
Key-value storage system synchronization in

peer-to-peer environments

A Thesis Submitted to the

College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the degree of Master of Science

in the Department of Computer Science

University of Saskatchewan

Saskatoon

By

Sinh An Pham

c©Sinh An Pham, July/2014. All rights reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Saskatchewan's Research Archive

https://core.ac.uk/display/226145177?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the

University of Saskatchewan, I agree that the Libraries of this University may make it freely available for

inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for

scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their

absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is

understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not

be allowed without my written permission. It is also understood that due recognition shall be given to me

and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or part should

be addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5C9

i

Abstract

Data synchronization is the problem of bringing multiple versions of the same data on different remote

devices to the most up to date version. This thesis looks into the particular problem of key-value storage

systems synchronization between mobile devices in a peer-to-peer environment. In this research, we describe,

implement and evaluate a new key-value storage system synchronization algorithm using a 2-phase approach,

combining approximate synchronization in the first phase and exact synchronization in the second phase. The

2-phase architecture helps the algorithm achieve considerable boost in performance in all three major criteria

of a data synchronization algorithm, namely synchronization time, processing time and communication cost,

while still being suitable to operate in a peer-to-peer environment. The performance increase makes it

feasible to employ database synchronization technique in a wider range of mobile applications, especially

those operating on a slow peer-to-peer network.

ii

Acknowledgements

I would like to express my gratitude to my supervisor, Dr. Ralph Deters, for his guidance, support and

advice during my study.

Furthermore, I am thankful to my committee members, Dr. Julita Vassileva, Dr. Derek Eager and Dr.

Li Chen for their encouraging words, thoughtful criticism, valuable comments and suggestions.

I would also like to acknowledge my friends for their support and encouragement.

Finally, I wish to express my love and gratitude to my beloved family; for their understanding and endless

love throughout the duration of my study.

iii

Contents

Permission to Use i

Abstract ii

Acknowledgements iii

Contents iv

List of Tables vi

List of Figures vii

List of Abbreviations viii

1 Introduction 1

2 Problem Definition 4
2.1 Definition . 4
2.2 Challenges . 5
2.3 Formalization . 6

3 Literature Review 8
3.1 Server Centric Approach . 8
3.2 Log-based Approach . 9
3.3 Timestamps . 9

3.3.1 Using System Clock . 10
3.3.2 Using Logical Clock . 11

3.4 Characteristic Polynomial Interpolation - CPISync . 12
3.4.1 Characteristic Polynomial . 12
3.4.2 Example . 13
3.4.3 Performance . 14

3.5 Invertible Bloom Filter . 14
3.5.1 Bloom Filters . 14
3.5.2 Using Bloom Filter in Data Synchronization . 16
3.5.3 Invertible Bloom Filter . 17
3.5.4 Invertible Bloom Filter in Set Reconciliation . 22

3.6 Approximate Set Reconciliation . 22
3.6.1 Bloom Filters for Approximate Synchronization . 22
3.6.2 Approximate Reconciliation Tree . 23

3.7 Set Symmetric Difference Size Estimation . 23
3.7.1 One-by-one Method . 24
3.7.2 Exponential Guessing . 24
3.7.3 Strata Estimator . 24
3.7.4 Using Bloom Filter . 25

3.8 Network Protocols . 26
3.8.1 Hypertext Transfer Protocol . 26
3.8.2 File Transfer Protocol . 27
3.8.3 Raw TCP . 27

3.9 Summary . 27

iv

4 Arichitecture Design 30
4.1 Discussion of Existing Approaches . 30
4.2 Proposed Solution . 31
4.3 Phase 0: Reducing to the Set Reconciliation Problem . 33

4.3.1 Mapping Data Items to Identifiers . 33
4.3.2 Size of Identifiers . 33

4.4 Phase 1: Approximate Synchronization and Symmetric Difference Size Estimation 34
4.5 Phase 2: Exact Synchronization . 36
4.6 Other Implementation Details . 37

4.6.1 Delete Operation . 37
4.6.2 Handling Failures . 37

4.7 Comparison . 38
4.7.1 With IBFSync . 38
4.7.2 With Bloom Filter and Hash Tries . 39

4.8 Applicable Scenarios . 39
4.9 Summary . 40

5 Experiments and Results 42
5.1 Metrics . 42
5.2 Experiment Setup . 43

5.2.1 Datasets . 43
5.2.2 Hardware and Software Configuration . 44

5.3 Comparison and Measuring . 46
5.4 Results . 47

5.4.1 Communication Cost . 47
5.4.2 Processing Time . 48
5.4.3 Synchronization Time . 50

5.5 Summary . 52

6 Summary and Future Works 53
6.1 Summary . 53
6.2 Contributions . 54
6.3 Future Work . 54

6.3.1 Other Components . 54
6.3.2 Data Transfer Protocol . 55
6.3.3 Algorithm . 55

References 57

v

List of Tables

3.1 Characteristic polynomial . 13

4.1 Pros and cons of synchronization algorithm categories . 30
4.2 Hash collision probability[2] . 34

5.1 Dataset sizes . 44
5.2 Microsoft Surface Pro specifications . 45
5.3 Nexus 7 (2013 version) specifications . 46

vi

List of Figures

1.1 Multiple Devices Per User . 1
1.2 Key-value Storage System . 2

2.1 Synchronization in Peer-to-peer Environment . 4
2.2 Changing Database . 6

3.1 Naive Approach . 8
3.2 Log-based Approach . 10
3.3 Assigning Timestamps . 10
3.4 Synchronization Using Timestamps . 11
3.5 Bloom Filter . 15
3.6 Hash Trie . 16
3.7 Bloom Filter Hash Tries Sequence . 17
3.8 Invertible Bloom Filter . 18
3.9 Invertible Bloom Filter - Subtraction, Server IBF . 19
3.10 Invertible Bloom Filter - Subtraction, Client IBF . 19
3.11 Invertible Bloom Filter - Subtraction, Result . 20
3.12 Invertible Bloom Filter - Recovery Step 1 . 20
3.13 Invertible Bloom Filter - Recovery Step 2 . 21
3.14 Approximate Synchronization Using Bloom Filter . 23

4.1 ASync Component . 31
4.2 ASync Sequence . 32
4.3 ASync - Phase 1 . 34
4.4 ASync - Phase 2 . 36
4.5 IBF Sequence . 38
4.6 Bloom Filter and Hash Tries Synchronization - Phase 2 . 39

5.1 Testing Databases . 43
5.2 System Configuration . 45
5.3 Communication Cost . 47
5.4 Comparison Between ASync and IBFSync, Communication Cost 48
5.5 Processing Time . 49
5.6 Comparison Between ASync and IBFSync, Processing Time 49
5.7 Synchronization Time . 50
5.8 Comparison Between ASync and IBFSync, Synchronization Time 51
5.9 Synchronization Speed . 51

vii

List of Abbreviations

ART Approximate Reconciliation Tree
API Application Programming Interface
CPI Characteristic Polynomial Interpolation
IBF Invertible Bloom Filter
PC Personal Computer
RDBMS Relational Database Management System
SQL Structured Query Language

viii

Chapter 1

Introduction

As the number of computing devices continue to increase, nowadays it is normal for one user to have

multiple personal computing devices such as smartphone, laptop, tablet, PC, etc. One stark example are

smartphones, according to [39], currently there are more than 1 billion smartphones over the globe, and this

number is expected to continue growing in the foreseeable future. This phenomenon comes along with the

demand of being able to seamlessly switch between devices, as it would be better if a user could continue

working on different machines without manually moving the program and the data being worked on. Figure

1.1 demonstrates the phenomenon: a user has multiple computing devices such as smartphone, laptop,

traditional desktop PC, and tablet. That user may want to run some identical applications across these

devices and keep the data being worked on the same across all devices. As a result, the matter of data

synchronization arises.

Figure 1.1: Multiple Devices Per User

User data can exist in multiple forms, but they mostly can be classified as structured data and unstructured

data. Structured data includes database, JSON files, XML files, etc. Unstructured data includes photos,

videos, music files and the like. Regardless, keeping both structured and unstructured data in synchronization

across devices is highly beneficial. In order to accomplish that goal, there must be a mechanism to synchronize

data between multiple devices. One prominent example of a synchronization algorithm for unstructured data

is rsync [38], which is being used widely under Linux. Data synchronization has other important applications,

1

such as online storage service [17], version control, backup systems, etc.

Different data have different use cases and characteristics, which in turn makes the synchronization

problem to have multiple solutions depending on the nature of the data [32, 5, 21, 35]. Take database for

example, they are highly volatile, extremely important to the host application, and their integrity is vital.

These characteristics make databases one of the most meaningful types of data to keep in synchronization, as

they allow applications to maintain the same state across devices. The database synchronization problem has

been researched extensively and has numerous solutions, catering to a wide array of scenarios [6, 16, 32, 11, 34].

Database synchronization can be done with the use of a central server keeping the authentic version of the

database, however, it is desirable to have a synchronization mechanism that works between devices via local

connection, i.e. a peer-to-peer environment. The problem becomes even more complex due to the nature of

mobile devices: limited computing power, limited bandwidth and intermittent connectivity among others. In

addition, there are numerous types of databases such as traditional Relational Database Management System

(RDBMS), graph database, key-value storage systems, etc. Each kind of database has its own requirements

for synchronization mechanism.

Key value storage system is a relatively new design for databases, emerged from the need to have a simple

storage model which can scale better than traditional relational database approach [15, 10, 33]. Figure 1.2

illustrates a key-value storage system with each value being associated with one key, and vice versa. The most

common operation of a key-value storage system is querying value based on the input key. Other supported

operations include add, remove, range query, etc.

Figure 1.2: Key-value Storage System

Despite being new, key-value storage systems have become quite popular and are being used in numerous

applications [13, 22]. There are a number of characteristics which makes key-value storage systems an

2

appealing choice, especially for web services:

• Flexible data model: unlike traditional relational databases which take data and separate it into many

interrelated tables, key-value storage systems provide a very simple data model with only keys and

values. The results are duplicated information in contrast to RDBMS, however storage is no longer

cost prohibitive. The new data model affords developers more flexibility, ease of efficiently distributing

the stored data and better read and write performance.

• Scalability and performance advantage: the simpler data model also makes it possible for key-value

storage systems to scale out to multiple commodity servers. Performance is maintained by distributing

load across servers, and thus is easier to adapt to the variability of users.

NoSQL (Not Only SQL) refers to storage systems which do not use tabular relations for their data model.

