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ABSTRACT 
 

Chronic myelogenous leukemia is a myeloproliferative hematopoietic stem cell disease 

resulting from a reciprocal translocation that gives rise to BCR-ABL, a constitutively active 

tyrosine kinase.  Imatinib and other tyrosine kinase inhibitors are currently standard therapy; 

however, point mutations often lead to drug resistance and disease relapse often occurs due to 

the persistence of quiescent leukemia stem cells that are shielded by stromal factors within the 

bone marrow microenvironment.  In an effort to develop new therapies capable of eradicating 

these elusive cells, a novel approach has been proposed in which the biochemical properties of 

cancer cells are targeted.  It has been established that one such property is oxidative stress due 

to the increased production of reactive oxygen species, which makes cancer cells especially 

dependent on their antioxidant systems to maintain redox homeostasis.  Recent studies 

demonstrate that chaetocin, a mycotoxin produced by Chaetomium species fungi, possesses 

potent and specific antimyeloma activity due in part to its ability to inhibit thioredoxin 

reductase-1, a central oxidative stress remediation enzyme.  In this study, the effectiveness of 

chaetocin against leukemia stem cells has been investigated using in vitro and in vivo murine 

chronic myelogenous leukemia models.  Our results indicate that: chaetocin and imatinib 

function synergistically in decreasing cell viability, inducing apoptosis, and inhibiting the 

colony formation of chronic myelogenous leukemia cells in vitro; that chaetocin in combination 

with imatinib reduces leukemia stem cell frequency in vivo; that chaetocin increases 

intracellular reactive oxygen species levels; and that chaetocin does not disrupt the proliferation 

and differentiation of normal murine hematopoietic stem cells.  Surprisingly, our results also 

show that while bone marrow stromal factors inhibit the activity of imatinib, they potentiate the 

activity of chaetocin, indicating that chaetocin could potentially be used to target leukemia stem 

cells within the bone marrow niche. 
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1. REVIEW OF THE LITERATURE 

 

1.1 Introduction 

 

Myeloid leukemias are heterogeneous life-threatening bone marrow neoplasms believed to 

derive from transformed normal hematopoietic cells (Bonnet and Dick, 1997; Blair et al., 1998; 

Holyoake et al., 2001).  Chronic myelogenous leukemia (CML) in particular is known to arise 

after a reciprocal translocation between chromosomes 9 and 22, which results in formation of 

the BCR-ABL oncogene.  In Canada, there are approximately 460 new cases of CML 

diagnosed each year and it is estimated that roughly 3,000 Canadians are currently living with 

this form of leukemia (http://www.cmlsociety.org).  Although CML is a rare form of leukemia, 

accounting for only 20% of all adult and 2.6% of childhood leukemias 

(http://seer.cancer.gov/statfacts/html/cmyl.html) it has become a paradigm of successful cancer 

therapy based on a rational treatment approach.  With the advent of imatinib and the second 

generation tyrosine kinase inhibitors, dasatinib and nilotinib, small molecule drugs have 

become mainstay for first-line CML management (Deininger et al., 2009; Kantarjian et al., 

2010; Saglio et al., 2010; Nicolini et al., 2011).  Although these therapies are highly effective, 

with overall survival of CML now at greater than 90% (Kantarjian et al., 2011; Signorovitch et 

al., 2011; Tauchi et al., 2011), they do not represent a cure since they are unable to eradicate 

the leukemia stem cells that are responsible for disease relapse upon drug discontinuation, 

meaning that CML patients are forced to continue this expensive drug therapy for the rest of 

their lives.  This, among other factors, is believed to be responsible for the growing 

noncompliance seen among CML patients (Crews and Jamieson, 2012).   

 It is clear that in order to cure CML, the quiescent leukemia stem cells that reside 

primarily in the protective bone marrow niche must be eliminated.  Since these cells are 

supported by bone marrow stromal factors and are therefore not reliant on BCR-ABL for 

survival, tyrosine kinase inhibitors are ineffective against them (Hu et al., 2006).  One method 

of targeting these cells is to exploit their biochemical properties.  It has been established that 

cancer cells are under oxidative stress due to increased metabolism and the production of 

reactive oxygen species (ROS) (Szatrovski et al., 1991), which aids their growth and 

proliferation (Hu et al., 2005) but also makes them highly dependent on their antioxidant 
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defense systems to maintain redox homeostasis.  This dependence could therefore be exploited 

by inhibiting one or more of these antioxidant systems, resulting in the accumulation of 

cytotoxic levels of ROS. 

 Recent reports have shown than chaetocin, a mycotoxin produced by Chaetomium 

species fungi has potent and specific in vitro and in vivo antimyeloma activity (Isham et al., 

2007) due, at least in part, to its ability to inhibit thioredoxin reductase-1, a central ROS 

remediation enzyme (Tibodeau et al., 2009).  The general aim of this study was to characterize 

the effectiveness of chaetocin against chronic myelogenous leukemia stem cells both in vitro 

and in vivo by investigating the ability of chaetocin to increase intracellular ROS levels, induce 

apoptosis, and prevent colony formation, as well as its ability to function synergistically with 

imatinib.    

 

1.2 Chronic Myelogenous Leukemia 

 

Chronic myelogenous leukemia (CML) is a myeloproliferative stem cell disease resulting from 

a reciprocal translocation between chromosomes 9 and 22 [t(9;22)(q34;q11)] in a hematopoietic 

stem cell (HSC).  This translocation fuses the breakpoint cluster region (BCR) gene on 

chromosome 22 with the Abelson oncogene (ABL) on chromosome 9, resulting in formation of 

the Philadelphia (Ph) chromosome which encodes the constitutively active tyrosine kinase, 

BCR-ABL (Woessner et al., 2011), as shown in Figure 1.1.  Unlike the primarily nuclear c-

ABL, the Bcr-Abl oncoprotein is distributed throughout the cytoplasm and interacts with 

various proteins involved in signal transduction pathways leading to deregulated proliferation, 

differentiation, and survival (Sattler and Griffin, 2003).  The Ph chromosome occurs in over 

90% of CML cases and its presence, along with other symptoms, is diagnostic of CML (Chen et 

al., 2010). 
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Figure 1.1 Chromosomal translocation resulting in formation of the Philadelphia chromosome. 
Reprinted with permission from Elsevier (Enright and Bond, 2008). 
 
 

The disease course of CML is triphasic, starting with a chronic phase, progressing to an 

accelerated phase, and ultimately ending in a terminal phase known as blast crisis (Chen et al., 

2010).  Patients are typically diagnosed in the chronic phase and often present with 

splenomegaly and left-shifted neutrophilic leukocytosis (Woessner et al., 2011).  In the absence 

of treatment, the patient inexorably progresses through to blast crisis, characterized by gradual 

or sudden loss of differentiation capacity, poor response to treatment, and short survival 

(Vardiman et al., 2002). 

In the mid-1970s, allogeneic hematopoietic stem cell transplant was pioneered and was 

the first CML therapy shown to induce a state of Ph-negativity.  Despite advancements that 

have been made since then, this is the only treatment considered to have the potential to cure 

CML but, due to the limited number of donors available, is reserved for patients which have 

progressed to blast crisis (Breccia et al., 2010; Venepalli et al., 2010; Oyekunle et al., 2011). 

CML was the first cancer to be associated with a pathognomonic chromosomal 

translocation and is the most extensively studied cancer from a molecular standpoint (Daley et 

al., 1991; Pear et al., 1998; Deininger et al., 2000).  Since the BCR-ABL oncoprotein has been 
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well defined and is not only required but also sufficient for transformation, CML has become a 

model disease in cancer biology  (Rodrigues et al., 2008).  This intensive study led to the 

development of imatinib, a BCR-ABL tyrosine kinase inhibitor (TKI) that is currently standard 

therapy for CML, yielding survival rates over 90%.  However, imatinib-based therapy faces 

three major challenges.  First, drug resistance occurs in approximately 40% of patients due to 

point mutations in the BCR-ABL kinase domain (Branford et al., 2003; Nardi et al., 2004).  

The development of more potent, second generation TKIs (e.g., nilotinib and dasatinib) allows 

for treatment of imatinib-resistant mutations but further mutations often develop later (Shah et 

al., 2004; Weisberg et al., 2005).  Importantly, the T315I mutation has been found to be 

resistant to all currently approved TKIs and poses a significant threat since it is reported to 

represent 15-20% of all BCR-ABL mutations (Burke et al., 2011).  Second is the limited 

response in patients who have progressed to blast crisis (Sawyers et al., 2002).  Additional 

chromosomal and molecular changes likely free these cells from their dependence on BCR-

ABL for survival and thus they do not respond to TKI therapy (Calabretta and Perrotti, 2004).  

Third, CML stem cells are insensitive to all TKIs (Grahm et al., 2002; Copland et al., 2006).  

Although CML patients may be in complete cytogenetic remission due to TKI therapy, they 

still contain malignant hematopoietic progenitor cells (Bhatia et al., 2003) and drug 

discontinuation usually results in disease recurrence.  Thus, CML patients must continue drug 

treatment indefinitely (Woessner et al., 2011).   However, due in part to the spiraling costs of 

full dose TKI therapy, a growing proportion of CML patients are non-compliant and thus 

progress to advanced phase disease with a five year survival rate of less than 30% (Crews and 

Jamieson, 2012). 

 

1.3 Cancer Stem Cells 

 

Recurrence of cancer after chemotherapy or radiotherapy is initiated by a subpopulation of 

residual malignant cells that are highly resistant to treatment and which are believed to be 

cancer-initiating cells or cancer stem cells (Eyler and Rich, 2008; Visvader and Lindeman, 

2008).  These cells share essential functional properties such as the capacity to become 

quiescent, acquire multi-lineage differentiation potential, survive, and self-renew (Jamieson et 

al., 2008). 
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 Leukemia stem cells (LSCs) reside at the apex of a hierarchy of malignant cells that is 

analogous to the hierarchy found in normal hematopoiesis (Fig. 1.2 and 1.3) and are stringently 

defined by functional attributes such as the ability to instigate, maintain, and serially propagate 

leukemia in vivo while retaining the capacity to differentiate into committed progeny that lack 

these properties (Bonnet and Dick, 1997; Jordan et al., 2000; Huntly et al., 2004).  More 

specifically, it has been determined that BCR-ABL-expressing Lin- c-Kit+ Sca-1+ cells function 

as LSCs in chronic phase CML (Hu et al., 2006) whereas granulocyte macrophage progenitors 

function as LSCs in blast crisis CML (Wang and Dick, 2005), the different properties of which 

may account for the difference between these two phases. 
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Figure 1.2 Hierarchy of normal hematopoiesis in humans.  Self-renewing HSCs give rise to 
several multipotent progenitors, including common myeloid progenitors (CMP) and common 
lymphoid progenitors (CLP), which produce oligopotent progenitors, unipotent progenitors, and 
finally, fully differentiated cells.  The CMP is able to produce granulocyte-macrophage 
progenitors (GMP) and megakaryocyte/erthrocyte progenitors (MEP) giving rise to 
monocytes/macrophages/granulocytes and megakaryocytes/platelets/erthryocytes, respectively.  
Pro-erythroblast colony forming unit-erythroid (CFU-E) gives rise to erythrocytes and the CLP 
gives rise to pre-B and pre-T cells, which continue to mature B and T lymphocytes.  Reprinted 
with permission from Pulmonary Circulation (Firth and Yuan, 2012). 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Figure 1.3 Hierarchy of leukemia stem cells (LSCs). Oncogenic mutations may occur within 
long-term hematopoietic stem cells (HSCs) or in committed downstream progenitors.  
Mutations within long-term HSCs may give rise to a pre-leukemia state with expanded HSC 
numbers and genetic instability, leading to additional genetic events.  Conversely, 
leukemogenic events that confer limitless self-renewal can transform HSCs or committed 
progenitors.  Reprinted with permission from Elsevier (Lane and Gilliland, 2010). 
 

