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ABSTRACT 

 

 Successful axon regeneration appears to depend on the development of an injury 

response.  Dorsal root ganglion neurons exemplify the necessity of this injury response in a 

unique way.  Peripheral nerve transection leads to development of an injury response and 

successful regeneration whereas central root transection does neither.  The injury response may 

involve extracellular and intracellular pathways.  To investigate the extraneuronal influences, we 

performed nerve transection of either the central or peripheral axon branches and studied the 

expression of GAP-43, a key growth associated protein, and the transcription factors ATF3, c-

Jun, and STAT3.  Our results show that the responses to peripheral versus central nerve 

transection are fundamentally different.  Peripheral but not central nerve transection increases 

GAP-43, ATF3, and c-Jun expression.  STAT3, however, is upregulated as a result of central but 

not peripheral nerve transection.  To investigate potential intracellular signalling pathways, we 

applied FGF-2, an extracellular mitogen, or an analog of cAMP, an intracellular second 

messenger to the cut end of the peripheral axon.  Our results indicate that FGF-2 and cAMP act 

as activators of GAP-43 expression.  On the other hand, FGF-2 and cAMP act to downregulate 

the expression of ATF3.  FGF-2 upregulates c-Jun and the activated form of STAT3.  

Paradoxically, the regulation of GAP-43 expression by cAMP or by FGF-2 in vivo shows 

opposing results from the previously reported in vitro studies.  Our present results suggest that 

the peripheral nerve injury response may be governed by at least three different signalling 

pathways.   
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CHAPTER 1 
1.0 INTRODUCTION 

 
Axonal injury as a result of axotomy, crush, chronic constriction ligation, or 

inflammation induces biochemical and molecular alterations in the neuron collectively 

referred to as the injury response (Stoll and Muller, 1999).  This type of response occurs 

readily in mammalian peripheral nervous system (PNS) neurons (Bosse et al., 2006; 

Bosse et al., 2001), but to a much lesser extent in central nervous system (CNS) neurons 

(Bovolenta et al., 1992; Hagg, 2007). PNS neuronal response to injury is robust and leads 

to successful repair and regeneration (Monaco et al., 1992); whereas the injury response 

that occurs in CNS neurons is weak or absent, a fact that may contribute to the weak or 

absent regenerative capacity of CNS neurons (Fawcett, 1992; Tatagiba et al., 1997; Teng 

and Tang, 2006). A comprehensive understanding of the nature of the PNS injury 

response is yet to be attained.  It is hoped that increased knowledge of the cellular 

mechanisms that mediate the injury response and lead to successful PNS regeneration 

will lead to unlocking the mysteries of poor regenerative response in the CNS. 

 

1.1 Peripheral nerves. 

 The PNS includes all nerves that lie peripheral to and outside the pial covering of 

the CNS.  Peripheral nerves contain motor, sensory and autonomic axons.  Peripheral 

spinal nerves are covered by an outer connective tissue covering called the epineurium.  

Inside the epineurium, the collagenous perineurium covers bundles of individual fibers.  

Axons are covered by an intrafascicular connective tissue called the endoneurium. The 

endoneurium contains fibroblasts, macrophages and mast cells.  Peripheral nerves are 

richly supplied by blood vessels.  The presence of macrophages in the endoneurium and 
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the rich blood supply are indispensable components of the regenerative response to injury 

of the peripheral axon branch (Michael-Titus et al., 2010). 

 Axons within the nerve are intimately associated with Schwann cells along their 

entire length.  These Schwann cells enclose the axons either with a multi-layer myelin 

sheath, or with a simpler ensheathing arrangement.  Schwann cells also produce an 

organized extracellular matrix in the form of a basal lamina (Kandel and Jessel, 2000). 

 

1.1.1 Structure and organization of the dorsal root ganglion. 

Dorsal root ganglia (DRG) are aggregates of sensory neurons located dorsally on 

either side of the spinal cord. These sensory neurons are unique in that they are devoid of 

dendrites typically seen in multipolar neurons, but instead have a single axon that 

bifurcates to form two axon branches at a short distance from the cell body.  The longer 

branch extends into the periphery and forms the sensory endings in the skin, muscle, 

viscera, tendons, and joints and other organs, and the shorter branch enters the spinal cord 

through the dorsal root entry zone (DREZ) to form synapses on CNS neurons (Mescher, 

2009). 

These two axonal branches, though they originate from the same neuronal cell 

body, respond to injury in dramatically different ways. The peripheral branch has an 

intrinsic capacity to regenerate readily following injury, resulting in functional recovery.  

However, the central branch appears to have a lower capacity to regenerate if it is injured. 

This difference in regenerative capacity appears to be largely intrinsic (discussed below), 

but the cellular mechanisms responsible for this difference are poorly understood.    The 

fact that DRG neurons have two axon branches with fundamentally different injury 
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response properties provides a unique opportunity to perform insightful experiments.  

Each axon branch can be manipulated individually, simultaneously, or at a spaced time 

interval.  Likewise, changes in regenerative ability can be examined independently in 

each axon branch (Kandel and Jessel, 2000). 

Early in embryonic development the DRG neurons start out with a bipolar 

morphology.  Later, they undergo a fundamental morphological change, termed pseudo-

unipolarization, to assume their mature pseudounipolar form. Specifically, on the 

fourteenth day of rat gestation, the vast majority of neurons are bipolar and spindle-

shaped.  As development proceeds, the initial portions of the central and peripheral 

neuronal processes gradually approach each other and fuse to form a common initial 

portion. Finally, at about the eighteenth day of gestation, the cytoplasm of this common 

initial portion becomes thinner and elongates to form the stem process of the mature 

pseudounipolar neuron (Matsuda et al., 1996; Matsuda et al., 2000; Matsuda and Uehara, 

1984; Pannese, 1974).  Little is understood about the developmental events that confer 

distinct identities on the common initial segment of the axon, or on the peripheral and 

central axon branches. 

Morphometric analysis reveals that mature DRG neurons are endowed with small 

perikaryal projections that are enveloped by satellite cells (Pannese, 1981) a non-neuronal 

cell type found in ganglia, but not in the nerves.  These projections are more numerous on 

the surface of the mature than on that of premature bipolar neurons and are believed to 

increase in number as the neuronal cell bodies grow larger. The perikaryal projections 

increase the neuronal surface area and neuron-satellite cell interface and improve the 

efficiency of metabolic exchange between these two cell types (Matsuda et al., 2000).  
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Under the light microscope, DRG neuronal cell bodies, devoid of dendrites, 

appear as large cells with large, centrally located nuclei displaying prominent nucleoli.  

Within a given DRG, there is heterogeneity in the size of the neurons.  In the rat, DRG 

neurons can range between 15 – 100 µ in diameter.  The two main morphological types 

of sensory neurons, large light (LL) and small dark (SD) neurons are intermixed within 

the ganglion (Hanani, 2005; Lawson, 1992; Price, 1985; Zochodne, 2008).  According to 

the presence of Nissl substance (rough endoplasmic reticulum) LL neurons appear to be 

large and have less Nissl substance and thus appear and are classified as light.  On the 

other hand, SD neurons appear to be small with higher concentrations of Nissl substance, 

and thus appear and are classified as dark.  LL/SD neurons can also be subdivided on the 

basis of conduction properties. The axons of SD neurons are classified as C fibers (non-

myelinated, slow conducting), whereas the axons of LL neurons are classified as A types 

(myelinated, fast conducting).  Neurons within the A type are further classified as Aα,  

Aβ, and Aδ (Millan, 1999).  Many of the SD cells are nociceptive and they function 

mainly in thermo- and mechanoreception, whereas LL neurons are low threshold 

mechanoreceptors (Lawson, 1992).   

 

1.1.2 Biochemical markers of DRG neurons. 

The previous LL and SD classification of DRG neurons is based on size and 

morphological appearance.  However, with the advent of molecular biological 

techniques, a more current classification of DRG neurons has been in use based on 

specific markers.  DRG neurons do not receive synapses; they are, however, endowed 

with receptors for numerous neurotransmitters (Devor, 1999; Julius and Basbaum, 2001).  
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Additionally, DRG neurons express a diverse array of peptides, factors and specific 

biochemical markers.  The expression of these factors set the stage for the biochemical 

classification of DRG neurons.  Based on neurochemistry, morphology, trophic 

requirements and sensory modalities, DRG neurons are thus classified into three major 

types: small, medium, and large neurons. 

Small DRG neurons are associated with C and Aδ axons.  These small neurons 

selectively express peptides such as endothelin 1 (ET1), galanin, nociceptin, 

somatostatin, Substance P (SP), pituitary adenylate cyclase activating polypeptide 

(PACAP) , and vasoactive intestinal polypeptide (VIP).  Small DRG neurons also express 

specific receptors such as the α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate  

(AMPA)- and kainate-type glutamate receptors, bradykinin receptor (B2), histamine 

receptor (H1), epidermal growth factor receptor (EGF), fibroblast growth factor 2 (FGF-

2) receptor, neurokinin-1 receptor (NK1), somatostatin receptor (SSTR2a), purigenic 

receptor (P2X3), galanin receptor (GAL2), endothelin A receptor (ETA), and  glial cell 

line-derived neurotrophic factor (GDNF) family receptor (GFRα3).  Small DRG neurons 

express ion channels including bradykinin, calcium-activated potassium channel, L and 

N-type calcium channels, potassium channel (Kv1.4), sodium channel (Nav1.9), Naβ3, 

and members of the transient receptor potential cation channels including TRPA1, 

TRPM8, TRPV1, TRPV4, TRPV3 for a review please see (Zochodne, 2008). 

Medium DRG neurons express calcitonin gene-related peptide (CGRP).  The 

specific receptors expressed by this class of neurons are tropomyosin-related kinase A 

(trkA), p75, GFRα1, GFRα2, and rearranged during transfection receptor (RET).  Other 

receptors are also include a GDNF family coreceptor, µ opioid receptor (MOR), δ opioid 



6 
 

receptor (DOR), κ opioid receptor (KOR), and opioid-like receptor 1 (ORL1) and 

P2X2/3.  Small-to-medium neurons also express sodium channel proteins Nav 1.7, 1.8 

reviewed in (Zochodne, 2008).  

Small diameter DRG sensory neurons that are nociceptors can be divided into two 

populations based on neurochmistry: isolectin B4 IB4-positive nonpeptidergic neurons, 

and IB4-negative peptidergic neurons (Stucky and Lewin, 1999).  IB4-positive neurons 

depend on glial-derived neurotrophic factor (GDNF), whereas IB4-negative neurons 

depend on NGF for survival during postnatal development (Molliver et al., 1997). IB4-

positive neurons are characterized by longer-duration action potentials than IB4-negative 

neurons. This difference in electrophysiological properties expressed by IB4-positive and 

IB4-negative small neurons may contribute to their distinct functions especially in 

neuronal response to injury (Fang et al., 2006; Stucky and Lewin, 1999).  

 Most of the neurons in the small and medium size groups are peptidergic and 

respond to nerve growth factor (NGF).  Some of the calcitonin gene related peptide 

(CGRP) positive neurons also respond to GDNF (Nagy and Hunt, 1982). 

Large DRG neurons express TRPV2, cannabanoid 1 receptor (CB1), GAL1, 

GLUR2/3, ganglioside receptor 1 (GM1), purigenic receptor (P2Y1), and trkC.  This 

class of DRG neurons also expresses channels Naβ1, Kv 1.1, Kv β2.1, and 

hyperpolarization-activated cyclic nucleotide-gated potassium channel 1,2 (HCN1,2) 

(Devor, 2009; Kovalsky et al., 2009; Maher et al., 2009; Wickenden et al., 2009). 

Interestingly, between 30-40% of the lumbar DRG neurons are grouped among 

the large and medium diameter neurons, and identified based on the expression of the 

heavy chain neurofilament, NF200. This subpopulation of neurons typically has large 
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myelinated axons and functions as mechanoreceptors and proprioceptors. The neurons 

that express NF200 usually express trkA and trkC, as well as the p75 neurotrophin 

receptor (p75NTR) (Kai-Kai, 1989), and reviewed in (Zochodne, 2008).   

Approximately 70% of the neurons express one or more of the high affinity 

neurotrophin receptors trkA, trkB or trkC (Lindsay, 1996a; McMahon et al., 1994; 

Wright and Snider, 1995).  While the trk family of receptors act +as high affinity 

receptors for the neurotrophins (NGF, BDNF and neurotrophin 3 (NT3)), the GDNF 

family of trophic factors exerts its actions by binding to two different receptors: a high 

affinity receptor GFR-α, and a low affinity RET (Tucker and Mearow, 2008). 

 

1.1.3 Anatomy of the rat sciatic nerve. 

 The peripheral axon branches of sensory neurons in the DRG contribute to the 

formation of peripheral nerves.  The sciatic nerve of the rat originates from the DRG at 

lumbar spinal segments 4 to lumbar segment 6 (L4-L6). The L4 and L5 DRG contribute 

almost all of their peripheral axons, along with a partial contribution from L6.  The 

sciatic nerve in the minor pelvis runs in the deep groove between the dorsal side of the 

ischium and the sacral bone.  It passes on the ventral side of the piriformis muscle after 

leaving the sciatic notch. It courses over the quadratus femoris muscle obliquely to the 

thigh region caudal to the piriformis muscle, where a small branch innervates the biceps 

femoris, semi-tendinosus and semi-membraneous muscles. Then at the knee joint, it 

terminates into its two main branches: posterior tibial and peroneal (fibular) nerves.  The 

tibial portion gives rise to the tibial and the sural nerves, and the peroneal portion gives 

rise to the peroneal nerve and a cutaneous branch that perforates the lateral hamstring 
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muscles to innervate the proximolateral face of the calf (Schmalbruch, 1986; Uysal et al., 

2009).  Anatomical variations exist as to the origin of the rat sciatic nerve.  The rat sciatic 

nerve in the Sprague-Dawley strain originates from L3 to L6.  The major components are 

L4 and L5, since the contribution of both L3 and L6 nerves to the sciatic nerve is small 

(Asato et al., 2000).  The first sacral segment (S1) has also been reported to contribute to 

the sciatic nerve (Uysal et al., 2009).  Despite these anatomical variations, 98 to 99% of 

all sciatic DRG perikarya reside in the L4 and L5 DRG (Swett et al., 1991).  The anatomy 

of the rat sciatic nerve enables the experimenter to easily access the nerve on the dorsal 

aspect of the thigh, allowing for various surgical manipulations that can be perfomed 

peripherally at any point along the course of the nerve.    

 DRG central branches extend through the dorsal roots and into the spinal cord 

through the DREZ.  Fibers either terminate within a short distance or, travel up (the large 

and myelinated fibers) the dorsal columns via the fasicularis gracilis and fasicularis 

cuneatus to project to the dorsal column nuclei in the caudal medulla.  Some sensory 

afferent fibers enter dorsal horn grey matter immediately to synapse with interneurons, 

projection neurons, or motoneurons (Zochodne, 2008).  

 

1.1.4 Satellite cells. 

 Each DRG neuronal perikaryon is enveloped by its own satellite cell sheath 

forming a distinct morphological and functional unit (Hanani, 2005). The distance 

between satellite cells and the neuronal membranes is very small, about 20 nm (Pannese, 

1981).  DRG neurons invaginate microvilli-like structures into the surrounding satellite 

cells allowing for possible cell-cell communication between the two cell types (Pannese, 
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2002).  The number of satellite cells per DRG neuron is size-dependant: the larger the 

neuron the more satellite cells that are present in the perikaryal area (Ledda et al., 2004).   

 Following axotomy (Humbertson et al., 1969; Shinder et al., 1999), or 

inflammation (Lu and Richardson, 1991), satellite cells proliferate, and increase in 

number around the damaged DRG neurons (Hanani et al., 2002; Shinder et al., 1999), 

indicating a possible role for satellite cells in the injury response.  A function of 

phagocytosis of neuronal debris has also been ascribed to satellite cells (Pannese, 1978).  

Activated satellite cells have been found to upregulate expression of a number of growth 

and neurotrophic factors such as transforming growth factor alpha (TGF-α) (Xian and 

Zhou, 1999), FGF-2 (Grothe et al., 1997), and GDNF (Hammarberg et al., 1996), nerve 

growth factor (NGF) (Zhou et al., 1999), and neurotrophin-3 (NT-3) (Zhou et al., 1999), 

providing additional evidence that satellite cells are part of the overall injury response 

mechanism within the DRG. 

 

1.1.5 Schwann cells. 

Schwann cells provide support to both myelinated and unmyelinated axons 

throughout the PNS.  For larger axons, Schwann cells form a multilayered lipid myelin 

sheath around the axons that can be several micrometers in thickness.  The myelin sheath 

is not longitudinally continuous.  The gaps devoid of myelin between adjacent Schwann 

cells are called the nodes of Ranvier. The myelin sheath insulates the axon and decreases 

its membrane capacitance, thereby increasing the conduction velocity of the nerve 

impulse (Berta et al., 2008; Renganathan et al., 2001).  The presence of voltage gated 

sodium channels located preferentially at the nodes of Ranvier facilitates action potential 
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conduction through what is called saltatory conduction.  This is achieved by re-

propagation of the impulse at the nodes of Ranvier, thereby increasing the fidelity and 

velocity of conduction.   

Myelinating Schwann cells form the myelin sheath during late development and 

work by wrapping around and ensheathing the axon.  Schwann cells are also essential for 

the maintenance of healthy axons.  They produce a variety of supporting factors, 

including neurotrophins, and may also provide nutritive support and maintenance of ionic 

balance in the extracellular space (discussed below).  

Schwann cells can also provide support to smaller PNS axons by ensheathing 

them, without forming myelin.  Non-myelinating Schwann cells maintain axons and are 

crucial for neuronal survival. Some non-myelinating Schwann cells surround small C-

fiber axons that are in close proximity and form what is termed as a Remak bundle.  A 

Schwann cell in this bundle keeps the small axons from touching each other by 

interposing its cytoplasm between the axons, thus providing both structural and metabolic 

support (Andres et al., 1985; Griffin and Thompson, 2008; Murinson et al., 2005; 

Pannese et al., 1988a; Pannese et al., 1988b; Pannese et al., 1988c; Peyronnard et al., 

1975).  In addition, non-myelinating perisynaptic Schwann cells (PSCs) have distinct 

roles in the neuromuscular junction.  PSCs cover the neuromuscular synapses and 

activate neurotransmitter receptors (Auld and Robitaille, 2003).  The location of these 

perisynaptic Schwann cells at the synapse supports the idea of a role in the formation and 

maintenance of synaptic connections and transmission. Perisynaptic Schwann cells have 

purinergic and muscarinic receptors that can cause release of internal stores of calcium to 

generate calcium waves upon binding of purines and acetylcholine (Jahromi et al., 1992). 
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A number of neurotrophins have been implicated in maintenance of the neuromuscular 

junction synapse.  For example, BDNF and CNTF may act cooperatively to modulate and 

maintain proper functioning of synapses (Stoop and Poo, 1996a; b).  In addition to CNTF 

and BDNF, NT-3 present at the synapse modulate the Ca++ release and thus differentially 

regulate perisynaptic Schwann cell functions through modulating the purinergic or 

cholinergic signalling pathways (Todd et al., 2007).  Furthermore, PSCs maintain 

synaptic growth, and repair (Griffin and Thompson, 2008). 

During early neurogenesis, Schwann cells do not survive without signals 

originating from the developing axons such as neuregulins and endothelins (Jessen and 

Mirsky, 2002; Mirsky et al., 2002).  Schwann cells may carry out other specialized 

functions in growth, maintenance, and repair of peripheral nerves as well (Clarke and 

Richardson, 1994). Schwann cells play an important role in early peripheral nerve 

formation, and provide tropic and trophic support (Bray et al., 1981; Lundborg et al., 

1994).  Tropic support is provided by extracellular matrix molecules (ECM) that are 

involved both in cell adhesion and migration.  It is well established that the expression of 

laminin, neuronal cell adhesion molecule (NCAM), fibronectin and tenascin are all 

increased on the surface of Schwann cells during peripheral nerve regeneration process 

(Bailey et al., 1993; Martini, 1994).  Trophic support is provided by a number of growth 

factors such as NGF, and the transforming growth factor β family (TGFβ) (Scherer et al., 

1993).  By providing both structural and biochemical support, Schwann cells are 

considered an integral part of the integrity and function of the peripheral nervous system 

in both normal and injured states.  

 



12 
 

1.1.6 Macrophages. 

In the peripheral nervous system, macrophages are present in normal DRG tissues 

(Arvidson, 1977; Hamburger and Levi-Montalcini, 1949; Pannese, 1978; Perry and 

Gordon, 1988; Scaravilli et al., 1991; Stevens et al., 1989).  Macrophages are found 

primarily perineuronally in contact with the neuron/satellite cell complex.  A few exist in 

the perivascular regions, while others exist in interstitial position not in apparent contact 

with either blood vessels or neurons (Lu and Richardson, 1993).   

Peripheral nerve trauma and the ensuing injury-induced inflammation, together 

with the increase in macrophages, play important roles in neuronal survival and axonal 

regeneration after injury (Richardson and Lu, 1994). The number of macrophages in 

DRG increases 2-4 days after sciatic nerve axotomy and remains elevated for four weeks.  

It has been proposed that injury-induced recruitment and/or proliferation of macrophages 

in the injured DRG contribute to the survival or regeneration of axotomized neurons (Lu 

and Richardson, 1993), potentially supplying neurotrophic support to nerve cell bodies 

(Richardson and Lu, 1994).  Macrophage proliferation and recruitment in injured DRG 

also increases expression of certain neuronal mRNAs (Lu and Richardson, 1995).  

Macrophages produce cytokines and may play a role in the generation of neuropathic 

pain (Hu and McLachlan, 2002).  

In injured peripheral nerves, resident and recruited macrophages function in the 

removal of debris of degenerating nerves, and to induce Schwann cell proliferation 

(Beuche and Friede, 1986).  Direct injection of isogenous macrophages into the DRG 

enhances sciatic nerve regeneration in vivo (Lu and Richardson, 1991), and neurite 

growth in vitro by cultured DRG neurons (Hikawa et al., 1993; Luk et al., 2003).   
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Macrophages therefore appear to be key players in the mounting of a successful 

regenerative response in the peripheral nervous system.      

Macrophages and Schwann cells interact during the injury response, particularly 

in Wallerian degeneration.  Wallerian degeneration is part of the neuronal response to 

injury.   In particular, peripheral nerves undergo a process of degeneration of distal 

aspects of a nerve axon following injury to the cell body or proximal portion of the axon. 

The process is also characterized by fragmentation of the axon and its myelin sheath, 

resulting in atrophy and destruction of the axon.  A detailed description of Wallerian 

degeneration process is given below (section 1.2.3).   

When the proximal stump of a transected nerve is separated from the distal stump, 

Schwann cells proliferate.  Proliferating Schwann cells then co-migrate with regrowing 

axons and guide bundles of regrowing axons across interstump gaps (Hall, 1989). 

Processes such as initiation of myelin breakdown, subsequent macrophage 

recruitment, and activation and myelin phagocytosis could not be achieved without the 

proper molecular communication and interaction between the Schwann cells and 

macrophages (Martini et al., 2008).  A Phospholipase A2 signaling cascade appears to 

play a very important role in both cell types, initiating the breakdown of compact myelin, 

and inducing chemokine and cytokine expression.  Cytokines such as monocyte 

chemotactic protein-1 (MCP-1), macrophage inflammatory protein-1alpha (MIP-1α), and 

Interleukin-1 beta (IL-1β) are essential activators of subsequent macrophage recruitment 

and myelin phagocytosis (Martini et al., 2008).  Thus, the interaction between Schwann 

cells and macrophages with the cellular and extracellular components in the PNS may 
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determine the degree of tissue inflammation and repair processes such as remyelination 

associated with neuronal growth and nerve regeneration.  

 

1.1.7 Neurotrophins. 

 Neurotrophins are a family of highly conserved extracellular ligands that affect 

the differentiation, survival and biological function of neuronal cells in vertebrates. The 

family includes NGF, BDNF, NT-3 and neurotrophin-4/5 (NT-4/5) (Gotz and Schartl, 

1994).  Neurotrophins enhance neuronal cell survival and growth during the development 

of DRG neurons.  They influence the proliferation and differentiation of neuron 

progenitor cells and regulate the expression of several differentiated traits of neurons in 

early development and throughout life (Davies, 1994a; b).  In the PNS, a rapid neuronal 

cell body reaction and nuclear responses to distally-derived neurotrophins require 

retrograde transport of ligand-receptor complex (Watson et al., 1999).  The survival of 

the developing neuron is promoted by and depends upon neurotrophins primarily 

synthesized and released by target tissues.  All members of the neurotrophin family bind 

a common p75 receptor with low affinity.  However, there are also high affinity 

tropomyosin-related kinase (trk) receptors which more selectively recognize each of the 

individual neurotrophins.  Thus, NGF binds to trkA, BDNF and NT-4/5 bind to trkB, and 

NT-3 binds to trkC receptors.  NT-3 promiscuously binds to the other trk receptors at a 

lower affinity (Zochodne, 2008).  When neurotrophins bind trk receptors at the nerve 

terminals, the receptor/ligand complexes are endocytosed and trafficked through the axon 

back to the cell body.  Endocytosed neurotrophins/trk receptor complexes activate the 

extracellular signal-related protein kinase 5 (Erk5) pathway, causing nuclear translocation 
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of Erk5, and the phosphorylation of cAMP response element binding protein (CREB).  

Therefore, activation of the Erk5 pathway plays an important role in retrograde signaling, 

leading to enhanced neuronal survival (Watson et al., 2001).  Because of the molecular 

and biological specificity of the mechanisms of action of neurotrophins, especially in 

nerve regeneration, interest into designing derivatives and analogues as potential 

therapeutic agents has been an active area of research in pharmacology (Ibanez, 1995; 

Lindsay, 1996b). 

 The importance of retrograde transport comes from experiments where dynein-

based transport is inhibited.  Under these conditions, neurotrophin stimulation of axon 

terminals will not support survival. This indicates that defects in dynein-based retrograde 

transport obstructs the positive survival effects of target-derived trophic factors, leading 

to degeneration of target-dependent neurons (Heerssen et al., 2004).  Receptor mediated 

retrograde axonal transport of neurotrophic factors is increased after peripheral nerve 

injury (DiStefano and Curtis, 1994).  The neurotrophins NGF, BDNF, and NT-3 display 

distinct patterns of retrograde axonal transport in peripheral neurons (DiStefano et al., 

1992).  In addition to peripheral targets, Schwann cells and macrophages themselves have 

also been identified as potential sources for supplying neurotrophic factors to DRG 

neuronal cell bodies following injury (Richardson and Lu, 1994). 

 Sources of  neurotrophic factors not only can be from the target, but also from 

surrounding glial cells or the neuron itself and mediate their effects via receptor-mediated 

uptake and specific retrograde transport or via an autocrine or paracrine mechanisms 

(Korsching, 1993). 
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1.1.7.1 Nerve growth factor (NGF). 

In contrast to other typical growth factors, NGF is not a mitogen.  NGF is a 

neurotrophic molecule essential for the survival, development and maintenance of 

function of specific populations of peripheral and central neurons (Thoenen et al., 1985).  

NGF was initially discovered as a survival and outgrowth-promoting factor by Levi-

Montalcini (Angeletti et al., 1968; Levi-Montalcini, 1964; 1975; 1976; 1979; 1987; Levi-

Montalcini and Angeletti, 1968; Levi-Montalcini and Calissano, 1979; Varon, 1968).  

NGF selectively stimulates the growth of sympathetic and embryonic spinal sensory 

ganglia.  Target-derived NGF promotes the phenotypic maintenance of DRG nociceptive 

neurons (Delcroix et al., 2003). 

As a result of crush injury to rat sciatic nerve, NGF accumulates at the distal side 

of the crush site, whereas no NGF is detectable proximal to the crush (Korsching and 

Thoenen, 1983).  Two-site enzyme immunoassay for NGF shows that NGF is present in 

the peripheral but not the central axonal projections.  It is thus concluded that NGF 

supply comes exclusively from peripheral and not central axon branches (Korsching and 

Thoenen, 1985).  Following peripheral denervation NGF level in the target increases 

(Korsching and Thoenen, 1985).  This supports the role of target-derived growth factors 

in controlling target organ re-innervation.  Although NGF is required for DRG neuron 

survival during early development, by adulthood, not all DRG sensory neurons require 

NGF for survival (Levi-Montalcini, 1987; Lindsay, 1988). Some subpopulations of 

sensory neurons that do not require NGF for survival, respond instead to other 

neurotrophic factors such as BDNF or NT-3 for prolonged survival (Vogel, 1993).  
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NGF is also produced by cells other than target organs such as Schwann cells, 

macrophages, or the DRG neurons themselves (Ernfors et al., 1990; Schecterson and 

Bothwell, 1992), suggesting an autocrine, and/or paracrine (Lindsay, 1996a) function of 

NGF in adult DRG.   

NGF exerts its effects mainly by interaction with its high affinity specific receptor 

trkA.  This leads to the activation of several intracellular signaling pathways.  One such 

effect is an increase in intracellular calcium levels.  Calcium and calmodulin are both 

necessary for the acute activation of extracellular signal-regulated kinases (ERKs) after 

trkA stimulation (Egea et al., 2000).  Therefore, NGF activation of the ERK pathway is 

facilitated by Ca+2 ions and calmodulin.  

Studies provide evidence for the presence of endosomes within DRG neurons.  

The endosomes contain NGF, activated trkA, and signaling proteins of the Ras-

proximate-1 Rap1/Erk1/2, p38MAPK, and PI3K/Akt pathways, and are retrogradely 

transported in the isolated sciatic nerve in vitro (Delcroix et al., 2003; Grimes et al., 

1996; Tsui-Pierchala et al., 2000; Wu et al., 2001).  NGF injection in the peripheral target 

of DRG neurons increased the retrograde transport of the endosomes.  Conversely, NGF 

antibody injections decreased the retrograde transport of the endosomes, indicating that 

signaling endosomes convey NGF signals from the target of nociceptive neurons to their 

cell bodies (Delcroix et al., 2003).  NGF trophic signaling may also be facilitated by the 

RET coreceptor. Therefore, NGF may promote phosphorylation of a number of signaling 

proteins resulting in augmented growth, metabolism, and gene expression associated with 

sensory neuron function (Tsui-Pierchala et al., 2002). 
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It has been shown that retrograde survival signals can be carried by a mechanism 

activated by NGF at the axon terminal surface and travels to the cell body without the 

transport of NGF endosomes (Campenot and MacInnis, 2004).  This mechanism of 

retrograde signaling adds to the complexity of retrograde signaling mechanisms. 