Key-value storage system is the simplest form of NoSQL database, but precisely due to its simplicity, it can

be embedded easily in less powerful computing devices like smartphones or tablets. One use case of key-value

storage systems on mobile devices is caching small, but frequently used, portion of the whole database, which

is usually too large to store fully in a hand-held computing device.

With the growing usage of key-value storage systems in mobile devices, the demand to synchronize them

is also increasing. Despite its importance, no sufficient solution has been proposed to fill this need. In

this research, we take a look at the problem of key-value storage systems synchronization in a peer-to-peer

environment. We designed, implemented and measured a new algorithm for this problem which has better

transmission requirements than previous methods.

The remainder of this proposal is structured as follow: Chapter 2 explains the research problem in details.

Chapter 3 presents existing solutions to the research problem and discusses their pros and cons. The proposed

algorithm is described in Chapter 4 along with its implementation details. Chapter 5 specifies the experiments

and shows the results. Finally, Chapter 6 summaries our research and outlines some future research ideas.

3

Chapter 2

Problem Definition

2.1 Definition

The main goals of this research are to design, implement and evaluate a new algorithm for key-value database

synchronization between computing devices running on peer-to-peer networks. Figure 2.1 depicts an overview

of the objective of the algorithm: synchronize the database in multiple devices, which in this particular case

are a traditional PC, a laptop, a smartphone and a tablet. Initially, each device held the same version of one

database. However, over time one version of the database in one of these devices changes, and as a result,

we need to bring older versions located on the other devices up to date.

Figure 2.1: Synchronization in Peer-to-peer Environment

The following are the definitions of important keywords mentioned above:

• Algorithm: a step-by-step procedure to achieve a specific intention, which in this thesis is the synchro-

nization of data.

4

• Peer-to-Peer: the system does not depend upon any single centralized server, in contrast, it could

operate solely between the user’s devices.

• Key-value database: in this thesis, we focus on only one type of database: the key-value storage

system. This database type only supports a few simple operations: get, put and delete. The database

can contain the business data of the application, user preferences, user data, etc.

• Computing devices: a general purpose device that can be programmed to carry out a set of operations.

Examples include personal computer (PC), laptop, tablet, smartphone, etc.

• Synchronization: the purpose of the algorithm is to bring different versions of a database on multiple

devices to the most updated version.

The problem of data synchronization in general is how to update an old version of a document on one

machine to the current version located in another machine. In the context of this research, the document is

a key-value database. A change in a key-value database could occur as the result of the following operations:

• Adding a new key-value data item

• Changing the value of a key-value data item

• Deleting a data item

Note that we are classifying changes as a change in the database itself, not a change in how the data is

stored in the database. The difference is subtle but very important: one database can choose how to store

its data in different storing device differently. It can store data by using B+ Tree in traditional magnetic

hard drive and another data structure for high speed Solid State Drive (SSD). The difference at the file level

would make synchronization algorithms operating at this level confused and would be detected as a huge

change, thus imposes a big communication cost. In contrast, since we are looking into algorithms operating

at the data item level, we would avoid this problem altogether.

2.2 Challenges

In order to develop such a synchronization algorithm, a number of key challenges need to be addressed:

• Redundancy detection: in majority of cases, between an outdated version and the current version of

a database, only relatively small parts actually changed. The problem is how to detect those changed

parts effectively, both in term of computing power and communication overhead. This redundancy

detection is the core part of the whole synchronization algorithm.

• Protocol design: to operate reliably over the limited bandwidth and intermittent nature of peer-to-peer

connection, the protocol must be designed to handle intermittent connectivity and have high fault

tolerant property.

5

• API design: to make the algorithm appealing to other developers, the API need to be easy to use,

report clear error messages, easy to extend and customize.

• Cross-platform support: the algorithm aims to run across multiple mobile platforms including iOS,

Android and Windows Phone.

2.3 Formalization

Figure 2.2: Changing Database

The remote data synchronization problem can be described as follow: given two versions of the same data

Dold, Dnew ∈ Σ∗ over some alphabet Σ (usually character/byte) locate in two machines C (the client) and

S (the server) respectively. C and S are connected over a communication link, Dold is the outdated version,

and Dnew is the current version of the data. The problem is how to update Dold to Dnew? We also assume

that C only has knowledge of Dold and S only has knowledge of Dnew.

The goal is to design a communication protocol between C and S that results in C holding a current copy

of D (Dnew) while minimizing the communication cost.

We call d is the changed portion of the data being synchronized. Usually, the changed part is only a small

portion of the whole database.

Figure 2.2 demonstrates this circumstance. Initially both the smartphone and the tablet held an identical

copy of the same database, which we called ”Version 1” in the picture. Over time, the tablet made some

6

changes to the database, but only a portion of the database has changed, which is marked with the orange

color. The problem is how we detect the changed portion and transfer it to the smartphone in order to bring

its copy of the database to the current version.

We can observe that the minimum bytes of data which is needed to bring the old version in the smartphone

to the current version in the tablet is d, and thus, the best communication complexity is O(d).

7

Chapter 3

Literature Review

There are numerous existing approaches to data synchronization in general and database synchronization

in particular. Some algorithms are applicable to the data synchronization problem in general, while others

are only for key-value database synchronization. The following sections will provide an overview of the most

prominent solutions.

3.1 Server Centric Approach

One obvious method for database synchronization is to simply transfer the whole database from the server to

the client to replace the old version in the client. This is the simplest form of data synchronization, and thus

easiest to implement and understand. In addition, there is minimal processing being done beside reading the

database, so the processing cost is negligible. However, we can quickly notice that the communication cost

of this method is O(n) - where n is the number of items in the current version of the database - and thus, it

is prohibitively expensive for synchronizing practical databases. In a mobile peer-to-peer environment, the

weakness of communication cost becomes even more severe since the connection is usually less capable than

a wired connection.

Figure 3.1: Naive Approach

An optimization which can be applied to key-value storage systems is that instead of sending the whole

8

database, we can just send identifiers, usually in form of hash values, representing each key-value item. In

the client, it would have to convert its own key-value items into identifiers using the same algorithm, and

then compare them with the received list of identifiers from the server in order to detect the differences.

Afterwards, the client now can request the differences from the server. The communication cost of this

optimization is still O(n), however it is better than the original naive approach since identifiers are smaller

than the whole item.

3.2 Log-based Approach

The main idea is to keep a log of applied operations since the last synchronization on the server for each

participating client. In order to respond to a synchronization request, the server would have to determine

what new operations have been applied since the last synchronization for the client issuing the request

and then transmit them to this client. The transmission cost of this approach is O(d), which is the best

theoretical possible communication complexity. In addition, the processing cost for doing synchronization

is also negligible, similar to the previous approach when there is minimal processing being done. In this

case, the processing cost only includes the looking up operation for the requesting client and reading the log

stream.

The advantage of this approach is its simplicity in term of implementation, yet being effective in term

of communication cost. Nonetheless, there are two significant disadvantages: storage cost and reduced write

performance. To maintain the log, the system would have to use more space alongside with the main database,

and for each write operation, the system would have to update the log. Note that the writing problem can

be partially mitigated by using batch writing, when each update to the log is kept in memory first and batch

written to slower disk system later.

Due to its disadvantages, this approach is only suitable for client/server environment in which the server

have sufficient storage capability and write performance. In a peer-to-peer environment with mostly low-

powered computing devices such as mobile phones, this approach is unsuitable.

3.3 Timestamps

Timestamp is also one of the traditional methods for data synchronization. To apply this method to key-value

storage system synchronization, we mark each key-value data item with a timestamp. Whenever an update

occurs, the server increases the timestamp corresponding to the changed data item. When a client requests

synchronization, it first sends all keys and their current timestamps to the server, the server would respond

by transferring all data items with timestamps being later than the received ones.

Similar to the previous approach of logging, the timestamps approach also requires more storage space

and reduces writing performance of the database. Considering storage requirement, this approach stores

timestamps along with the authentic data, thus requires more storage space. In addition, each write operation

9

Figure 3.2: Log-based Approach

Figure 3.3: Assigning Timestamps

also needs to update the attached timestamp. The processing time of this approach is O(n), however, it is

relatively fast in compared to other O(n) approaches since it only needs to compare timestamps, usually in

the form of integers. The communication cost is O(n) since we have to sends all the keys and its timestamps

to the server.

There are two major ways to implement timestamp: using the system clock and using a logical clock.

The following sections will describe each method in detail.

3.3.1 Using System Clock

As the name implied, the server uses its system clock to mark the timestamps. This method is the most

natural way of applying timestamps to data synchronization.

10

Figure 3.4: Synchronization Using Timestamps

This presents numerous problems due to how system clock works: since it depends on the system clock,

now even when the clock is wrong the system administrator might not want to change it as it may cause the

synchronization to fail. Another potential issue comes from daylight savings time when the clock is adjusted

to compensate for different daylight in different seasons. This can be remedied by not using local system

clock but GMT time. However, due to its many pitfalls, using system clock is not recommended to implement

timestamp based synchronization.

3.3.2 Using Logical Clock

A logical clock is a method of detecting the order of events in a distributed system. For the purpose of

synchronizing key-value database, a simple implementation of logical clock is to assign with each key-value

data item a counter number. The synchronization algorithm uses the counter number for detecting which

data item is newer.

The algorithm follows a few rules listed below:

1. Each data item increments its counter on each event that changes the data. Each counter starts with

number 0.

2. When a client needs to do synchronization with a server, it sends all of its keys and corresponding

counters to the server. Note that only the keys and the counters are sent, the values of the data items

are not sent.

11

3. On receiving a message, the server detects modified data items by comparing its own counter values

for each key. All the changed and new data items are sent back to the client.

This simple implementation of logical clock works without depending on the system clock and thus, avoids

many of its problems.

3.4 Characteristic Polynomial Interpolation - CPISync

The problem of key-value storage system synchronization can be reduced to the set reconciliation problem

in a straight forward manner: every key-value item is mapped to an identifier via a mapping mechanism,

and then we solve the set reconciliation problem on the identifiers. This reduction step is similar to the

optimization of the naive approach described earlier. The set reconciliation problem is defined as follow in

[27]:

Given a pair of hosts A and B, each with a set of length b bitstrings, how can both host determine
the union of the two sets with a minimal amount of communication—both with respect to the
number of exchanges between the two hosts and with respect to the number of bits of information
exchanged.

The set reconciliation problem has multiple approaches [27, 18, 31]. One mathematics based solution for

the exact set reconciliation problem is based on characteristic polynomial interpolation (CPI) [27].