LSCs, like their normal HSC counterparts, possess a range of characteristics that enable 

their long-term survival and facilitate their escape from the cytotoxic effects of chemotherapy 

(Mahadevan and List, 2004).  By reducing this cytotoxic stress, LSCs become a reservoir for 

the selection of mutants that are resistant to targeted or conventional therapy (Heidel et al., 

2006).  For this reason, a significant percentage of CML patients are expected to develop TKI 

resistance driven by quiescent LSCs (Crews and Jamieson, 2012). 

 

1.3.1 Bone Marrow Stromal Factors 

 

Substantial emerging evidence indicates that LSCs do not exist primarily in blood circulation 

but instead reside within and utilize the bone marrow microenvironment, taking refuge in this 

niche during chemotherapy and later re-emerging to initiate disease relapse.  LSCs home to and 
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engraft the bone marrow niche where they are somewhat protected from chemotherapy-induced 

apoptosis, potentially through niche-induced LSC quiescence (Ishikawa et al., 2007). 

The bone marrow is a hematopoietic organ that resides within the protective confines of 

bones and is the major site of hematopoiesis.  The primary function of bone marrow is to 

maintain the numbers of differentiated hematopoietic cells in the peripheral blood at a constant 

level (Fliedner et al., 2002).  Under physiological conditions, normal HSCs residing in the bone 

marrow niche receive cell-extrinsic support from the heterogeneous cell populations that 

comprise the surrounding hematopoietic microenvironment, including primary cells of 

mesenchymal lineages, endothelial and perivascular cells, and adipocytes (Lane et al., 2009).  

Interactions between HSCs and the bone marrow niche can occur as a result of direct 

intracellular contact, secreted factors such as cytokines and chemokines, or through 

microenvironmental matrix proteins that regulate cellular adhesion and migration, as well as 

growth factor receptor and integrin signals, among others (Chiodoni et al., 2010) as illustrated 

in Figure 1.4.   

 

 
Figure 1.4 The bone marrow microenvironment.  Hematopoietic stem cells receive support 
from stromal factors within the bone marrow microenvironment.  Reprinted with permission 
from Elsevier (Di Maggio et al., 2011).  
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LSCs also receive vital cues from the bone marrow microenvironment that dictate their 

behavior and eventual disease phenotype.  Evidence suggests that LSCs in turn have an effect 

on the niche and may even circumvent normal constraints to create their own distinct 

pathological niche at the expense of normal HSCs, leading to disproportionate impairment of 

HSC engraftment and hematopoietic function (Colmone et al., 2008).  In addition, evidence 

suggests that normal HSCs can be altered by signals within a pathological niche, leading to 

hematopoietic dyscrasias (Walkley et al., 2007a, 2007b).  

It has been determined that while TKIs are capable of inducing apoptosis in CML cells 

through the inhibition of BCR-ABL, LSCs are not dependent on BCR-ABL for survival and 

thus are not eliminated by TKIs.  This indicates that LSCs rely on survival signals other than 

BCR-ABL and it is likely that these signals are provided by the bone marrow niche (Corbin et 

al., 2011).  In support of this theory, it has been demonstrated that soluble factors secreted by 

HS-5 stromal cells are sufficient to cause resistance to TKIs in CML cells (Bewry et al., 2008).  

Furthermore, it has recently been shown that TKI therapy promotes the migration of LSCs to 

the bone marrow via activation of inflammatory signaling receptors, fostering the survival of 

quiescent LSCs in the bone marrow niche (Jin et al., 2008). 

 The development of therapeutic strategies capable of eradicating LSCs in supportive 

niches while sparing normal HSC function would represent an important complement to current 

TKI treatment but such therapies remain elusive to date (Essers and Trumpp, 2010). 

 

1.4 Reactive Oxygen Species in Cancer 

 

Reactive oxygen species (ROS) are broadly defined as oxygen-containing, reactive chemical 

species.  Two types of ROS are present in biological systems: free radicals, which contain one 

or more unpaired electrons in their outer molecular orbits, and non-radical ROS, which do not 

contain unpaired electrons but are chemically reactive and can be converted to radical ROS 

(Trachootham et al., 2009).   

 ROS play essential roles in living organisms in that they regulate many signal 

transduction pathways by directly reacting with and modifying the structure of proteins and 

genes in order to modulate their functions.  More specifically, ROS are involved in signaling 

cell growth and differentiation, regulating the activity of enzymes, mediating inflammation by 
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stimulating cytokine production, and eliminating pathogens and foreign particles.  However, 

ROS can also have harmful effects within the cell since oxygen-containing free radicals are 

highly reactive with biological molecules; a mild increase in ROS may promote cell 

proliferation and differentiation (Schafer and Buettner, 2001; Boonstra and Post, 2004), 

whereas a severe increase in ROS can cause oxidative damage to lipids, proteins, and DNA 

(Perry et al., 2000), which may ultimately result in cell death (Trachootham et al., 2009).  

Maintenance of ROS homeostasis is therefore essential for normal cell growth and survival.  

Cellular ROS levels are controlled by ROS-scavenging systems such as superoxide dismutases, 

glutathione peroxidase, peroxiredoxins, glutaredoxin, thioredoxin, and catalase (Trachootham 

et al., 2009).  

 It has been established that cancer cells are under oxidative stress due to increased 

metabolic activity and the production of ROS (Szatrovski et al., 1991).  Although the precise 

pathways involved remain unclear, it is known that the activation of oncogenes, aberrant 

metabolism, mitochondrial dysfunction, and loss of functional p53 are intrinsic factors 

responsible for increased ROS production in cancer cells (Irani et al., 1997; Brandon et al., 

2006; Horn and Vousden, 2007; Rodrigues et al., 2008).  For example, transformation of 

hematopoietic cells by the oncogenic tyrosine kinase, BCR-ABL is associated with a chronic 

increase in intracellular ROS (Sattler et al., 2000).  This increased level of ROS is believed to 

play an important role in maintaining cancer phenotype through its stimulating effects on cell 

growth and proliferation (Hu et al., 2005), genetic instability (Radisky et al., 2005), and 

senescence evasion (Chen et al., 2005).  This intrinsic oxidative stress associated with 

oncogenic transformation may render cancer cells highly dependent on their antioxidant 

systems in order to maintain redox balance (Trachootham et al., 2006).  Supporting this theory, 

aberrant regulation of redox homeostasis and stress adaptation have been shown to occur in 

cancer cells, demonstrated by the significantly altered levels of ROS-scavenging enzymes seen 

in malignant cells (Oberley and Oberley, 1997) and primary cancer tissues (Saydam et al., 

1997; Hu et al., 2005; Murawaki et al., 2008). 

 One ROS mitigating enzyme known to be upregulated in a variety of human cancers is 

thioredoxin reductase-1 (TrxR1) (Rundlöf and Arnér, 2004; Biaglow and Miller, 2005), a 

glutathione reductase-like flavoenzyme that participates in diverse metabolic reactions 

involving oxidation-reduction cycles (Fig. 1.5) and is widely believed to be central to 
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intracellular ROS mitigation (Arnér and Holmgren, 2000; Becker et al., 2000; Williams et al., 

2000).  Overexpression of TrxR1 has been linked to aggressive tumour growth and poorer 

prognosis (Kakolyris et al., 2001; Raffel et al., 2003), enhanced tumour proliferation via 

regulatory effects on the G1 checkpoint during cell cycle progression (Smart et al., 2004), 

invocation of a pro-survival signaling cascade (Wei et al., 2000; Smart et al., 2004), and greater 

resistance against some anticancer agents (Kirkpatrick et al., 1998).  This evidence suggests 

that upregulated TrxR1 activity may, at least in part, account for how cancer cells have adapted 

to their generally higher basal levels of cellular oxidative stress (Pelicano et al., 2004) and is 

therefore a potentially useful antineoplastic molecular target. 

 

 
Figure 1.5 Reactions and functions of thioredoxin reductase in the cell. Reprinted with 
permission from the Biochemical Society (Mustacich and Powis, 2000). 
 

1.5 Chaetocin 

 

Chaetocin is a mycotoxin produced by Chaetomium species fungi and is a representative 

thiodioxopiperazine, a class of fungal secondary metabolites with structural similarities.  The 

chemical structure of chaetocin was elucidated in 1970 and found to contain an unusual bridged 
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disulfide diketopiperazine core (Hauser et al., 1970), shown in Figure 1.6.  Other 

dioxopiperazines have been reported to have antimicrobial (Katagiri et al., 1970), antiparasitic 

(Dong et al., 2005), antiviral (Neuss et al., 1968), immunosuppressive (Yamada et al., 2000), 

and/or anti-inflammatory effects (Kawahara et al., 1990) while the biological effects of 

chaetocin have remained largely unexplored (Isham et al., 2007). 

 

 

 
Figure 1.6 Chemical structure of chaetocin. 

 

 The recent discovery of the potent and selective in vitro, in vivo, and ex vivo anticancer 

activity of chaetocin (Isham et al., 2007) sparked great interest in the cancer research field.  

Research has shown that chaetocin dramatically accumulates in cancer cells via a process 

inhibited by glutathione and requiring unreduced disulfides for uptake.  Once inside the cell, the 

anticancer activity of chaetocin appears to be mediated primarily through the imposition of 

oxidative stress and consequent induction of apoptosis.  As discussed above, cancer cells have a 

heightened sensitivity to the cytotoxic effects of imposed oxidative stress, which likely 

contributes to the selective anticancer effects of chaetocin (Isham et al., 2007). 

 The ability of chaetocin to inflict oxidative stress has been specifically linked to its 

action as a competitive substrate for, and inhibitor of, the central oxidative stress remediation 

enzyme, thioredoxin reductase-1 (TrxR1), as illustrated in Figure 1.7.  By competing with 

thioredoxin for reduction by TrxR1, chaetocin depletes levels of reduced cellular Thx, a 
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survival-critical ROS remediation substrate and downstream effector of TrxR1.  The 

importance of ROS imposition to chaetocin-induced cytotoxicity has been further demonstrated 

by its abrogation when cells are co-treated with N-acetyl cysteine, a cell permeable reduced 

glutathione precursor (Isham et al., 2007). 

 

 
Figure 1.7 Model of the observed effects of chaetocin on the Trx/TrxR1 pathway. Chaetocin 
competes with thioredoxin as a substrate for thioredoxin reductase, thereby serving to attenuate 
reduction of the thioredoxin reductase downstream substrate and effector, thioredoxin. 
Reprinted with permission from Antioxidants and Redox Signaling (Tibodeau et al., 2009). 

