the deformed body and the 

energy induced on the system by applied external loads. Minimizing the total potential energy 

means taking its derivative with respect to the displacement field. The derivation step is 

straightforward and is omitted here, but it can be shown that it results in the following algebraic 

equation which is the basis of the FE formulation.  

𝐾𝑒𝑞𝑒 = 𝐹𝑒 

where 𝐾𝑒 is known as the element stiffness matrix, 𝑞𝑒 is nodal displacement and  𝐹𝑒 is the load 

vector respectively. The same formulation is repeated for all elements within the discretized 

domain. Assembling stiffness matrices and load vectors will result in the final algebraic equation 

for the elastic body. Calculating the element stiffness matrix requires solving integral equations. 
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There exists various numerical methods to solve complicated integrals, among which the Gauss 

integration method is most commonly used within different FE packages. Once the global matrix 

is assembled, the stress and strain field can be calculated from the displacement degrees of 

freedom. Reducing the mesh size (h-method) or increasing the order of shape functions (p-method) 

will lead to more accurate approximations in expense of higher computation time.  

FE analysis has been extensively used to investigate the mechanical response of biological 

tissues to external load. FE models can simulate the stress and strain field within the bone and are 

deemed as a potential clinical research tool (e.g., for assessing fracture risk, prosthetic design and 

to study bone adaption at the bone-implant interface [67-73]).  

2.4.2 Generic FE modeling 

Generic FE modeling of bone is constructed based on idealized geometry outlined from digitized 

control points in a QCT image or sketched estimated geometry using computer aided design 

(CAD) software. Homogenous material properties are often assigned to the whole model. 

Simplified heterogeneous models might also be constructed by partitioning the model into limited 

areas and/or volumes and assigning different material properties to each region. Generic FE 

models are relatively simple to implement and can be solved quickly, making them useful for 

parametric studies. Few studies have used this approach to simulate the stress and displacement 

state in the proximal tibia with response to tibiofemoral contact forces [61, 74]. Recently, Amini 

et al. [75] performed a parametric study to investigate OA-related mechanical and morphological 

alterations in different layers of the proximal tibia on overall stiffness of the subchondral bone. 

However, idealized geometry and simplified distribution of mechanical properties are inherent 

drawbacks associated with generic FE models. To address these limitations, more accurate subject-

specific FE models are required to account for the complex geometry and inter- and intra-subject 

variation of mechanical properties within the bone.  

2.4.3 QCT based finite element modeling 

The advent of 3D imaging modalities such as QCT and more advanced FE techniques has made it 

possible to closely represent bone of an individual patient. So-called “subject-specific FE 

modeling” provides surgeons with new data (e.g., stress/strain distribution) and help them better 

interpret data obtained from QCT images, for example for fracture risk analysis [71, 76-84] or 

checking implant micro-motions [85-87]. As opposed to generic models, subject-specific FE 

models employ an individual patient’s bone geometry and material properties as well as the 
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physiological loading condition, which make this approach a potential clinical research tool. The 

geometry of the model can be directly acquired from segmented 3D images of bone tissue. For 

material definition, BMD at image voxels are first converted to apparent density via densitometric 

conversion equations [20, 88-90], then E-BMD relationships from the literature are used to 

calculate the elastic modulus for individual CT voxels. Finally, material properties are mapped to 

the FE model using in-house programs. More sophisticated QCT-FE models with orthotropic 

material properties might also be constructed using fabric-elasticity equations or a direct 

mechanics approach, where orthotropic constants are derived using micro-FE models of trabecular 

structures and the theory of homogenization [10, 91-101].     

 Image acquisition 

An effective subject-specific FE model requires an accurate representation of bone geometry and 

mechanical properties. Clinical CT images with voxel size of 0.3-0.5 mm are the choice of interest 

to acquire this information. Most recent CT scanners are the helical type in which multi-row 

detectors register the x-ray attenuation of the beam emitted from the x-ray source. The x-ray source 

and the detector orbit simultaneously while the subject is translated in the longitudinal direction. 

Each detector records the “line integral” of the x-ray attenuation. The combined attenuation values 

from all detectors produce a projection plane at each rotation increment. The so-called sinogram 

image is formed from the projection planes produced after 180º rotation. The tomographic 

reconstruction is then used to construct the 3D image. The final image is the contrast map of 

different attenuation numbers known as grayscale values resulting from spatially variant material 

properties of the scanned object. Grayscale magnitudes are linearly scaled to Hounsfield (HU) 

units in which water has the value of 0 HU, and air has the value of -1000 HU. For subject specific 

FE modeling, HU values are then converted to BMD using a phantom with known BMD 

(discussed in 2.4.3.5). The change in CT protocols such as the type of scanner, tube voltage, tube 

current, integration time and image reconstruction algorithm will result in a statistically significant 

difference in grayscale values within the CT image, which can eventually alter assigned material 

properties to the FE model [20, 70, 89, 102, 103]. The reliability and repeatability of imaging 

protocols must be therefore ensured before constructing FE models. 

 Bone segmentation  

Accurate representation of the cortical and trabecular bone is essential in FE modeling of skeletal 

structures. Segmentation of intricate bone profiles from the surrounding soft tissue is a challenging 
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step and might impose unpredictable errors that can propagate down to subsequent steps in model 

generation and mesh construction [70]. Further segmentation of the thin cortical bone from the 

inner trabecular tissue is more complicated, particularly in images with limited spatial resolution, 

where the low image contrast makes it challenging to delineate between the thin cortical shell and 

the trabecular bone. Several segmentation methods with various automation levels have been 

proposed in the literature, but uncertainty in the boundary definition always exists regardless of 

the selected approach [70]. Semi-automated threshold-based methods are commonly employed to 

separate bone from surrounding materials [23-27, 104, 105]. With this approach, a single threshold 

is used alongside a region growing algorithm [106] to separate bone from surrounding tissue and 

detect the cortical-trabecular boundary. Some methods such as half maximum height (HMH) have 

also been employed to identify the bone periosteal surface (i.e., bone outer profile) [29, 32, 46, 

107]. The HMH defines a subject-specific threshold as the 50% intensity between the bone and 

cartilage. Even though successful in delineating between the outer bone profile and soft tissue, the 

HMH method is not able to identify the bone endosteal surface (i.e., cortical and trabecular 

boundary) due to the low contrast between the laminar cortex and inner trabecular bone. 

Consequently, straightforward threshold-based techniques are unreliable when the cortex is thin 

in relation to the image spatial resolution and generally result in unclosed profiles (Figure 2-4).  

 

Figure 2-4. Visualized cortical region at the proximal tibial subchondral surface using a global 

threshold method. The BMD threshold of 550 mg/cm3 was used to differentiate the cortex and 

trabecular bone, which resulted in incomplete separation of the subchondral cortical region. 
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Binary morphological operations (i.e., image erosion and Boolean subtraction) have been 

employed in the literature to improve the performance of threshold-based techniques [108]. The 

bone periosteal surface is first determined via the HMH or simple threshold method. The trabecular 

bone is then visualized with in-plane erosion of integral bone structure with a proper thickness. 

The cortex is subsequently identified with Boolean subtraction of trabecular tissue from the 

integral bone structure followed by a single global threshold. This approach may enhance the 

segmentation of cortical bone by restricting the cortex to the bone periphery, but the efficacy of 

this approach has not yet been evaluated in QCT-FE models of subchondral bone at the proximal 

tibia. Numerical methods such as the level-set approach have been recently introduced for fully-

automated segmentation of bone periosteal and endosteal surface [14]. Numerical methods reduce 

human intervention and increase the segmentation repeatability. Nevertheless, these methods are 

still in the developing stage and require intricate parameter settings which can hinder their 

application in wider practice.  

Various segmentation methods should be considered complementary rather than competitive 

and careful customization of existing algorithms is required to obtain effective methods. In this 

regard, one possible approach is to combine HMH, region growing and manual intervention 

methods (semi-automatic segmentation with manual correction) to determine cortical bone 

thickness. It is though unclear if using semi-automatic segmentation with manual correction can 

better distinguish the cortical and trabecular boundary at the subchondral region and enhance QCT-

FE models of bone at joint ends.  

 Partial volume correction 

QCT-FE estimates of local structural stiffness at the proximal tibia have been recently validated 

versus in-situ stiffness measurements at the subchondral surface [109, 110]. FE procedures yielded 

moderate correlations with measured subchondral bone stiffness (R2 =54%-81%). Similar results 

were also obtained for FE-predicted femoral bone strength constructed from clinical QCT images 

and validated versus in-vitro strain measurements, with absolute errors as high as 1800 µε [33, 67, 

111-113]. This previous work noted that PV artifacts might be responsible for observed systematic 

and/or local errors. PV layers appear in areas with thin cortical bone, where the limited resolution 

of a CT system is unable to quantify the exact intensity of thin structures. The result is thickness 

overestimation and intensity underestimation for cortical bone such that intensity values at the 

cortical region are indistinguishable from surrounding soft tissue and inner trabecular bone [28, 
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29, 114-117]. Low-density cortical voxels in the QCT image will appear as low E elements in the 

FE model with values equal to soft tissue or low-density trabecular bone. Also, low density voxels 

create holes during the tissue segmentation stage, resulting in the broken boundary detection and 

an inaccurate model of cortical bone. Previous work revealed that structures with thickness below 

2.5 mm are not properly presented in FE models [115].  

Semi-automatic segmentation with manual correction and separate modeling of the cortical 

region might better distinguish the cortical structure, however, this method does not restore 

intensity information at the corrupted PV layer. In addition, manual segmentation is time-

consuming and labor-intensive and might create biased results. To overcome this issue, thin shell 

elements with constant thickness and uniform material properties have been employed to cover the 

bone surface [33, 114, 118, 119]. Unfortunately, this simplification does not account for thickness 

variation throughout the cortical bone and neglects local material heterogeneity, which is essential 

when studying OA bone. Hence, techniques are required to retrieve and restore intensity 

information at the corrupted PV layer. The restored intensities will not only increase contrast 

between the cortical table and surrounding tissues, but also make it possible to use straightforward 

threshold methods to delineate between cortical and trabecular bone.  

Several methods have been suggested in the literature for restoring intensity information at the 

corrupted PV layer. Recently, a numerical deblurring algorithm has been developed to reduce PV 

effects and restore geometry and intensity information of the CT image stack [116, 120]. The 

deblurring algorithm reconstructs image data by optimizing the point spread function (PSF) of the 

CT scanner. PSF is the impulse response of a CT scanner and determines final resolution of a CT 

image (which is different than the voxel size). Intensity information at the PV layer has also been 

restored based on the intensity of inner voxels unaffected by PV effects [117, 121]. Helgason et 

al. [121, 122] addressed PV effects during material mapping, where E was refined at corrupted 

surface nodes by mapping an E from nearest internal nodes. PV correction algorithms may enhance 

QCT-FE models of the subchondral bone. It is though unclear which PV correction method will 

result in the most accurate prediction of local structural stiffness at the proximal tibial subchondral 

surface. 

 Image Deblurring  

Image deblurring follows two main steps in which PSF is estimated by restrictive models of the 

scanned object and imaging system followed by fitting these models to the observed intensity 
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profile at the cortical region. The estimated PSF is used in the deconvolution algorithm to restore 

spatial resolution of the CT image. The non-blurred image of cortical bone is represented by a 

rectangular function, and the actual image is approximated by convolving PSF with a non-blurred 

signal as follows: 

𝑔(𝑢) = 𝑖(𝑢) ∗ ℎ(𝑢, 𝜎) 

where 𝑔(𝑢) is the actual intensity profile of the cortical bone (the black line in Figure 2-5) and 

𝑖(𝑢) represents the intensity profile of the non-blurred cortical region (the rectangular function in 

Figure 2-5), ℎ(𝑢, 𝜎) is an orthotropic Gaussian PSF with the width of 𝜎 which can be itself 

decomposed to in-plane (𝜎𝑥𝑦) and out-of-plane (𝜎𝑧) components. The PSF is estimated by fitting 

an actual extracted profile to the equation obtained by convolving rectangular and Gaussian 

functions. The unknowns will be cortical bone thickness (x1-x2), cortical intensity (Y2) and width 

of the PSF (𝜎). Once PSF is estimated, the image is deconvolved via Richardson Lucy 

deconvolution method [123] to retrieve non-blurred desired signal information. 