3.4.1 Characteristic Polynomial

Given a set S = {x1, x2, ...,xn}, S can also be represented by its characteristic polynomial, which is a

univariate polynomial defined as follow:

CPS(x) = (x− x1)(x− x2)...(x− xn)

An important property of characteristic polynomials is that they allow us to cancel out all the common

items in two sets SA and SB by using division between the CPSA
and CPSB

:

CPSA
(x)

CPSB
(x) =

CPSA∩SB
(x)∗CPSA−SB

(x)

CPSA∩SB
(x)∗CPSB−SA

(x) =
CPSA−SB

(x)

CPSB−SA
(x)

Since all the common items cancel out, the degrees of CPSA−SB
(x) and CPSB−SA

(x) are relatively small.

As a result, we can reconstruct
CPSA−SB

(x)

CPSB−SA
(x) based on a relatively small number of evaluation points.

The set reconciliation algorithm with a known bound d on the size of the symmetric difference using

characteristic polynomial (the CPISync algorithm) works as follow [37]:

1. Initially, the server holds SA and the client holds SB

2. In both the client and the server, map elements of the corresponding set to elements of some finite field

Fq where q is a prime number greater than or equal to the maximum item value of SA and SB

3. In the client: calculate CPSB
(x) at d evaluation points, send the results to the server

12

4. In the server: calculate CPSA
(x) at d evaluation points, use the values of CPSB

(x) received from the

client and perform division to get the values of
CPSA

(x)

CPSB
(x) at these evaluation points

5. Interpolate the rational function
CPSA

(x)

CPSB
(x)

6. Factor CPSA−SB
(x) and CPSB−SA

(x) to get back SA − SB and SB − SA

7. Send the results to the client

Note that all calculations on the characteristic polynomial are done over a finite field Fq.

In practice, we usually do not know d in advance. As a result, without knowing the bound d on the size

of the symmetric difference, we would have to do another step in order to estimate d. There are a number of

algorithms for this step, they will be described in section 3.7, ”Set symmetric difference size estimation”.

3.4.2 Example

Consider the sets:

SA = {1, 2, 3, 4}

and

SB = {1, 2, 5, 6}

stored at nodes A and B respectively. We represent all items of Sa and Sb as elements of a finite field F11.

The characteristic polynomials of Sa and Sb are:

CPSA
(x) = (x− 1)(x− 2)(x− 3)(x− 4)

CPSB
(x) = (x− 1)(x− 2)(x− 5)(x− 6)

Since the number of elements that differs between Sa and Sb is 4, we need to evaluate CPSA
(x) and

CPSB
(x) at at least 4 different evaluation points in order to determine the union of SA and SB . Assuming

each host agrees on the evaluation points E = {−1,−2,−3,−4}, we have the results in Table 3.1.

Table 3.1: Characteristic polynomial

x -1 -2 -3 -4

CPSA
(x) 10 8 4 8

CPSB
(x) 10 1 10 5

CPSA
(x)/CPSB

(x) 1 8 7 6

Node B evaluates its characteristic polynomial, sends the values at all evaluation points {10, 1, 10, 5}

to node A. Node A evaluates its own characteristic polynomial to get {10, 8, 4, 8}, and then uses the value

of CPSB
(x) just received to calculate CPSA

(x)/CPSB
(x). It then interpolates the rational polynomial from

these values {1, 8, 7, 6} and gets:
CPSA

(x)

CPSB
(x) =

CPSA−SB
(x)

CPSB−SA
(x) = x2+4x+1

x2+8

To get back SA − SB , we need to factor the numerator x2 + 4x + 1, the result is {3, 4}

13

Similarly, to get back SB − SA, we need to factor the denominator x2 + 8, the result is {5, 6}

3.4.3 Performance

The CPISync algorithm achieves O(d) in communication cost, with d being the size of the symmetric difference

between the two sets. However, in terms of computing cost:

1. The steps of calculating CPSA
(x), CPSB

(x) are O(nd), and CPSA
(x)/CPSB

(x) is O(d)

2. The rational function interpolation is O(d
3
)

Thus this algorithm is only suitable when the size of the symmetric difference between the two sets are

small.

3.5 Invertible Bloom Filter

Another algorithm for set reconciliation is the Invertible Bloom Filter (IBF) as described in [18]. This

approach uses a novel data structure, the Invertible Bloom Filter, which support the set subtraction operation

to detect the difference between two remote sets.

3.5.1 Bloom Filters

Definition

A Bloom Filter is a probabilistic data structure used to test whether an element is a member of a set [7].

It achieves small space requirement by allowing false positive in its query operations. Due to low space

requirement and constant look up time, it is widely used in situations where storage is limited and some false

positives are acceptable or controllable [8].

A Bloom Filter has two components:

• An m-bit array

• K hash functions each yielding a value between 0 and m - 1.

Bloom Filters support two operations: add and query.

1. To add an element

(a) Hash the element using the k hash functions to get k indices

(b) Set the bits in the bit array at these indices

2. To query if an element is in the set

(a) Hash the element using the k hash functions to get k indices. The following two scenarios can

occur:

14

i. If all bits at these k indices are 1, then the element may be in the set

ii. If one or more bit at k hash values are 0, the element does not belong to the set

Example

Figure 3.5: Bloom Filter

Figure 3.5 shows an example of a Bloom Filter with 16-bit array and 3 hash functions. In our example,

there are 5 data items: A, B, C, X and Y. The three hash functions produce the following values for these

items:

• Item A: 0, 2 and 11

• Item B: 6, 13 and 15

• Item C: 6, 8 and 14

• Item X: 0, 2 and 7

• Item Y: 8, 11 and 14

Items A, B and C have been added, thus the corresponding bits of the Bloom Filter are set. When query

item X, the Bloom Filter returns ”No” since one of its bit is not set. However, querying Y is a case of false

positive since all its hash values have been set, but in fact it does not belong to the original set.

False Positive

After inserting n keys into an array of m bits, the probability that a particular bit is still 0 is:

(1− 1
m)kn

Hence the probability of false positive in querying this Bloom Filter is [1]:

pfalse = (1− (1− 1
m)kn)k

Note that if we knew the number of items that would be added to a Bloom Filter, we can control the

false positive rate by changing m (the length of the bit array) and k (the number of the hash functions).

15

3.5.2 Using Bloom Filter in Data Synchronization

While Bloom Filter does not directly solve the data synchronization problem, it serves as the foundation of

multiple data synchronization algorithms as it provides a mechanism to query a set effectively.

The most notable data synchronization algorithms using Bloom Filter are:

• Approximate synchronization, this will be discussed in detail in later section

• Using Bloom Filter in conjunction with other algorithms, in particular with Hash Tries [30]

The second algorithm works as follows:

• Use Bloom Filter to do approximate synchronization first

• Use Hash Tries to do exact synchronization in the second phase, which contains only the false positives

left over from the first phase.

Figure 3.6 shows an example of a hash tries containing 6 members, S = ”0000”, ”0010”, ”0110”, ”0111”,

”1001”, ”1000”. Each of the rectangles represents a hash value, while each ellipse depicts a member of the

set. All members sharing the same prefix are grouped together, and the data structure uses a hash function

to calculate the hash value representing all these members. At the root of the trie, a root hash value is

calculated taking into account all members of the set.

Figure 3.6: Hash Trie

The algorithm accomplishes synchronization by exchanging and comparing the hash values in each level

of the trie. First the root hash value is sent and compared, if it is the same, the algorithms concludes that

the whole database is identical and no more steps are required. If the root hash values are not the same, we

go on to compares the hash values at the second level, below the root level. The algorithm continues these

steps until it detects all different data members of the two sets.

16

Figure 3.7: Bloom Filter Hash Tries Sequence

Figure 3.7 shows the sequence of this synchronization algorithm. Note that this algorithm uses multiple

rounds of communication for the second phase.

3.5.3 Invertible Bloom Filter

Definition

The original Bloom Filter does not allow retrieving elements after they have been added to the Bloom Filter.

An Invertible Bloom Filter is a variation of Bloom Filter designed specifically for this feature: under the right

settings, it can be inverted to yield the elements inserted[18]. Instead of a bit array in traditional Bloom

Filter, an IBF has an array of cells and each individual cell has 3 fields inside:

• idSum: XOR value of all item ids which have been hashed into this cell

• hashSum: XOR value of all hash values, calculated by an independent Hc hash function

17

• count: number of items in this cell

To add an item with id idx into an IBF, we use k hash functions and one special hash function Hc. K

hash functions are used to generate the indices of the cells, and then we XOR idx into B[i].idSum, XOR

Hc(idx) into B[i].hashSum, and increase B[i].count by 1.

Example

Figure 3.8 demonstrates an IBF. Items A, B and C have been added to the IBF using 3 hash functions to

determine their indices. We can clearly see in Figure 3.8 that the corresponding idSum, hashSum and count

fields have different values than the initial value of 0 due to this fact.

Figure 3.8: Invertible Bloom Filter

By utilizing these 3 fields instead of being just a bit array, IBF has the ability to do subtraction on

sets. This depends on the fact that common items would cancel out when doing subtraction, due to the

characteristic of the XOR operation used in both idSum and hashSum fields:

A⊕B ⊕A = B

We can see this subtraction feature of IBF by considering an example. Considering the server set,

Sserver = {B,C,D,E, F,G}. The IBF generated by this set is shown in Figure 3.9.

The client set, Sclient = {A,D,E, F,G}. The IBF of this set is illustrated in Figure 3.10.

The subtraction operation is done by applying the steps shown in Algorithm 1.

input : IBF1 and IBF2

output: IBF3, the result of IBF1 − IBF2

for i in 0..n-1 do

IBF3[i].idSum = IBF1[i].idSum⊕ IBF2[i].idSum

IBF3[i].hashSum = IBF1[i].hashSum⊕ IBF2[i].hashSum

IBF3[i].count = IBF1[i].count− IBF2[i].count

end

Algorithm 1: IBF subtraction

18

Figure 3.9: Invertible Bloom Filter - Subtraction, Server IBF

Figure 3.10: Invertible Bloom Filter - Subtraction, Client IBF

Take Sserver − Sclient for example, for the first cell, we would have the result cell:

1. idSum = {D ⊕ F} ⊕ {A⊕D ⊕ F} = A

2. hashSum = {H(D)⊕H(F)} ⊕ {H(A)⊕H(D)⊕H(F)} = H(A)

3. count = 2 - 3 = -1

Notice this would cancel out the common items in the idSum and hashSum fields of the result IBF. We

do this to the remaining cells of the IBF. The result of doing these steps for the IBFs of the server set Sserver

and the client set Sclient is shown in Figure 3.11

To recover the elements of the set which has been added to the IBF, firstly we need to identify all the

”pure” cells in the IBF. In an IBF, a pure cell is defined as follow:

1. The count field must be 1 or -1

19

Figure 3.11: Invertible Bloom Filter - Subtraction, Result

2. The hashSum field must equal to Hc(idSum)

A pure cell will have its id sum field equal to the id of the only inserted element it contains. The reason

IBFs pure cells must have the count field equal to 1 or -1 is to allow decoding IBFs which are results of

subtraction operation. For example, the result IBF of IBFSA
− IBFSB

will have 1 as the counts of cells

belonging to SA, and vice versa.