 
 

 In addition to its ability to impose cytotoxic oxidative stress, chaetocin has been found 

to potently and specifically inhibit the suppressor of variegation 3-9 homolog 1 (SUV39H1) 

enzyme in an ROS-dependent manner (Greiner et al., 2005).  SUV39H1 is the main histone 

methyltransferase responsible for the accumulation of histone H3 containing a tri-methyl group 

at its lysine 9 position (H3K9me3) in heterochromatin (Goyama et al., 2010) and its depletion 
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directly induces death receptor-mediated apoptosis (Chaib et al., 2012). 

 Other effects of chaetocin on cancer cells that have recently been reported include 

mitochondrial membrane depolarization, morphological changes including vacuole and 

condensed chromatin cluster formation (Illner et al., 2010), HIF-1α down-regulation caused by 

its deregulation of HIF-1α pre-messenger RNA splicing (Kung et al., 2004; Lee et al., 2011), 

and attenuation of endothelial cell proliferation and tumour-associated vascularity in vivo, 

which demonstrates the potential of chaetocin to act directly in the tumour microenvironment.  

Importantly, it has also recently been uncovered that chaetocin is capable of inducing necrotic 

cell death, largely independent of reliance on intact programmed cell death (PCD) pathways.  

This discovery indicates that chaetocin has the potential to be effective in killing cancer cells 

harbouring defective PCD pathways that might otherwise be resistant to other therapeutics.  It 

has been proposed that the imposition of oxidative stress by chaetocin may serve as a 

catastrophic cellular insult capable of killing cells by necrosis even if apoptotic and autophagic 

pathways are disregulated (Isham et al., 2012). 
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2. HYPOTHESIS AND SPECIFIC AIMS 

 

We hypothesized that chaetocin induces apoptosis through the imposition of cytotoxic levels of 

oxidative stress in chronic myelogenous leukemia stem cells both in vitro and in vivo while 

sparing normal hematopoietic stem cells and that chaetocin functions synergistically with 

imatinib.  We developed the following aims to test our hypothesis. 

 

2.1 Assess the Activity of Chaetocin in the Murine CML Model Cell Line TonB210 

 

TonB210 is a murine hematopoietic cell line with doxycycline-inducible BCR-ABL expression 

(Klucher et al., 1998).  This cell line shows an absolute dependence on doxycycline for cell 

survival and proliferation in vitro in the absence of IL-3, correlating with BCR-ABL 

expression.  This cell line was used to compare the activity of chaetocin in the presence and 

absence of BCR-ABL expression by measuring cell viability, apoptosis, and colony formation.  

In addition, the activity of chaetocin was evaluated in the presence of bone marrow stromal 

factors (BMSFs). 

 

2.2 Assess the Activity of Chaetocin in the Murine CML Model CJ Cells 

 

Neering et al. have developed a CML model using retroviral vectors to co-express the 

BCR/ABL and Nup98/HOXA9 translocation products, both of which have been previously 

documented in leukemia patients.  The Nup98/HOXA9 translocation is a transcription factor-

based anomaly that inhibits cellular differentiation.  This CML model, which we refer to as 

Craig Jordan (CJ) cells, provides a platform from which the properties of normal versus 

malignant stem cells can be examined and the relative effects of therapeutic regimens evaluated 

(Neering et al., 2007).  As with the cell line TonB210, CJ cells were used to assess the effects 

of chaetocin, both alone and in combination with imatinib, on cell viability, apoptosis, and 

colony formation, both in the absence and presence of BMSFs. 

 

 

 



 16 

2.3 Assess the Activity of Chaetocin in Normal Murine Hematopoietic Stem Cells 

 

Others have speculated that since cancer cells have a higher basal level of oxidative stress 

compared to normal cells, chaetocin will induce cytotoxic levels of oxidative stress in cancer 

cells, while normal cells will be able to withstand this assault (Isham et al., 2007).  In order to 

test this theory, we isolated normal murine hematopoietic stem cells and treated them with 

chaetocin, both alone and in combination with imatinib, and evaluated their effects on cell 

viability and colony formation. 

 

2.4 Determine the Effect of Chaetocin on Chronic Myelogenous Leukemia Disease Latency and   

      Stem Cell Frequency In Vivo 

 

It has been shown that CJ cells are capable of establishing a CML phenotype when injected 

intravenously into recipient mice (Neering et al., 2007).  In order to test the ability of chaetocin 

to interfere with this process, CJ cells were treated with chaetocin, both alone and in 

combination with imatinib, before injection.  Since mice afflicted with CML display a specific 

set of symptoms, it was possible to determine the differences in time required for the 

establishment of CML among each treatment group.  Mice were euthanized once symptoms of 

CML became apparent. 

 In order to determine the effect of chaetocin on stem cell frequency, a limiting dilution 

assay was performed in which CJ cells were treated with chaetocin both alone and in 

combination with imatinib before being injected into mice at a range of different cell 

concentrations.  As before, the mice were euthanized once symptoms of illness became 

apparent.  The results were then analyzed using L-Calc software (StemCell Technologies) in 

order to determine the stem cell frequency in each treatment group. 

 

2.5 Assess the Effect of Chaetocin on Intracellular Reactive Oxygen Species  

 

In order to determine the effects of chaetocin on intracellular ROS levels, cells were treated 

with chaetocin or imatinib and the levels of ROS were measured using an ROS-sensitive dye 

and flow cytometry. 
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2.6 Investigate the Synergy/Antagonism of Chaetocin and Imatinib 

 

In order to determine whether chaetocin and imatinib function synergistically or 

antagonistically, cells were treated with chaetocin and imatinib, both alone and in combination, 

at a range of different concentrations.  CalcuSyn software (Biosoft) was then used to analyze 

the results. 
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3. MATERIALS AND METHODS 

 

3.1 Reagents and Suppliers 

 

The reagents used for experiments in this thesis were all molecular biology or reagent grade and 

are listed in Table 3.1.  Several of the procedures used in this study were performed using 

commercially available kits, which are listed in Table 3.2. Table 3.3 lists the companies from 

which all reagents and kits were obtained. 

 

Table 3.1 List of Reagents and Suppliers 
Reagent       Supplier 
Chaetocin        Sigma-Aldrich 
DMSO        Sigma-Aldrich 
Doxycycline Hyclate      Sigma-Aldrich 
dR6G        Invitrogen Life Technologies 
FBS         Invitrogen Life Technologies 
Flt3        R&D Systems 
IL-3         R&D Systems 
IL-6        R&D Systems 
Imatinib Mesylate      LC Labs 
IMDM        Invitrogen Life Technologies  
Penicillin/Streptomycin, 100X Mix     Invitrogen Life Technologies 
RPMI        Invitrogen Life Technologies 
SCF        R&D Systems  
Trypan Blue, 0.4%       Invitrogen Life Technologies 
Trypsin       Invitrogen Life Technologies 
MethoCult® GF M3434     StemCell Technologies 
 

Table 3.2 List of Commercially Available Kits 
Commercially Available Kit     Company 
Annexin V : FITC Apoptosis Detection Kit I   BD Pharmingen 
Annexin V : PE Apoptosis Detection Kit I   BD Pharmingen 
Lineage Cell Depletion Kit     Miltenyi Biotec 
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Table 3.3 Names and Addresses of Suppliers 
Supplier      Address 
BD Pharmingen    Mississauga, Ontario, Canada 
Biosoft      Cambridge, United Kingdom 
Invitrogen Life Technologies    Burlington, Ontario, Canada 
LC Labs     Woburn, Massachusetts, USA 
Miltenyi Biotec    Auburn, California, USA 
R&D Systems     Minneapolis, Minnesota, USA 
Sigma-Aldrich     Oakville, Ontario, Canada 
StemCell Technologies   Vancouver, British Columbia, Canada 
 

3.2 Cell Lines and Tissue Culture 

 

All cultures contained 1% (v/v) penicillin/streptomycin solution (Gibco) and were maintained 

at 37°C with 5% CO2.  All cell culture media were supplied by Invitrogen.  CJ cells were 

cultured in Iscove’s Modified Dulbecco’s Medium (IMDM) with 20% (v/v) fetal bovine serum 

(FBS, Invitrogen).  TonB210 cells were cultured in Roswell Park Memorial Institute Medium 

(RPMI) with 10% (v/v) FBS supplemented with either 10 ng/mL IL-3 or 2 µg/mL doxycycline.  

M2-10B4 cells were cultured in RPMI with 10% (v/v) FBS.  Lineage depleted murine HSCs 

were cultured in IMDM containing 20% (v/v) FBS and cytokine cocktail (25 ng/mL SCF, 25 

ng/mL Flt3, 10 ng/mL IL-6, and 10 ng/mL IL-3). 

 

3.2.1 Bone Marrow Stromal Factor Pretreatment 

 

M2-10B4 cells were cultured as described above for several days before collecting the culture 

medium, known to contain secreted BMSFs (Sutherland et al., 1991), for storage at -80°C.  

Cells were pretreated with this BMSF-containing medium diluted 1:1 with fresh culture 

medium for four hours at 37°C with 5% CO2 before the addition of drug(s). 

 

3.3 Trypan Blue Exclusion Assay 

 

Cell viability was determined by Trypan Blue exclusion assay.  Briefly, cells were cultured as 

above and treated with chaetocin and/or imatinib.  A culture sample of 10 µLs was then diluted 

2X in 0.4% Trypan Blue staining reagent (Invitrogen) and the percentage of viable cells 
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determined using a hemocytometer (Spencer).  Trypan Blue only traverses the membranes of 

dead cells, staining them blue while viable cells remain clear; therefore, the percentage of 

viable cells remaining after drug treatment may be calculated. 

 

3.4 Annexin-V Assay 

 

Apoptosis was detected in CJ cells following chaetocin and/or imatinib treatment using the 

Annexin-V PE Apoptosis Detection Kit I (BD Pharmingen) and flow cytometry as per 

manufacturer’s instructions. 

 Apoptosis was detected in TonB210 cells following chaetocin and/or imatinib treatment 

using the Annexin-V FITC Apoptosis Detection Kit I (BD Pharmingen) and flow cytometry as 

per manufacturer’s instructions. 

 

3.5 Methylcellulose Assay 

  

Colony formation was quantitated using MethoCult® GF M3434 methylcellulose (StemCell 

Technologies) as per manufacturer’s instructions.  Cells were plated in triplicate at a density of 

250-1000 cells per 150 µL methylcellulose and incubated at 37°C with 5% CO2 for 6-10 days 

before quantifying the resulting colonies in situ by light microscopy. 

 

3.6 Reactive Oxygen Species Assay 

 

ROS were detected in CJ cells using dihydrorhodamine 6G (dR6G, Invitrogen Life 

Technologies) and flow cytometry.  Briefly, cells were treated with chaetocin or imatinib for 24 

hours, an aliquot of cells washed with PBS and resuspended in 100 µM dR6G and incubated at 

room temperature (RT) for 60 min before being washed, resuspended in PBS, incubated at 

37°C with 5% CO2 for 60 min, and analyzed by flow cytometry. 

 

3.7 CalcuSyn 

  

Synergy calculations were performed via CalcuSyn software (Biosoft).  Briefly, cells were 



 21 

treated with chaetocin and/or imatinib for 24 hours, the percent viability determined by Trypan 

Blue exclusion assay, and results analyzed using CalcuSyn.  