 

 

Figure 2-5. The actual intensity profile of the cortical region (black spline, g(u)) and ideal non-

blurred profile of the cortex (i(u)), represented by the rectangular function. Y1, Y2, and Y3 are 

intensities of the trabecular bone, cortical bone, and surrounding tissue respectively, X1-X2 

represents the cortical thickness. From Falcinelli et al. [28] with permission from Elsevier.  



18 

 

 Image Remapping  

In this method, low-density bone in the PV layer is replaced by denser bone using binary 

morphological operations and density remapping from voxels unaffected by PV artifacts (Figure 

2-6). A binary mask is defined for the PV layer using morphological operations. The K-nearest 

neighbors (KNN) algorithm is used to find K nearest neighbors for each voxel located in the PV 

layer. The KNN algorithm identifies closets neighbors by calculating the Euclidian distance 

between the target voxel and adjacent voxels inside the bone, and returns corresponding BMD and 

distance values. New bone is then dilated at this region by mapping densities from underlying 

layers. New BMD is calculated via inverse distance weighting interpolation in order to reduce the 

effect of voxels located far from the PV layer as follows:  

𝐵𝑀𝐷𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =
∑ 𝐵𝑀𝐷𝑖 ∗ 1/𝑑𝑖

𝑝𝐾
𝑖=1

∑ 1/𝑑𝑖
𝑝𝑘

𝑖=1

 

where BMDcorrected is the new BMD value assigned to the PV-affected voxel, K is the number of 

adjacent voxels selected for BMD mapping, 𝐵𝑀𝐷𝑖 is the BMD of the ith voxel, di is the Euclidean 

distance of the ith voxel from the target voxel, and p is the mapping coefficient which controls the 

degree to which the distance is weighted in interpolation. 

 

Figure 2-6. The procedure for image remapping algorithm. BMD of a target voxel in the PV layer 

is calculated based on BMD of adjacent voxels located inside the bone.  

 Elastic-modulus Refinement  

PV layer has been also corrected inside an FE model [122, 124], where surface nodes at bone 

periosteal surface are identified and elastic moduli of these nodes are assigned based on E of 
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adjacent nodes located inside the bone. The KNN algorithm and inverse distance weighting 

interpolation scheme is used to refine E for each surface node (Figure 2-7).  

 

Figure 2-7. The procedure for refining elastic modulus (E) for nodes located at the periosteal 

surface. E of each surface node is calculated based on E of nodes located inside the bone.  

  Meshing 

Once the region of interest is defined, an FE model could be constructed and discretized using 

different meshing algorithms and element types. The simplest way is to directly convert each voxel 

to a cubic element (voxel-based approach)  [125]. The mesh is directly created from the CT image 

stack and avoids any geometrical surface and volume extraction. The voxel-based method has been 

used to construct micro-FE models of porous structures such as trabecular bone [126-130]. 

Fracture-risk from vertebral and femoral human whole bones have been also predicted via voxel-

based QCT-FE models [131, 132]. Application of this method in FE modeling of whole bones 

from low-resolution image stacks has been criticized due to the creation of serrated boundaries 

[133]. The tiled-shape edges result in stress concentrations which make the model inappropriate 

to study local properties such as stiffness and strain. 

Structure-based meshing, on the other hand, is applied to the constructed geometry. The 

volume is first created from the segmented region using marching cube algorithms. The 

constructed geometry is then smoothed via non-uniform rational basis splines (NURBS) and 

subsequently meshed with tetrahedral or hexahedral elements [67, 68, 88, 134]. Validated FE 

surface strain predictions of the femoral bone reveal that cubic elements result in higher accuracy 

compared to other mesh types [133]. Nevertheless, creating a hexahedral mesh requires significant 

computational effort due to intricate morphology and complex contours of the bone surface. 
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Conversely, a tetrahedral mesh can be easily constructed, even from geometries with irregular 

complexities.  

FE-predicted results have also been shown to be sensitive to the order of the element shape 

function [23, 24, 135]. A comparison between FE-predicted femoral surface strains from linear (4 

node) and quadratic (10 node) tetrahedral elements and experimental measurements suggest that 

the linear tetrahedral mesh should be avoided due to its higher computation time and lower 

predictive accuracy [135]. Higher-order elements (p-elements) alongside automatic mesh 

generation algorithms have been used to calculate the mechanical response of femoral bones to 

different physiological loads [22-25]. This method keeps the mesh unchanged and alters the 

polynomial order of an element shape function. The p-elements with large aspect ratios produce 

considerably faster convergence rates when compared with that of linear and quadratic elements. 

Nevertheless, application of the p-method requires custom FE formulation and cannot be 

performed with commercial FE packages.   

  Material definition 

Heterogeneous and locally isotropic (i.e., same material properties in different directions) material 

definition for QCT-FE models starts with calibrating CT HU to BMD followed by conversion of 

BMD to an elastic modulus. The former is performed with standard CT calibration phantoms 

provided by manufacturers. Calibration phantoms contain several channels with known 

concentrations of hydroxyapatite (HA) or hydrogen dipotassium phosphate (K2HPO4). The 

phantom is scanned alongside a target specimen, and the HU values are normalized against known 

densities in phantom channels to find the calibration equation between CT Hounsfield units and 

BMD. The calibration step is required as measured HU numbers might differ for the same 

specimen by the type of scanner or short-term scanner drifts and can make a comparison of CT 

numbers questionable [20]. Calibrated BMD is then converted to the elastic modulus via empirical 

mathematical relationships known as E-BMD equations (Figure 2-8). These equations are derived 

by correlating the measured elastic modulus from mechanical testing to bone density. Various 

measures of bone density include wet/dry apparent density (i.e., hydrated/dry mass divided by 

bone’s total volume) and ash density (i.e., the bone ash mass normalized to its total volume). 

Conversion equations have been proposed in the literature to convert between these densitometric 

measurements [20, 21, 88].  



21 

 

E-BMD relationships are generally in the form of power-law functions; though, other types of 

relationships have been reported in the literature (e.g., sigmoid functions) [136]. The E prediction 

for the same density range from available E-BMD equations indicate substantially different values 

(Figure 2-8). This could be explained by differences in applied testing protocols and employed 

specimen size and boundary conditions [21]. Moreover, elastic modulus measurements have been 

performed on samples excised from various anatomical sites with significantly different 

microarchitecture and tissue properties, which could further explain the observed variance in E-

BMD equations. 

 

Figure 2-8. E-BMD equations reported in the literature for various anatomical sites including the 

proximal tibia [15, 16, 54, 110]. 

Different researchers have investigated the sensitivity of subject-specific FE models to adopted 

E-BMD equations. Schileo et al. [68] studied the effect of selected E-BMD relationships proposed 

by Carter and Hyes [17], Keller [137] and Morgan et al. [138] on FE predictions of local strains in 
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femoral bones. Morgan’s E-BMD equation resulted in the least RMSE% (root mean squared error 

normalized to the maximum measured value) between FE-predicted and measured strains. In 

another study, inhomogeneous mechanical properties of the ulnar bone were defined via six 

different E-BMD equations and resulted in different amount of errors between the predicted and 

measured strains (mean prediction error ranged between 15.3% and 92.4% for different E-BMD 

equations)  [139]. Different levels of accuracy has been also reported for FE-predicted surface 

strains at the distal radius using different E-BMD relationship, with RMSE% equal to 13.17%, 

13.33% and 14.18% for Keller [137], Carter and Hyes [17], and Morgan et al. [138], respectively 

[82]. These studies employed a single E-BMD equation to calculate mechanical properties of both 

cortical and trabecular bone. Long bones such as the ulna and femur are mostly comprised of 

cortical bone, and a single E-BMD equation is sufficient to simulate the mechanical response of 

these structures to the applied load [67, 68, 71]. Conversely, approximately 68-73% of the 

proximal tibial volume is comprised of the trabecular tissue [118]. Accordingly, trabecular bone 

will play a large role in the mechanical response of the proximal tibia. The combination of cortical 

and trabecular-specific E-BMD equations, as opposed to a single relationship, has been shown to 

better predict the mechanical behavior of the proximal tibia. Nazemi et al. [109] found that the 

combination of Rho [16] and Snyder and Schneider [54] (cortical-specific) with Goulet [15] 

(trabecular-specific) explained the highest measured stiffness variance at the proximal tibial 

subchondral surface (R2= 77% and 75%, respectively). In another study performed to simulate the 

failure load of proximal tibia under physiological loads, it was observed that using a constant 

elastic modulus (14-18 GPa) for cortical bone alongside Morgan’s trabecular-specific equation 

[138] better predicted the fracture load of the human tibial bone  [118].  Modeling cortical and 

trabecular bone with different E-BMD equations requires separating these structures either in the 

FE model or the QCT image (as described in 2.4.3.2). It is though unclear if the performance of 

E-BMD equations will be affected by the adopted tissue separation technique. 

 Material mapping 

Quantified mechanical properties from QCT data need to be mapped on nodes and elements of an 

FE model.  Different strategies employed in the literature each have their own advantages and 

disadvantages. Primary algorithms initially determined BMD at element nodes from the related 

voxel in the CT lattice and calculated the element BMD by averaging its nodal values [140]. The 

approach lead to inaccurate results when the element size was big and contained a large number 
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of voxels within its volume.  In another method, the element equivalent BMD or elastic modulus 

was calculated by averaging voxel values inside the element volume [33, 109, 141, 142]. This 

method required complex coding and increased the computation time. In a more common method, 

BMD of the element is calculated by the integration of BMD field over the element volume [34, 

121]. This technique can resolve the mentioned limitations but it does not take into account 

variations of BMD inside the element. Previous studies have also shown that, due to the non-linear 

nature of E-BMD relationships, it is more accurate to first convert voxel BMD values to E, then 

average this new scalar field on each element [143]. Aside from the single E assigned to each 

element, one major drawback with these methods is that the material needs to be averaged at 

specific intervals (known as material binning). A large number of elements and heterogeneous 

properties of the bone tissue results in a vast number of material sets in the FE package, making 

the numerical solution unattainable. Hence, material binning is required to reduce the number of 

materials and make the FE solution feasible. Binning leads to another source of averaging artifact 

in the QCT-FE process and might adversely affect the accuracy of the model. 

Recent studies have taken into account the variation of E inside elements. Elastic moduli could 

be initially defined at element nodes and then interpolated on element integration points [117, 122, 

144, 145]. It is also possible to map the elastic modulus directly on element integration points and 

use these values in numerical integration to calculate the element stiffness matrix [145, 146]. It is 

currently unknown if accounting for spatial variation of elastic modulus within the element and 

omitting element binning can lead to more accurate FE predictions of local structural stiffness at 

the proximal tibia.  

2.5 Summary 

• Even though OA is regarded as a cartilage disease, it can affect the morphology and 

mechanical properties of the underlying bone. An in-vivo noninvasive technique is required 

to perform longitudinal studies and assess whether the bone structural changes play a role 

in OA initiation and progression. Among in-vivo methods, QCT-FE modeling takes into 

account the geometrical, morphological and microstructural differences among living 

individuals.  

• Developed QCT-FE models of the proximal tibia for assessing local stiffness at the 

subchondral surface indicated moderate predictive accuracy (R2= 54%-81%, RMSE% = 
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10.5%-337%) [75, 99, 110]. The moderate predictive accuracy might be due to inaccurate 

modeling of thin cortical structures in standard QCT-FE frameworks.  

• The subchondral cortical endplate of the proximal tibia contains areas with low thickness 

(<1 mm). The limited resolution of clinical CT systems results in low tissue contrast at 

areas of thin cortical bone. Hence, applying simple threshold-based methods is likely 

insufficient to distinguish between cortical and trabecular bone.  

• Advanced techniques are required to model thin cortical structures. The cortex might be 

modeled with semi-automatic segmentation with manual correction followed by separate 

modeling of cortical and trabecular bone.  

• The intensity information at CT systems could be retrieved from the CT image using 

different PV correction methods to enhance the contrast between cortical and trabecular 

bone, which will facilitate tissue separation using simple threshold methods. 

• Conventional mapping methods which result in material binning and disrupt the continuity 

of elastic modulus have potential to be replaced with advanced element based techniques 

to account for E variation throughout the element volume, which could eliminate another 

source of averaging in QCT-FE models. 
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  CHAPTER 3 

3 RESEARCH QUESTIONS AND OBJECTIVES 

My specific research questions were: 

1. Which segmentation and modeling technique best differentiates cortical and trabecular 

tissue, leading to the most accurate QCT-FE prediction of local structural stiffness at the proximal 

tibial subchondral surface? 

