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Abstract

In this thesis, we investigate optical and electrical properties of dilute nitride semi-

conductors GaAsN in pulsed magnetic fields up to 62 T. For the most part, the

experiments are performed at the Dresden High Magnetic Field Laboratory (HLD).

In the first part of this thesis, the electron effective mass of GaAsN is determined

with a direct method for the first time. Cyclotron resonance (CR) absorption

spectroscopy is performed in Si-doped GaAsN epilayers with a nitrogen content up to

0.2%. For the CR absorption study, we use the combination of the free-electron laser

FELBE and pulsed magnetic fields at the HLD, both located at the Helmholtz-Zentrum

Dresden-Rossendorf. A slight increase of the CR electron effective mass with N content

is obtained. This result is in excellent agreement with calculations based on the band

anticrossing model and the empirical tight-binding method. We also find an increase

of the band nonparabolicity with increasing N concentration in agreement with our

calculations of the energy dependent momentum effective mass.

In the second part of this thesis, the photoluminescence (PL) characteristics of

intrinsic GaAsN and n-doped GaAsN:Si is studied. The PL of intrinsic and very dilute

GaAsN is characterized by both GaAs-related transitions and N-induced features.

These distinct peaks merge into a broad spectral band of localized excitons (LEs) when

the N content is increased. This so-called LE-band exhibits a partially delocalized

character because of overlapping exciton wave functions and an efficient interexcitonic

population transfer. Merged spectra dominate the PL of all Si-doped GaAsN samples.

They have contributions of free and localized excitons and are consequently blue-shifted

with respect to LE-bands of intrinsic GaAsN. The highly merged PL profiles of

GaAsN:Si are studied systematically for the first time with temperature-dependent

time-resolved PL. The PL decay is predominantly monoexponential and has a strong

energy dispersion. In comparison to formerly reported values of intrinsic GaAsN

epilayers, the determined decay times of GaAsN:Si are reduced by a factor of 10

because of enhanced Shockley-Read-Hall and possibly Auger recombinations.

In the third part of this thesis, intrinsic and Si-doped GaAsN are investigated with

magneto-PL in fields up to 62 T. A magneto-PL setup for pulsed magnetic fields of the

HLD was built for this purpose. The blue-shift of LE-bands is studied in high magnetic

fields in order to investigate its delocalized character. The blue-shift is diminished

in intrinsic GaAsN at higher temperatures, which indicates that the interexcitonic
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population transfer is only active below a critical temperature 20 K < T < 50 K.

A similar increase of the temperature has no significant impact on the partially

delocalized character of the merged spectral band of GaAsN:Si. We conclude that

the interexcitonic transfer of Si-doped GaAsN is more complex than in undoped

GaAsN. In order to determine reduced masses of undoped GaAsN and GaAs:Si, the

field-induced shift of the free exciton transition is studied in the high-field limit. We

find an excellent agreement of GaAs:Si with a formerly published value of intrinsic

GaAs which was determined with the same method. In both cases, the reduced mass

values are enhanced by 20% in comparison to the accepted reduced mass values of

GaAs. The determined GaAsN masses are 1.5 times larger than in GaAs:Si and

match the rising trend of formerly reported electron effective masses of GaAsN.
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Kurzfassung

Im Rahmen dieser Dissertation werden optische und elektrische Eigenschaften von

dem verdünnten Nitrid GaAsN in gepulsten Magnetfeldern bis zu 62 T untersucht. Die

meisten Experimente werden im Hochfeld-Magnetlabor Dresden (HLD) durchgeführt.

Im ersten Teil der Dissertation wird die effektive Elektronenmasse von GaAsN zum

ersten Mal mit einer direkten Methode bestimmt. Hierfür wird Zyklotronresonanz

(ZR) Spektroskopie an GaAsN:Si Proben mit einem Stickstoffgehalt von bis zu

0.2% durchgeführt. Für die Ausführung der Experimente werden zum Teil die

Großgeräte Freie-Elektronen Laser FELBE und HLD eingesetzt. Ein leichter Anstieg

der ZR Elektronenmasse mit dem Stickstoffgehalt lässt sich beobachten. Dieser

Anstieg stimmt hervorragend mit Berechnungen überein, die auf dem Modell des

Band Anticrossings oder der empirischen Tight-Binding-Methode basieren. Die

Nicht-Parabolizität des Leitungsbandes steigt ebenfalls mit dem Stickstoffgehalt an.

Dieses Ergebnis lässt sich durch unsere energieabhängigen Berechnungen der effektiven

Masse rekonstruieren.

Im zweiten Teil der Dissertation wird die Photolumineszenz (PL) Charakteristik von

intrinsischen und Si-dotierten GaAsN Proben untersucht. Die PL von undotiertem

GaAsN mit einem extrem kleinen Stickstoffgehalt weist sowohl GaAs-verwandte

Übergänge, als auch typische N-induzierte Beiträge auf. Wenn man den N-Gehalt

erhöht, verschmelzen diese einzelnen Peaks jedoch zu einem breiten spektralen Band

aus lokalisierten Exzitonen (LE). Dieses sogenannte LE-Band ist teilweise delokalisiert,

da die Wellenfunktionen von den betroffenen LEs überlappen, was wiederum einen

effizienten Transfer zwischen den einzelnen LEs im Band sicherstellt. Im Falle

von Si-dotierten GaAsN Proben wird die PL durchgehend von breiten spektralen

Bändern dominiert. Diese beinhalten sowohl Beiträge von freien, als auch von

lokalisierten Exzitonen und sind deshalb im Vergleich zu LE-Bändern von intrinsischen

Proben blauverschoben. Die spektralen Bänder von GaAsN:Si werden zum ersten

Mal systematisch mit temperaturabhängiger, zeitaufgelöster PL untersucht. Die

strahlenden Übergänge zerfallen hauptsächlich monoexponentiell und weisen eine

hohe Energie-Dispersion auf. Die bestimmten Zerfallszeiten von GaAsN:Si sind 10-mal

kleiner als in einer Veröffentlichung von vergleichbaren undotierten GaAsN Proben,

was mit einem erhöhtem Aufkommen von Shockley-Read-Hall und möglicherweise

auch Auger- Rekombinationen erklärt werden kann.
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Im dritten Teil der Dissertation werden PL Untersuchungen, die an intrinsischen

und Si-dotierten GaAsN Proben in Magnetfeldern bis zu 62 T durchgeführt wurden,

vorgestellt. Hierfür wurde eine neue Experimentiervorrichtung für PL Untersuchungen

in gepulsten Magnetfeldern des HLD gebaut. Mit dieser Methode wird u.a. die

Blauverschiebung von LE-Bändern in verschiedenen GaAsN Proben bei variierenden

Temperaturen untersucht, um den Urprung ihres delokalisierten Verhaltens besser zu

verstehen. Intrinsische GaAsN Proben weisen eine verringerte Blauverschiebung bei

höheren Temperaturen auf. Dies deutet darauf hin, dass der exzitonische Transfer nur

unterhalb einer kritischen Temperatur 20 K < T < 50 K funktioniert. Im Gegensatz

dazu weist die Blauverschiebung von der GaAsN:Si PL keine Temperaturabhängigkeit

auf. Vermutlich ist ein komplizierterer exzitonischer Transfer, als bei undotiertem

GaAsN, für dieses Verhalten verantwortlich. Die Magnetfeld-induzierte Verschiebung

des freien Exzitons wird im Grenzfall von sehr hohen Feldern untersucht, um die

reduzierte Masse von intrinsischen GaAsN und GaAs:Si zu bestimmen. Im Fall von

GaAs:Si findet man eine sehr gute Übereinstimmung mit der bereits publizierten (selbe

Untersuchungsmethode) reduzierten Masse von undotiertem GaAs. Jedoch liegen

beide Ergebnisse 20% über dem bekannten Wert von GaAs. Die reduzierten Massen

von GaAsN sind 1.5-mal so groß wie in der Referenzprobe. Dieses Ergebnis stimmt

gut mit dem Anstiegstrend der effektiven Elektronenmassen von bereits publizierten

Werten überein.
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1. Introduction

The steep increase in digital interconnectivity during the last three decades has fun-

damentally changed our way of life. To this day, the development of communication

technology continues to grow exponentially. The challenges of making new ways of

data transfer accessible to the public have always been to make it as reliable, fast,

efficient and affordable as possible. It was realized at an early stage that fiber-optic

communication is the key to a successful implementation of these requirements. Still,

a lot of effort had to be put into the fiber technology in order to reach an adequate

propagation rate. It is obvious that semiconductor devices are the primary choice

for signal generation and transmission in terms of size, efficiency, cost and temporal

stability. The heterostructure indium gallium arsenide phosphide (InGaAsP) on

indium phosphide (InP) emits inter alia at 1.3 µm and 1.57 µm [167, 65, 153], which

correspond to the telecommunication regions. These wavelengths are most suited for

information transfer with conventional optical fibers, because of their minimal damp-

ing and dispersion in comparison to other regions of the electromagnetic spectrum.

Thus, InGaAsP/InP represents the most common system for telecommunication

purposes [4]. Nevertheless, other semiconductor devices in the 1.6 µm range are

highly desirable. Especially lasers grown on a gallium arsenide (GaAs) substrate

have several advantages compared with InP. The well-established growth of GaAs

based systems results in a better fabrication performance. This can be achieved with

approximately 1.5 times larger [4] substrates of GaAs in comparison to InP. Further-

more, a better electron confinement can be realized in GaAs based heterostructures,

such as InGaAs/GaAs, because of an increased band offset compared to that of InP

with quaternary alloys [81, 4]. This is particularly valid at high temperatures and

can tremendously improve the temperature stability of a GaAs-based laser system

and increase its maximum operating temperature [81]. At the same time, GaAs/AlAs

Bragg mirrors can be monolithically grown on an InGaAs based active layer, which

is only possible in InP with great difficulty [23]. All in all, the realization of a
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GaAs-based laser system would be greatly beneficial for telecommunication purposes.

