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Abstract 

 

 Hatchery supplementation of declining fish populations is used for increasing year-class 

strength, particularly when fish are released with knowledge of local predators. The ability of 

young-of-the-year lake sturgeon (Acipenser fulvescens) to avoid predation, as well as their 

vulnerability to predation, remains undocumented. The objective of my thesis was to determine: 

1) whether hatchery-reared, predator-naive juvenile sturgeon would respond to alarm cues from 

injured conspecific cues, a reliable indicator of predation risk in other fishes; and 2) if sturgeon 

would learn to identify unknown predators through a Pavlovian-like conditioning with conspecific 

alarm cues. Releaser-induced recognition learning is a variant of Pavlovian learning in which 

recognition of a previously neutral stimulus is acquired through the experience of pairing a 

behaviourally active releasing stimulus and a novel stimulus. Sturgeon were initially conditioned 

using a behaviourally active stimulus of sturgeon alarm cue, paired with a behaviourally neutral 

stimulus of novel northern pike (Esox lucius) odour, or were pseudo-conditioned with distilled 

water paired with pike odour. Following conditioning, sturgeon were tested for recognition of the 

predator odour 24 hours later. The first population of fish (Rainy River) showed a dramatic 

antipredator response to alarm cues from the skin of conspecifics, but failed to exhibit learning of 

a novel predator through conditioning with alarm cues obtained from the skin of conspecifics. 

However, when Rainy River fish were conditioned with alarm cues from the whole body of 

conspecifics, they showed strong learning of the predator. Conditioning Wolf River fish to 

recognize predators with whole body extract had no effect on response to predator odours. 

However, when the fish were conditioned multiple times there was evidence of predator learning. 

These results highlight potential opportunities and limitation to life-skill training of artificially 

reared sturgeon for future conservation initiatives.  
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Chapter 1: Introduction 

 

1.1. The lake sturgeon (Acipenser fulvescens): ecology, population status and conservation  

 

1.1.1 Sturgeon ecology and life history 

 

Lake sturgeon (Acipenser fulvescens) evolved between 200 and 300 million years ago 

during the lower Jurassic period and have since remained relatively similar morphologically, and 

likely behaviourally and ecologically (Sulak and Randall 2002). They belong to the order  

Acipensiformes, and the genera Acipenser, along with 15 other extant species of sturgeon. The 

life history of the lake sturgeon is characterized by high fecundity, late maturation and high early 

mortality in eggs and early life stages (Winemiller and Rose 1992). Lake sturgeon in the Wolf 

River (Wisconsin, USA) become sexually mature as late as 20–25 years in females, while males 

first spawn at age 12–15 (Bruch et al 2001). Age to maturity is later in northernmost populations 

with males maturing by age 19, and females maturing between 22–26 years old in the South 

Saskatchewan River (McLeod et al 1999). The delay in maturation in sturgeon is due to a 

disproportionate amount of energy allocated towards somatic growth during the juvenile stage 

(Beamish et al 1996), thus maximising the size at maturity and limiting mortality to the earliest 

life stages (Peterson et al 2007). Sturgeon spawn periodically, with females spawning every 3–5 

years and males spawning every other year (Bruch et al 2001). Despite spawning periodicity, the 

longevity of lake sturgeon, with a life-span greater than 50 years (Birstein 1993), increases the 

likelihood that they will contribute to at least one spawning event that results in successful 

recruitment (Duong et al 2013). 
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Optimal spawning habitats for sturgeon are typically flowing streams and rivers with 

clean rock or cobble substrate to allow for proper egg adhesion as well as interstitial space for 

newly hatched larval sturgeon (Bruch and Binkowski 2002). Fecundity of sturgeon in the South 

Saskatchewan River has a reported range of 117,450 (25 years of age; 15.5 kg) to 607,400 eggs 

(51 years of age; 45.5 kg) (McLeod et al 1999). Sturgeon are aggregate spawners, and do not 

participate in parental care or nest preparation, thus larval lake sturgeon experience extremely 

high mortality (Duong et al 2011). While lake sturgeon populations are thought to be sustained 

by infrequent episodes of highly successful recruitment under environmentally favourable 

conditions (Bruch and Binkowski 2002), recruitment failure is a significant cause for the decline 

of many North American sturgeon species (Jager et al 2001). Low water flows affect the survival 

of embryos as they experience low oxygen concentrations, variable water temperatures, as well 

as desiccation. Juvenile sturgeon may be trapped in shallow pools and subject to temperature and 

oxygen stress (Ferguson and Duckworth 1997).  

Life histories of most populations of sturgeon are poorly studied (Kynard et al 2010), and 

in particular, a knowledge gap exists for juvenile life stages (Secor et al 2002). Specifically, 

early life stage mortality, movement and distribution, and the effects of predation on recruitment 

of age-0 sturgeon remain unclear (Caroffino 2009). It is imperative to identify life history 

information for juvenile sturgeon as it is thought that juvenile fish measuring less than 600 mm 

have the most significant influence over population growth (Gross et al 2002; Barth et al 2009). 

One common cause of mortality of fish in early life stages is predation (Gadomski and Parsley 

2005a), which may also be amplified in low water conditions (Ferguson and Duckworth 1997). 

Early life mortality can play a major role in shaping population dynamics of a species (Houde 

1987), however, early life stages of sturgeon are generally very difficult to sample in situ (Secor 
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et al 2002), and little empirical information exists regarding natural sturgeon growth, mortality 

and survival (Secor et al 2002). Research on the vulnerability of sturgeon larvae and young 

juveniles to predation is lacking (Gadomski and Parsley 2005a) but it is generally accepted that 

natural mortality of sturgeon is mostly limited to younger life stages (Peterson et al 2006).   

1.1.2 Population status 

Of the 27 species of paddlefish and sturgeons recognized worldwide, most are currently 

viewed as either endangered, threatened or functionally extirpated (Birstein 1993). All sturgeon 

species are now listed as endangered in part of their ranges, and most in all of their ranges 

(Birstein et al 1997; Billard and Lecointre 2001). Lake sturgeon are widespread in Canada and 

are found from Alberta to Quebec (Ferguson and Duckworth 1997). Historically, lake sturgeon 

were harvested for Aboriginal use, and later by commercial fisheries for caviar, meat, and 

isinglass (Harkness and Dymond 1961). High initial yields quickly and permanently declined, 

which led to the closure of many North American sturgeon fisheries (Ferguson and Duckworth 

1997).  

In addition to overexploitation, habitat alteration is a key component in the decline of 

sturgeon populations. The construction of hydroelectric dams contributed significantly to the loss 

of habitat as well as population fragmentation. Dams were often constructed at prime sturgeon 

spawning grounds, and water fluctuations due to hydroelectric generation may prevent optimal 

flows required for successful recruitment (Ferguson and Duckworth 1997). Hard-bottom and 

structured habitats are critical as spawning substrates (Parsley et al 1993), and successful 

spawning events are dependent upon flow and temperature conditions (Jager et al 2001). Thus, 

variable flow regimes have accounted for a lack of egg adhesion sites and physical cover for 

larvae (reviewed by Coutant 2004; McAdams, Walters, Nistor 2005). Dredging, road 
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construction, and floodplain abstraction have also degraded critical sturgeon habitat as well as 

the water quality necessary for recruitment (Ferguson and Duckworth 1997). Sturgeon larvae and 

eggs are susceptible to suffocation by the additional sediment, and the benthic community, which 

is the primary food source of juvenile lake sturgeon, may be disrupted by habitat degradation due 

to industrial activities (Caroffino 2009; Kempinger 1996).  

Similar to other North American populations, lake sturgeon in the North and South 

Saskatchewan Rivers have been subjected to population-threatening habitat alteration and 

overharvesting (North/South Consultants Inc. 2002). Commercial harvests during the early 1900s 

marketed as much as 56,000 kg/year in the early 1900s but the harvest quickly declined to 6000 

kg/year by the 1930s, declining further to 1000 kg/year during the 1990s. Index fishing programs 

implemented in 1996 by the Saskatchewan River Management Board revealed a dangerously low 

population of 1300 fish, 8 kg and over that was still subject to overharvesting (North/South 

Consultants Inc. 2002). The construction of hydroelectric dams on the Saskatchewan and South 

Saskatchewan Rivers during the 1960s fragmented the sturgeon into several sub-populations 

(McLeod, et al 1999). A fishing moratorium on commercial and sport fishing harvests has been 

enforced in Saskatchewan since 1996 (Peterson et al 2007) and the Committee on the Status of 

Endangered Wildlife in Canada (COSEWIC) has listed the Saskatchewan River populations as 

endangered (2006).   

1.1.3 Conservation efforts and stocking programs 

 

With sturgeon in danger of extirpation world-wide (Birstein et al 1997), harvesting bans 

on caviar and sturgeon meat fisheries, in addition to sport-fishing bans, have been imposed in 

many regions to protect sturgeon populations from extinction. However, these management 

actions have been futile in slowing the decline of these species. The life history attributes of 
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sturgeon present a particular challenge to conservation managers. Traits such as late age-at-

maturity, infrequent periodic reproduction, and long life expectancy make population 

assessments challenging. Regional harvest management becomes difficult in highly migratory 

sturgeon populations, as certain populations may migrate as much as 500 km over their life cycle 

(DeVore et al 1999).  

The global decline of sturgeon has caused the development of culture methods for 

conservation stocking (Doroshov 1985) as well as for the commercial sale of meat and caviar. 

Conservation stocking for lake sturgeon has been employed in some regions to reintroduce or 

rehabilitate sturgeon to create self-sustaining populations in their native ranges. Evaluations of 

hatchery-produced sturgeon indicate that they can survive to adulthood and contribute to 

fisheries and spawning populations, particularly in depressed populations (Secor et al 2000). 