2. Can partial volume correction at thin cortical regions enhance QCT-FE predictions of local 

stiffness at the subchondral surface? 

3. Which mapping strategies proposed in the literature results in the highest accuracy for 

modeling local stiffness at the proximal tibial subchondral surface? 

To address these questions, my objectives were defined as follows: 

1. Identify the segmenting and modeling approach which best predicts (with largest explained 

variance and least amount of error) local structural stiffness at the proximal tibia.  

2.  Evaluate QCT-FE predictions of stiffness acquired from different PV-correction algorithms 

in relation to experimentally derived stiffness.  

3. Evaluate different material assignment strategies and identify the mapping approach with the 

fastest convergence behavior and highest accuracy.   
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CHAPTER 4 

4 SEPARATE MODELING OF CORTICAL AND TRABECULAR BONE 

4.1 Introduction 

An essential step with QCT based FE modeling is to calculate mechanical properties based upon 

imaged BMD, typically via empirical E-BMD relationships available in the literature [15, 16, 54, 

110]. Either a single or combination of E-BMD relationships have been used in the literature to 

calculate the heterogeneous mechanical properties in human bones [27, 75, 104, 139]. Previous 

findings showed that using site-specific E-BMD relationships for cortical and trabecular bone (as 

opposed to the single E-BMD equation for the entire density range) leads to the most accurate 

predictions of local stiffness at the proximal tibia [75]. These models, however, used a global 

threshold to separate cortical from trabecular bone.  While global thresholding can separate cortical 

and trabecular tissue at diaphysis and metaphysis, the approach fails at regions with a thin cortical 

shell where limited resolution of clinical CT systems results in low contrast between cortical and 

trabecular bone. Hence, thin cortical regions are represented as trabecular bone within the FE 

model, and low elastic moduli are often assigned to these regions, which affects the predictive 

accuracy of the FE model. The typical approach in dealing with this problem is to cover the bone 

endosteal surface with shell elements [33, 118, 119]. However, with this method the cortical bone 

is modeled with a constant thickness and homogenous material properties. Unfortunately, this is 

undesirable for studying OA bone as it is highly heterogeneous with non-uniform thickness [4, 8, 

61].    

The primary objective of Study #1 was to introduce a new methodology: semi-automatic 

segmentation with manual correction and separate modeling (SM) for segmenting and modeling 

laminar shaped thin cortical structures. This methodology overcomess limitations associated with 

existing threshold-based methods. The secondary objective was to evaluate the proposed SM 

approach in relation to existing continuum modeling (CM) with threshold-based methods (i.e., 

global threshold (CMG) and image erosion (CME)) against in-situ stiffness measurements at the 

proximal tibial subchondral surface. 
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4.2 Methods 

4.2.1 Samples 

Sample preparation, QCT imaging and experimental testing were performed by a single researcher 

(James D. Johnston). The detailed information regarding specimens and sample preparation can 

be found elsewhere [60]. Briefly, eleven intact fresh-frozen cadaveric human knee joints were 

obtained from 8 donors (7 males and 1 female, age±SD: 76.2±9.2). Knee joints were exposed and 

all soft tissues were excised from the proximal tibia except the cartilage. Each proximal tibia was 

transversely cut 25 mm distal to the cartilage surface and separated to medial:lateral compartments 

by sagittally cutting through the tibial spine. Following tissue harvesting, each sample was visually 

examined by a participating surgeon and categorized based on cartilage status into the normal and 

degenerated categories. Samples that indicated complete cartilage loss were excluded from the 

study, leaving 9 lateral and 4 medial compartments. To preserve the integrity of the cartilage, the 

exposed surface was sealed with thin layer of polymethylacrylate bone cement (PMMA) to prevent 

the release of serum protease from bone marrow. Each proximal tibia was embedded in the potting 

system comprised of the outer shell made of polyvinylchloride (PVC) and supporting base made 

of gypsum potting material and the layer of PMMA. The structural support of the excised 

contralateral surface was simulated via a phantom compartment created out of PMMA and fixated 

to the sealed surface of the proximal tibia and the potting system. For registration purposes, four 

1 mm diameter stainless steel fiducials markers were inserted into the outer PVC shell. 

4.2.2 QCT imaging 

Each potted sample was positioned centrally within the gantry of the clinical CT scanner (64-slice 

helical Aquilion 64, Toshiba medical systems, Tokyo, Japan) in the supine orientation and scanned 

alongside the calibration phantom (Figure 4-1a). A solid K2HPO4 phantom was used to convert 

between the CT gray scale values (HU) and equivalent volumetric BMD. Imaging parameters 

included: tube voltage: 120 kVp; tube current-time product: 150 mAs; bone standard 

reconstruction algorithm; 0.5 mm isotropic voxel size (0.5 mm slice thickness and 0.5×0.5 mm in-

plane pixel size). 

4.2.3 Mechanical testing 

The stiffness at the subchondral surface was measured using macro-indentation testing. The 

indentation apparatus was comprised of a right-hand drill and load cell mounted on mechanical 
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testing system (Instron 8874, Instron Corp) (Figure 4-1b). The potted specimen was initially 

located in a 5 degree of freedom (DOF) positioning fixture, and the cartilage surface was oriented 

approximately horizontal. Attached fiducials were removed from the PVC shell, and a 3D digitizer 

was used to locate the concave fiducial holes, indenter tip and XYZ axes of the testing system. 

The indentation locations on each compartment were determined based on the anterior-posterior 

and central-peripheral dimensions (Figure 4-1c). To avoid potential mechanical damage to 

surrounding bone, at least 7 mm spacing was left between adjacent indentation sites. A total of 47 

indentation locations from 13 specimens were included in this study. The bone surface was 

determined via compressive needle testing [147], and the subchondral bone was subsequently 

milled 0.1 mm beyond the defined subchondral surface to create a flat indentation surface with a 

diameter of 4 mm. A 3.5 mm flat-ended nonporous indenter was used to perform macro 

indentation. A displacement with a constant rate (2 mm/min) was applied on each indentation 

location while the load was continuously monitored at 1000 Hz using custom software (LabView, 

National Instruments, Austin, TX). The test stopped when the displacement reached 0.5 mm or the 

load reached 250 N (maximum limit of the load cell). The local structural stiffness was then 

measured as the slope of the fitted regression line to the most linear region of the load-displacement 

curve (Figure 4-1d). 

4.2.4 Image registration 

Image registration was performed using a custom Matlab code that matched imaged fiducial with 

physically located fiducial coordinates in the mechanical testing setup. Indentation coordinates 

were located in the image space based upon digitized coordinates of the indenter tip and replicated 

specimen orientation. Evaluation of registration accuracy resulted in errors less than 0.42 mm, 

which was smaller than the CT voxel size.  
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Figure 4-1. Imaging and the experimental procedure was performed by a single researcher (James 

D. Johnston) [46, 60]. Each proximal tibia was scanned along with a calibration phantom to convert 

computed tomography (CT) gray scale values (Hounsfield units, HU) to bone mineral density 

(BMD) (a). Potted samples were fixated in a 5 degree of freedom (DOF) positioning stage mounted 

on the mechanical testing system (b). Indentation locations were identified based on the anterior-

posterior and central-peripheral dimensions (c). The indentation was performed with the 3.5 mm 

non-porous flat-ended indenter. The slope of the regression line fit to the most linear portion of 

the load-displacement curve was defined and reported as local structural stiffness (d).      
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4.2.5 Finite element modeling 

 Segmentation  

The cortical bone was visualized by separating periosteal (i.e., the bone outer profile) and endosteal 

(the cortical-trabecular boundary) surfaces from surrounding soft tissue and inner trabecular 

structure with three different segmentation methods:  

 Semi-automatic segmentation with manual correction 

Using the image processing software Analyze (Analyze6.0; Mayo Foundation, Rochester, MN, 

USA), each CT image slice (Figure 4-2a) was segmented in the sagittal plane with the combination 

of the half maximum height (HMH) method, a region growing algorithm and manual intervention 

via a touchscreen tablet. BMD (K2HPO4 equivalent density, 𝜌𝑄𝐶𝑇) was first determined from the 

histogram line of the bone intensity across subchondral endplate and cortical shaft for each sample 

using the HMH method, and used as an initial estimate for the tissue threshold (Figure 4-2b) [107]. 

The segmentation started with locating seed points in dense cortical regions, either at the bone 

shaft or subchondral surface. The threshold was set to values obtained from the HMH method and 

the region growing algorithm automatically identified voxels with BMD above the defined 

threshold. The low imaged contrast between cortex and trabecular bone resulted in the creation of 

unclosed boundaries (Figure 4-2c). The gaps were closed by manually linking edges belonging to 

the same boundary at each image slice. Care was taken to include at least two voxels in the 

segmentation to ensure that the separated structure could be later resolved in the FE model. Once 

the cortical region was identified, the trabecular structure was segmented by putting a single seed 

point in the proximal tibia and restricting the boundary to the defined endosteal surface (Figure 

4-2d).  
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Figure 4-2. The methodological sequence for semi-automatic segmentation with manual correction 

of the cortical bone. Red lines were sketched across the cortical bone at different regions of the 

sagittal plane of CT images (a). The BMD threshold was determined from the intensity histogram 

of the sketched line as the 50% BMD between the low-density cartilage and high-density cortical 

bone at point A. Point B indicates 50% intensity between cortical and trabecular bone and green 

line is the ideal cortical profile (b). A region growing algorithm was used to identify the cortical 

bone based on calculated thresholds (c). Gaps were closed manually to visualize the cortical table 

and the trabecular bone (d).  

 Image erosion 

The HMH and region growing methods were used as before to obtain the optimum threshold and 

identify the bone periosteal surface. Segmentation was though performed for the whole proximal 

tibia (Figure 4-3a & b). A temporary cortical region was then identified by eroding seven voxels 
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(3.5 mm) [108] from the bone periosteal surface using binary morphological operations (Figure 

4-3c). The cortical bone within this region was subsequently detected by employing a global 

apparent density of 1 g/cm3 equal to the 𝜌𝑄𝐶𝑇 threshold of 550 mg/cm3, as per Gray et al. [105] 

(Figure 4-3d). This approach ensured that all cortical bone was less than 3.5 mm from the periosteal 

surface. 

 

Figure 4-3. The methodological sequence for tissue separation using an image erosion technique. 

The CT image (a); was first segmented using the half maximum height method (HMH) and region 

growing algorithm (b). Binary morphological operations were then used to detect a temporary 

cortical region with the thickness of 3.5 mm (c); the cortical bone was then determined using the 

threshold of 550 mg/cm3 within the region of interest (d).     

 Global threshold  

The bone was separated from the surrounding soft tissue via the HMH method (Figure 4-4a). In 

this case, the cortical and trabecular bone were differentiated with a 𝜌𝑄𝐶𝑇 threshold of 550 mg/cm3 

[105] (Figure 4-4b). 
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Figure 4-4. Cortical bone detection with a global threshold. The proximal tibia was segmented 

from surrounding tissue via the half maximum height method (HMH) and region growing 

algorithm (a). A cortical tissue was then identified with a single global threshold of 550 mg/cm3 

(b).  

 Model construction 

FE models were constructed from segmented regions using two distinct methods and three 

different sets of E-BMD equations: 

1. Separate Model (SM) - Individual meshes and models of cortical and trabecular were 

developed. In this case, cortical and trabecular elements composed distinct structures in the 

FE model. 

2. Continuum Model: Image Erosion (CME) - A single mesh and model of bone was 

developed. In this case, cortical and trabecular elements could be interspersed next to one 

another within the model, and were defined based upon the image erosion segmentation 

method. 

3. Continuum model: Global Threshold (CMG) - Similar to image erosion. In this case, 

cortical and trabecular elements were defined based upon the global threshold 

segmentation method. 

 Separate Modeling (SM) 

Semi-automatic segmentation with manual correction of the cortical and trabecular bone made it 

possible to model these structures separately. A marching cube algorithm was used to construct a 

3D volume for the cortical and trabecular bone from segmented object maps (Figure 4-5a). The 

constructed volumes were then healed, their surface were smoothed and converted to non-uniform 
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rational basis splines (NURBS) via reverse engineering software (GEOMAGIC STUDIO 12, 

Systems, Rock Hill, SC, USA) (Figure 4-5b). Care was taken to preserve the maximum 

geometrical complexity by monitoring the root mean squared error (RMSE) between original and 

smoothed surface. The RMSE was always kept below 0.3 mm, which was less than the voxel size. 