Indeed, strained InGaAs quantum well lasers were established for an emission

around 1 µm [86, 87]. In order to reach the telecommunication region at 1.3 µm and

beyond, a bigger indium content is required. This is accompanied by an increased

lattice mismatch, which reaches an unacceptable level for 1.3 µm [33, 104]. A different

approach had to be found. In fact, Weyers et al. showed 1992 that the band gap of

GaAs can be efficiently reduced by the incorporation of a small fraction of nitrogen

(N) [162] into the system. A decrease of about 0.2 eV per atomic percentage of N

was observed. The potential for telecommunication applications of dilute nitrides

like (In)GaAsN was rapidly recognized and led to a new active research area in

semiconductor physics. The first InyGa1−yAs1−xNx-based laser with an emission

wavelength of 1.3 µm was demonstrated in 2000 by Livshits et al. [96]. Vertical cavity

surface emitting lasers [148, 132] and edge-emitting devices [8, 9] for 1.5 µm were

presented in subsequent years.

Besides their technological potential, dilute nitrides turned out to be very inter-

esting from a fundamental point of view. They are built by inserting nitrogen into

the group V sublattice of conventional III-V semiconductors such as GaAs, GaP or

InGaAs. GaAsN is the main representative of the dilute nitride material family. In

addition to the rapid band gap reduction with increasing N content, GaAsN has other

unusual properties. A reduced pressure and temperature dependence of the band gap

[122, 136, 77, 129], inhomogeneous broadening of radiative transitions [128, 129], a

large Stokes shift between absorption and emission [26, 28] and localization effects in

the carrier transport [85, 151, 129] were found in this system. A detailed overview

is provided in Refs. [25, 58, 44]. Among many interesting results, the investigation

of the electron effective mass m∗ of GaAsN resulted in some controversial findings.

Different experimental techniques have been applied to the system, including a variety

of indirect approaches such as magneto-photoluminescence [101], optically detected

cyclotron resonance [55], transport [169], electroreflectance [83] or Raman scattering

[64]. A slow rise of the electron effective mass with nitrogen content [142] was found

in addition to results indicating a steep increase of the mass followed by a decrease

[2], alternating mass behavior [101] or even a decrease of the mass with N content

[169]. However, no direct method to determine m∗ has ever been applied on GaAsN.

Nevertheless, the knowledge of the electron effective mass is essential from both the

fundamental and application-related points of view. The same applies to a profound
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understanding of different luminescence peaks of GaAsN and to its recombination

dynamics. Especially n-doped GaAsN has rarely been in the focus of investigations.

Since doping is essential for potential applications, it is very interesting to analyze the

complex recombination dynamics of Si-doped material and study the impact of silicon.

The same is valid for the population transfer of localized excitons in high magnetic

fields. Especially the influence of a higher thermal energy on the interexcitonic transfer

mechanism has never been investigated before. Consequently, a clarification of the

mentioned issues in GaAsN is highly desirable.

The purpose of this thesis is a detailed magneto-optical study of GaAsN in high

magnetic fields. Before going into details on the experimental results, an overview of

the main theoretical models for GaAsN is provided in Chap. 2. A unique experimental

configuration is available in order to apply the most direct method for effective mass

determination and is presented in Chap. 3. It involves the intense, widely tunable,

quasi-continuous terahertz (THz) free-electron laser FELBE and pulsed magnetic

fields up to 62 T of the Dresden High Magnetic Field Laboratory (HLD). The com-

bination of these two large-scale facilities is unique in Europe and located in the

Helmholtz-Zentrum Dresden-Rossendorf. Another part of this work was to build an

experimental setup for magneto-photoluminescence measurements in pulsed magnetic

fields at the HLD. This task included the development of a measuring probe suitable

for HLD pulsed magnets and the establishment of an appropriate measuring technique.

Both are presented in Chap. 3 along other spectroscopic tools. Experimental results

are divided into three main chapters. Chap. 4 is dedicated to the determination of the

electron effective mass in GaAsN with terahertz cyclotron resonance absorption spec-

troscopy. The electron effective mass is studied in GaAs1−xNx samples with different

nitrogen contents at various photon energies. The experimental results are compared

with calculations based on the band anticrossing model. Furthermore, electron mo-

bilities are analyzed and compared with Hall mobilities and theoretical predictions.

Si-doped and Si-free GaAsN epilayers are also investigated with continuous-wave

photoluminescence, as shown in Chap. 5. The origin of distinct peaks is studied in

samples with different N contents using temperature and power series. The impact of

silicon is in the focus. For the first time, the recombination dynamics is systematically

analyzed in silicon n-doped GaAsN with time-resolved photoluminescence at different

temperatures. Chap. 6 contains our magneto-photoluminescence study of GaAsN

and GaAsN:Si in magnetic fields up to 62 T. Si-doped GaAsN samples are analyzed
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with magneto-photoluminescence for the first time. Another new contribution is the

investigation of the population transfer of localized excitons in magnetic fields and

their behavior at higher temperatures. In the last section, the electron effective mass

is analyzed via magneto-photoluminescence with a field-induced blue-shift of free

excitons.



2. Fundamentals

The research activity on dilute nitrides and in particular GaAs1−xNx has increased

significantly after the discovery of the band gap reduction of GaAs with the incorpo-

ration of a small fraction of nitrogen by Weyers et al. [162, 56]. Nitrogen introduces

an impurity level ≈ 0.2 eV above the conduction band (CB) minimum of GaAs

[164, 95, 120] in the ultra-dilute regime (x ≤ 0.01%). Higher N contents strongly

disturb the GaAs lattice because of the electronegativity difference between As and

N and consequently affect the electronic structure [120]. This chapter provides an

overview of the most important theoretical models which have been proposed to

describe this material system and presents further fundamental knowledge. The band

anticrossing model [136] is very instructive in order to explain the band gap reduction

of dilute nitrides. The interaction of the N impurity with the lowest CB of GaAs causes

it to split into two subbands E± within the context of the band anticrossing model.

The separation between these subbands can be further influenced by the nitrogen

content. The observed gap reduction of about 0.1 eV per atomic percentage of N [120]

is explained within this model. Other unusual properties such as a reduced pressure

and temperature dependence of the band gap [122, 136, 77, 129], inhomogeneous

broadening of radiative transitions [128, 129], a large Stokes shift between absorption

and emission [26, 28] and localization effects in the carrier transport [85, 151, 129]

were found in this system. These observations can be described inter alia with models

based on pseudopotential [14, 105, 74], first-principles [69, 160, 15] and modified k · p
calculations [115, 94], some of which are presented in this chapter.

A broad introduction to semiconductor alloys is provided in the first section.

Isoelectronic impurities and traps are discussed in the second section. They are

treated within the virtual crystal approximation, which fails in case of the isoelectronic

trap nitrogen. The most established models for GaAsN-like systems are introduced

subsequently. The third section addresses the band anticrossing model. The empirical

pseudopotential method is in the focus of the fourth section. Section five provides an
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overview of the linear combination of isolated nitrogen states method. The electron

effective mass is discussed in the framework of the band anticrossing model and the

linear combination of isolated nitrogen states method. The fundamentals of cyclotron

resonance spectroscopy are demonstrated in section six.

2.1. Semiconductor alloys

Semiconductor alloys are used to tune the material properties of elemental semicon-

ductors and to optimize and to widen their application as devices [1]. Compound

semiconductors are classified as binary (e.g. GaAs), ternary (e.g. InGaAs), quaternary

(e.g. InGaAsP) and pentanary (e.g. AlGaInAsSb) alloys [1] with a large variety.
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Figure 2.1.: Relationship between band gap energy and lattice parameter at 300 K
for common III-V semiconductor alloys. Solid (dashed) curves represent
direct (indirect) gaps. The values are adapted from the Landolt-Börnstein
database [88, 12].

Optical and electronic properties are determined by the band gap of the resulting

system and lattice matching is essential for band gap engineering. Fig. 2.1 illustrates

the relationship between the band gap energy and lattice constant of common III−V

alloys at 300 K.
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2.2. Isoelectronic impurities and traps

Ternary alloys (e.g. InGaAs) emerge from binary alloys (e.g. GaAs) by replacing a

few binary atoms of one kind (e.g. Ga) with a different species (e.g. In) with similar

properties. Usually, the substituting atoms have the same number of valence electrons.

Indium, aluminum or phosphorus are the most common representatives of these

so-called isoelectronic impurities. The size of these atoms is similar to the size of the

atoms they replace [152, 90]. Fig. 2.2 (a) shows the atom arrangement of InxGa1−xAs.

0.35 eV

GaAs InAsInGaAs
E

1.42 eV
0.75 eV

(a) (b)

Figure 2.2.: (a) Simplified crystal structure of InGaAs. The isoelectronic impurity
In has a similar size as Ga. (b) The band gap of the ternary alloy
In0.53Ga0.47As lies between GaAs and InAs. The small band gap bowing
is symbolized with the dashed line.

Indium is the isoelectronic impurity and substitutes for gallium. In general, InGaAs

crystallizes in zinc blende structure. The oversimplified 2D-representation only

illustrates bonding partners and radii between lattice atoms. Obviously, the lattice is

not crucially distorted by indium. Still, isoelectronic impurities break the translational

symmetry of the host by introducing non-periodic impurity potentials.

2.2.1. Virtual Crystal Approximation

In most cases, the translational invariance is restored by the virtual crystal approx-

imation approach [113, 107]. The impurity potentials VA, VB, VC of the new alloy

AxB1−xC can be approximated by an average potential

〈V 〉 = xVA + (1− x)VB + VC, (2.1)
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weighted by the isoelectronic impurity concentration x [12]. Within the restored

symmetry perspective, properties of endpoint materials are described as a linear

combination of the binary compound’s properties AB and AC. In particular the band

gap

EABC
g (x) = (1− x) ·EBC

g + x ·EAC
x − b ·x · (1− x) (2.2)

can be determined via virtual crystal approximation by taking into account a small

quadratic bowing term b ≤ 1 eV. The band gap of InxGa1−xAs decreases with

increasing indium content x from GaAs towards InAs as shown in Fig. 2.2 (b) in line

with virtual crystal approximation predictions.