However, there is no guarantee that hatchery programs will always initiate natural recovery. As 

wild brood stocks are used for hatchery programs, a problem of depressed natural populations 

means that the number of breeding females is limited. Thus, program managers need to be able 

to minimize inbreeding and artificial selection, a particular challenge with slow-maturing, long-

lived species. Another challenge exists in the inadequate understanding of how artificial rearing 

environments affect the post-release behaviour of these fish (Secor et al 2002; Crossman et al 

2011). Lake sturgeon culture has typically been performed using water sources that are different 

than the natal river or the river in which the sturgeon will be placed, which poses a problem as 

this species that is known to imprint and return to natal rivers (DeHaan et al 2006; Crossman et 

al 2011,2014). A greater understanding of habitat requirements, early life history traits as well as 

population biology, is essential in order for rehabilitation stocking to be an effective recovery 

strategy. 
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On account of their life history characteristics, lake sturgeon stocking programs are 

difficult to assess in the long-term, and only two published studies have evaluated the efficacy of 

stocking. A report on the St. Louis River, Lake Superior, developed from 1985 through 2007, 

determined that the majority of stocked sturgeon did not migrate to other areas of the lake from 

where they were stocked (Schram 2007). Additional work by Drauch and Rhodes (2007) 

evaluated the genetic composition of supplemented lake sturgeon populations, and emphasized 

the importance of multi-year stocking strategies to prevent the loss of genetic diversity from the 

source to introduced populations. Assessment of lake sturgeon stocking programs require a 

minimum of 15–20 years for comprehensive program results, thus many programs have not been 

adequately evaluated and rely on intermittent, short-term or anecdotal indicators of program 

success. 

1.2. Antipredator defences 

 

Predation is a major selective force that can affect the morphological and behavioural 

characteristics of animals (Lima and Dill 1990). While in this interaction a predator can bear the 

cost of losing a meal, the prey bears the disproportionate cost of losing its life (Dawkins and 

Krebs 1979). Thus, prey animals are under pressure to respond to the threat of predation. Prey 

may adapt by selecting safe habitats for reproduction and foraging, and may also develop social 

behaviour, such as shoaling, to avoid predation. They may also adapt through learning how to 

identify predators and how to assess the risk that a particular predator may pose. 

Natural environments are dynamic, and the risk of predation is temporally and spatially 

variable throughout the lifetime of a prey animal. While prey can develop specific evolutionary 

phenotypes, a single defensive phenotype in prey may not always be an optimal strategy under 

variable threat levels (Dewitt 1998). Strategies and traits to improve survival can be quite costly 
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to an organism, thus phenotypic plasticity provides an adaptive strategy for responding to threats 

in an environment (Dewitt 1998). Morphological, life-history, and behavioural traits can all be 

influenced by the threat of predation (Brown et al 2013b). 

Prey animals can determine risk by using a variety of visual, chemical and mechanical 

cues, but much of the work in aquatic systems has focussed on chemosensory information, 

specifically semiochemicals, detected by prey. There are three classes of semiochemicals: 

kairomones, disturbance cues, and damage-released alarm cues (Ferrari et al 2010a). Kairomones 

are cues emitted by one species that are detected by another, such as the scent of predators 

detected by prey. Kairomones are adaptively favourable to the receiver but not the sender, and 

enable prey to detect and avoid potential predators (Ferrari et al 2010a). Disturbance cues may 

be emitted in the form of urinary ammonia from disturbed or startled prey (Kiesecker et al 1999; 

Brown and Vavrek 2003). Finally, damage-released alarm cues are derived from epidermal club 

cells and are detectable by conspecifics when skin is damaged. Karl von Frisch discovered that a 

fright reaction can be elicited in European minnows (Phoxinus phoxinus) when they are exposed 

to cues from injured conspecifics (von Frisch 1941). These substances advertise a foraging 

predator and are a reliable indicator of risk. Damage-released alarm cues have been recognized 

in a wide range of fish species, including ostariophysans, salmonids, gobies, poeciliids, percids, 

cottids, cichlids and centrarchids (Chivers and Smith 1998; Brown 2003). Upon detection by 

conspecifics, damage-released chemical alarm cues elicit dramatic changes in morphology, life-

history and behaviour (Ferrari et al 2010a). At the time I began my thesis work, it was not known 

if sturgeon possessed or responded to damage-released chemical alarm cues that warn 

conspecifics of danger. 
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1.2.1 Morphological adaptation 

 

To cope with unknown threats, some prey species have defensive features such as spines, 

armour, or other physical adaptations that have acquired over evolutionary time. These 

morphological adaptations, while costly to the organism, protect prey in environments that 

contain a predictably high amount of risk of predation (Brown et al 2013b). Morphological 

changes, that provide defense against predation, can also be induced by predators in a number of 

aquatic prey (Kusch 1993; Lass and Spaak 2003; Ferrari et al 2010a). For example, crucian carp 

(Carassius carassius) may alter their depth-to-length ratio, growing deeper in response to cues 

from piscivorous northern pike (Brönmark & Miner 1992; Brönmark & Pettersson 1994; Nilsson 

et al. 1995). Increasing the depth-to-length ratio is an effective defence against gape limited 

predators. Shell morphologies of snails are likewise affected by predation cues. The 

morphological response can even be modulated by specific types of predators that threaten them, 

with snails growing narrow apertures in response to crayfish feeding cues, and wider apertures in 

response to predacious water bugs (Hoverman et al 2005).  

Adult sturgeon are large armoured fish with five rows of large, bony scutes (2 lateral, 2 

lateroventral and 1 dorsal), as well as a subopercle bone over the gills that may provide 

morphological defense against predation. This morphological defense in sturgeon likely evolved 

under Mesozoic Era conditions with predation pressure from large piscivores (Sulak and Randall 

2002). Larval sturgeon lack protective scutes and participate in drifting behaviour that may make 

them more susceptible to predation, however, documentation of predation of larval fish is 

difficult due to small body size and rapid digestion (Kim and DeVries 2001; Caroffino et al 

2010). Sturgeon develop scutes during the larval stage at approximately 25 mm total length 
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(Gadomski and Parsley 2005a). In young lake sturgeon, the scutes are very sharp and form 

prominent apical hooks, but gradually become smoother with age and are eventually nearly 

absorbed in adults (Scott and Crossman 1973). Unlike lake sturgeon, anadromous species of 

sturgeon may retain scutes that continue to grow throughout their life (Vescei 2011). Thus, the 

reabsorption of scutes by lake sturgeon may demonstrate a functional morphological trade-off. 

Scutes may bear a greater cost than benefit in the absence of large predators. 

Another morphological defence in sturgeon is their cryptic colouration. Larvae develop 

dark pigmentation at 15 mm total length. The changes in colour morphology of lake sturgeon as 

they develop from early juvenile to adulthood is very pronounced (Peterson et al 2007), with 

black speckling and black “saddle marks” on fish <300 mm lightening and eventually 

disappearing with age. Juvenile lake sturgeon may depend on this cryptic colouration and 

morphological defense to avoid predation (Caroffino et al 2010),  

Any consideration of behavioural defences of lake sturgeon needs to keep in mind that 

the fish also have morphological defences that function to reduce detection and capture. As 

sturgeon develop morphological defences, such as the growth of sharp bony scutes, they may 

rely less upon antipredator behaviour (i.e. compensation correlation between antipredator 

morphology and behaviour) (Wishingrad et al 2014a). Alternatively, behavioural and 

morphological traits can either jointly (i.e. complementation) or discretely (i.e. cospecialization) 

provide effective protection against predation. Since larval sturgeon do not possess effective 

morphological defenses of bony scutes or cryptic colouration, potential antipredator behaviour 

may be most obvious at this stage if a compensation relationship exists between morphology and 

behaviour. Investigation of the potential antipredator behaviour of juvenile sturgeon may provide 

further insight on the relationship between morphological and behavioural defense traits.   
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1.2.2 Behavioural adaptations 

 

Compared to morphological adaptations and life-history switches, behavioural 

adaptations in response to experience are far more plastic (Brown et al 2013b) and may be a less 

costly method of avoiding predation. With advanced detection of predators, prey may perform 

adaptive antipredator responses such as avoiding risky areas, increasing vigilance, shoaling and 

shelter use, or decreasing activity (Lawrence and Smith 1989; Lima and Dill 1990; Sih 1995; 

Ferrari et al 2010a).  

Newly hatched lake sturgeon are negatively phototactic, benthic, and actively seek cover 

within the interstitial spaces of rocky substrates (Harkness and Dymond 1961; Kempinger 1988; 

Peterson et al 2007). Lake sturgeon prolarvae have an undeveloped mouth and eyes and will 

remain in hiding for approximately 7 days (Czeskleba et al 1985; Hastings et al 2013). After this 

period, prolarvae will shed their anal plug at the onset of exogenous feeding, marking the 

transition to the larval stage. At about 17–18 mm in size, the larvae will disperse downstream by 

drifting during the night, often over several kilometres, before settling on the river bottom. 

Larval lake sturgeon were found to decrease their preferences of rock cover after 20 days post 

hatch and increase their use of open bottom habitats, and time spent in the water column. The 

larval stage lasts for several weeks, depending on water temperature. The transition from larval 

to juvenile sturgeon is marked by the complete formation of definitive fin structures, at around 

40 mm total length (Kempinger 1988). At this point their activity level places them at greater 

risk and hence we may expect behavioural defences to increase at this point in time. As 

individuals grow their ability to escape should also increase and this change could influence their 

responses to predation threats.  
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1.2.3 Learned predator recognition 

 

In order for prey to display appropriate antipredator responses to threats, they must first 

recognize predators as dangerous. While a few cues are innately categorized as risky, such as 

injured conspecific cues, most predator-specific cues need to be learned. If prey are instead able 

to learn or acquire a response to ecologically-relevant stimulus through experience, they might 

perform more accurate risk assessment and make decisions according to the level of perceived 

threat. Exposure to a novel stimulus in the presence of an aversive (risky) cue can facilitate an 

association of risk with the novel stimulus. This type of acquired recognition of predators is not 

only limited to direct experience, but can also occur by cultural transmission or social learning 

(Mathis et al 1996).  

Traditional Pavlovian learning is defined by a set of procedures by which a neutral 

conditioned stimulus (CS) is paired with a biologically-significant unconditioned stimulus (US). 

The US elicits strong innate behavioural responses, and as a result of CS-US pairings, the CS 

becomes associated with the US. For Pavlovian learning, the unconditioned response and the 

conditioned response are the same response, however the unconditioned stimulus becomes the 

releasing stimulus of this behaviour as a result of conditioning. The conditioned response (CR) 

results from the pairing. In the case of chemically-mediated learning in aquatic prey animals, the 

US can be conspecific alarm cue that elicits an innate behavioural response, and the CS is a 

neutral stimulus, such as the odour of a novel potential predator (Siegel and Kreutzer 1997). 