Surface smoothing alters the bone endosteal surface at cortical and trabecular bone making it rather 

impossible to assemble these structures within the FE model due to the presence of collisions and 

clearances at the contact surface. To prevent this problem and ensure a perfect fit between two 

structures, the trabecular bone was constructed by filling the cortex inner volume using CAD 

software (SOLIDWORKS, Dassault Systems, Tennessee) (Figure 4-5c). Smoothed volumes were 

extracted to a commercial FE package (ABAQUS, Providence, RI, USA) and geometrical 

operations were performed at the subchondral endplate to construct indentation sites.  Flat 

cylindrical holes (𝛷4 𝑚𝑚) were created and a 3.5 mm concentric surface equal to the diameter of 

the indenter was partitioned from the flat surface and defined as the indentation location. 

Subsequently, cortical and trabecular structures were meshed independently with 10-node 

quadratic tetrahedral elements and assembled by coupling elements located at the cortical-

trabecular boundary (Figure 4-5d). Coupling (also called tying or bonding) constrained each node 

at the trabecular surface to have the same DOF to its closest node at the cortex endosteal surface. 

All nodes at the bone surface located 25 mm distal to the subchondral endplate were constrained 

in all directions to mimic the bone inside the fixed pot. As well, all DOF were constrained for 

nodes at the sagittal cutting plane to replicate the phantom compartment. A 0.9 and 0.7 mm global 

mesh size was used for the trabecular and cortical region, respectively. These values were arrived 

upon from a convergence study, where reducing the element global size from 0.9 mm to 0.7 mm 

for the trabecular and 0.7 mm to 0.5 mm for the cortical bone altered stiffness predictions by less 

than 3%.  

Linear elastic and isotropic material properties were defined for the FE model, starting with 

converting imaged 𝜌𝑄𝐶𝑇 to ash density (𝜌𝑎𝑠ℎ) assuming 𝜌𝑄𝐶𝑇 = 𝜌𝑎𝑠ℎ as per [79, 81, 98, 136], 

followed by the conversion of ash density to the elastic modulus using three sets of cortical and 

trabecular specific E-BMD equations summarized in Table 4-1 (Goulet-Rho [15, 16], Goulet-

Snyder [15, 54], Nazemi-Nazemi [110]). The maximum elastic modulus cannot exceed the E of 

compact bone. Therefore, depending on the adopted cortical–specific equation, the maximum 

elastic modulus of the cortical bone was limited to 15 GPa and 19 GPa when the apparent density 
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equaled that of compact bone (1.8 g/cm3) [17]. The E of 0.1 MPa was assigned to all voxels inside 

the segmented region with negative BMD values. Negative densities pertained to fat, air, and 

marginal osteophytes (APPENDIX - Figure A-1ure A-1). Poisson’s ratio was set to 0.3 [148].    

Calculated elastic moduli at the CT lattice were mapped to an FE model using a custom Matlab 

algorithm (Figure 4-5e). The code initially mapped an E on each node from the voxel containing 

that node. A constant E was then calculated for each element by the integration of elastic moduli 

over the element volume [34]. The procedure was performed independently for cortical and 

trabecular elements, with values stored in separate matrices. To reduce the number of defined 

materials, elements with elastic moduli with a user-defined interval (20 MPa) were grouped in one 

bin at each matrix. Weighted volumetric averaging was then used to determine the elastic modulus 

for each material bin. In total, there were 450 to 750 bins for cortical and trabecular bone. In terms 

of the rational for the 20 MPa interval, 50, 20 and 10 MPa intervals were checked. Reducing the 

interval from 20 to 10 MPa changed stiffness predictions less than 3%; therefore 20 MPa was 

applied.   
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Figure 4-5. The methodological sequence for separate modeling of the proximal tibia. The 

segmented cortical region (a); was used to construct the cortex 3D geometry using the marching 

cube algorithm and smoothed via non-uniform rational basis splines (NURBS) (b). The trabecular 

bone was then constructed by filling the cortex inner volume with CAD software 

(SOLIDWORKS) (c). Cortical and trabecular bone coupled at the endosteal surface and meshed 

independently using quadratic tetrahedral elements (d). Material properties were mapped to the FE 

model by the integration of elastic moduli field over the element volume (e).  
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Table 4-1. Adopted density-modulus (E-BMD) relationships in this study.  

E-BMD` Bone tissue Skeletal site E (MPa) Density range (g/cm3) 

Goulet et al. [15] Trabecular Pooled 𝐸 = 6310(𝐵𝑉/𝑇𝑉)2.1 0.06-0.36 

Nazemi et al [110] Trabecular Tibial subchondral 

bone  

820 𝜌𝑄𝐶𝑇 𝜌𝑄𝐶𝑇 < 0.5 

Rho et al. [16] Cortical Tibial Shaft 13000𝜌𝑎𝑝𝑝 − 3842 N.S* 

Snyder and Schneider 

[54] 

Cortical Tibial Shaft 𝐸 = 3891𝜌𝑎𝑝𝑝
2.39 1.748-1.952 

Nazemi et al. [110] Cortical Tibial subchondral 

bone 

31360 𝜌𝑄𝐶𝑇
3  𝜌𝑄𝐶𝑇 > 0.5 

* Not specified 

BV/TV=ρapp/1.8  [21], ρapp=ρash/0.55 [21], ρQCT=ρash
 [79, 81, 98, 136] 

 Continuum Modeling (CM)  

The proximal tibia was modeled using the standard framework for bone QCT-FE modeling (known 

as the Bonemat approach) [34, 141, 143]. In this case, bone was treated as a continuum and cortical 

and trabecular tissues were differentiated in the material mapping stage using either image erosion 

or a global threshold. For CME and CMG, the voxels with BMD above the predefined threshold 

(i.e., 550 mg/cm3) were treated as cortex and modeled with a cortical-specific equation and those 

below the cutoff value regarded as trabecular bone and modeled with a trabecular-specific 

equation. The same E-BMD relationships and material mapping strategy were used to define 

material properties for the FE model except that in this case all steps performed for the whole bone 

structure. The geometry construction and model preparation was similar to the SM approach and 

is summarized in Figure 4-6. The convergence analysis resulted in global mesh size of 0.9 mm for 

the whole structure. Identical to SM, 20 MPa intervals were used for binning and reducing the 

number of material groups.  
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Figure 4-6. The procedure used to construct continuum QCT-FE models of the proximal tibia. The 

segmented bone (a); was converted to 3D models using the marching cube algorithm (b); and 

smoothed with NURBS (c). As opposed to separate modeling, in this case, bone was treated as a 

continuum, and meshed with a uniform global mesh size (d); and material mapped on the FE model 

by the integration of E field over the element volume (e).   

4.3 FE analysis and validation  

A unit axial displacement was applied over the 3.5 mm diameter surface, and a static analysis was 

performed using the ABAQUS FE package. For each proximal tibia, calculations were performed 

via 12 cores of the two 2.30 GHz processors Intel (R) Xeon (R) with 64 Gbytes of internal memory. 

A custom Python code was developed to read and sum FE-derived nodal reaction forces at the 

indentation surface. At each indentation site, local structural stiffness was calculated as total 

reaction force divided by applied displacement.  
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4.4 Statistical Analysis 

Linear regression was used to assess FE predictions in predicting variance (coefficient of 

determination, R2) in experimentally derived stiffness. Root mean squared error (RMSE), 

normalized in relation to maximum experimental stiffness (RMSE%), was used to assess model 

accuracy. Student’s t-tests were used to identify whether the slope and intercept of the fitted 

regression line were different from unity and zero, respectively. Bland-Altman plots were used for 

residual analysis.  

4.5  Results 

With the SM approach, QCT-FE models explained 78% to 81% of the measured stiffness variance, 

with RMSE% ranging between 11.2% and 20.2%. (Table 4-2 & Figure 4-7). The slope of the 

regression line differed significantly from unity for all E-BMD equations evaluated in this study 

(p < 0.05), except for the subchondral-specific equations by Nazemi et al. (p > 0.05). Similarly, 

the mean difference between predicted and measured stiffness on Bland-Altman plot was 

significantly different from zero for all evaluated E-BMD equations and indicated the 

overestimation of stiffness (p < 0.05), except for Nazemi et al. (Figure 4-7).  

With the CME approach, FE models explained 76%-80% of the variance, with RMSE% 

ranging between 11.7% and 15.4% (Table 4-2 & Figure 4-8). The mean difference between FE-

predicted and measured stiffness on Bland-Altman plots was significantly different from zero for 

Nazemi et al., but not the other two equations (Figure 4-8).  

With the CMG approach FE models resulted in the R2 ranging between 77% and 81%, with 

RMSE% of 11.6% to 14.8% (Table 4-2 & Figure 4-9) Similar to image erosion, the mean 

difference between FE-predicted and measured stiffness was significantly different from zero for 

Nazemi et al. (p < 0.05) but not for the other two equations (Figure 4-9). 
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Table 4-2. Coefficient of determination (R2) and normalized root mean squared error in relation 

to maximum measured stiffness (RMSE%) for evaluated modeling approaches and E-BMD 

equations in this study. 

Modeling approach  E-BMD   

 Goulet & Snyder Goulet & Rho Nazemi & Nazemi 

 R2 RMSE% R2 RMSE% R2 RMSE% 

Separate Model (SM) 0.79 12.4 0.78 20.2 0.81 11.2 

Continuum - Image Erosion (CME) 0.76 11.7 0.77 12.9 0.80 15.4 

Continuum - Global Threshold (CMG) 0.77 11.6 0.78 13.2 0.81 14.8 
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Figure 4-7. Linear regression analysis and Bland-Altman plots between FE-predicted and 

measured stiffness for separate modeling approach (SM) and different E-BMD equations evaluated 

in this study. In Bland-Altman plots, the green dashed line represents the mean difference between 

FE-predicted and experimental stiffness. Red lines are 95% limits of agreement. 
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Figure 4-8. Linear regression analysis and Bland-Altman plots between FE-predicted and 

measured stiffness for continuum models with image erosion (CME) and different E-BMD 

equations evaluated in this study.  
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Figure 4-9. Linear regression analysis and Bland-Altman plots between FE-predicted and 

measured stiffness for continuum models with a global threshold (CMG) and different E-BMD 

equations evaluated in this study.  
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4.6 Discussion 

This study presented a new technique (SM) for modeling laminar thin cortical structures. The 

predicted stiffness at the proximal tibial subchondral surface based on SM was evaluated in 

relation to continuum-based QCT-FE models with standard tissue separation algorithms (global 

threshold and image erosion) against in-situ stiffness measurements. It was observed that the 

performance of SM depended on the selected E-BMD relationship. SM modestly outperformed 

(2-3%) both global threshold and image erosion when cortical and trabecular bone modeled with 

Snyder and Goulet E-BMD equations, respectively. We did not observe any improvement from 

SM when it was applied alongside other E-BMD equations used in this study. The explained 

variance, and RMSE % of continuum QCT-FE models with a global threshold and image erosion 

was quite similar, with a global threshold method offering a slight improvement. Among evaluated 

density-modulus relationships, subchondral specific equations reported by Nazemi et al. explained 

the highest variance in experimentally measured stiffness, irrespective of the applied modeling 

approach. 

Surprisingly, SM did not offer improved predictions of subchondral stiffness relative to 

continuum-based modeling methods. As opposed to the continuum modeling, the cortical bone 

was completely separated with SM via the semi-automatic segmentation with manual correction. 