2.2.2. Nitrogen in III-V semiconductors

Structural differences between the compounds AB and AC, and in particular size

differences between B and C, can drastically increase the bowing parameter. This

applies to all III-N-V systems. The isoelectronic impurity nitrogen has a significantly

GaAs

GaN

GaAs0.95N0.05

E

1.42 eV

3.28 eV

0.92 eV

(a) (b)

Figure 2.3.: (a) Simplified crystal structure of GaAsN. The isoelectronic trap nitrogen
distorts the system. (b) The band gaps of GaAs, GaAs0.95N0.05 and GaN
are shown. GaAsN has a smaller band gap than both GaAs and GaN.
This results in a huge band gap bowing, symbolized by the dashed curve.

smaller size than other group V elements. Especially in case of GaAsN the size

difference leads to a greater lattice distortion, as can be seen in Fig. 2.3 (a). Distortion

results in a number of unusual effects, including a huge band gap bowing b ≈ 20 eV

[18], a drop in the electron mobility [110], a reduced pressure dependence [136], etc.
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Fig. 2.3 (b) illustrates the surprising band gap reduction and huge band gap bowing

of GaAs0.95N0.05. Consequently, the virtual crystal approximation cannot be applied

to GaAsN.

2.3. Band anticrossing model

A simple but effective two-level band anticrossing (BAC) model was developed by

Shan and coworkers for GaInNAs in 1999 [136, 137]. According to this model,

nitrogen introduces localized states Ed into the system GaInAs, which interact with

extended CB states Ec
k(k) of the host. This interaction causes a splitting of the

CB into two subbands E±(k). Experimental evidence of this splitting was obtained

by photomodulation spectroscopy in combination with large hydrostatic pressure

[136]. These bands have an enhanced localization character because of the observed

-10 0 10
k (10−8 m)

E−(k)

E+(k)

Ed

Ec
k(k)

T = 100 K

E
(e
V
)

1.2

1.6

2.0

-10 0 10
k (10−8 m)

E−(k)

E+(k)

Ed

Ec
k(k)

T = 100 K

E
(e
V
)

1.2

1.6

2.0

(a) (b)

Figure 2.4.: Conduction bands E±(k) of GaAs0.995N0.005 for V = 2.7 eV. We use
Eq. (2.7) for the BAC [136] dispersion in (a) and adapted (b) from
Ref. [166], which corresponds to Eq. (2.8) with Γd 6= 0. The broadening
of the line thickness denotes a smearing of the energy state, defined in
Eq. (2.9). All energies are referenced to the top of the valence band of
GaAs.

saturation of their energy blue-shift at high pressures [136]. Fig. 2.4 (a) schematically

illustrates the band splitting. The BAC model explains the N-induced red-shift of

the fundamental band gap and its pressure dependence. It can be deduced by means

of the many-impurity Anderson model, as shown in Sec. 2.3.1. The applicability of

the BAC was shown later for other III-N-V [138, 165] and II-VI [158] systems.
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2.3.1. BAC described by the many-impurity Anderson model

Using the many-impurity Anderson model, the simple two-level BAC model [136, 137]

is put on a firmer theoretical base [166]. The Anderson model was originally proposed

to describe a single impurity atom of a transition metal or rare earth element in a

nonmagnetic material [5]. The extended many-impurity Anderson model was used to

calculate the electronic structure of semiconductor alloys with deep transition-metal

impurities [79, 67]. It has been widely applied afterwards to treat interactions between

localized and extended states. In this model, the electron system is separated into

two groups. Electrons from extended host states belong to the first one and localized

electrons from randomly distributed impurity levels belong to the second one. Their

interaction leads to the Hamiltonian [166]

H =
∑
k

Ec
kc

†
kck +

∑
j

Ed
j d

†
jdj +

1√
N

∑
j,k

(
eik · j Vkjc†kdj + h.c.

)
(2.3)

in case of a highly mismatched alloy [79, 67]. The first term describes CB electrons

with an energy dispersion Ec
k. The second term represents localized electrons on the

jth impurity site with an energy Ed
j . c

†(c) and d†(d) correspond to the conduction

electron and impurity electron creation (annihilation) operator, respectively. The

third term is an interaction term and takes care of the dynamic mixing between

band states and localized states. The hybridization strength is characterized by the

parameter [166]

Vkj =
∑
l

eik(l−j)

∫
a∗ (r− l)HHF(r)ϕd (r− j) dr, (2.4)

with Wannier functions a (r− j) and ϕd (r− j), which belong to the band and the

impurity, respectively. HHF(r) is the energy of a single electron in Hartree-Fock

approximation [5]. The Hamiltonian (2.3) can be solved for a single impurity [5]. The

more general case of a dilute and finite nitrogen concentration 0 < x ≤ 1 requires a

different approach. It is impossible to directly calculate eigenvalues and eigenstates

of an imperfect crystal without translational symmetry [43]. The formalism of the

thermodynamic Green’s function gives access to important quantities without the

necessity of a complete normal model solution [43]. Wu et al. [166] used the single-site

coherent-potential approximation for configurational averaging. This approach can be
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applied because of the random distribution of localization centers and thus negligible

correlations between impurity positions [168, 43, 166]. The average Green’s function

partially restores the translational invariance, and thus k as a good quantum number

[166]. The diagonal Green’s function in the coherent-potential approximation can be

written as [79, 168, 43, 166]

Gkk(E) =

[
E − Ec

k −
V 2x

E − Ed − iπβV 2ρ0(Ed)

]−1

. (2.5)

The energy dispersion is determined by the poles of Gkk(E) in Eq. (2.5)∣∣∣∣∣Ec
k − E(k) V

√
x

V
√
x Ed + iΓd − E(k)

∣∣∣∣∣ = 0, (2.6)

which corresponds to the two-level BAC eigenvalue problem [136] with an additional

broadening Γd = πβV 2ρ0(E
d) of the energy Ed [166]. The unperturbed density of

states is symbolized by ρ0, β is a prefactor and V is the value of Vkj averaged over k

and j. Analogous to Ref. [136], the two solutions of this problem are reduced to

E±(k) =
1

2

[(
Ec

k + Ed
)
±

√
(Ec

k − Ed)2 + 4V 2x

]
(2.7)

for Γd = 0 [166]. In case of a small broadening Γd, the analytical solution of Eq. (2.6)

can be approximated using 2V
√
x� πβV 2ρ0(E

d) and
∣∣Ec

k − Ed
∣∣ � πβV 2ρ0(E

d) as

[166]

Ẽ±(k) ≈ E±(k) + iΓd
bE±(k)− Ec

kc
bE±(k)− Ec

kc+ [E±(k)− Ed]
≡ E±(k) + iΓ±(k) (2.8)

and is shown in Fig. 2.4 (b). The dispersion relation is thus equivalent to the two-

level BAC dispersion [136] with an additional imaginary part, which defines the

hybridization-induced uncertainty of the energy [166]. This imaginary part

Γ±(k) = |〈ϕd|E±(k)〉|2 Γd (2.9)

is proportional to the admixture of localized states with restructured wave functions

in the two-state-like-perturbation picture, described by Eq. (2.6) [166].
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2.3.2. BAC momentum effective mass

The direct determination of the electron effective mass of GaAsN is a major part of

this work. The BAC electron effective mass m∗
BAC is introduced in this section. In the

first part, a very general and energy dependent electron effective mass is deduced for

isotropic crystals like GaAs and GaAsN. The BAC model is used in the second part

in order to determine the impact of nitrogen on the electron effective mass in GaAsN.

Momentum effective mass

The effective mass is conventionally described by Eq. (2.21) with the second derivative

of the carrier energy E(k). However, a different expression is more relevant for

transport phenomena and can be defined in terms of the susceptibility. Following this

approach [147], the susceptibility is derived from the Boltzmann equation first. Its

solution is given by [48, 147]

jx = − 2

(2π)3
e2

~

(
Ex

∫
τvx

1 + (ωτ)2
∂f0
∂kx

dΩk −
∂Ex

∂t

∫
τ 2vx

1 + (ωτ)2
∂f0
∂kx

dΩk

)
(2.10)

for crystal electrons in a variable electrical field Ex = E0e
iωt. As usual, ~ and τ

identify the Planck constant and the relaxation time, respectively. vx is the electron

velocity, f0 is the occupation probability and dΩk = dkxdkydkz is a volume element.

Generally, the current density can be expressed in the form

jx = σEx + iε0ωχcEx

= σEx + ε0χc
∂Ex

∂t
, (2.11)

with the conductivity σ, the vacuum permittivity ε0 and the electric susceptibility χc.

Eq. (2.11) is justified by the considered isotropic dispersion relation. Using Eq. (2.10)

and Eq. (2.11), one obtains a suitable expression for the susceptibility

χc =
2

(2π)3
e2

ε0~

∫
τ 2vx

1 + (ωτ)2
∂f0
∂kx

dΩk. (2.12)

In the following, the high-frequency limit ωτ >> 1 is discussed, which applies to

semiconductors and dielectric materials in the visible to mid-infrared range. In these
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cases, the susceptibility

χc =
2

(2π)3
e2

ε0~ω2

∫
vx
∂f0
∂kx

dΩk (2.13)

is independent of τ and only characterized by the structure of the energy band. Using

~vx = ∂E(k)/∂kx and v2x = 1/3v2, Eq. (2.13) simplifies to

χc =
2

(2π)3
e2

3ε0ω2

∫
v2

∂f0
∂E(k)

dΩk. (2.14)

Furthermore, the volume integral can be replaced by a surface integral with

dΩk =

[
dSk(E)

∇kE

]
dE. (2.15)

Sk(E) is a surface of constant energy in k-space. The susceptibility of an isotropic

crystal is then defined by the spherical Fermi surface Sk(EF ) = 4πk2F of the Fermi

energy EF with

χc = − 2

(2π)3
e2

3ε0~ω2
vFSk(EF ). (2.16)

Making use of the carrier concentration N = 2
(2π)3

· 4
3
πk3F and ~vF = |∂E/∂k|EF

,

Eq. (2.16) simplifies to

χc = − Ne2

kF ε0~2ω2

∣∣∣∣∂E∂k
∣∣∣∣
EF

. (2.17)

The susceptibility of a free electron gas

χc = −
ω2
p

ω2
=

Ne2

ε0m∗ω2
, (2.18)

is defined by the plasma frequency ωp =
√

Ne2

ε0m∗ in the high-frequency limit ωτ >> 1.