The following algorithm is used to recover elements encoded in a IBF[18]:

1. Identify pure cells, put them in a pure cell list.

2. Recover an element from one of the pure cells, and remove that element from the IBF and the pure cell

list. This step could possibly make other cells in the IBF pure, which are then added to the pure cell

list.

3. Repeat until done, which means there are no indices remaining in the list of pure cells. At this point,

either all items in the IBF have been recovered, or some remain encoded in the filter.

Example - IBF decoding

Figure 3.12: Invertible Bloom Filter - Recovery Step 1

20

Figure 3.12 shows the first recovery step of an IBF, we use the result IBF in the last step as an example.

Initially we detect 0, 3 as the pure cells, and thus they are added to the pure cell list. We then examine the

first pure cell: cell index 0. It has the count field value of -1, thus it belongs to the SB −SA list. The id ”A”

is fetched from the idSum field, and ”A” is added to SB − SA.

Figure 3.13: Invertible Bloom Filter - Recovery Step 2

We then remove item A from the IBF and remove 0 from the pure cell list. By doing so, cell 4 also

becomes a pure cell, thus is added to the pure cell list. Figure 3.13 shows the state of the IBF after these

steps.

The process continues until the pure cell list is empty. At this point, if all cells in the IBF are 0 then we

have fully recovered all items from the IBF. If the IBF still contains cells which are not 0, we conclude that

the recovery process has failed.

Parameters

The recovery process of an IBF depends on the pure cells we could identify, therefore one major problem

of implementing an IBF is how many cells should each element be hashed into? We refer to this number

as hash count. If hash count is too small, for example 1, then we can easily see that there will be a high

probability of finding pure cells initially. However, once all the initial pure cells have been recovered, we will

have no other pure cell to consider, since the hash count is 1, removing one pure cell will not lead to any

other pure cell. On the other hand, if hash count is too big, it is unlikely that there will be pure cell at the

beginning of the recovery process. In [18], the authors showed that hash count values of 3 or 4 work well in

practice.

In addition, similar to the original Bloom Filter, the length of the IBF is directly proportional to the

number of items it needs to decode[18].

There is a chance the operation could not complete, however we can control this probability to be low

enough in practice and then have recovery mechanism in case it happens.

21

3.5.4 Invertible Bloom Filter in Set Reconciliation

Since IBF allows us to do set subtraction and decode items that have been added to the IBF, we can apply

IBF to the set reconciliation problem as follows[18]:

1. The client calculates and sends its IBF to the server

2. The server calculates its own IBF, does the subtraction with the IBF received from the client, and then

recovers the resulted IBF to achieve the set of SA − SB

3. The server sends all these detected items to the client

4. The client uses the different items to update its own database

Note that in order for the above algorithm to work, more specifically for the recovery process of IBF to

be successful, we must first know the size of symmetric difference between two sets. This parameter is used

to allocate the suitable size for the IBF.

3.6 Approximate Set Reconciliation

Another approach in data synchronization is approximate synchronization: instead of synchronizing all the

data items, the algorithm only tries to synchronize as many items as possible. The motivation is the fact that

numerous applications can tolerate a small error and thus, can work with partially synchronized data. In

addition, approximate synchronization can also be used as a prelude to a more expensive exact synchronization

algorithm for applications requiring exact synchronization.

3.6.1 Bloom Filters for Approximate Synchronization

One simple algorithm for approximate synchronization is to use a Bloom Filter. As observed in [9], this

algorithm is surprisingly effective, especially when the number of differences is a large fraction of the set size.

Figure 3.14 illustrates the algorithm.

The algorithm works as follows:

1. The client creates a Bloom Filter containing all its data items.

2. The client sends the Bloom Filter created in the last step to the server.

3. The server queries the received Bloom Filter to detect elements which do not exist in the client. Because

of the nature of Bloom Filter, there will be some false positive (items thought to exist in the client

while in fact they do not)

4. The server sends those detected data items to the client.

5. The client updates its database.

22

Figure 3.14: Approximate Synchronization Using Bloom Filter

3.6.2 Approximate Reconciliation Tree

Using Bloom Filter leads to a simple algorithm with good result, however, in [9], the authors proposed a data

structure, called Approximate Reconciliation Tree (ART), based on Bloom Filter, Patricia Tries and Merkle

Tree for better results. When using Bloom Filters for approximate synchronization, the false positive of a

Bloom filter is f , then using a corresponding ART will reduce the false positive to:

px = (1− f)d

In the above equation, d is the depth of the ART in which the current element is being examined.

3.7 Set Symmetric Difference Size Estimation

Given two sets SA and SB , the symmetric difference of them is defined as:

SA∆SB = (SA − SB) ∪ (SB − SA)

Both previously discussed approaches to the exact set reconciliation problem, namely CPISync (synchro-

nization algorithm based on CPI) and IBFSync (synchronization algorithm based on IBF), need to know

before hand the size of symmetric difference of the two sets. Unfortunately, in many cases and especially

in our context of key-value storage systems synchronization, this information is not available. Thus, before

being able to apply one of these two algorithms, we need to estimate the size of SA∆SB .

There are many existing approaches to estimate the symmetric difference of two remote sets, notably

one-by-one, exponential guessing, strata estimator and using Bloom Filter.

23

3.7.1 One-by-one Method

This method uses multiple rounds of communication. The client uses an initial value for the symmetric

difference and then increases it by a pre-defined number d after each round. In each round, the synchronization

algorithm detects if it has successfully run, if not, the estimated symmetric difference increases by d.

Since this method requires multiple communication rounds, it is not suitable in high latency environments.

3.7.2 Exponential Guessing

This method also uses multiple rounds of communication, starting with the smallest possible symmetric

difference and then increasing it each round according to some pre-defined rule. Most commonly is to multiply

it by 2 after each round, however depending on the implementation, different factor can be used. In each

round, it uses the failure-detection mechanism of the corresponding algorithm (CPI or IBF) to determine if it

has successfully completed the algorithm or not. If not, then it would re-run the algorithm with an increased

estimated symmetric difference.

This solution requires sending CP or IBF of the set O(log d) times, and since it consumes multiple rounds

of communication, it suffers from the same drawback as the one-by-one method: unsuitable for environments

with high latency.

3.7.3 Strata Estimator

The Strata Estimator[18] uses IBF to estimate the symmetric difference between two sets. The algorithm

works as follow:

1. Denote U as the universe of the set values, |U | is the size of U

2. Apply a hash function Hz to each elements to assure the mapped values in SA and SB are uniformly

distributed throughout U.

3. Stratify U into L = log2(|U |) partitions, P0, P1...PL, such that partition Pi covers 1/2(i+1) of U.

4. Create L IBFs, each IBF contains items belonging to the corresponding partition

The algorithms for encoding and decoding strata estimator are given below.

for s ∈ S do

i = number of trailing zeros in Hz(i) ;

Insert s into the i th IBF;

end

Algorithm 2: Strata estimator encoding using hash function Hz

24

count = 0;

for i = log2(|U |) down to -1 do

if i < 0 or IBF1[i]− IBF2[i] does not decode then

return 2i+1 ∗ count

else

count += number of elements in IBF1[i]− IBF2[i]

end

end

Algorithm 3: Strata estimator decoding

3.7.4 Using Bloom Filter

In [36], the authors proposed the following equations, called the quasi-intersection method, to estimate the

size of the symmetric difference between SA and SB using Bloom Filters:

|SA ∩ SB | ≈ |SB | − |SB |−n0

1−(1−e−k|SA|/m)k

Thus:

d0 ≈ |SA| − |SB |+ 2 |SB |−n0

1−(1−e−k|SA|/m)k

In which:

• n0 is the number of elements in SB which are considered to possibly exist in SA by querying BF (SA)

• K is the number of hash functions used in BF (SA)

• m is the number of bits in BF (SA)

• d0 is the estimated symmetric difference between SA and SB

Note that (1 − e−k|SA|/m)k is the approximation of the false positive rate of BF (SA). However, in [12],

it has been shown that this formula has a large error margin for small Bloom filters. Therefore, we used the

original equation of calculating false positive:

pfalse = (1− (1− 1
m)kn)k

in our implementation. Therefore, the equations become:

|SA ∩ SB | ≈ |SB | − |SB |−n0

1−pfalse

d0 ≈ |SA| − |SB |+ 2 |SB |−n0

1−pfalse

The authors showed that this method is more efficient than one-by-one and exponential guessing method

in [36].

25

3.8 Network Protocols

In this section, we take a look into applicable networking protocols for transferring data in a peer-to-peer

network environment.

Note that although the system works as a whole in a peer-to-peer environment, each synchronization

happens under a scenario which can be viewed as a client-server architecture: a server holding the current

version of the database and the client trying to update its outdated database to that current version.

The following sections will details some of the most popular protocols for transferring data.

3.8.1 Hypertext Transfer Protocol

Hypertext Transfer Protocol (HTTP) [19] is an application protocol primarily used for serving webpages.

However, it has multiple characteristics that make it appealing for our problem:

1. It’s standard and ubiquitous, with support on practically every platform (Windows, Linux, MacOS,

Android, iOS, Windows Phone...)

2. It can be used to transfer binary data, not just text.

3. Standard responses for different error scenarios.

Using HTTP would make it possible for our solution to implement a RESTful [20] service for database syn-

chronization on each device, and that would make it very easy to interoperate with other systems. However,

it also involves multiple drawbacks:

1. Bigger overhead than necessary. Each HTTP request must include a verbose header.

2. Using it for transferring binary data is possible, but since it’s originally designed for text, transferring

binary data is harder than other protocols designed for binary data.