Thereby, it was ensured that all cortical voxels were modeled using cortical-specific equations. In 

addition, SM allowed application of smaller elements at cortex and better resolved this region. The 

SM approach also prevented averaging of material properties in the meshing stage by separate 

modeling of cortical and trabecular structures. In general, apparent density of cortical bone varies 

between 1.2-1.8 g/cm3 [17, 54, 55]. Within this density range, the difference in predicted E from 

cortical- and trabecular- specific E-BMD equations is several orders of magnitude. Similar 

stiffness predictions from SM and continuum-based QCT-FE models suggested that our defined 

subchondral bone via semi-automatic segmentation with manual correction contained voxels with 

BMD below the standard range reported for cortex. A density histogram of the image data at the 

segmented cortical region revealed that approximately seventy percent of voxels at the segmented 

cortical bone contained BMD lower than 0.4 g/cm3 (APPENDIX – Figure A-2). Cortical and 

trabecular E-BMD equations start converging below this density range, and there is only a small 

difference (less than 3 GPa) in the predicted E from these equations. We believe the presence of 

low-density voxels in the cortical bone can be described by PV artifacts associated with low-
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resolution clinical CT systems. The relatively large voxel size (0.5 mm) of the CT image could not 

resolve thin cortical structures at the subchondral surface (0.01-3.3 mm) [38-40]. Consequently, 

PV averaging between cartilage, cortex and trabecular bone resulted in low BMD voxels and 

blurred edges at the cortical region. These voxels appeared as low E elements in the FE model and 

adversely affected the predictive accuracy. Even though the SM better visualizes and models the 

cortical region compared to standard QCT-FE procedures, it is considered as a post-hoc analysis 

on the PV corrupted image and does not restore the intensity information at the PV layer. Hence, 

we believe that algorithms are required to retrieve the unblurred intensities at corrupted PV layers.    

The continuum models were constructed with two different methods for tissue separation 

(image erosion & global threshold). The predictive accuracy of two models were similar, 

regardless of the employed E-BMD equation with a slight advantage to global thresholding. 

Neither of the methods was able to completely separate the cortical tissue. These methods also 

result in averaging of material properties in meshing stage due to their larger element size (0.9 

mm) in relation to the cortical thickness. With the erosion approach, however, it was possible to 

restrict the detected cortical tissue to the bone periphery. As opposed to SM, both methods were 

performed in the material mapping stage and were relatively easy to implement. The time required 

for model implementation was less than that of SM as manual delimitation and assembly were not 

needed with continuum modeling procedures.  

Among E-BMD equations evaluated in this study, subchondral specific equations by Nazemi 

et al. resulted in the highest R2 for all modeling methods. The slope of the regression line between 

the SM predicted and measured stiffness and Bland-Altman plots indicated overestimation of 

stiffness for all E-BMD equations, except for Nazemi et al. This was expected as Nazemi’s 

equations have been specifically derived for the subchondral region, whereas other equations were 

based on trabecular and cortical samples excised from epiphysis or metaphysis. The trabecular 

bone in these regions exhibited a higher degree of anisotropy (DA ≅ 4) with trabecular struts 

oriented along the longitudinal axis of the proximal tibia [43]. On the other hand, the subchondral 

trabecular bone exhibited a lower degree of anisotropy (DA ≅ 1.5) with dispersed trabecular 

orientation [45] and had higher BMD but lower E in the longitudinal direction. As such, 

extrapolating E-BMD equations specific to the epiphyseal and metaphyseal bone to the 

subchondral region gave higher E and resulted in stiffness overestimation. The calculated RMSE% 

in this study for Goulet-Snyder and Goulet-Rho was lower than the reported value in the literature 
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for FE-predicted stiffness from continuum models with same E-BMD equations (11.3% vs 19.4% 

for Goulet-Snyder and 13.2% vs 28.8% for Goulet-Rho) [109]. The predicted variance was also 

improved for both equations, 77% vs 75% for Goulet- Snyder and 78% vs 0.77% for Goulet-Rho 

[99, 109]. We also obtained higher errors for subchondral-specific equations compared to previous 

findings (14.8% vs 10.5%) [110]. These changes are most likely due to the different densitometric 

conversion equation used in this study. Specifically, the previous study employed an equation 

reported by Keyak [20] to convert between ash density and BMD, whereas here it was assumed 

that BMD and ash density were equal, as per [79, 81, 136]. This assumption altered the ρQCT 

threshold and thus altered the predictive accuracy of the QCT-FE model. Other studies with 

continuum QCT-FE models used global 𝜌𝑄𝐶𝑇 thresholds ranging between 0.45-0.8 g/cm3 to 

delineate between cortical and trabecular tissues in the tibia or femur [24, 27, 68, 104, 121, 139]. 

Given the substantial BMD variation in proximal tibial samples, it may be necessary to calculate 

an optimized conversion equation and a specific 𝜌𝑄𝐶𝑇 threshold for each sample or even each 

indentation location.    

It is important to consider the limitations of this study. First, the isotropic voxel size used in 

this study (0.5 mm) was relatively large with respect to the subchondral bone thickness (0.01-3.3 

mm) [38, 39] and resulted in the PV averaging of voxels and blurred edges at the cortex. Obtaining 

small voxel sizes requires smaller x-ray beams accompanied with high beam energy flux or 

increasing the scanning time (exposure time). Both of these, however, would increase the radiation 

dose and would likely not be clinically feasible. With current clinical CT systems, it is not 

uncommon though to reconstruct voxel sizes as small as 0.33 mm [91, 149]. The smaller voxel 

size would better resolve thin laminar structures in the proximal tibia and lead to the higher contrast 

between tissues. Nevertheless, when our specimens were imaged (2008), 0.5 mm isotropic voxel 

size was gold standard for clinical CT systems. Second, we used simplified isotropic material 

properties for modeling the trabecular bone. Trabecular tissue though has been shown to be at least 

orthotropic in mechanical properties [10, 50, 66, 148]. More recent studies, however, found 

moderate improvements in QCT-FE predictions of local stiffness and surface strains by accounting 

for trabecular anisotropy [98, 99, 150]. Third, subchondral-specific equations by Nazemi et al. 

explained the highest variance as these equations were back-calculated for samples employed in 

this study [110, 151]. Accordingly, it is required to further validate these equations with new 

samples. Fourth, the integration approach that we used to assign E to elements resulted in a 



47 

 

constant E for each element and disrupted the material continuity within the element volume. 

Accounting for material variability inside elements may enhance the performance of QCT-FE 

models [117, 122, 144-146]. Nevertheless, given the small size of elements used in study (0.9 mm 

edge length), we do not believe that the difference in predicted variance would be large.  

There were also some limitations related to mechanical tests performed earlier by Johnston et 

al [60]. First, the needle testing used to detect the subchondral surface may have been performed 

at regions with high porosity and/or low stiffness and led to inaccurate detection of the subchondral 

endplate. However, both visual tests and tactile feedbacks (e.g., ‘‘knocking” with blunt-ended 

forceps) verified the presence of cortical bone at indentation locations. Besides, imaged BMD 

values underneath detected indentation sites were in the range reported for cortex which further 

confirmed that indentation was performed at cortical regions. Second, needle testing may have 

imposed local plastic deformation at the subchondral surface and adversely affected stiffness 

measurements. Nevertheless, the localized deformation would be likely occurred surrounding the 

small needle tip and limited to the shallow depths beyond the subchondral surface. Moreover, 

cortical bone was later milled for 0.1 mm beyond the subchondral surface to create indentation 

sites, which would be also removed the damaged bone at the subchondral surface. Third, macro-

indentation at one site may have damaged adjacent indentation locations and altered stiffness 

values. However, it has been shown that the damage is limited within 0.2 mm of the side of the 

indenter [61], which is much less than the distance between our defined indentations sites (at least 

7 mm). Finally, indentation was performed on limited number of samples. More samples are 

required to further corroborate our findings.    

In conclusion, our results showed that separate modeling of cortical bone offered little 

improvement in QCT-FE-predicted stiffness at the proximal tibial subchondral surface (0% to 

+3%). The performance of the SM approach was dependent on the adopted E-BMD relationship, 

and the subchondral-specific equations by Nazemi et al. described the highest variance in 

measured stiffness with low errors. Based on the results of this study, we cannot recommend the 

SM approach for future studies and continuum-based modeling methods can be still regarded as 

appropriate for QCT-FE modeling of skeletal structures. It is though useful to employ continuum 

modeling alongside the image erosion algorithm to restrict detected cortical tissue to the bone 

peripheral region. Also, visualized cortical bone via SM revealed that PV artifacts corrupted the 
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cortical voxels. Techniques are required to restore intensity information at the PV layer, which is 

the objective of our future research.  
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CHAPTER 5 

5 EFFECT OF PARTIAL VOLUME CORRECTION  

5.1 Introduction 

Validation of QCT-FE models of subchondral bone has indicated moderate predictive accuracy 

[99, 109, 110]. This may be due to PV artifacts at the bone-cartilage interface, which results in 

blurring with CT images. The limited spatial resolution of clinical CT systems cannot resolve thin 

cortical structures as it has been shown that structures with thickness below 2.5 mm do not appear 

correctly within the CT image, with errors exceeding 100% for submillimeter cortices [31]. This 

is important because, with QCT-FE models, image blurring cause errors both in geometry 

construction and material assignment.  Averaging E for elements at the PV layer results in an E 

which is equivalent to soft-tissue or low-density trabecular bone, leading to inaccurate QCT-FE 

models of cortical structures. This is key because the anatomical distribution of cortical bone is a 

critical component in determining the response of the subchondral surface to joint contact forces 

and mediates the structural integrity of the overlying cartilage [8, 110]. Continuum QCT-FE 

models based on thresholding methods are unreliable for modeling the cortex when the structure 

is thin in relation to imaging resolution. Several methods have been proposed in the literature for 

restoring intensity information at the corrupted PV layer. Recently, a sophisticated numerical 

method “deblurring” has been suggested that produces improved estimates of cortical thickness 

below 0.3 mm for the craniomaxillofacial cortical network (CMFS) [116, 120]. QCT-FE models 

of CMFS skeleton based on this algorithm enhanced correlation between FE-predicted and in-vitro 

measurements of local strains (R2 from 73% to 86%) [114, 117]. It has been also suggested that 

intensity information at the PV layer could be restored based on characteristics of adjacent voxels 

unaffected by PV effects [117, 121]. The E at surface nodes has been also refined based on 

characteristics of inner nodes inside the FE model [122, 124]. Given the thickness of the PV layer 

at low resolution CT images, it may be also beneficial to refine E for all nodes located inside the 

PV layer. This can be accomplished by excluding PV corrupted voxels while mapping material 

properties from the CT lattice to the FE model.  
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The objective of this study was to evaluate QCT-FE predictions of stiffness acquired from 

different PV-corrected algorithms and original (uncorrected) images in relation to experimentally-

derived in-situ stiffness.  

5.2 Methods 

5.2.1 Samples 

The same specimens employed in Chapter 4 were used in this study. 

5.2.2 Partial volume correction    

Four different PV correction approaches were used to address PV artifacts at low-resolution CT 

images. The first approach employed blurred QCT images and used an image deblurring algorithm 

to address PV artifacts. The algorithm was applied to entire proximal tibia (Image Deblurring All, 

IDA). The second method applied the same algorithm but only to the cortical region (Image 

Deblurring Cortical, IDC). The third method also employed blurred QCT images, but in this case, 

an Image Remapping (IR) method was used to correct PV layers. The fourth algorithm addressed 

the PV layer while assigning mechanical properties from the CT lattice to an FE model. This 

method is referred to as Voxel Exclusion (VE), and is discussed in the FE modeling section of this 

chapter.    

 Image Deblurring All (IDA) 

The image deblurring algorithm used in this study has been developed at the Sunnybrook Research 

Institute (University of Toronto), and integrated in open source image processing software 3D-

Slicer [116, 120]. Theoretically, this technique can be used to improve the image quality of any 

image given that the point spread function (PSF) is uniformly distributed throughout the image. 

The deblurring method follows two main steps: (i) the intensity of cortical bone is assumed to be 

a rectangular function and a Gaussian PSF is estimated by minimizing the error between predicted 

and actual intensity pattern at the cortical region; and (ii) once the PSF is estimated, the image is 

deconvolved to retrieve non-blurred desired signal information. Using the deblurring module in 

3D-Slicer, in-plane PSF was first estimated by sketching three 1D perpendicular lines across thin 

cortical segments in an arbitrary x-y plane (the sagittal plane in our case). It was ensured that 

selected cortical segment was thin and that the intensity was constant throughout the thickness so 

that the intensity profile could be modeled by a rectangular function. Once an in-plane PSF was 

estimated (𝜎𝑥𝑦 ), the procedure was repeated in an arbitrary out-of-plane slice orthogonal to the x-
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y plane to estimate the out-of-plane component of PSF (𝜎𝑧). Estimated PSF was later used in 

Richardson Lucy deconvolution [120, 123] in order to retrieve non-blurred intensity information 

for the whole image.  