Comparing Eq. (2.17) with Eq. (2.18) gives a definition for the electron effective mass

1

m∗ =
1

~2kF

∣∣∣∣∂E(k)∂k

∣∣∣∣
EF

(2.19)
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of isotropic crystals like GaAs and GaAsN. In analogy to Ref. [170], I will refer to it

as momentum effective mass. In case of a parabolic energy dispersion

E(k) =
~2k2

2m̃∗ , (2.20)

one gets ∂E(k)/∂k = ~2k/m̃∗. Inserting this expression into Eq. (2.19) yields m̃∗ =

m∗, and the electron effective mass is naturally defined as

1

m̃∗ =
1

~2
∂2E(k)

∂k2
. (2.21)

Eq. (2.21) is the most prominent definition of the effective mass and is equivalent to

Eq. (2.19) in the parabolic case. However, Eq. (2.19) is more relevant for transport

phenomena. Consequently, we will use the momentum effective mass (2.19) in the

following approach.

BAC electron effective mass

In order to describe the behavior of the electron effective mass in dependence of the

nitrogen content in the BAC model, we use the momentum effective mass (2.19) and

the energy dispersion of the lowest CB E−(k) from Eq. (2.7) for k = 0. In this case,

0 1 2
0.06

0.08

0.10

N content (%)

m
∗
(m

0
)

Figure 2.5.: BAC electron effective mass of GaAs1−xNx with varying nitrogen content
x. Equations (2.22) and (2.7) are used for the calculation.
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Eq. (2.19) transforms into [165]

m∗
BAC(x) = 2m∗

GaAs

1− Ec
0 − Ed√

(Ec
0 − Ed)2 + 4V 2x

−1

(2.22)

with the same nomenclature as in the former section. Fig. 2.5 illustrates Eq. (2.22)

for 100 K, which corresponds to the temperature of our experimental studies (see

Chap. 4). In particular, the energy of the GaAs CB is set to Ec
0(100 K) = 1.501 eV,

according to the Varshni formula [154]. The nitrogen level and interaction strength

are Ed = Ec + 0.23 eV and V = 2.7 eV, respectively [157]. A smooth increase of

the BAC electron effective mass m∗
BAC with nitrogen content x can be observed in

Fig. 2.5.

2.4. Empirical pseudopotential method

Kent and Zunger [159, 74, 75] developed a model for strongly perturbed alloys based on

large-scale atomistic supercell calculations and the empirical pseudopotential method,

as an extended alternative to the BAC model. The principle of the method is based

on the description of the micro- and nanostructure of a system by distributing cations

and anions in a large supercell. The atomic ordering and intended alloy concentration

have to be taken into account. The relaxation processes are described by a simple

“balls and springs” Hamiltonian [72, 100] and the crystal potential V (r) is written as

a superposition of screened atomic pseudopotentials vα(r) with α = Ga,N,As [74, 75].

This allows to calculate the electrical and optical properties of large supercells. The

calculation procedure of the empirical pseudopotential method is introduced in the

first part of this section. In the second part, the electronic structure of GaAs1−xNx is

discussed in the dilute regime. The third part is dedicated to the evolution of the

electronic structure with increasing nitrogen content x.

2.4.1. Calculation procedure

Adding 0 ≤ I ≤ 20 nitrogen atoms randomly at the anion site of GaAs into a supercell

with up to 13824−I GaAs pairs leads to a natural evolution of the electronic structure

of GaAsN [74]. In the empirical pseudopotential method, Ga can be surrounded by
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five possible configurations of As and N atoms AsnN4−n with 0 ≤ n ≤ 4 [74]. The

resulting eigenstates can be analyzed with respect to their localization degree [74].

Calculating the distance R
(i)
j from the jth nitrogen site at which 20% of the eigenstate

ψi is enclosed, classifies the energy levels in “localized” or “quasi-localized” [74]. Kent

and Zunger [74, 75] repeated the procedure for 15 randomly selected configurations

of GaAsN. Fig. 2.6 shows a selection.
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Figure 2.6.: Spectral dependence of the nitrogen localization for cluster states (left)
and perturbed host states (right) of GaAsN. The nitrogen concentration
is increased from dilute to 1% in the vertical direction. The CB minimum
of the lowest band E− is indicated by vertical arrows. Different energetic
states are shown. The figure is adapted from Ref. [75].
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2.4.2. Electronic structure in the dilute regime

Energetic states with different localization characters emerge in dilute GaAsN upon

the appearance of nitrogen as isolated or bound impurity [74]. In case of the isolated

impurity, Kent and Zunger observed a strong coupling with GaAs host states and the

evolution of four a1-like states1 from the basis a1(X1c) + a1(L1c) + a1(Γ1c) + a1(N)

[74]. The lowest aΓL1 level is classified as quasi-localized [74] and forms the new

CB edge, as shown in Fig. 2.6 (b). In analogy to the BAC model [136], this state

will be referred to as E−. Approximately 150 meV above the CB edge, a strongly

localized aN1 state is observed in Fig. 2.6 (a), which is well known from the literature

[164, 95]. The perturbed host states aLΓ1 and aXL
1 appear approximately 280 meV

and 420 meV above the CB edge, respectively and show a much lower localization

character [74]. These quasi-localized states are depicted in Fig. 2.6 (b). Furthermore,

nitrogen introduces strongly localized cluster states in the band gap [60], which are

shown in Fig. 2.6 (a). These levels can be associated with NN pairs, triplets N3As and

quadruplets N4 and have a relatively low concentration in the alloy [74]. Nevertheless,

they can be observed e.g. in photoluminescence measurements, caused by effective

population via tunneling from perturbed host states.

2.4.3. Evolution of electronic structure with N composition

Fig. 2.6 (c) - (f) illustrate the shift of the CB edge to lower energies with nitrogen

content. This behavior can be explained by anticrossing and repulsion with higher

energy members of the perturbed host states [74]. The position of cluster states

remains fixed in the forbidden gap, because of the high localization character and

weak interaction [74]. The downward moving CB “swallows” discrete cluster states

one-by-one, until the lowest cluster state is overtaken by perturbed host states at

a critical concentration xc [74]. This concentration can vary upon the degree of

randomness in the samples and is equal to 0.6% in the calculation of Kent and Zunger

[74]. At the same time, new virtual bound states appear in the CB of GaAsN and

form bands. These bands can be associated with the E+ band, in analogy to the BAC

model [136], and a t2-like band
1. E+ shifts to higher energies with increasing nitrogen

content, like in the BAC model [136]. The CB minimum is formed from both localized

1a1 and t2 are two of the five irreducible representations of the point group Td.
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and delocalized states in the vicinity of the critical concentration [74]. This duality is

responsible for exciton localization, slow decay times, Stokes shift between absorption

and emission, etc. [27], which cannot be described by the two-level anticrossing model

[136]. For nitrogen concentrations x >> xc, GaAsN shows a more conventional alloy

behavior. More information can be found in Refs. [74, 75].

2.5. Linear combination of isolated nitrogen states

method

The properties of dilute nitrides can be explained inter alia with two different methods,

namely the empirical BAC model [136] or detailed band structure calculations [74, 75],

which are introduced in Sec. 2.3 and Sec. 2.4, respectively. Lindsay and O’Reilly

aimed for a unification of these models for a quantitative description of Ga(In)NAs

with their approach [94, 114]. In the first part of this section, the linear combination

of isolated nitrogen states (LCINS) model is presented by describing isolated nitrogen

and cluster states. The LCINS effective mass is in the focus of the second part.

2.5.1. Isolated nitrogen and cluster states

Detailed sp3s∗ tight-binding calculations were performed to determine the defect-

related levels due to isolated nitrogen atoms and cluster-states in large GaAsN

supercells [115]. The CB edge state |ψc1〉 of a Ga864As863N1 supercell can be written

as a linear combination of the GaAs CB edge state |ψc0〉 and the isolated nitrogen

state |ψN0〉, according to the BAC eigenstate problem (2.6). The isolated nitrogen

state is therefore defined with α = 〈ψc1|ψc0〉 [115, 93, 94] by

ψN0 =
ψc1 − αψc0√

1− α2
. (2.23)

In case of nitrogen pairs or clusters, the situation strongly depends on the statistical

distribution of the N atoms [94]. In particular the number of N pairs and of the

larger and less common clusters in the supercell is essential. In order to minimize

statistical variations between random supercells, large GaNAsN−MNM supercells must

be used (e.g. N = 106 and M = 104 for x = 1%) [94]. However, tight-binding
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calculations are not feasible with clusters of that size. To overcome this problem,

GaAsN CB edge wave functions Φj are represented as a linear combination of M

isolated nitrogen resonant states ψNi with i = 1, ...,M and the GaAs CB edge wave

function ψc0 [93, 94]. This procedure is called linear combination of isolated nitrogen

states and yields results in excellent agreement with tight-binding calculation results,

as was shown on a supercell with 2N = 1000 atoms [94, 114]. In the general case

(M + 1)× (M + 1) matrix equations must be solved with HijΦj = EijΦj in order to

analyze these supercell CB states [94]. The full GaAsN Hamiltonian H is defined by

Hij = 〈ψNi|H|ψNj〉 (2.24)

Hi,M+1 = 〈ψNi|H|ψc0〉 (2.25)

with 1 ≤ i, j ≤M [94]. The matrix Sij = 〈ψNi|ψNj〉 enables the overlap of neighboring

N states. First, it is reasonable to diagonalize the M ×M matrix, which links the

individual ΦNl states with the energy El [94]. The histograms in Fig. 2.7 (a) show

the distribution of the N-cluster states energies and their interaction VN(E) =∑
|Vl|2 T (E − El) with the CB edge state |ψc0〉. The interaction strength is given by

Vl = 〈ΦNl|H|ψc0〉 and T (x) is a top-hat function of width 2 meV and unit area [94].