The overhead of this protocol is significant, below is an example of a standard response from the server:

HTTP/1 .1 200 OK

Content−Type : t ex t /html

Content−Length : 3833

Accept−Ranges : bytes

Server : HFS 2 .3

Set−Cookie : HFS SID=0.811487414175645; path =/;

Cache−Control : no−cache , no−s tore , must−r e v a l i d a t e , max−age=−1

Verbose headers make using HTTP in our solution unnecessarily inefficient. Therefore, we decided against

using HTTP.

26

3.8.2 File Transfer Protocol

File Transfer Protocol(FTP) [29] is a popular protocol for transferring files over a TCP-based network, such

as a local LAN or the Internet. It supports authentication, normally with a username and password, however

it can also operate anonymously. The protocol has extensive data representation formats:

1. ASCII mode

2. Image or binary mode

3. EBCDIC mode

4. Local/proprietary mode

There are also multiple modes for data transferring:

1. Stream mode

2. Block mode

3. Compressed mode

Similar to HTTP, FTP is well supported by multiple platforms. In addition, it is more efficient since the

header overhead is smaller. We chose FTP as the data transfer protocol for our current implementation. In

detail, we use binary mode for data representation and stream mode for data transferring since they are the

most suitable settings for our data.

FTP is notably appropriate for our problem since each transferring data phase of our algorithm can be

modeled as a file transfer problem.

3.8.3 Raw TCP

This approach uses the raw TCP connection [28] to send the data, without invoking any higher level protocol.

The most significant advantage is this method has the smallest overhead, since we can implement the protocol

specifically for our use cases, not for the bigger general use cases HTTP or FTP was designed for. Because

of this, we can eliminate unnecessary features from the protocol and make it more efficient.

The disadvantage of this method is since it is not a standard protocol, we need to implement it by

ourselves. We decided against this method due to the time limit, however, this method has the potential to

become the most efficient data transfer protocol possible.

3.9 Summary

This chapter describes numerous approaches in three key areas of our problem: the synchronization algo-

rithms, the symmetric size difference estimation algorithms, and possible protocols for transferring data over

the network.

27

This chapter describes some notable approaches to the key-value storage systems synchronization problem.

Those algorithms are:

1. Naive or server centric algorithm

2. Log-based

3. Using timestamps

4. Using Characteristic Polynomial

5. Using Invertible Bloom Filters

6. Using Bloom Filter in conjunction with Hash Tries

7. Approximate synchronization using Bloom Filter

8. Approximate synchronization using Approximate Reconciliation Tree

Each algorithm has its own unique properties regarding processing time, communication cost, synchro-

nization time. However, these solutions can be classified into the following major categories:

1. According to the number of communication round

• One round or limited round: naive approach, log based, CPI or IBF with estimated symmetric

difference, approximate reconciliation tree

• Unbounded round: CPI or IBF with exponential guessing

2. According to the accuracy of the algorithm

• Exact synchronization: naive, log-based, CPI, IBF

• Approximate synchronization: using bloom filter, approximate reconciliation tree

3. According to the usage of prior context, or meta data:

• Using prior context: log based, timestamps

• Not using prior context: naive, CPI, IBF, both approximate synchronization methods (using

Bloom Filter and Approximation Reconciliation Tree)

In addition, this chapter also describes some common methods to estimate the symmetric difference

between two remote sets, which is essential for the algorithms of CPI and IBF to work. These methods are:

• One-by-one: increase the estimated value by a pre-defined number d after each time.

• Exponential guessing: using multiple rounds of communication, increase the guessed number of differ-

ence each time until we get the acceptable values.

28

• Strata Estimator: using multiple invertible Bloom Filters to estimate.

• Using Bloom Filter: using just one Bloom Filter to estimate.

Finally, we discussed different ways of transferring data over the network, including HTTP, FTP and raw

TCP. We see them under their applicability to our problem, and FTP was chosen as it provides some of the

most useful benefits while the drawbacks are negligible.

Although the above mentioned approaches provide a number of solutions to our problem of key-value

storage system synchronization, each method has its own drawbacks and can be improved upon. Examples

include significant storage cost for methods using prior context such as log based or timestamps, or long

processing time for CPI and IBF in case of big difference between the old version and the current database

version. In the next chapter, we describe a new solution which addresses a lot of the flaws found in these

existing methods, while maintaining good performance characteristics in communication cost and processing

time.

29

Chapter 4

Arichitecture Design

4.1 Discussion of Existing Approaches

There are multiple approaches to the data synchronization problem, however, they differ in many key areas

and thus, can be categorized into 3 main categories. Each category has its own pros and cons, the major

ones are shown in Table 4.1 below.

Table 4.1: Pros and cons of synchronization algorithm categories

Category Sub-category Pros Cons

Communication rounds
Limited Lower latency Potential bigger communi-

cation cost

Unbounded Potential lower communi-

cation cost

Higher latency

Accuracy
Approximate Faster Limited applicability

Exact Wider range of applicable

scenarios

Slower

Usage of prior context
Yes Optimal communication

cost

Performance penalty for

write operations

No No extra data needed Bigger communication

cost

In order to have the widest range of applicable scenarios, we propose an algorithm conforming to these

characteristics:

• Number of communication rounds: using a limited number of communication rounds to behave better

in high latency peer-to-peer network environment.

• Accuracy: exact synchronization for better applicability.

• Usage of prior context data: not using any prior context data to maintain high performance for the

database.

30

Notable algorithms which have these 3 characteristics are the server centric (naive) approach and IBFSync

(to a lesser extend, CPISync too with a limited round estimator). Both CPISync and IBFSync have very

good performance in term of communication cost, achieving the theoretical limits. The differences are:

• CPISync is more demanding in term of computing power, mostly due to the factoring polynomial over

finite field algorithm.

• IBFSync have bigger communication cost, due to the overhead of the IBF data structure

4.2 Proposed Solution

In this section, we describe our new algorithm for synchronizing key-value database. We call our algorithm

ASync. Figure 4.1 shows the position of our algorithm in a complete software stack.

Starting with the problem, the problem of key-value database synchronization can be divided into 2 steps:

reducing to the set reconciliation problem, and synchronization of the two remote sets. The first step is rather

trivial, and will be described in detail later in Section 4.3.

Figure 4.1: ASync Component

We will now focus on the second step: solving the set reconciliation problem, which is the main goal of

ASync. In this research, we propose a 2-phase solution for the synchronization problem, the first phase is to

do the approximate synchronization using Bloom Filter, and the second phase is to do exact synchronization

31

using Invertible Bloom Filter. The key idea of the algorithm is in the first phase, we could use one Bloom

Filter to achieve multiple goals:

• Estimate the symmetric difference of the two sets in preparation for the next phase. This information

is crucial for the next step to operate.

• Approximate synchronization, which in itself is greatly beneficial: reducing the number of different

items of the two sets would make the next phase more efficient, since the size of the IBF depends upon

the size of the symmetric difference between the two sets.

The algorithm contains 2 main phases and a preparatory phase:

1. Phase 0: reduce the problem to the problem of set reconciliation

2. Phase 1: approximate synchronization and estimation of the size of symmetric difference between two

remote sets

3. Phase 2: exact set reconciliation based on IBF

Figure 4.2 demonstrates the sequence of our algorithm.

Figure 4.2: ASync Sequence

The following sections will discuss each phase in detail.

32

4.3 Phase 0: Reducing to the Set Reconciliation Problem

4.3.1 Mapping Data Items to Identifiers

This phase is the preparatory phase, it does not carry any real data synchronization, however, it lays out the

foundation for the next steps as it converts our problem to the simpler set reconciliation problem.

The idea is to convert all key-value data items to identifiers, thus essentially reducing a database of key-

value data items to a set of identifiers. In order to do so, a mapping function is needed. This function must

take an arbitrary key-value data item as the input and produce an output suitable to used as an identifier. In

our implementation, we use 64-bit integer numbers as our identifiers, so the mapping function should output

a 64-bit integer number for each key-value data item.

In our implementation, we use a hash function to execute this mapping mechanism.

input : key-value data items in the database

output: identifiers

for i in 0..n-1 do

iden[i] = H(keys[i], values[i])

end

Algorithm 4: Mapping key-value data items to identifiers

The criteria for choosing a hash function for our solution are:

• Speed: as the hash function must be run for every single data item in the database, to keep the speed

of the whole algorithm fast, the hash function must be fast.

• Good random distribution: to avoid having the same hash value from two different data items.

We considered two famous hash functions: MD5 and SHA1 for our algorithm, but since we do not need

the cryptography features from them, they are slower than necessary. Instead, we choose Murmurhash [3]

for our solution, since it provides very good speed and have good random distribution.

4.3.2 Size of Identifiers

We now consider what size is sufficient for identifiers. Since we use a hash function to convert our data items

to identifiers, we want to minimize the risk of hash collision as much as possible. We have the probability of

hash collision for k N-bit hash values as [2]:

1− e
−k(k−1)

2N

With a 32 bit value, 77163 values would have a 50% probability of having hash collision, which is unac-

ceptable for our problem since we want to work with databases containing millions of values. Table 4.2 [2]

shows the number of elements corresponding to the probability of a hash collision for each size of hash values.

33

As a result, we chose 64 bit length for our identifiers.

Table 4.2: Hash collision probability[2]

Odd of a hash collision 32 bit 64 bits 160 bits

1 in 2 77163 5.06 billion 1.42 ∗ 1024

1 in 10 30084 1.97 billion 5.55 ∗ 1023

1 in 100 9292 609 million 1.71 ∗ 1023

1 in 1000 2932 192 million 5.41 ∗ 1022

1 in 10000 927 60.7 million 1.71 ∗ 1022

1 in 100000 294 19.2 million 5.41 ∗ 1021

1 in a million 93 6.07 million 1.71 ∗ 1021

1 in 10 million 30 1.92 million 5.41 ∗ 1020

1 in 100 million 10 607401 1.71 ∗ 1020

1 in a billion 192077 5.41 ∗ 1019

4.4 Phase 1: Approximate Synchronization and Symmetric Dif-

ference Size Estimation

Figure 4.3: ASync - Phase 1

In this phase, we use Bloom Filter to achieve two goals at the same time:

• Approximate synchronization: we detect the majority of the differences between the two sets by using

34

Bloom Filter, and synchronize the data using this knowledge. This also helps to reduce the data needed

for the next phase, exact synchronization.

• Estimate the size of the symmetric difference between two remote sets: this information is required for

the next phase to successfully run.