 Image Deblurring Cortical (IDC) 

Similar to IDA, non-blurred intensity information was initially obtained for the whole QCT image. 

In this case, however, deblurred data was used to model the cortical bone, whereas intensity 

information for trabecular bone was acquired based on the original CT image. A binary mask was 

created for the deblurred image using the half maximum height (HMH) method and region 

growing algorithm. Binary morphological operations (i.e., image erosion and Boolean subtraction) 

were employed to erode the binary mask with thickness of 3.5 mm [108] from the bone periosteal 

surface. We then detected cortical voxels within the eroded region with a global cutoff value of 

500 mg/cm3 [110]. The rest of voxels falling outside of the detected region were regarded as 

trabecular bone. 

  Image Remapping (IR) 

 Initially, original CT slices (Figure 5-1a) were segmented using the HMH method [107] to create 

a binary mask of the bony region. The PV-affected layer was eroded using the image erosion 

algorithm (3-by-3 structuring element) in the sagittal plane (Figure 5-1b). Boolean subtraction was 

then performed to create new binary masks for the PV layer and underlying bone. The BMD of 

the PV layer was calculated based on values of inner voxels which were presumably far enough 

from the corrupted PV layer. The K-nearest neighbors (KNN) algorithm [152] was adopted to find 

K closest neighbors to each voxel in the PV layer, and their BMD and distance were stored in 

separate matrices. The KNN algorithm identifies closets neighbors by calculating the Euclidian 

distance between the target voxel and adjacent voxels inside the bone, and returns corresponding 

BMD and distance values. The inverse distance weighting approach, with interpolation power of 

p [153], was then used to restore the PV layer by assigning a new BMD to each corrupted voxel 

(Figure 5-1c). The inverse distance weighting method was chosen to mitigate the effect of voxels 

located far from the cortical region as follows: 

𝐵𝑀𝐷𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =
∑ 𝐵𝑀𝐷𝑖 ∗ 1/𝑑𝑖

𝑝𝐾
𝑖=1

∑ 1/𝑑𝑖
𝑝𝑘

𝑖=1
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where BMDcorrected is the new BMD value assigned to the PV-affected voxel, K is the number of 

adjacent voxels selected for BMD mapping, 𝐵𝑀𝐷𝑖 is the BMD of the ith voxel, di is the Euclidean 

distance of the ith voxel from the target voxel, and p is the mapping coefficient which controls the 

degree to which the distance is weighted in interpolation. 

Given the wide inter- and intra-thickness variation of the PV layer in the proximal tibia, it was 

not possible to determine the exact number of voxels corrupted with PV artifacts. Therefore, we 

eroded up to three layers (i.e., three voxels from the periosteal surface) and evaluated FE 

predictions in relation to measured stiffness. Similarly, we evaluated different values of K (10, 15, 

20, 25 voxels) and p (2, 4, 6, 8) to reach the highest correlation between predicted and measured 

stiffness. 

 

Figure 5-1. The process flow for correcting BMD at the PV layer using an Image Remapping 

approach (IR). The PV layer (a); was first eroded using morphological operators (b). The BMD at 

the PV layer was then restored based on characteristics of inner voxels unaffected by PV effects 

(c). 

5.3 Model construction 

The procedure for model construction is similar to steps presented in Chapter 4 of this thesis for 

continuum QCT-FE modeling. Five models of each proximal tibia were created in this study either 

based on PV-corrected or original CT images:  

1. The first FE model of each proximal tibia was constructed based on intact original CT 

images (reference models).  

2. The second FE model of each sample was constructed based on deblurred images using 

IDA (Figure 5-2).  
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3. The third model was constructed based on deblurred images using IDC. 

4. The fourth model of each sample was constructed based on images obtained from IR.  

5. The last FE model was constructed based on a new QCT-FE mapping approach, termed the 

Voxel Exclusion (VE) method, as described in 5.3.2. 

 

Figure 5-2. The methodological sequence used in this study to construct FE models out of 

deblurred images (IDA). The image was deblurred by the estimation of point spread function (PSF) 

for the CT system followed by the Richardson Lucy deconvolution. The deblurred image was then 

used to constructed FE models using standard procedures. Quadratic tetrahedral elements were 

used to discretize the model before mapping material properties from the CT image to the FE 

model.  

5.3.1 Material definition 

Nazemi’s Subchondral specific equations for cortical (31360𝜌𝑄𝐶𝑇
3  [110]) and trabecular bone 

(820𝜌𝑄𝐶𝑇 [110]) were used to assign material properties from CT lattice data to the FE model. A 

global BMD threshold of 500 mg/cm3 was used to distinguish between the cortical and trabecular 

tissue [110].    



54 

 

5.3.2 FE modeling-Voxel Exclusion (VE) 

The voxel exclusion method (VE) allows PV correction in the material mapping stage and it is 

performed on intact original images. The model construction was similar to those described earlier 

for continuum QCT-FE modeling. The mapping, however, was performed such that PV corrupted 

voxels were excluded during integration (Figure 5-3). Image erosion and Boolean subtraction were 

used to erode the bone periosteal surface and create a binary mask for voxels located at the bone 

periphery (4 voxels equal to 2 mm). The visualized region contained low BMD cortical voxels 

affected by PV artifacts. The nodes located in the eroded region were identified, and their 

coordinate and number were stored in separate matrices. We subsequently determined voxels 

containing these nodes and a 1.5 mm3 volume of interest (VOI) was defined surrounding each 

voxel. The elastic modulus of the target node was calculated by the interpolation of E at 

surrounding voxels (within VOI) via the inverse distance weighting approach and excluding voxels 

with an E less than the user-defined threshold (4 GPa, equal to cortical BMD of 500 mg/cm3 [110]). 

If the VOI did not contain voxels above the user-defined threshold, the elastic modulus of 4 GPa 

was automatically assigned to the target node. The procedure repeated to assign E to all nodes of 

quadratic tetrahedral elements located at the eroded region. A constant E was then calculated for 

each element by the integration of elastic modulus field throughout the element volume. We 

followed standard procedures to assign E on nodes located outside of the eroded region (inside the 

bone): the elastic modulus of each node was calculated from the voxel containing that node, and a 

constant E was assigned to the element by integration.   
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Figure 5-3. The procedure used in this study to address PV artifacts with voxel exclusion (VE). 

Image erosion and Boolean subtraction were used to detect 2 mm of bone tissue at the bone 

periphery.  The nodes located inside the detected region were identified, and a 1.5 mm volume of 

interest (VOI) was defined surrounding each node (cyan square). The inverse distance weighting 

approach was then used to calculate the node elastic modulus (EN) based on E of voxels located 

inside the VOI (EV). Voxels with E less than 4 GPa were excluded from interpolation. The elastic 

modulus of nodes outside of the detected region (inside the bone) were calculated based on elastic 

modulus of the voxel containing that node. 

5.4 Model validation  

The calculated stiffness from reference models, IDA, IDC, IR, and VE were compared to measured 

stiffness in terms of R2 and RMSE%. 
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5.5 Results 

The reference model explained 81% of the measured stiffness variance with 12.4% error (Table 

5-1 and Figure 5-4). The slope of the regression line between FE-predicted and measured stiffness 

was not significantly different from unity (p > 0.05). Bland-Altman plots (Figure 5-4) indicated an 

underestimation of stiffness (the mean difference was significantly different from zero, p < 0.05). 

The slope of the regression line fitted on the Bland-Altman plot did not show any systematic error 

(The slope was not significantly different from zero; p > 0.05).  

The PV-corrected models with IDA explained 50% of measured stiffness variance with 76.4% 

error (Table 5-1 and Figure 5-5). The slope of the regression line was significantly different from 

unity (p < 0.05). The mean difference between FE-predicted and measured stiffness on Bland-

Altman plot indicated stiffness overestimation (p < 0.05). The slope of the regression line fitted on 

the Bland-Altman plot indicated systematic overestimation (p < 0.05).  

The IDC model explained 70% of measured stiffness variance with RMSE% of 23.3% (Table 

5-1 and Figure 5-5). The slope of the regression line was significantly different from unity (p < 

0.05). The Bland-Altman plots indicated that corresponding QCT-FE models overestimated 

measured stiffness, with increasing over-prediction at higher stiffness (mean difference and 

regression line slope both significantly different from zero, p < 0.05).  

With the IR method, the erosion of one layer (one voxel) from the bone surface, and the values 

of K=20 voxels and p=6 resulted in the highest predictive accuracy, with R2=81% and 

RMSE%=10.6% (Table 5-1 and Figure 5-5). The slope of the regression line was not significantly 

different from unity (p > 0.05). Bland-Altman plots indicated that corresponding QCT-FE models 

neither over- nor under-estimated measured stiffness (p > 0.05). The slope of the regression line 

in Bland-Altman plots was not significantly different from zero and did not show systematic errors 

(p > 0.05).  

The VE approach provided the R2 of 84% with 9.8% error (Table 5-1 and Figure 5-5). The 

slope of the regression line did not differ from unity (p > 0.05). Corresponding QCT-FE models 

neither over- nor under-estimated measured stiffness (p > 0.05). These models did not show any 

systematic errors (p > 0.05).  
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Table 5-1. R2 and RMSE% for the reference and PV-corrected models. PV-corrected models were 

constructed based on different PV-correction algorithms including: Image Deblurring All (IDA), 

Image Deblurring Cortical (IDC), Image Remapping (IR), and Voxel Exclusion (VE).  

Model R2 RMSE% 

Reference 

IDA 

IDC 

IR 

VE 

81% 

50% 

70% 

81% 

84% 

12.4% 

76.4% 

23.3% 

10.6% 

9.8% 

 

 

Figure 5-4. The linear regression analysis and Bland-Altman plot between FE-predicted and 

measured stiffness for the reference model. 
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Figure 5-5. The linear regression analysis and Bland-Altman plot between FE-predicted and 

measured stiffness for different PV correction methods evaluated in this study; Image Deblurring 

All (IDA), Image Deblurring Cortical (IDC), Image Remapping (IR), and Voxel Exclusion (VE). 
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5.6 Discussion 

This study evaluated different PV correction algorithms for QCT-FE modeling of local stiffness 

at the proximal tibia. Among algorithms evaluated in this study, exclusion of corrupted voxels 

while material mapping (VE) resulted in the highest predictions of measured stiffness for the 

following reasons: (1) this approach explained the highest variance in measured stiffness (R2= 

84%) with lowest errors (RMSE%=9.8%); (2) the slope of the regression line was not significantly 

different from unity; (3) the mean difference between FE-predicted and measured stiffness on the 

Bland-Altman plot was not significantly different from zero; (4) the slope of the regression line 

fitted on the Bland-Altman plot was not significantly different from zero. 

Our results indicated that the reference model underestimated measured stiffness. This could 

be explained by incomplete modeling of the subchondral bone in reference models, which resulted 

in low E elements at thin cortical regions and negatively affected the predictive accuracy. 

Correcting PV artifacts resulted in increased stiffness predictions at the subchondral surface as the 

weak cortical bone at the PV layer was replaced with a denser bone. Our findings are aligned with 

previous research which outlined the importance of PV correction in low-resolution CT images 

[14, 28, 29, 115, 117, 120, 154, 155]. Of the different PV correction methods, IDA resulted in the 

lowest accuracy and significantly overestimated measured stiffness. This contradicts previous 

findings which showed improved predictions of local strains using the same algorithm for CMFS 

and femoral structures [28, 117]. IDA estimated the PSF based on characteristics of cortical bone. 

The optimized PSF was then used in deconvolution to deblur the whole bone structure including 

cortical and trabecular regions. The deblurred image of trabecular bone indicated densities which 

were higher than the range reported for trabecular bone in the literature (0.8-1.7 g/cm3 vs 0.1-0.5 

g/cm3) [21, 110]. Given that we separated cortical and trabecular tissues with a global threshold of 

500 mg/cm3, all trabecular voxels were modeled with a cortical-specific equation which resulted 

in an E of 14-19 GPa. Stiffness at the proximal tibial subchondral surface is a structural property 

affected by both cortical and trabecular tissue, hence high densities at the trabecular region 

adversely affected FE-predicted stiffness at the subchondral surface. Conversely, the CMFS 

structure is comprised of thin cortical networks with trabecular bone forming only the small 

portion of the whole structure. Also, FE predictions at femoral bones were validated against in-

vitro strain measurements at bone metaphysis and diaphysis which contained dense cortical 

regions and are less affected by properties of the trabecular bone. To address this issue, we modeled 
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trabecular bone based on the original CT image and used the deblurred image to extract density 

information of the cortical region via the IDC method. IDC provided improved predictive accuracy 

with R2 of 70% and RMSE% of 23.3%. The performance of image deblurring method could be 

further improved by deriving an optimized PSF for trabecular bone and independently 

deconvolving cortical and trabecular structures.  