Pavlovian conditioned responses result from the specific temporal combinations of the US and 

CS.  
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Releaser-induced recognition learning is a variant of Pavlovian conditioning (Suboski 

1990). By exposing an animal to a behaviourally active (releasing US) stimulus and a 

behaviourally neutral (CS) stimulus, the pairing will result in a behavioural change based on the 

experience. Through the pairing of the stimuli, the previously neutral stimulus evokes 

appropriate behavioural responses. An important distinction of Milton Suboski’s releaser-

induced recognition-learning model (1990), is that pairings of stimuli are not limited to the 

predictive temporal relationships of Pavlovian conditioning. While timing of the presentation of 

stimulus is integral to traditional Pavlovian conditioning, the releaser-induced recognition 

learning model suggests that various stimulus relationships can activate the transfer-of-control 

mechanism. While in traditional Pavlovian learning the conditioned stimulus must be presented 

before the unconditioned stimulus, the presentation of damage-released alarm cue and novel 

predator odour do not have to occur simultaneously in order for a conditioned response to result. 

The alarm cue keeps the prey animal in a receptive state towards novel conditioned (Wisenden 

2011), with chemical signals degrading as soon as 15 minutes depending on environmental 

conditions (i.e. Carbon dioxide concentration (Chivers et al 2014)), and persisting for as long as 

several hours (Wisenden et al 2009). Zebra fish (Danio rerio) have formed associations between 

the CS and the CR when alarm cue and pike odour were presented as long as five minutes apart 

(Korpi and Wisenden 2001). Another unique property of releaser-induced recognition learning is 

that a single conditioning event of the CS with the US can result in near-permanent associations 

between the CS and the CR (Suboski 1990; Wisenden 2011). Thus, the releaser-induced 

recognition model suggests that evolutionary learning processes have been opportunistic in 

allowing animals to recognize biologically important objects or events, with slow learners 

becoming efficiently removed from the gene pool over evolutionary time.       
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1.3. Life-skills training 

 

Hatchery-reared fish are routinely stocked into natural waterways in an attempt to restore 

or maintain stable populations. One of the pitfalls of these stocking programs is the dramatic 

mortality of newly stocked individuals (Suboski and Templeton 1989; Brown and Smith 1997, 

1998). Learned recognition of novel predators has been demonstrated to significantly increase an 

individual’s survival during subsequent predator encounters (Mirza and Chivers 2000; 

Gazdewich and Chivers 2002). Thus, predator training has been employed in attempts to 

condition hatchery-reared fish (predator-naive) prior to release. Berejikian et al (1999) found that 

juvenile chinook salmon (Oncorhynchus tshawytscha) experienced increased survival rates upon 

training with alarm cues to recognize cutthroat trout (Oncorhynchus clarkii). The fish that 

received the paired alarm substance may have been better able to recognize and respond to the 

presence of cutthroat trout, thereby reducing risk of capture. The benefit of this type of 

conditioning may be highest in the first few days following release, after which acquired 

predator recognition will likely occur in the post-release environment. The effects of aquaculture 

on salmonids have been studied extensively. However, inferring results from salmon to sturgeon 

may not be valid on account of the significantly different life histories between these families 

(Jager 2005). Thus, understanding the effects of aquaculture on sturgeon, and other fishes with 

unique life histories, requires further investigation. 

1.4. Research objectives 

 

My overall objective is to examine the antipredator behaviour of lake sturgeon. In this 

thesis, I present three data chapters examining how juvenile sturgeon respond to chemical alarm 
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cues and if they are able to form a learned recognition of a novel predator odour through 

conditioning with alarm cues. Specifically, I used northern pike (Esox lucius) and juvenile 

sturgeon from Rainy River and Wolf River to answer the following questions:  

Do sturgeon exhibit antipredator behaviour to chemical alarm cues? If yes, what is the 

behaviour? 

In Chapter 2 of my thesis, I observe antipredator behaviour in juvenile sturgeon from the 

Rainy River population to alarm cues prepared from the skin of conspecific skin. Since sturgeon 

may be opportunistic and cannibalistic feeders, I also isolate the response of juvenile lake 

sturgeon to conspecific alarm cue by exposing the fish to other novel cues, including food 

odours.   

Can sturgeon exhibit learned predator recognition? 

In Chapter 2, I also test whether juvenile sturgeon from Rainy River could learn to 

recognise a novel predator through the pairing of predator odours with alarm cues from the skin 

of injured conspecifics. Given the failure of the fish to learn, in Chapter 3, I tested whether 

juvenile sturgeon from both Rainy River and Wolf River populations could learn to recognise a 

novel predator through the pairing of whole body alarm cues and predator odour. Associative 

learning can occur after a single conditioning event (Ferrari et al 2010a), however increased 

opportunities to learn may result in increased information regarding the threat of predation. In 

Chapter 4, I investigate whether Wolf River sturgeon may be conditioned to recognize a novel 

predator when they are exposed to a series of conditioning events, rather than just a single event.   

 Anticipated significance 
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 My research is aimed at exploring questions about behaviour of juvenile lake sturgeon in 

relation to predation. Little is known about the behaviour of juvenile sturgeon and their 

vulnerability to predation. A few studies have explored the potential for predation on juvenile 

white sturgeon (Acipenser transmontanus); however, no studies to date have explored the 

potential for learned predator recognition in sturgeon species (Wishingrad et al 2014b). I use a 

number of novel paired cues in this experiment to determine typical antipredator behaviour of 

juvenile sturgeon, and whether or not sturgeon exhibit predator recognition through learning. 

Since predation may limit successful recruitment of threatened or endangered sturgeon 

populations, an understanding of juvenile sturgeon survival behaviour is essential for 

conservation programs. 
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Chapter 2: Antipredator behaviour and learned predator recognition by 

sturgeon  

 

2.1. Introduction 

 

Environmental cues can inform aquatic animals of the presence of food, predators or 

reproductive opportunities. Cues such as amino acids can indicate the presence of food, while 

sex pheromones may stimulate receptors in other individuals. These types of cues initiate 

behavioural responses in a mechanical, stimulus-response manner (Wisenden 2011). Predatory 

cues, however, differ from foraging and reproduction indicators in that risk varies greatly over 

ecological space and time, as well throughout the ontogenetic life stages of an individual. While 

foraging and reproduction are limited to a narrow range of predictable cues, the size, shape, 

odour, and sound of predators are highly variable for prey animals. A mistake made by prey in 

detecting and responding appropriately to antipredator cues is far more costly than an error in 

detecting and responding to foraging or reproduction cues. Damage-released alarm cues are a 

reliable indicator of predator attacks, and not surprisingly evoke strong and immediate 

antipredator responses in conspecifics. Antipredator responses to alarm cues have been identified 

in many aquatic species (Smith 1992; Chivers and Smith 1998; Ferrari et al 2010a), but until 

recently, had not been confirmed in Acipenseriformes (Wishingrad et al 2014a, b, c). Alarm cues 

are contained in distinctive club cells in the epidermis of Ostariophysan fish, and are only 

released by mechanical damage to the skin. Thus, established protocol for the preparation of an 

alarm cue stimulus is to remove skin fillets from donor fish to create a homogenate which is then 

filtered for use as an indicator of risk to conspecifics. When this alarm cue homogenate is 

presented in conjunction with a novel neutral stimulus, like the odour of a novel predator, 

conspecifics subsequently learn to associate the neutral stimulus with danger. This learned 
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association is called releaser-induced recognition learning, a variant of Pavlovian conditioning 

(Suboski 1990).  

Prey that display antipredator behaviour in response to alarm cue gain significant survival 

benefits (Mathis and Smith, 1993). During conditioning, prey may perform various antipredator 

behaviours including changing activity, using shelter, or area avoidance. A typical response that 

is measured under laboratory conditions is a decrease in activity levels when comparing the 

period before versus after the addition of the stimulus. Many animals reduce activity to reduce 

their visibility by hunting predators (Lima and Dill 1990). In contrast, other animals may initiate 

a fleeing response to risk.   

The objectives of this Chapter were two-fold. First, to document the responses of juvenile 

lake sturgeon to conspecific skin extract and a variety of other odours including food and novel 

fish odours. The second objective was to test whether sturgeon could learn to recognize the 

predator through the pairing of conspecific alarm cue and novel predator odour prepared using 

established protocol. When a fish detects a potential threat it has a variety of behavioural options. 

Fish could stop moving thereby increasing their crypsis and avoiding detection by the predator.  

In contrast, they could exhibit dashing behaviour and flee away from the predator. For fishes that 

typically live in rivers, fleeing into the water column could help them to escape benthic 

predators, such as crayfish and other bottom dwelling fish, and indeed Kynard et al (2010) 

reported on the swim-up behaviour of disturbed juvenile sturgeon. Since sturgeon are benthic 

foragers and may flee into the water column in response to risk, I hypothesized that sturgeon 

would spend more time in the bottom third of the tank in response to feeding cues than alarm 

cues. At the time I initiated my work, there was nothing known about behavioural responses of 

lake sturgeon to alarm cues, but both increases and decreases in activity are explainable in the 
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context of antipredator behaviour. The critical issue in interpretation of behavioural responses is 

whether we can differentiate feeding responses from responses to risk.  Subsequent to me 

initiating my thesis work, Wishingrad et al. (2014 a, b, c) documented that juvenile sturgeon 

show dramatic fleeing responses to alarm cues. I hypothesized that the pairing of conspecific 

skin odour with a novel predator odour would result in learned predator recognition. This could 

be manifested through either a reduction in activity or a fleeing response, including movement 

into the water column. 

2.2. Methodology 

 

2.2.1 Test Species 

 

 Juvenile lake sturgeon used in this experiment were obtained as larval sturgeon from 

Sustainable Sturgeon in Emo, Ontario in May 2012. These sturgeon originated from brood fish 

from the Rainy River, and are referred to throughout the experiments as the Rainy River 

population. Sturgeon were kept in 70-L tanks as larvae and moved to a 650-L circular flow-

through tank once they were free-swimming juveniles. Fish were fed adequate food depending 

on their size and stage (larval sturgeon: brine shrimp larvae; juvenile sturgeon: frozen blood 

worm). Larval sturgeon were fed every 4 hours to satiation in accordance with the white sturgeon 

standard operation procedures provided by the University of Saskatchewan Aquatic Toxicology 

Centre (Tompsett, et al 2010). The temperature of the holding tanks for juvenile sturgeon was 

maintained at 15 ± 1ºC while the temperature of the experimental tanks was held at 18±1 ºC. The 

photoperiod was held constant at 14h L:10h D hr in both holding tanks and experimental tanks. 

The experiments were carried out from October 15 to November 5, 2012, when the Rainy River 

sturgeon were between 140 and 161 days post hatch (mean ± SD Total Length 7.1 ± 0.7 cm). 
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Predator odour used for all experiments in this thesis was collected from piscivorous northern 

pike. Six northern pike were captured in June 2013 from Pike Lake, Saskatchewan, using seine 

nets. The pike were housed in a 6000-L flow-through circular tank at 12 ± 1ºC. Pike were fed ad 

libitum with live fathead minnows.  

