Relationships Among Crop Yield, Protein, Soil Properties and Response to Nitrogen Fertilizer Application in an Undulating Landscape in South Central Saskatchewan

Soils and Crops March 11, 2014 Elliott Hildebrand Dept. Soil Science University of Saskatchewan

Context

RELATIONSHIP OF NITRATE ACCUMULATION TO YIELD RESPONSE OF WHEAT IN SOME SASKATCHEWAN SOILS¹

F. D. Cook, F. G. WARDER AND J. L. DOUGHTY

Canada Department of Agriculture, Swift Current, Saskatchewan

[Received for publication October 6, 1956]

ABSTRACT

The capacity of Saskatchewan soils to accumulate nitrate, as determined by a laboratory procedure, was investigated as a method for evaluating the response of wheat to nitrogenous fertilizers. The correlation coefficient between the field yield ratios (which are a measure of the response to nitrogen) and nitrate accumulation for 31 stubble fields was 0.846** and for 30 fallow soils was 0.830**. Greenhouse experiments with soil samples from 31 stubble fields showed a high correlation (0.874**) between nitrate accumulation and nitrogen uptake by wheat plants during a 30-day growth period.

It is considered that a significant increase from the application of nitrogenous fertilizers can be expected when the nitrate accumulation value is below 50 p.p.m. N in soil from stubble fields or 40 p.p.m. N in fallowed soils.

Context

Precision Agriculture

- Variable Rate (VR) N Fertilizer Application
 - □ Does it work?
- A R's N Managment

 Source
 Rate

 Time
 Place

Context

In practice:

Most farmers apply the same fertilizer rate across a whole field regardless of variability in yield potential

□ Why?

- Efficient means are needed to create a variable application map
- Cost to ID, sample and predict crop response in separate zones
- Uncertainty surrounding benefits to be achieved

Challenge:

ID efficient reliable mechanisms to make VR map

Research Question

Will protein concentration of crops help delineate fertilizer management zones?

Research Question

Yield

Can establish how much N it takes to produce a target yield

Protein

Reflects balance of N to other yield limitations

Typical Yield vs Protein Curve

(Engel et al., 1999)

Study Objectives

Summer 2012

Typical southern Saskatchewan hummocky farm field

Determine relationships between:

- Crop yield
- Crop protein
- Soil landscape properties
 - Salinity
 - Organic matter
 - 🗅 pH
 - Soil nutrients

Study Objectives

- Summer 2013
- Use these relationships to:
 - 1) develop variable nitrogen rate prescription
 - 2) compare performance to constant rate
 - Side by side comparison

SW 31-20-03 W3 (2012)

Relationships with Wheat

	Yield		Protein	
	(kg/ha)	(bu/ac)	(%)	
Mean	1851	28	13.2	
Min	882	13	10.5	
Max	2554	39	14.4	

Soil Property	Yield		Pro	Protein	
	R ²	p-value	R ²	p-value	
OC 0-30cm (%)	0.74	0.001**			
OC 30-60cm (%)			-0.53	0.04*	
pH 0-30cm					
pH 30-60cm			0.51	0.05*	
EC 0-30cm (μS cm ⁻¹)	-0.53	0.03*	-0.56	0.02*	
EC 30-60cm (µS cm ⁻¹)					

Relationships with Canola

	Yield		Protein	
	(kg/ha)	(bu/ac)	(%)	
Mean	1847	37	16.8	
Min	1143	23	14.2	
Max	2342	47	20.6	

Soil Property	Yield		Protein	
	R ²	p-value	R ²	p-value
OC 0-30cm (%)			0.65	0.007**
OC 30-60cm (%)				
pH 0-30cm				
pH 30-60cm				
EC 0-30cm (μS cm ⁻¹)				
EC 30-60cm (µS cm ⁻¹)				

Relationships with Peas

	Yie	Protein		
	(kg/ha)	(bu/ac)	(%)	
Mean	2198	33	16.5	
Min	839	23	14.5	
Max	3122	47	17.7	

Soil Property	Yield		Protein	
	R ²	p-value	R ²	p-value
OC 0-30cm (%)				
OC 30-60cm (%)				
pH 0-30cm				
pH 30-60cm				
EC 0-30cm (μS cm ⁻¹)	-0.68	0.004**		
EC 30-60cm (µS cm ⁻¹)	-0.51	0.04*		

Field Season Two

SW 31-20-03 W3 (2013)

Canola on Wheat N Rates

4 Varied N Rates (kg/ha actual)

44 (2)
51 (7)
76 (6)
84 (1)
Control
60

Wheat on Canola N Rates

4 Varied N Rates (kg/ha actual)

0 (3)
40 (4)
60 (5)
70 (4)
Control
50

Wheat on Pea N Rates

3 Varied N Rates (kg/ha actual)

40 (7)
60 (6)
70 (3)
Control
50

Harvest 2013 Results

Canola on Wheat Yield (kg/ha)

Wheat on Canola Yield (kg/ha)

Wheat on Pea Yield (kg/ha)

Season 2 Conclusions to Date

- Average yield in varied N rate and constant N rate were similar.
- Since similar total amounts of N fertilizer were used in each, no difference in economic return.
 Same results for each crop
- Prescription approach needs refining?

What can be improved?

Does VR N Application work?

Not quite yet!

Acknowledgements

- Supervisor: Dr Jeff Schoenau
- Committee members
- Ross Welford- Ag Engineering- U of S
 - Software
- 5C21 Lab Group

Thank You!

Questions?

References

- Engel, R., Long, D., Carlson, G., and Meier, C. 1999. Method for precision nitrogen management in spring wheat: I. Fundamental relationships. Precision Agriculture. 1. 327-338.
- Ayres, K.W., D.F. Acton, J.G. Ellis. The soils of the Swift Current Map Area 72J. Saskatchewan Institute of Pedology. 1985. Extension Division, University of Saskatchewan. Extension Publication 481.