In the superdilute regime (upper picture), most interactions arise from states close

to the isolated nitrogen level (EN = 1.7 eV at 0 K) [94]. The small features around

1.5 eV and 1.6 eV can be associated with N-N pairs and second-neighbor N atoms,

respectively [94]. At higher N contents (lower picture), a considerable broadening

of VN(E) can be observed [94]. Furthermore, large cluster states can be found at

the low-energy side. The complete LCINS spectrum is obtained by diagonalizing the

(M + 1)× (M + 1) matrix [94]. Fig. 2.7 (b) shows its projection on the unperturbed

wave function ψc0 for two different nitrogen concentrations. This so-called fractional

Γ-character

fΓc = |〈Φj|ψc0〉|2 (2.26)

of the CB grants access to the different state types |Φj〉 [94]. The new CB edge E− is

identified by the greatest Γ-character and exhibits a red-shift with increasing N content

[94]. This observation is in agreement with the BAC model [136] and experimental

results [77]. Furthermore, E+ appears at x = 0.2% and shows a significant blue-shift
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and a rising Γ-character when the N content is elevated [94]. The position of the CB

edge with respect to N-related levels affects the interaction strength Vl = 〈ΦNl|H|ψc0〉
and leads to a reduction of the Γ-character of E− in the vicinity of N levels [94]. This
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Figure 2.7.: (a) Distribution of N cluster state energies El weighted by the square
of their interactions |Vl|2 = |〈ΦNl|H|ψc0〉|2 with the CB edge state for
GaAs0.998N0.002 (upper picture) and GaAs0.98N0.02 (lower picture). (b)
Projection of the LCINS spectrum onto the GaAs wave function ψc0 for
x = 0.2% (top) and x = 2% (bottom). The figures are adapted from
Ref. [94].

observation differs from the two-level BAC model [136] predictions and is responsible

for the anomalous composition dependence of the LCINS electron effective mass in

GaAsN [114], which is discussed in the following.

2.5.2. LCINS electron effective mass

The BAC effective mass is discussed in Sec. 2.3.2. A smooth increase of the mass

is observed with nitrogen content x. In this section, the LCINS effective mass is

presented. It can be determined in the framework of the LCINS method by assuming

that the valence band fractional Γ-character fΓv varies as 1− x [92, 94]. The electron

effective mass of GaAsN is given by

m∗
GaAsN =

m∗
GaAsE−

ECBfΓcfΓv
. (2.27)
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Figure 2.8.: Electron effective mass of GaAsN in dependence of the nitrogen content x.
The full blue circles represent LCINS calculations, which are adapted from
Ref. [94] and the open red circles stand for the BAC model calculation
with Eq. (2.22), as explained in Sec. 2.3.2.

Consequently, it is proportional to the energy gap E− and inversely proportional

to the fractional Γ-character (2.26) in the k · p model [92, 94]. Fig. 2.8 shows the

highly non-monotonic behavior of the LCINS electron effective mass as a function

of nitrogen content x in comparison with much lower monotonic BAC masses. This

result demonstrates that exceptionally large mass values are possible in samples with

a particularly strong interaction between ψc0 and ΦNl [93, 94]. These interactions

result in low values of fΓc < 0.25. For more details on the LCINS method, please

check the references [94, 114].

2.6. Fundamentals of cyclotron resonance

Cyclotron resonance (CR) designates the resonant absorption of electromagnetic

radiation by charged carriers (typically electrons) in a static magnetic field. It was

first observed by Dresselhaus et al. [39, 40] and by Lax et al. [91] in germanium and

silicon, respectively. An absorption process only takes place if the radiation frequency

matches the so-called cyclotron frequency ωc = eB/m, where e is the elementary

charge, B the magnetic field, and m the free electron mass. The cyclotron frequency

can be deduced classically, as shown in Sec. 2.6.1 or with a quantum mechanical
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approach, as presented in Sec. 2.6.2. In semiconductors, the mass is replaced by the

electron effective mass m∗. The latter typically corresponds to a fraction of the free

electron mass and is closely related to the band structure of the system. Thus, CR

spectroscopy is a direct method for effective mass determination and studying the

band structure. Furthermore, it provides information on scattering times and on the

free-carrier concentration. The experimental setup for CR experiments is introduced

in Sec. 3.1.

2.6.1. Classical cyclotron resonance: Drude model

The electron motion in electric and magnetic fields E and B can be expressed by the

classical equation of motion [109],

m∗dv

dt
+
m∗v

τ
= −eE − e (v ×B) (2.28)

with the electron effective massm∗ and the electron velocity v. The second term on the

left hand side takes into account electron scattering. We consider the magnetic field

B to be parallel to the z-direction and the electric field vector E to be perpendicular

to z in the Faraday geometry. Solving the differential equations gives the conductivity

tensor [109]

σ =
σ0
τ


−i(ω−i/τ)

(ω−i/τ)2−ωc
2

ωc

(ω−i/τ)2−ωc
2 0

−ωc

(ω−i/τ)2−ωc
2

−i(ω−i/τ)

(ω−i/τ)2−ωc
2 0

0 0 −i
ω−i/τ

 , (2.29)

which is defined by the relaxation time τ , the DC conductivity σ0 = ne2τ/m∗, the

carrier density n and the cyclotron frequency

ωc =
eBres

m∗ . (2.30)

The real part of the conductivity

<(σxx) = σ0
1 + (ωτ)2 + (ωcτ)

2

[1− (ω2 − ωc
2)τ 2]2 + 4(ωτ)2

= ε0cn1α (2.31)

provides a classical expression for the CR absorption coefficient α [109, 35] in case of

linearly polarized radiation. Eq. (2.31) is used in Sec. 4.2 and Sec. 4.3 for data analysis.
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However, at this point it is more instructive to consider a different representation of

the conductivity [109, 35]

σ± = σxx ∓ iσxy (2.32)

= σ0

[
1

1 + (ω ∓ ωc)
2 τ 2

− i
(ω ∓ ωc) τ

1 + (ω ∓ ωc)
2 τ 2

]
(2.33)

in terms of the left- and right-circularly polarized radiation. The signs “ + ” and

“− ” denote the right and left circular polarization, respectively. For electrons, the

resonance only takes place for right-circularly polarized radiation. Thus, electrons

are called CR active for σ+. On the other hand, holes are CR active for σ−. This

distinction originates from different signs of their charges and thus of ωc [109]. In

case of circularly polarized radiation, the CR absorption of electrons is determined by

the real part of σ+ as

<(σ+) = σ0
1

1 + (ω − ωc)
2 τ 2

= ε0cn1α. (2.34)

Eq. (2.34) corresponds to a pure Lorentzian with a peak at ωc and a half-width at

half-maximum of γ = 1/τ . Consequently, CR of electrons takes place for ω = ωc if

the cyclotron condition

ωcτ > 1 (2.35)

is satisfied. The cyclotron condition implies that on average carriers have to complete

one full orbit before a scattering event occurs. Using the mobility µ = eτ/m∗,

Eq. (2.35) can be written as

ωc
µm∗

e
> 1 (2.36)

and a new definition of the cyclotron condition

B ·µ > 1 (2.37)

follows from Eq. (2.30) and Eq. (2.36). Both the sample mobility and the magnetic

field strength affect the applicability of the CR experiment.
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2.6.2. Landau level quantization

The Hamiltonian of a free (crystal) electron in a magnetic field is given by

H0 =
1

2m∗ (p+ eA)2 , (2.38)

where p is a canonical momentum operator and A is the vector potential of the

magnetic field B = ∇×A. The latter can be represented in the asymmetric Landau

gauge for simplicity. Thus, the vector potential is written as A = (0, Bx, 0) with the

position operator x = (x, 0, 0) and |B| = |(0, 0, B)| = B. In this representation, the

Hamiltonian is defined by

H0 = H⊥ + H‖

= 1/ (2m∗)
[
p2x + (py + eBx)2

]
+ 1/ (2m∗) · p2z.

(2.39)

H‖ describes the electron motion in the z-direction and has the eigenstate ~2k2z
2m∗ . H⊥

can be transformed to

H⊥ =
p2x
2m∗ +

1

2
m∗ω2

c

(
x−

(
−~ky
eB

))2

(2.40)

with ωc = eB/m∗ and py = ~ky. H⊥ corresponds to the Hamiltonian of a shifted

harmonic oscillator with an orbit center coordinate x = −~ky/eB in Eq. (2.40). Its

eigenvalues are consequently (N + 1/2)~ωc. The eigenstates of H0 are given by a sum

of the individual eigenstates of H‖ and H⊥ as

EN(kz) =

(
N +

1

2

)
~ωc +

~2k2z
2m∗ , (2.41)

because H⊥ commutes with H‖. Consequently, bulk semiconductor electrons can only

move freely in the z-direction when a magnetic field B = (0, 0, B) is applied. The

xy motion is quantized in a series of one-dimensional Landau levels. Each one of

these levels is degenerated with respect to ky. Cyclotron resonance is regarded as a

transition between neighboring Landau states, if the photon energy is equal to their

spacing ~ωc. The absorption between Landau levels can be also calculated in the

quantum mechanical approach but is beyond the scope of this thesis. An extensive

description can be found e.g. in Ref. [109].
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Cyclotron resonance and magneto-photoluminescence spectroscopy are very powerful

tools for materials research. In this thesis, different spectroscopic methods are applied

to the dilute nitride GaAsN in order to study the electron effective mass, electron

mobility, luminescence characteristics, recombination dynamics, impact of shallow

dopants, formation and evolution of cluster states and the population transfer of

localized excitons. The experimental details of these methods are discussed in this

chapter. The first section is dedicated to cyclotron resonance spectroscopy in pulsed

magnetic fields. A general introduction on high magnetic field generation is given

with a focus on pulsed magnetic fields. Afterwards, the experimental setups and

applied THz laser sources are presented. In particular, the free-electron laser FELBE

and quantum cascade lasers are introduced. The second section treats time-resolved

magneto-photoluminescence. Photoluminescence investigations are performed with a

pulsed titanium-sapphire laser. A near-infrared streak camera is used as detection

system. A new magneto-photoluminescence setup for pulsed magnetic fields is built

at the Dresden High Magnetic Field Laboratory (HLD). Details on this task are given

in section three. This includes the development of an experimental setup and an

appropriate measuring technique.