2.2.2 Stimulus preparation 

 

Sturgeon skin extract 

Skin-derived alarm cue was prepared following established protocols (Ferrari et al 2005). 

In sturgeon, skin-derived alarm cue was shown to be effective indicator of risk at a concentration 

of 25 cm2 of skin . L-1  (Wishingrad et al 2014b). The skin fillets were obtained from six juvenile 

sturgeon 6.4 ± 0.4 cm. In order to ensure that solutions were prepared with equal amounts of 

tissue, surface area of tissue used for sturgeon alarm cue preparation was converted into a weight 

measurement. Thus, approximately 3.2 g of tissue was diluted in 1 L of distilled water, 

homogenized using a Polytron homogenizer (Brinkman Instruments, Rexdale ON) and filtered 

through glass wool. Solutions were frozen in 50 mL aliquots at –20 ºC until required. 

Pike odour 

Five pike (mean ± SD total length = 20.8 ± 10.3 cm) were fasted in their holding tank for 

7 days to avoid the presence of diet cues (Brown et al 1995). Pike were then moved to individual 

aerated, unfiltered 30-L stimulus collection tanks. The pike remained in stimulus-collection tanks 

for 24 h, at which time they were transferred back to their original holding tank. Water from 

individual pike was combined and frozen in 60 mL aliquots at –20 ºC until required. 

 Carp odour 

 Common carp (Cyprinus carpio) odour was obtained from five laboratory-raised carp 

(mean ± SD total length = 12.2 ± 1.7 cm). The carp, fed daily on a diet of floating pellets Top 
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Fin® Pond Fish Food, were fasted in their holding tank for 3 days prior to being moved to 

individual aerated, unfiltered 30-L stimulus collection tanks. The carp remained in stimulus-

collection tanks for 24 h, at which they were transferred back to their original holding tank. 

Water from individual carp was combined and frozen in 60 mL aliquots at –20 ºC until required. 

 Bloodworm extract 

Bloodworm (family Chironimidae) extract was prepared from frozen bloodworms (Hikari 

Bio-Pure Frozen Blood Worms) that had been thawed and drained. Bloodworms were then 

weighed and 100 mL of distilled water was added. The mixture was homogenized using a 

Polytron homogenizer (Brinkman Instruments, Rexdale ON) and filtered through glass wool. 

Distilled water was added until the solution was diluted to ~ 3.2 g . L-1, a concentration 

comparable to that of skin-derived sturgeon skin extract. The solution was frozen in 50 mL 

aliquots at –20 ºC until required. 

Minnow extract 

Minnow extract was prepared from six fathead minnows (mean ± SD total length = 3.5 ± 

0.3 cm). Minnows were killed by cervical dislocation (in accordance with the Canadian Council 

on Animal Care) and weighed. The whole-body minnows were placed in 100 mL of distilled 

water and homogenized using a Polytron homogenizer (Brinkman Instruments, Rexdale ON). 

The solution was filtered through glass wool to remove remaining tissue before diluting the 

extract to ~ 3.2 g . L-1. Minnow extract was frozen in 50 mL aliquots at –20 ºC until required.  

2.2.3 Experimental protocol 

 

The experiment consisted of two phases: conditioning trials followed by recognition 

trials. During conditioning trials, sturgeon were exposed to 1 of 5 cues: (1) skin-derived sturgeon 

alarm cue paired with pike odour. This pairing is known to facilitate learned recognition of 
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predator odour in many fish species (Ferrari et al. 2010a for a review); (2) minnow alarm cue 

derived from whole body grind paired with pike odour. Using skin cues from distantly related 

heterospecific should not induce a learned response and hence is used as a negative control 

(Ferrari et al. 2010a for a review), (3) bloodworm extract paired with pike odour. This allowed 

us to compare the behavioural response to a risk cue (sturgeon alarm cues) to that from a feeding 

cue (bloodworm), (4) distilled water paired with pike odour, to control for the possibility of 

innate recognition of the pike odour. Finally, we added an extra group exposed to (5) distilled 

water paired with carp odour alone to ensure those fish do not show a fear response to novel, 

neutral odour like that of a non-predatory fish. Behavioural observations were undertaken and 

the responses to the 5 cues compared across groups. 

During the testing trials, which occurred 24 h after the conditioning trials, the conditioned 

fish from the previous phase were exposed to pike odour alone, to assess whether or not they 

would display an antipredator response to this cue. Fish from group 5 (carp odour) were 

removed, as this group only served as a control for the conditioning response.  

Conditioning trials 

 Groups of three sturgeon were placed in 37-L tanks, filled with dechlorinated tap water. 

The tanks had a 3 × 6 grid was drawn on the front of the tank for behavioural observations 

(Figure 2.1), while the sides and back of the tank were covered in black plastic sheets to block 

visual disturbances. The tanks contained a sand substrate and an air stone. A 2-m long piece of 

plastic tubing was attached near the air stone, and used to inject test stimuli into the tanks while 

the air stone aided in distribution of the stimuli. Prior to testing, sturgeon were acclimated for a 

24-h period in their test tanks (water at 19.0ºC, 14:10 h light:dark cycle). 
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 All trials were conducted between 1000 and 2200 h. Observations consisted of an 8-min 

pre-stimulus and an 8-min post-stimulus injection period. Prior to the pre-stimulus period, I 

withdrew and discarded 60 mL of water from the injection tubes (to remove any stagnant water) 

and then withdrew and retained an additional 60 mL of water for slowly flushing the stimulus 

into the tank after injection. Following the pre-stimulus period, I injected either 20 mL of pike 

odour paired with 20 mL of sturgeon extract, minnow extract, bloodworm extract or distilled 

water, or 20 mL of distilled water paired with 20 mL of carp odour. Upon addition of the 

stimulus to 37-L tanks, the final dilution was 0.09g of tissue . L-1. Once the stimuli were fully 

injected, I began the post-stimulus observation period.  

 As a measure of antipredator response, I recorded the vertical use index of a focal fish 

(randomly chosen but consistent for the duration of the trial) every 15 sec (1: fish on the bottom 

row of the tank; 2: fish in the middle row of the tank; 3: fish in the top row of the tank). The 

number of line crosses (using the 3 x 6 grid pattern drawn on the front of the tank) was also 

recorded for one of the three sturgeon (randomly selected, the same fish was observed until the 

end of the conditioning period). All trials were performed blind and the order of stimulus 

injection was randomized.  

Recognition trials 

One hour after the end of the conditioning trials, the fish were moved to a similar 37-L 

tank filled with clean dechlorinated tap water. After 24 h, recognition trials were performed. 

Following the pre-stimulus period, I injected 20 mL of pike odour into the tank. Once the stimuli 

were fully injected, I began the post-stimulus observation period. All trials were performed blind 

and the order of testing was randomized. I tested 100 sturgeon (mean ± S.D total length. = 6.4 ± 

0.4 cm) in total with N = 20 per treatment. 
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 Figure 2.1: Schematic diagram (front view) of tanks used in all conditioning and recognition trials. 

Sturgeon are drawn to scale.   

 

2.2.4 Statistical analysis 

To test whether the fish differed in their behaviour prior to the injection of the stimulus, I 

ran a 1-way ANOVA on the pre-stimulus data for each of the two response variables (activity 

and vertical use), for each of the testing periods (conditioning and testing). I then used the 

differences in behavioural parameters between pre- and post-stimulus injection periods as 

response variables in subsequent analyses. I performed a 1-way ANOVA on the change in line 

crosses and change in vertical use during conditioning trials, and again on the change in 

behavioural parameters during recognition trials. Data met parametric assumptions.   

2.3. Results 
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Conditioning trials 

The results of the 1-way ANOVA indicate that there is no significant effect of 

conditioning cue on pre-stimulus values for line crosses (F4,97 = 0.1, P = 1.0) or vertical use 

(F4,97 = 0.4, P = 0.8). 

Results of the 1-way ANOVA on conditioning trials show a significant effect of 

conditioning treatment on change in activity (F4,97 = 14.8, P < 0.001, Figure 2.2) and no 

significant difference of change in vertical use (F4,97 = 0.1, P = 0.4, Figure 2.3). Post-hoc 

comparisons using the Tukey HSD test indicated that the mean change in line crosses for fish 

conditioned with alarm cue paired with predator odour was significantly different than all other 

stimuli, and the other treatments did not differ from each other (Figure 2.2 and 2.3).  

 Recognition trials 

The results of the 1-way ANOVA indicate that there is no significant effect of 

conditioning treatment on pre-stimulus values for line crosses (F3,78 = 0.1, P = 1.0) or vertical 

use (F3,78 = 0.8, P = 0.6). The results of the 1-way ANOVA indicate no effect of conditioning 

treatment on either the change in activity (F3,78 = 1.0, P = 0.4, Figure 2.4) or the change in 

vertical use (F3,78 = 0.9, P = 0.4, Figure 2.5) of the sturgeon. 
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Figure 2.2: Mean (± S.E.) change in line crosses from the pre-stimulus baseline of Rainy River juvenile sturgeon 

during conditioning trials, exposed to either skin-derived conspecific alarm cue paired with pike odour (AC+PO), 

minnow alarm cue paired with pike odour, bloodworm cue paired with pike odour, distilled water paired with pike 

odour (DW+PO), or distilled water paired with carp odour (DW+ carp odour) (N = 20/treatment). Group “a” 

represents a statistically different group than group “b” from post-hoc comparisons (α = 0.05).  
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Figure 2.3: Mean (± S.E.) change in vertical use from the pre-stimulus baseline of Rainy River juvenile sturgeon 

during conditioning trials, exposed to either skin-derived conspecific alarm cue paired with pike odour (AC+PO), 

minnow alarm cue paired with pike odour, bloodworm cue paired with pike odour, distilled water paired with pike 

odour (DW+PO), or carp odour paired with distilled water (DW+Carp Odour) (N = 20/treatment).  
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Figure 2.4: Mean (± S.E.) change in line crosses from the pre-stimulus baseline of Rainy River juvenile sturgeon 

exposed to either skin-derived conspecific alarm cue paired with pike odour (AC+PO), minnow alarm cue paired 

with pike odour, bloodworm cue paired with pike odour, or, distilled water paired with pike odour (DW+PO) 

during conditioning, and tested for recognition 24 hours later with pike odour alone (N = 20/treatment).  
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Figure 2.5: Mean (± S.E.) change in vertical use from the pre-stimulus baseline of Rainy River juvenile sturgeon 

exposed to either skin-derived conspecific alarm cue paired with pike odour (AC+PO), minnow alarm cue paired 

with pike odour, bloodworm cue paired with pike odour, or, distilled water paired with pike odour (DW+PO) 

during conditioning, and tested for recognition 24 hours later with pike odour alone (N = 20/treatment). 