The accuracy of the image remapping method (IR) was similar to the reference model (R2=81% 

vs 81%) with slightly lesser errors (RMSE%= 10.6% vs 12.4%). As opposed to the reference 

model, this approach did not indicate any underestimation of stiffness. IR corrected the PV layer 

by mapping densities from adjacent voxels unaffected by PV artifacts. The thickness of PV layer 

used in image erosion, the number of voxels used for density mapping (K), and the power of 

interpolation (p) affected predictive accuracy acquired with this approach. These parameters, were 

evaluated independently. More robust optimization schemes (e.g., neural network and Nelder-

Mead optimization [151]) could be performed to consider interaction effects between these 

parameters and derive optimal values. Optimization could also be performed on each proximal 

tibia independently to derive subject-specific values for each sample. Our findings are similar to 

previous studies which employed the same algorithm to address PV artifacts in CMFS and femoral 

structures though the improvements are small [117, 121]. Nevertheless, our results showed that 

this method had potential use for improved QCT-FE modeling of the subchondral bone region.  

Voxel exclusion (VE) outperformed other models evaluated in the study. VE is a novel 

approach for PV correction which corrects PV layers in the mapping stage, hence this method does 

not require complex PV correction algorithms to be performed on CT data. VE moderately 

improved predictive accuracy (+3%) and resulted in the lowest RMSE% (9.8%). Similar 

algorithms have been presented in the literature to correct PV artifacts while material mapping. 

For instance, surface nodes were identified, and mechanical properties were assigned based on E 

of inner nodes [122, 124]. This approach, however, does not necessarily address PV artifacts in 

the FE model but more likely addresses geometrical uncertainties which result in surface nodes 

falling outside of the CT lattice. Here, we defined the binary mask for the cortical bone by 2 mm 

in-plane erosion of the bone periosteal surface. We then applied VE on nodes located in this region 

for PV correction. The thickness of the defined binary mask was relatively large in relation to 

thickness of cortex in the proximal tibia. This resulted in assigning a relatively high E on voxels 
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at the cortical-trabecular boundary. Nevertheless, the elastic modulus was the average of cortical 

and trabecular bone and close to the upper range of E reported for trabecular tissue (4 GPa) [33].  

In addition to limitations outlined in Chapter 4, this study has limitations related to our element 

size, choice of E-BMD equations, physical validation, and the mapping strategy. First, we used a 

global element edge length of 0.9 mm to discretize our FE models. The 0.9 mm element edge 

length is high relative to thickness observed in the cortical region (0.01-3.3 mm) [38, 39] and might 

negate improvements from PV correction. It is possible to use automatic meshing algorithms with 

small elements at bone periphery and larger elements in the trabecular region. Though, when 

applying this meshing method on reference QCT-FE models, we did not observe any improvement 

in predictive accuracy. It is though necessary to evaluate this meshing algorithm along with PV 

corrected models in the future. The proposed separate modeling approach (SM) in Chapter 4 of 

this thesis could be also applied to address this limitation and is worth investigation in future 

studies. Second, we only used one set of E-BMD equation for modeling the cortical and trabecular 

bone and employed a single global threshold to differentiate between these regions. The 

performance of PV correction algorithms has been shown to be dependent on the adopted E-BMD 

relationship [121]. However, equations used in this study were specifically derived for the 

subchondral region [99], and we do not believe that using E-BMD equations specific to other 

anatomical sites will outperform subchondral specific equations. Nevertheless, optimizing E-BMD 

equations and a threshold value for each sample or each indentation location might enhance QCT-

FE predicted stiffness at the subchondral surface. Third, we did not directly validate thickness and 

intensity of cortical bone acquired from different PV correction algorithms. It is required to do this 

using high-resolution images or standard phantoms. Our validation though was based on in-situ 

stiffness measurement at the subchondral surface, which was directly affected by properties of 

underlying cortical bone. Hence, this validation procedure provides an adequate metric for 

evaluating accuracy of acquired cortical segments. Fourth, the material mapping used in this study 

resulted in a constant E assignment for each element. The variation of elastic modulus across the 

element volume can be accounted by directly mapping an E on element integration points, which 

is the direction of our future study.  

In conclusion, PV correction has potential to improve QCT-FE predictions of stiffness at the 

subchondral region. Among different PV correction algorithms compared in this study, excluding 

corrupted voxels during the material mapping stage (VE) led to the highest predictions of local 
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subchondral bone stiffness at the proximal tibia. However, more validation work is required to 

confirm the thickness and intensity profile of acquired cortical segments with high-resolution 

images. Further enhancement might be achieved by using smaller voxel sizes and automatic mesh 

generation algorithms with smaller elements.  
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CHAPTER 6 

6 EFFECT OF MATERIAL MAPPING: A FEASIBILITY STUDY 

6.1 Introduction 

QCT-based FE modeling of human bones is increasingly used to study the biomechanical behavior 

of skeletal structures [27, 84, 102]. BMD is related to E using E-BMD relationships available in 

the literature [21], with E assigned to the FE model using a proper mapping method. The adopted 

mapping approach might alter mechanical properties of the FE model and, therefore it affects the 

overall predictive accuracy [156]. Early algorithms averaged the values at element nodes to 

calculate an element elastic modulus [133, 140]. This method resulted in ill-conditioned FE models 

when the element was larger than the voxel size. The second approach averaged E of voxels inside 

an element volume in order to assign a constant E to each element. This approach was fairly 

difficult to implement and increased the computation time [141]. A more recent method is to 

identify an E at element nodes and integrate the elastic modulus field throughout the element 

volume (referred to as constant-E method) [34]. This improved interpolation scheme has been 

shown to enhance the accuracy of FE-predicted strains in femoral bones [143]. We recently 

developed and validated QCT-FE models of the human proximal tibia to predict local subchondral 

bone stiffness (Chapter 4 & 5). We used the constant-E approach to assign mechanical properties 

to the FE model. While QCT-FE-predicted stiffness indicated good predictive accuracy in 

measured stiffness variance (R2=84%, RMSE%=9.8%), it required a large number of elements to 

reconstruct the complex bone geometry and resolve heterogeneous mechanical properties, making 

these models rather impractical for clinical applications. One potential solution was to average 

elastic moduli within certain intervals (known as material binning) to reduce material groups 

within the FE package. Though, this resulted in averaging of E in elements and smoothed the 

mechanical properties. Also, application of the constant-E method disrupts continuity of material 

properties and may adversely affect the final predictive accuracy. More advanced mapping 

methods have been recently proposed to address these limitations by assigning mechanical 

properties directly to the element Gauss integration points (referred to as the Gauss-point method) 

[145, 146, 157]. This method may allow the application of larger elements by accounting for spatial 

variation of mechanical properties throughout the element volume. The approach has been 
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successfully validated against surface strain predictions with QCT-FE models of skeletal structures 

such as the pelvis and femur [145, 157-159]. However, it is unclear if this advanced mapping 

method can enhance the accuracy and convergence behavior of QCT-FE predicted stiffness at 

proximal tibial subchondral surface. The objective of this study was to evaluate convergence and 

accuracy of constant-E and Gauss-point mapping methods in relation to the experimentally 

measured stiffness at the proximal tibial subchondral surface.  

6.2 Methods 

6.2.1 Specimens 

A selection of specimens were acquired from the dataset summarized in Chapter 4. Our previous 

findings indicated large variability in QCT-FE predicted stiffness with lateral compartments. 

Hence, for this study, four proximal tibia medial compartments were used (3 males and 1 female, 

age±SD: 77.7±5.1). 

6.2.2 Finite element modeling 

A smoothed volume was generated and imported into ABAQUS. FE models of tibial 

compartments were constructed using quadratic tetrahedral elements with uniform edge length 

ranging from 2.5 mm to 0.9 mm. Cortical and trabecular bone were modeled using the subchondral 

specific equations reported by Nazemi et al. [110] and separated using a global BMD threshold of 

500 mg/cm3. Two different material mapping strategies were used to import material properties 

from QCT images into FE models; (1) Constant-E approach: This approach was performed by 

modifying the ABAQUS source file (input file) using an in-house Matlab code. The FE nodal 

values were initially identified from voxels containing these nodes. The constant elastic modulus 

was subsequently calculated for the element by integrating the elastic modulus field throughout 

the element volume. The elastic modulus field was defined using element shape functions, and the 

integration was performed in volume coordinates for simplicity; and (2) Gauss-point method: With 

this approach, material properties were directly assigned to each Gauss integration point. As the 

number of Gauss points inside each element was more than one (four Gauss points for quadratic 

tetrahedral elements), the spatial variation of elastic modulus was accounted for. The elastic 

modulus at voxels was calculated and read into ABAQUS via user-defined subroutine 

(UEXTERNALDB) at the beginning of the analysis. The coordinates of element Gauss points were 

extracted using the “UMAT” subroutine. The elastic modulus at element Gauss points was 
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subsequently assigned from voxels containing these points. The “UMAT” subroutine was 

programmed in FORTRAN and stiffness, strain, and stress were calculated at each integration 

point via the static analysis.     

6.3 Analysis 

The convergence behaviour was assessed by determining the average absolute percent difference 

in stiffness between different element sizes. A difference less than 3% was set as the convergence 

limit [136]. The percent difference was calculated via: 

(∑ |
𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠𝑆𝑀𝐴𝐿𝐿 − 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠𝐿𝐴𝑅𝐺𝐸

𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠𝐿𝐴𝑅𝐺𝐸
|)/𝑁 

where 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠𝑆𝑀𝐴𝐿𝐿 and 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠𝐿𝐴𝑅𝐺𝐸 denote predicted stiffness at each indentation location 

with a small and large mesh size, respectively, and N is the number of indentation locations.  

 The calculated stiffness from different mapping methods was compared to measured stiffness 

in terms of R2 and RMSE% to assess model accuracy. 

6.4 Results   

The average number of elements ranged between 35000 and 280000 for the coarsest and finest 

mesh, respectively. Figure 6-1 indicates the evolution of error calculated between consecutive 

mesh sizes. The constant-E approach converged with a mesh size of 1 mm with a percentage 

difference of 2.6%. The percentage difference for the Gauss-point method was continuously below 

3% for edge lengths smaller than 2.5 mm. Hence, the edge length of 2 mm was deemed as the 

converged mesh size for these models. The RMSE% with respect to measured stiffness was 

ranging between 8.9%-13% and 8.5%-9.3% for constant-E and Gauss-point methods, respectively 

(Figure 6-2). The R2 varied between 89%-91% and 90%-92% for constant-E and Gauss-point 

methods, respectively. 
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Figure 6-1. Average absolute percent difference between two consecutive mesh sizes for constant-

E and Gauss-point models. The percentage of less than 3% was considered as the convergence 

criteria.   

 

Figure 6-2. The root mean squared error (RMSE) between FE-predicted and measured stiffness 

normalized to the maximum measured stiffness (RMSE %) for different mesh sizes and mapping 

methods evaluated in this study.  
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6.5 Discussion 

Two different mapping methods were used in this study to construct QCT-FE models of the human 

proximal tibia. The first method mapped material properties on FE nodes and assigned a constant 

value to each element. The second approach mapped an E directly on Gauss integration points. 

The predicted local stiffness from both models was compared to in-situ stiffness measurement to 

assess model accuracy. Both methods successfully predicted stiffness at the subchondral surface.  

The constant-E and Gauss-point methods reached converged solution with the mesh size of 1 

mm and 2 mm respectively. The computation time for the 2 mm mesh was an order of magnitude 

less than that of the 1 mm mesh size (30 min for 2 mm mesh size vs 180 min for 1 mm mesh size). 

Hence, Gauss-point approach has potential to reduce the computation cost for QCT-FE modeling 

of complex skeletal structures.  