 

1.1.7.2 Brain-derived neurotrophic factor (BDNF). 

 BDNF was first isolated from pig brain (Barde et al., 1982).  The BDNF gene was 

later cloned and characterized (Leibrock et al., 1989; Thoenen, 1991; Thoenen et al., 

1991) and the deduced amino acid sequence of BDNF revealed a high degree of 

homology to NGF.  BDNF protein is 120 AAs long and shares about 54% homology to 

NGF, particularly in the cysteine residues and in the sequences flanking these residues.  

Moreover, like NGF, BDNF rescues a subset of sensory neurons from naturally occurring 

cell death.  Despite their structural resemblance, there are differences between BDNF and 

NGF in their biological activity and neuronal specificity.  They both are target-derived 

neurotrophic factors that play important roles in the development and maintenance of 

multiple neuronal types of both the CNS and PNS, but especially primary sensory 

neurons (Lindsay, 1996a).  BDNF may also act by an autocrine route in some of these 

sensory neurons (Davies and Wright, 1995). 

 The biological activity of BDNF is mediated by the tyrosine kinase receptors trkB 

and trkC.  Of those two, trkB is the preferred receptor for BDNF (Glass et al., 1991; Ip et 

al., 1991; Lamballe et al., 1991a; b; Squinto et al., 1991).  Trk receptors are 

autophosphorylated upon binding to their ligands.  This leads to phosphorylation of 

downstream intracellular signaling proteins that induce cell growth and differentiation.   
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In cultured neurons and hippocampal slices the transcription factor cyclic AMP 

response element-binding protein (CREB) regulates BDNF-induced gene expression. 

Exposure of neurons to BDNF stimulates CREB phosphorylation and activation via at 

least two signaling pathways: by a calcium/calmodulin-dependent kinase IV (CaMKIV)-

regulated pathway that is activated by the release of intracellular calcium and by a Ras-

dependent pathway. Activation of CREB, therefore, plays a central role in mediating 

BDNF responses in neurons (Finkbeiner et al., 1997).  The mechanism of action for 

BDNF is similar to that of NGF, in activating calcium/calmodulin-dependent kinases, 

important regulatory pathways contributing to survival and regenerative growth. 

BDNF prevents axotomized retinal ganglion cell death through MAPK and PI3K 

signaling pathways.  This BDNF-mediated signaling pathway involves activation of both 

MAPK and Akt on the axotomized adult rat retina, and the collaboration of both MAPK 

and PI3K-Akt pathways seems to be necessary in neuroprotective signaling in 

axotomized retinal ganglion cells (RGCs) (Nakazawa et al., 2002).  This provides 

additional evidence that BDNF and NGF share some common regulatory pathways. 

Indeed, in a peripheral nerve transection injury model, BDNF administration to the ends 

of the cut axons enhances functional recovery (Utley et al., 1996; Yin et al., 1998). 

 

1.1.7.3 Neurotrophin-3 (NT-3). 

 The amino acid sequence of Neurotrophin-3 (NT-3) is 50% homologous to that of 

NGF and BDNF (Barde, 1990; Hohn et al., 1990), and is conserved across different 

species.  NT-3 binds the trkC receptor and is abundant in both central nervous system, 

and peripheral nervous system sensory neurons (Katoh-Semba et al., 1996; Schecterson 
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and Bothwell, 1992).  Specifically, the DRG is a source of NT-3 that may be supplied to 

the spinal cord, and contributes to plasticity in the spinal cord after injury (Wang et al., 

2008).  NT-3 deficient mice show 65% loss of DRG neurons, suggesting an early role of 

NT-3 during neurogenesis (Airaksinen and Meyer, 1996; Maness et al., 1994).  Thus it is 

of interest to determine whether NT-3 can promote peripheral sensory neuron survival 

and regeneration in the adult following injury (Yin et al., 1998). 

 

1.1.7.4 Glial cell line derived neurotrophic factor (GDNF). 

 Glial cell line derived neurotrophic factor (GDNF) was first purified from 

midbrain dopaminergic neurons (Ebadi et al., 1997; Lin et al., 1993).  GDNF is a potent 

survival factor for motoneurons that is present in peripheral nerve and muscle (Henderson 

et al., 1994), and for sympathetic, parasympathetic, proprioceptive, enteroceptive and 

small and large cutaneous sensory neurons (Buj-Bello et al., 1995).  GDNF is found in a 

variety of peripheral organs more than in the neuronal tissues, indicating its function as a 

target-derived neurotrophic factor.  GDNF mRNA is expressed in the sciatic nerve and 

DRG.  Following sciatic nerve axotomy, GDNF mRNA levels increase dramatically in 

the sciatic nerve, implicating GDNF in the overall peripheral nerve resposnse to injury 

(Lapchak et al., 1996; Trupp et al., 1995).  These reports suggest that GDNF is essential 

for the survival of multiple PNS and CNS neurons at different stages of their 

development (Ebadi et al., 1997). 

 GDNF signals through a multicomponent receptor complex consisting of RET 

receptor tyrosine kinase and a member of the GDNF family receptor alpha (GFRα).  This 

complex eventually activates the RAS and PI3-K pathways.  This leads to the activation 



21 
 

of CREB and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) 

(Hayashi et al., 2000; Poteryaev et al., 1999; Trupp et al., 1999).  GDNF also activates 

the MAPK pathway (Chen et al., 2001). In early embryogenesis, GDNF-stimulated PI3K 

and Akt activities exert opposing effects on the ERK pathway, protecting 

neuroectodermal cells from apoptosis during their migration in the foregut (Mograbi et 

al., 2001).  These findings show evidence that GDNF activates some pathways in 

common with other neurotrophins.  

  

1.1.7.5 Ciliary neurotrophic factor (CNTF). 

Ciliary neurotrophic factor (CNTF) was initially identified and characterized in 

the intraocular (ciliary) muscles of chick eyes as a target-derived neurotrophic molecule 

that supports the survival of parasympathetic chick ciliary neurons in culture (Adler et al., 

1979; Barbin et al., 1984). The spectrum of CNTF biological activity infuences a much 

broader range of the components of the nervous system, since peripheral and central 

neurons also respond to CNTF (Ip et al., 1991).  It has been shown that CNTF also 

supports the survival of sympathetic, sensory and spinal motoneurons (Thoenen, 1991). 

CNTF is a member of the hematopoietic cytokine family and shares structural and 

functional properties with the members of this family such as LIF and IL6. It is composed 

of a four-helix bundle structure and shares the transmembrane signal transducing 

proteins, glycoprotein-130 (gp130) and leukemia inhibitory factor receptor (LIF-R). 

CNTF binding activates signal transduction cascades mediated by the Janus kinase 

(JAK)/signal transducer and activator of transcription (STAT) and Ras/MAPK signaling 

pathways (Inoue et al., 1996). 
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Evidence indicates that CNTF plays a key role in the injury response in the 

nervous system.  Dramatic changes in the level of expression of CNTF occur following 

neural trauma in the PNS.  Prior to nerve injury, high levels of CNTF mRNA and protein 

were localized within the Schwann cells of the sciatic nerve (Abe et al., 2001; Hu et al., 

2005; Stockli et al., 1991).  However, following peripheral nerve injury, the CNTF 

mRNA and protein levels decrease dramatically in the distal nerve (Rabinovsky et al., 

1992), thus change in CNTF expression is one of the early markers of neural injury.   

CNTF binds to ciliary neurotrophic factor receptor a (CNTFRa) receptor to initiate its 

biological response in neuronal tissues, and shares receptor components with other 

hematopoietic cytokines (Ip and Yancopoulos, 1996).  Interstingly, BDNF and CNTF 

may act cooperatively in modulating the development and functioning of synapses, 

indicating a different level of the complex nature of neurotrophin actions (Stoop and Poo, 

1996b). 

 

1.1.7.6 Leukemia inhibitory factor (LIF) 

Leukemia inhibitory factor (LIF) is a cytokine structurally homologous to CNTF 

(Ip and Yancopoulos, 1996).  Furthermore, the receptors for LIF and CNTF share two 

identical subunit components, which are believed to mediate their overlapping biological 

activity (Ip and Yancopoulos, 1996). However, LIF only requires the receptor 

components gp130 and LIFRβ for signal transduction (Davis et al., 1993). Because of the 

structural and biochemical similarities between the two factors, and because LIF induces 

biological activity on several neuronal classes (Ip and Yancopoulos, 1996), it is 

reasonable to ask whether LIF would also exert trophic activity on neuronal cells. 
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Interestingly and of direct relevance to this project is the fact that the signal of the 

cytoplasmic regions of leukemia inhibitory factor receptor (LIFR) alpha-subunit and 

gp130 involves signal STAT3 activation (Liu et al., 1999). 

LIF expression is induced by injury and is required for the neuronal response to 

injury (Sun et al., 1996; Sun and Zigmond, 1996a; b; Zigmond et al., 1996).  It can act as 

a survival factor for injured peripheral neurons. When applied to peripheral nerves in 

vivo, the cytokine is retrogradely transported and rescues damaged sensory neurons 

(Curtis et al., 1994).   

 

1.1.7.7 Insulin-like growth factors-1 and 2 (IGF-1 and IGF-2). 

Insulin-like growth factors (IGF-1 and IGF-2) are proteins that share a high 

sequence similarity to insulin. They are recogized by their respective receptors IGFR1 

and IGFR2.  IGFs exhibit neurotrophic properties similar to NGF, including the capacity 

to enhance neurite formation and extension (Ishii et al., 1985; Mill et al., 1985).  IGFs 

can act in combination with other growth factors such as fibroblast growth factors (FGFs) 

to elicit their neurotrophic effects (Torres-Aleman et al., 1990a; b). 

IGFs have been demonstrated to both promote and sustain the regenerative 

process in a peripheral nerve injury model (Hansson, 1993; Ishii et al., 1994; Ishii et al., 

1993).  Exogenous administration of IGF-2 increases the rate of peripheral nerve 

regeneration, and endogenous IGFs in nerves are required to maintain a specific rate of 

regeneration (Glazner et al., 1993).  Target-derived and nerve-derived IGFs can regulate 

peripheral nerve regeneration following injury (Ishii et al., 1994).  In particular, sensory 
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neurons respond with enhanced regenerative growth to insulin and IGF-1 (Fernyhough et 

al., 1993). 

IGF-1 has been reported to have an inductive effect on the expression of GAP-43 

expression (Lutz et al., 1999).  Of particular relevance to this project is the finding that in 

primary Schwann cell culture IGF-1 alone was ineffective, but in the presence of 

forskolin or dibutyryl cyclic AMP (dbcAMP), IGF-1 became a potent mitogen, 

stimulating Schwann cell proliferation (Schumacher et al., 1993).  These results suggest a 

regeneration promoting effects of IGF-1 on peripherally transected sciatic nerve. 

 

1.1.7.8 Fibroblast growth factor-2 (FGF-2). 

 Fibroblast growth factors are expressed in dorsal root ganglion neurons.  Acidic 

fibroblast growth factor (aFGF) and its receptors (FGFR-1 and FGFR-2) have been 

reported to be expressed and maintained in postmitotic dorsal root ganglion neurons 

(Oellig et al., 1995).   

Basic fibroblast growth factor (FGF-2) and its receptors have been described as 

important physiological modulators of neurotrophins and in peripheral nervous system 

regeneration (Grothe et al., 2006; Grothe et al., 1997; Grothe and Nikkhah, 2001; Grothe 

and Wewetzer, 1996).  FGF-2 is one of more than 23 members of the FGF family (Ornitz 

and Itoh, 2001).  FGFs can mediate their biological activities through two types of 

binding sites, the low-affinity binding sites represented by heparan sulfate proteoglycans 

(HSPGs) and the high-affinity tyrosine kinase transmembrane receptors (FGFRs) 

(McKeehan et al., 1998).  FGF-2 protein exists in different isoforms representing 

different translation products from a single mRNA (Florkiewicz et al., 1991a; 
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Florkiewicz et al., 1991b; Florkiewicz and Sommer, 1989).  Peripheral nerve lesion 

causes differential increase of the FGF-2 isoforms (Grothe et al., 1997; Meisinger and 

Grothe, 1997).  

FGF-2 and its receptors are expressed in the DRG and the peripheral nerves and 

are upregulated in the DRG and in the proximal and distal nerve stumps following 

peripheral nerve injury. There are two major sources of FGF in the peripheral nerve, 

neurons in the ganglia, and at the lesion site of the nerve, where Schwann cells and 

invading macrophages represent the main sources of FGF-2 and its receptors FGFR1-3 

(Grothe and Nikkhah, 2001).  

FGF-2 is localized in a subpopulation of small and medium neurons in adult DRG 

from all axial levels.  It is colocalized with the somatostatin/bombesin expressing 

subpopulation but not with substance P (Weise et al., 1992).  FGF-2 signaling does not 

appear to regulate CGRP expression in vivo (Jungnickel et al., 2005). 

When applied exogenously, FGF-2 rescues injured sensory neurons and facilitates 

neurite outgrowth of injured peripheral nerves.  FGF-2 exerts a protective effect on the 

maintenance of transected sensory neurons.  Specifically, FGF-2 protects DRG neurons 

from lesion-induced death, possibly via local accumulation of neurotrophic activities at 

the proximal nerve stump that have been elicited by FGF-2 (Otto et al., 1987).  Moreover, 

FGF-2 promotes neurite extension and vascularization of the regenerating nerve fibers 

crossing the gap between the proximal and distal stumps of the transected sciatic nerve 

(Aebischer et al., 1989; Danielsen et al., 1988). 

FGF-2 is also expressed endogenously within both the developing and adult DRG 

neurons.  In the adult rat, FGF-2 is found in subpopulations of sensory neurons within the 
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DRG (Weise et al., 1992). In addition, FGF-2 and FGFR1 immunoreactivity are co-

localized in adult rat DRG neurons (Grothe and Wewetzer, 1996; Meisinger et al., 1996a; 

Meisinger et al., 1996b). Thus FGF-2 and its receptors are constitutively expressed in 

developing and adult DRG neurons.  FGF-2 is also expressed in Schwann cells and 

macrophages, thus it is suggested that FGF-2 can act in concert with other cytokines, 

factors, or neurotrophins (Grothe et al., 2006; Grothe and Nikkhah, 2001). 

In frog retinal ganglion cells, FGF-2 upregulates the synthesis and alters the 

distribution of the axonal growth-associated  protein GAP-43 expression after optic nerve 

injury (Soto et al., 2003), enhancing regenerative axon growth.  It is not known whether a 

similar biological activity may also be involved in regenerative growth in DRG neurons.  

Northern blot analysis of adult rat DRGs reveals the presence of FGF-2 transcript 

(Grothe and Meisinger, 1995). Ligation of the sciatic nerve does not lead to proximal or 

distal accumulation of FGF-2 immunoreactivity (Grothe and Wewetzer, 1996).  

Transection of the sciatic nerve elevates the expression of FGF-2 and FGFR-1 in DRG 

neurons in both postnatal and adult rats (Grothe and Wewetzer, 1996).  This pattern of 

FGF expression is consistent with FGF involvement in the regulation of axon regrowth.  

Intraganglionic expression of FGF-2 may indicate the presence of an autocrine/paracrine 

loop (Murphy et al., 1994). 

Mice lacking FGF-2 showed faster sensory recovery two weeks after peripheral 

nerve injury.  The regenerating fibers of the mutant mice showed both significantly 

increased axon and myelin size, suggesting that loss of FGF-2 could expedite restoration 

of mechanosensory function by accelerating structural recovery, possibly by regulation of 

Schwann cell differentiation (Jungnickel et al., 2004; Jungnickel et al., 2009).  This 
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study, however, was performed on mice that were developmentally deficient in FGF-2.  

The scope of the implications of not having FGF-2 pathway present during normal 

neurogenesis of the sensory neurons could have influenced the outcome of this particular 

experiment; therefore, the results in the absence of FGF-2 should not be taken as the sole 

reason for having potential faster rate of regeneration.   

On the other hand, the same research group reported that mice over-expressing 

FGF-2 had faster nerve regeneration after sciatic nerve injury. The number of regenerated 

axons was shown to be smaller in transgenic mice one week after crush injury, suggesting 

a role of the elevated expression of FGF-2 in early peripheral nerve regeneration by 

regulating Schwann cell proliferation, axonal regrowth, and remyelination (Jungnickel et 

al., 2006).     Despite this reported increased rate of sciatic nerve regeneration, mice 

lacking FGF receptors FGFR-1 and FGFR-2 showed degeneration of sensory axons of 

Remak bundle and impaired thermosensory functions, resulting in c-fiber neuropathy 

(Furusho et al., 2009).    

Different members of the FGF family are expressed following sciatic nerve 

injury.  Using cDNA array, it was reported that FGF 2 and FGF 7 were significantly 

increased in the DRG after 28 days following nerve transection.   Whereas about 60 % of 

the uninjured neurons expressed FGF 13, the percentage dropped to 18% following injury 

(Li et al., 2002).  These data support the notion that FGF-2 plays a key role in the process 

of neuronal inury response mechanism.     

In cultured DRG neurons, FGF-2 was found to repress GAP-43 expression in a 

dose dependent manner.  This repression of GAP-43 by FGF-2 was reversed by 
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MEK/ERK inhibition, suggesting that the repressive action of FGF-2 occurs, at least in 

part, through the MEK pathway (Schreyer, 2004).   

In contrast to this study, it was recently shown that Sprouty2, a negative feedback 

loop modulator that limits the intensity and duration of tyrosine kinase activation is 

expressed in adult sensory neurons (Hausott et al., 2009).  Down-regulation of Sprouty2 

enhances regenerative axon growth by adult sensory neurons, associated with enhanced 

FGF-2-induced activation of the ERK and Ras signalling pathway. In contrast, Sprouty2 

overexpression inhibited axon growth (Hausott et al., 2009).  It appears, therefore, that 

Sprouty2 may inhibit the influence of FGF-2 via Ras/Raf/ERK pathway.   Because of the 

potential importance of FGF-2 in peripheral nerve regeneration and maintenance of 

sensory neurons, FGF-2 was selected in the current project as one of the main potential 

exogenous modulators of injury-induced biochemical markers.    

 

1.2 Peripheral nerve injury-response. 

As a consequence of peripheral nerve axotomy, between 10-40% DRG neurons 

die within a week of axotomy (Aldskogius and Risling, 1981; Arvidsson et al., 1986; 

Himes and Tessler, 1989; Liss et al., 1994; McKay Hart et al., 2002; Rich et al., 1989; 

Schmalbruch, 1987).  Factors such as proximity of axotomy to the DRG (Ygge, 1989), 

the age of the animal (Bahadori et al., 2001; Kerezoudi et al., 1995), and the species used 

(Kline et al., 1964a; b) have been shown to influence the regenerative capacity and the 

outcome of neuronal death in response to injury.  The closer the axotomy to the DRG 

ganglion perikarya, the more drastic is the rate of DRG neuronal loss (Ygge, 1989). The 
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process of cell death described here is likely to be apoptotic, due to the immediate loss of 

target derived neurotrophins and supporting factors.  

The DRG neurons that survive following peripheral nerve transection undergo a 

morphological change termed chromatolysis, in which the injured neurons swell.  Their 

nuclei move to an eccentric position, concomitant with increases in RNA synthesis.  

Morphological changes may be induced in injured DRG neurons as a result of 

restructuring of cytoskeletal elements such as neurofilaments (Oblinger et al., 1989).   

Biochemical changes that ensue following injury to DRG neurons include, but are 

not limited to, changes in gene transcription, changes in translation, stability, or 

subcellular localization of translated proteins, and post-translational modification of 

proteins (Bhave and Gereau, 2004; Caroni, 1998).  Most of these biochemical changes 

are restored to normal levels upon successful reinnervation of the target tissues.  Other 

biochemical changes may arise at a distance from the neuronal cell body, namely at the 

injured axon tip.  Local translation of axonal mRNA coding for proteins with nuclear 

localization signals (NLS), and of critical carrier proteins (including vimentin) that link 

diverse signaling molecules to the dynein retrograde motor at the injury site have been 

reported.  These proteins are retrogradely transported to the cell body as part of the injury 

response (Hanz and Fainzilber, 2006; Hanz et al., 2003).  Additionally, local translation 

of other cytoskeletal elements such as β-actin, α-tubulin, low molecular weight 

neurofilament, Tau, actin-depolymerizing factor (ADF), EphA2, and importins have also 

been reported at the site of injury (Willis et al., 2005).   

DRG neuronal somata are electrically excitable, and some are able to generate 

action potentials repetitively on sustained depolarization.  It has thus been hypothesized 
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that electrical properties of the soma may be required to insure reliable propagation of 

impulses past the DREZ and into the spinal cord (Devor, 1999).  The disruption of this 

normalized electrical activity by axotomy is one of the earliest events in DRG neuronal 

response to injury (Liu et al., 2000).  One of the major electro-physiological effects of 

peripheral nerve transection is to trigger an ectopic afferent action potential barrage 

carried by DRG neurons afferents into the spinal cord (Liu et al., 2000).  

Axonal injury can alter the electrophysiological properties of DRG neurons 

(Abdulla and Smith, 2001a; b; Bishop, 1982; Ma et al., 2003).  Peripheral nerve injury 

can change the receptor phenotype of both small and large neurons and may, as a result, 

have differential effects on the membrane electrical properties of these neuron types (Xu 

et al., 1997).   Peripheral nerve injury can also lead to an abnormal afferent barrage 

generated in the cut end of the nerve (Wall et al., 1979).  This abnormal discharge can 

amplify and or distort naturally generated signals (Wall and Gutnick, 1974a; b; Wall et 

al., 1974).  The changes in electrical properties of the injured peripheral nerve have been 

linked to increased sensitivity and hyperalgesia associated with the injury (Wall, 1984).  

Following crush lesion, continuous conduction has been found in the regenerating 

processes of myelinated dorsal root fibers in the rat 12-20 days after injury (Feasby et al., 

1981).  The initial discharge of electrical activity may be one of the very earliest events 

that take place in response to injury, prior to any other visible morphological signs.     

Ion channels present in the DRG neurons show changes as a result of neuronal 

injury.  At least six different sodium channels are known to be expressed in DRG 

neurons, including several sensory-neuron-specific sodium channels that are not present 

in other parts of the nervous system (Waxman et al., 1999). Following injury to their 
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peripheral axons, DRG neurons down regulate some sodium channel genes and 

upregulate others. As a result, different groups of sodium channels are inserted into the 

DRG neuron cell membrane following injury (Goldin et al., 2000; Waxman et al., 2000).  

Axotomy reduces the action potential threshold by significantly increasing the expression 

of tetrodotoxin (TTX)-sensitive sodium currents (Zhang et al., 1997). Injured neurons 

also increase the expression of voltage-gated sodium channels Nav1.3 (Berta et al., 2008). 

These changes are accompanied by alterations in physiological properties that contribute 

to hyperexcitability in these cells, and altered depolarization firing rates.   

At least seven different families of voltage-gated potassium channels are normally 

involved in regulating and modifying the integration and transmission of electrical 

signals in the nervous system (Ishikawa et al., 1999).  Cultured DRG neurons from 

axotomized adult rats show remarkable decreases in a number of potassium channels 

(Ishikawa et al., 1999).  Similar decreases in potassium channels in the DRG neurons 

have been seen as a result of sciatic nerve chronic constriction injury (Kim et al., 2002), 

and axon axotomy (Park et al., 2003) .  The decreases in some voltage gated potassium 

channels as a result of injury, along with simultaneous increases in some sodium 

channels, may lead to changes in electrical excitability of the DRG neurons (Ishikawa et 

al., 1999), and may, thus, be additional contributors to the overall injury response 

mechanism.   

Calcium channels are present in DRG neurons (Fedulova et al., 1981; Morad et 

al., 1988).  Calcineurin, a compound that regulates the activity of calcium channels, also 

exists in the DRG neurons (Lukyanetz, 1997).  Increases in the pore forming part of  

calcium channels α2δ in DRG neurons of injured peripheral nerves have been reported 
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(Kim et al., 2001b; Luo et al., 2001; Newton et al., 2001). A concurrent increase in 

ectopic spontaneous discharges has been related to increased calcium channel activity 

(Xing and Hu, 1999).  These drastic changes have been associated with injury-induced 

allodynia (Luo et al., 2001). 

Application of brief or extended electrical stimulation (1 hour to 2 weeks of 20 Hz 

continuous electrical stimulation) to the proximal cut end of peripherally axotomized 

femoral nerve has been found to accelerate axonal regrowth (Al-Majed et al., 2000).  

Continuous 20 Hz electrical stimulation applied proximal to injury site for 1 h lead to a 

significant increase in DRG neurons regenerating into cutaneous and muscle branches, 

and increased the numbers of neurons that regenerated axons.  This enhanced 

regenerative capacity is correlated with increased GAP-43 mRNA in the regenerating 

neurons, and with elevated expression of brain-derived neurotrophic factor (BDNF) 

(Geremia et al., 2007).  The results of this experiment provided evidenc that linked 

electrical stimulation to increased  expression of a neurotrophic factor, BDNF.  This, in 

turn, leads to an increased expression of GAP-43 message.  It would be of interest to 

study the potential correlation between this brief stimulation with other known neutrophic 

factors.     

  

1.2.1 Response to peripheral axon injury. 

Lesions or trauma of the peripheral axon branch induce a number of 

morphological, metabolic, and molecular alterations in the DRG neuronal cell body that 

may ultimately contribute to the initiation and maintenance of the axonal regeneration.  

There may be an additional role for non-neuronal cells to take an active part in the DRG 
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collective response to injury.  For example, macrophages actively remove myelin debris, 

and Schwann cells proliferate and migrate. Non-neuronal cells may also be sources of 

biochemical factors that might influence axon regrowth.   

The neuropeptide expression of DRG neurons appears to be sensitive to axon 

injury. Following peripheral nerve injury the population of DRG neurons shows a marked 

decrease in those that express SP (Barbut et al., 1981; Bisby and Keen, 1986; Jessell et 

al., 1979; Tessler et al., 1985), PPT (Kashiba et al., 1992; Noguchi et al., 1989), CGRP 

(Inaishi et al., 1992), and galanin (Kashiba et al., 1992).  On the other hand, there is a 

robust increase in the number of DRG neurons that express other neuropeptides, such as 

VIP (Kashiba et al., 1992; Noguchi et al., 1989) and NPY (Frisen et al., 1992).  Little is 

known about what role altered neuropeptide expression (and release) may play in axonal 

regeneration. 

Peripheral axon injury also causes increased expression of intracellular proteins 

that are known to relay extracellular signals and control cytoskeletal dynamics such as 

cortical cytoskeleton-associated and calmodulin binding protein (CAP-23), neuron-

specific growth associated protein/stathmen homolog (SCG10), and GAP-43 (Hoffman, 

1989; Mason et al., 2002).  Also, chaperonins such as HSP27 (Costigan et al., 1998), are 

robustly enhanced in peripherally axotomized sciatic nerve.  These proteins are 

collectively called growth associated proteins, the expression of which is associated with 

the regenerative process.   

Transcription factors such as c-Jun (Jenkins et al., 1993), STAT3 (Qiu et al., 

2005), and ATF3 (Seijffers et al., 2006), also undergo changes following peripheral axon 

injury in DRG neurons.  As a result of injury, MAPK signaling pathway is activated.  
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Consequently, phosphorylation and nuclear localization of a number of transcription 

factors including c-Jun, ATF3, and STAT3 may contribute to the alteration in gene 

expression of the injured neuron.   Many of these transcription factors control the 

expression of neuropeptides, ion channel expression, and their own expression.  

These collective phenotypic changes suggest that when DRG neurons suffer 

peripheral axon injury, there is a switch from the normal action potential transmitting 

phenotype to a phenotype more suitable for the initiation and support of axonal 

regeneration. The process of regeneration is dependent upon, and may be governed by 

intrinsic and extrinsic factors to neurons (Fawcett, 1992; Fu and Gordon, 1997), 

including trophic factors (Navarro et al., 2007).   

Intrinsic factors refer to the biochemical factors that exist within the confinement 

of the neuron proper.  In contrast, the term extrinsic factors refers to those factors that are 

present in the immediate surroundings of the neuron, and the neuron is subject to their 

potential biological actions. 

 

1.2.2 Response to central axon injury. 

The central axons of the DRG extend through the dorsal root, then into the spinal 

cord at the dorsal root entry zone. Central DRG axon branches synapse with dorsal horn 

interneurons to relay sensory information to the CNS.  For many larger DRG neurons, 

collateral of the central axon branch may also ascend through the dorsal columns to 

ultimately synapse in the brainstem.   

A lesion of the central axons of the DRG neurons, by itself, largely fails to induce 

the full range of morphological, physiological and biochemical changes that are normally 
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seen following lesions to the peripheral axons.  For example, no cell death is observed 

among L5 DRG neurons after dorsal transection (Himes and Tessler, 1989).  

Chromatolysis is also not seen in DRG neurons following central axon injury (Cragg, 

1970).  Injury of the central branch axon, by itself, is followed by poor regeneration of 

the central branch (Oblinger and Lasek, 1984).   

Expression levels of neuropeptide markers such as VIP and PPT (Noguchi et al., 

1989), and NPY  do not change following dorsal root transection.  Expression of 

transcription factors such as c-Jun (Broude et al., 1997; Jenkins et al., 1993; Kenney and 

Kocsis, 1997a), and ATF3 (Seijffers et al., 2006) also does not change dramatically as a 

result of dorsal transection. On the other hand, levels of neuropeptide CGRP (Inaishi et 

al., 1992) increase following dorsal root transection, whereas, neurofilament protein 

NF200 is one of the few proteins that show a marked reduction following a lesion to the 

central axon branch (Guseva and Chelyshev, 2006).  

Molecules that interact with membrane signal-transduction mechanisms and 

control cytoskeletal dynamics such as CAP-23, SCG10, and GAP-43 remain unchanged 

after injury of the DRG central axon branch (Schreyer and Skene 1993) (Mason et al., 

2002) even though they are robustly enhanced in peripherally axotomized sciatic nerve.   