 

3.8 L-Calc 

 

Stem cell frequencies were calculated using L-Calc software (StemCell Technologies).  Briefly, 

CJ cells were treated with 100 nM chaetocin for 24 hours and/or 1 µM imatinib for 48 hours 

before being injected intravenously into sublethally irradiated recipient mice at a range of 

different cell numbers per mouse (7,500, 15,000, 30,000, 60,000, 120,000, or 240,000) with 

five mice per group.  Once leukemic symptoms became apparent (e.g., ruffled fur, lethargy, 

splenomegaly), the mice were euthanized using CO2 and their spleens removed to confirm 

disease by histological analysis and detection of BCR-ABL-GFP/Nup98-HOXA9-YFP 

expression by flow cytometry.  Values corresponding to dose (i.e., the number of cells 

injected), total number of positive results obtained per dose (development of CML), and total 

number of replicates tested (5) were then entered into the program to determine the LSC 

frequency of each treatment group. 

 

3.9 Murine Chronic Myelogenous Leukemia Models 

 

All animal experiments were performed in accordance with the Canadian Council on Animal 

Care (CCAC) guidelines using C57BL/6N mice (Charles River Laboratories).    

Mice were sublethally irradiated by exposure to 600 rad 24 hours or less before 

intravenous injection of untreated or chaetocin and/or imatinib-treated CJ cells and were 

euthanized using CO2 upon presentation of leukemic symptoms (e.g., ruffled fur, lethargy, 

splenomegaly). 

 

3.10 Lineage Depletion of Normal Murine Hematopoietic Stem Cells 

 

Bone marrow was obtained from untreated mice by flushing the femora and tibiae with IMDM 

using a syringe and 26G needle.  Cells were lineage depleted using the Lineage Cell Depletion 

Kit (Miltenyi Biotec) as per manufacturer’s instructions.   



 22 

3.11 Statistical Analysis 

 

P-values for viability, apoptosis, and colony formation assay data were determined by 

performing an unpaired t test using the Graphpad online calculator.  P-values for disease 

latency data were determined by performing a logrank test using Prism software.  P-values for 

LSC frequency data were determined based on the results of a Pearson Chi-square test using  

L-Calc software.  Drug interaction data were analyzed by performing combination index and 

isobologram analysis using CalcuSyn software. 
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4. RESULTS 

 

4.1 Effects of Chaetocin and Imatinib on TonB210 Cells 

 

TonB210 is a murine hematopoietic cell line with doxycycline-inducible BCR-ABL expression 

(Klucher et al., 1998).  This cell line shows an absolute dependence on doxycycline for cell 

survival and proliferation in vitro in the absence of IL-3, correlating with BCR-ABL 

expression.  Therefore, these cells allow investigation of drug effects both in the absence and 

presence of BCR-ABL. 

 

4.1.1 Determination of the IC50 of Chaetocin and Imatinib on TonB210 Cell Viability  

 

In order to determine the half-maximal inhibitory concentrations (IC50) of chaetocin and 

imatinib for TonB210 cell viability, both with and without doxycycline-induced BCR-ABL 

expression, cells were treated with a range of drug concentrations and Trypan Blue exclusion 

assays were performed after 48 hours. 

Trypan Blue is a diazo dye that only traverses membranes of dead cells, staining them 

blue while viable cells remain clear.  Thus, Trypan Blue allows for calculation of the 

percentage of viable cells remaining after drug treatment. 

Imatinib is a BCR-ABL inhibitor and thus had no effect on the viability of IL-3 

dependent TonB210 cells where BCR-ABL was not induced (Fig. 4.1).  Chaetocin decreased 

the viability of IL-3 dependent TonB210 cells with an IC50 of 175 nM (Fig. 4.2).  Imatinib 

inhibited the viability of doxycycline treated TonB210 cells, which express BCR-ABL, with an 

IC50 of 1.5 µM (Fig. 4.3).  Chaetocin inhibited the viability of doxycycline treated TonB210 

cells with an IC50 of 175 nM (Fig. 4.4). 
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Figure 4.1:  Effect of imatinib on the viability of IL-3 treated TonB210 cells, which do not 
express BCR-ABL.  Cell viability was determined using Trypan Blue exclusion assays after 48 
hr treatment with indicated concentrations of imatinib.  Error bars represent standard deviation 
from three independent measurements. 
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Figure 4.2: Effect of chaetocin on the viability of IL-3 treated TonB210 cells, which do not 
express BCR-ABL.  Cell viability was determined using Trypan Blue exclusion assays after 48 
hr treatment with indicated concentrations of chaetocin.  Error bars represent standard deviation 
from three independent measurements. 
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 Figure 4.3:  Effect of imatinib on the viability of doxycycline treated TonB210 cells, which 
express BCR-ABL. Cell viability was determined using Trypan Blue exclusion assays after 48 
hr treatment with indicated concentrations of imatinib.  Error bars represent standard deviation 
from three independent measurements. 
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Figure 4.4:  Effect of chaetocin on the viability of doxycycline treated TonB210 cells, which 
express BCR-ABL. Cell viability was determined using Trypan Blue exclusion assays after 48 
hr treatment with indicated concentrations of chaetocin.  Error bars represent standard deviation 
from three independent measurements. 
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4.1.2 Effects of Chaetocin and Imatinib on TonB210 Cell Viability 

 

In order to determine the effect of chaetocin and imatinib on the viability of TonB210 cells, 

both in the presence and absence of BCR-ABL expression, cells were treated with IC50 and IC90 

concentrations of each drug, both alone and in combination, and the resulting viabilities were 

determined by Trypan Blue exclusion assay.  Imatinib had no effect on the viability of 

TonB210 cells not expressing BCR-ABL and had no effect on the activity of chaetocin (Fig. 

4.5).  Meanwhile, TonB210 cells expressing BCR-ABL responded to both chaetocin and 

imatinib and the combination of these drugs resulted in a dramatic decrease in cell viability 

(Fig. 4.6). 

 

 
Figure 4.5:  Effects of chaetocin and imatinib on the viability of IL-3 treated TonB210 cells, 
which do not express BCR-ABL.  Cells were treated with chaetocin and/or imatinib at both IC50 
and IC90 concentrations for 48 hr and viability was determined using Trypan Blue exclusion 
assays.  Error bars represent standard deviation from three independent measurements.  *p-
value <0.0005 (IC50 chaetocin and IC50 combination vs. control)  **p-value <0.0001 (IC90 
chaetocin and IC90 combination vs. control) 
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Figure 4.6:  Effects of chaetocin and imatinib on the viability of doxycycline treated TonB210 
cells, which express BCR-ABL.  Cells were treated with chaetocin and/or imatinib at both IC50 
and IC90 concentrations for 48 hr and viability was determined using Trypan Blue exclusion 
assays.  Error bars represent standard deviation from three independent measurements.   
*p-value <0.0001 (IC50 and IC90 imatinib, IC90 chaetocin, and IC50 and IC90 combination vs. 
control)  **p-value <0.005 (IC50 chaetocin vs. control) 

 

 

 

 

 

0 

20 

40 

60 

80 

100 

120 

%
 V

ia
bl

e 

      *                  *                                     *                  *                 * 

     ** 



 30 

4.1.3 Effects of Chaetocin and Imatinib on the Induction of Apoptosis in TonB210 Cells 

 

In order to determine if chaetocin and imatinib reduced the viability of TonB210 cells through 

the induction of apoptosis, cells were treated with IC50 and IC90 concentrations of each drug, 

both alone and in combination, and the percentage of cells undergoing apoptosis was 

determined using the Annexin-V assay. 

Annexin-V is a phospholipid-binding protein with a high affinity for phosphatidylserine 

(PS) in the presence of physiological concentrations of Ca2+ (Moss et al., 1991).  The 

negatively charged phospholipid PS is located in the cytosolic leaflet of the plasma membrane 

lipid bilayer of most normal, viable eukaryotic cells and its redistribution from the inner to the 

outer leaflet is an early, widespread event during apoptosis (Koopman et al., 1994; Martin et 

al., 1995).  Thus, apoptotic cells can be directly detected through their staining with 

fluorochrome-conjugated Annexin-V. 

 Chaetocin induced apoptosis in TonB210 cells not expressing BCR-ABL while imatinib 

had no effect (Fig. 4.7).  This also showed that imatinib had no effect on the ability of chaetocin 

to induce apoptosis in cells not expressing BCR-ABL.  Both chaetocin and imatinib induced 

apoptosis in TonB210 cells expressing BCR-ABL and a greater percentage of cells are affected 

when these drugs are combined (Fig. 4.8). 
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Figure 4.7:  Effects of chaetocin and imatinib on the induction of apoptosis in IL-3 treated 
TonB210 cells, which do not express BCR-ABL.  Cells were treated with chaetocin and/or 
imatinib at both IC50 and IC90 concentrations for 48 hr and the percentage of cells undergoing 
apoptosis was determined using Annexin-V assays.  Error bars represent standard deviation 
from three independent measurements.  *p-value <0.005 (IC90 imatinib and IC50 chaetocin vs. 
control)  **p-value <0.0001 (IC90 chaetocin and IC50 and IC90 combination vs. control) 
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Figure 4.8:  Effects of chaetocin and imatinib on the induction of apoptosis in doxycycline 
treated TonB210 cells, which express BCR-ABL.  Cells were treated with chaetocin and/or 
imatinib at both IC50 and IC90 concentrations for 48 hr and the percentage of cells undergoing 
apoptosis was determined using Annexin-V assays.  Error bars represent standard deviation 
from three independent measurements.  *p-value <0.0001 (IC50 and IC90 imatinib, IC90 
chaetocin, and IC50 and IC90 combination vs. control)  **p-value <0.005 (IC50 chaetocin vs. 
control) 
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proliferate to form discrete cell clusters or colonies.  CFCs can then be classified and 
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enumerated in situ by light microscopy based on the morphological recognition of one or more 

types of hematopoietic lineage cells within the colony. 

 Effects of chaetocin and imatinib on the colony forming ability of IL-3 or doxycycline 

treated TonB210 cells were investigated by treating these cells with IC50 and IC90 

concentrations of each drug for 48 hours before plating cells in methylcellulose at a density of 

250 cells per 150 µL.  The numbers of colonies formed after 7 days of incubation were counted 

in situ using light microscopy. 

 Chaetocin dramatically reduced the ability of IL-3 treated TonB210 cells to form 

colonies while imatinib had no effect.  In addition, imatinib had only a modest effect on the 

activity of chaetocin in these cells (Fig. 4.9).  In doxycycline treated TonB210 cells, both 

chaetocin and imatinib severely limited colony formation and when these drugs were combined, 

colony formation was obliterated (Fig. 4.10).  