The predictive accuracy was similar for both methods at the converged mesh size. However, 

the Gauss-point method indicated a high degree of accuracy with a coarser mesh (2 mm vs 1 mm) 

and less computation time. This is more likely due to the continuity of mechanical properties inside 

the elements with the Gauss-point method which allows the FE model to capture abrupt material 

changes in the subchondral bone with larger elements. Our results are comparable with other 

studies which mapped mechanical properties directly to the element Gauss points and reported 

superior convergence and predictive accuracy of the Gauss-point method relative to the constant-

E approach [145, 157-159].  

Besides shorter computation time, there were also other advantages to assigning material 

properties to element Gauss point. First, model implementation was more straightforward as this 

approach took advantage of the FE solver subroutines and did not require custom programming. 

Second, with the Gauss-point method, both material mapping and the FE solution were carried out 

within the FE package, whereas with the constant-E approach it was required to first generate the 

main input file using an in-house code and then submit this new file for analysis in the FE package, 

which added to the overall analysis time. Third, Gauss point density could be altered without 

changing the mesh making the model modification easier. Fourth, the approach did not require 

material binning and prevented averaging of material properties in the FE model.  

It is noteworthy to say that ABAQUS employs four Gauss points to derive the stiffness matrix 

for the quadratic tetrahedral element. This is the minimum number of Gauss points required for 

numerical integration to reach the exact solution. Increasing the number of Gauss points might 
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lead to converged results with larger elements. However, care should be taken to ensure that 

geometrical details are resolved with the employed coarser mesh. 

In conclusion, our analysis showed that mapping material properties directly on Gauss 

integration points was a good surrogate for conventional constant-E methods. The approach 

reduced computational cost and reached higher predictive accuracy with large elements by 

accounting for material variability throughout the element volume. It is though required to conduct 

more validation studies with larger samples and on different structures to further assess the 

predictive accuracy.  
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CHAPTER 7 

7 DISCUSSION 

7.1 Overview of findings 

Among non-invasive tools, QCT-FE models have indicated a high potential to measure the local 

structural stiffness of proximal tibia in living people [99, 109, 110]. When modeling bone at joint 

ends, however, limited resolution and relatively large voxel size of clinical CT systems make it 

challenging to resolve thin cortical regions leading to PV artifacts and low contrast between the 

cortical and trabecular bone. Hence, thin cortical areas do not appear correctly in the standard 

QCT-FE models [115, 117].  This research sought to address this problem. 

A key accomplishment of Chapter 4 (separate modeling of cortical and trabecular bone) was 

to present and validate a framework for segmentation and modeling of thin cortical structures to 

non-invasively predict local structural stiffness at the subchondral surface. Surprisingly, separate 

modeling offered little improvement in predicting variance in measured stiffness. Our results also 

indicated that the performance of this approach depended on employed E-BMD relationships, with 

the largest variance explained by subchondral-specific equations [110]. This research also 

indicated that continuum QCT-FE models based on thresholding could be regarded as sufficient 

for modeling long bones. 

A key achievement of Chapter 5 (effect of partial volume correction) was that we indicated 

that PV-correction has potential use for improving QCT-FE modeling of the subchondral bone 

region. Another accomplishment was the presentation of a new and convenient technique for PV 

correction at thin cortical regions of the subchondral bone, specifically the voxel exclusion (VE) 

method. Importantly, voxel exclusion method described the largest variance in measured stiffness 

and was relatively easy to implement when compared to the algorithms which restored the QCT 

image volume.   

A key accomplishment of Chapter 6 (effect of material mapping approach) was that we 

indicated the feasibility of the Gauss-point QCT-FE mapping technique for modeling subchondral 

bone stiffness. This approach accounted for the spatial variation of elastic modulus inside 

elements, and thereby converged with a larger mesh size. The predictive accuracy at the converged 

mesh was comparable to conventional mapping methods; though, the Gauss-point approach 
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achieved this accuracy with larger element sizes. This is important as QCT-FE models with larger 

elements require lesser computation time, making this technique a potential clinical research tool. 

7.2 Comparison to existing findings 

The previously mentioned depth-specific imaging method and continuum QCT-FE models are 

existing non-invasive tools to assess subchondral bone stiffness in the literature [46, 75]. 

Compared to depth-specific imaging method, QCT-FE models with partial volume correction 

improved stiffness prediction up to +17%.   

PV-corrected QCT-FE models explained 50%-84% of the variance with RMSE% between 

9.8% and 76.4%, depending on the employed algorithm for PV correction. There is no similar 

study in the literature for direct comparison. Nevertheless, our findings are aligned with studies 

performed on CMFS and femoral structures that indicated the importance of PV correction in thin 

cortical regions [28, 117].  

Mapping the elastic modulus directly on element integration points enhanced convergence 

behavior and predictive accuracy of QCT-FE models. Compared to the constant-E method 

generally used with standard QCT-FE models, the Gauss-point approach converged with larger 

elements (2 mm vs 1 mm) and indicated comparable accuracy (in terms of R2 and RMSE%) to the 

constant-E approach. The computation time for the Gauss-point method was less than constant-E 

approach (30 min vs 180 min). Our results indicated the high feasibility of Gauss-point approach 

and corresponding QCT-FE models in predicting subchondral bone stiffness at the proximal tibia. 

Our findings are aligned with previous research which reported the superior convergence behavior 

and accuracy of Gauss-point approach for modeling femoral and pelvic structures [145, 146, 157, 

159]. 

7.3 Strengths and limitations 

This research has several strengths. First, our defined SM approach was able to visualize the 

cortical region and ensured modeling of thin cortical structures with cortical-specific equations. 

SM also prevented averaging in meshing as the cortical and trabecular structures were modeled 

and meshed independently. The second strength of this thesis pertains to the broad evaluation of 

existing tissue separation and modeling methods to evaluate local structural stiffness at the 

proximal tibial subchondral surface. We evaluated three different tissue separation (semi-

automatic segmentation with manual correction, global threshold, and image erosion) and two 

different modeling methods (separate modeling and continuum modeling) alongside three sets of 
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E-BMD relationships from the literature. To our best knowledge, this is the first study that directly 

compares different segmentation and QCT-FE modeling methods for studying structural properties 

in long bones. Third, visualizing the cortical bone allowed us to directly assess the density range 

in this structure. The existence of low-density voxels in our visualized region directed us to our 

second objective which aimed to correct PV artifacts at the cortical region. Fourth, we performed 

an extensive evaluation of existing PV correction algorithms and PV-corrected QCT-FE models 

in relation to standard modeling methods and in-situ stiffness measurements. Also, we proposed a 

new approach to correct PV artifacts at QCT-FE models constructed form low-resolution CT data: 

the Voxel Exclusion (VE) method. Our approach outperformed existing PV-correction methods 

and did not require sophisticated image processing analysis. Fifth, for the first time, we applied 

the element-based material mapping method to construct QCT-FE models of the proximal tibia. 

We indicated high feasibility of this approach in modeling local structural stiffness at the 

subchondral surface.  

This thesis suffers from limitations not previously mentioned. First, we used a single threshold 

with continuum QCT-FE modeling to delineate between cortical and trabecular tissues for all our 

samples. The performance of E-BMD relationships is linked to the adopted cutoff value. Hence, 

optimizing the threshold value for each sample or each indentation location may lead to improved 

predictions of local stiffness at the proximal tibia. Though, it is unclear how this might be 

accomplished. Also, the threshold value pertains to the densitometric conversion equation between 

the ash density and BMD. Here, we assumed equivalence between these densities; though, the 

equation for each sample may vary depending on the amount of fat or blood at the bone tissue. We 

suggest deriving subject-specific conversion equation and threshold value for future studies (e.g., 

via the back calculation approach). Second, the image deblurring algorithm used in this study was 

specifically developed for CMFS structures. The PSF for the CT system was optimized based on 

characteristics of the cortical region and then used to deconvolve the whole image. This might be 

responsible for the observed out-of-range trabecular densities in the deblurred image. Optimizing 

PSF for trabecular bone and independent deconvolution of two regions may enhance the 

performance of image deblurring method in deblurring structures with significant trabecular bone 

such as the proximal tibia. Third, the density mapping method used in this study employed the 

inverse distance weighting interpolation to map densities from inner layers to the subchondral 

bone. The performance of the interpolation depended on several parameters (thickness of eroded 
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PV layer, number of adjacent voxels, and the power of interpolation). We altered individual 

settings to reach the highest R2 between FE-predicted and measured stiffness. A more robust 

optimization scheme is required to consider interaction effects between parameters to derive 

subject-specific optimized values. Fourth, the thickness of bone tissue used in voxel exclusion 

method (4 voxels, 2 mm) was relatively large compared to the thickness of cortex at the 

subchondral surface, which resulted in the appearance of high E elements at the cortical-trabecular 

boundary. Nevertheless, the E was close to the upper range reported for the trabecular tissue in the 

literature (4 GPa) [15, 21, 110].  Finally, parameter settings for PV-correction algorithms were 

specifically adjusted for the samples used in this study. Applying the same methods on other set 

of samples may need specific parameter adjustments.   

7.4 Conclusions 

1- The proposed SM approach in this study for modeling cortical regions is time-consuming 

and offers little improvement in FE-predicted subchondral stiffness. Hence, standard 

procedures (continuum models with thresholding) could be still considered as acceptable 

for QCT-FE modeling of long bones.  

2- Among evaluated PV correction algorithms in this study, the voxel exclusion method 

resulted in the highest explained variance and lowest errors for predicting stiffness at the 

subchondral surface. This method was easy to implement and did not require complicated 

image processing steps. We suggest using this algorithm in future studies to construct 

QCT-FE models of long bones. 

3- The image deblurring algorithm is not efficient for correcting PV artifacts at the proximal 

tibia which is mostly comprised of trabecular tissue.  

4- When compared alongside the standard constant-E mapping approach, the Gauss-point 

technique is an effective QCT-FE mapping method, and resulted in a high degree of 

accuracy and less computation time in predicting stiffness at the proximal tibial 

subchondral bone 

7.5  Future work 

1- In this study cortical and trabecular bone were differentiated using a single BMD threshold. 

It was observed that the choice of threshold altered the level of accuracy and errors obtained 

from different E-BMD equations. In future studies, it is necessary to derive threshold 

values specific to each sample or each indentation location. This can be performed using a 
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back calculation method against experimental measurements to achieve optimal threshold 

values.  

2- The performance of image remapping method (IR) employed in this study depended on 

parameters used in interpolation (i.e., number of adjacent voxels and power of 

interpolation). We altered these parameters independently to achieve the highest 

correlation between FE-predicted and measured stiffness. Future work can derive 

optimized values using robust optimization techniques (e.g., Nelder-Mead). 

3- In this study we used a global mesh size of 0.9 mm to discretize our models. This mesh 

size was relatively large compared to the cortical bone thickness at the subchondral region 

and may have negated improvements from PV correction. For future studies, we suggest 

the application of automatic meshing algorithms with small elements at bone periphery and 

larger elements inside the bone. 

4- This study assumed isotropic mechanical properties for the trabecular bone. Previous 

research indicated moderate improvement in predictive accuracy when accounting for 

trabecular anisotropy [98, 99, 150]. However, previous anisotropic models were 

constructed with blurred images. For future studies, it worthwhile developing anisotropic 

models based on PV-corrected CT images.  

5- This study validated QCT-FE models against in-situ stiffness measurements at the 

subchondral bone. It is unknown if developed QCT-FE models can represent full-field 

deformation inside the bone. Internal strains can be measured using image registration 

techniques such as Digital Volume Correlation (DVC). This method employs time-lapsed 

high-resolution images and seeks the affine transformation matrix between image stacks. 

DVC provides good experimental framework to estimate full-field strain distribution which 

could be then used to validate QCT-FE models. These measurements will shed more light 

on deformation mechanism at the proximal tibia and may lead to more robust QCT-FE 

models of bone at joint ends. 
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APPENDIX 

 

Figure A-1. Marginal osteophytes at the bone periphery. These regions contained voxels with 

negative BMD. The elastic modulus of 0.1 MPa was assigned to these voxels. 

 

Figure A-2. The density histogram of segmented cortical regions delimitated via semi-automatic 

segmentation with manual correction. Approximately 70% of voxels had BMD values below 0.4 

g/cm3. Voxels with negative BMD pertained to air and marginal osteophytes. These voxels were 

not included in E-BMD conversion, and their E was set as 0.1 MPa. 
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