Ion channels such as sodium channel type III (Black et al., 1999; Sleeper et al., 2000) and 

α2δ 1 pore forming part of calcium channels (Li et al., 2004; Luo et al., 2001) remain 

unchanged as a result of dorsal transection, contrary to these channels’ enhanced 

expression following peripheral axotomy.  There are other proteins that do not change 

following dorsal root transection, but increase as a result of peripheral axotomy such as 

Neuropilin-1 (NP-1) (Gavazzi et al., 2000). 
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1.2.3 Distal nerve stump injury-response (Wallerian Degeneration): 

Following peripheral branch nerve injury, axons distal to the lesion are 

disconnected from the cell body and undergo a process termed 'Wallerian degeneration' 

(Koeppen, 2004; Pearce, 2000; Waller, 1850) reviewed in (Fawcett and Keynes, 1990; 

Hall, 2005; Navarro et al., 2007; Zochodne, 2008).   Damage to the axonal membrane, or 

axolemma, induces calcium-mediated proteolytic activity that will break down the axon, 

causing myelin to break down, and recruits resident and circulating macrophages to the 

damaged site (Akassoglou et al., 2000; Coleman and Perry, 2002; George and Griffin, 

1994; Kiryu-Seo et al., 2000).  This infiltration of macrophages into the area of injury 

accomplishes two important processes: first, it allows for interactions between 

macrophages and Schwann cells; secondly, it clears the myelin and axonal debris by 

phagocytosis (Martini et al., 2008).   

 Eliminating myelin debris is an important step to successful regeneration, because 

myelin associated proteins are known to impede and inhibit successful regeneration.  The 

inhibitors include myelin-associated glycoprotein (MAG) (Chen et al., 2006), 

oligodendrocyte-myelin glycoprotein (OMgp) (Xie and Zheng, 2008) and Nogo (Schwab, 

2004), all three of which appear to act via the Nogo receptor (NgR) despite the fact that 

they have little structural similarity (Mandemakers and Barres, 2005).  It is believed that 

the microenvironment of the intact peripheral nerve does not support axons that had been 

cut and undergoing regrowth (Hall, 1993).  It is only upon injury and initiation of the 

regenerative response that Schwann cell proliferation and axonal sprouting and 

elongation are permitted to take place (Alvarez et al., 2000; Tapia et al., 1995).  These 



37 
 

processes are normally inhibited in intact nerves by signals that originate from Schwann 

cells (Hall, 2005).         

The basement membrane that surrounds the axon and Schwann cell remains intact 

and serves as a pathway or a tract for Schwann cells to line up, elongate and form bands 

of Büngner or Schwann tubes (Stoll and Muller, 1999). Schwann cells then begin to 

synthesize growth and neurotrophic factors that act as tropic (guidance cues), and trophic 

(maintenance) factors for the newly forming axonal sprouts from the proximal end of the 

injured nerve (Campana, 2007; Cheng et al., 1996; Pellitteri et al., 2006).  After providing 

the proper extracellular environment that supports axonal growth, Schwann cells adopt a 

different phenotype and begin to remyelinate the newly regenerated axons (Stoll and 

Muller, 1999).   

After nerve injury and successful repair, the newly regenerated peripheral nerve is 

thinner with shorter internodes than it had prior to injury (Hall, 2005; Navarro et al., 

2007).  The axons have smaller diameters, and suboptimal conduction velocities and 

excitability (Fields and Ellisman, 1986a; b).  Regenerated Schwann cell myelin is also 

thinner. 

1.2.4 Proximal nerve stump injury-response.   

Peripheral nerve injury leaves the surviving proximal nerve axon stumps 

potentially available to respond to exogenous substances available in the immediate 

extracellular microenvironment (Yoo et al., 2003).  Some of these substances may 

initiate, or act as, "positive" signals that are retrogradely conveyed back to the DRG 

neuron cell bodies to initiate a regenerative response.  Immediately following axotomy, 

the membranes at the severed proximal end of the axons begin to seal off (Kristensson 
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and Olsson, 1981).  Before membrane sealing is complete, calcium ions may enter 

damaged axonal elements and activate calcium-dependent proteases (LoPachin and 

Lehning, 1997). 

Simultaneously, axotomy deprives the DRG neuron cell bodies of any target-

derived molecules that are normally retrogradely transported from peripheral target 

tissues.  Deprivation of a normally tonically available signal is often described as a 

"negative” signal.  Examples of such retrogradely-acting tonic signaling molecules 

include FGF-1 that counteracts the injury induced expression of NPY (Ji et al., 1996). 

These proteins and their role in the injury response will be described in more detail 

below.  The presence of new, retrogradely transported molecules (positive signals) from 

the microenvironment of the injury site, or the absence of normally available target-

derived molecules (negative signals) could each presumably play a role in initiating a 

metabolic response to injury in DRG neurons.   

DRG neurons that survive peripheral axotomy will initiate the injury response, 

leading to regenerative growth, ultimately culminating in functional reinnervation.  

Within the first few hours following axotomy, a small area of the axon's proximal 

segment adjacent to the injury undergoes Wallerian degeneration back to the first node of 

Ranvier (Terenghi, 1999).  The axon may initially form several regenerative sprouts 

(Desouches et al., 2005; Wong and Mattox, 1991).  These sprouts start to migrate 

distally, likely supported by Schwann cells, and in active search for a suitable growth 

supporting pathway (Bixby et al., 1988).  The regenerating axonal sprouts respond to 

guidance (tropic) and survival (trophic) factors supplied by dedifferentiating Schwann 

cells and peripheral targets. Despite these early signs of regenerative response, it may be 
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several days before any axonal outgrowth extends beyond the proximal nerve stump (Al-

Majed et al., 2000).   

If the gap between the distal and proximal nerve stumps is not more than a few 

millimeters, axon growth into the distal stump may be successful. The regenerating axon 

can then take advantge of the local permissive environment of the Wallerian degenerating 

distal nerve stump and axons successfully navigate toward their original targets.  

However, if the gap between the proximal and the distal stumps is wide, growing axons 

may not reach the distal stump, and no functional recovery takes place.  

 

1.2.5 Conditioning lesion. 

A conditioning axon lesion is defined as an earlier, suitably timed injury that may 

alter regenerative success in response to a later 'test' injury of the same axons (Forman et 

al., 1980).  Indeed, an earlier conditioning lesion in the same peripheral nerve has been 

found to enhance the regenerative response to a subsequent, more proximal test lesion of 

the same nerve (McQuarrie, 1978; McQuarrie et al., 1977).  The improvement in 

regeneration caused by a prior conditioning lesion appears to involve faster initiation of 

regeneration, faster growth during regeneration, and a larger number of regenerating 

axons.  

The conditioning lesion effect is dependent upon the type of the initial conditional 

lesion itself.  The more severe the initial lesion, the longer the effect lasts (Bondoux-

Jahan and Sebille, 1986).  The increase in the number of axons that ultimately regenerate 

as a result of the conditioning lesion effect also depends on the time interval between the 

initial and test lesions (Arntz et al., 1989; Jenq et al., 1988).  In some cases, more than 
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one conditioning lesion at the same site, separated by a week, resulted in an increased 

rate of regeneration (Bisby, 1985; Bisby and Pollock, 1983).  In addition, a conditioning 

lesion in a rat sciatic nerve not only accelerated regeneration of the same nerve when 

subsequently tested, but also lead to enhanced regeneration of previously unconditioned 

nerves on the contralateral side.  This was accompanied by enhanced expression of 

cytokines in the contralateral DRG neurons (Ryoke et al., 2000).  It is not clear how a 

conditioning lesion on one side might influence regenerative ability in contralateral 

neurons that did not receive the conditioning lesion.  The influence could presumably be 

carried either through systemic circulation or through neuronal connectivity across the 

midline. 

The unique axonal morphology of the DRG neuron has allowed the test of 

whether conditioning lesions of one axon branch (i.e. the DRG peripheral axon branch) 

can influence the regenerative ability of a second, non-conditioned axon branch from the 

same neuron (i.e. the central axon branch).  The central axon branches of DRG neurons 

regenerate very poorly if subjected to an unpaired 'test' lesion, but regenerate much more 

readily if their corresponding peripheral axon branches are also given a 'conditioning' 

lesion either beforehand, or simultaneously (Richardson and Issa, 1984; Richardson and 

Verge, 1986; 1987) .  Regeneration of the central axons can also be enhanced by 

peripheral exposure to inflammatory challenge (Lu and Richardson, 1991).  If an injury 

occurs in the central branch after peripheral branch lesion, the central branch can 

regenerate beyond the injury site and into a (Wallerian degenerating) peripheral nerve 

graft, or even into the inhibitory environment of the spinal cord itself (Neumann and 

Woolf, 1999; Richardson and Issa, 1984). Peripheral conditioning injury of the sciatic 
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nerve resulted in an increase in the number of myelinated axons at the corresponding 

dorsal root entry zones and on the surface of the spinal cord (Chong et al., 1999). 

The effects of a conditioning lesion may result from early initiation of the cell 

body response to injury, including altered gene expression and increased protein 

synthesis to meet the demand of regenerating axons.  Changes in non-neuronal cells 

(Schwann cells and satellite cells) may also be involved (Sjoberg and Kanje, 1990; 

Torigoe et al., 1999). Neurons cultured from DRGs that have undergone a sciatic nerve 

conditioning injury one week earlier show enhanced growth of neurites in vitro.  The 

effect seems to involve earlier initiation of neurites, more rapid growth, and altered 

sensitivity to tropic factors (Smith and Skene, 1997).   The experiments demonstrating 

that a conditioning lesion of DRG peripheral axons can contribute to increasing the 

growth capacity of injured DRG central axons implies that the effect works through a 

signaling mechanism in the cell bodies of the injured neurons. 

 

1.2.6 Evidence for a negative signal inducing the injury response. 

 Microtubules are the cytoskeletal substrate for fast anterograde (away from cell 

body) axonal transport driven by kinesin proteins and for retrograde (toward cell body) 

axonal transport driven by dynein proteins (Cyr and Brady, 1992; Hirokawa, 1997).  The 

existence of a retrograde axonal transport mechanism and its importance in sensory 

neuron survival is well documented (Dumas et al., 1979; Fink et al., 1985; Max et al., 

1978; Schwab and Thoenen, 1977; Streit, 1980; Streit et al., 1980).   

Distinct subpopulations of DRG neurons are selective in terms of their retrograde 

transport of trophic factors (DiStefano et al., 1992).  For example, small diameter, 



42 
 

nociceptive sensory neurons, respond mainly to and transport NGF (Lindsay, 1996a).  

Additionally, small to medium diameter neurons preferentially transport BDNF (Zhou 

and Rush, 1996), while large, proprioceptive neurons tend to be responsive to and 

transport NT-3 (DiStefano et al., 1992).  Although GDNF is transported by all sensory 

neurons, the small RET-positive, IB4-positive, non-TrkA-expressing neurons show a 

preferential ability to transport GDNF (Leitner et al., 1999; Matheson et al., 1997). A 

similar subpopulation of small, CGRP positive, TrkA expressing sensory neurons 

favorably transport LIF (Thompson et al., 1997).  

Pharmacological blockade of retrograde axoplasmic transport using microtubule 

disrupting agents, such as vinblastine or colchicine, initiates a number of neuronal cell 

body reactions similar to the response seen following peripheral axotomy (Aldskogius 

and Svensson, 1988; Woolf et al., 1990).  If  dynein-based retrograde transport is 

specifically inhibited, trophic stimulation of axon terminals will not support neuronal 

survival (Heerssen et al., 2004).  Disrupting anterograde transport, on the other hand, 

does not initiate a peripheral nerve injury response (Csillik et al., 1982).   

It has been hypothesized that there are repressive factors originating from the 

peripheral target tissues, and through retrograde transport, these repressive factors 

maintain low expression of growth-associated proteins and other injury-induced features 

(Andersen et al., 2000; Liabotis and Schreyer, 1995; Schreyer and Skene, 1993).  Support 

for this retrograde repressor hypothesis comes from a number of experimental findings. 

The magnitude of GAP-43 expression following peripheral axotomy does not depend on 

the distance of the site of lesion from the DRG perikarya.  This is consistent with a 

mechanism involving loss of a tonic retrograde repressive signal derived from the 
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periphery (Liabotis and Schreyer, 1995).  The observations from a number of studies 

suggest that unknown substrates from the periphery, or peripheral target tissue, might 

regulate GAP-43 expression.  In corticospinal neurons, GAP-43 expression is elevated 

during the perinatal period. This increase gradually declines as target tissues are 

innervated in normal development. When colchicine, a compound that disrupts retrograde 

neuronal transport, is applied to those target approaching axons, GAP-43 expression 

remains elevated (Karimi-Abdolrezaee and Schreyer, 2002; Karimi-Abdolrezaee et al., 

2002; Margolis et al., 1991).  

Peripheral axotomy of the sciatic nerve upregulates GAP-43 expression in the 

DRG neurons, whereas, central axotomy does not (Schreyer and Skene, 1993).  A similar 

pattern of reaction to peripheral, but not central axotomy is seen with c-Jun (Kenney and 

Kocsis, 1998),  STAT3 (Schwaiger et al., 2000), NPY, and VIP (Sterne et al., 1998). 

Such results suggest that retrograde repressive signals (or negative regulators) are derived 

only from peripheral target tissue because central axotomy apparently does not interrupt 

them.   

GAP-43 expression in developing cultured DRG neurons appears to be decreased 

when the DRG neurons are cultured in the presence of peripheral target tissues (Baizer 

and Fishman, 1987).  However, the biochemical nature of such “repressive” signals is yet 

to be determined.  Neurotrophins can retrogradely influence expression of neuropeptides 

such as SP (Mulderry, 1994), and NPY (Sterne et al., 1998), but do not appear to directly 

repress GAP-43 expression in cultured DRG neurons (Schreyer et al., 1997). Experiments 

using skeletal muscle extracts (Kimura and Schreyer, unpublished) indicate that a target-

derived GAP-43 repressive signal can be in soluble or membrane-bound form.   
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Considerable evidence exists in the literature implicating FGFs as potential 

modulators of injury-induced expression of neuropeptides and growth associated 

proteins.  FGF-1 has been shown to counteract injury-induced expression of galanin and 

NPY (Ji et al., 1996). In CNS, FGF-2 stimulates the proliferation of GAP-43 positive O-

2A precursor cells (common precursor for oligodendrocytes and type-2 astrocytes) as 

well as increase the level of GAP-43 mRNA in these cells (Deloulme et al., 1993).  

Additionally, FGF-2 has also been shown to stimulate GAP-43 phosphorylation at serine 

41 (ser41), thereby modifying its intracellular localization in cultured hippocampal 

neurons (Tejero-Diez et al., 2000).  In injured frog retinal ganglion cells, FGF-2 

modulates expression and distribution of GAP-43 after optic nerve injury (Soto et al., 

2003).  

Recently, bone marrow stromal cells are have been shown to differentiate into 

various neuronal cells both in vivo and in vitro (Egusa et al., 2005).  An important and 

relevant finding shows that FGF-2 effectively induces neuronal differentiation from 

stromal cells, as evidenced by elevated levels of GAP-43.  This effect of FGF-2 requires 

FGFR-1, MAPK/ERK, and an activator protein 1 (AP-1) recognition site (Yang et al., 

2008).  The AP-1 site is also part of the GAP-43 gene. 

 

1.2.7 Evidence for a positive signal inducing the injury response. 
 

Positive retrograde injury signals have also been postulated to exist at the injury 

site.  Proteins may be activated at the injury site by undergoing post-translational 

modification, and then traveling retrogradely to the cell body.  The post-translational 

modification, activated by injury, could include phosphorylation, or proteolysis (Perlson 
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et al., 2004). One example is the phosphorylation of MAP kinases Erk1 and Erk2 at the 

injury site, and their subsequent retrograde transport to the cell body (Agthong et al., 

2006; Perlson et al., 2005). 

Some transcription factors, such as STAT3, ATF3, and c-Jun have also been 

identified in peripheral axons and may participate in positive retrograde signaling 

(Agthong et al., 2006; Lee et al., 2004; Lindwall and Kanje, 2005).  Recent works 

suggest that this positive retrograde transport requires the presence of carrier proteins, 

including importins that interact with the retrograde transport motor dynein (Hanz et al., 

2003).    

Formation and maintenance of the regrowing axon seems to involve protein 

synthesis within the distal axon (Willis et al., 2005).  It is therefore plausible that newly 

synthesized proteins could be retrogradely transported from the site of axotomy and act 

as a positive signal to initiate the injury response.  As part of the neuronal response to 

injury, adult sensory neurons that are conditioned by axonal crush can rapidly extend 

processes in vitro by regulating the translation of existing mRNAs that encode ribosomal 

proteins essential in neurite regeneration and growth (Twiss et al., 2000). Blocking 

protein synthesis in these regenerating axons causes a rapid retraction of their growth 

cones (Twiss and van Minnen, 2006; Zheng et al., 2001).  Axons of adult mammalian 

sensory neurons can synthesize proteins independent of transcriptional control, leading to 

synaptic plasticity and/or pathfinding and injury responses (Wang et al., 2007).  
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1.2.8 Proteins of the injury response. 

 Peripheral nerve regenerative propensity is reflected by the expression and 

upregulation of a number of genes referred to variously as 'growth-associated proteins' 

(GAPs) (Benowitz and Routtenberg, 1997; Benowitz and Schmidt, 1987; Skene, 1984; 

1989; 1990; Skene and Willard, 1981) or as 'regeneration associated genes' (RAGs) (Al-

Majed et al., 2004; McPhail et al., 2004; Schmitt et al., 2003). These genes and their 

encoded protein products include transcription factors, growth stimulating substances, 

intracellular signaling enzymes, cytoskeletal proteins and cytoskeleton interacting 

proteins (McLean et al., 1995; Schreyer and Skene, 1993; Skene, 1984).  For many of 

these proteins, there is evidence suggesting that their presence leads to successful nerve 

regeneration.  

 

1.2.8.1 Growth-associated protein-43 (GAP-43). 

One of the first well characterized examples of a protein that is upregulated in 

association with developmental and regenerative axon growth is GAP-43, also known as 

B-50, F-1, pp-46, and neuromodulin (Benowitz and Routtenberg, 1997; Meiri et al., 

1986; Skene, 1989).  GAP-43 is a 24 kDa neuronal-specific phosphoprotein that is 

expressed in virtually all developing neurons at high levels as they initiate axon growth. 

Although the actual size of rat GAP-43 protein is 24 kDa, it migrates with an apparent 

size of 40-60 kDa on sodium dodecyl sulfate (SDS) polyacrylamide gels due to its 

unusual amino acid composition (rich in acidic amino acids and alanine, but with few 

hydrophobic residues) and aberrant SDS binding properties (Skene, 1989).  As 

development proceeds and axons reach their target tissues, the level of GAP-43 
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expression declines (Chong et al., 1992), but does not disappear altogether in some 

neurons.   

In adult DRG neurons and in other neurons of the PNS, GAP-43 is markedly 

upregulated following (peripheral) axotomy (Chong et al., 1994; Mason et al., 2002; 

Schreyer and Skene, 1993).  Once synthesis is increased, GAP-43 is transported to both 

the peripheral and the central DRG axon branches (Schreyer and Skene, 1991; Woolf et 

al., 1990). 

GAP-43 appears to be involved in transducing intra- and extracellular signals to 

regulate cytoskeletal organization in the axon (Benowitz and Routtenberg, 1997; Frey et 

al., 2000; Laux et al., 2000; Meiri et al., 1996).  The amino acid sequence of GAP-43, 

highly conserved among mammals, has a unique calmodulin binding domain (Alexander 

et al., 1988; Skene, 1989).  GAP-43 has a high affinity to bind calmodulin in the absence 

of free Ca+2 (Masure et al., 1986).   It is proposed that GAP-43 binds and localizes 

calmodulin at specific sites within the cell and that free calmodulin is released locally in 

response to phosphorylation of GAP-43 by protein kinase C and/or to increases in 

intracellular free Ca+2 (Alexander et al., 1987; Alexander et al., 1988). Phosphrylated 

GAP-43 may be a substrate for calcineurin and both calcineurin and protein kinase C may 

regulate the levels of free calmodulin available in neurons (Liu and Storm, 1989).  

Biochemical properties that are central to the biological effects of the GAP-43 are its  

membrane- and calmodulin-binding properties, which could allow it to sequester a large 

fraction of calmodulin to the submembranous regions, and to release free calmodulin in 

response to protein kinase C activation (Skene, 1990).  In addition, such calmodulin 

binding properties could be useful in modulating the responses of membrane and 
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cytoskeletal assembly events to calcium signals in the growth cones of regenerating 

axons (Skene, 1990). The calmodulin pathway also appears to link elevated intracellular 

calcium to gene induction (Morgan and Curran, 1988). 

GAP-43 interacts with the GTP binding protein Go, a member of the G protein 

family that links receptors and second messengers (Strittmatter and Fishman, 1991; 

Strittmatter et al., 1991).  Because of its ability to associate with the neuronal membrane, 

to interact with calmodulin, and to associate with cytoskeletal elements, GAP-43 is 

important in coordinating activity between the neuronal membrane and the arrangements 

of cytoskeletal elements, as well as coordinating the effects of both extracellular signals 

and intracellular growth proteins. 

The GAP-43 gene contains three exons.  The first exon codes for the first 10 

amino acids of the protein that contain two reversible palmitolylation sites.  

Palmitoylation allows for strong association with membranes, and is essential for 

targeting the protein to the growing axonal terminal (Benowitz and Routtenberg, 1997; 

Skene and Virag, 1989).  The second exon contains most of the coding region, including 

serine-41, the site phosphorylated by protein kinase C (Benowitz and Routtenberg, 1997; 

Dent and Meiri, 1992).  Phosphorylation at serine-41 inhibits calmodulin binding to 

GAP-43 (Liu and Storm, 1990).  The third exon codes for the carboxy terminus and 

contains regions with structural similarity to intermediate filaments giving it a unique 

ability to interact with actin and actin associated proteins (Meiri and Gordon-Weeks, 

1990).  

GAP-43 has been associated with axon growth cone pathfinding (Strittmatter et 

al., 1995), consistent with a possible role in axon guidance. High concentrations of GAP-



49 
 

43 in a growth cone alter the way an axon terminal responds to environmental stimuli 

acting through calcium and calmodulin (Lankford et al., 1990; Skene, 1990).  Thus, 

GAP-43 was suggested to modulate complex cellular properties such as growth cone 

guidance and motility, synaptic plasticity and neurotransmitter release (Coggins and 

Zwiers, 1991).   

Null mutation of the GAP-43 gene disrupts axonal pathfinding and is generally 

lethal shortly after birth (Benowitz and Routtenberg, 1997). During development, GAP-

43-deficient retinal axons remain stalled in the optic chiasm, unable to navigate past this 

midline decision point.  However, cultured neurons of GAP-43-deficient mice extend 

neurites and growth cones in a very similar fashion to wild type. Thus, it is suggested 

that, while GAP-43 protein may not be essential for axonal growth, is required to guide 

the growing axon at certain decision points, such as the optic chiasm (Strittmatter et al., 

1995). This is compatible with the hypothesis that GAP-43 serves to transduce 

extracellular pathfinding signals at the growth cone (Strittmatter et al., 1995).  

We know little about how axon injury leads to increased expression of GAP-43.  

Clues as to the nature of the mechanism(s) that control GAP-43 expression have come 

from analysis of its gene structure.  The GAP-43 gene, located on chromosome 3 in 

humans and chromosome 16 in mice, spans at least 50 kb (Benowitz and Routtenberg, 

1997; Denny, 2006; Grabczyk et al., 1990). The 5'-flanking sequence lacks CAAT or 

TATA elements.  This sequence however does have the ability to initiate RNA 

transcription from several sites, depending on the neuronal type.  The 1.5 kb mRNA is 

spliced from three widely separated exons: the first includes a 5' untranslated region 

(5'UTR) of variable length and the first ten codons; the second contains most of the 
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coding region, while the third includes the last few codons and a long 3'UTR (Grabczyk 

et al., 1990).  The rat GAP-43 promoter region has seven E-boxes, but only one of them 

(E1) was found to control GAP-43 promoter activity (Chiaramello et al., 1996).  Basic 

helix-loop-helix (bHLH) transcription factors may regulate the expression of the GAP-43 

gene (Chiaramello et al., 1996).  The E1 box can be a positive or a negative regulator of 

the GAP-43 promoter, depending on which bHLH transcription factor binds to it (Denny, 

2006). 

The GAP-43 gene promoter contains AP-1 site that contributes to gene activity in 

neurons. The fact that GAP-43 expression is minimally detected in mature neurons after 

growth is complete, suggests that repressive elements play an important role in allowing 

AP-1 signaling pathways to control the activity of the GAP-43 gene in neurons (Weber 

and Skene, 1998). In injured CNS neurons, c-Jun, a transcription factor that binds AP-1 

sites, has been implicated in the upregulation of GAP-43 expression (Haas et al., 2000).    

 

1.2.8.2 Tα1 tubulin. 

 Tubulin is a globular, cytoskeletal protein that exists as a dimer.  The tubulin 

dimer has one α and one β subunit.  Tubulin dimmers are the building blocks of 

microtubules that support cellular structural integrity and play a central role in the 

trafficking and movement of intracellular components.  The regulation of Tα1 tubulin 

expression after injury differs according to the neuronal cell type and the distance of 

axotomy from the cell body (Bisby and Tetzlaff, 1992).  In the PNS an upregulation of 

Tα1 tubulin mRNA (Miller et al., 1989) and protein (Mohiuddin and Tomlinson, 1997) is 

observed in all neurons after peripheral nerve injury concomitant with elevated GAP-43 
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expression (Al-Majed et al., 2004; Geremia et al., 2007).  This suggests that expression of 

Tα1 tubulin and GAP-43 may be regulated together as part of the overall injury response. 

In addition to Tα1 tubulin, other members of the tubulin proteins are upregulated in 

axotomized DRG neurons.  These include βII, βIII tubulins.  Other tubulin family 

members such as βIV, however, do not show any changes in injured neurons (Hoffman 

and Cleveland, 1988; Miller et al., 1989; Moskowitz et al., 1993; Wong and Oblinger, 

1990). 

Tα1 tubulin and GAP-43 expression are coregulated in response to neurotrophins.  

A study using BDNF and NT-4/5 showed that both neurotrophins stimulate GAP-43 and 

Tα1 tubulin mRNA expression, and promote axonal regeneration (Kobayashi et al., 

1997).  Moreover, expression of these growth associated proteins increases as a result of 

brief electrical stimulation in the regenerating femoral nerve (Al-Majed et al., 2004).  In 

the CNS, CCAAT enhancer binding protein-beta (C/EBPbeta), a transcription factor 

implicated in cellular injury and regeneration has been shown to be essential for the 

neuronal injury response.  Of particular relevance to the current project, C/EBPbeta acts 

to transcriptionally activate both GAP-43 and Tα1 tubulin gene expression (Nadeau et al., 

2005).  Beta3-tubulin (βIII tubulin) gene expression is induced by vinorelbine through an 

AP-1 site (Saussede-Aim et al., 2009), a site that is also shared with GAP-43 promoter.  

 

1.2.8.3 Heat shock protein 27 (Hsp-27). 

 Heat shock proteins (HSPs) are molecular chaperones that function in proper 

folding and trafficking of proteins (Kampinga, 2006).  They can also play an important 

role in mediating the assembly of proteins into oligomeric structures.  Primarily, they act 
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to prevent the formation of incorrect structures which may result from the transient 

exposure of charged or hydrophobic surfaces normally involved in interactions between 

or within polypeptide chains (Ellis et al., 1989). Hsp-27 is a member of this family of 

molecular chaperone proteins and is induced in cells that have been exposed, not only to 

sub lethal heat shock treatment, but also to oxidative stress or various other 

environmental stresses (Arrigo, 2007).  Hsp-27 possesses anti-apoptotic properties and is 

upregulated following peripheral nerve injury in a very similar fashion to GAP-43. 

 In the PNS, Hsp-27 is expressed at low levels in medium sized DRG neurons and 

upregulated following chronic constriction injury (Kim et al., 2001a).  There is up to a 

nine fold increase following peripheral nerve transection (Costigan et al., 1998).  Hsp-27 

expression is induced by transcription factors ATF3 and c-Jun (Nakagomi et al., 2003). 

Because of this correlation with GAP-43 expression, its potential protective role in 

neuronal cell survival (Klettner, 2004; Latchman, 2005) and its contribution to 

rearrangement of cytoskeletal elements (Gerthoffer and Gunst, 2001), Hsp-27 is 

classified among the growth associated proteins that are upregulated in the neuronal 

response to injury.  

 

1.2.8.4 Neuropeptides. 

 NPY is a 36 amino acid peptide widely distributed within neurons of the CNS and 

PNS (Gray and Morley, 1986).  NPY is upregulated in medium to large DRG neurons 

following peripheral axotomy (Hokfelt et al., 1994; Landry et al., 2000; Verge et al., 

1995; Wakisaka et al., 1991; Zhang et al., 1993).  The role of the upregulated NPY in 

DRG neurons as a result of injury is not fully understood, although antinociceptive 
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effects have been attributed to NPY (Xu et al., 1994).  A strong correlation between 

GAP-43 expression and that of NPY in response to NT-3 (Ohara et al., 1995) suggests 

that NPY upregulation may also be a part of the DRG neuronal response program to 

peripheral injury.  

SP and CGRP are transmitters for a proportion of DRG neurons and are 

implicated in the nociceptive transmission of the primary sensory system. Substance P 

protects neurons from apoptosis via PKC-Ca2+-MAPK/ERK pathways (Lallemend et al., 

2003). 

The newly identified small proline-rich repeat protein 1A (SPRR1A) is 

upregulated by the main subpopulations of DRG neurons following an injury to their 

peripheral, but not central, axon branches (Bonilla et al., 2002; Starkey et al., 2009).  This  

follows the pattern of GAP-43 and many other elements of the injury response. 

 

1.2.9 Transcription factors. 

 There are several transcription factors whose synthesis and activation are 

modified as part of the injury response (Raivich and Makwana, 2007).  Examples of such 

factors are ATF3, cJun, and STAT3.  They may therefore be involved as higher-order 

regulators of other aspects of the neuronal injury response.  These three transcription 

factors will be the major focus of the experimental work described in this thesis. 

 

1.2.9.1 Activating transcription factor 3 (ATF3). 

ATF3 is a member of activating transcription factor/cyclic AMP response element 

binding protein (ATF/CREB) family of transcription factors that share a common motif 
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of bZip DNA binding domain which binds to the consensus site 'TGACGTCA' (Hai and 

Hartman, 2001; Hai et al., 1999).  ATF was first described as a protein that activates 

transcription of multiple E1A-inducible adenovirus early promoters (Lee et al., 1987). 

cAMP response element binding protein (CREB) was described as protein product that 

binds to cAMP responsive element (CRE) (Montminy, 1997).  ATF/CREB transcription 

factors can heterodimerize with the transcription factor AP-1, utilizing a common 

dimerization motif.  This suggests that there may be cross-talk between the two types of 

transcription factors (Karin et al., 1997).  Genomic AP-1 consensus sequences have also 

been found to interact with c-Jun and other transcription factors.    

ATF3 was first isolated from a library derived from HeLa cells (Hai et al., 1989). 