3.1. Cyclotron resonance spectroscopy

Cyclotron resonance (CR) spectroscopy is very popular for effective mass determination

and studying the band structure. The method provides direct access to electronic

states and electron interactions [109]. There are two ways to measure CR. In the first

approach, the sample is located in a constant magnetic field and illuminated with

electromagnetic radiation by either a broadband source or by a narrow and tunable

source. The radiation is absorbed resonantly when the energy of the electromagnetic

wave matches the cyclotron frequency ωc = eBres/m
∗, which is deduced in Sec. 2.6.1.
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In the second approach, the sample is illuminated with monochromatic radiation,

while the magnetic field is swept. The resonant absorption occurs at a certain resonant

magnetic field

Bres =
ωm∗

e
. (3.1)

As usual, e and B designate the elementary charge and the magnetic field, respectively,

and m∗ represents the effective mass of charged carriers. Both principles are known

as cyclotron resonance spectroscopy and can be applied successfully if the cyclotron

condition in Eq. (2.37) is satisfied. In case of e.g. GaAs with µ = 8500 cm2/Vs at

300 K [149], it can be applied for B > 1.2 T.

3.1.1. High magnetic field generation

High magnetic fields provide several advantages for CR investigations. According

to Eq. (2.37), low mobility samples can only be investigated in high magnetic fields.

Furthermore, the variation of the cyclotron energy ~ωc gives access to interesting

effects related to phonons or plasmons, which appear in different energetic ranges. In

case of very high magnetic fields, one can obtain new phenomena which arise from

electron-electron interactions or the breakdown of the effective mass approximation

Superconducting magnets

Hybrid magnets

Bitter magnets

Destructive single turn coils

Nondestructive pulsed magnets

Destructive explosive coils

100 1000101

B (T)

Figure 3.1.: Different methods for high field generation [35], arranged in order of
maximum achievable field strength. DC and pulsed fields are shown in
dark and light gray, respectively.
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[109]. There are different methods to obtain high magnetic fields, as shown in Fig. 3.1.

The most common principle is based on superconducting DC coils. Commercially

available coils can be operated up to 22 T. Superconducting magnets need to be

cooled with liquid helium below the critical temperature in order to ensure a loss-free

electrical current. Fields up to ≈ 37 T can be achieved with Bitter magnets. These

resistive coils are made of a conductive plate set in helical configuration and operated

with large currents. A great amount of deionized water has to be pumped through

the magnet in order to dissipate up to 20 MW of heating power. Hybrid magnets are

built as a combination of an external superconducting coil with a Bitter magnet inside.
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Figure 3.2.: (a) Scheme of the driving circuit for pulsed magnets, adapted from
Ref. [35]. (b) Magnetic field profiles of different coil types available at the
High Magnetic Field Laboratory Dresden. The inset shows a schematic
view of a 8.5 MJ/70 T coil. The main parts are: 1. coil with internal
reinforcement, 2. external reinforcement cylinder, 3. G-10 end flanges
and 4. current leads.

Magnetic fields up to 45 T can be achieved. Above that, only pulsed magnets are

available. Pulsed magnets are further distinguished into three classes: non-destructive

magnets with magnetic fields up to 100 T, destructive single turn coils with fields up

to 300 T and destructive explosive magnets with fields above 1000 T. In case of single

turn coils, only the coil explodes during the pulse, but the sample and setup survive.

However, the sample explodes together with the coil in the destructive explosive

magnet. Both destructive coils can only be operated on a microsecond time-scale [35].

Our experiments are performed in non-destructive pulsed magnets at the High
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Magnetic Field Laboratory Dresden (HLD), which are introduced in more detail in

the following. Fig. 3.2 (a) shows the schematic LC driving circuit of a HLD pulsed

magnet. The solenoid is driven by a 50 MJ/24 kV capacitor bank, which consists

of 20 modules [59]. Depending on the technical requirement, the models can be

operated in different combinations. Three main coil types are currently available for

user operation, as shown in Fig. 3.2 (b). Each coil is installed in a liquid nitrogen

bath inside of a blast-protected cave. In our experiments, a “type 1” coil is used with

a maximum field strength of 63 T. The fully charged capacitor (3 modules) discharges

into the coil at the time t = 0. During the discharging process, the electrical current

rises as sin(t/
√
LC). The maximum is reached at the time t = π

√
LC/2 and decays

afterwards [35]. Parallel to the coil, a special crowbar-diode is installed, in order to

avoid negative recharging of the coil and to increase the sweep-down time. This diode

short-circuits the coil when the voltage on the capacitors becomes slightly negative

and causes an exponential decay exp (−L/R) of the current, instead of the sine-like

one [35]. R denotes the coil resistance. The surplus coil energy dissipates by Joule

heat and increases the coil temperature from 77 K to above room temperature within

milliseconds [35]. The waiting time between magnetic pulses is defined by the cooling

time of the coil and lies typically between two and four hours. The Lorentz force

exerts serious mechanical stress on the coil. To overcome the mentioned challenges,

the so-called “exploitation of distributed internal reinforcement” [20] approach is

applied at the HLD. In particular, every wire layer is individually supported by a

reinforcement layer in order to homogenize the stress distribution. This reinforcement

consists mainly of a high-strength fiber in an epoxy-resin matrix [173]. Apart from

the internal reinforcement, the coils are reinforced externally with steel cylinders,

which provide additional radial, hoop, and axial support for the coil [173]. The inset

of Fig. 3.2 (b) shows a typical HLD coil for field strengths of up to 70 T.

3.1.2. Free-electron laser

Free-electron lasers (FELs) are widely tunable light sources of high brilliance, which

can be operated inter alia in the desirable THz range. The active medium of the laser

consists of relativistic electrons in an alternating magnetic field, which makes this

laser type unique in terms of tunability. Continuous energetic states of free electrons

are responsible for this extraordinary property. The emission range of the FEL is thus
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only limited by technical requirements of the accelerator and undulator. In contrast to

other lasers, population inversion is not required for the lasing process. The resonator

is built by a cavity with two concave mirrors, as shown in Fig. 3.3. Electrons are

accelerated to relativistic energies and guided into the undulator by a dipole magnet.

They wiggle through alternating magnets of the undulator with a period of λU . Radial

acceleration processes cause the emission of spontaneous synchrotron radiation, which

interacts with relativistic electrons on its part. As a result, electrons oscillate through

λU

mirrormirror

electron
dump

undulator dipole
magnet

IR beam

gun

Figure 3.3.: Schematic view of a free-electron laser.

the undulator in bunches and emit coherent radiation. This leads to stimulated

emission and optical gain. Cavity mirrors are responsible for the positive feedback and

a small hole in one of the mirrors regulates the outcoupling of the FEL radiation. The

electrons are extracted to a beam dump after the undulator. The emitted wavelength

[76, 174]

λ =
λU (1 +K2)

2γ2
(3.2)

is determined by the electron energy γ, which is given in units of the electron rest

energy m0c
2, the undulator period λU and the undulator parameter

K =
eBλU
2πm0c

. (3.3)

The magnetic field amplitude B describes the field on the undulator axis. The

experiments were performed at the FEL facility FELBE using the superconducting

Electron Linear accelerator with high Brilliance and Low Emittance (ELBE) at the

Helmholtz-Zentrum Dresden-Rossendorf. The laser works in the IR range between
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4 µm (310 meV) and 250 µm (5 meV) inter alia in the quasicontinuous regime with 13

MHz repetition rate. The wide energy range is realized by two independent undulators

U27 and U100. The former covers the high energetic range between 50 meV and

310 meV and the latter is responsible for lower energies between 5 meV and 62 meV.

The average power depends on the wavelength and reaches values up to 20 W [174].

The FEL radiation can be extracted to different optical laboratories in the building or

into the adjacent HLD building via a 27 m tunnel. The combination of these two large

scale facilities provides a unique spectroscopic access via THz cyclotron resonance

spectroscopy in pulsed magnetic fields [36, 37, 38, 45] or THz electron spin resonance

in fields up to 63 T [174, 118]. More details on the FEL can be found e.g. in the

Refs. [21, 76, 116].

3.1.3. Quantum cascade laser

Quantum cascade lasers (QCLs) are portable but weakly tunable laser sources for the

mid-infrared or THz range. The lasing of these unipolar semiconductor lasers occurs

by stimulated emission between confined subbands of multiple quantum well (QW)

structures [71, 47]. The operating principle can be explained with Fig. 3.4 (a) on the

first experimentally realized QCL [47]. The active region consists of three GaInAs QWs

with different thicknesses and thus different energy positions of the lowest confined

energetic level En. The first QW width is 0.8 nm and E3 has the highest energy. The

second and third QW are approximately 3 nm and E2−E1 ≤ 1
10
(E3 − E2). Electrons

are injected resonantly into the n = 3 energy state of the active area at the beginning

of the operating cycle and can relax to the n = 2 level via photon emission. Because

of the large spatial overlap, the n = 2 state can be efficiently depleted via the n = 1

level and electrons tunnel out of the active area and move to the next active region

along the potential gradient. The population inversion is thus realized by the reduced

spatial overlap between n = 3 and n = 2 states and the strong coupling between n = 2

and n = 1 levels. Ultra-fast, subpicosecond relaxation processes from E2 to E1 with a

near-zero momentum transfer are responsible for an efficient depletion of the lower

level, as shown in Fig. 3.4 (b). Consequently, lasing occurs between E3 and E2. With

time, more and more photons are emitted, as the electrons stream down the potential

staircase. Additional cladding layers confine the radiation propagation parallel to the

layers and cleaved facets provide the resonator mirrors. Thus, the heterostructure
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crystal acts additionally as a resonator and is responsible for the optical amplification.

The spacing of the lasing subbands define the radiation frequency and it can be tuned

by material engineering in the same heterostructure [47, 80]. In principle, arbitrarily

long wavelengths are possible. However, the fabrication of a lasing THz device with a

QCL scheme is challenging. In particular, THz radiation is strongly absorbed by free

carriers in THz range QCL waveguides [80]. Furthermore, the population inversion

for laser transition energies above the Reststrahlen band is conventionally achieved

by an efficient depletion of E2 with longitudinal optical phonons. Moving to longer

wavelengths requires novel designs. Köhler et al. [80] presented the first THz QCL,

operating below the longitudinal optical phonon band.
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Figure 3.4.: Operating principle of a quantum cascade laser: (a) CB energy diagram of
an AlInAs/GaInAs QCL with electron probability density functions. The
CB edges are shown as dashed lines. (b) Energy dispersion of the three
relevant states E1, E2 and E3. The red wavy arrows indicate radiative
transitions and the straight arrows represent intersubband optical-phonon
scattering events. The figure is adapted from Ref. [47].