In order to do so, first we create a Bloom Filter from the set of identifiers in the client.

input : set of identifiers

output: Bloom filter containing these identifiers

for i in 0..n-1 do

AddToBloomFilter(S[i])

end

Algorithm 5: Creating Bloom filter from identifiers

In our implementation, when create a Bloom Filter from the set of identifiers in the client, we use the

following parameters:

• Size in bits: m = |Sclient| ∗ 12

• Number of hash functions: k = 5

These parameters give us a Bloom Filter with pfalse ≈ 0.5% [1], which is acceptable for our purpose.

In the server, the Bloom Filter received from the client is used to detect difference in the two sets with

allowable false positives:

input : Bloom filter of client identifiers

output: Set of identifiers not present in client

for i in 0..n-1 do

if BloomFilterContains(S[i]) then
continue

else

AddToMissingIdentifiers(S[i])

end

end

Algorithm 6: Detect missing identifiers from the client

And finally, the last objective of this phase is to estimate the size of the symmetric difference between

two sets. We use the equation described in [36], which was outlined in section 3.7.4 of this thesis.

35

input : |SA|, |SB |, n0

output: d0 - estimated symmetric difference

d0 = |SA| − |SB |+ 2 |SB |−n0

1−pfalse

Algorithm 7: Estimate symmetric difference

4.5 Phase 2: Exact Synchronization

After getting the estimated number for the size of set symmetric difference, we can continue to phase 2 of

the algorithm: exact synchronization.

Figure 4.4: ASync - Phase 2

We use Invertible Bloom Filter (IBF) for this phase, as it provides fast computation time and optimal

theoretical communication cost.

We create the IBF in the client with the following parameters:

• Length sufficient to hold d0 elements (the IBF should have approximately 1.5d0 cells[18])

• Number of hash functions: k = 3

• Hc function for calculating HashSum: MurmurHash3 with Seed = 123456789, producing 32-bit hash

values.

Algorithm 8 outlines steps to create an IBF in the client:

36

input : set of identifiers

output: Invertible Bloom filter containing these identifiers

for i in 0..n-1 do

AddToIBF (S[i])

end

Algorithm 8: Creating an Invertible Bloom filter from identifiers

The created IBF is then serialized and sent to the server. The server, after receiving the IBF from the

client, creates its own IBF and the performs the subtraction operation on the two IBFs in order to detect

the differences between the two sets of identifiers.

After decoding the result IBF, we now have the set of identifiers that are on the server, but not on the

client. We now do a reverse lookup to determine which key-value data item correspond to each identifier,

and send these data items to the client.

4.6 Other Implementation Details

4.6.1 Delete Operation

Due to the nature of the set reconciliation problem, handling delete operations is tricky. Naive implementa-

tions of set reconciliation algorithms will mistakenly identify deletion as addition of the other set and thus,

do not correctly synchronize the two sets.

In our system, we sidestep this problem by using a marking mechanism to signify deleted data items. In

the database, instead of truly deleting the data item, we write a special data value, ”DELETED”. Essentially,

we convert delete operation to modify operations.

4.6.2 Handling Failures

There are scenarios in which the proposed algorithm could not synchronize the two databases after the above

mentioned 2 steps. They are:

• Case 1: wrong estimation of the symmetric difference in phase 1, leading to insufficient information to

complete phase 2.

• Case 2: In phase 2, there is a chance the IBF could not successfully yield all of its added items.

• Case 3: Hash collision makes the algorithm synchronize the wrong data.

For each error scenario, we have sufficient detection mechanisms and counter-measures. For detection:

• Case 1: detect on the server as IBF fails to decode.

37

• Case 2: similar to case 1, IBF fails to decode.

• Case 3: using a hash value for the whole database to compare the final result.

After detecting an error has occurred, we have 2 choices for recovery: (1) re-run the phase 2 with the

added information (increase the length of IBF) or (2) fall back to transferring the whole database from the

server to the client.

The current version of ASync only implements recovery mechanism 2, which means we have to transfer

the whole database from the server to the client when ASync fails to synchronize in phase 2. However, we

do not face any error during our experiments in Chapter 5.

4.7 Comparison

4.7.1 With IBFSync

Our proposed algorithm is similar to IBFSync, both algorithm uses IBF as the building blocks for synchro-

nization. The major difference lies in the first step: while we combined approximate synchronization and

estimation of the size of set symmetric difference in one phase, the original IBFSync algorithm only utilize

the first phase to estimate using Strata estimator.

Figure 4.5 shows the sequence of the original IBFSync algorithm.

Figure 4.5: IBF Sequence

38

Since we are doing more in the first step, the data required for our algorithm’s first step is much bigger

than IBFSync. However, as will be shown in the experiments, that would help us reduce the needed data in

the second phase and for the whole synchronization process.

4.7.2 With Bloom Filter and Hash Tries

The main difference between ASync and BFHT (Bloom Filter and Hash Tries) is in phase 2: when ASync

uses IBF to detect the difference, BFHT uses hash trie. And as a result, BFHT uses multiple rounds of

communication in order to accomplish synchronization. Figure 4.6 shows phase 2 of the BFHT algorithm.

Figure 4.6: Bloom Filter and Hash Tries Synchronization - Phase 2

The first phase is pretty similar on both algorithm: employing Bloom Filter for approximate synchro-

nization. However, ASync not only uses Bloom Filter for approximate synchronization, but we also get an

estimation of the size of symmetric difference by using Bloom Filter.

4.8 Applicable Scenarios

The proposed algorithm can work on any key-value storage system. However, due to its characteristics,

applications which conform to the following criteria are the most suitable ones:

39

1. Need to store a local key-value database which acts as a cache of a bigger database.

2. The database is frequently changed.

3. There is a method to detect which version of the database is the newer one.

4. Need to do synchronization with a relatively low speed network. This is due to the fact that our

algorithm basically trades processing time for communication cost.

Considering all these criteria, an example of an application for our algorithm is the Wikipedia mobile

application. Many mobile Wikipedia applications currently consist of a thin UI layer to access the Wikipedia

website, thus they require Internet connection in order to work. One way to make the application work

without Internet connection is to store the whole database locally. The database of a mobile Wikipedia

application can be a key-value storage system with the keys being the article title and the values being the

content. However, the storage requirement may be quite large, as of January 29, 2014, the compressed form

of all page in Wikipedia English consume 9.7GB [4].

One obvious observation can be made is the most accessed article are more likely to be requested by the

user and only amount for a relatively small storage space. Hence, it is acceptable for the mobile application

to only store these most viewed articles, for example the top 5% accessed articles. As a result, the application

can consume less storage space, provide content to users in the majority of cases, and does not require Internet

connection to work.

The need for synchronization arises when we need to update our locally stored content to the last version,

since the content of Wikipedia articles are frequently changed. A version number can be used to keep track

of which version is the newer one, and thus detecting which device has the newer version. With our proposed

algorithm, the mobile application can synchronize its content with the server as well as with any peer in its

local network.

Similar to Wikipedia, many dictionary application could find our synchronization algorithm useful. Other

possible applications including scoring boards for games, content archiving application, etc.

4.9 Summary

In this chapter, we categorized data synchronization algorithms based on three major areas:

1. The number of communication round

2. The accuracy

3. The usage of prior context data

We noticed that for our problem of key-value storage system synchronization in peer-to-peer network

environment, the most suitable characteristics of a synchronization algorithm are: (1) limited numbers of

communication rounds, (2) exact synchronization and (3) do not use prior context data.

40

We discussed in detail our proposed synchronization algorithm, ASync. The algorithm has 2-phase archi-

tecture in addition to a preliminary phase, with the role of each phase as follow:

1. Phase 0: converting to the set reconciliation problem

2. Phase 1: approximate synchronization and estimate the size of symmetric difference

3. Phase 2: exact set reconciliation based on Invertible Bloom Filter

In addition, we described some specific implementation details and the reasons behind them. In addition,

we compared our proposed algorithm with IBFSync and BFST, pointed out the differences and explained

why these differences should help us achieve better performance in synchronization. Finally, this chapter

gives some example of potential applications that could employ our new algorithm.

41

Chapter 5

Experiments and Results

In this chapter, the proposed algorithm is evaluated with regard to the challenges stated in Chapter 2.

The experiments aim to study the performance of the proposed algorithm under different scenarios. The

experiment analysis and evaluation are to help demonstrate algorithm’s feasibility in various situations also

to identify the best performing scenarios.

5.1 Metrics

To understand the proposed algorithm and how it compares with other algorithms serving the same purpose,

first we need to establish a number of metrics to quality data synchronization algorithms.

1. Message size: the communication cost of the algorithm, measured in how many bytes that have to be

sent over the network to complete the synchronization process.

2. Processing time: the time it takes for the client and the server to do the calculations required for the

algorithm. Measured in seconds.

3. Synchronization time: the total time it takes for the outdated database in the client to be fully syn-

chronized with the current database in the server. Measured in seconds.

Out of the above mentioned three metrics, the most important metric is the synchronization time. It is

roughly equal to the sum of the processing time and the time it takes to transfer data over the network. The

message size, also known as the communication cost, shows how the algorithm behaves in different network

environments. In a fast network, this metric is less important and vice versa, the slower the network is, the

more important this metric becomes. Finally, the processing time metric is to show how the algorithm runs

on different hardware.

The three above mentioned metrics are not only limited to key-value database synchronization, but they

are generally applicable to evaluate any data synchronization algorithm.

42

5.2 Experiment Setup

5.2.1 Datasets

Characteristics

We begin with the original databases, located on the client. We classify our databases into 3 categories:

1. Small database: 100,000 key-value items, the total size of the database is around 10MB.

2. Medium database: 500,000 key-value items, the total size of the database is about 50MB.

3. Big database: 1,000,000 key-value items, the total size of the database is about 100MB.

We also have 3 categories of changes:

1. Small change: 4% of the total key-value data items were changed

2. Medium change: 20% of the total key-value data items were changed

3. Big change: 50% of the total key-value data items were changed

The changes in our candidate databases were half modifying changes and half adding changes. That

means when we say 1 database has 20% of its data changed, 10% of the items have been modified and 10%

new items have been added. Figure 5.1 demonstrates the changes in our candidate databases.

Figure 5.1: Testing Databases

This is to better emulate database in a real working environment, when changes to the database mainly

come from adding new items and modifying existing items. Note that we treat deleting the same as modifying,

see Section 4.6.1 for details.

The sizes of the client databases and the server databases in each experimental scenario are shown in

Table 5.1.