 

 
Figure 4.9:  Effects of chaetocin and imatinib on the colony formation of IL-3 treated TonB210 
cells, which do not express BCR-ABL.  Cells were treated with chaetocin and/or imatinib at 
both IC50 and IC90 concentrations for 48 hr before plating in methylcellulose.  Resulting 
colonies were counted after 7 days incubation using light microscopy.  Error bars represent 
standard deviation from three independent measurements.  *p-value <0.0001 (IC50 and IC90 
chaetocin and IC50 and IC90 combination vs. control) 

0 

20 

40 

60 

80 

100 

120 

N
um

be
r 

of
 C

ol
on

ie
s 

                                            *                *                 *                  * 



 34 

 
Figure 4.10:  Effects of chaetocin and imatinib on the colony formation of doxycycline treated 
TonB210 cells, which express BCR-ABL.  Cells were treated with chaetocin and/or imatinib at 
both IC50 and IC90 concentrations for 48 hr before plating in methylcellulose.  Resulting 
colonies were counted after 7 days incubation using light microscopy.  Error bars represent 
standard deviation from three independent measurements.  *p-value <0.0001 (IC50 and IC90 
imatinib, IC50 and IC90 chaetocin, and IC50 and IC90 combination vs. control) 

 
 

4.1.5 Effects of Bone Marrow Stromal Factors on the Activity of Chaetocin and Imatinib in  

         TonB210 Cells 

 

The heterogeneous cell populations that comprise the bone marrow niche support and interact 

with HSCs in part through the secretion of cytokines, chemokines, and growth factors 

(Chiodoni et al., 2010), collectively referred to as bone marrow stromal factors (BMSFs) in this 

study.  Importantly, it has been shown that BMSFs enable the survival of LSCs despite the 

inhibition of BCR-ABL by TKIs such as imatinib (Corbin et al., 2011).  Therefore, we thought 

it pertinent to investigate effects of BMSFs on the activity of chaetocin and imatinib in IL-3 and 

doxycycline treated TonB210 cells. 
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 BMSFs were obtained by culturing M2-10B4 cells for several days before collecting the 

culture medium.  M2-10B4 is a murine stromal cell line that has been shown to secrete BMSFs 

(Sutherland et al., 1991).  TonB210 cells were then incubated with M2-10B4 culture medium 

for 4 hours before the addition of chaetocin and/or imatinib in order to test its effects on the 

ability of these drugs to decrease viability, induce apoptosis, and inhibit colony formation. 

 Imatinib had no effect on the viability of IL-3 treated TonB210 cells, regardless of the 

presence of BMSFs while the activity of chaetocin was potentiated by BMSFs, both with and 

without imatinib co-treatment (Fig. 4.11).  The presence of BMSFs significantly inhibited the 

ability of imatinib to decrease the viability of doxycycline treated TonB210 cells expressing 

BCR-ABL while BMSFs increased the potency of chaetocin, causing a significantly larger 

decrease in viability.  In addition, the combination of chaetocin and imatinib resulted in a 

dramatic decrease in cell viability, regardless of the presence of BMSFs (Fig. 4.12). 

 Imatinib did not induce apoptosis in IL-3 treated TonB210 cells, regardless of the 

presence of BMSFs while the induction of apoptosis in IL-3 treated TonB210 cells by chaetocin 

was dramatically potentiated by BMSFs, both with and without imatinib co-treatment (Fig. 

4.13).  BMSFs did not have a significant effect on the ability of imatinib to induce apoptosis in 

doxycycline treated TonB210 cells expressing BCR-ABL but the ability of chaetocin to induce 

apoptosis was found to be dramatically increased by the presence of BMSFs (Fig. 4.14). 

 Finally, imatinib had no effect on the colony forming ability of IL-3 treated TonB210 

cells, regardless of the presence of BMSFs while chaetocin drastically inhibited the colony 

formation of IL-3 treated TonB210 cells, both with and without BMSFs, regardless of imatinib 

co-treatment (Fig. 4.15).  BMSFs were found to interfere with the ability of imatinib to inhibit 

colony formation of doxycycline treated TonB210 cells while the activity of chaetocin was 

unaffected.  In addition, the combination of chaetocin and imatinib was found to drastically 

reduce the colony forming ability of doxycycline treated TonB210 cells, regardless of the 

presence of BMSFs (Fig. 4.16). 
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Figure 4.11:  Effects of bone marrow stromal factors on the activity of chaetocin and imatinib 
in IL-3 treated TonB210 cells, which do not express BCR-ABL.  Cells were incubated with 
BMSFs for 4 hrs before the addition of drug(s).  Cells were treated with chaetocin and/or 
imatinib at IC50 concentrations for 48 hrs and viability was determined using Trypan Blue 
exclusion assays.  Error bars represent standard deviation from three independent 
measurements.  *p-value <0.0005 (IC50 chaetocin without BMSFs vs. IC50 chaetocin with 
BMSFs)  **p-value <0.05 (IC50 combination without BMSFs vs. IC50 combination with 
BMSFs) 
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Figure 4.12:  Effects of bone marrow stromal factors on the activity of chaetocin and imatinib 
in doxycycline treated TonB210 cells, which express BCR-ABL.  Cells were incubated with 
BMSFs for 4 hrs before the addition of drug(s).  Cells were treated with chaetocin and/or 
imatinib at IC50 concentrations for 48 hours and viability was determined using Trypan Blue 
exclusion assays.  Error bars represent standard deviation from three independent 
measurements.  *p-value <0.005 (IC50 imatinib without BMSFs vs. IC50 imatinib with BMSFs 
and IC50 chaetocin without BMSFs vs. IC50 chaetocin with BMSFs) 
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Figure 4.13:  Effects of bone marrow stromal factors on the induction of apoptosis by 
chaetocin and imatinib in IL-3 treated TonB210 cells, which do not express BCR-ABL.  Cells 
were incubated with BMSFs for 4 hrs before the addition of drug(s).  Cells were treated with 
chaetocin and/or imatinib at IC50 concentrations for 48 hrs and apoptosis was detected using 
Annexin-V assays.  Error bars represent standard deviation from three independent 
measurements.  *p-value <0.0005 (IC50 chaetocin without BMSFs vs. IC50 chaetocin with 
BMSFs)  **p-value <0.0001 (IC50 combination without BMSFs vs. IC50 combination with 
BMSFs)   
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Figure 4.14:  Effects of bone marrow stromal factors on the induction of apoptosis by 
chaetocin and imatinib in doxycycline treated TonB210 cells, which express BCR-ABL.  Cells 
were incubated with BMSFs for 4 hrs before the addition of drug(s).  Cells were treated with 
chaetocin and/or imatinib at IC50 concentrations for 48 hrs and apoptosis was detected using 
Annexin-V assays.  Error bars represent standard deviation from three independent 
measurements.  *p-value <0.0005 (IC50 chaetocin without BMSFs vs. IC50 chaetocin with 
BMSFs) 
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Figure 4.15:  Effects of bone marrow stromal factors on the inhibition of colony formation by 
chaetocin and imatinib in IL-3 treated TonB210 cells, which do not express BCR-ABL.  Cells 
were incubated with BMSFs for 4 hrs before the addition of drug(s).  Cells were treated with 
chaetocin and/or imatinib at IC50 concentrations for 48 hrs before plating in methylcellulose.  
Colonies were counted after 7 days incubation using light microscopy.  Error bars represent 
standard deviation from three independent measurements.  *p-value <0.05 (IC50 combination 
without BMSFs vs. IC50 combination with BMSFs) 
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Figure 4.16:  Effects of bone marrow stromal factors on the inhibition of colony formation by 
chaetocin and imatinib in doxycycline treated TonB210 cells, which express BCR-ABL.  Cells 
were incubated with BMSFs for 4 hrs before the addition of drug(s).  Cells were treated with 
chaetocin and/or imatinib at IC50 concentrations for 48 hrs before plating in methylcellulose.  
Colonies were counted after 7 days incubation by light microscopy.  Error bars represent 
standard deviation from three independent measurements.  *p-value <0.0001 (IC50 imatinib 
without BMSFs vs. IC50 imatinib with BMSFs)  
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biological features of human LSCs.  Briefly, this model was created by modifying primitive 

normal hematopoietic cells such that they express both BCR/ABL and Nup98/HOXA9 

translocation products and identifying a distinct LSC population with the aberrant 
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HSCs can be characterized and candidate treatment regimens optimized for maximal specificity 

toward primitive leukemia cells (Neering et al., 2007).  In this study, this murine CML model, 

referred to as “CJ cells,” has been used to characterize the activity of chaetocin, both alone and 

in combination with imatinib, in regards to viability, apoptosis, and colony formation. 

 

4.2.1 Determination of the IC50 of Chaetocin and Imatinib on CJ Cell Viability 

 

In order to determine IC50 concentrations of chaetocin and imatinib for inhibiting the viability 

of CJ cells, these cells were treated with a range of drug concentrations and the resulting 

viabilities determined by Trypan Blue exclusion assay after 48 hours.  The IC50 of chaetocin 

was determined to be 350 nM (Fig. 4.17) and the IC50 of imatinib was determined to be 2 µM 

(Fig. 4.18).   

 
 

Figure 4.17:  Effect of chaetocin on the viability of CJ cells.  Cell viability was determined 
using Trypan Blue exclusion assays after 48 hr treatment with indicated concentrations of 
chaetocin.  Error bars represent standard deviation from three independent measurements. 
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Figure 4.18:  Effect of imatinib on the viability of CJ cells.  Cell viability was determined 
using Trypan Blue exclusion assays after 48 hr treatment with indicated concentrations of 
imatinib.  Error bars represent standard deviation from three independent measurements. 
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In order to determine the effect of chaetocin and imatinib on the viability of CJ cells, cells were 

treated with IC50 and IC90 concentrations of each drug, both alone and in combination, and the 

resulting viabilities were determined by Trypan Blue exclusion assay.  The combination of 

chaetocin and imatinib resulted in a greater decrease in viability than either drug individually, 

indicating that chaetocin and imatinib function synergistically in CJ cells (Fig. 4.19). 
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Figure 4.19:  Effects of chaetocin and imatinib on the viability of CJ cells.  Cells were treated 
with IC50 and IC90 concentrations of chaetocin and/or imatinib and viability was determined 
using Trypan Blue exclusion assays after 48 hrs.  Error bars represent standard deviation from 
three independent measurements.  *p-value <0.0001 (IC50 and IC90 imatinib and IC50 and IC90 
combination vs. control)  **p-value <0.005 (IC50 chaetocin vs. control)  ***p-value <0.01 (IC90 
chaetocin vs. control) 
 

 

4.2.3 Effects of Chaetocin and Imatinib on the Induction of Apoptosis in CJ Cells 

 

In order to determine if chaetocin and imatinib reduced the viability of CJ cells through the 

induction of apoptosis, cells were treated with IC50 and IC90 concentrations of each drug, both 

alone and in combination, and the percentage of cells undergoing apoptosis was determined 

using the Annexin-V assay.  Both chaetocin and imatinib were found to induce apoptosis in CJ 

cells and a higher percentage of cells were found to be apoptotic when these drugs were used in 

combination (Fig. 4.20). 
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Figure 4.20:  Effects of chaetocin and imatinib on the induction of apoptosis in CJ cells.  Cells 
were treated with IC50 and IC90 concentrations of chaetocin and/or imatinib and the induction of 
apoptosis was detected using Annexin-V assays after 48 hrs.  Error bars represent standard 
deviation from three independent measurements.  *p-value <0.0001 (IC50 and IC90 imatinib, 
IC50 and IC90 chaetocin, and IC50 and IC90 combination vs. control) 
 
 
4.2.4 Effects of Chaetocin and Imatinib on CJ Cell Colony Formation 

 

Effects of chaetocin and imatinib on the colony forming ability of CJ cells were investigated by 

treating these cells with IC50 and IC90 concentrations of each drug, both alone and in 

combination, for 48 hours before plating cells in methylcellulose at a density of 1000 cells per 

150 µL.  The numbers of colonies formed after 6 days of incubation were counted in situ using 

light microscopy. 