Mid-infrared and THz QCLs are applied in magnetic fields within the framework

of this thesis. Magnetic fields have different impacts on the band structure of a

QCL, regarding the application direction. Fields parallel to the QW plane affect the

electronic band structure and the emitting wavelength [31]. A changing wavelength

during the magnetic pulse is very inconvenient and precludes this field configuration

[38]. A perpendicular magnetic field, on the other hand, quantizes the in-plane carrier

motion into Landau-levels. Due to intersubband dipole transition selection rules and

thus the conservation of the Landau-level number, the wavelength of the QCL is

not dependent on the perpendicular magnetic field in the parabolic approximation.
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Hence, this field configuration was chosen in our experimental setup [38]. Furthermore,

the emission efficiency of QCLs can be significantly affected by high magnetic fields

[143, 144, 13, 156, 38]. In particular, intersubband magnetophonon resonance causes

giant oscillations of the emission intensity [144, 38]. Consequently, QCLs should be

kept as far as possible from the field center during the magnetic pulse. For more

information on QCLs, please check out the review papers [163, 53].

3.1.4. Design of the experimental setup

Cyclotron resonance THz spectroscopy is performed in pulsed magnetic fields at the

HLD with two different setups. The first setup is a compact magnetospectrometer

based on infrared QCLs or FEL and was developed by Drachenko et al. [38]. The

second setup was originally created for electron spin resonance (ESR) THz spectroscopy

by Zvyagin et al. [174], but can be equally utilized for CR THz spectroscopy. In both

cases, THz radiation from an external or internal light source is guided into a cryostat,

which is located in a pulsed magnet. The light is then focused onto the sample and

the transmitted radiation is subsequently directed towards a photodetector. In the

following both setups are introduced. The compact magnetospectrometer is presented

first and the ESR spectrometer is treated in the second part.

Compact magnetospectrometer based on infrared quantum cascade lasers

The compact magnetospectrometer [38] is shown in Fig. 3.5 (a) and can be operated

with removable QCLs (see Sec. 3.1.3) emitting at 103 µm, 75 µm, 70 µm or 15 µm.

Alternatively, the external light source FELBE (see Sec. 3.1.2) can be utilized. The

custom-designed variable temperature insert (VTI) is located in a He-cryostat (Cryo-

Vac: KONTI-IT-Cryostat), which is placed in the bore of a HLD pulse magnet with a

bore diameter of 24 mm. THz radiation propagates through a stainless-steel oversized

multimode waveguide, which is divided into two equivalent channels. The sample

is located in the field center of the sample channel in close proximity of the sample

heater, temperature sensor (LakeShore: DT-621-HR silicon diode) and pick-up coil.

The CR experiment can be performed in a temperature range between 4.2 K and

200 K without affecting the QCL and the detectors. The second channel functions as

a reference. The transmitted radiation is measured by two similar detectors, which

are located at the very bottom of the probe. A set of Si:B blocked impurity band
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photodetectors, sensitive from 4 µm up to 35 µm [61, 131, 38] can be used on the

detector side. Alternatively Ge:Ga detectors can be utilized for the far-infrared

spectral region above 30 µm. Both detector-types exhibit a significant magnetic field

dependence and must be kept as far as possible from the field center. The detector

location lies 30 cm below the field maximum in our setup, which is enough to not

(a) (b)

Magnet
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FEL
DetectorFEL
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Figure 3.5.: (a) Compact magnetospectrometer based on infrared QCLs [38] and (b)
THz-range ESR spectrometer [174]. Both probes are tailored to fit the
cryostat, which is located in the bore of a HLD pulsed magnet. The coil
is surrounded by liquid nitrogen. The sample is located in the field center
in close proximity of a temperature sensor and pick-up coil.

be affected [38]. Nevertheless, Ge:Ga detectors exhibit very large magnetoresistance

effects in the low field limit, which can only be compensated by renormalization with

the chosen two-channel design. More details on the compact magnetospectrometer

can be found in Ref. [38].
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THz-range free-electron laser electron spin resonance spectrometer

The operating principle of the THz-range ESR spectrometer [174] can be explained

with the schematic representation of the components in Fig. 3.5 (b). External FEL

radiation (see Chap. 3.1.2) is introduced into the VTI and propagates through an

oversized multimode cylindrical brass waveguide with an inner diameter of 5.6 mm.

A cylindrical cone focuses the THz light onto the sample, which is located in the

field center of the pulse magnet (see Fig. 3.2 (b)). A standard CernoxTM temperature

sensor and pick-up coils for the magnetic field strength are installed in the vicinity.

The transmitted radiation is reflected by plane gold-coated mirrors into a parallel

waveguide at the end of the pipe and spreads towards the outcoupling window. The

emerging radiation propagates through another 10 mm waveguide, outside of the

magnet, towards the detector. In order to cover the broad frequency range, different

detectors with high sensitivity and fast response have to be used. A helium-cooled

Ge:Ga detector (QMC Instrument Ltd.) is suitable for 30 µm−200 µm and is utilized

in our experiments. For shorter wavelengths below 30 µm, a nitrogen-cooled HgCdTe

photovoltaic detector (Teledyne Judson Technologies: J15D26-M204-S01M-60) can

be applied. The VTI is installed in a suitable cryostat inside of a pulse magnet,

which allows to perform the ESR and CR experiments in a temperature range of

1.4 K− 300 K. The FEL wavelength can be monitored with a Bruker VERTEX 80v

Fourier-spectrometer before and after the magnetic pulse. Please see Ref. [174] for

more details on the THz-range FEL ESR spectrometer.

Measuring procedure and data acquisition

The measuring procedure and data acquisition principle is equivalent in both CR

transmission setups. Magnetic field changes are measured by a pick-up coil. Detector

signals indicate the transmitted THz radiation. All electrical signals are fed to a fast

oscilloscope, which is triggered by an optical signal at the beginning of a magnetic

pulse. The temporal distribution of the magnetic field and of the transmitted radiation

can be observed. Fig. 3.6 illustrates CR transmission curves of both spectrometers.

The results of the compact magnetospectrometer are shown in (a) and (c). The

THz-range ESR spectrometer results can be found in (b) and (d). Obviously, the

results are in excellent agreement for both QCL and FEL measurements. In case of

the FEL, vibrational artifacts appear in the spectra.
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Figure 3.6.: CR transmission spectroscopy on GaAs at 100 K. The measurement is
performed with the compact magnetospectrometer (Spec 1) in (a) and
(c) and with the THz-range ESR spectrometer (Spec 2) in (b) and (d)
with the FEL and QCLs. The results are in excellent agreement. Arrows
indicate vibrational artifacts in FEL measurements.

3.2. Time-resolved photoluminescence

Photoluminescence (PL) was first applied by Haynes and Briggs in the early 1950s to

investigate the optical properties of germanium [57]. It became a common method only

ten years later, when different laser sources became available. Ever since it has been

one of the most popular material science techniques. This non-destructive method

provides information on the sample composition and allows to study transitions on a

femtosecond time scale. The investigation of the temporal behavior of luminescence

signals grants a unique access to the identification of the recombination processes and

of the microscopic nature of the relevant luminescence centers [121]. This section covers

the experimental details on time-resolved photoluminescence (PL) measurements,

which are performed with a pulsed titanium-sapphire laser (Spectra Physics: Tsunami

3960). The detection unit consists of a Bruker Chromex 250is/is spectrograph,

a Hamamatsu C5680-27 streak camera and a Hamamatsu ORCA-ER C4742-95

charge-coupled device (CCD). In the first part of this section, the experimental setup
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and the operating principle of the streak camera is discussed. More details on the

functionality of the laser system is given in the second part.

3.2.1. Experimental setup with a streak camera

Figure 3.7 schematically shows the experimental setup of our time-resolved PL in-

vestigation. The sample is located in a cryostat and illuminated by a picosecond

titanium-sapphire laser (see Sec. 3.2.2). The PL is collected in back-reflection geome-

try by a set of lenses and focused on the slit of a monochromator. A Czerny-Turner

type grating spectrograph (Bruker Chromex 250is/is), whose f-number is f/4, serves

as dispersion element. Three different gratings with 100, 300 and 1200 lines/mm and

a nominal resolution of 1.8 nm, 0.6 nm and 0.15 nm, respectively, are available. As a

result, the radiation is divided into quasi-monochromatic fractions, which propagate

into the streak camera (Hamamatsu ORCA-ER C4742-95) towards the photocathode.
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Figure 3.7.: Time resolved PL spectroscopy setup with a streak camera.

The impinged light creates photoelectrons, which are accelerated towards sweeping

electrodes. These electrodes constantly deflect the carriers in the vertical direction.

The electrode-sweeping is controlled in the manner of an oscilloscope by the synchro-

nization with the titanium-sapphire laser frequency [121]. Photoelectrons thus inject

a trace on the phosphorescent screen with a spatial distribution, which correspond

to the temporal fingerprint of the PL signal [121]. This signal is digitized by a CCD

detector and can be further processed by a computer. A microchannel plate detector

(MCP) is employed for signal amplification. In our time-resolved PL experiments,

a Hamamatsu C5680-27 streak camera is used. The vertical electrode-sweeping is

triggered by the titanium-sapphire laser signal with a Hamamatsu C6878 delay unit.
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3.2.2. Laser system

The laser system is introduced in this subsection. In the first part, the titanium-

sapphire (Ti:Sa) laser is presented. The neodymium-doped yttrium aluminum garnet

(Nd:Y3Al5O12 or Nd:YAG) laser is discussed in the second part.