It is an immediate-early gene induced by a number of stimuli such as carbon 

tetrachloride, ischemia, radiation, and anticancer drugs such as tetradecanoylphorbol 

acetate (TPA).  It is also rapidly and highly expressed in regenerating liver (Hsu et al., 

1991) and has thus been called liver regenerating factor-1 (LRF-1).  Other names that 

refer to ATF3 are LRG-21, CRG-5, and TI-241 (Hai and Hartman, 2001). The ATF3 gene 

is activated in a variety of organs as a result of chemical or surgical insults.  For example, 

the ATF3 gene is activated in ischemic heart (Yin et al., 1997), in hepatectomized or 

carbon tetrachloride treated liver (Chen et al., 1996), as well as in epileptic brain (Chen et 

al., 1996), and in transected peripheral nerves (Tsujino et al., 2000).  ATF3 is an unusual 

transcription factor in that it can both repress and activate transcription.  The ATF3 

homodimer is a transcriptional repressor.  However, heterodimeric complexes of ATF3 

with c-Jun function as transcriptional activators (Hai and Hartman, 2001).  
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ATF3 expression and nuclear localization increase robustly in DRG neurons 

following peripheral nerve injury (Tsujino et al., 2000), indicating that the induction of 

ATF3 is part of the overall neuronal response to injury.  It is also upregulated following 

chorda tympani nerve injury, concomitant with increases in GAP-43 (Tsuzuki et al., 

2002).  In the DRG neurons, ATF3 mRNA is detected by 12 hours, peaks at 1 day, and 

remains high 2 weeks following axotomy (Tsujino et al., 2000). Thereafter, ATF3 

gradually decreases but is expressed at a low level beyond 10 weeks after axotomy.  

The ATF3 gene is considered to be one of the immediate early genes whose 

activation regulates other, downstream genes, initiating a network of transcriptional 

regulation.  Thus, regulation of ATF3 gene expression has been an area of recent active 

research.  Treatment of cultured HeLa cells with anisomycin leads to activation of the 

p38 pathway by mitogen-activated protein kinase kinase 6 (MAPK 6), a kinase upstream 

of p38.  This activation is sufficient to induce the expression of the ATF3 gene.  This 

induction is possibly carried out through phosphorylation of CREB by p38, and does not 

seem to involve extracellular regulated kinase (ERK) nor c-Jun-N-terminal kinase/stress-

activated protein kinase (JNK/SAPK) pathways (Lu et al., 2007). However, in a 

peripheral nerve injury model the ATF3 appears to be induced through retrograde 

signaling involving JNK.  Retrograde axonal transport of JNK signaling components 

contribute to the injury induced activation of the ATF3 gene (Lindwall and Kanje, 2005). 

Because of the variation in range of factors (stressful and nonstressful) and conditions 

that control ATF3 expression, ATF3 has been described as an adaptive response gene that 

initiates cellular processes that adapt to various cellular stress signals (Lu et al., 2007).    
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Transfection of cells with siRNAs that block the expression of SOX11, a gene 

that encodes a member of the SOX family of transcription factors caused a transcriptional 

and translational level reduction in ATF3 expression in vitro and in vivo (Jankowski et 

al., 2009).  Growth arrest and DNA damaging/ C/EBP-homologous protein 10 

(gadd153/Chop10), another bZip protein, heterodimerizes with ATF3 and inhibits its 

expression (Chen et al., 1996).  Inversely, ATF3 represses the expression of 

gadd153/Chop10 (Wolfgang et al., 1997), making gadd153/Chop10 a potential target 

gene of the repressor activity of ATF3.  Interestingly, ATF3 can repress its own 

promoter, providing a potential mechanism of homeostatic autoregulation (Wolfgang et 

al., 2000).  Thus, ATF3 induction in DRG neurons may be a part of a protective response 

to injury, in addition to any direct role in promoting axon growth. 

1.2.9.2 c-Jun. 

c-Jun was first identified and isolated from transformed cultured chick embryo 

fibroblasts (Bos et al., 1986). c-Jun dimerizes with other transcription factors (such  as 

Fos) through the leucine zipper domains, and the Jun/Fos heterodimers bind to DNA and 

regulate transcription of numerous other genes (Ransone and Verma, 1989; Vogt and 

Bos, 1989; Vogt and Morgan, 1990). Jun protein is a major component of the 

transcription factor complex AP-1, which regulates the expression of multiple genes 

essential for cell proliferation, differentiation and apoptosis (Hartl et al., 2003).  c-Jun is 

also induced in cancer cells (Whitmarsh and Davis, 2007).  Phosphorylation of c-Jun by 

JNK (jun N-terminal kinase) leads to c-Jun nuclear translocation, whereby it can affect 

transcription.  c-Jun has a number of binding domains such as DNA binding domain, a 

leucine zipper region, a transcription-activating or transactivating module, and binding 
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domains for the mitogen-activated protein kinases.  c-Jun forms homodimers and 

heterodimers with Fos and other transcription factors such as ATF3. c-Jun homo-and 

heterodimers bind the AP-1 promotor complex, thus initiating transcriptional regulation 

of genes that are involved in cell growth and differentiation.  

c-Jun is upregulated in rat lumbar DRG neurons following sciatic nerve axotomy 

(Herdegen et al., 1992; Jenkins and Hunt, 1991; Kenney and Kocsis, 1997b).  The timing 

of c-Jun induction is dependent upon how far the lesion is from the lumbar ganglion 

(Kenney and Kocsis, 1997b). The trigger signal for c-Jun upregulation following 

axotomy has been extensively examined and appears to be a negative signal, such as 

interruption of the retrograde flow of unidentified molecule(s). This is supported by 

observations that blockade of retrograde transport alone, without concurrent nerve injury, 

leads to c-Jun elevation in DRG neurons (Leah, Herdegen et al. 1991; Jenkins, McMahon 

et al. 1993).  

Although c-Jun is upregulated substantially following a peripheral nerve 

transection, it is not upregulated following a central root transection (Broude et al., 1997).  

This substantiates the idea that target-derived factor(s) from peripheral target tissue 

contribute to the suppression of transcription factors that are a part of the injury response, 

in a pattern similar to GAP-43.  It is certainly of interest to investigate the possible 

molecular regulatory pathways that may connect c-Jun expression to that of GAP-43.  

Immunohistochemistry of ATF3 protein in the axotomized DRG does not reflect 

complete colocalization with c-Jun.  More DRG neurons were labeled for ATF3 than for 

those labeled for c-Jun (Tsujino et al., 2000).  This indicates that the factor(s) that may 

regulate the expression of ATF3 may not be the same as those that regulate c-Jun, 



58 
 

although in PC12 and Neuro-2a neuron-like cell lines, co-transfection of c-jun and ATF3 

genes doubled the number of cells producing neurites, compared with expression of c-Jun 

alone (Pearson et al., 2003). 

 

1.2.9.3 STAT3.  

Signal transducers and activators of transcription (STATs) are a family of 

transcription factors that mediate a wide variety of biological functions in the PNS and 

CNS.  STATs are phosphorylated by janus kinases (JAKs) in response to cytokine or 

growth factor activation of a cell surface receptor. Following phosphorylation by receptor 

tyrosine kinases, STATs then form homo- or heterodimers that translocate to the cell 

nucleus where they act as transcription activators. Activation of STAT3 protein through 

phosphorylation of the Tyr705 residue initiates the expression of a variety of genes in 

response to cell stimuli, and thus plays a key role in many cellular processes such as cell 

growth and apoptosis.   

STAT3 promotes neuronal survival by inducing neuroprotective genes (Dziennis 

and Alkayed, 2008).  In the nervous system, STAT3 is activated in acute spinal cord 

injury (Tsai, Yang et al. 2007), and in peripheral nerve inflammation (Tamura et al., 

2005).  Sciatic nerve axotomy results in phosphorylation and activation of the STAT3 

transcription factor in DRG neurons.  Perineural infusion of the JAK2 inhibitor AG490 at 

the proximal nerve stump blocks STAT3 phosphorylation following sciatic nerve 

transection and results in reduced GAP-43 upregulation.  It significantly attenuates 

central branch regeneration in the spinal cord after a preconditioning sciatic nerve 

axotomy (Qiu, Cafferty et al. 2005).  STAT3 activation is thus necessary for increased 
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DRG neuronal growth and improved axonal regeneration within the spinal cord after a 

conditioning injury (Qiu, Cafferty et al. 2005). 

STAT3 by itself can be a potential retrograde signaling transcription factor.  

Peripheral nerve lesion leads to a rapid activation of STAT3 in axons at the lesion site. 

This activation extends from the lesion site to the DRG neurons and motor neurons in the 

spinal cord. This indicates the possibility that axonal STAT3, activated at the injury site, 

may act as a retrograde signaling transcription factor, thus promoting the survival and 

regeneration of both sensory and motor neurons (Lee, Neitzel et al. 2004).  

 

1.3 Modulation of axonal regeneration. 

 

1.3.1 Exogenous growth factor/neurotrophin supplementation. 

 A number of methods to deliver growth factors, neurotrophins, and other factors 

of therapeutic interest in vivo have been reported and reviewed (McDonald and 

Zochodne, 2003).  The methods include direct near-nerve local injection (Finkelstein et 

al., 1996; Ro et al., 1998), delivery by osmotic pump with catheter to the repair site (Ishii 

et al., 1993; Leong et al., 1999; Mohiuddin et al., 1999; Newman et al., 1996; Utley et al., 

1996), infection with neurotrophic factor-transducing recombinant adenoviruses (Gravel 

et al., 1997; Isenmann et al., 1998),  and subcutaneuous and intraperitoneal injections and 

intrathecal delivery.   

Molecular delivery of exogenous growth factors or neurotrophins has also been 

attempted in vitro through introduction of an adenoviral vector to cultured neurons.  A 

single infection with an adenoviral vector coding for NT-3 maintains active production of 
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NT-3 for at least 20 days in culture, as evidenced by continued neurite extension assay 

(Dijkhuizen et al., 1997). 

Manipulation of the extacellualr matrix material proteins, mixed with 

neurotrophins in the vicinity of injury, has also been attempted.  For example, grafting 

NT-3 impregnated fibronectin mats into the site of injured sciatic nerve attenuated the 

upregulation of NPY expression, a neuropeptide protein that is associated with injury 

(Sterne et al., 1998). 

Exogenous delivery of BDNF antibody or antisense oligodeoxynucleotide into 

injured DRGs reduced the sprouting of sympathetic axons witin both ipsi- and contra-

lateral DRGs.  Delivery of exogenous BDNF into an intact L5 DRG resulted in a 4.2 fold 

increase this sympathetic sprouting (Deng et al., 2000).  These findings indicate that 

BDNF that is endogenously synthesized and secreted from the DRG proper is involved in 

the sympathetic axonal sprouting that follows the peripheral nerve injury.  In another 

study, exogenously and peripherally delivered BDNF to an already condition lesioned 

sciatic nerve enhanced regeneration of ascending sensory neurons in the spinal cord 

(Song et al., 2008).  Endogenous infusion of BDNF antibodies intrathecally via a mini-

osmotic pump for 3 days at the level of the fifth lumbar dorsal root ganglion, immediately 

following unilateral spinal nerve injury decreased expression of the injury/regeneration-

associated genes GAP-43 and Tα1 tubulin in the injured sensory neurons. Similar results 

were observed following intrathecal delivery of or siRNA targeting BDNF 3 days prior to 

injury (Geremia et al., 2009). These results substantiate the importance of endogenous 

BDNF in the initial induction of the cell body response in injured sensory neurons.    
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 Intrathecal delivery of NGF but not GDNF induced extensive sprouting of 

sympathetic neurons within lumbar DRGs (Jones et al., 1999).  A similar method of NGF 

delivery dramatically upregulated pituitary adenylate cyclase-activating polypeptide 

(PACAP) expression in intact and injured L4-L6 DRG neurons (Jongsma Wallin et al., 

2001).  Moreover, NGF infusion increased BDNF expression in both intact and injured 

trkA-positive neurons, accompanied by reduced trkB expression (Karchewski et al., 

2002), suggesting that NGF could regulate BDNF expression.  Exogenous infusion of 

NT-3 and NGF also differentially modulated PACAP expression in DRG neurons 

(Jongsma Wallin et al., 2001), suggesting a dynamic role in injury response and 

inflammation. 

 Intrathecal infusion of NT-3 on intact, uninjured adult rat dorsal root ganglion 

neurons was investigated. NT-3 did not appear to alter trkC expression, but reduced trkA, 

high-affinity NGF binding sites and SP levels (Gratto and Verge, 2003).  

Osmotic minipump infusion of GDNF to injured DRG prevented a number of 

injury induced manifestations.  These included the loss of binding of IB4, downregulation 

of the purinergic receptor P2X(3), upregulation of galanin and  NPY immunoreactivity in 

large diameter DRG cells, and expression of the transcription factor ATF3. The findings 

confirm that exogenous GDNF has a broad neuroprotective role in injured primary 

afferents (Wang et al., 2003).  

Materials that can be exogenously applied include a variety of other growth 

factors.  For example, exogenous injection of transforming growth factor-beta 1 (TGFβ1) 

to the proximal crushed end of the sciatic nerve increased the expression of FGF-2 in the 

anterior horn motoneurons of a regenerating spinal cord.  Distal to the crush injury, 
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TGFβ1 increased both the number and diameter of regenerating myelinated axons. These 

results indicate that TGFβ1 promotes peripheral nerve regeneration, and up-regulates the 

FGF-2 expression in the anterior horn motoneurons of spinal cord during the peripheral 

nerve regenerative process (Pei et al., 2005).   

Other proteins not characterized as growth factors have also been introduced to 

injured nerves.  An osmotic pump delivering oxidized galectin-1, a carbohydrate binding 

protein with an affinity for ß-galactosides, peripherally to the site of sciatic nerve injury 

restored and significantly improved functional recovery of the injured nerve.  There was 

also an increase to the number and size of regenerating myelinated fibers (Kadoya et al., 

2005).  Another example of a protein that does not belong to growth factors is the tissue 

plasminogen activator (tPA), an essential component of the proteolytic cascade that lyses 

blood clots.   Following sciatic nerve injury in the mouse, concomitant application of 

exogenous tPA promoted axonal regeneration, remyelination, and functional recovery.  A 

significant increase in the total number of axons and myelinated axons was observed, as 

manifested by enhanced expression of neurofilament preotein.  In addition, tPA markedly 

reduced the deposition of fibrin and fibrinogen after nerve injury, increased the number 

of macrophages and induced matrix metaloprotease-9 expression at the injury site.  

Moreover, exogenous tPA application reduced collagen scar formation and accelerated 

clearance of myelin and lipid debris after treatment.  Mice lacking tPA, or plasminogen 

genes showed delayed functional recovery after sciatic nerve crush (Siconolfi and Seeds, 

2001). These findings support the notion that tPA promotes axonal regeneration and 

remyelination, making it a potential candidate for the treatment of peripheral nerve injury 

(Zou et al., 2006). 



63 
 

1.3.2 cAMP. 

Cyclic 3’,5’-adenosine monophosphate (cAMP) is a second messenger for various 

extracellular signals.  When external stimuli, such as hormones and activating or growth 

factors bind certain receptors on the effector cell membrane, receptor occupation triggers 

dissociation and activation of heterotrimeric G proteins and the membrane-bound 

adenylate cyclase is activated.  This enzyme catalyses the intracellular production of 

cAMP. The substrate for the catalytic action of adenylate cyclase is the complex Mg-

ATP.  cAMP exerts its regulatory action via the activation of protein kinase A (PKA) and 

can phosphorylate a number of key proteins.  The substrate proteins for PKA can be 

enzymes, structural proteins (cytoskeletal elements, ribosomes, and synaptic membranes), 

nuclear proteins (histones), and growth associated proteins. The attachment of a 

phosphate to either a serine (in most cases) or a by PKA to a substrate protein may result 

in activation or inhibition of catalytic or binding properties. Phosphorylation of proteins 

is reversed by the activity of a special class of enzymes, the phosphoprotein 

phosphatases.  

Degradation of intracellular cAMP is controlled by phosphodiesterases which 

convert the active cAMP into the inactive 5’- AMP. The intracellular levels of cAMP, 

and thus the kinases that cAMP regulates, are continuously governed by the balance of 

activities of adenylate cyclase and phosphodiesterase (Wiegant, 1978).  A number of 

diverse families of adenylate cyclases and phosphodiesterases have now been identified, 

allowing for complex and diverse mechanisms to modulate the levels of intracellular 

cAMP (McKnight, 1991). 
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Cyclic AMP can exert its effects on gene expression through PKA mediated 

phosphorylation of transcription factors tht bind to enhancers located in the regions of 

DNA upstream of the transcription start sites to the genes. Examples of the two best 

characterized enhancer elements are the CRE (5'-TGACGTCA-3') and the AP-2 site (5'-

CCCCAGGC-3'). The activity of the CRE is regulated by CRE binding proteins 

(CREBs). These proteins contain leucine zipper regions that allow for either homo- or 

hetero dimerization (Walton and Rehfuss, 1990). CREB-containing dimers, once 

phosphorylated, bind to the CRE and stimulate transcription of cAMP-responsive genes 

(Montminy et al., 1990b). Phosphorylation of CREB is reversible and is regulated by 

cytoplasmic PKA (Montminy et al., 1990a). Another nuclear factor that regulates CRE is, 

cAMP-responsive element modulator (CREM) (Delmas and Sassone-Corsi, 1994; 

Habener et al., 1995).  

In the brain, damaged hippocampal dentate granule cells secrete neuroprotective 

molecules that activate CREB by phosphorylation of Ser133 and through the Akt 

signaling pathway (Walton and Dragunow, 2000). It would be important to investigate 

the role of CREB and the downstream survival genes that are activated by CREB in 

mediating the neuroprotective actions. 

In the nervous system, cyclic nucleotides can regulate growth cone movement and 

directionality.  Chemorepulsion induced in cultured Xenopus spinal neurons can be 

reversed by activation of the guanosine 3',5'-monophosphate (cGMP) or adenosine 3',5'-

monophosphate (cAMP) signaling pathways.  These findings suggest that it may be 

possible to counteract the inhibition of nerve regeneration by repulsive factors in the CNS 

(Song et al., 1998).  The cellular machinery that regulates actin- and tubulin in the growth 
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cone, integrates stimulatory and inhibitory signals from the local environment and 

translates them into axon growth or growth cone collapse (Snider et al., 2002).  

Neurotransmitters, neurotrophic factors, prostaglandins, and other extracellular 

signaling molecules can activate adenylate cyclase in neurons leading to increased 

production of cAMP. Evidence from this lab and others shows that cAMP signalling 

promotes neuronal survival and axonal elongation in neuronal cells.  Dibutyryl cAMP 

(dbcAMP), a membrane permeable cAMP analogue, and forskolin, an adenylyl cyclase 

activator, stimulate neurite outgrowth in cultured DRG neurons (Anderson et al., 2000).  

These findings indicate that increased levels of cAMP in neurons may have an important 

role in axonal elongation. 

Treatment with dbcAMP in vivo or addition of forskolin in vitro markedly 

increases axon growth, supporting the notion that cAMP triggers the intrinsic growth 

program of mature DRG neurons (Qiu et al., 2002b).  However, in other neuronal 

cultures, cAMP addition alone does not support growth, nor does PKA inhibition prevent 

conditioning lesion-induced axon growth on a favorable substrate (Qiu et al., 2002b). 

This work suggests that elevation of cAMP levels alone may not be sufficient to mediate 

the enhanced growth state activated by peripheral axotomy, but may regulate the 

response to inhibitory cues (Snider et al., 2002). 

Studies on the effect of introducing cAMP to injured sciatic nerve have been 

carried out.  In one such study, clamping the sciatic nerve for 2 seconds, and injecting 

dbcAMP (50 mg/kg) intramuscularly for 7 days enhanced the return of sensorimotor 

functions, as demonstrated by foot-flick response (Pichichero et al., 1973).  However, 

another study showed that a daily intramuscular injection of dbcAMP had no effect on 
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crushed sciatic nerve (McQuarrie et al., 1977).  Although the latter study reported no 

effect of dbcAMP, the duration of the clamping of the sciatic nerve was longer than in the 

former study.  It is documented that increasing cAMP levels in neuronal cell bodies 

elicits a partial regenerative response, altering expression of tubulin isotypes but not 

expression of other growth-associated genes or the rate of axonal transport (Han, Shukla 

et al. 2004). This approach suggests that control of the regenerative response may be 

complex and that multiple regulatory mechanisms may be involved (Liu and Brady, 

2004).   

In this lab, peliminary studies have shown that FGF-2 partially represses 

expression of GAP-43 in cultured adult DRG neurons.  This effect occurs, at least in part, 

through a MEK pathway.  Interestingly, combined application of both dbcAMP and FGF-

2 completely represses GAP-43 expression in these cultures, indicating a combinatorial 

role for FGF-2 with cAMP in maintaining the mature, uninjured state (Schreyer, 2004).  

Additional experiments indicated that selective inhibition of FGF-2 increases GAP-43 

levels of expression. 

Microinjection of dbcAMP into lumbar DRG markedly increases the regeneration 

of central axon branches injured within the spinal cord. Regenerating central axons reach 

well into the spinal cord lesion, often passing the original injury site. Thus, cAMP 

signaling appears to mimick the effect of a conditioning peripheral nerve lesion through 

increasing the intrinsic growth capacity of injured sensory axons by overcoming the 

central nervous system myelin inhibitory effects (Han et al., 2004; Neumann et al., 2002). 

Intraganglionic injection of dbcAMP also increases the expression of growth-associated 

tubulin isotypes. However, it does not increase the average axonal transport rates of 
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tubulin delivered to the tips of growing axons. Injection of dbcAMP therefore induces 

some, but not all of the changes that may be necessary to increase intrinsic axon growth 

capacity (Han et al., 2004). 

 

1.3.3 Mechanisms of Signaling 

The well-understood consequence of adenyl cyclase activation is that cAMP 

signaling leads to the activation of protein kinase A (PKA), phosphorylation of both the 

mitogen-associated protein kinase (MAPK) and cAMP-response element-binding protein 

(CREB), and subsequent transcription of growth-associated genes.  Convergent signalling 

through Ca2+ elevation can also lead to MAPK activation via the Ras pathway (Waltereit 

and Weller, 2003).   

The guanine nucleotide exchange protein activated by cAMP (Epac), which 

belongs to the cAMP-binding protein family, represents an alternative pathway through 

which adenyl cyclase can have diverse effects on cellular functions including 

hormone/transmitter secretion, cell adhesion, and intracellular Ca2+ mobilization. Epac 

mediates the PKA-independent effects of cAMP on cellular activities.  Thus, cAMP 

regulates cellular activities by coordinating both PKA-dependent and PKA-independent 

pathways, possibly within different domains of the cell (Seino and Shibasaki, 2005).  A 

finding that supports the possible influence of cAMP through a PKA independent 

pathway is that in cultured DRG neurons, signaling from cAMP to PKCε, (epsilon 

isoform of protein kinase C) is not mediated by PKA, but by Epac.  Epac, in turn, is 

upstream of PLC and PLD, both of which are necessary for translocation and activation 

of PKCε.  In DRG neurons, this signaling pathway was specific to IB4-positive 
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nociceptors. Thus, cAMP signaling through Epac may involve both the MAPK pathway 

and PKC in parallel (Hucho et al., 2005). 

Little is known about the signals that control how adult neurons switch from a 

normally transmitting, differentiated state to a regeneration state, although BDNF appears 

to be a critical part of this process (Geremia et al., 2009).  There is no clear indication as 

to whether expression of the various components of the injury response are directed by a 

common regulatory mechanism or whether each GAP gene, or protein is controlled by 

individual inducing or silencing factors that act in parallel.   

It is well established that deprivation of target-derived trophic factors (Lee et al., 

1998; Raivich et al., 1991) and the arrival of activating signals (chemokines and 

cytokines) from the injured axon tip and from the surrounding non-neuronal cells, can 

initiate the regenerative signaling cascades. In the few days after injury, macrophages and 

reactive Schwann cells infiltrate the degenerating nerve and release cytokines and 

neurotrophic factors, the effects of which may reach the injured neuronal cell body 

through retrograde axonal transport to switch on, promote, and sustain the regenerative 

program of the neuron.  

A variety of mechanisms in response to signals are responsible for the initiation 

and maintenance of the regenerative neuronal response.  Some signals that are common 

with cAMP signaling pathway have been reported. For example, the high frequency burst 

of action potentials generated at the lesion site results in the rapid influx of Ca+2 ions 

immediately following injury.  This can activate several protein kinase pathways, 

including CMAK2, protein kinases PKA, PKC, and MAPK (Ghosh and Greenberg, 

1995).  The activation of PKC and calmodulin dependent kinases can influence GAP-43 
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expression and other growth associated proteins.  Additionally, the intense burst of 

excitation causes transmitters, such as glutamate, neuropeptides and BDNF to be released 

at the spinal cord. These can also activate PKA, PKC and MAPK postsynaptically 

(Navarro et al., 2007). 

Other signaling pathways that may be common with the cAMP signaling pathway 

in response to nerve injury are activated in DRG neuronal cell bodies. Among these 

pathways are kinases such as the MAPKs Erk1 and Erk2, JNK and p38 kinase (Navarro 

et al., 2007). Following axotomy, Erk activation has been observed in axotomized sciatic 

nerve and DRG (Agthong et al., 2006; Katsura et al., 2007; Obata et al., 2007; Obata et 

al., 2004a; b; Obata et al., 2003). This activation of Erk is influenced by neurotrophic 

factors such as NGF and GDNF (Wiklund et al., 2002).  JNK is rapidly activated after 

nerve injury and remains elevated for weeks until either neuronal death or axonal 

regeneration occurs (Kenney and Kocsis, 1998; Waetzig et al., 2006).   Similarly, p38 is 

transiently activated following peripheral axotomy in small diameter DRG neurons (Ji et 

al., 2002; Murashov et al., 2001) as well as in small-to-medium DRG neurons after 

chronic constriction injury (Obata, Yamanaka et al. 2004). 

Activation of these kinases as a result of axotomy influences downstream events 

that include upregulation or activation of a number of transcription factors. Activated 

JNK increases the expression and phosphorylation of c-Jun, JunD and Fos, and their 

translocation into the nucleus.  This leads to the formation of AP-1 complexes that 

activate many downstream genes (Kenney and Kocsis, 1998; Raivich and Behrens, 2006; 

Raivich and Makwana, 2007).  Activation of AP-1 sites can influence the expression of 

GAP-43 and Tα1 tubulins and perhaps other growth associated proteins.  The presence of 
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basal levels of transcription factors characterized as immediate early genes in DRG 

neurons has been reported (Sheng et al., 1995), but many of these are increased following 

axotomy or lesion of the sciatic nerve (Herdegen et al., 1992; Kajander et al., 1996; 

Kenney and Kocsis, 1998; Wang et al., 2002).   

In the CNS, c-Jun deficient neurons do not express CD44, galanin, and α7β1 

integrin, genes that normally participate in the injury response (Raivich et al., 2004).  

Several protein kinase pathways activate transcription factor CREB in the early stages 

after injury, some through the Erk pathway.  ATF3 expression is upregulated in all DRG 

neurons after peripheral, but not central axotomy (Tsujino, Kondo et al. 2000). ATF3 

expression in subpopulations of DRG cells can be modulated by exogenous trophic 

factors, such as NGF and GDNF (Averill et al., 2004). Activated STAT3 is required in 

the regeneration process of DRG neurons and the central axonal growth in the spinal cord 

after a conditioning injury (Qiu, Cafferty et al. 2005). The PI3K-Akt pathway seems to 

also be involved in DRG neuronal response to injury (Leinninger et al., 2004).   
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CHAPTER 2 
2.0 RATIONALE OF THE CURRENT PROJECT 

 
We have insufficient knowledge about the mechanisms by which positive or 

negative signals associated with peripheral axon injury may lead to the injury response 

and enhancement of intrinsic regenerative ability in DRG neurons. Evidence from this lab 

and others show that the activation of cAMP-signalling promotes neuronal survival and 

axonal elongation in cultured DRG neurons and stimulates peripheral nerve regeneration 

in vivo.  These findings indicate that increased levels of cAMP in neurons have an 

important role in axonal elongation.  Paradoxically, this lab has found that cAMP 

signaling suppresses expression of the prominent growth-associated protein GAP-43 in 

cultured adult DRG neurons (Andersen et al., 2000). 

FGF-2 acts specifically on central and peripheral neurons during development and 

regeneration (Unsicker, 1993).  FGF-2 is expressed by the Schwann cells of the 

peripheral nerves and by the satellite cells of the DRG, and is important in wound repair 

and regenerative events in the injured peripheral nerves (Duobles et al., 2008). 

In this lab, recent unpublished studies have shown that exogenous FGF-2 also 

suppresses GAP-43 expression in cultured adult DRG neurons.  FGF-2 was shown to 

repress GAP-43 at least in part through a MEK pathway.  Combined application of both 

cAMP and FGF-2 completely represses GAP-43, indicating a complimentary role for 

FGF-2 with cAMP in maintaining the repressed state of GAP-43.  Additional 

experiments indicated that selective inhibition of FGF-2 signaling increases GAP-43 

level of expression in the brain.  

The survey of the literature and the preliminary results from tissue culture 

experiments leads to a reasonable assumption that cAMP and/or FGF-2 may act as 
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retrograde signaling molecules to maintain the basal metabolic state in uninjured neurons, 

(for example suppressing GAP-43 expression), and whose absence contributes to the 

generation of the injury response. 

The current project endeavors to answer two key questions: 1) Is the expression of 

transcription factors ATF3, c-Jun, and STAT3 by DRG neurons similar to that of GAP-

43? 2) If so, could these transcription factors be regulated by signaling mechanisms that 

aslo regulate GAP-43? 
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CHAPTER 3 
3.0 HYPOTHESES 

 
1) FGF-2 regulates expression of GAP-43 in DRG neurons in vivo, through modulation 

of transcription factors ATF3, c-Jun and/or STAT3. 

2) cAMP regulates expression of GAP-43 in DRG neurons in vivo, through modulation of 

transcription factors ATF3, c-Jun and/or STAT3. 
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CHAPTER 4 
4.0 SPECIFIC AIMS 

 

1. Establish through Western blot analysis, immunohistochemistry and image 

analysis whether expression patterns of ATF3 and GAP-43 are similar in their 

response to peripheral sciatic nerve transection or dorsal root transection of DRG 

neurons. 

2. Establish through Western blot analysis, immunohistochemistry and image 

analysis whether expression patterns of c-Jun and GAP-43 are similar in their 

response to peripheral sciatic nerve transection or dorsal root transection of DRG 

neurons. 