 Both chaetocin and imatinib caused a dramatic decrease in the number of colonies 

formed and when these drugs were used in combination, the colony forming ability of these 
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cells was nearly obliterated (Fig. 4.21). 

 

 

 
Figure 4.21:  Effects of chaetocin and imatinib on the colony formation of CJ cells.  Cells were 
treated with IC50 and IC90 concentrations of chaetocin and/or imatinib for 48 hrs before plating 
in methylcellulose.  Resulting colonies were counted after 6 days incubation using light 
microscopy.  Error bars represent standard deviation from three independent measurements. 
*p-value <0.0001 (IC50 and IC90 imatinib, IC50 and IC90 chaetocin, and IC50 and IC90 
combination vs. control) 
 

 

4.2.5 Effects of Bone Marrow Stromal Factors on the Activity of Chaetocin and Imatinib in  

         CJ Cells 

 

CJ cells were incubated with M2-10B4 culture medium for 4 hours before the addition of 

chaetocin and/or imatinib in order to test effects of BMSFs on the ability of these drugs to 

decrease viability, induce apoptosis, and inhibit colony formation. 
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 BMSFs were found to inhibit the ability of imatinib to decrease CJ cell viability but 

potentiated the activity of chaetocin, resulting in a significantly greater decrease in cell 

viability.  In addition, the combination of chaetocin and imatinib resulted in a greater decrease 

of cell viability compared to either drug separately, regardless of the presence of BMSFs (Fig. 

4.22). 

 In agreement with these findings, BMSFs inhibited the ability of imatinib to induce 

apoptosis while potentiating the induction of apoptosis by chaetocin.  Once again, the presence 

of BMSFs did not have a significant effect on the activity of chaetocin and imatinib when these 

drugs were used in combination (Fig. 4.23). 

 Finally, BMSFs significantly reduced the ability of imatinib to inhibit colony formation 

of CJ cells but did not reduce the ability of chaetocin to inhibit colony formation.  In addition, 

the combination of chaetocin and imatinib nearly obliterated the colony forming ability of CJ 

cells, regardless of the presence of BMSFs (Fig. 4.24). 
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Figure 4.22:  Effects of bone marrow stromal factors on the activity of chaetocin and imatinib 
in CJ cells.  Cells were pretreated with BMSFs for 4 hrs before the addition of drug(s).  Cells 
were treated with IC50 concentrations of chaetocin and/or imatinib and viability was determined 
using Trypan Blue exclusion assays after 48 hrs.  Error bars represent standard deviation from 
three separate measurements.  *p-value <0.0005 (IC50 imatinib without BMSFs vs. IC50 
imatinib with BMSFs)  **p-value <0.005 (IC50 chaetocin without BMSFs vs. IC50 chaetocin 
with BMSFs) 
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Figure 4.23:  Effects of bone marrow stromal factors on the induction of apoptosis by 
chaetocin and imatinib in CJ cells.  Cells were pretreated with BMSFs for 4 hrs before the 
addition of drug(s).  Cells were treated with IC50 concentrations of chaetocin and/or imatinib 
and apoptosis was detected using Annexin-V assays after 48 hrs.  Error bars represent standard 
deviation from three separate measurements.  *p-value <0.0005 (IC50 imatinib without BMSFs 
vs. IC50 imatinib with BMSFs)  **p-value = 0.0005 (IC50 chaetocin without BMSFs vs. IC50 
chaetocin with BMSFs) 
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Figure 4.24:  Effects of bone marrow stromal factors on the inhibition of colony formation by 
chaetocin and imatinib in CJ cells.  Cells were pretreated with BMSFs for 4 hrs before the 
addition of drug(s).  Cells were treated with IC50 concentrations of chaetocin and/or imatinib for 
48 hrs before plating in methylcellulose.  Colonies were counted after 6 days incubation using 
light microscopy.  Error bars represent standard deviation from three independent 
measurements.  *p-value <0.0001 (IC50 imatinib without BMSFs vs. IC50 imatinib with 
BMSFs)  **p-value <0.05 (IC50 chaetocin without BMSFs vs. IC50 chaetocin with BMSFs) 
 
 

4.3 Effects of Chaetocin and Imatinib on Normal Murine Hematopoietic Stem Cells 

 

While the data above shows effects of chaetocin and imatinib on leukemic cells, it is equally 

important to investigate effects of these drugs on normal hematopoietic cells to ensure that 

normal hematopoiesis will not be affected during in vivo treatment.  To do this, normal HSCs 

were obtained from the bone marrow of untreated mice and the immature HSCs isolated and 
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effects of these drugs on cell viability, induction of apoptosis, and colony formation after 48 

hours. 

 

4.3.1 Effects of Chaetocin and Imatinib on Normal Murine Hematopoietic Stem Cell Viability  

         and Apoptosis 

 

After 48 hours, viabilities of the treated HSCs were determined using Trypan Blue exclusion 

assays.  Both chaetocin and imatinib had only a small effect on normal HSC viability (Fig. 

4.25).  Also, neither chaetocin nor imatinib caused significant induction of apoptosis in these 

cells, as determined using Annexin-V assays (Fig. 4.26).   
 

 
 

 
Figure 4.25:  Effects of chaetocin and imatinib on the viability of normal murine hematopoietic 
stem cells.  Cells were treated with 0.5 µM or 0.9 µM imatinib and/or 100 nM or 180 nM 
chaetocin for 48 hrs and viability was determined using Trypan Blue exclusion assays. 
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Figure 4.26:  Effects of chaetocin and imatinib on the induction of apoptosis in normal murine 
hematopoietic stem cells.  Cells were treated with 0.5 µM or 0.9 µM imatinib and/or 100 nM or 
180 nM chaetocin for 48 hrs and apoptosis detected using Annexin-V assays. 

 
 
 

4.3.2 Effects of Chaetocin and Imatinib on the Colony Formation of Normal Murine  

         Hematopoietic Stem Cells 

 

Effects of chaetocin and imatinib on the colony forming ability of normal lineage-depleted 

murine HSCs was determined by treating these cells with 100 and 180 nM chaetocin and/or 0.5 

and 0.9 µM imatinib, plating 1000 cells per 150 µL methylcellulose after 48 hours treatment, 

incubating for 10 days, and manually counting the resulting colonies in situ using light 

microscopy.   

Since methylcellulose assay conditions allow the proliferation and differentiation of 

progenitor cells into mature cell types, resulting colonies can be differentiated by their 

morphology.  Neither chaetocin nor imatinib had a significant effect on the colony forming 
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ability of normal lineage-depleted murine HSCs.  In addition, neither chaetocin nor imatinib 

had a significant effect on the types of colonies formed (Fig. 4.27). 
 
 

 
 

 
Figure 4.27:  Effects of chaetocin and imatinib on the colony formation of normal murine 
hematopoietic stem cells.  Cells were treated with 100 nM or 180 nM chaetocin and/or 0.5 µM 
or 0.9 µM imatinib for 48 hrs before being plated in methylcellulose and incubated for 10 days.  
Colonies were counted in situ using light microscopy and colony types differentiated by 
morphology, specifically CFU-M (Colony Forming Unit-Macrophage), CFU-GM (CFU-
Granulocyte, Macrophage), CFU-G (CFU-Granulocyte), and CFU-GEMM (CFU-Granulocyte, 
Erythroid, Macrophage, Megakaryocyte).  Error bars represent standard deviation from three 
independent measurements.  All p-values >0.07 relative to untreated control. 
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4.4 Effects of Chaetocin and Imatinib on Leukemia Stem Cells In Vivo 

 

A genetically and biologically accurate model of in vivo leukemogenesis has been created by 

Neering et al. (2007) through the modification of primitive normal hematopoietic cells to 

express the translocation products of the BCR/ABL and Nup98/HOXA9 translocations, two 

genetic abnormalities that have previously been documented in leukemia patients (Yamamoto 

et al., 2000; Ahuja et al., 2001).  It has been demonstrated that these modified cells, referred to 

in this study as “CJ cells,” are capable of initiating leukemogenesis, resulting in blast crisis 

CML in recipient mice when injected intravenously.  This in vivo CML model was utilized in 

this study to investigate the effects of chaetocin, both alone and in combination with imatinib, 

on both disease latency and leukemia stem cell frequency. 

 

4.4.1 Effects of Chaetocin and Imatinib on CML Disease Latency 

 

In order to determine the effect of imatinib and chaetocin on CML disease latency in vivo, CJ 

cells were treated with 100 nM chaetocin for 24 hours and/or 1 µM imatinib for 48 hours and 

intravenously injected into sublethally irradiated mice.  At the time of injection, cells treated 

with chaetocin were 83.8% viable, cells treated with imatinib were 46.1% viable, and cells 

treated with chaetocin and imatinib were 46.9% viable as determined using Trypan Blue 

exclusion assays. The mice were then monitored for signs of illness (e.g., ruffled fur, lethargy, 

splenomegaly) and euthanized with CO2 once illness became apparent.  Spleens were removed 

after euthanization in order to confirm the development of CML by histological analysis as well 

as by detection of BCR-ABL-GFP/Nup98-HOXA9-YFP expression using flow cytometry.   

 Mice injected with CJ cells treated with either chaetocin or imatinib survived 

significantly longer than the untreated control (p-value = 0.0027).  In addition, mice injected 

with CJ cells treated with both chaetocin and imatinib survived significantly longer than the 

mice injected with chaetocin alone (p-value = 0.0027).  However, mice injected with CJ cells 

treated with both chaetocin and imatinib did not survive significantly longer than the mice 

injected with CJ cells treated with imatinib alone (p-value = 0.1231) (Fig. 4.28). 
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Figure 4.28:  Effects of chaetocin and imatinib on chronic myelogenous leukemia disease 
latency.  CJ cells (120,000) were treated with 100 nM chaetocin for 24 hrs and/or 1 µM 
imatinib for 48 hours before being injected intravenously into sublethally irradiated mice.  Mice 
were euthanized once symptoms of leukemia became apparent.  All p-values <0.003 relative to 
untreated control. 
 
 

4.4.2 Effects of Chaetocin and Imatinib on Leukemia Stem Cell Frequency 

 

Limiting dilution analysis (LDA) is applied in many areas of research to estimate the frequency 

of a specific cell type within a population capable of a defined response.  In hematology, the 

LDA has been applied to the in vitro quantification of HSCs and has also been adapted to allow 

the quantification of murine HSCs with the capacity to produce mature cells of all 

hematopoietic lineages in vivo using software such as L-Calc (StemCell Technologies).  

 In this study, LDA was performed in order to determine the frequency of LSCs in vivo 

using CJ cells treated with chaetocin and/or imatinib.  CJ cells were treated in vitro with 100 
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nM chaetocin for 24 hours and/or 1 µM imatinib for 48 hours before being injected 

intravenously into sublethally irradiated mice at a range of different cell numbers.  Once CML 

symptoms became apparent, the mice were euthanized using CO2 and the spleens removed for 

histological analysis and confirmation of BCR-ABL-GFP/Nup98-HOXA9-YFP expression by 

flow cytometry.  The amount of time required for the development of CML symptoms was then 

analyzed using L-Calc software to determine the LSC frequency of each treatment group. 