43

Table 5.1: Dataset sizes

Number of data items Change percentage Client size (in bytes) Server size (in bytes)

100,000

4% 10,488,890 10,700,890

20% 10,488,890 11,548,890

50% 10,488,890 13,138,890

500,000

4% 52,888,890 53,948,890

20% 52,888,890 58,188,890

50% 52,888,890 66,138,890

1,000,000

4% 105,888,890 108,028,890

20% 105,888,890 116,588,890

50% 105,888,890 132,638,890

Generating Datasets

We create our datasets by employing a simple key-value database with key as string and value as string. The

value is the string representation of the hash value of the current key using a hash function.

The generating algorithm is shown in Algorithm 9.

input : num - number of items in the database

output: Client database

for i in 0..num-1 do

key = i.ToString()

val = BitConverter.ToString(hFunc.ComputeHash(BitConverter.GetBytes(i)))

database.Add(key, val)

end

Algorithm 9: Database generating algorithm, client

5.2.2 Hardware and Software Configuration

Hardware Configuration

For each experiment, the hardware we use are the following:

1. The server containing the current version of the database will be a tablet-laptop hybrid, specifically it’s

a Microsoft Surface Pro device.

2. The client trying to update its database will be a mobile phone, in our experiment we will use a Nexus

7 (2013 version) device.

44

Figure 5.2 shows the hardware and the synchronization scenario used in all test cases.

Figure 5.2: System Configuration

The hardware specifications of the Surface Pro are given below in Table 5.2

Table 5.2: Microsoft Surface Pro specifications

CPU Dual-core 1.7 GHz (Turbo Boost to 2.6 GHz) Intel Core i5-3317U

Memory 4 GB dual-channel DDR3-1600 (25.6 GB/sec)

Storage 128 GB (83 GB available)

Graphics Intel HD Graphics 4000

OS Microsoft Windows 8.1 Pro

The hardware specifications of the Nexus 7 are given below in Table 5.3

45

Table 5.3: Nexus 7 (2013 version) specifications

Manufacturer Asus

System on chip Qualcomm Snapdragon S4 Pro APQ80641AA

CPU 1.51 GHz quad-core Krait 300

GPU 400 MHz quad-core Adreno 320

Memory 2 GB DDR3L RAM

Storage 16 GB

OS Android 4.4.2

For our experiments, we will use the local Wifi network, but the algorithm works similarly over Bluetooth

or NFC connection. Figure 5.2 depicts the system configuration used for our experiments.

Software Configuration

The algorithm is implemented using C#. For the server, we use the C# compiler bundled with Visual Studio

2012. For the client, we use Xamarin.Android to compile the C# code for the Android platform.

For all the experiments, the code was compiled under ”Release” mode for both the server (Windows

platform) and the client (Android platform).

5.3 Comparison and Measuring

In order to evaluate our proposed algorithm, we compared our algorithm with the following existing algo-

rithms:

1. Server-centric approach of copying the whole database from the server to the client algorithm

2. IBFSync with strata estimator

All these 3 algorithms belongs to the same categories in all 3 major aspects, which are:

1. Communication rounds: limited

2. Accuracy: exact

3. Usage of prior context: no

Because of this, the three algorithms can be used interchangeably. It means if an application already uses

one of these three algorithms, it can consider switching to another.

For each kind of database and each type of change, we run our algorithm and record the 3 metrics

mentioned earlier. The units for each metrics are: bytes for communication cost, seconds for both processing

time and synchronization time.

46

5.4 Results

5.4.1 Communication Cost

Figure 5.3 shows the communication cost for each algorithm in our experiment. We can easily see from

the chart that both ASync and IBFSync outperform the naive server-centric approach by a wide margin in

all test scenarios. The reason is also obvious: the naive server centric approach has communication cost

proportional to the size of the server’s database (O(n) complexity), while the remaining two algorithms both

have communication cost proportional to the size of the difference between the server’s database and the

client’s database (O(d) complexity).

Note that IBFSync failed to complete synchronization for one dataset (the test case with 1 million data

items and 50% change). In our experiment, we only record data when IBFSync can complete the synchroniza-

tion process in 2 communication round (as it is designed to achieve the majority of the cases), so we do not

consider this case for comparison. In practice, this error case would be handled by using more communication

round and/or fall back to server-centric method for the next round.

Figure 5.3: Communication Cost

The difference becomes bigger with bigger database size and smaller number of changed items. In our

experimental scenarios, the biggest difference comes from the test case with large database size (1,000,000

items) and small change percentage (4%). In addition, in all cases ASync algorithm is better than IBFSync

in all tested scenarios.

47

Figure 5.4 shows in percentage how faster our proposed algorithm is than IBF. We can see that IBF

needs more resource in term of network traffic than ASync from around 20% to around 50%. The best gain

observed is from the datasets with 500k data items and 20% changed.

Figure 5.4: Comparison Between ASync and IBFSync, Communication Cost

The saving in communication cost comes from using Bloom Filter as an estimator and doing approximate

synchronization during phase 1 of ASync. Since the algorithm does approximate synchronization during

phase 1, it reduces the number of changed items after that, thus lowers the size of the Invertible Bloom Filter

needed in phase 2.

5.4.2 Processing Time

Processing time is the time it takes for the synchronization algorithm to do its calculation. For the server

centric approach, this time is essentially 0. For the other two algorithms, however, the processing time

represents a significant portion of the whole synchronization time. As a result, in our chart we only show the

processing time for the 2 algorithms, IBFSync and ASync.

48

Figure 5.5: Processing Time

Figure 5.6 shows the difference in processing time between ASync and IBFSync. We can see that in all

cases ASync needs less time than IBFSync, the difference ranging from 20% to almost 70%.

Figure 5.6: Comparison Between ASync and IBFSync, Processing Time

49

Similar to the reason ASync has better communication cost than IBFSync, the processing time is also

lower due to the 2-phase architecture, when the most complex part (creating and querying the IBF) is cut

down thank to the approximate synchronization in the first phase.

5.4.3 Synchronization Time

In this section, we take a look at the synchronization time and the synchronization speed of ASync and

IBFSync.

Synchronization Time

Synchronization time is the time it takes for the whole synchronization process to complete. It is the total time

of the processing time and the data transfer time. This is the most important metric of a data synchronization

algorithm.

Figure 5.7 shows the synchronization time for ASync and IBFSync. We do not show the synchronization

time for the sever-centric method since it directly depends on the network speed. We can see in the chart

that ASync performs better than IBFSync in all test cases. This result is predictable from the above two

metrics, since ASync is better than IBFSync in both communication cost and processing time.

Figure 5.7: Synchronization Time

In order to see the difference between ASync and IBFSync, Figure 5.8 shows the total synchronization

time of IBFSync relative to ASync. We can see that IBFSync is slower in all scenarios, ranging from around

10% to 65%.

50

Figure 5.8: Comparison Between ASync and IBFSync, Synchronization Time

Synchronization Speed

Figure 5.9: Synchronization Speed

51

In order to compare with the server-centric method, we measured both ASync and IBFSync algorithms in

term of MB/s. The synchronization speed is calculated by dividing the size of the server database to the

synchronization time. This metric let us directly compare ASync and IBFSync with the server-centric method,

as the synchronization time of the server-centric method directly depends on the speed of the network. Figure

5.9 shows the synchronization speed of ASync and IBFSync.

We can see in this experiment result that ASync achieves synchronization speed ranging from around

1MB/s to 1.7MB/s in our testing environment. This means if the bandwidth of our network is more than

1.7MB/s, it is better to just use the server-centric method. Otherwise, it is better to employ our proposed

algorithm, ASync. However, the synchronization speed of ASync would increase with better hardware (yield-

ing better processing time) and different candidate databases (the smaller the changed percentage, the faster

it would get).

In a network environment with fast, stable connection such as LAN (Local Wi-Fi network can have

theoretical bandwidth of 75 MB/s in case of Wi-Fi n), ASync does not perform very well compared to the

naive server-centric method. However, in many other network environments with slower speed such as peer-

to-peer Bluetooth, NFC, or pay to use network like 3G, 4G, the strength of ASync on reducing communication

cost can be hugely beneficial.

5.5 Summary

In this section, we evaluate our proposed algorithm, ASync, and see how it compares with existing algorithms

in the same class. Three metrics for assessing synchronization algorithms are:

1. Communication cost

2. Processing time

3. Synchronization time

We designed the experiments and datasets to measure these metrics. We showed the experiment results of

our proposed algorithm, ASync, as well as 2 other algorithms in the same class: IBFSync and server-centric

approach.

The results show our proposed algorithm performing better in all 3 metrics compared to IBFSync, and

achieve reasonable synchronization speed.

52

Chapter 6

Summary and Future Works

6.1 Summary

In this research, we set out to look into the problem of key-value database synchronization between mobile

devices on peer-to-peer networks. We identified the challenges, analyzed the constraints and established the

requirements of the problem. Taking these things into account, we proposed a new algorithm in order to

achieve better performance characteristics in all three major metrics: communication cost, processing time

and synchronization time compared to previous approaches. It does so while retaining the characteristics

which make the algorithm suitable for a peer-to-peer network environment consisting of mostly mobile devices:

1. Limited number of communication rounds

2. Exact synchronization

3. Do not require any prior context data

The main ingredient that let our algorithm to achieve these goals is its 2-phase architecture:

1. The first phase doing approximate synchronization and calculating needed information for the second

phase

2. The second phase doing exact synchronization

We did experiments regarding those three above mentioned metrics (communication cost, processing time

and communication time) to validate our proposed algorithm. The result is that the proposed algorithm

performs better than IBFSync, ranging from 10% to 65% in synchronization time, the most important

metric. It also achieves the synchronization speed of 1.0MB/s to 1.7MB/s. Therefore, it can be applied to

mobile applications operating on slow network, for example, Bluetooth or NFC connection.

In comparison to previous approaches, the proposed algorithm is novel in the following areas:

1. Application domain: while other works have been done on the set reconciliation problem, we applied

this research on the specific problem of key-value storage system synchronization.

2. 2-phase architect with the first phase doing approximate synchronization and calculating needed infor-

mation for the second phase, which does exact synchronization.

53

6.2 Contributions

This research has the following major contributions:

1. Study of existing approaches to key-value database synchronization, identify the characteristics needed

for our specific problem of key-value database synchronization between mobile devices in a peer-to-peer

network.

2. Designed and implemented a new algorithm for key-value database synchronization, which performs

better than existing approaches in the same class.

3. Evaluated and measured the performance characteristics of the proposed algorithm, as well as compare

it with existing algorithms.