3. Establish through Western blot analysis, immunohistochemistry and image 

analysis whether expression patterns of STAT3 and GAP-43 are similar in their 

response to peripheral sciatic nerve transection or dorsal root transection of DRG 

neurons. 

4. Develop, design and test an improved in vivo method using mini osmotic pumps 

to study the possible modulatory role of FGF-2 and cAMP on GAP-43 

expression, when applied to the site of injured sciatic nerve. 

5. Develop, design and test an improved in vivo method using mini osmotic pumps 

to study the possible modulatory role of FGF-2 and cAMP on expression of 

ATF3, c-Jun and STAT3 transcription factor, when applied to the site of injured 

sciatic nerve. 
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CHAPTER 5 
5.0 SIGNIFICANCE 

 

The elucidation of the nature of signal(s) that lead to the reexpression of the GAPs 

in response to injury could help to understand the requirements for peripheral neuronal 

growth and might suggest ways to improve regeneration in the CNS.  From a cell 

biological point of view, it will be important to relate renewed expression of GAPss 

following injury to the expression and activation of transcription factors.  These studies 

of FGF-2 and cAMP application could help identify extrinsic influences (positive or 

negative) which are crucial to the modulation of the injury response in a model system in 

which axon regeneration readily occurs.  Moreover, detailed knowledge of the role of 

transcription factors in mediating the response to injury could be utilized to design new 

therapeutic strategies for PNS and CNS trauma to complement the current clinically 

available techniques.  
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CHAPTER 6 
6.0 MATERIALS AND METHODS 

 
 

6.1 Animals. 

All animals used in this project were cared for and used in accordance with the 

guidelines of the Canadian Council on Animal Care, and the regulations of the University 

of Saskatchewan Committee on Animal Care and Supply. 

Female Sprague Dawley rats (Charles River, Wilmington, MA, USA) weighing 

between 250 - 300 g were maintained in our animal facilities with 12 hour light/dark 

cycle at 25ºC, and fed rat chow ad libitum.   

 

6.2 Peripheral sciatic nerve transection. 

Animals were anesthetized using halothane (Halocarbon Laboratories, River 

Edge, NJ, USA) or isoflurane (Baxter Corporation, Toronto ON, Canada) delivered by 

inhalation using an anesthetic vaporizer (Medishield Products Ltd. Rexdale, ON, 

Canada).  The vaporizer was connected to an oxygen cylinder (100% O2).  The oxygen 

and the anesthetic at a concentration of 1.5-2% were delivered in a closed circuit at a 

flow rate of 1 L/min to a nose cone attached to the rat’s snout.  Deep anesthesia was 

confirmed by pinching the hind paw with forceps and noting the absence of a withdrawal 

reflex.  Anesthesia administration and the entire surgical procedure were done under 

aseptic conditions and.  Body temperature was maintained using an electrically heated 

pad.  Care was taken to continuously monitor the breathing signs of the rat, as well as the 

color of the paws during the entire surgery.  The skin over the left (ipsilateral) thigh 

region was shaved, cleansed with 70% alcohol, and a 0.5 cm incision was made in the 



77 
 

skin using size 21 stainless steel Paragon sterile surgical blades at the mid-thigh level.  

The biceps femoris muscle was then teased with small curved tip scissors to allow access 

to the common sciatic nerve, which is located immediately beneath this muscle. The 

nerve was then carefully transected using 6 mm blade spring scissors from separating the 

proximal from the distal stumps.  The damaged muscle was sutured using 6.0 ophthalmic 

silk sutures.  The external incision in the skin was then sutured using 4.0 silk sutures 

(Ethicon Inc., Johnson and Johnson, NJ, USA).  The right sciatic nerve (contralateral) 

was left intact to serve as an internal control.  At the end of surgery, the nose cone was 

removed from the rat and recovery was monitored.  The rat was then transferred back to 

the cage, and placed in the recovery room for 1 (or 2) wk.   

Transcardial perfusion was done after an intraperitoneal injection of sodium 

pentobarbital (Somnitol; 30 mg/kg or Euthanyl (65 mg/kg)) to achieve terminal 

anesthesia.  Deep anesthesia was confirmed and a ventral midline incision was made 

from mid-thoracic to the most caudal part of the abdominal region.  The diaphragm was 

immediately cut transversely and the thoracic cage was reflected to expose the heart.  

Immediately the right ventricle was nicked and a perfusion needle was inserted through 

the left ventricle, reaching the transparent aorta.  The needle was stabilized using a small 

pair of suturing forceps, and the animal was flushed with ice cold phosphate bufferd 

saline (PBS) at pH 7.4, at a flow rate of 50 ml/min.  After a total volume of 200 ml of 

PBS was used, an equal volume of 4% ice cold paraformaldehayde in 0.1M phosphate 

buffer was delivered.  Both ipsilateral and contralateral fourth lumbar (L4) and fifth 

lumbar (L5) DRG  (N = 4 animals) were then carefully removed, post-fixed in 4% 

paraformaldehyde for 2 hours, and cryoprotected with 20 % sucrose (in PBS) overnight at 
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4°C. The tissues were then coated with Tissue-Tek OCT compound in disposable vinyl 

cryomolds and kept frozen at -800C until cryosectioning and immunohistochemical 

analysis was performed (detailed below in section 6.6). 

 

6.3 Dorsal root transection. 

 The animals were deeply anesthetized using isoflurane as described above to 

shave the entire back, and the skin was sterilized using 70 % alcohol.  A dorsal midline 

incision was made from twelfth thoracic vertebra (T12) to the sixth lumbar vertebra (L6). 

The paraspinal muscles were separated from the spinal processes on the both sides of the 

vertebral column spanning the L3-L5 region. The transverse processes of L3 and L5 were 

exposed by scraping off attached ligaments using rongeurs, and the spinous processes of 

L3, L4, and L5 were all removed.  Hemilaminectomy was performed on the left side at 

L3 and L4 to expose the L4 and L5 dorsal roots.  The dura was carefully opened using 

the tip of a 27.5 gauge needle to expose the dorsal spinal roots within the vertebral canal.  

The occasional bleeding that took place during surgery was blotted using small pieces of 

sterilized filter paper or Gelfoam to clot and minimize the bleeding.  Both the left L4 and 

left L5 dorsal roots were identified under a dissecting microscope and cut using 6 mm 

blade spring scissors.  The separated paraspinal muscles were sutured together using 6.0 

silk ophthalmic sutures.  A piece of Gelfoam comparable to the size of the incision was 

placed in areas where muscles had been removed.  The external skin incision was sutured 

using 4.0 silk sutures.   The right dorsal roots of both L4 and L5 were left as internal 

controls.  Postoperative pain was controlled by 0.05 mg/kg subcutaneous injections of 

buprenorphine hydrochloride (Buprenex) every eight hours during the first three days of 
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the postoperative period.  Seven days after surgery, rats were perfused with 4% 

praformaldehyde in 0.1M phosphate buffer (as described above) and both ipsilateral and 

contralateral DRG (N = 4 animals) were collected and processed for cryosectioning as 

described above.   

 

6.4 Mini-osmotic pump preparation. 

 Altzet® mini-osmotic pumps Model 2001 (Durect Corporation, Cupertino, CA, 

USA) were used in order to ensure the delivery of controlled and constant amount of 

FGF-2, and/or dbcAMP to the cut end of the proximal nerve stump for seven consecutive 

days (Figure 6-1).  Each mini-osmotic pump is designed by the manufacturer to hold up 

to 200 µl of material in the reservoir and can be surgically implanted subcutaneously with 

ease anywhere in the body.  As a result of osmotic pressure from bodily fluids, the pumps 

deliver at a flow rate of 1 µl/hr.  This pumping rate is ideal for our experimental 

procedures, since we leave the animals for seven days postoperatively.   

For our experiment, control pumps were filled with vehicle (1 mg/ml rat serum 

albumin plus 10 µl/ml penicillin-streptomycin mixture in 0.1M PBS).  The experimental 

pumps are filled with either FGF-2 in vehicle at a final concentration of 50 ng/ml, or 

dbcAMP in vehicle at a final concentration of 0.5 mM.   

 

6.4.1 Mini-osmotic pump and chamber surgical implantation. 

Under aseptic conditions, surgical implantation of the mini-osmotic pumps was carried 

out after animals were deeply anesthetized using isoflurane, as described above.  An 

incision (2 cm) was made on the dorsal aspect of the rat, between the thoracic and lumbar 
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region.  The skin was then separated using the blunt tip of large scissors in order to create 

the necessary space for the pump implantation.  The pump was implanted on the 

 

Figure 6-1. Implantable mini-osmotic pump nerve chamber model.  Surgical 
implantation of osmotic mini-pumps for fluid delivery to the cut sciatic nerve. The 
connection between the pump and the site of injury is done using silastic tubing.  At the 
site of injury an appropriate size chamber is made using silastic tubing of a larger size.  
This chamber ensures that the material that is coming from the pump is confined to the 
proximal end of the nerve, and minimizes the effects of any reterograde signal that might 
emminate from the immediate surrounding environment.  
 

6.4.1 Mini-osmotic pump and chamber surgical implantation. 

Under aseptic conditions, surgical implantation of the mini-osmotic pumps was 

carried out after animals were deeply anesthetized using isoflurane, as described above.  

An incision (2 cm) was made on the dorsal aspect of the rat, between the thoracic and 
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lumbar region.  The skin was then separated using the blunt tip of large scissors in order 

to create the necessary space for the pump implantation.  The pump was implanted on the 

dorsal thoraco-lumbar region, and secured by 6.0 ophthalmic sutures to ensure stability.  

The pump was connected by 5 cm long small diameter silastic tubing the dimensions of 

which are: 0.025 in. ID (0.64 mm) x 0.047 in. OD (1.19 mm).  This length was chosen to 

ensure that the contents of the mini-osmotic pump reached specifically the proximal cut 

end of the sciatic nerve in the mid-thigh region.  Another incision was made at the mid-

thigh level and a peripheral sciatic nerve transection was carried out just as described 

above.  A large diameter silastic tubing (0.5 cm long) the dimensions of which are:  0.14 

in. ID (2.64 mm) x 0.192 in. OD (4.88 mm) was sealed from one end by silastic medical 

adhesive silicone.  The open end served as a chamber in which the small diameter silastic 

tubing connected to the pump was inserted.  The proximal cut end of the nerve was also 

inserted in the same chamber.  The chamber was then carefully placed in the mid-thigh 

region, where it was secured by additional 6.0 sutures to the muscles in the area.  This set 

up was ideal since it took advantage of the anatomical confinements and utilized them to 

secure foreign objects for a period of time. The animals tolerated the chamber and the 

implanted mini-osmotic pump well. The incision wound from the implantation of the 

mini-osmotic pump was adequately healed one day following surgery.  At the end of the 

experimental period (7 d), animals were either perfused as described above for DRG 

tissue immunohistochemical processing (Vehicle: N = 4 animals, FGF-2: N = 4 animals, 

dbcAMP: N = 4 animals), or killed with carbon dioxide asphyxiation for Western blot 

analysis (Vehicle: N = 4 animals, FGF-2: N = 4 animals, dbcAMP: N = 4 animals).  
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6.5 Western blot analysis. 

 L4 and L5 DRG tissues ipsilateral and contralateral to the sciatic nerve injury 

were immediately removed from each of the four animals in each experimental group and 

pooled in ice cold PBS solution.  Attached nerve and roots were carefully removed under 

the dissecting microscope, and the epineurium cut to expose the neurons.  The tissues 

were then placed in lysis buffer (20 mM HEPES (pH 7.5), 50 mM KCl, 10% glycerol, 0.5 

mM EDTA, 0.5 mM EGTA, 1 mM DTT, Sigma anti-protease cocktail, and 1% NP-40).  

Tissues were then homogenized at high speed using Tissue Tearer (Biospec Products, 

Inc, OK, USA) to break down connective tissue components.  The homogenate was 

further subjected to pulse sonication (three times for 5 sec with 1 min interval on ice).  

The sonicated homogenate was centrifuged at 14,000 rpm at 4ºC for 30 minutes.  The 

supernatant was then collected and its protein content was assayed using the Bradford 

method (Bradford, 1976), or Lowry’s method (Lowry et al., 1951).   

 Electrophoresis was done using a BioRad Mini-Protean Tetra Cell system.  

Proteins (20 µg per lane) were loaded and separated using polyacrylamide gel 

electrophoresis (2 h at room temperature, 120V).  10 % acrylamide gels were used for 

higher molecular weight detection and 12% acrylamide gels were used for smaller 

molecular weight detection.  The proteins were transferred and blotted on Pall BioTrace 

NT nitrocellulose membranes, (Pensacola, FL USA) using standard transfer buffer (12.08 

g Tris base, 56.6 g glycine, 800 ml methanol, added to water in a total volume of 4 liters).  

Transfer time was 2 hours at 4ºC.   Membranes were initially soaked in PBS for 10 

minutes prior to blocking.  Non-specific binding was blocked overnight on a shaker 
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(Fisher Scientific clinical rotator) using blocking solution containing 5% (w/v) non-fat 

milk (Biorad, Hercules, CA, USA) in PBS + 0.1% Tween 20.   

The following primary antibodies were diluted in blocking solution: mouse anti-

GAP-43 monoclonal antibody 9-1E12 (Schreyer and Skene, 1991) (1:5000), rabbit anti-c-

Jun (Santa Cruz, 1:300), rabbit anti-ATF3 (Santa Cruz, 1:200), rabbit anti-STAT3 (Santa 

Cruz, 1:300), rabbit anti-pSTAT3 (Cell Signaling, 1:500), and mouse anti-c-Jun (Cell 

Signaling, 1:200).  All incubations of membranes in primary antibodies in blocking 

solution were done overnight.  After several washes with PBS, two types of detection 

methods were used: chemiluminescent and fluorescent.  For enhanced 

chemiluminescence (ECL) detection, membranes were incubated in mouse or rabbit 

horseradish peroxidase (HRP)-conjugated secondary antibodies for 1 h at room 

temperature. The chemiluminescence was detected using enhanced ECL luminol 

substrate of the peroxidase captured on Kodak film.  For fluorescent detection, 

membranes were incubated in donkey anti-mouse conjugated to IRDye 800 (green), or 

with goat anti-rabbit conjugated to IRDye 680 (red) fluorescent secondary antibodies 

(Licor Biosciences). Fluorescence detection was carried out using an Odyssey Infrared 

Imaging System (Licor Biosciences, NE, USA).  This system is uniquely equipped with 

two infrared channels (800 nm and 680 nm) for direct fluorescence detection on 

membranes. 

 

6.6 Immunohistochemistry (IHC). 

A separate set of experiments under identical conditions set forth in the Western 

blot analysis were performed and employed for IHC analysis.  For peripheral transection 
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immunohistochemistry, DRG from ipsilateral (cut) and contralateral (uncut) L4 and L5 

DRG from the four animals were embedded  in the same mold and placed on the same 

slide to ensure that all sections underwent similar processing conditions for primary and 

secondary antibodies, and for further fluorescence image analyses.  L4 and L5 DRG 

collected from dorsal transection experiments underwent similar tissue processing 

procedures (Figure 6-2).   Spararte slides were prepared for each antibody (i.e. ATF3, c-

Jun, STAT3, and pSTAT3), from the same group of experiments.  Since these antibodies 

were raised in rabbit, and since GAP-43 was raised in mouse, we double labeled all the 

slides with GAP-43.  This procedure was repeated for reproducibility.    

  

 

  

Figure 6-2. Arrangement of DRG sections from peripheral nerve or dorsal root 
transection experiments.  Contralateral (blue ovals) and ipsilateral (red ovals) DRG 
tissues from animals that have andergone peripheral sciatic nerve transection, or dorsal 
root transection.  Tissues were arranged so that tissues from four similar animals are 
placed on the same slide for immunohistochmical analysis.  1-4 denotes the animal 
number. 

 

For mini-pump experiments, ipsilateral and contralateral L4 or L5 DRG sections 

from four animals from each of the three experimental treatment groups were arranged on 

gelatin coated slides and processed on the same slides under identical experimental 

conditions (Figure 6-3).  This arrangement avoids bias resulting from variance in 
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immunofluorescence intensities from slide to slide.  Representative slides that contained 

roughly similar number of neurons in each DRG section were chosen for further 

quantitative analysis.  L4 and L5 DRG tissues were segregated onto different slides. 

 

                  Set 1        Set 2       Set 3   Set 4 

Figure 6-3. Arrangement of DRG sections from mini-pump experiments.  
Contralateral (blue ovals) and ipsilateral (red ovals) L4 DRG tissues from animals 
surgically implanted with mini-pumps containing: vehicle (V), dbcAMP (C), or FGF-2 
(F) were arranged so that each set of experiments are placed on the same slide for 
immunohistochmical analysis.  

 
 

 Briefly, DRG tissues were cryo-sectioned at 6 µm and placed on gelatin coated 

slides.  Sections were blocked (2% horse serum, 2% goat serum, 1% BSA, 0.1% Triton 

X-100 in PBS) for 1hr at room temperature.  Sections were double labeled and incubated 

overnight at 4°C with the primary antibodies mouse anti-GAP-43 (1:5000) and rabbit 

anti-ATF3 (Santa Cruz, 1:1000) in blocking solution.  Sections were washed (3 x 5 

minutes) with PBS and then incubated with fluorescently labeled secondary antibodies 

that included Cy2-and Cy3-conjugates of goat-anti-rabbit IgG (Jackson ImmunoResearch 

Laboratories, West Grove, PA) both at a dilution of 1:300 in blocking solution for 1 hr at 

room temperature.  Sections were washed (3 x 5 min) with PBS.  For nuclear labeling, all 

slides were incubated for 5 min in 4',6-diamidino-2-phenylindole (DAPI) at a 

concentration of 1:20,000.  Sections were coverslipped with Citifluor and viewed using a 

Zeiss Axioskop fluorescence microscope (Zeiss Canada). 

V   C F V   C FV   C F V   C F
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6.7 Immunohistochemical image analysis. 

To analyze the images of slides prepared for immunohistochemistry, we used a 

Zeiss Axioskop microscope (Zeiss, Germany) fitted with epifluorescence optics.  This 

system uses an X-cite fluorescence source (Photonic Solutions, Inc. Canada) to ensure 

even illumination and images were captured using a Qimaging, Retga Exi camera.  

Images were digitized and transferred to Northern Eclipse imaging software (Empix 

Imaging Inc., Mississauga, ON, Canada), and the fluorescent labeling intensities of 

individual neurons and were quantified using a specifically designed program for our 

laboratory.  The software program was designed to measure the intensity of the 

fluorescent signal in the cytoplasm (or nucleus), as well as the mean diameter of that 

neuron. 

Four animals were used in each group.  In each contralateral and ipsilateral DRG, 

at least 200 neurons that were DAPI positive (i.e. nucleus was visible) were manually 

traced and included in the quantification process.  Each individual neuron was quantified 

for the GAP-43 and ATF3 labeling intensities, as well as the size of the individual 

neuron.   The same technique was used for the ipsilateral DRGs.  A similar quantification 

method was used for dorsal root transection experiments. 

For double labeling with two different antibodies, the software was designed to 

measure the intensity of the two different antibodies in the exact same neuronal 

cytoplasm (or nucleus) giving us the advantage of quantifying and correlating the 

expression of antibodies in individual neurons.  The labeling intensity data were 

transferred to Excel program (Microsoft) spreadsheets, for further statistical and 

graphical analyses. 



87 
 

6.8 Statistical analysis of immunohistochemical data. 

 The relative changes in immunofluorescence labeling intensities from one group 

to another were recorded for sections mounted on the same slide to avoid bias resulting 

from slide to slide variations.  Data from at least 800 DRG neurons from 4 different rats 

were included to calculate the mean labeling intensity in each experimental group (both 

contralateral and ipsilateral).  For the peripheral transection experiments, the mean 

labeling intensity of at least 800 DAPI positive neurons from the contralateral DRG of 

four different animals were normalized to 1.  The mean labeling intensity of about a 

similar number of ipsilateral neurons from the same animals were included and compared 

to the normalized contralateral.  

 In double labeling experiments (example: GAP-43 and ATF3) slides were 

prepared as in Figure 6-2. The fluorescence measurements of cytoplasmic and nuclear 

intensities were taken using a specific filter that detected the secondary antibody 

conjugated to GAP-43 first.  The filter was changed so that it could detect the secondary 

antibody conjugated to ATF3.  Thus, this process generated, for each neuron, two sets of 

data one for each of the primary antibodies tested.  This process repeated to collect at 

data from at least 200 neurons from each animal.  This entire process was repeated to 

include data from the rest of the 3 animals.  The resulting data would have a total of 4 

contalateral set of measurements and 4 corresponding ipsilateral set of measurements.  

The contralateral data for all of the 4 different animals were normalized to 1.  The 

ipsilateral cytoplasmic labeling intensity data were compared to the normalized 

contralateral cytoplasmic; and the ipsilateral nuclear labeling intensity data were 

compared to the normalized contralateral nuclear labeling intensity data.   
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To ascertain whether changes between ipsilateral and contralateral labeling 

intensities were significant, Kruskal-Wallis nonparametric ANOVA test was performed.  

This particular test was employed because our data collected did not assume a normal 

Gaussian distribution, and to ensure that we collected data from a heterogeneous neuronal 

size range.  This analysis was done using Prism software (Prism v.4 GraphPad Software 

Inc., San Diego, CA) to compare the cytoplasmic and nuclear labeling intensities of each 

transcription factor in individual sensory neurons in each of the three treatment groups 

(vehicle, dbcAMP, and FGF-2). In each experimental mini-pump group, we measured the 

mean labeling intensities of each transcription factor of contra-and ipsilateral neurons in 

four different animals, and the selection of neurons was based on DAPI staining. This 

particular ANOVA test was followed by Dunn’s multiple comparison tests to determine 

significant differences between specific groups of data. Statistical significance was 

accepted at P < 0.05 level. 

Scatter plots were generated whereby the neuronal diameter data for each animal 

was plotted against the mean fluorescent labeling intensity for each of the antibodies 

tested.  This type of graph provides qualitative assessment of the overall neuronal 

response to experimental conditions.  Moreover, any variation between the responses of 

size subpopulations of neurons to a particular experimental condition can be easily seen, 

and subjected to further quantitative statistical analyses. 
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CHAPTER 7 
7.0 RESULTS 

 
 

7.1 Normal injury response to peripheral sciatic nerve transection 

7.1.1 GAP-43 and ATF3 expression seven days after injury. 

GAP-43 is normally expressed at low levels in uninjured neurons and is confined 

primarily to the small diameter neurons (Figure 7-1 A).  Seven days following peripheral 

sciatic nerve transection, GAP-43 expression is elevated in the majority of neurons, 

including large diameter neurons (Figure 7-1 B).  The nuclei of injured DRG neurons that 

are GAP-43 positive often exhibit an eccentric localization, displaying a typical 

chromatolytic morphology.  In order to minimize sampling bias based on the size of the 

neuronal perikarya, only neurons that display a clear DAPI nuclear stain were included in 

the statistical calculations represented in the bar graphs below.  

Western blot analysis of DRG neurons with anti- GAP-43 shows a specific band 

at MW 43 kDa corresponding to GAP-43, which is increased in the ipsilateral DRG 

(Figure 7-1 C).   

Immunohistochemical results show that one week following sciatic nerve 

transection (N=4), GAP-43 and ATF3 are both upregulated in L4 DRG ipsilateral to the 

injury (Figure 7-2 A and C), and in L5 DRG (Figure 7-3A and C), when compared to the 

corresponding contralateral controls. Upregulated ATF3 is principally localized in the 

nuclei of injured neurons; whereas, GAP-43 is localized principally in the cytoplasm of 

injured neurons.   

Western blot analysis of DRG neurons using affinity purified polyclonal antibody 

raised against a peptide mapping the C-terminus of human ATF3 shows a band at about 
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MW 26 kDa (Figure 7-3 E).  This band was prominent in samples from ipsilateral injured 

DRG, but undetectable in samples from contralateral vontrol DRG.    

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-1. GAP-43 expression increases in DRG 7 d following sciatic nerve 
transection.  Representative micrographs display the effect of injury on the expression of 
GAP-43 in the DRG neurons.  (A) In uninjured DRG (contralateral), GAP-43 (green) is 
expressed at low levels in the neurons, especially in the small diameter neurons (small 
arrows).  (B) In injured DRG (ipsilateral) GAP-43 expression is more pronounced and 
includes large diameter neurons (block arrows), which also display visible chromatolytic 
morphology.  Cell nuclei are stained with DAPI (blue). (C) Western blot analysis for 
GAP-43 in L4 and L5 DRG neurons confirms the immunohistochemical data. Lane 1, 
ipsilateral; lane 2 contralateral to the injury. Scale bar represents 100 µm. 
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Figure 7-2.  ATF3 and GAP-43 expression increases in L4 DRG 7 d following sciatic 
nerve transection.  Micrographs of identical sections of L4 DRG neurons double labeled 
with ATF3 (red, A and B) and GAP-43 (green, C and D).  (A) In injured DRG 
(ipsilateral), ATF3 (red) expression is enhanced compared to contralateral DRG (B).   
GAP-43 (green) expression is increased in ipsilateral (C) compared to the contralateral 
(D).  Scale bar represents 100 µm. 
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Figure 7-3. ATF3 and GAP-43 expression increases in L5 DRG 7 d following sciatic 
nerve transection.  Micrographs of identical sections of L5 DRG neurons double labeled 
with ATF3 (red, A and B) and GAP-43 (green, C and D).  (A) In injured DRG 
(ipsilateral), ATF3 (red) expression is enhanced compared to contralateral DRG (B).   
GAP-43 (green) expression is increased in ipsilateral (C) compared to the contralateral 
(D).  Arrow in (B) points to occasional ATF3 positive neurons.  (E) Western blot analysis 
for ATF3 in L4 and L5 DRG neurons confirms the immunohistochemical data. Lane 1, 
ipsilateral; lane 2 contralateral to the injury. Scale bar in micrographs represents 100 µm. 
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The nuclear and cytoplasmic labeling intensity of ATF3 and GAP-43 were 

measured in both contralateral (uninjured) and ipsilateral (cut) DRG neurons double 

labeled with both antibodies.  In all cases, the mean contralateral value was normalized to 

1 and the average values for ATF3 and or GAP-43 in ipsilateral injured DRG neurons 

were compared to the normalized contralateral value.  A combined number of about 800 

neurons from four different rats were used in each experimental group.  Analysis of the 

data using two-way ANOVA followed by Kruskal Wallis test was performed comparing 

the combined number of neurons.  Nuclear ATF3 values in the transected nerve (2.58 + 

0.02) were significantly higher than measured in the contralateral, uninjured nerve (P < 

0.001).  The cytoplasmic ATF3 values also showed a significantly higher level than the 

contralateral side (1.17 + 0.02) (P < 0.001).  GAP-43 expression was significantly higher 

value in the injured nerve than in the contralateral nerve (1.39 + 0.02) (P < 0.001) (Figure 

7-4).  Thus, quantification of the immunohistochemical data from DRG neurons show 

that sciatic nerve transection at mid-thigh level significantly increases the expression of 

the transcription factor ATF3 and that of GAP-43.  

Northern Eclipse imaging analysis was used to quantify the labeling intensity of 

ATF3 and GAP-43 as a function of neuronal diameter.  The image analysis takes into 

account the average grey area of the fluorescence emitted by the conjugated secondary 

antibody to the primary antibody.  Manual tracing of individual neurons and of their 

respective nuclei generate numbers reflective of both neuronal diameter and labeling 

intensity values which can be entered in Excel and or Prism, where they can be analyzed.  

This type of data presentation shows changes in the pattern of labeling intensity values 

across the variable sizes of the subpopulation of DRG neurons. 
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Figure 7-4. Quantification of ATF3 and GAP-43 immunohistochemical staining 
intensity in L5 DRG 7 d following sciatic nerve transection. The mean 
immunoreactivity (IR) + SEM of normalized data to control (blue bars) values.  DRG 
neurons ipsilateral (red bars) to transection show a significant (*** P < 0.001) increase in 
the expression of ATF3 and GAP-43.  Each bar represents the mean value of 800 or more 
neurons from 4 different rats.   

 

No statistical analyses were done on this and on the following scatter plots 

presented throughout the remainder of this thesis.  We used at least four different rats.  

All four different animals show a similar pattern when we plotted the GAP-43 and ATF3 

labeling intensity values against the neuronal diameter.  Representative scatter plot values 

of nuclear (Figure 7-5 A), cytoplasmic ATF3 (Figure 7-5 B) as well as the cytoplasmic 

GAP-43 (Figure 7-5 C) are shown.  There was a noticeable increase in the nuclear ATF3 

labeling intensity as a result of injury across the the size range of DRG neurons.  

However, the increase in the cytoplasmic ATF3 levels was uneven, with the larger 
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neurons expressing markedly higher levels of intensity.  GAP-43 was increased across 

the injured neuronal subpopulation.      

 

7.1.1.1 GAP-43 and ATF3 expression 14 days after injury. 

 To determine if the injury effects last longer than 1 week, we studied the 

expression of both GAP-43 and ATF3 at 14 days following peripheral sciatic nerve 

transection.  The expression of both GAP-43 and that of ATF3 remained high (Figure 7-

6).  However, at 14 days, ATF3 expression was more pronounced in the injured nuclei of 

small to medium diameter neurons than compared with the nuclei of the large diameter 

neurons.   
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Figure 7-5. Sciatic nerve transection at mid-thigh level increases the expression of 
nuclear and cytoplasmic ATF3, and GAP-43 7 days after injury. Representative 
scatter plot of immunoreactivity (IR) of nuclear ATF3 (A), cytoplasmic ATF3 (B), and 
GAP-43 (C) in L5 DRG neurons comparing the contralateral (blue diamonds) with 
ipsilateral (red diamonds) data.  L4 showed similar results (data not shown). 
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Figure 7-6. ATF3 and GAP-43 expression increases in L4 DRG 14 d following sciatic 
nerve transection.  Micrographs of identical sections of L4 DRG neurons double labeled 
with ATF3 (red, A and B) and GAP-43 (green, C and D).  (A) In injured DRG 
(ipsilateral), ATF3 (red) expression is enhanced compared to contralateral DRG (B).   
GAP-43 (green) expression is increased in ipsilateral (C) compared to the contralateral 
(D).  Scale bar represents 100 µm. 
 