 

2.4. Discussion 

 

The results of the conditioning trials indicate that juvenile lake sturgeon dramatically 

increase activity in response to conspecific skin extract paired with pike odour, but do not change 

their activity pattern in response to heterospecific (minnow) skin extract, food cues or novel 

odours like pike or carp. This is the first documentation of the response of juvenile sturgeon to 

conspecific skin extract as no work on sturgeon’s antipredator response had been published at the 
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start of my thesis work. This response to conspecific skin extract has since then been confirmed 

(Wishingrad et al 2014a, b, c). Interestingly, the observed response is an increase in activity. The 

majority of reported antipredator responses in fishes involves reduction in activity to increase 

crypsis (reviewed by Chivers and Smith 1998), but a few increase activity to increase their 

chances of escaping a predator attack (i.e., a fleeing response in minnows (review Chivers and 

Smith 1998)). To ensure that this behaviour did indeed belong to the antipredator repertoire of 

the fish, I added a number of controls to verify that a similar behaviour would not be observed in 

a foraging or exploratory context. If exposure of prey to a novel stimulus results in fear or 

avoidance behaviour, the reaction is termed neophobia – the avoidance or fear of any novel cues. 

Under conditions of highly variable risk, prey that respond vigilantly to novel stimuli have a 

better chance of avoiding threats. However, prey able to associate the threat of predation with 

appropriate stimuli through recognition learning can avoid wasting time and energy linked to the 

response to irrelevant cues. Sturgeon did not display an innate fear response when exposed to 

pike odour or carp odour paired with distilled water during conditioning, indicating that sturgeon 

do not respond to novel odours with a neophobic response. 

Cultured sturgeon are typically provided live food, commonly brine shrimp nauplii, at the 

initiation of exogenous feeding. Sturgeon have been found to imprint on food items, and 

switches to formulated diets have resulted in over 80% mortality for this reason (Monaco et al 

1981). During these trials, sturgeon were fed a diet of blood worm (Family Chironomidae) twice 

daily.  Sturgeon rely on tactile and olfactory systems for feeding and detecting environmental 

cues rather than visual stimulus (Kasumyan and Kazhlayev 1993). When the sturgeon were 

presented with the extract of their daily food item, blood worm, as well as a novel potential food 

cue, minnow extract, differences in behaviour were not observed.  
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Certain Acipenseriformes that are commonly raised in aquaculture programs, such as 

white sturgeon and Siberian sturgeon (Acipenser baerii), are known to cannibalize conspecifics 

when fed low quality diets, or when there is a large size variation in rearing tanks (Deng, et al 

2003; Dabrowski, Kaushik, and Fauconneau 1985). Although cannibalism among larvae and 

juveniles is described as rare or opportunistic in many species of sturgeon, it has been observed 

in higher frequency in other species, such as Russian sturgeon (Acipenser gueldenstaedtii) in 

aquaculture environments (Memiş et al 2009). As the behavioural response of juvenile sturgeon 

to conspecific skin extract was significantly different than the response to food cues, the increase 

in activity is not accounted for by a feeding response.  

The results of the recognition trials indicated that the sturgeon did not appear to associate 

pike odour with the risk of predation after exposure to alarm cue paired with pike odour. While 

the cue elicited an antipredator response during conditioning, it is possible that the skin-derived 

alarm cue provided an unreliable indicator of predation risk, and thus did not facilitate learning. 

Similar results have been found with disturbance cues emitted from disturbed or startled prey. It 

may be possible that sturgeon are exposed to skin-derived conspecific alarm cue frequently 

outside of the context of predation. For example, juvenile sturgeon commonly occupy habitats 

containing rough sand or rocky substrate and may experience frequent skin abrasion that would 

result in the release of alarm cue from the skin. Thus, a more reliable indicator of risk might be a 

whole-body derived alarm cue. I address this possibility in the next chapter.   
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Chapter 3: Conditioned predator recognition using whole body extract 

 

3.1. Introduction 

 

In Chapter 2, sturgeon displayed fright behaviour in response to skin extracts; however, 

they did not learn to recognize the predator when the predator odour was associated with alarm 

cues. I hypothesized that skin extract alone may not indicate a high enough level of risk for 

associative learning to result in this armoured species. Given that sturgeon juveniles likely hide 

in interstitial spaces of rocky substrates or sandy bottom, the detection of injured skin cue may 

not always indicate that a predation event has occurred. However, whole-body extract—the cues 

released from badly-injured conspecifics—would provide a more accurate indicator of predation. 

A decrease in activity, or dramatic fleeing in response to predator odour during recognition trials, 

would indicate successful learned association between sturgeon alarm cue and the predator 

odour. As sturgeon may also spend more time in the upper water column once they are disturbed 

(Kynard et al 2010), I predicted that an increase in vertical use would indicate an appropriate 

antipredator response.   

3.2. Methodology 

 

3.2.1 Test Species 

 

 In these experiment, the Rainy River population from Chapter 2, as well as an additional 

population of lake sturgeon from the Wolf River system in Wisconsin, were used for testing. The 

Wolf River lake sturgeon were donated from the sturgeon stocking program out of the Genoa 

National Fish Hatchery in Genoa, Wisconsin. The fish arrived in the laboratory on August 29, 

2012 as fingerlings and were held in a 6000-L flow-through circular tank at 15 ± 1 ºC. All 
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juvenile sturgeon were fed bloodworms twice daily to satiation. The photoperiod was held 

constant at 14L:10D hr in both holding tanks and experimental tanks. The two populations of 

fish were of different ages/sizes at the time of testing, but there was considerable temporal 

overlap in the testing times. For the Rainy River fish, data collection was carried out from 

August 23 to December 17, 2012, when the sturgeon were between 87 and 203 days post hatch. 

For the Wolf River sturgeon, data collection was carried from October 1 to December 20, when 

the fish were between 168 and 248 days post hatch. Rainy River fish were (mean ± SD total 

length) 5.7 ± 0.4 cm at the time of testing, while Wolf River fish were 11.0 ± 1.3 cm. 

3.2.2 Stimulus collection 

 

 Skin extracts used in this experiment were collected from five juvenile lake sturgeon 

(Rainy River: 6.5 ± 0.4 cm; Wolf River: 11.1 ± 1.4 cm). Sturgeon were killed by cervical 

dislocation (in accordance with the Canadian Council on Animal Care) and the whole sturgeon 

were placed in 100 mL of distilled water. The tissue and distilled water were homogenized using 

a Polytron homogenizer (Brinkman Instruments, Rexdale ON), and then filtered through glass 

wool to remove remaining tissue. Tissue was collected and diluted to create a solution containing 

~ 3.2 g of tissue per L of distilled water for both populations. Skin extracts were frozen in 60 mL 

aliquots at –20 ºC to preserve the functional properties of the chemical alarm cue until required 

(Lawrence and Smith, 1989). Pike odour was prepared during Experiment 2, and used 

throughout this experiment.  

3.2.3 Experimental protocol 

 

This experiment consisted of two phases: conditioning trials followed by recognition 

trials. During conditioning trials, sturgeon were exposed to one of two treatments: body-derived 
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alarm cues paired with pike odour or distilled water paired with pike odour. During the testing 

phase, the fish were exposed to either pike odour, to test whether they had learned to 

behaviourally respond to pike odour, or a distilled water control. Testing trials took place 24 h 

after the conditioning trials. As in Chapter 2, fish were tested in groups of 3. 

 Conditioning trials 

The experimental set-up and stimulus injection protocol was identical to that used in 

Chapter 2. All trials were performed blind and the order of stimulus injection was randomized. 

Since my goal was to see whether learning had occurred, no observations were carried during the 

conditioning phase. I injected either 20 mL of sturgeon extract, or 20 mL distilled water paired 

with 20 mL pike odour into the tank.  

 Recognition trials 

 One hour after the end of the conditioning trials, the fish were moved to a similar 37-L 

tank filled with clean dechlorinated tap water. After 24 h, recognition trials were performed. The 

protocol was the same used for the testing trials from Chapter 2 except that only pike odour (20 

mL) or distilled water (20 mL) was injected in the tank following the pre-stimulus period. All 

trials were performed blind and the order of testing was randomized. As a measure of response to 

novel stimuli, the vertical use index, as well as the number of line crosses of the focal fish was 

scored every 15 sec.   

3.2.4 Statistical analysis 

 

 To test if any behavioural differences existed among treatment groups prior to injecting 

the stimulus, I first performed a 2 × 2 ANOVA to test the effect of conditioning cue (alarm cue 

vs water) and testing cue (pike odour vs water) on the pre-stimulus values. I then calculated the 

change in line crosses and vertical use index from the pre-stimulus baseline. While the data for 
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change in vertical use were normally distributed and homoscedatic, the data for change in line 

crosses during recognition trials in Rainy River (but not in Wolf River) sturgeon was not 

normally distributed, although variances among treatments were homogenous. Given that 

ANOVAs are robust against violation of normality assumptions (Sokal and Rohlf 2012), I still 

performed 2 × 2 ANOVA on each of the variables for each of the population. 

3.3. Results 

 

3.3.1 Rainy River sturgeon 

 

The results of the 2-way ANOVA indicate that there is no significant effect of 

conditioning cue (F1,73 < 0.1, P = 1.0), testing cue (F1,73 = 1.4, P = 0.2), or any interaction 

between the two factors (F1,73 = 0.7, P = 0.4) on pre-stimulus values for line crosses. For vertical 

use, similar results were found, with no significant effect of conditioning cue (F1,73 < 0.1, P = 

0.9) or testing cue (F1,73 = 0.9, P = 0.5) on pre-stimulus values. However, there was a significant 

effect of interaction between the two factors (F1,73 = 4.6, P = 0.036, Figure 3.1) on pre-stimulus 

values. 