 Both chaetocin and imatinib treatment alone was found to decrease LSC frequency (1 in 

10,143 and 1 in 95,782, respectively) but the combination of these drugs caused a much more 

dramatic decrease in LSC frequency (1 in 293,628) (Table 4.1).  In addition, the combination of 

chaetocin and imatinib resulted in a significantly greater decrease in LSC frequency relative to 

imatinib treatment alone (p-value = 0.0034). 

 
 

Table 4.1:  Effects of chaetocin and imatinib on leukemia stem cell frequency. 
 

 

 

 

 

 

4.5 Effects of Chaetocin and Imatinib on Intracellular Reactive Oxygen Species 

 

Isham et al. have determined that chaetocin is capable of increasing intracellular levels of ROS 

to cytotoxic levels by inhibiting the central ROS mitigating enzyme, TrxR1 (2007).  It has also 

been established that expression of the constitutively active tyrosine kinase, BCR-ABL results 

in increased levels of intracellular ROS (Sattler et al., 2000) and that inhibition of c-Abl 

signaling by imatinib attenuates mitochondrial dysfunction and cell death in the cellular 

response to oxidative stress (Kumar et al., 2003).  In this study, effects of chaetocin and 

imatinib on intracellular ROS as well as the ability of imatinib to affect chaetocin-induced 

oxidative stress were investigated using an ROS-sensitive fluorescent dye. 

To determine effects of chaetocin and imatinib on intracellular ROS levels, CJ cells 

were treated with either 1 µM imatinib or 200 nM chaetocin for 24 hours and intracellular ROS 

were detected using dihydrorhodamine 6G (dR6G) and flow cytometry. 

Treatment LSC Frequency P-value 
Untreated Control 1 in 4,036  

Imatinib 1 in 95,782 0.0001 
Chaetocin 1 in 10,143 0.0998 

Chaetocin + Imatinib 1 in 293,628 0.0001 
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 dR6G is an uncharged, non-fluorescent ROS indicator that passively diffuses across 

cellular membranes where it is oxidized to cationic rhodamine 6G, which localizes to the 

mitochondria and exhibits orange fluorescence. 

 While imatinib had no apparent effect on intracellular ROS, chaetocin increased the 

levels of intracellular ROS (Fig. 4.29). 

 

 

 

Figure 4.29:  Effects of chaetocin and imatinib on intracellular reactive oxygen species in CJ 
cells.  Cells were treated with chaetocin or imatinib for 24 hrs and intracellular ROS levels were 
determined using dihydrorhodamine 6G and flow cytometry.  Results shown are representative 
of three independent measurements. 
 

4.6 The Synergy/Antagonism of Chaetocin and Imatinib 

 

The results presented in this thesis indicate that chaetocin and imatinib may function 

synergistically.  To investigate this possible synergism further and determine whether chaetocin 

and imatinib would function more effectively if added non-simultaneously, multiple drug dose-

effect experiments were performed using CJ cells and the results analyzed using CalcuSyn 

software. 
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 CalcuSyn is described as the definitive analyzer of combined drug effects due to its 

ability to automatically quantify phenomena such as synergism and antagonism by performing 

multiple drug dose-effect calculations using the Median Effect methods described by Chou and 

Talalay (1983).  More specifically, this software performs combination index (CI) analysis, 

which provides qualitative information on the nature of the drug interaction in the form of a 

numerical value.  CI values are calculated as described in the equation below (4.1), in which 

CA,x and CB,x are the concentrations of drug A and B used in combination to achieve x% drug 

effect, while ICx,A and ICx,B are the concentrations for single agents that achieve the same effect 

(Zhao et al., 2004). 

 

                                           (4.1) 

  

Each range of CI values has been designated a symbol that describes the nature of the 

observed drug interaction (Table 4.2).  The interaction between two drugs can be characterized 

as synergistic, additive, or antagonistic.  “Synergy” denotes a combined effect that is above 

what would be expected from the individual potencies and efficacies of each drug, whereas 

“additive” is used to describe a combination effect that is consistent with the individual drug 

potencies, and finally, “antagonistic” describes a combined effect that is less than the effects 

produced by each drug separately.  In brief, a CI of less than, equal to, or more than 1 indicates 

synergy, additivity, or antagonism, respectively (Zhao et al., 2004; Tallarida, 2011).   
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Table 4.2:  Combination Index (CI) Symbols. 
Range of CI Symbol Description 

<0.1 +++++ very strong synergism 
0.1-0.3 ++++ strong synergism 
0.3-0.7 +++ synergism 
0.7-0.85 ++ moderate synergism 
0.85-0.90 + slight synergism 
0.90-1.10 +/- nearly additive 
1.10-1.20 - slight antagonism 
1.20-1.45 -- moderate antagonism 
1.45-3.3 --- antagonism 
3.3-10 ---- strong antagonism 

>10 ----- very strong antagonism 
 

CJ cells were treated with a range of chaetocin and imatinib concentrations, with two 

concentrations above and two below the IC50 values of each, both alone and in combination.  In 

addition, this experiment was also performed using the same drug concentrations with the 

addition of chaetocin and imatinib staggered by 24 hours.  The percentage of cell death was 

determined after 48 hours using Trypan Blue exclusion assays and the results analyzed using 

CalcuSyn software.  The results of this experiment indicate that chaetocin and imatinib function 

in an additive manner when administered simultaneously.  Conversely, chaetocin and imatinib 

were found to function antagonistically when chaetocin was administered before imatinib and 

vice versa.  In addition, chaetocin and imatinib were found to function more antagonistically 

when imatinib was administered before chaetocin (Table 4.3). 
 
 

Table 4.3:  Drug combination analysis of chaetocin and imatinib in CJ cells. 
                           CI values ± S.D. 

 ED50 ED75 ED90 
Simultaneous Addition 0.968 ± 0.42 0.869 ± 0.34 0.816 ± 0.30 

Chaetocin before Imatinib 2.195 ± 0.62 1.841 ± 0.50 1.615 ± 0.45 
Imatinib before Chaetocin 2.951 ± 0.61 2.869 ± 0.62 2.917 ± 0.71 

 

 

 Another method used to evaluate the nature of interaction between two drugs is 

isobologram analysis in which the concentrations of each drug required to produce a defined 

single agent effect (e.g., IC50) when used as single agents are placed on the x and y axes of a 

two-coordinate plot and a line is drawn between these two points; this line is known as the line 

of additivity.  A coordinate representing the concentrations of the two drugs used in 
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combination required to obtain the same effect are then placed on the plot and the location of 

this point relative to the line of additivity indicates the nature of the interaction between these 

drugs with synergy, additivity, or antagonism being indicated by a point located below, on, or 

above the line of additivity, respectively (Zhao et al., 2004). 

 CalcuSyn software was used to generate isobolograms describing the nature of the 

interaction between chaetocin and imatinib when these drugs were administered 

simultaneously, when chaetocin was administered 24 hours before imatinib, and when imatinib 

was administered 24 hours after chaetocin.  The results of these analyses show that chaetocin 

and imatinib function synergistically when administered simultaneously and that these drugs 

function antagonistically when chaetocin is administered before imatinib and vice versa.  In 

addition, this data shows that chaetocin and imatinib function more antagonistically when 

imatinib is administered before chaetocin (Fig. 4.30). 
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Figure 4.30:  Isobologram analysis of the interaction between chaetocin and imatinib in CJ 
cells.  Cells were treated with chaetocin and imatinib for 48 hrs either (a) simultaneously, (b) 
with chaetocin 24 hrs before the addition of imatinib, or (c) with imatinib 24 hrs before the 
addition of chaetocin.  Cell viabilities were determined using Trypan Blue exclusion assays and 
the results analyzed using CalcuSyn software.  Each diagonal line represents the line of 
additivity at the indicated dose and the data points indicate synergy, additivity, or antagonism 
by their location below, on, or above the line, respectively. 
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5. DISCUSSION 
 

In this study, the effectiveness of chaetocin against leukemia stem cells (LSCs) was 

investigated using in vitro and in vivo murine chronic myelogenous leukemia (CML) models.  

The results of this study indicate that chaetocin and imatinib function synergistically in 

decreasing cell viability, inducing apoptosis, and inhibiting the colony formation of CML cells 

in vitro, that chaetocin in combination with imatinib reduces LSC frequency in vivo, that 

chaetocin increases intracellular reactive oxygen species levels, and that chaetocin does not 

disrupt the proliferation and differentiation of normal murine hematopoietic stem cells (HSCs).  

Surprisingly, BMSFs enhanced the activity of chaetocin while they reversed the activity of 

imatinib.  These findings strongly suggest that chaetocin could potentially be used as a 

complement to standard tyrosine kinase inhibitor (TKI) therapy for the treatment of CML and 

may be especially effective against LSCs within the bone marrow niche. 

 

5.1 Chaetocin and Imatinib Decrease Cell Viability, Induce Apoptosis, and Inhibit the Colony   

      Formation of CML Cells In Vitro  

 

The first in vitro CML model used in this study to characterize the activity of chaetocin was 

TonB210, a murine hematopoietic cell line with doxycycline-inducible BCR-ABL expression.  

In the absence of IL-3, this cell line shows an absolute dependence on doxycycline induced 

BCR-ABL expression for cell survival and proliferation (Klucher et al., 1998). 

In TonB210 cells, imatinib only inhibited viability when BCR-ABL was expressed (Fig. 

4.1 and 4.3), whereas chaetocin inhibited cell viability in the presence or absence of BCR-ABL 

expression (Fig. 4.2 and 4.4). When TonB210 cells were treated with both chaetocin and 

imatinib, the drugs’ effects were additive in decreasing viability at the IC50 concentrations.  At 

concentrations above IC50 values, the doses were too toxic to determine whether the drugs were 

acting in a synergistic manner (Fig. 4.6). 

Similar results were also observed for effects of chaetocin and imatinib on the induction 

of apoptosis in TonB210 cells. Chaetocin induced apoptosis in TonB210 cells, both with and 

without BCR-ABL expression, while imatinib initiated apoptosis only in the presence of BCR-

ABL.  Co-treatment of TonB210 cells with chaetocin and imatinib resulted in a greater 

percentage of cells undergoing apoptosis when BCR-ABL was expressed and imatinib had no 
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effect on the ability of chaetocin to induce apoptosis in cells not expressing BCR-ABL (Fig. 4.7 

and 4.8). 

Imatinib and chaetocin had a dramatic effect on the number of colonies formed by 

TonB210 cells expressing BCR-ABL and, when these drugs were combined, almost no 

colonies formed.  In addition, imatinib had no effect on the proliferation of TonB210 cells not 

expressing BCR-ABL and imatinib did not affect the ability of chaetocin to inhibit the 

proliferation of these cells (Fig. 4.9 and 4.10).  Since colony formation is a measure of stem cell 

proliferation and differentiation, these results indicate that chaetocin may have the ability to 

target the CML stem cell population. 

The second in vitro CML model used in this study to characterize the effects of 

chaetocin was CJ cells, a murine model of blast crisis CML created through the modification of 

primitive normal hematopoietic cells such that they express both the BCR/ABL and 

Nup98/HOXA9 translocation products (Neering et al., 2007).  As with TonB210 cells, 

chaetocin and imatinib decreased cell viability, induced apoptosis, and inhibited colony 

formation. 