Analysis of the data at 14 d after sciatic nerve transection data by two-way 

ANOVA followed by Kruskal Wallis test revealed nuclear ATF3 values in the transected  

nerve (4.20+ 0.05), were significantly higher than the contralateral, uninjured nerve (P < 

0.001).  The cytoplasmic ATF3 values also showed a significantly higher level than the 

contralateral side (1.50 + 0.02) (P < 0.001).  GAP-43 expression was also significantly 

higher in the injured DRG neurons than in the contralateral side (1.80 + 0.04) (P < 0.001) 

(Figure 7-7).  Although the elevated nuclear and cytoplasmic ATF3 expression and GAP-

43 expression were similar to the pattern observed with the 7 d injured DRG neurons, the 

amount of increase was higher in the 14 d injured DRG neurons than the 7 d injured DRG 
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neurons for nuclear ATF3 (4 fold vs 3 fold), cytoplasmic ATF3 (1.5 fold vs.1.2fold), and 

of GAP-43 (1.8 fold vs.1.4 fold).           
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Figure 7-7. Quantification of ATF3 and GAP-43 immunohistochemical staining 
intensity in L4 DRG 14 d following nerve transection. The mean immunoreactivity 
(IR) + SEM of normalized data to control (blue bars) values.  DRG neurons ipsilateral 
(red bars) to transection show a significant (*** P < 0.001) increase in the expression 
of ATF3 and GAP-43.  Each bar represents the mean value of 800 or more neurons 
from 4 different rats.   
 

Representative scatter plots of nuclear (Figure 7-8 A), cytoplasmic ATF3 (Figure 

7-8 B) as well as the cytoplasmic GAP-43 (Figure 7-8 C) were examined.  There was a 

noticeable increase in the nuclear across all neuronal diameters, and cytoplasmic ATF3 

labelling intensity as a result of injury especially in the small to medium neurons (20 – 40 

µm in diameter).  GAP-43 expression was increased as well across the entire size range 

of injured neurons.    
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When comparing the results obtained from the 14 d injury to those obtained from 

7 d injury, there was a noticeable increase in the expressions of nuclear ATF3 and GAP-

43. There was an increase in the neuronal response to peripheral injury, especially during 

the second week of injury. 

 

7.1.2 GAP-43 and c-Jun expression seven days after injury. 

Immunohistochemical results showed that when the sciatic nerve was transected, 

GAP-43 and c-Jun were both upregulated in DRG neurons (Figure 7-9 A and C).  c-Jun 

was expressed at basal low levels in some of the nuclei of uninjured neurons (Figure 7-9 

B).  When DRG neurons were injured, c-Jun was more enhanced and upregulated in the 

nuclei of all neuronal subpopulation of cells, whereas, GAP-43 was upregulated in the 

cytoplasm.  While all GAP-43 positive injured neurons were also c-Jun  positive, not all 

c-Jun positive injured neurons were GAP-43 positive (Figure 7-10,  white arrows).  

    7.1.3 GAP-43 and STAT3 expression seven days after injury. 

Immunohistochemical results showed that when the sciatic nerve was severed at 

mid-thigh level, GAP-43 expression was upregulated in DRG neurons ipsilateral to the 

transection.  Total STAT3 expression did not change as a result of injury, beyond the 

basal contralateral levels (Figure 7-13).  However, a more careful look at the nuclei of 

injured neurons, a slight increase could be seen from the micrographs (Figure 7-13).    
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Figure 7-8. Sciatic nerve transection at mid-thigh level significantly increases the 
expression of nuclear and cytoplasmic ATF3, and GAP-43 14 days after injury. 
Representative scatter plot of immunoreactivity (IR) of nuclear ATF3 (A), cytoplasmic 
ATF3 (B), and GAP-43 (C) in L4 DRG neurons comparing the contralateral (blue 
diamonds) with the ipsilateral (red diamonds) data.  L5 showed similar results (data not 
shown). 
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Figure 7-9. c-Jun and GAP-43 expression increases in L5 DRG 7 d following sciatic 
nerve transection.  Micrographs of identical sections of L4 DRG neurons double labeled 
with c-Jun (red, A and B) and GAP-43 (green, C and D).  (A) In injured DRG 
(ipsilateral), c-Jun (red) expression is enhanced compared to contralateral DRG (B), 
which expresses low (basal) levels of c-Jun as seen in the nuclei.   GAP-43 (green) 
expression is increased in ipsilateral (C) compared to the contralateral (D).    White 
arrows point to injured neurons that express elevated levels of both c-Jun and GAP-43; 
Yellow arrows point to injured neurons that express elevated c-Jun, but not GAP-43.  
Scale bar represents 100 µm. 
 

 

Figure 7-10. Colocalization of GAP-43 and c-Jun in injured neurons. 
c-Jun (red) expression is, for the most part, colocalized with GAP-43 (green).  A small 
percentage of neurons exist that express c-Jun, but not GAP-43 (arrows).  Scale bar 
represents 100 µm.  
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Analysis of the data by two-way ANOVA followed by Kruskal Wallis test 

showed that nuclear c-Jun values in the injured neurons (1.58 + 0.06), were significantly 

higher than in the contralateral, uninjured neurons (P < 0.001).  The cytoplasmic c-Jun 

values of the injured DRG showed no significant difference (P > 0.05) from the 

contralateral side (0.97+ 0.05 vs 1.00 + 0.04).  GAP-43 was significantly higher in the 

injured DRG neurons compared to the contralateral neurons (1.33 + 0.06), (P < 0.01) 

(Figure 7-11). 

Representative scatter plot of nuclear (Figure 7-12 A) and cytoplasmic c-Jun 

(Figure 7-12 B) as well as cytoplasmic GAP-43 (Figure 7-12 C) are shown.  There was a 

noticeable increase in the nuclear c-Jun labeling intensity as a result of injury across the 

neuronal subpopulations, a trend that has also been observed in the injured cytoplasmic 

GAP-43 levels for all sizes of neurons, whereas there was no difference in the 

cytoplasmic expression of c-Jun for all neurons between injured vs. contralateral side.  
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Figure 7-11. Quantification of c-Jun and GAP-43 immunohistochemical staining 
intensity in L5 DRG 7 d following sciatic nerve transection.  The mean 
immunoreactivity + SEM of normalized data to control (blue bars) values.  Nuclei of 
DRG neurons ipsilateral (red bars) to the transection show a significant (*** P < 0.001) 
increase in the expression of nuclear c-Jun, and GAP-43 (** P < 0.01).  No difference is 
observed in the cytoplasmic c-Jun values. Each bar represents the mean value of 800 or 
more neurons from 4 different rats.   
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Figure 7-12.  Sciatic nerve transection at mid-thigh level notably increases the 
expression of nuclear c-Jun, and GAP-43 7 days after injury. Representative scatter 
plot of immunoreactivity (IR) of nuclear c-Jun (A), cytoplasmic c-Jun (B), and GAP-43 
(C) in L5 DRG neurons comparing the contralateral (blue diamonds) with the ipsilateral 
(red diamonds) data.  L4 showed similar results (data not shown). 
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Figure 7-13.  Total STAT3 expression changes slightly but GAP-43 expression 
increases in L5 DRG 7 d following sciatic nerve transection.  Micrographs of identical 
sections of L5 DRG neurons double labeled with total STAT3 (red, A and B) and GAP-
43 (green, C and D).  (A) In injured DRG (ipsilateral), STAT3 (red) expression increase 
slightly compared to contralateral DRG (B), especially when the injured nuclei are 
closely observed.   GAP-43 (green) expression is increased in ipsilateral (C) compared to 
the contralateral (D).  Scale bar represents 100 µm. 
 
 
 
 

Analysis of the data by two-way ANOVA followed by Kruskal Wallis test 

showed that there was no significant difference between injured and uninjured nuclear or 

cytoplasmic total STAT3 (P < 0.05) following peripheral nerve transection. GAP-43 was 

significantly higher in the injured DRG neurons compared to the contralateral neurons 

(1.70 + 0.01), (P < 0.001) (Figure 7-14). 
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Figure 7-14. Quantification of total STAT3 and GAP-43 immunohistochemical 
staining intensity in L5 DRG 7 d following sciatic nerve transection.  The mean 
immunoreactivity + SEM of normalized data to control (blue bars) values.  Both 
cytoplasmic and nuclear STAT3 of DRG neurons did not change significantly as a result 
of peripheral transection, while GAP-43 expression dramatically increased (*** P < 
0.001).  Each bar represents the mean value of 800 or more neurons from 4 different rats.   
 

Representative scatter plot of nuclear STAT3 (Figure 7-15 A), cytoplasmic 

STAT3 (Figure 7-15 B) as well as the cytoplasmic GAP-43 (Figure 7-15 C) are shown.  

There was no apparent increase in total STAT3 labeling intensity whether observed in the 

nucleus or the cytoplasm as a result of injury.  GAP-43 (Figure 7-15 C) levels, however, 

showed a typical pattern of increased expression as a result of injury, across the neuronal 

subpoulation.   
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Figure 7-15. Sciatic nerve transection at mid-thigh level does not dramatically 
increases the expression of total STAT3. Representative scatter plot IR of nuclear (A) 
and cytoplasmic (B) STAT3 and GAP-43 (C) in L5 DRG neurons comparing the 
contralateral (blue diamonds) with the ipsilateral (red diamonds) data.  No noticeable 
increase is seen in the expression of STAT3, whether in the nuclei or in the cytoplasm of 
injured neurons.   
 
 
 
7.1.4 GAP-43 and pSTAT3 expression seven days after inury. 

Immunohistochemical results showed that when the sciatic nerve was transected, 

phosphorylated STAT3 in the nucleus and GAP-43 expression in the cytoplasm were 

upregulated in injured DRG neurons (Figure 7-16 A and B).  While the majority of GAP-
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43 positive neurons were also pSTAT3 positive, not all pSTAT3 positive neurons were 

GAP-43 positive (arrows in Figure 7-16).    

 

Figure 7-16. Sciatic nerve transection at mid-thigh level significantly increases the 
expression of GAP-43 and nuclear phosphorylated pSTAT3 in injured DRG 
neurons. Micrographs of identical sections of L4 DRG neurons double labeled with 
pSTAT3 (red, A and B) and GAP-43 (green, C and D).  (A) In injured DRG (ipsilateral), 
pSTAT3 (red) expression is enhanced compared to contralateral DRG (B).   GAP-43 
(green) expression is increased in ipsilateral (C) compared to the contralateral (D). 
Arrows point to injured neurons that are pSTAT3 positive, but GAP-43 negative.  Scale 
bar represents 100 µm. 
 
 

 

Analysis of the data by two-way ANOVA followed by Kruskal Wallis test 

showed a significant increase in the nuclear pSTAT3 in injured DRG neurons (1.47 + 

0.04264), (P < 0.001).  Cytoplasmic pSTAT3 expression showed a significant but slight 

decrease (0.89 + 0.02619) (P < 0.05) in the injured neurons. GAP-43 expression was 
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significantly higher in the injured DRG neurons compared to the contralateral neurons 

(1.20 + 0.03), (P < 0.01) (Figure 7-17). 
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Figure 7-17. Quantification of pSTAT3 and GAP-43 immunohistochemical staining 
intensity in L5 DRG 7 d following sciatic nerve transection.  The mean immuno-
reactivity + SEM of normalized data to control (blue bars) values.  Both GAP-43 (***P < 
0.001) and nuclear pSTAT3 (***P < 0.001) of DRG are elevated as a result of 
transection.  Cytoplasmic pSTAT3 is also reducedas a result of peripheral nerve injury.  
Each bar represents the mean value of 800 or more neurons from 4 different rats.   
 

Representative Scatter plot of nuclear (Figure 7-18 A), cytoplasmic pSTAT3 

(Figure 7-18 B) as well as the cytoplasmic GAP-43 (Figure 7-18 C) are shown.  A 

noticeable increase could be seen in the nuclear pSTAT3 expression as a result of injury 

across the neuronal size range.  GAP-43 expression levels were also increased spanning 

the entire neuronal population.   
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Figure 7-18. Sciatic nerve transection at mid-thigh level increases the expression of 
nuclear pSTAT3. Representative scatter plot of nuclear pSTAT3 (A) and cytoplasmic 
pSTAT3 (B), as well as cytoplasmic GAP-43 (C) in L5 DRG neurons, comparing 
contralateral (blue diamonds) with ipsilateral (red diamonds) analysis.   Expression of 
nuclear pSTAT3 is increased as a result of peripheral nerve transection.  L4 showed 
similar results (data not shown). 
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7.2 Injury response to dorsal root transection. 

7.2.1 GAP-43 and ATF3 expression seven days after injury. 

Immunohistochemical results show that when dorsal root transection was 

performed, the levels of GAP-43 and ATF3 do not change beyond basal levels in the 

DRG (Figure 7-19).  No evidence for chromatolysis can be observed.    This absence of 

ATF 3 immunoreactivity is very important since it contrasts with what we observed 

following peripheral nerve transection.  Moreover, it confirms earlier studies that suggest 

a retrograde repressive signal(s) is derived from peripheral target tissue. These repressive 

signal(s) normally communicate through peripheral, but not central branches. Some peri-

neuronal cells can be immunoreactive to ATF3.     

 

Figure 7-19. Dorsal root transection  does not change the expression of GAP-43 or 
ATF3 7 days after injury. Micrographs of identical sections of L4 DRG neurons double 
labeled with ATF3 (red, A and B) and GAP-43 (green, C and D. (A) In injured DRG 
(ipsilateral), ATF3 (red) expression does not change compared to contralateral DRG (B).   
GAP-43 (green) expression similarily does not increase in ipsilateral (C) compared to the 
contralateral (D).  Scale bar represents 100 µm. 

AATTFF33  GGAAPP--4433  

CCoonnttrraallaatteerraall  CCoonnttrraallaatteerraall  

IIppssiillaatteerraall  IIppssiillaatteerraall  

AA  CC  

BB  DD  



112 
 

 
Analysis of the data by two-way ANOVA followed by Kruskal Wallis showed no 

significant changes in the nuclear ATF3 in centrally injured DRG neurons (1.03 + 0.050) 

(P >0.05).  Similarly, cytoplasmic ATF3 (1.01 + 0.02) (P > 0.05), and GAP-43 (0.93 + 

0.02) (P >0.05) did not change in centrally injured neurons (Figure 7-20). 
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Figure 7-20.  Quantification of ATF3 and GAP-43 immunohistochemical staining 
intensity in L5 DRG 7 d following dorsal root transection.  The mean 
immunoreactivity + SEM of normalized data to control (blue bars) values.  GAP-43 (P 
>0.05), nuclear and cytoplasmic ATF3 (P >0.05) do not change.  Each bar represents the 
mean value of 800 or more neurons from 4 different rats.   
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A representative scatter plot of measurements of the immunoreactivity of nuclear 

and cytoplasmic ATF3, and that of GAP-43 revealed no dramatic changes resulting from 

dorsal root transection (Figure 7-21 A and B, and C).  These results are in agreement with 

immunohistochemical data as analyzed statistically.  It is noteworthy that the results 

obtained from dorsal root transection experiments are in sharp contrast to those obtained 

from our peripheral sciatic nerve transection experiments (compare photomicrographs in 

Figures 7-2 and 7-3 to those in Figure 7-19), in which both ATF3 and GAP-43 increased 

significantly in the DRG. 
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Figure 7-21. Dorsal transection does not induce changes in the expression of nuclear 
or cytoplasmic ATF3. Representative scatter plot of immunoreactivity of nuclear (A) 
and cytoplasmic (B) ATF3, and (C) GAP-43 in L5 DRG neurons comparing the 
contralateral (blue diamonds) with the ipsilateral data (red diamonds). 
 
 
 
7.2.2 GAP-43 and c-Jun expression seven days after injury. 

Although the perineuronal GAP-43 immunolabelling appears to be more intense 

in the ipsilateral DRG neurons, no increase was noted within the DRG neurons.  
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Immunolabelling indicative of c-Jun expression did not change beyond basal levels as a 

result of dorsal root transection (Figure 7-22).  This finding is very important since it 

contrasts with the pattern of c-Jun expression following peripheral sciatic nerve 

transection, where a marked increase in nuclear c-Jun and GAP-43 expression was noted.  

Moreover, the lack of increased expression of c-Jun resembles the absence of increased 

exression of ATF3 and GAP-43 as a result of dorsal root transection. 

 

Figure 7-22. Dorsal root transection  does not change the expression of GAP-43 or c-
Jun 7 days after injury.  Micrographs of identical sections of L5 DRG neurons double 
labeled with c-Jun (red, A and B) and GAP-43 (green, C and D. (A) In injured DRG 
(ipsilateral), c-Jun (red) expression does not change compared to contralateral DRG (B).   
GAP-43 (green) expression similarily does not increase in ipsilateral (C) compared to the 
contralateral (D).  Scale bar represents 100 µm. 
 

Analysis of the data by two-way ANOVA followed by two-way ANOVA 

followed by Kruskal Wallis showed no significant changes in the nuclear or the 

cytoplasmic c-Jun in centrally injured DRG neurons (1.04 + 0.02) and (1.01 + 0.02), 
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respectively, (P >0.05).  Similarly, GAP-43 (0.95 + 0.01) did not change in centrally 

injured neurons (P >0.05) (Figure 7-23). 
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Figure 7-23. Quantification of c-Jun and GAP-43 immunohistochemical staining 
intensity in L5 DRG 7 d following dorsal root transection.  The mean 
immunoreactivity + SEM of normalized data to control (blue bars) values.  GAP-43 (P 
>0.05), nuclear and cytoplasmic c-Jun (P >0.05) do not change.  Each bar represents the 
mean value of 800 or more neurons from 4 different rats.  
 

 

A careful examination of the representative scatter plots revealed no dramatic 

changes in c-Jun or GAP-43 immunoreactivity as a result of dosal root transection across 

the size range of DRG neurons,  In agreement with immunohistochemical and statistical 

data (Figure 7-24 A and B, and C).  The results here, especially of nuclear c-Jun, are in 

contrast to the results obtained form peripheral sciatic nerve transection, where a higher 

nuclear expression was noted. 
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Figure 7-24. Dorsal transection does not induce changes in the expression of nuclear 
or cytoplasmic c-Jun. Representative scatter plot of immunoreactivity of nuclear (A) 
and cytoplasmic (B) c-Jun, and (C) GAP-43 in L5 DRG neurons comparing contralateral 
(blue diamonds) with ipsilateral (red diamonds).  
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7.2.3 GAP-43 and STAT3 expression seven days after injury. 

 In contrast to ATF3 and c-Jun, STAT3 is unique because it is the only 

transcription factor we tested that was upregulated following dorsal root transection.  Not 

only was the increase noted in the cytoplasmic domain, but also in the nuclei of injured 

DRG.  Small to medium neurons display higher labeling intensity.  No change in GAP-43 

is observed.  Immunohisto-chemical micrographs clearly demonstrate this increase 

(Figure 7-25).  Total STAT3 results here are also in contrast to the results obtained from 

peripheral nerve transection, where no significant change was observed. 

 

Figure 7-25. Dorsal root transection increases the levels of cytoplasmic STAT3 7 
days after injury. Micrographs of identical sections of L5 DRG neurons double labeled 
with total STAT3 (red, A and B) and GAP-43 (green, C and D. (A) In injured DRG 
(ipsilateral), cytoplasmic and nuclear total STAT3 (red) expression increases compared to 
contralateral DRG (B).   GAP-43 (green) expression does not increase in ipsilateral (C) 
compared to the contralateral (D).  Scale bar represents 100 µm. 
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 Analysis of the data by two-way ANOVA followed by Kruskal Wallis test 

confirmed the cytoplasmic (1.319 + 0.18, P< 0.001) and nuclear (1.46 + 0.02, P< 0.001) 

increases of total STAT3 in the neurons ipsilateral to the dorsal root transection (Figure 

7-26).     
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Figure 7-26. Quantification of total STAT3 and GAP-43 immunohistochemical 
staining intensity in L5 DRG 7 d following dorsal root transection.  The mean 
immunoreactivity + SEM of normalized data to control (blue bars) values. Total STAT3 
expression increases significantly in the nuclei (***P<0.001), and in the cytoplasm of 
injured neurons (***P<0.001).  No significant changes are observed in GAP-43 (P 
>0.05).  Each bar represents the mean value of 800 or more neurons from 4 different rats.  
 

 Scatter plot of DRG neurons from this experiment confirmed that total STAT3 

increased in the cytoplasm and nuclei DRG neurons ipsilateral to dorsal transection, 

especially in the small to medium sized neurons, while GAP-43 expression remained 

unchanged (Figure 7-27). 
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Figure 7-27. Dorsal root transection induces changes in the expression of nuclear 
and cytoplasmic total STAT3. Representative scatter plot of immunoreactivity of 
nuclear (A) and cytoplasmic (B) STAT3, and (C) GAP-43 in L5 DRG neurons comparing 
contralateral (blue diamonds) with ipsilateral (red diamonds). 
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7.2.4 GAP-43 and pSTAT3 expression seven days after injury. 

 The activated (phosphorylated) form of STAT3 is translocated to the nucleus.  

Here we observed an increase in the expression of pSTAT3 in the nuclei of DRG neurons 

ipsilateral to dorsal root transection (Figure7-28).  This increase in pSTAT3 was seen 

across the entire size population of DRG neurons.      

 

Figure 7-28. Dorsal root transection  increases the levels of nuclear pSTAT3 7 days 
after injry. Micrographs of identical sections of L5 DRG neurons double labeled with 
pSTAT3 (red, A and B) and GAP-43 (green, C and D). (A) In injured DRG (ipsilateral), 
nuclear pSTAT3 (red) expression increases compared to contralateral DRG (B).  GAP-43 
(green) expression does not increase in ipsilateral (C) compared to the contralateral (D).  
Arrows point to nuclei that are pSTAT3 +.  Scale bar represents 100 µm. 
 

 Analysis of the data by two-way ANOVA followed by Kruskal Wallis test 

confirmed that pSTAT3 expression significantly increases (1.11 + 0.02, P< 0.001) in the 

nuclei of DRG neurons ipsilateral to the dorsal root transection, while no changes are 
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seen in GAP-43 expression (Figure 7-29).  The results here are similar to the pattern 

observed in peripheral nerve transection experiments.      
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Figure 7-29. Quantification of total pSTAT3 and GAP-43 immunohistochemical 
staining intensity in L5 DRG 7 d following dorsal root transection.  The mean 
immunoreactivity + SEM of normalized data to control (blue bars) values.  
Phosphorylated pSTAT3 expression increases significantly in the nuclei (***P<0.001), 
but not in the cytoplasm of injured neurons.  No significant changes are observed in 
GAP-43 (P >0.05) of DRG neurons that have undergone dorsal root transection.  Each 
bar represents the mean value of 800 or more neurons from 4 different rats. 
 
 

Scatter plot of DRG neurons from this experiment confirmed pSTAT3 

immunoreactivity increases in the nuclei of DRG neurons ipsilateral to dorsal root 
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transection with no obvious relation to neuronal size, while GAP-43 expression remains 

unchanged (Figure 7-30). 

 

 

 

Figure 7-30. Dorsal root transection induces changes in the expression of nuclear 
pSTAT3. Representative scatter plot is shown of immunoreactivity of nuclear (A) and 
cytoplasmic (B) pSTAT3, and (C) GAP-43 in L5 DRG neurons comparing contralateral 
(blue diamonds) with ipsilateral (red diamonds). 
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 Table7-1 summarizes the results that compares the effects of peripheral 

transection and that of dorsal root transection.  The expression of GAP-43, ATF3, and    

c-Jun was upregulation as a result of peripheral transection.  However, STAT3 expression  

was upregulated as a result of dorsal root transection.   

 

Table 7-1. Summary of results comparing peripheral nerve transection with dorsal root 
transection. 

Protein Peripheral transection Dorsal root transection 

GAP-43  + 

ATF3 nuclear  + 

ATF3 cytoplasmic  + 

c-Jun nuclear  + 

c-Jun cytoplasmic + + 

STAT3 nuclear +  

STAT3 cytoplasmic +  

pSTAT3 nuclear   

pSTAT3 cyoplasmic  + 

This table summarizes the results obtained from peripheral transection vs. dorsal transection.  Proteins 
examined are listed in the far left column.  Red arrows indicate an increase, whereas blue arrows indicate a 
decrease in the expression, as judged by measuring immuofluorescence intensity.   
 

 

7.3 Modification of normal DRG neuronal injury response by FGF-2 and cAMP. 

Previous in vitro work from our lab showed that cultured DRG neurons 

suppressed GAP-43 expression as a result of FGF-2 administration.  Additionally, 

cultured adult rat DRG neurons exposed to membrane-permeable analogs of cyclic AMP 
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and adenyl cyclase activators downregulated GAP-43 protein expression and mRNA in a 

dose-dependent manner (Andersen et al., 2000).  We were interested in testing whether 

FGF-2 could downregulate GAP-43 in vivo.  We asked if a continuous administration of 

FGF-2 for seven days through surgically implanted minipump at the proximal cut end of 

the injured sciatic nerve would modulate the expression of GAP-43 in DRG neurons. 

 

7.3.1 Effect of FGF-2 and cAMP on GAP-43 expression. 

In order to test if materials available at the proximal cut end of the sciatic nerve 

could be retrogradely transported, we carried out a pilot study using FluoroGold® (FG) 

filled minipumps.  FG was infused at the nerve lesion site fir 7 days.  The majority of 

injured DRG neurons showed positive  FG staining (Figure 7-31).  This would indicate 

that dbcAMP and/or FGF-2, available at a cut axon tip, might also be retrogradely 

transported to DRG neurons.  Alternatively, dbcAMP and/or FGF-2 at the cut end could 

initiate a biochemical response in situ whose products could be retrogradely transported.  

To our surprise, FGF-2 applied through our model system did not suppress GAP-43 

expression in peripherally injured DRG neurons.  In contrast FGF-2 increased the 

expression of GAP-43 in the neurons ipsilateral to the nerve transection, and also, in the 

contralateral uninjured DRG neurons.  

    

7.3.1.1 Western analysis.  

 Western blot analysis showed a specific band at the 45 KD level corresponding to 

GAP-43 (Figure 7-32).  This band is only reactive in the injured DRG neurons ipsilateral 

to transected sciatic nerve.  Faint bands are present in the contralateral lanes, confirming 
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the basal levels of GAP-43 expression.  The contralateral GAP-43 is more visible in both 

dbcAMP and FGF-2 lanes, and is almost non-detectable in the contralateral vehicle 

treated group.  Optical scanning was uses to quantify the amount of increase of GAP-43 

immunoreactivity on the ipsilateral side in each experimental condition compared to the 

normalized control values.  FGF-2 administered in vivo via minipump significantly (P < 

0.05) increases GAP-43 expression in the ipsilateral DRG neurons.   

 

Figure 7-31. Retrograde FluoroGold® (FG) labeling of injured DRG neurons.  
Accumulation of FG retrograde tracer in DRG neurons after Fluorogold was delivered to 
the cut end of sciatic nerve by osmotic minipump for seven days.  The majority of the 
neurons retrogradely transport Fluorogold from the minipumps.  Some neurons are more 
brightly stained than others (arrows).  Scale bar represents 100 µm.   
 

 

 

 

 

 

Fluorogold 
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          +  ++ 

      1.15 + 0.01 1.5 + 0.01 

 

Figure 7-32. dbcAMP and FGF-2 minipump infusion increases GAP-43 levels in 
DRG neurons.   As a result of treatment with dbcAMP and FGF-2, the injured DRG 
neurons upregulated GAP-43 expression 1.15, and 1.5 fold relative to loading control 
(GAPDH) respectively.   
 

 

7.3.1.2 Immunohistochemistry. 

Figure 7-33 A, B, and C show typical immunohistochemical photomicrographs.  

These are representatives of the images used in the quantification method, and statistical 

analysis.  The expression of GAP-43 was increased in the ipsilateral vehicle control 

ganglion.  The increase is enhanced as a result of cAMP, and FGF-2 treatment in the 

small to medium diameter neurons.  A careful examination of the photomicrographs 

showed that almost the entire subpopulation of neurons expressed elevated GAP-43 

levels in the case of vehicle treatment.  When treated with dbcAMP, the small to medium 

diameter neurons were more brightly stained with GAP-43, compared with the rest of the 

neuronal subpopulation of cells.  When FGF-2 was introduced, the small to medium 

diameter neurons were also more brightly stained.    
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Scatter plot of the quantification data clearly depicted the enhanced expression of 

GAP-43 in the small to medium neurons (20-40 µm), when treated with dbcAMP or with 

FGF-2 (Figure 34 A, B, and C).  

  

 

 

 

Figure 7-33. FGF-2 and dbcAMP minipump infusions increase GAP-43 levels in 
DRG neurons.   As a result of treatment with dbcAMP and FGF-2, the injured 
(ipsilateral, right panel) DRG neurons upregulated GAP-43 expression, especially in the 
small diameter neurons (arrows), when compared to the vehicle ipsilateral (top right), 
where the expression spans the entire neuronal subpopulation.  Scale bar represents 100 
µm. 
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Figure 7-34. FGF-2 and dbcAMP minipump infusions increase GAP-43 levels in 
DRG neurons.   Representative scatter plot is shown for the quantification of the 
micrographs in Figure 7-33.  Plots of (A) Vehicle, (B) cAMP, and (C) FGF-2 confirm the 
western and histochemical data. 
 
 
 
7.3.1.3 Cytoplasmic localization. 

Two-way ANOVA followed by Dunn’s multiple comparison tests were carried 

out on the normalized values of the immunoreactivity.  The results show significant 
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increase in GAP-43 expression as a result of FGF-2 and of cAMP (P< 0.001).  Ipsilateral 

FGF-2 (2.637 + 0.05570) and contralateral FGF-2 (1.6150 +0.032900) values are higher 

compared to vehicle values.  dbcAMP treated also show higher contralateral and 

ipsilateral values (1.1470 + 0.021260) and (2.501 + 0.06198), respectively (Figure 7-35).   
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Figure 7-35. Quantification of GAP-43 immunohistochemical staining intensity in 
L5 DRG 7 d following vehicle, FGF-2 and dbcAMP minipump surgical 
implantation.  The mean immunoreactivity + SEM of normalized data to control 
(contralateral vehicle) (blue bars) values.  FGF-2 and dbcAMP cause GAP-43 expression 
to increase significantly in DRG neurons (***P<0.001) ipsilateral (red) and contralateral 
(blue) columns.  Each bar represents the mean value of 800 or more neurons from 4 
different rats. 
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7.3.2 Effect of FGF-2 and cAMP on ATF3 expression  

7.3.2.1 Western analysis. 

 Western blot analysis showed a specific band at just below the 20 KD level 

corresponding to ATF3 (Figure 7-36).  This band is only reactive in the injured DRG 

neurons ipsilateral to transected sciatic nerve, and virtually non-existent in the 

contralateral lanes.  FGF-2 administered in vivo via minipump did not lower injury 

induced ATF3 expression in the ipsilateral DRG neurons.  