The results of the 2-way ANOVA revealed a significant interaction between conditioning 

and testing cues on line crosses (F1,73 = 4.0, P = 0.049, Figure 3.2), however this interaction was 

not present when I looked at vertical use (F1,73 = 0.1, P = 0.1, Figure 3.3). The above interaction 

comes from the fact that sturgeon pseudo-conditioned with water paired with pike odour did not 

differ in their response to water and pike odour (P > 0.9). However, sturgeon conditioned with 

body-derived alarm cues significantly decreased their activity compared to water (P = 0.024), 

indicating that Rainy River juvenile sturgeon have learned to recognize pike odour as a threat 

when conditioned with body-derived alarm cues. 
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Figure 3.1: Mean (± S.E.) change in line crosses from the pre-stimulus baseline for Rainy River juvenile 

sturgeon initially exposed to either conspecific alarm cue paired with predator odour, or distilled water paired 

with predator odour during conditioning, and tested for recognition 24 hours later with either distilled water 

(white bars) or predator odour alone (grey bars) (N = 20/treatments). 
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Figure 3.2: Mean (± S.E.) percent difference in vertical use from the pre-stimulus baseline for Rainy River 

juvenile sturgeon initially exposed to either conspecific alarm cue paired with predator odour, or distilled water 

paired with predator odour during conditioning trials, and tested for recognition 24 hours later with either 

distilled water (white bars) or predator odour alone (grey bars) (N = 20/treatments). 

 

3.3.2 Wolf River sturgeon 

 

The results of the 2-way ANOVA indicate that there is no significant effect of 

conditioning cue (F1,70 = 0.2, P = 0.7), testing cue (F1,70 < 0.1, P = 0.9), or any interaction 

between the two factors (F1,70 = 0.4, P = 0.5) on pre-stimulus values for line crosses. Likewise, 

for vertical use, the results of the 2-way ANOVA indicate no significant effect of conditioning 

cue (F1,70 = 1.2, P = 0.5), testing cue (F1,70 = 0.7, P = 0.6), or any interaction between the two 

factors (F1,70 = 3.9, P = 0.053) on pre-stimulus values.  
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The results of the 2-way ANOVA indicated no significant interaction between 

conditioning and recognition treatments for the number of line crosses (F1,70 < 0.1, P = 1.0, 

Figure 3.3) or vertical use (F1,70 = 0.5, P = 0.5, Figure 3.4). However, in all cases we saw an 

antipredator response to predator odour from the Wolf River fish. Their reduction in activity was 

comparable in magnitude to that of the learned recognition by Rainy River fish. This suggests the 

possibility of innate recognition of pike by this population of sturgeon.  

 

 
Figure 3.3: Mean (± S.E.) change in line crosses from the pre-stimulus baseline for Wolf River juvenile sturgeon 

initially exposed to either conspecific alarm cue paired with predator odour, or distilled water paired with 

predator odour during conditioning trials, and tested for recognition 24 hours later with either distilled water 

(white bars) or predator odour alone (grey bars)(N = 20/treatments). 
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Figure 3.4: Mean (± S.E.) Change in vertical use from the pre-stimulus baseline for Wolf River juvenile sturgeon 

initially exposed to either conspecific alarm cue paired with predator odour, or distilled water paired with 

predator odour during conditioning trials, and tested for recognition 24 hours later with either distilled water 

(white bars) or predator odour alone (grey bars)(N = 20/treatments).  

 

3.4. Discussion 

 

3.4.1 Rainy River 

 

The results of this experiment demonstrate that juvenile sturgeon from the Rainy River 

population can learn to recognize pike odour as a predation cue when it is paired with whole-
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body conspecific extract during a single conditioning event. This recognition is achieved through 

a process of releaser-induced recognition learning (Suboski 1990). Rainy River lake sturgeon 

increase activity when exposed to conspecific alarm cue. However, sturgeon later displayed a 

significant decrease in activity when exposed to a conditioned stimulus that indicates risk of 

predation. The results of the experiments on Rainy River sturgeon suggest that the antipredator 

behaviour of juvenile sturgeon upon recognition of a predator is to decrease activity. These data 

also seem to suggest that learned predator recognition of sturgeon is dependent on whole body 

alarm cue, rather than the skin-only alarm cue used in Chapter 2. Note that the concentration of 

tissue in the solution was similar between Chapter 2 and 3, indicating that the difference likely 

does not stem from a concentration problem. These results (along with those presented in chapter 

2) also suggest that vertical use is not a reliable measure of predator avoidance for this 

population, despite what Kynard et al (2010) reported on the swim-up behaviour of disturbed 

juvenile sturgeon. 

Avoidance and escape responses to conspecific alarm cues has recently been documented 

in European sturgeon (Acipenser sturio) (M.L. Acolas, personal communication) as well as 

shovelnose sturgeon (Scaphirhynchus platorynchus), that will actively avoid channel catfish 

when they are placed together in a partitioned tank (Hintz et al 2013). In my system, when 

sturgeon were initially exposed to the alarm cue paired with predator odour, they increased their 

activity. However, sturgeon that demonstrate a conditioned response to predator odour decrease 

their activity. The differential responses are rather fascinating. Perhaps different strategies may 

be employed under varying degrees of perceived risk. The presence of alarm cues may indicate 

that the individual is living in a high risk environment and as such dispersing may be adaptive. 

Indeed, injured fish cues (alarm cues from prey fish) have been shown to be a potent foraging 
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cue for a number of piscivores, with large numbers of predators appearing in the vicinity of the 

alarm cue release location within minutes (Lonnstedt et al 2012). Thus, it is possible that the 

smell of injured sturgeon would lead to an immediate recruitment of potential predators 

(Lonnstedt et al 2012; Chivers et al 1996; Mathis et al 1995), and hence, the best strategy for 

nearby conspecifics would be to leave the area. However, once a known predator has been 

detected, fleeing may be less desirable unless the exact location of the predator is known.  

3.4.2 Wolf River 

 

These data suggest that conditioning Wolf River sturgeon does not influence the intensity 

of the antipredator response they exhibit when exposed to pike odour. This could indicate that 

the sturgeon were unable to recognize pike odour as a predation threat during a single exposure 

when it is paired with whole body grinds. Nevertheless, we need caution with this interpretation, 

as there was an indication that the sturgeon already recognized the pike as a threat. 

Chemically-mediated predator recognition learning can allow a high degree of 

behavioural plasticity (Brown et al 2013a). A number of intrinsic (behavioural trade-offs and 

ontogenetic switches) and extrinsic (concentration of chemical cues, water chemistry, context, 

and habitat) factors can affect how prey respond to alarm cue, whether a learned association is 

possible, and how long it may persist (Ferrari et al 2010a). It is possible that an ontogenetic shift 

would occur that would also prevent older sturgeon from responding to non-threatening cues. 

Responding to cues by avoiding the area, hiding or dashing may be a costly behaviour, as that 

time could be better allocated to essential activities such as feeding or reproduction (Ferrari and 

Chivers 2006). Dewitt et al (1999) found consistent differences among individual snails in their 

response to predation risk. Behavioural differences may be accounted for by size effects, 

previous experience, as well as genetic variation. Rainy River and Wolf River sturgeon are naïve 
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to predation; however, as Rainy River sturgeon were raised entirely in the laboratory and Wolf 

River sturgeon were raised for several months in a recirculating aquaculture facility, I cannot 

entirely omit the possibility that Wolf River sturgeon were previously exposed to predation cues 

through the process water at the Genoa National Fish Hatchery.  

My results may indicate that while sturgeon are able to respond behaviourally to 

conspecific alarm cue and demonstrate associative learning, they may rely more heavily on 

morphological defenses of cryptic colouration and sharp bony scutes to minimize risk. 

Differences in size and morphology between the two populations of sturgeon may account for 

behavioural differences. Wolf River sturgeon hatched on April 17th, 2012 and starting feeding 

exogenously on April 29th, 2012 while Rainy River sturgeon arrived in the laboratory as newly 

hatched larvae on May 29th, 2012 and started feeding exogenously on June 13, 2012. Since the 

Wolf River fish came from a hatchery production facility, whereas Rainy River sturgeon were 

reared in laboratory conditions, feeding schedules for Wolf River sturgeon were optimized for 

maximum growth. Rainy River sturgeon were conditioned as early as 87 days post hatch, 

whereas Wolf River sturgeon were tested at a minimum age of 168 days post hatch. In laboratory 

conditions, predation on white sturgeon by channel catfish and northern pikeminnow was nearly 

absent once sturgeon reach a total length of approximately 130 mm, in the presence of alternative 

prey (Gadomski and Parsley 2005). The fish tested in these experiments exceeded a total length 

of 130 mm. Predation on sturgeon decreases as a function of their size, thus, Wolf River sturgeon 

are less vulnerable than the smaller, younger Rainy River sturgeon. Furthermore, bony scutes not 

only increase the energetic costs of swimming due to increased drag, but are energetically costly 

to produce (Peterson et al 2007). Investment of energy into morphological defenses of size and 
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scutes, rather than investment of energy into learning and behavioural defense, might explain 

why Wolf River sturgeon do not respond to paired cue conditioning.     

Morphological and behavioural defenses may act in accordance with one another. A 

particular morphology may increase the effectiveness of antipredator behaviours, decrease the 

need for antipredator behaviour, or even work in conjunction with the behaviour to provide a 

specialized form of defense (Dewitt et al 2000). For example, morphological defenses, such as 

narrow apertures in freshwater snails, can impede a predator’s ability to handle prey thus providing 

more time for snails to invoke behavioural defenses (Dewitt et al 2000). Prolonged handling time 

of prey decreases the energetic value of the prey item for the predator (Stephens and Krebs 1986), 

and may also facilitate the escape of nearby future prey if damage-released alarm cues alert other 

conspecifics of the risk of predation (Dewitt et al 2000).  

The degree or intensity of antipredator responses performed by prey may also be highly 

variable, owing to underlying connections with other defense traits such as morphological 

defenses (Dewitt et al 1999). The vulnerability of prey animals can be influenced by size, 

reproductive status and sex (Stein 1977; Sih 1982). Vulnerable prey are more likely to engage in 

antipredator behaviours than well-defended prey, with prey in good condition better able to 

employ more costly defense mechanisms (Damsgaard and Dill 1998). Understanding how 

antipredator behaviours and antipredator traits correlate may provide information on the natural 

selection of behaviour (Dewitt et al 1999). If morphological or chemical defenses of prey are 

effective defense mechanisms, it is possible that behavioural responses may appear to be weak or 

suboptimal (Dewitt et al 1999). According to Dewitt et al (1999) the four types of mechanisms 

that can generate correlations between morphology and behaviour are codependence, 

complementation, compensation and cospecialization. When traits are mechanically linked, and 
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prey depend upon particular morphology to enact the behaviour, the correlation is called 

codependence. Complementation results when behaviour and morphology are mechanically 

independent, but may still be used in combination for an effective antipredator response. When 

prey exhibit a weak morphological defense, they may display stronger antipredator behaviour, 

resulting in a compensation correlation between traits. Cospecialization refers to situations when 

behavioural and morphological traits are each effective on their own. Recently, Wishingrad et al 

(2014a) found escape behaviour and body size in larval lake sturgeon to be codependent traits, 

with larger fish able to show stronger escape behaviour. Cryptically-coloured fish (mottled 

colouration) did not flee in response to risk, indicating a trait compensation correlation between 

colour morphology and escape behaviour. Cover-seeking behaviour presented a more complex 

relationship between particular traits, with smaller fish most often seeking cover (i.e. trait 

compensation) and larger fish using rocky mircrohabitats following exposure to risk (i.e. trait 

cospecialization between cover-seeking and escape behaviour). In the same study, scute size was 

not found to have a compensation relationship with antipredator behaviour, likely due to scutes 

being unable to provide sufficient defense against predation at the larval stage.  