6.3 Future Work

6.3.1 Other Components

Although the proposed algorithm is the core of a synchronization solution, it does not fulfill all the necessary

tasks of a whole synchronization system. The following sections describe the missing components which could

be implemented in the future to provide a complete synchronization solution for key-value databases.

Mechanisms for Discovering Peers

Our proposed solution does not include any mechanism for discovering peers. This sub-problem could be

solved by numerous approaches. One simple method works as follows:

• Every device uses UDP to broadcast the synchronization service

• Every device also listen for the broadcast signal to identify devices supporting the synchronization

service.

Other advanced techniques include exchanging peer list, caching peer list locally [24].

Conflict Resolution

Currently we leave the task of conflict resolution to the application layer. This design has the advantage

of having an application-specific strategy for conflict resolution, however it also puts more work on the

application developers. The situation could be improved upon by presenting a number of default conflict

resolution strategies in the synchronization component, while still permitting application developers to use

their own mechanism for conflict resolution.

54

6.3.2 Data Transfer Protocol

The current version of our solution uses FTP, however, using FTP requires the device to accept TCP connec-

tion. The FTP protocol is acceptable when every device is under the same LAN, however, over the Internet,

we face the problem of NAT traversal.

For the future version, we could employ other protocols that work better over NAT to overcome this limit.

This change in the data transferring protocol would enable the algorithm to work over the Internet, not just

local LAN.

6.3.3 Algorithm

There are numerous areas in the proposed algorithm could be explored further for better performance. The

following sections presents some potential areas for improvement.

Parallel Processing

The current implementation of our algorithm does each step sequentially. One possibility to speed up the

algorithm is to do multiple steps in parallel, both locally in one device and across the client and the server.

One prime candidate for employing parallel processing across client/server is while the client uploads its

Bloom Filter to the server, it can prepare for the next step by starting to calculate its identifiers right away.

Currently, it only does so after applying the patch 1 returned by the server.

For local parallel processing, using multiple threads and lock-free data structures may provide some

performance boost, especially considering the fact that nowadays even mobile processors have multiple cores.

Incremental Bloom Filter

Instead of creating Bloom Filters for each time we need to do synchronization, we keep a Bloom Filter as we

modify the database. We can also employ other variations of Bloom Filter such as Incremental Bloom Filter

[23], a better performance version of Bloom Filter using only two hash functions [25].

Better Estimator Based on Bloom Filter

Although the currently used method for estimating the symmetric difference using Bloom Filter is working,

we expect to find even more accurate one.

Data Compression

Due to the nature of the IBF and Bloom Filter, they contain mostly integers as the data. Therefore, we can

potentially save more network bandwidth by exploring data compression, especially using integer compression

algorithms. However, the speed of the data compression algorithms must be fast enough to have a noticeable

gain in our synchronization time.

55

A few notable fast integer compression algorithms includes Variable Byte Encoding [26] and Group Vari-

able Integer [14].

56

References

[1] Bloom filters - the math. http://pages.cs.wisc.edu/~cao/papers/summary-cache/node8.html.
[Online; accessed July-2014].

[2] Hash collision probabilities. http://preshing.com/20110504/hash-collision-probabilities/. [On-
line; accessed July-2014].

[3] Murmurhash homepage. https://code.google.com/p/smhasher/. [Online; accessed July-2014].

[4] Wikipedia database dump. http://dumps.wikimedia.org/enwiki/latest/, January 2014.

[5] Sachin Agarwal, David Starobinski, and Ari Trachtenberg. On the scalability of data synchronization
protocols for pdas and mobile devices. Network, IEEE, 16(4):22–28, 2002.

[6] Madhu Ahluwalia, Ruchika Gupta, Aryya Gangopadhyay, Yelena Yesha, and Michael McAllister. Target-
based database synchronization. In Proceedings of the 2010 ACM Symposium on Applied Computing,
pages 1643–1647. ACM, 2010.

[7] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Communications of The
ACM, 13:422–426, 1970.

[8] Andrei Broder and Michael Mitzenmacher. Network applications of bloom filters: A survey. Internet
mathematics, 1(4):485–509, 2004.

[9] John Byers, Jeffrey Considine, and Michael Mitzenmacher. Fast approximate reconciliation of set dif-
ferences. In BU Computer Science TR, pages 2002–19, 2002.

[10] Rick Cattell. Scalable sql and nosql data stores. ACM SIGMOD Record, 39(4):12–27, 2011.

[11] Mi-Young Choi, Eun-Ae Cho, Dae-Ha Park, Chang-Joo Moon, and Doo-Kwon Baik. A database syn-
chronization algorithm for mobile devices. Consumer Electronics, IEEE Transactions on, 56(2):392–398,
2010.

[12] Ken Christensen, Allen Roginsky, and Miguel Jimeno. A new analysis of the false positive rate of a
bloom filter. Information Processing Letters, 110(21):944 – 949, 2010.

[13] Couchbase. Why nosql. Technical report, Couchbase, 2013.

[14] Jeffrey Dean. Challenges in building large-scale information retrieval systems: invited talk. In Proceedings
of the Second ACM International Conference on Web Search and Data Mining, pages 1–1. ACM, 2009.

[15] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman,
Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels. Dynamo: amazon’s
highly available key-value store. In ACM SIGOPS Operating Systems Review, volume 41, pages 205–220.
ACM, 2007.

[16] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker, Howard Sturgis, Dan
Swinehart, and Doug Terry. Epidemic algorithms for replicated database maintenance. In Proceedings
of the sixth annual ACM Symposium on Principles of distributed computing, pages 1–12. ACM, 1987.

57

[17] Idilio Drago, Marco Mellia, Maurizio M Munafo, Anna Sperotto, Ramin Sadre, and Aiko Pras. Inside
dropbox: understanding personal cloud storage services. In Proceedings of the 2012 ACM conference on
Internet measurement conference, pages 481–494. ACM, 2012.

[18] David Eppstein, Michael T Goodrich, Frank Uyeda, and George Varghese. What’s the difference?:
efficient set reconciliation without prior context. In ACM SIGCOMM Computer Communication Review,
volume 41, pages 218–229. ACM, 2011.

[19] Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk, Larry Masinter, Paul Leach, and Tim Berners-
Lee. Hypertext transfer protocol–http/1.1, 1999.

[20] Roy T Fielding and Richard N Taylor. Principled design of the modern web architecture. ACM Trans-
actions on Internet Technology (TOIT), 2(2):115–150, 2002.

[21] J Nathan Foster, Michael B Greenwald, Christian Kirkegaard, Benjamin C Pierce, and Alan Schmitt.
Exploiting schemas in data synchronization. Journal of Computer and System Sciences, 73(4):669–689,
2007.

[22] Jing Han, E Haihong, Guan Le, and Jian Du. Survey on nosql database. In Pervasive computing and
applications (ICPCA), 2011 6th international conference on, pages 363–366. IEEE, 2011.

[23] Fang Hao, Murali Kodialam, and TV Lakshman. Incremental bloom filters. In INFOCOM 2008. The
27th Conference on Computer Communications. IEEE. IEEE, 2008.

[24] Mandar Kelaskar, Vincent Matossian, Preeti Mehra, Dennis Paul, and Manish Parashar. A study of
discovery mechanisms for peer-to-peer applications. In Cluster Computing and the Grid, 2002. 2nd
IEEE/ACM International Symposium on, pages 444–444. IEEE, 2002.

[25] Adam Kirsch and Michael Mitzenmacher. Less hashing, same performance: Building a better bloom
filter. In Algorithms–ESA 2006, pages 456–467. Springer, 2006.

[26] Christopher D Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to information re-
trieval, volume 1. Cambridge university press Cambridge, 2008.

[27] Yaron Minsky, Ari Trachtenberg, and Richard Zippel. Set reconciliation with nearly optimal communi-
cation complexity. IEEE Transactions on Information Theory, 49:2213–2218, 2003.

[28] J. Postel. Transmission Control Protocol. RFC 793 (INTERNET STANDARD), September 1981.
Updated by RFCs 1122, 3168, 6093, 6528.

[29] J. Postel and J. Reynolds. File Transfer Protocol. RFC 959 (INTERNET STANDARD), October 1985.
Updated by RFCs 2228, 2640, 2773, 3659, 5797, 7151.

[30] Sebastian Schildt, Johannes Morgenroth, and Lars Wolf. Efficient false positive free set synchronization
using an extended bloom filter approach. Computer Communications, 36(1011):1245 – 1254, 2013.

[31] Magnus Skjegstad and Torleiv Maseng. Low complexity set reconciliation using bloom filters. In Proceed-
ings of the 7th ACM ACM SIGACT/SIGMOBILE International Workshop on Foundations of Mobile
Computing, pages 33–41. ACM, 2011.

[32] David Starobinski, Ari Trachtenberg, and Sachin Agarwal. Efficient pda synchronization. Mobile Com-
puting, IEEE Transactions on, 2(1):40–51, 2003.

[33] Michael Stonebraker. Sql databases v. nosql databases. Communications of the ACM, 53(4):10–11, 2010.

[34] Chen Tang, Anton Donner, Javier Mulero Chaves, and Muhammad Muhammad. Performance of
database synchronization algorithms via satellite. In Advanced satellite multimedia systems confer-
ence (asma) and the 11th signal processing for space communications workshop (spsc), 2010 5th, pages
455–461. IEEE, 2010.

58

[35] Sasu Tarkoma, Jaakko Kangasharju, Tancred Lindholm, and Kimmo Raatikainen. Fuego: Experiences
with mobile data communication and synchronization. In Personal, Indoor and Mobile Radio Commu-
nications, 2006 IEEE 17th International Symposium on, pages 1–5. IEEE, 2006.

[36] Xiaomei Tian, Dafang Zhang, Kun Xie, Can Hu, Mengfan Wang, and Jinguo Deng. Exact set reconcil-
iation based on bloom filters. 2011.

[37] Ari Trachtenberg, David Starobinski, and Sachin Agarwal. Fast pda synchronization using characteristic
polynomial interpolation. In INFOCOM 2002. Twenty-First Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings. IEEE, volume 3, pages 1510–1519. IEEE, 2002.

[38] Andrew Tridgell. Efficient Algorithms for Sorting and Synchronization. PhD thesis, The Australian
National University, February 1999.

[39] Jun Yang. Smartphones in use surpass 1 billion, will double by 2015. http://www.bloomberg.com/

news/2012-10-17/smartphones-in-use-surpass-1-billion-will-double-by-2015.html. [Online;
accessed July-2014].

59