 

 

 

 

 

 

 

Figure 7-36.  dbcAMP and FGF-2 minipump infusion does not suppress ATF3 levels 
in injured DRG neurons.  Western blot analysis for ATF3 in L4 and L5 DRG neurons. 
No visible suppression of injury-induced ATF3 expression as a result of treatment with 
dbcAMP and FGF-2.  GAPDH is used as internal loading control. 
 

7.3.2.2 Immunohistochemistry. 

Figure 7-37 (A) vehicle, (B) dbcAMP, and (C) FGF-2 treated DRG show typical 

immunohistochemical photomicrographs.  These are representative images used in the 

quantification method and statistical analyses.  The expression of ATF3 is increased in 

both the nucleus and the cytoplasm in the ipsilateral micrographs. dbcAMP and FGF-2 

treatment did not alter the dramatic ATF3 induction seen in the vehicle.   
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Figure 7-37. FGF-2 and dbcAMP minipump infusions do not suppress the overall 
increase in ATF3 levels in injured DRG neurons.   As a result of treatment with (B) 
dbcAMP and (C) FGF-2, ATF3 expression in the injured (ipsilateral, right panel) DRG 
neurons is not suppressed, when compared to vehicle (A) filled minipump, quantified 
below.  Scale bar represents 100 µm. 
 

7.3.2.2.1 Nuclear localization. 

Two-way ANOVA followed by Dunn’s multiple comparison tests were carried out on the 

normalized values of the immunoreactivity.  The results show significant decrease in 

nuclear ATF3 expression as a result of FGF-2 and of cAMP treatment when compared to 

the vehicle control (P< 0.001).  Ipsilateral FGF-2 (15.05 + 0.46) is significantly lower 

compared to normalized vehicle values.  dbcAMP treated also show lower ipsilateral 
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values (15.73 + 0.53) (Figures 7-38  B, D, and F) lower scatter plots and (7-39 bar 

graphs). 

 

 

Figure 7-38. FGF-2 and dbcAMP minipump infusions did not repress the overall 
injury induced ATF3 levels in DRG neurons.   Scatter plot quantification of the 
immunehistochemistry of cytoplasmic (A, C, and E) and nuclear (B, D, and F) ATF3 
following treatment with vehicle (A and B), cAMP (C and D), FGF-2 (E and F). 
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Figure 7-39. FGF-2 and dbcAMP decrease nuclear ATF3 expression ipsilateral to 
the surgical manipulation.  FGF-2 and cAMP cause a significant decrease in the nuclear 
ATF3 levels (***P<0.001).  Each bar represents the mean value of 800 or more neurons 
from 4 different rats. 
 

 

7.3.2.2.2 Cytoplasmic localization. 

Ipsilateral cytoplasmic ATF3 expression as a result of FGF-2 and of cAMP 

delivery was decreased when compared to vehicle.  Ipsilateral FGF-2 (3.508000 + 

0.102400) was significantly lower, while contralateral FGF-2 (3.703 + 0.12090) was 

higher when normalized to vehicle values (P< 0.001).  dbcAMP treated neurons also 

showed lower ipsilateral values (2.600000 + 0.117300) and higher contralateral values 

(3.182 + 0.09839), respectively (Figures 7-38 A, C, and E) upper scatter plots and 7-40 

bar graphs. Contralateral effects as a result of treatments can be observed. 
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Figure 7-40. FGF-2 and cAMP decrease cytoplasmic ATF3 expression ipsilaterally 
and increase the contralateral expression. 
 FGF-2 and cAMP cause a marked reduction in ipsilateral cytoplasmic ATF3 expression 
(***P<0.001) when compared to vehicle ipsilateral.  Ipsilateral (red) and contralateral 
(blue) data.  Each bar represents the mean value of 800 or more neurons from 4 different 
rats. 
 

7.3.3 Effect of FGF-2 and dbcAMP on c-Jun expression  

7.3.3.1 Western analysis 

Western blot analysis showed a specific band at just below the 37 KD level 

corresponding to c-Jun (Figure 7-41).  Chronic cAMP and FGF-2 administration via 

minipump increased c-Jun expression in injured DRG neurons.  The basal level of 

expression did not change as a result of peripheral nerve transection in the vehicle treated 

animals.  However, dbcAMP applied in vivo to the proximal cut end of the nerve induced 

c-Jun expression compared to contralateral.  This induction is also seen with FGF-2.    
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                                          __________  _________   __________     
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Figure 7-41. FGF-2 and dbcAMP increases c-Jun expression ipsilateral and 
contralateral to the surgical manipulation.  FGF-2 and dbcAMP application cause a 
noticeable elevation in c-Jun expression.  GAP-43 immunolabelling is also included on 
this blot to confirm the presence of an injury response.   
 

7.3.3.2 Immunohistochemistry 

There is a constitutive c-Jun expression in the contralateral DRG neurons.  Injury 

induces an upregulation in c-Jun in the nuclei and in the cytoplasm of injured DRG 

neurons.  This injury-induced upregulation of nuclear c-Jun is further enhanced by 

dbcAMP and FGF-2 delivered to the cut end of the nerve (Figure 7-42 A, B, and C, and 

Figure 7-43 B, D, and F, lower scatter plots).    

Scatter plots clearly show an increase in nuclear c-Jun as a result of FGF-2 

application to the cut end of the sciatic nerve.   

 

 

 

GAP-43

c-Jun
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Figure 7-42. FGF-2 and dbcAMP minipump infusions do not repress injury induced 
c-Jun levels in DRG neurons. There is a constitutive level of cytoplasmic and nuclear 
expression in contralateral DRG neurons.  These images are used in the quantification 
and statistical analyses below, and statistical analysis (A) vehicle, (B) dbcAMP, and (C) 
FGF-2.  Scale bar represents 100 µm. 
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Figure 7-43. FGF-2 and dbcAMP minipump infusions did not repress injury 
induced c-Jun levels in DRG neurons.   Scatter plot quantification of the 
immunohistochemistry of cytoplasmic (A, C, and E) and nuclear (B, D, and F) c-Jun.  
Plots of vehicle (A and B), dbcAMP (C and D), FGF-2 (E and F).  FGF-2 minipump 
infusions increase nuclear c-Jun levels in DRG neurons, while cAMP decreases nuclear 
c-Jun, confirming the Western blot and histochemical dat 
 

7.3.3.2.1 Nuclear localization. 

Statistical analysis shows significant decrease in nuclear c-Jun expression in 

injured neurons as a result of cAMP application (1.20 + 0.01 vs. 1.27 + 0.01, P< 0.001).  

In contrast, FGF-2 (1.38 + 0.01, P< 0.001) caused a significant increase compare to the 

vehicle control (Figure 7-44).  Interestingly, FGF-2 applicaion also appeared to cause an 

increase in nuclear c-Jun on the uninjured contralateral side. 
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Figure 7-44. dbcAMP decreases nuclear c-Jun, while FGF-2 increases nuclear c-Jun 
expression.  dbcAMP causes a significant reduction in nuclear c-Jun expression 
(***P<0.001) (Ipsilateral (red) and contralateral (blue) data).  Each bar represents the 
mean value of 800 or more neurons from 4 different rats. 

 

7.3.3.2.2 Cytoplasmic localization. 

 Statistical analysis show significant (P< 0.001) decreases in expression of c-Jun in 

the cytoplasm of cAMP and of FGF-2 treated DRG neurons.  cAMP cytoplasmic value 

was lowered to (1.082 + 0.01312), and that of FGF-2 to (1.209 + 0.0140), Figure 7-43 

upper plots, and Figure 7-45). 
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Figure 7-45. Both dbcAMP and FGF-2 decrease cytoplasmic c-Jun. dbcAMP and 
FGF-2 cause a significant reduction in cytoplasmic c-Jun expression (***P<0.001). 
(Ipsilateral (red) and contralateral (blue) data).  Each bar represents the mean value of 
800 or more neurons from 4 different rats. 
 

7.3.4 Effect of cAMP and FGF-2 on STAT3 expression  

 

7.3.4.1 Western analysis 

Western blot analysis showed a specific band at the 90 KD level corresponding to 

STAT3 (Figure 7-46).  The blot in Figure 7-46 shows that cAMP and FGF-2 

administration in vivo via minipump suppressed injury induced STAT3 expression. 
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Figure 7-46. FGF-2 and dbcAMP suppress injury induced STAT3 expression.  FGF-
2 and dbcAMP suppress injury induced STAT3 expression. GAP-43 immunolabelling is 
also included on this blot to confirm the expression of an injury response, and GAPDH as 
internal loading control.   
 

7.3.4.2 Immunohistochemistry 

There is a constitutive STAT3 expression in the contralateral DRG neurons.  

Injury induces an upregulation in STAT3 in the nuclei and in the cytoplasm of injured 

DRG neuron.  This injury-induced upregulation of total STAT3 is reduced by cAMP and 

FGF-2 delivery to the cut end of the nerve (Figures 7-47 A, B, and C, and 7-48 B, D, and 

F).    

Scatter plot of the cytoplasmic and nuclear STAT3 shows an increase in the 

nuclear STAT3, especially in the nuclei of small neurons (Figure 8 A and B). 
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7.3.4.2.1 Nuclear localization. 

Statistical analysis  shows a significant decrease in nuclear STAT3 expression as 

a result of cAMP but not FGF-2 (0.9233 + 0.01648, P< 0.001) (Figure 7-49).   

7.3.4.2.2 Cytoplasmic localization. 

Statistical analysis show significant decrease in cytoplasmic STAT3 expression as 

a result of cAMP (0.94 + 0.01, **P< 0.01), and of FGF-2 (0.90 + 0.01, P<0.05) (Figure 

7-50).   
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Figure 7-47 A, B, and C shows typical immunohistochemical photomicrographs of 
total STAT3 expression in response to dbcAMP and FGF-2.  There is a constitutive 
level of cytoplasmic and nuclear expression in contralateral DRG neurons.  These images 
are used in the quantification method, and statistical analysis (A) vehicle, (B) dbcAMP, 
and (C) FGF-2. 
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Figure 7-48. FGF-2 minipump infusion does not change nuclear or cytoplasmic total 
STAT3 levels in DRG neurons, while cAMP decreases nuclear STAT3.   Scatter plots 
quantification of the immunohistochemistry of cytoplasmic and nuclear STAT3.  Plots of 
(A, and B) Vehicle, (C and D) dbcAMP, and (E and F) FGF-2 confirm the 
immunohistochemical data. 
 



145 
 

Nuclear STAT3

Veh
icl

e
cA

MP
FGF2

0.0

0.5

1.0

1.5

2.0
Contralateral
Ipsilateral

***

***
***

***

TreatmentN
or

m
al

iz
ed

 N
uc

le
ar

 p
ST

AT
3 

la
be

lli
ng

 in
te

ns
ity

 

Figure 7-49. dbcAMP decrease nuclear STAT3, while FGF-2 does not change 
nuclear STAT3 expression.  dbcAMP causes a significant reduction in nuclear STAT3 
expression compared to injury response alone (***P<0.001), ipsilateral (red) and 
contralateral (blue) data.  Each bar represents the mean value of 800 or more neurons 
from 4 different rats. 
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Figure 7-50. FGF-2 and dbcAMP decrease cytoplasmic STAT3 expression.  dbcAMP 
causes a significant reduction in cytoplasmic STAT3 expression compared to injury alone 
(**P<0.001), ipsilateral (red) and contralateral (blue) data.  Each bar represents the mean 
value of 800 or more neurons from 4 different rats. 
 
 

 

7.4.5 Effect of cAMP and FGF-2 on pSTAT3 expression  

 

7.4.5.1 Western analysis 

Western blot analysis showed a specific band at the 90 KD level corresponding to 

pSTAT3 (Figure 7-54).  The level of pSTAT3 immunoreactivity on these blots did not 

show a consistant change as a result of chronic dbcAMP or FGF-2 infusion on either the 

ipsilateral or contralateral sides.  No quantification was done on this blot.  A sample is 

shown in Figure 7-51. 
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Vehicle cAMP  FGF-2 

___________   __________   ___________ 

              Contra     Ipsi    Contra     Ipsi      Contra     Ipsi 

 

Figure 7-51. FGF-2 and dbcAMP do not show substantial difference on pSTAT3 
expression ipsilateral and contralateral to the surgical manipulation.  FGF-2 and 
dbcAMP did not induce a measureable change in pSTAT3 expression. 
 

7.4.5.2 Immunohistochemistry 

There is a constitutive pSTAT3 expression in the contralateral DRG neurons.  

Injury induces an upregulation in pSTAT3 in the nuclei and in the cytoplasm of injured 

DRG neuron.  This injury-induced upregulation of pSTAT3 is further enhanced by cAMP 

and FGF-2 delivery to the cut end of the nerve (Figures 7-52 A, B, and C, and 7-53 B, D, 

and F).    

 

 

 

pSTAT3 
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Figure 7-52 A, B, and C shows typical immunohistochemical photomicrographs of 
total pSTAT3.  There is a constitutive level of cytoplasmic and nuclear expression in 
contralateral DRG neurons.  These images are used in the quantification method, and 
statistical analysis (A) vehicle, (B) dbcAMP, and (C) FGF-2.  Arrows point to nuclei that 
express pSTAT3 as a result of injury.   
 

 

 

 
 
 
 

Ipsilateral pSTAT3Contralateral pSTAT3

Ipsilateral pSTAT3Contralateral 
pSTAT3

Ipsilateral pSTAT3 Contralateral pSTAT3

B) dbcAMP 

A) Vehicle 

C) FGF-2 
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Figure 7-53. FGF-2 and dbcAMP minipump infusions increase nuclear pSTAT3 
levels in DRG neurons, while dbcAMP increases cytoplasmic pSTAT3.   Scatter plots 
quantification of the immunohistochemistry of cytoplasmic and nuclear pSTAT3.  Plots 
of (A, and B) Vehicle, (C and D) dbcAMP, and (E and F) FGF-2 confirm the 
immunohistochemical data. 
 

7.4.5.2.1 Nuclear localization. 

Statistical analysis shows a significant increase in nuclear pSTAT3 expression as 

a result of FGF-2 (4.395 + 0.18960, P< 0.001), but not dbcAMP (Figure 7-54). 

Contralateral effects are observed.  
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Figure 7-54. FGF-2 increase nuclear pSTAT3, while dbcAMP does not change 
injury induced nuclear pSTAT3.  FGF-2 causes a significant elevation in nuclear 
pSTAT3 expression (***P<0.001), ipsilateral (red) and contralateral (blue) columns. 
 

7.4.5.2.2 Cytoplasmic localization. 

Statistical results show significant increase in cytoplasmic pSTAT3 expression as 

a result of cAMP (3.189 + 0.10380, **P< 0.001), but not FGF-2 (Figure 7-55).   
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Figure 7-55. dbcAMP increase cytoplasmic pSTAT3, while FGF-2 does not change 
injury induced cytoplasmic pSTAT3.  dbcAMP causes a significant elevation in 
cytoplasmic pSTAT3 expression (***P<0.001), ipsilateral (red) and contralateral (blue) 
columns. 
 
 
 Table 7-2 summarizes the results of minipump implantation containing vehicle, 

dbcAMP, or FGF-2.  It appears that neither cAMP nor FGF-2 suppressed the injury 

induced upregulation of GAP-43.  However, injury induced upregulation of ATF3 and   

c-Jun, although not completelt suppressed, seems to be downregulated by cAMP, and or 

FGF-2.  pSTAT3, on the other hand, is upregulated by FGF-2 infusion. 
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Table 7-2. Summary of the results of minipump implantation. 
Protein 
 

Vehicle dbcAMP FGF-2 

GAP-43  
 

 
 

 
 

ATF3 nuclear  
 

  

ATF3 cytoplasmic  
 

  

c-Jun nuclear  
 

  
 

c-Jun cytoplasmic  
 

  

pSTAT3 nuclear  
 

+ 
 

 

pSTAT3 cyoplasmic  
 

 + 
 

This table summarizes the results obtained from minipump implantation containing vehicle, dbcAMp, or 
FGF-2.  Proteins examined are listed in the far left column.  Red arrows indicate an increase, whereas blue 
arrows indicate a decrease in the expression, as judged by measuring immuofluorescence intensity.   
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CHAPTER 8 
8.0 DISCUSSION 

 
8.1 Adequacy of experimental design and techniques. 

8.1.1. Peripheral nerve transection versus central transection.  

The pseudounipolar neurons of the DRG have two branches, a peripheral branch 

that is capable of mounting a robust regenerative response after nerve injury, and a 

central branch extending into the dorsal column of the spinal cord that does not 

regenerate as well.  However, a conditioning lesion introduced to the peripheral branch 

can cause the lesioned central branch to re-grow into the dorsal column.  This unique 

anatomy of the DRG neurons, the fundamentally opposing effects that injury to either 

branch can produce, and the easy accessibility to manipulate either branch make this 

model system an excellent testing grounds to study the molecular events influencing 

nerve regeneration.  In our peripheral versus central root transection model, we 

introduced the injury on one side of the animal and used the un-operated contralateral 

side as our internal control because no immunohistochemical difference in GAP-43 

expression has been reported between un-operated controls and contralateral controls 

(Schreyer and Skene, 1991; 1993).  

Peripheral sciatic nerve transection at mid-thigh is not expected to induce all L4 

and L5 DRG neurons to display the injured phenotype because some of these neurons 

may innervate proximal structures (Devor et al., 1985) or may extend axonal branches to 

nerves other than the sciatic (Devor et al., 1984; Langford and Coggeshall, 1981; 

McMahon and Wall, 1987; Pierau et al., 1982; Taylor and Pierau, 1982). 
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8.1.2. Chronic infusion technique. 

The chronic infusion technique used in this project has been modified from an 

already reported method (McDonald and Zochodne, 2003).  In that report, the authors 

stressed that two criteria must be met in order to ensure a successful in vivo delivery 

system.  Firstly, a successful delivery system must allow for long-term administration and 

secondly, the model must allow a direct, local delivery (McDonald and Zochodne, 2003). 

Delivery by repeated injection will necessarily result in uneven, pulsatile dose levels.  

Moreover, it is well established that stress caused by handling of the animal for repeated 

injections can create difficulty in interpreting the results.  

By using implantable osmotic minipumps we have developed a model that 

features smooth, continuous flow of known concentrations of the drugs of interest 

(dbcAMP, and FGF-2), directly delivered to the transected site, and over a well defined 

period of time (seven days) without the added stress of repetitive injections. The method 

fits the two criteria of successful delivery.  Further, by confining the cut nerve end and 

the pump catheter within a small plastic chamber, the method employed here assures 

direct delivery to the cut end of the sciatic nerve.  Our current project provides evidence 

that immunohistochemical analyses of the expression of early transcription factors and 

growth associated proteins known to be part of the peripheral nerve regeneration response 

are quantifiable seven days after nerve transection.  

 FluoroGold filled minipump results showed that the large majority of injured 

DRG neurons could obtain the tracer dye after delivery from the pump, and retrogradely 

transport it to their cell bodies.  About 30% of DRG neurons showed very intense 

retrograde FluoroGold labeling, while most of the remainder showed some detectable 
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labelling.  This finding is of importance since it confirms effective delivery and 

availability for transport of compounds present in the minipumps.  Although we could not 

quantify the efficiency of FluoroGold labeling in the absence of a marker for Fluorogold 

unlabelled neurons, our results appear to be in concert with those of (Liabotis and 

Schreyer, 1995), who reported over 60% retrograde labeling of DRG neurons following 

sciatic nerve transection at the mid-thigh level. 

 

8.1.3. Technical limitations 

Despite the overall success of the technique, limitations do exist. The selection 

process of the neuron size was entirely based on the DAPI counterstain.  Given that 

injured DRG neurons would exhibit an excentric nuclear position within the cytoplasm, 

our different neuronal sizes, may not reflect the actual neuronal size of the injured 

neurons.   

Moreover, our technique does not entirely preclude some systemic effects that 

may be generated as a result of leakage of FGF-2 or dbcAMP from the chamber region.  

This may explain some of the contralateral effects that we observed (see below).  Another 

limitation to our experimental design is the motility of the animals post-operatively.  

Normal or pathological behavior following surgery could move the chamber or the 

minipump from their ideal surgical positions.  Some rats chewed on their paws, possibly 

introducing additional inflammatory signals from the periphery.  

Our Western blot analyses proved to be a unique challenge, since we attempted to 

probe for changes in low-abundance transcription factors in the DRG neurons.  The DRG 

are small in size, and include neuronal cell bodies, axons, myelin and glial cells.  In order 



156 
 

to obtain the adequate amounts of proteins for Western analysis, we needed to perform 

the experimental surgical procedures and implants on a large number of animals.  This 

provided some technical limitations.  For future studies using our current technique, 

Western analysis could be improved, if a greater number of animals are utilized in each 

group.    

 

8.2 New findings. 

8.2.1. Peripheral vs. Central root transection.   

 Our peripheral nerve transection results confirm previously reported in vivo work 

regarding the induction of GAP-43 and of specific injury-induced transcription factors.   

 

8.2.1.1. GAP-43 expression 

 The expression of GAP-43, a membrane phosphoprotein, dramatically increases 

as a result of peripheral nerve transection in DRG neurons (Schreyer and Skene, 1991; 

1993; Woolf et al., 1990) .  Elevation of GAP-43 mRNA has previously been detected 24 

hours following peripheral nerve transection (Chong et al., 1994).  GAP-43 protein 

expression is induced at least five-fold as early as two days after sciatic verve transection, 

and this increase persists for up to 80 days following injury (Sommervaille et al., 1991).  

Our results of GAP-43 upregulation in response to injury ranged between 1.5 to 3 fold.  

This induction of GAP-43 is in agreement with the reported literature describing GAP-43 

as a protein of the peripheral injury response (Liabotis and Schreyer, 1995; Schreyer and 

Skene, 1993).  
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 GAP-43 upregulation did not occur in our dorsal transection experiments, in 

agreement with the previously reported literature (Chong et al., 1994; Piehl et al., 1993; 

Schreyer and Skene, 1993).  Because the strong effect following peripheral nerve 

transection was not seen following central root transection, injury associated upregulation 

of GAP-43 has been proposed to be controlled by a mechanism unique to the peripheral 

branches.  These and other observations support the hypothesis that GAP-43 induction in 

DRG neurons is caused by loss of controlling element(s), normally originating only from 

peripheral target tissue (Schreyer and Skene, 1993).  

 

8.2.1.2. ATF3 expression. 

We show in this study that ATF3 is also induced in DRG neurons after peripheral, 

but not central axonal injury.  ATF3 is thought to contribute to nerve regeneration by 

increasing the intrinsic growth state of injured neurons.  Our finding that ATF3 is 

expressed seven days after peripheral nerve transection is in agreement with previously 

published reports (Seijffers et al., 2006; Seijffers et al., 2007).  Our results show that 

ATF3 expression remained high even fourteen days after peripheral injury, indicating a 

persistent role in the regenerative response that is closely correlated with GAP-43 

expression. Our results showing a lack of ATF3 expression as a result of dorsal root 

transection are in agreement with reported data (Seijffers, 2006).  Another study, 

however, showed upregulation of ATF3 in L5 DRG neurons (Huang, 2006) after dorsal 

root transection.  This study differs from our experiment in that the authors examined 

ATF3 expression only 1 day after dorsal transection, and spinal cord hemisection.  
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Generally, any upregulation of ATF3 expression  as a result of dorsal transection appear, 

therefore, to be short lived.   

ATF3 is a transcription factor that is synthesized in the cytoplasm via the normal 

cellular process of protein synthesis.  Upon activation it is translocated to the nucleus 

where it can produce its biological effects (Isacsson et al., 2005).  Our results showed an 

increase in ATF3 expression in both the cytoplasm and the nucleus of the peripherally 

transected nerve.  The increase in the cytoplasm is indicative of an increase in the 

synthesis of ATF3.  Once synthesized, it is then translocated to the nucleus where we 

observed it to be abundantly expressed. 

8.2.1.2.1 GAP-43 and ATF3 expression 7 d vs 14 d comparison. 

 When comparing the results of 7 d vs. 14 d peripheral sciatic nerve transection, a 

continuing increase in the injury response can be readily observed.  Nuclear ATF3 

expression increased 4 fold in 14 d injured DRG neurons vs. 3 fold increase in the 7 d 

injured DRG neurons.  Cytoplasmic ATF3 expression increased 1.5 fold in the 14 d 

injured DRG neurons vs. the 7 d injured DRG neurons.  GPA-43 expression increased  2 

fold in the 14 d injured DRG neurons vs. 1.4 fold increase in the 7 d injured DRG 

neurons.  The increase in our GAP-43 results could be attributed to the increased 

expression of the small, medium and large diameter subpopulation of injured neurons, in 

agreement with previously published work (Schreyer and Skene, 1993; Sommervaille et 

al., 1991). 

The increase in our ATF3 expression is also in agreement with previously 

reported data demonstrating that sciatic nerve transection induced an upregulation of 

ATF3 immunoreactivity in 82% of L4 DRG cells 14 days post transection (Averill et al., 
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2004).  These authors attributed the ATF3 increase to a loss of target derived 

neurotrophic factors such as NGF and GDNF (Averill et al., 2004).   

More of the 14 d injured small to medium diameter neurons expressed ATF3 than 

in the 7 d injury model.  This implies that, as part of the regenerative process, injured 

DRG neurons might differentially in a coordinated fashion express ATF3 depending on 

the size of the injured neurons.    

While there is a clear and robust increase in the expression of GAP-43 and ATF3 

as a result of peripheral nerve transection, the expression of both GAP-43 and ATF3 

remained unchanged as a result of dorsal root transection.  This implies that signals that 

control the expression of ATF3 and GAP-43 do not originate from the central branch of 

the DRG; rather, the un-interrupted, continuous flow of factors from the peripheral 

branch maintains the suppressed state of both GAP-43 and ATF3.  

8.2.1.3. c-Jun expression. 

We find that c-Jun expression is markedly upregulated, and localized primarily in 

neuronal nuclei, seven days following peripheral nerve transection, in agreement with 

previous studies (Jenkins and Hunt, 1991; Jenkins et al., 1993; Leah et al., 1993).  Our 

present results also indicate that c-Jun expression is very similar to GAP-43 expression, 

although a small number of injured neurons upregulated nuclear c-Jun expression without 

simultaneously upregulating GAP-43.  The observed failure of upregulation of c-Jun 

expression in DRG neurons following dorsal root transection is also similar to the pattern 

of GAP-43 expression.  Peripheral axotomy may cause, in addition to loss of peripheral 

target-drived factors, metabolic and morphological changes in the cell body leading to an 

increase in transcription factors including c-Jun.  This ‘loss’ of peripheral target factors, 
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however, appearently does not occur as a result of dorsal root transection, and this has 

been related to the reduced regenerative capacity of the central axon.  Trophic and other 

target derived elements that are available through the peripheral branch of DRG could 

ameliorate the upregulation of c-Jun in DRG neurons subjected to dorsal root transection. 

The contention of the influence of target-derived factors on the expression of 

regeneration associated or growth associated proteins  within the injured DRG neurons is 

supported further by the conditioning lesion effect on regrowth of central axons in a 

favorable environment (Richardson and Issa, 1984; Richardson and Verge, 1986; 1987). 

The failure to upregulate c-Jun expression following dorsal transection contrasts 

somewhat with a previous report that a small percentage (18 %) of DRG neurons 

upregulate c-Jun expression following dorsal root transection (Broude et al., 1997).  We 

feel that our robust c-Jun immunohistochemical technique was adequate to detect low 

level changes.  It is possible that the surgical approach used in the previous study resulted 

in more inadvertent damage of peripheral axons at the surgical site than ours did. 

It is not completely understood whether c-Jun regulates the expression of GAP-43 

either directly or indirectly.  However, the increased expression of GAP-43 following 

peripheral nerve transection could be one of the events initiated by c-Jun activation.  It 

would be of interest to determine if there is a direct pathway(s) linking the transcription 

factor c-Jun to transcriptional regulation of GAP-43 (see below). 

 

8.2.1.4. Coordinated expression of c-Jun and ATF3  

ATF3 and c-Jun belong to the same ATF/CREB family of transcription factors 

and can form a heterodimer (Hai and Curran 1991; Hsu, Laz et al. 1991; Chu, Tan et al. 
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1994).  Furthermore, c-Jun increases in sensory neurons after peripheral nerve transection 

(Leah, Herdegen et al. 1991; Broude, McAtee et al. 1997) similar to ATF3 expression in 

the present study.  It is thus tempting to speculate that such heterodimers are a key 

modulator of gene expression of key growth associated proteins during the regenerative 

process.  ATF3/c-Jun heterodimers are known to bind to different sites activating the 

expression of a number of genes.  In contrast, ATF3 homodimers tend to act as repressors 

of gene expression (Hai and Hartman, 2001).  However, we found that uninjured DRG 

neurons weakly express c-Jun protein, in contrast to the lack of constitutive expression of 

ATF3. Thus, in intact DRG neurons, c-Jun but not ATF3 may play a role in the 

maintenance of normal phenotype in some neurons. 

 Our results indicate that cytoplasmic c-Jun expression in peripherally axotomized 

neurons does not change, whereas, cytoplasmic ATF3 expression is upregulated.  This 

supports the idea that the rate of ATF3 protein synthesis could be increased as a result of 

injury, while the rate of c-Jun protein synthesis may not be affected. The dramatic 

increase in the nuclear expression of both ATF3 and c-Jun supports the notion that the 

rate of phosphorylation and translocation to the nucleus of both proteins is enhanced 

following injury.  Given that no increase in protein synthesis of ATF3 is detected, and 

that basal level of c-Jun expression exists prior to injury, buttresses the argument that c-

Jun and ATF3 may not have a common mechanism of transcriptional regulation.  

Alternatively, once the injury occurs, ATF3 synthesis and activation, in concert with 

other transcription factors, may control subsequent c-Jun activation.   

It is reasonable to consider ATF-3 to be a key regulator of intrinsic growth in 

DRG neurons because it is induced in all sensory neurons after peripheral nerve injury 



162 
 

(Benn, Perrelet et al. 2002).  However, ATF-3 overexpression does not increase c-Jun 

expression (Seijffers, Allchorne et al. 2006).  ATF-3 may act in some neurons in concert 

with c-Jun to regulate the expression of target genes and thereby promote regeneration. 

The growth-promoting action of ATF-3 may not be dependent upon c-Jun, but may be 

dependent on other transcription factors across the entire population of DRG neurons.  