 

Another possible reason for why the Wolf River sturgeon failed to learn may be due to 

maladaptive behavioural traits as a result of their hatchery rearing environment. Fish hatcheries 

are designed to produce maximum growth and survival, void of any threats of predation. In order 

to achieve this goal, fish are provided adequate feed for optimal growth in conditions controlled 

for water chemistry, lighting, and habitat. Fishes reared in these unnatural environments lack 

direct experience with foraging, predator avoidance, and environmental cues, resulting in poorly 

developed behavioural phenotypes (Brown and Day 2002; Brown et al 2013a). Additionally, 

hatchery conditions do not select for traits that would be beneficial to fish in the wild. For 
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example, juvenile Atlantic salmon (Salmo salar) of parents that had spent one generation under 

hatchery conditions produced weaker predator avoidance behaviour than their wild-caught 

counterparts (Jackson and Brown 2011). A number of studies have shown that brain structures 

often reflect the manner in which a species has adapted to a particular environment (Masai et al 

1982; Marchetti and Nevitt 2003). The effect of rearing environment on behavioural 

abnormalities of hatchery raised fish is an emerging field. Wild and hatchery-reared rainbow 

trout (Oncorhynchus mykiss) were used by Marchetti and Nevitt (2003) as a model for 

comparing brain structure development to explain maladaptive behaviours of hatchery-reared 

fish. Marchetti and Nevitt (2003) found that the most profound differences existed in the optic 

tectum and the telencephalon. These brain structures are often linked to behaviours of 

aggression, feeding and reproduction, and deficiencies in these areas can account for changes in 

growth, gaining access to mates, as well as changes in predator avoidance. These behaviours are 

particularly problematic when they occur in fish that are stocked as part of conservation effort. 

Fortunately, environmental enrichment has been shown to promote neural growth, which is 

particularly important for fish that undergo neurogenesis throughout life (Kotrschal et al 1998).  

Although hatchery-reared lake sturgeon are produced from wild-caught brood stock, hatchery 

rearing conditions can still contribute to dulled cognitive abilities. Thus, multiple training events 

may be necessary to promote learned predator recognition in hatchery-reared sturgeon.     
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Chapter 4: Multiple-event conditioning and predator recognition of Wolf 

River sturgeon 

 

4.1. Introduction 

  

 A learned association between a conditioned and unconditioned stimulus can result after 

a single exposure event; however, multiple exposures would seemingly allow prey to gather 

more information about potential predators and increase the certainty that the perceived threat 

poses a predation risk that is worth responding to in future encounters. In Chapter 3, I showed 

that Wolf River sturgeon showed the same response to the predator odour regardless of whether 

or not they were conditioned. This could indicate that the fish were unable to learn via a single 

pairing of alarm cues and predator odour. This conclusion needs to be taken with caution as I 

also had an indication the fish may have been exhibiting an innate response to the pike odour. 

Regardless of whether the fish have an innate response or not, the training had no impact on 

altering the intensity of the response. It is possible that multiple instances of conditioning could 

result in learning or could enhance the already existing predator recognition, therefore, I 

hypothesized that reinforced conditioning events would result in a significant enhancement of the 

antipredator response.  

4.2. Methodology 

 

4.2.1 Experimental protocol 

 

This experiment consisted of 6 conditioning events over a three-day period followed by 

recognition trials on the fourth day. During conditioning trials, groups of three sturgeon were 

exposed to northern pike odour paired with body-derived conspecific alarm cue, or with distilled 
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water. The fish were conditioned twice daily, at 1030 hours and 1530 hours. The fish were 

exposed to either pike odour or distilled water 24 h later during recognition trials. The 

experiments were carried out from April 15 to April 20, 2013 when the Wolf River sturgeon 

were between 364 and 369 days post hatch. 

 Conditioning trials 

 The experimental tank, and general setup used in this experiment are the same as those 

used in the previous experiments. Again, sturgeon were acclimated for a 24-h period in their test 

tanks (water at 19.0ºC, 14:10 h light:dark cycle) prior to the start of the experiment. 

 All conditioning injections were performed at 1030 h and 1530 h following a similar 

procedure described in previous experiments. I injected either 20 mL of sturgeon extract paired 

with 20 mL of pike odour, or 20 mL distilled water paired with 20 mL pike odour into the tank. 

A complete water change was performed at 1700 h each day. No observations were carried 

during this phase. 

 Recognition trials 

 One hour after the end of the conditioning trials, the fish were moved to a similar 37-L 

tank filled with clean dechlorinated tap water. After 24 h, recognition trials were performed. All 

trials were conducted between 1000 and 2200 h. The injection protocol was the same used for 

the conditioning trials except that only pike odour (20 mL) or distilled water (20 mL) was 

injected in the tank following the pre-stimulus period. All trials were performed blind and the 

order of testing was randomized. I tested 64 sturgeon 14.0 ± 0.4 cm in total with N = 16 per 

treatment. Consistent with the previous experiments, I recorded the vertical use index of the focal 

fish every 15 sec and the number of line crosses for one randomly selected fish. 
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4.2.2 Statistical analysis 

 

For recognition trials, I first checked to see if any pre-stimulus differences existed among 

treatment groups. The data for line crosses were heteroscedastic, so I used log-transformed data 

for the analysis. The transformation allowed the data to satisfy the assumptions of parametric 

analysis. I then calculated the change in line crosses and vertical use from the pre-stimulus 

baseline. However, once again, the data did not meet the assumption of homoscedasticity. Given 

that the presence of both positive and negative values prevented the use of common 

mathematical transformations, I rank-transformed the data and ran a non-parametric 2-way 

analysis of variance, using the Scheirer-Ray-Hare extension of the Kruskal-Wallis test (Sokal 

and Rohlf 2012). A 2 × 2 ANOVA was used to test the effect of conditioning cue and testing cue 

on the vertical use. 

 

4.3. Results 

 

The 2 × 2 ANOVA revealed no effect of conditioning cue (F1,60 = 3.3, P = 0.07; F1,60 = 

0.24, P = 0.6), testing cue (F1,60  = 0.2, P = 0.7; F1,60 = 1.3, P = 0.3) or any interaction (F1,60 = 

0.01, P = 0.9; F1,60 = 2.6, P = 0.1) on the prestimulus value for line crosses and vertical use, 

respectively. The results of the 2-way Kruskal-Wallis revealed a significant effect of 

conditioning cue (F1,60 = 5.4, P = 0.035) and testing cue (F1,60 = 5.4, P = 0.023) but no interaction 

(F1,60 = 0.6, P = 0.5) on the change in line crosses. Namely, the average change in activity was 

greater for conditioned than pseudo-conditioned fish, and this change tended to be greater in 

response to water than in response to pike odour (Figure 4.1). 
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For vertical use, the 2-way ANOVA revealed a significant interaction between 

conditioning and testing cue (F1,60 = 5.0, P = 0.029). Namely, fish that were pseudoconditioned 

with water did not differ in their response to water and pike odour (P = 0.78). However, those 

juveniles that underwent the multiple conditioning procedure did reduce vertical use significantly 

more in response to pike odour than water (P = 0.011). 

 

 
Figure 4.1: Mean (± S.E.) change in line crosses from the pre-stimulus baseline for Wolf River juvenile sturgeon 

during recognition trials. Sturgeon were previously exposed six times to either conspecific alarm cue paired with 

predator odour, or distilled water paired with predator odour, and subsequently tested for their response to 

distilled water (white bars) or predator odour alone (grey bars)(N = 16/treatments). 
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Figure 4.2: Mean (± S.E.) change in line vertical use from the pre-stimulus baseline for Wolf River juvenile 

sturgeon during recognition trials. Sturgeon were previously exposed six times to either conspecific alarm cue 

paired with predator odour, or distilled water paired with predator odour, and subsequently tested for their 

response to distilled water (white bars) or predator odour alone (grey bars)(N = 16/treatments). 

  

4.4. Discussion 

 

I found that the average change in activity was greater for conditioned than pseudo-

conditioned fish. This pattern is what I would expect if there was predator learning; however, the 

difference arose because the fish increased activity to the control water as opposed to reducing 

activity to the predator odour. In fact, that response of conditioned and pseudo-conditioned fish 
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to pike odour was almost exactly the same. This makes it very difficult for me to conclude that 

the conditioning enhanced predator recognition. 

In contrast, if I consider change in vertical area use, there was a dramatic increase in 

vertical area use in response to predator training. Conditioned fish fled up into the water column 

in response to predator odour, while pseudo-conditioned fish did not. Fleeing into the water 

column is consistent with the results of Kynard et al (2010) who reported on the swim-up 

behaviour of disturbed juvenile sturgeon. Interestingly, I did not find evidence that Rainy River 

fish in Chapter 3 fled into the water column in response to risk. Instead, they showed a dramatic 

reduction in activity. 

Unlike the results of Chapter 3, in this experiment I had no evidence of innate recognition 

of pike odour by Wolf River sturgeon. If there was innate recognition of the pike by sturgeon, 

then how do I explain the lack of response in the current study? There was a significant 

difference in age, with Wolf River sturgeon being on average 158 days older, and 3 cm larger 

than sturgeon tested in Experiment 3. Perhaps sturgeon go through an ontogenetic shift in 

response to pike odour. As they grow larger, morphological responses could take over and be of 

greater importance, making behavioural responses unnecessary even if there was recognition of 

pike as a danger.  