 In CJ cells treated with either chaetocin or imatinib alone, viability was inhibited and 

when these cells were treated with chaetocin and imatinib simultaneously, the effects of these 

drugs were found to function in an additive manner at both the IC50 and IC90 concentrations 

(Fig. 4.19). 

In addition, we sought to determine whether the cell death observed after drug treatment 

was due to the induction of apoptosis.  Our results show that both chaetocin and imatinib 

initiate apoptosis in CJ cells and that a greater percentage of cells are found to be apoptotic 

when these drugs are used in combination (Fig. 4.20). 

Finally, the effects of chaetocin and imatinib on the proliferation and differentiation of 

CJ cells were investigated.  Both chaetocin and imatinib severely inhibited the colony forming 

ability of these cells and when these drugs were used in combination, almost no proliferation 

occurred (Fig. 4.21).  This finding further supports our hypothesis that chaetocin is capable of 

targeting CML stem cells in combination with imatinib. 

To determine if chaetocin and imatinib function synergistically and to investigate if 

their synergy could be enhanced by adding each drug non-simultaneously, multiple drug dose-

effect experiments were performed using CJ cells.  The results of these experiments showed 
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that chaetocin and imatinib function synergistically when CJ cells are treated with these drugs 

simultaneously.  Conversely, chaetocin and imatinib were found to function antagonistically 

when chaetocin was added 24 hours after the addition of imatinib and vice versa (Table 4.3 and 

Fig. 4.30). 

 It has been established that cancer cells are under oxidative stress due to an increased 

production of ROS (Szatrovski et al., 1991).  More specifically, transformation of 

hematopoietic cells by the oncogenic tyrosine kinase, BCR-ABL has been associated with a 

chronic increase in intracellular ROS (Sattler et al., 2000).  Since it has been established that 

the antimyeloma activity of chaetocin strongly relies on its ability to impose cytotoxic levels of 

oxidative stress (Isham et al., 2007), one explanation for why these drugs function 

antagonistically when cells are treated with imatinib before chaetocin could be that since 

imatinib treatment reduces the levels of intracellular ROS through the inhibition of BCR-ABL 

(Landry et al., 2013), imatinib likely counteracts the cytotoxic effects of chaetocin. 

These results indicate that if chaetocin is to be used as a complement to TKI treatment, 

it is important that chaetocin be administered at the same time as the TKI in order to maximize 

the effectiveness of chaetocin against LSCs. 

To investigate the effects of chaetocin and imatinib on intracellular ROS levels, CJ cells 

were treated with chaetocin or imatinib and ROS were detected using a fluorescent ROS 

indicator and flow cytometry.  The results of this experiment showed that imatinib had no effect 

on the intracellular levels of ROS in these cells while chaetocin caused a slight increase (Fig. 

4.29). 

 This finding supports the theory proposed by Isham et al. which states that chaetocin 

increases intracellular ROS levels by acting as a competitive inhibitor of thioredoxin reductase-

1 (TrxR1), a central ROS-mitigating enzyme (2007).  However, these results do not support the 

finding by others that inhibition of BCR-ABL by imatinib decreases intracellular ROS levels 

(Landry et al., 2013). 

In summary, these results show that chaetocin is capable of inducing apoptosis and 

severely limiting the proliferation and differentiation of two different in vitro CML models, that 

this activity is enhanced by co-treatment with imatinib, and that chaetocin and imatinib function 

synergistically when cells are treated with these drugs simultaneously, while these drugs act 

antagonistically when cells are treated with imatinib before chaetocin and vice versa.   
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5.2 Bone Marrow Stromal Factors Potentiate the Anti-Leukemia Stem Cell Activity of   

      Chaetocin 

 

To investigate the effects of BMSFs on the activity of chaetocin and imatinib in vitro, TonB210 

and CJ cells were cultured in the medium of M2-10B4 cells for several hours before the 

addition of these drugs.  Since M2-10B4 cells are known to secrete BMSFs, their culture 

medium can be used to simulate the environment of the bone marrow niche (Sutherland et al., 

1991).  As in the previous section, the effects of chaetocin and imatinib on cell viability, 

induction of apoptosis, and inhibition of colony formation were then examined. 

 BMSFs were found to effectively inhibit the ability of imatinib to reduce cell viability 

but potentiated the activity of chaetocin to reduce cell viability in both TonB210 and CJ cells.  

In addition, chaetocin and imatinib were found to produce a greater amount of cell death in 

combination, regardless of the presence of BMSFs (Fig. 4.11, 4.12, and 4.22).  

While BMSFs did not have a significant effect on the ability of imatinib to induce 

apoptosis in TonB210 cells, they did significantly inhibit the induction of apoptosis by imatinib 

in CJ cells and significantly potentiated the ability of chaetocin to induce apoptosis in both 

TonB210 and CJ cells.  In addition, chaetocin and imatinib were found to produce a greater 

percentage of apoptotic cells in combination in both TonB210 and CJ cells, regardless of the 

presence of BMSFs (Fig. 4.13, 4.14, and 4.23). 

Finally, while BMSFs did not significantly potentiate the ability of chaetocin to inhibit 

the colony formation of TonB210 cells, they did significantly potentiate the ability of chaetocin 

to inhibit the colony formation of CJ cells and significantly reduced the ability of imatinib to 

inhibit the colony formation of both TonB210 and CJ cells.  In addition, chaetocin and imatinib 

in combination were found to dramatically inhibit the proliferation and differentiation of both 

TonB210 and CJ cells, regardless of the presence of BMSFs (Fig. 4.15, 4.16, and 4.24). 

 In summary, BMSFs were found to effectively inhibit the ability of imatinib to induce 

apoptosis and inhibit colony formation in TonB210 and CJ cells, while BMSFs were found to 

potentiate the activity of chaetocin.  In addition, the potency of chaetocin was found to be 

increased by imatinib, regardless of BMSF pretreatment.  This suggests that these drugs 

function synergistically and that the presence of chaetocin overcomes the protective effects of 

BMSFs, allowing imatinib to function more effectively. 
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 These findings support the theory that LSCs are not reliant on BCR-ABL for survival in 

the presence of BMSFs (Corbin et al., 2011) and that BMSFs effectively lead to imatinib 

resistance (Bewry et al., 2008).  Importantly, these findings also show that BMSFs do not 

protect LSCs from the toxic effects of chaetocin and appear to potentiate its cytotoxic effects, 

suggesting that chaetocin is capable of targeting LSCs within the protective confines of the 

bone marrow niche. 

 

5.3 Chaetocin does not disrupt the Proliferation and Differentiation of Normal Murine  

       Hematopoietic Stem Cells In Vitro 

 

In order to ensure that normal hematopoiesis will not be affected by chaetocin treatment, 

normal hematopoietic stem cells (HSCs) were isolated from the bone marrow of healthy mice 

by lineage depletion and treated with chaetocin and/or imatinib in vitro before evaluating the 

effects of chaetocin on cell viability, induction of apoptosis, and colony formation.   

The results presented in this study show that chaetocin has little to no effect on the 

viability of normal murine HSCs (Fig. 4.25).  Our finding that only a small percentage of cells 

were apoptotic after treatment with chaetocin and imatinib (Fig. 4.26) further supports this 

result.  Importantly, our results showed that chaetocin, both alone and in combination with 

imatinib, had no significant effect on the proliferation and differentiation of normal HSCs (Fig. 

4.27).  These findings suggest that chaetocin will not affect normal hematopoiesis in vivo and 

could therefore potentially serve as a safe and effective treatment for CML in combination with 

imatinib. 

 

5.4 Chaetocin in Combination with Imatinib Reduces Leukemia Stem Cell Frequency In Vivo 

 

The effects of chaetocin, both alone and in combination with imatinib, on CML disease latency 

were investigated by injecting chaetocin and/or imatinib treated CJ cells intravenously into 

sublethally irradiated mice, monitoring for symptoms of illness, and euthanizing the mice once 

symptoms of CML became apparent.  The development of CML was confirmed by histological 

analysis of spleen tissue and detection of BCR-ABL-GFP/Nup98-HOXA9-YFP expression. 

 The results presented in this study show that mice injected with CJ cells treated with 
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chaetocin and/or imatinib in vitro survived significantly longer than mice injected with 

untreated CJ cells (Fig. 4.28).  This finding indicates that chaetocin effectively delays the onset 

of CML, especially in combination with imatinib. 

 In addition, limiting dilution analysis (LDA) was performed to determine the effect of 

chaetocin on LSC frequency in vivo, both alone and in combination with imatinib.  The results 

of this experiment showed that chaetocin in combination with imatinib caused a significant and 

dramatic decrease in LSC frequency, compared to both untreated cells and cells treated with 

imatinib alone (Table 4.1).  This finding indicates that chaetocin and imatinib function 

synergistically in effectively targeting LSCs and further supports our claim that chaetocin could 

serve as a valuable complement to standard TKI therapy. 

 

5.5 Significance and Future Directions 

 

The results of this study indicate that chaetocin and imatinib function synergistically when 

administered simultaneously to decrease cell viability, induce apoptosis, and inhibit the 

proliferation and differentiation of two different murine CML models in vitro, that chaetocin in 

combination with imatinib reduces LSC frequency in vivo, that chaetocin increases intracellular 

ROS levels in CML cells, and that chaetocin does not disrupt the proliferation and 

differentiation of normal HSCs, indicating that normal hematopoiesis will be unaffected by 

chaetocin in vivo.  The most intriguing finding in this study was that while BMSFs diminish the 

effectiveness of imatinib against CML cells, they appear to potentiate the cytotoxic activity of 

chaetocin, indicating that chaetocin may be capable of targeting LSCs within the bone marrow 

niche, which are thought to be responsible for CML disease relapse. 

 Despite the insights that the results of this study have provided, many questions remain 

regarding the cytotoxic activity of chaetocin.  For example, it has been established that 

chaetocin inhibits TrxR1 but other molecular targets of chaetocin remain unclear and it is 

possible that chaetocin inhibits other cellular reductases.  To address this question, a 

comprehensive study of the effects of chaetocin across a wider spectrum of cellular reductases 

should be performed to determine if chaetocin affects other antioxidant systems such as 

glutathione, catalase, and superoxide dismutases. 

 Another interesting study that should be performed is the investigation of the synergy or 
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antagonism between chaetocin and other TKIs, such as dasatinib and nilotinib.  As was 

performed in this study, in vitro CML models can be used to test these different drug 

combinations.  Since these TKIs share a molecular target with imatinib, it is likely that they will 

also function synergistically with chaetocin.    

 Furthermore, the potentiation of the activity of chaetocin by BMSFs should be 

investigated.  It is possible that BMSFs are enhancing the ability of chaetocin to increase ROS 

to cytotoxic levels and the pathways through which this may be occurring should be examined.  

One approach to this question would be to first invistigate the effects of individual cytokines, 

such as IL-6 and SCF, on the activity of chaetocin using in vitro CML models and monitoring 

their effects on the ability of chaetocin to decrease cell viability, induce apoptosis, and inhibit 

the proliferation and differentiation of CML cells. 

 Finally, further in vivo chaetocin experiments should be performed using murine CML 

models.  For example, the oral or intraperitoneal administration of chaetocin could be tested to 

further investigate the in vivo efficacy of chaetocin against LSCs, both alone and in 

combination with TKIs. 
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