ATF-3 may be just one of a multitude of factors that contribute to neurite outgrowth, 

perhaps by orchestrating the gene expression responses in injured neurons.  ATF3 

regulates the expression of Hsp27 (Lindwall and Kanje, 2005; Nakagomi et al., 2003), 

one of the injury-induced markers that responds to peripheral, but not central nerve 

transection (Costigan, 1998, Lewis 1999) (Costigan et al., 1998; Lewis et al., 1999).  Our 

finding that ATF3 is correlated with GAP-43 supports the idea that this transcription 

factor drives expression of at least some aspects of the intrinsic growth capacity of 

peripherally injured DRG neurons.  

  

8.2.1.5. Coordinated expression of c-Jun and GAP-43. 

 Our results showed that while c-Jun expression was, for the most part, colocalized 

with GAP-43 in injured DRG neurons, a small percentage of injured neurons expressed 

only c-Jun, but not GAP-43 (Figure 7-10, white arrows).  A correlation between c-Jun 

and GAP-43 expression in the DRG neurons of injured sciatic nerve has been previously 

reported (Bisby et al., 1995; Broude et al., 1997; Seo et al., 2009).  However, in injured , 

regenerating retinal ganglion cells c-Jun expressing neurons were twice as numerous as 

GAP-43 expressing neurons (Schaden et al., 1994).   Our results are in agreement with 

the latter study, since we observed a difference between injured neurons that expressed c-
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Jun and those that expressed GAP-43.  In the present study we showed that while all 

GAP-43 positive injured neurons were also c-Jun positive, not all c-Jun positive injured 

neurons were GAP-43 positive.  This implies that the molecular regulatory mechanism or 

pathway that regulates both c-Jun and GAP-43 may not be active in all injured neuronal 

subpopulations.  Alternatively, since we did not study the size relationship between the 

injured neurons that express either or both c-Jun and GAP-43, it would be tempting to 

suggest a differential regulatory mechanism that would be size-dependent.  It would be of 

interest to investigate the existence of such a regulatory mechanism in our injury model. 

       

8.2.1.6. STAT3 expression.          

Our findings with pSTAT3 activation as a result of peripheral nerve transection 

are in agreement with previously reported data (Haas et al., 1999; Qiu et al., 2005; 

Schwaiger et al., 2000). The earliest detection time of pSTAT3 was reported to be 6 

hours post lesion (Lee et al., 2004).  The increase in pSTAT3 expression in DRG neurons 

in correlation with the elevated expression of GAP-43 suggests that this transcription 

factor may contribute to the survival and axonal regeneration of injured sensory neurons.   

STAT3 is expressed early following peripheral axon injury, and is activated 

persistently until the time that peripheral re-innervation takes place (Schwaiger et al., 

2000).  This pattern is very similar to GAP-43 expression where it diminishes once the 

normal peripheral target tissues are re-innervated (Schreyer and Skene, 1991).   STAT3 is 

phosphorylated at Tyr705 residue by JAK kinase in response to cytokine or growth factor 

activation of a cell surface receptor. STAT3 is also phosphorylated by PKC at a different 

amino acid residue, Ser727, similar to serine phosphorylation of GAP-43 (Tsai et al., 
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2007).  Following phosphorylation by receptor tyrosine kinases, pSTAT3 then forms 

homo- or heterodimers that translocate to the cell nucleus where they act as transcription 

activators.  Given the similarity of the pattern of expression and the fact that GAP-43 

regulation is associated with the presence of AP-1 site, there is a possibility that pSTAT3 

homodimers may alone activate the AP-1 site as a result of phosphorylation of PKC or 

JAK pathways.  Alternatively, pSTAT3 can heterodimerize with other transcription 

factors to potentially influence GAP-43 gene regulation through its AP-1 site.  

Cytokines such as IL-6, CNTF and LIF, which are released from Schwann cells 

and are retrogradely transported to the neuronal cell body after peripheral nerve injury, 

have been suggested to control STAT3 phosphorylation (Curtis et al., 1993; Curtis et al., 

1994).  Furthermore, a cooperative transcriptional activity of c-Jun and STAT3 has been 

documented (Schaefer et al., 1995; Zhang et al., 1999). It is possible that STAT3 could 

modulate the pattern of transcriptional activity of c-Jun, or ATF3 (Schwaiger et al., 

2000).   

In contrast to the situation seen following peripheral nerve injury, our studies 

show for the first time that total pSTAT3 expression is also increased following central 

root transection of DRG neurons, a pattern that is markedly different from the pattern 

observed for GAP-43, ATF3 and c-Jun.  This implies that pSTAT3 expression is not 

governed by the same mechanisms that control expression of these three other proteins.  

It further casts doubt on whether activation of STAT3 is directly involved in regulating 

transcription of GAP-43 at all.   

The discrepancy between the response of STAT3 following central axotomy and 

the failure of other transcription factors to respond following central root transection 
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suggests a fundamental difference in the mechanisms governing these responses.  The 

previously described sensitivity of STAT3 to Schwann cell-derived inflammatory 

cytokines supports the idea that positive inflammatory signals may induce STAT3 

transcription and activation when the dorsal root is injured, as well as when the peripheral 

nerve is injured. 

8.2.1.7. Multiple elements of an injury response  

The activation of the intrinsic growth capacity of the DRG neurons may involve a 

number of transcription factors.  Our study focused on ATF3, c-Jun, and STAT3.  

Whether one of these transcription factors acts as an upstream regulator of the others 

cannot be resolved using the techniques reported here.  A recent report (Kiryu-Seo et al., 

2008) indicates that the ATF3, c-Jun, and STAT3 transcription factors must first interact 

with yet another transcription factor, specificity transcription protein-1 (Sp1).  This report 

suggests that Sp1 recruits ATF3, c-Jun, and STAT3 to obtain the requisite synergistic 

effect. Further, this report also identifies ATF3 as one of the most critical and one of the 

earliest transcription factors activated after nerve injury (Kiryu-Seo et al., 2008).  

MAPKs induce the expression of AP-1 family transcription factors such as Fos 

and Jun and activate the transcriptional activity of AP-1 site containing genes by 

phosphorylation of transcription factor activation domains. Homodimers of Jun and 

heterodimers of Jun/Fos and ATF/CREB bZIP transcription factors all recognize the AP-

1 site (Hai and Curran, 1991).  The ATF3 transcription factor heterodimerizes with 

transcription factors that contain leucine zipper domains.  These include c-Jun, c-fos and 

CREB, all upregulated in DRG neurons by nerve injury. ATF3 may also interact with 

other transcription factors that lack a leucine zipper region, and that are upregulated after 
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peripheral injury, such as STAT3. This could be via co-activators or by synergizing with 

transcription factors that bind to adjacent DNA binding sites (Seijffers et al., 2007).  It is 

well documented that ATF3 is required, but may not be sufficient for the conditioning 

lesion regrowth of the central branch of the injured DRG neurons (Seijffers et al., 2007).  

There are STAT-binding sites in the promoters of many immediate early genes (c-

Jun, ATF3, and c-fos) that may potentially bind to the AP-1 site in the GAP-43 gene. In 

another mechanistic possibility, STAT3 and c-Jun can form a ternary complex that 

specifically recognizes the AP-1 site (Yoo et al., 2001).  Activation of the AP-1 appears 

to be one of the key regulators of GAP-43 expression.  Thus, the activation of STAT3 

and/or c-Jun may be required for GAP-43 elevation as a result of peripheral nerve 

transection, and as part of the DRG neuronal injury response mechanism.  

 

8.2.2. Minipump infusion of FGF-2 or dbcAMP. 

Previous work in our laboratory demonstrated that bath-applied FGF-2 or 

dbcAMP could suppress the upregulation of GAP-43 expression that occurs when adult 

DRG neurons are excised and maintained in tissue culture (Schreyer, 2004). A key 

finding of the present study is that chronic infusion of FGF-2 or dbcAMP at the site of 

peripheral axon transection in vivo did not suppress injury induced upregulation of GAP-

43 in DRG neurons.  In fact, FGF-2 and dbcAMP each modestly enhanced injury-

induced GAP-43 expression, in sharp contrast with our in vitro findings.  The present 

observations thus argue against a role for extracellular FGF-2 or intracellular cAMP in 

mediating a chronic repressive signal derived from peripheral targets, and whose absence 

results in GAP-43 upregulation. 
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Previous studies found that microinjection of dbcAMP in lumbar DRG neurons 

enhances the regeneration of injured central sensory axon branches. The injured axons 

regrow into the spinal cord lesion, often traversing the injury site, mimicking the effect of 

a conditioning peripheral nerve lesion (Neumann et al., 2002).  Sensory neurons exposed 

to cAMP analogs in vivo, and subsequently cultured in vitro, show enhanced growth of 

neurites and an ability to overcome inhibition by CNS myelin (Han et al., 2004; Qiu et 

al., 2002a; Qiu et al., 2002b). Thus, activation of cAMP signaling increases the intrinsic 

growth capacity of injured sensory axons of peripheral nerves.  However, it fails to 

increase the rate of peripheral axon regeneration (Han et al., 2004).  Intra-ganglionic 

injection of dbcAMP also induces IL6 and LIF mRNAs and increases the accumulation 

of pSTAT3 in neuronal nuclei. This dbcAMP activation of cytokines and pSTAT3 can be 

partially blocked by a pharmacological inhibitor of JAK 2 kinase (Wu et al., 2007). This 

indicates that increased cyclic AMP activity on axonal regeneration of primary sensory 

neurons is mediated by cytokine synthesis within the DRG (Wu et al., 2007), a potential 

positive signal associated with inflammation. 

Cultures of the PC12 cell line which are deficient in GAP-43 can undergo 

dbcAMP-mediated neurite outgrowth (Baetge and Hammang, 1991).  Conversely, PC12 

cells that are deficient in dbcAMP-dependent protein kinase can undergo differentiation 

(Ginty et al., 1991; Scheibe et al., 1991).  Therefore, it seems that dbcAMP can increase 

the intrinsic growth capacity of regenerating peripheral nerves, in the presence and 

activation of GAP-43, or in the absence of GAP-43.  Phosphorylation of GAP-43 itself is 

not affected by dbcAMP (Van Hooff et al., 1988). 



168 
 

One of the striking findings of our present work is the inductive effect that 

dbcAMP and FGF-2 had on the expression of GAP-43, especially causing the injured 

small to medium diameter neurons to elevate the expression of GAP-43 (Figure 7-34).   

Direct intraganglionic injection of dbcAMP increases tubulin expression in the 

DRG (Han et al., 2004). Because Tα1 tubulin and GAP-43 expression have been reported 

to be coregulated in response to neurotrophins (Kobayashi et al., 1997) and brief 

electrical stimulation in the regenerating femoral nerve (Al-Majed et al., 2004), and 

because another tubulin isoform beta3-tubulin (βIII tubulin) gene is induced through an 

AP-1 site (Saussede-Aim et al., 2009), a site that is also shared with GAP-43 promoter, 

our results of increased GAP-43 expression as a result of dbcAMP are not surprising.   

Evidence exists demonstrating the inductive effect of FGF-2 on the expression of 

GAP-43 in CNS and PNS neurons.  FGF-2 increases the level of GAP-43 mRNA in O2A 

progenitor cells in vitro (Deloulme et al., 1993).  FGF-2 also promotes GAP-43 

translocation from the cytosol to the membrane and, at the same time, stimulates GAP-43 

phosphorylation (Tejero-Diez et al., 2000).  In addition, FGF-2 elevates the synthesis of 

GAP-43 in injured retinal ganglion cells, suggesting a pivotal role in injury response and 

subsequent axonal growth (Soto et al., 2003).  Finally, Schwann cells overexpressing 

FGF-2 transplanted in peripherally injured sciatic nerve increased GAP-43 mRNA levels 

in DRG neurons (Haastert et al., 2008).  These results taken together are in support of our 

findings regarding the inductive effect of FGF-2 on the expression of GAP-43.       

Another important finding in our current work is that FGF-2 did not suppress 

GAP-43 levels in injured neurons.  This is also in contrast to in vitro results showing a 

suppressive activity of FGF-2 on GAP-43 expression (Schreyer, 2004).  Our in vivo 
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results agree with published work that shows FGF-2 effectively induces levels of GAP-43 

expression through activation of the AP-1 site (Yang et al., 2008).  Therefore FGF-2, like 

cAMP, appears to produce opposing effects on DRG neurons depending on whether they 

are applied to cut axon ends in vivo or by bath application in vitro. 

We find that cytoplasmic ATF3 levels are reduced as a result of one week of 

continuous dbcAMP infusion.  This may be explained by the fact that ATF3 biosynthesis, 

but not phosphorylation and nuclear translocation, may be  impaired possibly via 

activation of calcineurin, a cyclosporin-sensitive, calcium-regulated, calmodulin 

dependent serine/threonine phosphatase (Rusnak and Mertz, 2000).  Calcineurin has been 

shown to be an inhibitor of ATF3 synthesis (Mayer, Dexheimer et al. 2008). Calcineurin 

is also involved in nuclear import of transcription factors (Polizotto and Cyert 2001), and 

regulates the K(ATP) channel by inhibiting PKA-dependent phosphorylation of the 

channel as well as PKA itself (Orie et al., 2009).  Such a regulatory mechanism may 

explain the reduction of the cytosolic ATF3 caused by dbcAMP.  Alternatively, ATF3 

may heterodimerize with other bZIP and non bZIP family transcription factors.  When 

such protein-protein interaction occurs, it may alter the protein tertiary structure to a form 

that our antibody does not recognize. 

Direct interaction between ATF3 and other transcription factors to regulate gene 

expression is well documented.  ATF3 may be activated independently of cyclic AMP.  

Cyclic AMP-independent ATF family members have been reported to interact with 

NFκB and function in the activation of the E-selectin promoter in response to cytokines 

(Kaszubska et al., 1993).  Specifically, the promoter element that ATF3 binds differs by a 

single nucleotide substitution from the dbcAMP-responsive element consensus sequence, 
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and operates in a dbcAMP-independent manner to induce transcription (Kaszubska et al., 

1993).   

Sequence analysis of the ATF3 gene 5'-flanking region revealed a consensus 

TATA box and a number of transcription factor binding sites including the AP-1, 

ATF/CRE, NFκB, E2F, and Myc/Max binding sites.  In addition, c-Jun was shown to 

activate the ATF3 promoter, possibly through the JNK/SAPK pathway (Liang et al., 

1996). 

The amount of transection-induced GAP-43 expression in DRG neurons is 

independent of the distance of the injury from the neuronal cell bodies (Liabotis and 

Schreyer, 1995).  ATF3 induction, on the other hand is dependent on the distance 

between the injury site and the cell body (Tsujino et al., 2000) in DRG neurons.  This 

supports the notion that the molecular pathways regulating GAP-43 could be different 

and may be independent of the pathways controlling ATF3 expression, despite the fact 

that both have the AP-1 site common in their regulatory mechanism.  In addition, this 

may explain the reason why cAMP induced GAP-43, and, simultaneously, suppressed 

ATF3 in vivo in our minipump model.  Therefore, based on our current findings in vivo, 

cAMP and FGF-2 act to increase the expression of GAP-43, but suppress that of ATF3.   

Our experiments show for the first time that dbcAMP delivered at a peripheral 

nerve transection site suppressed all injury induced transcription factors studied, with the 

exception of pSTAT3.  Increased accumulation of pSTAT3 in the neuronal nuclei as a 

result of peripheral nerve transection is in agreement with the literature (Lee et al., 2004; 

Wu et al., 2007).  DbcAMP induced pSTAT3 expression in DRG neurons was blocked 

by a JAK2 inhibitor (Wu et al., 2007). We found that dbcAMP increased the level of 
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cytoplasmic pSTAT3 expression, indicating that the rate of phosphorylation of this 

transcription factor is increased.  We also found that dbcAMP applied to the proximal cut 

end of the nerve did not suppress pSTAT3 accumulation in the nucleus. 

 

8.3. Epac Signaling mechanisms. 

Recent results indicate the existence of a signaling pathway from cAMP to PKC 

that is independent of PKA (Parada et al., 2005), but involves the cAMP-activated 

guanine exchange factor Epac (Hucho et al., 2005).  Epac appears to mediate cyclic 

AMP-dependent axon growth, guidance and regeneration and enhancement of DRG 

neurite outgrowth in vitro (Murray and Shewan, 2008). For example, siRNA mediated 

knockdown of Epac reduces DRG neurite outgrowth (Murray and Shewan, 2008).  Thus, 

in addition to mediating cAMP-dependent axon growth and guidance, Epac may offer an 

important target for inducing axon regeneration in vivo (Murray and Shewan, 2008).  

Thus it is possible that cAMP can influence neuronal phenotype either through the Epac 

system, or through the MAPK pathway, or both.  

8.4. Differences between in vitro versus in vivo conditions. 

Our finding that FGF-2 or dbcAMP applied at the injury site can each enhance the 

upregulation of GAP-43 that follows peripheral nerve transection in vivo stands in 

contrast to previous observations that FGF-2 and dbcAMP can each, or in combination, 

suppress the upregulation of GAP-43 expression that occurs in adult DRG neurons in 

vitro (Schreyer, 2004) . Standard culture conditions create an artificial and possibly 

impoverished extracellular environment which causes specific subpopulations of adult 

DRG neurons to de novo synthesize and store transmitters that are not normally 
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encountered in vivo (Schoenen et al., 1989).  Thus, culture conditions alone may explain 

why DRG neurons react differently to FGF-2 or dbcAMP.  It is also likely that there is a 

difference in the electrical activity of DRG neurons maintained (injured) in vivo or in 

vitro. Finally, although the DRG neurons in our minipump studies were axotomized and 

deprived of retrograde signals from their peripheral targets, cultured neurons are deprived 

of signals from both their peripheral and central (spinal cord and medulla) target fields. 

DRG neurons adopt a unique morphology in culture, extending dendrites and or 

other cellular processes that are absent in in vivo conditions.  When dissociated DRG 

neurons are maintained in tissue culture conditions the entire neuron is exposed to 

materials (dbcAMP, and FGF-2) that are delivered into the culture medium.  In our in 

vivo model, FGF-2 and or dbcAMP were specifically delivered to the cut end of the 

sciatic nerve.  This may explain the discrepancy between the effects of these reagents on 

GAP-43 expression.  In normal in vivo conditions, potential members of FGF-2 receptor 

family such as FGFR1, 2 and other members may be localized to the nerve endings where 

target tissues are innervated.  We introduced our injury at the mid-thigh level, breaking 

the cellular continuity with any FGF-2 receptors that are present at the nerve endings.  

Similarly, receptors for ligands that cause an increase in intracellular cAMP levels could 

also be absent at the cut axon stump.  This could also potentially explain the difference 

between FGF-2 and cAMP effects we observed in vivo and the previous observations in 

vitro.    

A an additional possible explanation of the discrepancy observed between in vivo 

and in vitro results may be related to the presence of Sprouty2 as a modulator of FGF-2 

influence.  As a result of in vivo implantation Sprouty2 expression may have increased to 
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a level that negatively affects FGF-2 signaling through the MEK/ERK pathway. 

Moreover, it has been reported that local application of FGF-2 increases the rate of 

infection at the local site of delivery (Kalicke et al., 2007).  It is thereofre possible that, as 

a result of the presence of FGF-2 at the cut site of the nerve, increased rates of infection 

may have ensued.  This could have casued increased secretion of cytokines or other 

factors that may have influenced the otherwise normal pathways of FFG-2 or cAMP. 

 

8.5 Contralateral effects. 

Published data on the occurrence of contralateral effects following unilateral peripheral 

nerve injury are numerous and it is suggested that these differences can be accounted for 

by the methodology and type of detection method used (Booth and Brown, 1993; Dubovy 

et al., 2006; Dubovy et al., 2007).  The presence of contralateral effects as a result of 

ipsilateral manipulations implies the existence of unrecognized signaling mechanisms 

that link the two sides of the body.  In particular, there may be a central mechanism 

signaling via the system of interneurons within the spinal cord (Koltzenburg et al., 1999).  

The general circulation may be a second, nonspecific way for delivery of factors from 

injured nerve to the contralateral DRG which are not directly associated with the injured 

nerve.  In our minipump experiments, we observed some contralateral effects.  We 

suggest that these effects may have originated as a result of some molecules escaping the 

chamber unit into the systemic circulation.    
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8.6 Interactions between FGF-2 and cAMP in inducing changes in GAP-43 

expression 

Activated receptors that influence cAMP production are bound to the 

heterotrimeric G proteins and receptor occupation can activate the G protein α-subunit. 

The α-subunit, in turn, hydrolyses GTP to GDP, resulting in the disscociation of the α-

subunit. This α-subunit activates adenylyl cyclase, which in turn generates cAMP from 

ATP.  The intracellular increase in cAMP leads to the activaition of protein kinase A 

(PKA). PKA phosphorylates, among other proteins, the transcription factor CREB, which 

binds to genes containing a cAMP-response element (CRE). These response elements 

may include elements that control the expression of immediate early genes, ATF3 being 

one example.  CREB phosphorylation can also induce or suppress the expression of other 

delayed response genes.  PKA has been implicated in the activation of c-Jun transcription 

factor and other transcription factors may also be activated by PKA.   

In addition, cAMP acting through the guanine exchange factor Epac can be an 

access point for cross-talk to other pathways.  For example, the ras/MAPK pathway can 

be activated by Epac.  This MAPK pathway is also subject to extracellular activation by 

mitogens or growth factors such as FGF-2. Thus, the divergent complexity of cAMP 

pathways renders cAMP potentially one of the most pivotal biochemical pathways in the 

process of peripheral nerve regeneration.  

FGF-2 can bind to several different FGF receptors (FGFR1-4).  This leads to 

activation of MAPK which, in turn, can induce or suppress the expression of transcription 

factors that may regulate the injury response.  Activation of specific cell signaling 

pathways is dependent upon the interaction of specific FGF ligands and FGF receptors 
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and cell type.  In addition, some FGF/FGF receptor complexes are translocated to the 

nucleus where they signal gene expression. Recent work suggests that some FGF 

isoforms may function as nuclear signaling factors without ever being secreted (Gringel 

et al., 2004). 

The possibilities of cross talk between cAMP and FGF-2 pathways are numerous.  

In endothelial cells, FGF-2 induced raf/MAPK is inhibited by increasing intracellular 

cAMP levels, possibly mediated by PKA. Moreover, elevations in cAMP/PKA activity 

inhibit mitogen-induced cell proliferation. These findings demonstrate that the 

cAMP/PKA signaling pathway is potentially an important physiological inhibitor of 

mitogen activation of the MAPK cascade and cell proliferation (D'Angelo et al., 1997).  

 

8.7 Positive and negative signaling that modulates changes in GAP-43 expression 

A framework of the steps leading to a successful regeneration based on the 

conveyance of a positive signal from the injury site has been proposed by Ambron and 

Walters (Ambron and Walters, 1996), in their studies of the marine mollusk Aplysia 

californica.  Successful nerve regeneration depends on transcriptional activation as a 

result of signals from the site of injury reaching the nucleus. The first stage is proposed to 

be initiated by action potentials induced by injury. These action potentials reach the cell 

body and act via calcium and cAMP to switch on early genes.  The second stage is 

initiated at the site of injury, where MAP-kinases are locally activated, then retrogradely 

transported through the axons back to the nucleus, triggering yet additional changes.  The 

third stage is modulated by signals that originate from growth factors and cytokines 

released extraneuronally by cells at the site of injury.  Finally, as regenerating axons 
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make contact with the peripheral target, signals from target derived growth factors and 

signaling cues arrive at the cell body to stop the regenerative process (Ambron and 

Walters, 1996).   

Our observation of an increase of total STAT3 and pSTAT3 expression following 

central root transection of DRG neurons indicate that the elements that control STAT 3 

synthesis and phosphorylation do not originate from the peripheral target tissue. As a 

result of central root transection, cytokines such as IL-6, CNTF and LIF, which are 

released from cells a the site of injury, can be retrogradely transported to the neuronal cell 

body and act as positive signals to upregulate the expression and activation of STAT3. 

After peripheral nerve transection many adaptive changes are influenced by 

altered availability of neurotrophic factors to the injured neurons.  Administration of 

exogenous NGF, for example, counteracts many degenerative changes observed in the 

axotomized DRG neurons which are nerve growth factor-responsive (Verge et al., 1996).   

Changes of retrogradely transported neurotrophins other than NGF also cause 

upregulation of vasoactive intestinal peptide (VIP), neuropeptide Y (NPY) and galanin in 

well defined neuronal subpopulations (Hokfelt et al., 1994; Kashiba et al., 1992).  

In our model, ATF3 and c-Jun may represent examples of negative regulation by 

target derived factor(s).  Uninjured neurons do not express ATF3 and very little c-Jun.  

Once the peripheral target has been disconnected, by peripheral nerve transection, ATF3 

and c-Jun are robustly upregulated in the majority of injured neurons.  However, central 

root transection does not affect ATF3 and c-Jun expression presumably because access to 

retrograde signals derived from the periphery is left intact.   
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8.8 Possible mechanism of GAP-43 upregulation 

The influence of cAMP on transcriptional regulation is mediated by cAMP 

response elements (CRE) transcription factors.  PKA mediated phosphorylation of CRE 

binding protein (CREB) at serine 133 is required for transcriptional activation (Gonzalez 

and Montminy, 1989; Gonzalez et al., 1989).   

The intricate signal transduction pathways of PKA and PKC represent integrated 

signaling avenues that provide multiple levels of regulation and remarkable sensitivity in 

responding to neuronal injury.  Cross-talk between these pathways may be the norm 

rather than the exception, providing the neuron with greater sensitivity in discerning the 

multiple extracellular signals that are active during the course of the regenerative 

response.  This level of complexity of interactions renders neurons more responsive to 

endogenous and perhaps exogenous modulators of the neuronal regenerative reponse, and 

provides exquisite control of gene expression.  Peripheral nerve injury causes the release 

of a number of cytokines which have been documented to play an important role in the 

initiation, and maintenance of the regenerative response typically seen following 

peripheral nerve injury.  It seems that the JAK/STAT pathway activation  could be one of 

the  main mediators in the signal transduction pathway of cytokines in response to our 

peripheral injury model.  However, since we did not observe identical response to that of 

GAP-43 expression as a result of dorsal root transection, it would seem unlikely that 

JAK/STAT pathway controls GAP-43 expression.  Phosphorylation of STAT3 on 

position Tyr705 and enhanced nuclear translocation was found within 3 h in injured 

neurons, lasting longer than 3 months (Schwaiger et al., 2000).  Thus, while STAT3 

activation might be an important step in the overall sensory neuron response to injury, it 



178 
 

could influence the expression of growth associated proteins other than GAP-43.  

Alternatively, STAT3 activation may modify the neuronal responsiveness to other 

signaling molecules that, under normal circumstances, would not be active.  Differential 

upregulation of certain receptors, for example NP-1, selectively in large diameter neurons 

as a result of peripheral nerve transection has been demonstrated (Gavazzi et al., 2000).  

It would also reasonable to suggest that, not only certain signaling pathways may be 

activated as a result of STAT3 activation, but also selected size of neurons may become 

more sensitized to specific signaling pathways.   

Based on our findings and those of others (Kiryu-Seo et al., 2008) a mechanism 

leading to elevated GAP-43 expression in vivo can be proposed:  

Immediately following a peripheral nerve injury, specificity transcription protein-1 (Sp1)   

is activated.  STAT3, one of the earliest transcription factors is then phosphorylated.  Sp1 

recruits STAT3 to initiate JAK/STAT3 signaling pathway leading to upregulation of 

growth associated proteins other than GAP-43.  As the time course of injury proceeds, 

ATF3 is activated.  Sp1 then recruits both STAT3 and ATF3 to activate the program of 

GAP-43 upregulation.  c-Jun then follows, providing additional synergistic effect on the 

expression of GAP-43 expression (Figure 8-1).  
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Figure 8-1. Proposed mechanism of GAP-43 upregulation as a result of 
phosphorylation of STAT3, ATF3, and c-Jun.  Phosphorylated STAT3 is recruited 
first by Sp1, and GAPs are upregulated.  When ATF3 is activated, it is also recruited by 
Sp1 leading to the upregulation of GAP-43.  When c-Jun is activated, the synergy 
between the three transcription factors leads to the upregulation of GAP-43.   
 

 



180 
 

CHAPTER 9 
9.0 CONCLUSION 

 
 GAP-43 expression is upregulated as a result of peripheral, but not central axonal 

branch injury in DRG neurons.  Key transcription factors ATF3, c-Jun, and STAT3 

showed a distinct pattern of expression, with ATF3 and c-Jun expression closely 

resembling GAP-43 expression.  STAT3 cytoplasmic expression was the exception, since 

it did not change as a result of peripheral nerve transection, but was upregulated as a 

result of dorsal root transection.   

These results support a multifactorial scheme of injury response as a result of 

peripheral and central axon branch injuries.  Specifically, peripheral branch injurymay 

cause a robust regenerative response, because interruption of signals originating from 

peripheral target tissues control the normally suppressed state of growth associated 

proteins and genes.   However, the increase in cytoplasmic expression of STAT3 

observed as a result of dorsal root transection supports the idea that damage to the DRG 

central axonal branch may generate positive, inflammatory signals  that have 

fundamentally different effects from those available in the peripheral target tissues. 

Chronic infusion of dbcAMP or FGF-2 did not suppress injury induced 

expressions of GAP-43.  This is in sharp contrast to earlier in vitro studies that showed 

dose-dependent and synergistic repressive properties of dbcAMP and FGF-2.  Injury 

induced upregulation of the other transcription factors were, however, repressed as a 

result of dbcAMP and FGF-2 administration.  STAT3 revealed a pattern of response to 

cAMP and FGF-2 that is similar to that of GAP-43.   
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9.1 Future directions. 

 The injury response of peripheral nerves involves a complex series of metabolic 

and neuronal cell biologic events that take into account synthesis, sorting and assembly, 

and transport of specialized growth associated proteins to the site of injury that will 

eventually lead to successful regeneration.  This process must be initiated, maintained, 

and then terminated once the proper target tissues have been re-innervated.  We have 

investigated one growth factor, and one intracellular messenger.  The methodology 

employed in our work can act as a blueprint for the study of other growth factors and 

intracellular molecules to be investigated in detail in vivo.   

The time course for the activation of immediate early genes ATF3 and c-Jun must 

be more carefully addressed in future studies, perhaps by using a more sensitive 

technique such as real time polymerase chain reaction in order to clarify several 

important questions: 

What are the key transcription factors expressed as a result of peripheral nerve 

injury, and which are the first to be expressed?  How intricately are those transcription 

factors coregulated? Is there a “master” transcription factor that governs all subsequent 

response? Is there a time course for the neuronal size subsets such that one subset 

responds to nerve injury before another? Each of these questions addresses part of the 

puzzle of peripheral nerve regeneration, and may provide further insight into the chain of 

causation of the metabolic response to nerve injury.  
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