The Wolf River juvenile sturgeon used in this experiment were fast-growing fish with 

mottled colouration. Although no direct studies of predation have been performed on lake 

sturgeon juveniles, at the time of these experiments, the Wolf River sturgeon were approximately 

the size of white sturgeon that were not ingested during laboratory trials (>134mm TL, 

Gadomski and Parsley 2005a). Thus, while smaller juvenile sturgeon may have relied more 



51 

 

heavily on escape behaviour to avoid predation threats, larger juveniles may be able to conserve 

energy and rely on the defense provided by size and scutes. This could explain why vertical use 

can indicate a learned response to predator odour in this group of fish, whereas it was a poor 

indicator in earlier trials.  
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Chapter 5: General Discussion 

 

 On account of their ancient origins, unique life history and threatened status worldwide, 

Acipenseriforms are a charismatic family that has drawn many fisheries managers to evaluate 

their status in recent years. However, at the time I began my research, little information was 

available on the most vulnerable stages of a sturgeon’s life history (larval and juvenile) and their 

susceptibility to predation. My thesis work represents the first attempt to document releaser-

induced recognition learning in juvenile sturgeon as well as early work in determining an 

antipredator behavioural response to conspecific alarm cue. Additionally, my work provides 

preliminary insight into the role of morphological and behavioural defenses throughout a 

sturgeon’s life history.  

 I first investigated the ability of juvenile sturgeon to recognize a potential predator 

through releaser-induced recognition learning. In Chapter 3, I showed that fish from the Rainy 

River population could be successfully conditioned to recognize novel northern pike odour as a 

predator after a single pairing event, while sturgeon from the Wolf River population could not. 

Prey can respond to predation threats differently according to their state of vulnerability. The 

observed difference between Rainy River and Wolf River populations of sturgeon may be due to 

a number of underlying traits not limited to age, size, and population variances. Based on the 

results from Chapter 3, I performed an experiment (Experiment 4) to determine whether Wolf 

River juvenile sturgeon could demonstrate a conditioned response to predator odour if the 

associative learning was reinforced by multiple conditioning events. Learned predator 

recognition was evident in the significant difference in vertical use of the Wolf River population 

of sturgeon.  
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My results indicate that the response of lake sturgeon to alarm cue, and the conditioned 

response to novel predator odour, are antipredator behavioural responses. In Chapter 2, I 

demonstrated that sturgeon do not exhibit similar behaviours in response to other novel odours, 

(pike or carp odour), nor do they behave similarly to the addition of foraging cues (blood worm). 

For some aquatic prey animals in highly variable, high risk environments, novel stimuli may 

induce fright responses prior to any learned association. In Chapter 2, I observed the response of 

naïve juvenile Rainy River sturgeon to novel pike odour, as well as novel carp odour to 

determine whether if a fear response was evident. The response of juvenile sturgeon to novel 

pike odour demonstrated that a fright response towards pike odour alone only resulted after a 

paired conditioning event of alarm cue and pike odour.       

These experiments suggest that lake sturgeon demonstrate releaser-induced recognition 

learning during the vulnerable juvenile life stages. As sturgeon populations become increasingly 

threatened worldwide, conservation stocking programs will continue to gain momentum. This 

initial work contributes a small, but important, piece of information to a large body of research 

on behaviour of artificially reared fish, and the effects of artificial selection, environment, and 

training. 

5.1. Predator recognition continuum hypothesis 

 

For prey animals, although the ultimate cost of a predator-prey interaction is loss of life, 

there is also a trade-off made between the benefits and costs of antipredator responses (Ferrari, 

Capitania-Kwok and Chivers 2006). Helfman (1989) developed a hypothesis for threat-sensitive 

predator avoidance, stating that prey should respond to a predation threat with an intensity that 

matches the risk posed by the predator. Prey, when exposed to a great variety of predator species 



54 

 

that are unpredictable in their probability of attack, should benefit more from learned predator 

recognition (Ferrari, Messier and Chivers 2008). Conversely, prey inhabiting environments 

where predictability of attack by a predator is high and predator diversity low, are likely to 

benefit more from innate predator recognition. These concepts are a part of the Predator 

Recognition Continuum Hypothesis (Ferrari et al 2007) in which it is proposed that the 

recognition of predators is dependent on (but not limited to) the temporal and spatial 

predictability of predation and the diversity of the predators. Moreover, prey behave differently 

based on a number of underlying traits and conditions related to their vulnerability (Dewitt et al 

1999). More vulnerable prey may rely more on antipredator behaviour than well-defended prey 

(Sih 1982, 1986), with prey in poor condition less likely to use costly defences. Abrahams (1995) 

for example, showed that brook stickleback (Culea inconstans) with their sharp dorsal spines do 

not demonstrate strong antipredator behaviour in response to predators, while the behavioural 

response of unarmoured fathead minnows (Pimephales promelas) is significantly greater. The 

results of my thesis indicate that the sturgeon do not rely solely on morphological defense, but 

also behavioural defense to provide a more effective antipredator response.  

5.2. Conservation applications of learned predator recognition 

 

Hatchery rearing environments are highly artificial systems that are void of predation 

threats, habitat variability, as well as environmental cues. Thus, hatchery-reared fish may 

develop maladaptive behavioural traits that put them at a disadvantage compared to their wild 

counterparts who encounter natural environmental cues, threat of predation, and selective 

pressures (Huntingford 2004; Fernö et al 2011; Brown et al 2013a). Rearing environments that 

lack enrichment may also impact neural plasticity and development directly (Marchetti and 

Nevitt, 2003). Hatchery-reared fish that are unable to forage and avoid predators as well as wild 
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propagated fish are particularly problematic when they are being stocked as a part of a 

conservation program to assist declining populations.  To avoid maladaptive behaviours 

commonly found in fish reared in artificial environments, many fish culturists are developing 

techniques and environments to produce fish with more wild-type characteristics (Crossman et al 

2011). Fish hatcheries are often designed as production facilities, producing large quantities of 

fast-growing fish in a cost and time efficient manner. Conservation stocking programs should 

have a goal of producing high quality individuals that do not create a genetic divergence between 

wild and hatchery-reared fish. Raising fish in environments that imitate natural environments can 

increase survival upon release (Maynard et al 2003), and higher tank complexity, such as the 

addition of substrate, can improve growth and survival (Crossman 2008; Boucher 2012; 

Crossman et al 2011). A method currently used for hatchery-raised sturgeon is the 

implementation of stream-side hatcheries. Streamside hatcheries utilize water directly from natal 

streams, allowing fish to become exposed to natural daily and seasonal fluctuations, as well as 

chemical information, such as pheromones, dissolved organics, and predator cues (Crossman et 

al 2011). Another method that has been tested for sturgeon conservation culture is termed the 

‘head start’ method of stocking. Naturally spawned sturgeon larvae are collected from the wild, 

and transferred to a protective hatchery environment, where they are reared for release into their 

natal streams once they have outgrown their most vulnerable stages of life (Peterson et al 2007). 

This process utilizes selection from natural spawning events, thus avoiding artificial selection 

inadvertently caused by artificial spawning. Hatchery-reared fish that are fed a diet consisting of 

natural food sources demonstrate a higher survival (Anderson 1984), and avoid imprinting on 

hatchery feed. DiLauro et al (1998) found that larval sturgeon would not consume a different diet 

after imprinting on brine shrimp, a typical diet provided to hatchery-reared sturgeon.  
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Through “life skills training” (Suboski and Templeton 1989; Brown and Smith 1998; C. 

Brown and Laland 2001; Brown, et al 2013a), a variety of processes may be employed for 

exposing hatchery-reared fish to natural foraging and predator cues in order to prepare them for 

release. Studies on the effectiveness of “life skills training” in promoting increased survival of 

hatchery-reared fish have produced mixed results (Brown et al 2013a). Atlantic salmon (Salmo 

salar) conditioned to recognize northern pike do not show improved survival when stocked into 

lakes with pike present (Hawkins et al 2007). Chinook salmon (Oncorhynchus tshawytscha) also 

did not experience improved survival when conditioned to recognize an ecologically relevant 

predator prior to release (Berejikian et al 1999). Conversely, conditioning white seabream 

(Diplodus sargus) prior to release increases survival rates by two-fold (D’Anna et al 2012), 

while murray cod (Maccullochella peelii) post-stocking survival rates are quadrupled 

(Hutchinson et al 2012). Conditioned learning, however, is a complex mechanism that can be 

influenced by social learning, visual reinforcement, and even feeding history which can in turn 

influence covarying factors of body condition and morphology (Lönnstedt et al 2012). Thus 

while early exposure to predation risk is critical for the retention of predator learning and 

recognition (Lönnstedt et al 2012), life skills training may require further reinforcement, through 

the addition of visual cues, in order to effectively increase post-release survival. Although 

conditioned predator recognition learning alone does not guarantee improved survival rates post-

release, the potential for cultivating neuronal development through chemosensory stimulation 

may improve upon other maladaptive behavioural traits commonly described in hatchery-reared 

fish. While predator recognition learning is only newly described for a single population of lake 

sturgeon, ample opportunities for determining how kairomones affect post-stocking survival 
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rates of sturgeon exist through current conservation stocking programs for a number of species 

and populations. 

5.3. Future directions 

   

The relevance of this research demonstrating releaser-induced recognition learning in 

juvenile lake sturgeon as it applies to life skills training of hatchery reared fish, is dependent on 

further research related to the retention of learned information by sturgeon. Retention of learned 

predator recognition varies widely among prey fishes (Ferrari et al 2010b), and many factors, 

such as growth, level of perceived risk (Ferrari et al 2010b), and perhaps even population origin 

(Brown et al 2013a; Mackney and Hughes 1995) may contribute to how long learned information 

may persist. Due to unfortunate circumstances of sturgeon mortality, a direct comparison of 

behaviour between Rainy river sturgeon and Wolf river sturgeon was not possible. Experiments 

focusing on determining whether the observed differences were an effect of age, size, or 

population should be completed to help realize the full potential of alarm cue recognition 

learning in sturgeon.  

With the imminent extinction of particular sturgeon populations and sub-populations, 

with many more populations becoming increasingly threatened (Paragamian et al 2005), 

conservation stocking programs are sure to become a popular technique for increasing 

recruitment. However, the emphasis must not be placed on sheer production capacity for 

supplementing collapsed populations. While hatcheries are an important tool in sturgeon 

conservation, hatchery-released fish must be regarded experimentally with emphasis on 

understanding post-release behaviours and demographic characteristics (Secor et al 2002). An 

understanding of early life-histories and the importance of enrichment and chemosensory 
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information as it relates to neurological development and behavioural ecology is essential to the 

preservation of these ancient animals. 
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