Titanium-Sapphire laser

Ti:Sa lasers are the most popular representatives of pulsed solid-state lasers, which are

mainly operated in the femtosecond regime. A Ti3+ doped Al2O3 crystal serves as the

active medium. Interactions with the sapphire host lead to a splitting of the Ti3+ 3d

shell into 2E and 2T2 states. These states, on their part, broaden by electron-phonon

interactions, as shown in Fig. 3.8 (a). This makes the Ti:Sa system tunable in the

near-infrared regime between 670 nm and 1070 nm. A frequency doubled Nd:YAG

3d
2T2

2E

Pump Lasing

fast decay

fast decay
(a) (b)

Kerr lens

Aperture

Figure 3.8.: (a) Four-level scheme of a Ti:Sa laser. (b) Passive mode-locking with a
Kerr lens. The nonlinear optical Kerr-effect causes an intensity-dependent
self-focusing of the laser beam. Fig. 3.8 (a) and Fig. 3.8 (b) are adapted
from Ref. [78] and Ref. [73], respectively.

laser (see next section) serves as pump laser. Population inversion can be realized

by fast non-radiative transitions within the 2E and 2T2 bands in combination with

a much longer lifetime of the lowest 2E state. The experiments were performed in

the picosecond regime on a Spectra Physics Tsunami 3960 [146] with pulse lengths of

3−4 ps and a repetition rate of 78 MHz. This system works with passive mode-locking

in the gain medium by the nonlinear optical Kerr lens effect. Fig. 3.8 (b) illustrates

the working principle of a Kerr-lens by intensity-dependent self-focusing of the laser

beam. Mode-locking can be achieved with a resonator design that favors pulsed regime

over continuous-wave (cw) radiation. Usually a “soft aperture” is used as selective

element. Within this approach, high-intensity pulses have a bigger overlap with the
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pump beam because of the nonlinear optical Kerr-effect. An average output power of

2 W can be achieved at 750 nm. The actual laser wavelength and pulse widths are

monitored by a spectrometer (APE Berlin: WaveScan) and an autocorrelator (APE

Berlin: PulseScope), which are fed continuously by a fraction of the near-infrared

radiation. A frequency doubled Spectra Physics Millennia Pro Nd:YAG laser [145] is

used for pumping. More details on the Ti:Sa laser can be found e.g. in Ref. [78].

Nd:YAG laser

Nd:YAG lasers [52] are the most prevalent solid-state lasers. Their application area

ranges from medical and production to safety and military operation. The active

medium is formed by replacing approximately 1% of Y3+ ions with Nd3+ ions in

the YAG crystal. The four level system has an energy schema that corresponds to

energetic levels of a neodymium ion in a YAG host as shown in Fig. 3.9. Nd3+ can be

excited into several pumped level (1.5− 1.8) eV above the ground state 4I9/2. This

4F3/2

4I11/24I9/2

Pumped

Lasing

levels

Figure 3.9.: Four level lasing system of a Nd:YAG laser. The figure is adapted from
Ref. [78].

can be achieved most easily with diode lasers, which are available in this energy

range. The pumped levels are depleted efficiently via non-radiative transitions into

the meta-stable 4F3/2-state. Population inversion can be realized with the long life

time of the 4F3/2-level and the fast decay times of the ground and pumped states.

The most dominant laser transition occurs between 4F3/2 and 4I11/2 levels with a

wavelength of 1060 µm. Besides its function as a pump laser, the frequency doubled

Nd:YAG laser is used for photoluminescence investigations in pulsed magnetic fields,

which is in the focus of the next section. More details on the Nd:YAG laser can be

found e.g. in Ref. [78].
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3.3. Magneto-photoluminescence in pulsed magnetic

fields

Using external magnetic fields in PL investigations allows one to acquire further

knowledge on the band structure of a system. In particular electronic states and the

optical band gap can be studied. The magnetic field affects the position and lifts the

degeneracy of certain energetic levels upon the relative strength of the perturbation

with respect to the electron-hole Coulomb interactions [124]. In this section, PL

in pulsed magnetic fields is introduced. One part of this work was to build an

experimental setup for magneto-PL measurements in pulsed magnetic fields at the

HLD. This task included the development of a measuring probe suitable for HLD

pulsed magnets (see Sec. 3.1.1) and the establishment of an appropriate measuring

technique. The biggest challenge regarding the equipment was to meet the size

and material stability requirements of the probe. The achievement of an acceptable

spectral resolution was the biggest technological task. The implementation of the

experimental setup, in particular the probe design, is discussed in the first part of

this section. The second part is dedicated to the measuring technique and the timing

issues.

3.3.1. Experimental setup

The realization of an experimental setup for magneto-PL measurements is mostly

limited by the dimensions of the pulsed magnet, as shown in Fig. 3.10. The sample is

located in the field center, which lies roughly 1.15 m below the bath cryostat aperture

with a diameter of 16.1 mm. Sample holder, optics and detectors thus have to fit

into a tube with an inner diameter of 10 mm due to the necessity of an outer shield

in a bath cryostat and because of stability requirements on the pipe. In order to

effectively collect weak PL signals, we use adjustable lenses in non-magnetic lens

holders, which are located in a plastic cylinder as shown in Fig. 3.11. Special polymer

parts are designed and built of polyaryletherketone (PEEK) in cooperation with

the HZDR workshop. Detailed drawings are attached in appendix A.3. The center

of the probe contains a PEEK cylinder tube A with an inner thread. This thread

fits perfectly to the outer thread of the lens holders B, which allows to move them

into the optimal positions with respect to the sample and fiber. A special tool C
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Figure 3.10.: Part one of the experimental setup for magneto-PL at the HLD.

is built as counterpart to the small holes in the lens holders in order to move them

in the vertical direction. Slots in the cylinder A give access to the lens holders B.

Part D is manufactured to hold two small coils and seal the cylinder A with part

G. The heater coil E is made of a brass body with a manganin wrapping and the

PEEK coil F is wrapped with a standard thin enameled wire and operates as pick-up.

The integrated pick-up signal gives direct access to the magnetic field strength in

case of a proper calibration. The sample is directly glued to the heating coil E on

the lens side. A LakeShore DT-621-HR miniature silicon diode can be attached on

the inner side of the coil, as shown in Fig. 3.12, and works as temperature sensor.

On the backside of part G, contact patches connect the pick-up coil, heater and

temperature diode with wires from the top of the probe, where they are soldered

to a LEMO connector. The temperature is monitored with a LakeShore model 350

temperature controller using the four-point measurement technique and the pick-up

signal is recorded with a Yokogawa DL750 digital oscilloscope. On the upper part

of the cylinder A, a fiber holder H can be screwed into the cylinder. This part is
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designed to hold a 2.5 mm ceramic ferrule, which is chosen as one of the connectors

of the custom fiber optic patch cable. A multimode Thorlabs FG050LGA fiber with

a length of 1800 mm, a diameter of 50 µm and without tubing is used. On the side

of the vacuum feedthrough (outside of the magnet), we select a standard FC/PC

connector. All parts are removable and can be replaced in case of a mechanical

failure. The main parts A - G of the probe are attached to a 1300 mm long metal

A.

B.

C.

E.

F.

H.

tube

probe

combined

D.

G.

Figure 3.11.: Manufactured probe for magneto-PL measurements in pulsed magnetic
fields. A cylinder body A houses two lens holders B, which can be moved
with the tool C. Part D is built to hold the heater E and the pick-up
F and can be attached to the body A and sealed with the part G. On
the other side, a fiber ferrule holder H can be screwed into the cylinder.
The body A is connected to a stainless steel tube with two grub screws.

tube made of the stainless steel 1.4571 [41]. The outer shield is manufactured of

the same material and has a length of 1500 mm. A vacuum cone is glued with an

adapter to the top of the inner tube and sealed with a custom-built blind flange. The

flange is equipped with a vacuum feedthrough (Vacom 3IVM-16KF-VV-S) for the

fiber and with a vacuum connector (LEMO HGP.3S.314.CLLSV) for electrical signals.

Most optical components are located outside of the blast-protected cave on an optical

table (see Fig. 3.12) and are linked to the probe via a 5 m fiber through a small hole

in the wall. A frequency doubled diode pumped solid state (DPSS) Nd:YAG laser

(Laser 2000: CNI-532-500-5-FN-FDA-A1) is used as cw laser source. More details

on the Nd:YAG laser can be found in Sec. 3.2.2. The laser light is coupled into the

fiber by a microscope objective, as shown in Fig. 3.12, to propagate to the probe.

Inside the probe, the radiation is focused on the sample by a set of lenses (Thorlabs:

352330-B with f = 3.1 mm on the sample side and 354560-B with f = 13.86 mm on

the fiber side), which are also responsible for the collection of the PL radiation. All



42 3. Spectroscopic methods

spectro-

meter

C
C
D

Laser

delay

generator

trigger

lenses

lens dichroic
mirror

filter

sample

heater pick-up

T− sensor

beam
splitter

diode

Fiber

Figure 3.12.: Part two of the experimental setup for magneto-PL at the HLD.

optical components are selected for ideal PL propagation and focusing in the range

of 800− 900 nm. The PL signal is guided through the internal fiber to the external

fiber outside of the probe and further to the optical table. On the detection side, a

Princeton Instruments spectrometer Acton Spectro2500i [66], whose f-number is f/6.5,

serves with a nitrogen cooled silicon CCD (Princeton Instruments: Spec-10 system).

A shortpass dichroic mirror deviates the radiation towards the spectrometer and a 2”

lens focuses the PL on the slit of the spectrograph. Additionally, a longpass filter

blocks the remaining laser radiation. The laser power is monitored with a photodiode

during the magnetic pulse.

3.3.2. Measuring technique

In principle, the whole magnetic field dependency of the PL can be measured by taking

many spectra during one magnetic pulse. However, the finite spectral acquisition

time tremendously limits the magnetic field resolution due to the fast field variation

in the vicinity of the field maximum (see Fig. 3.13). In fact, in order to obtain an

acceptable spectral resolution, it is necessary to take only one spectrum per magnetic

pulse. The magnetic field dependency of the PL can be realized by iterating PL
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experiments with varying maximum field strengths. The temporal field profiles are

carefully investigated, as shown in Tab. A.2. The field variation ∆B/∆t increases

linearly with the peak magnetic field. Thus, we have to find a compromise between
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Figure 3.13.: Temporal profile of the magnetic field and the trigger signals of the laser
and spectrometer. The acquisition window is opened by the spectrometer
trigger tS = t1 (blue) and closed by the laser trigger tL+∆tL = ∆t+8 ms
(red). The PL signal is thus recorded for a time ∆t symmetrically around
the field maximum. The inset shows an enlarged version of the region
of interest.

a suitable integration time ∆t = t2 − t1 and an acceptable field variation ∆B for

high magnetic fields. The resulting times t1 and t2 are chosen symmetrically around

the field maximum and are also shown in the appendix in Tab. A.2. The temporal

synchronization between the magnetic pulse and the detection unit can be realized

with a four channel digital delay pulse generator (Stanford Research Systems model

DG535). In order to collect the PL signal only during a predefined time window ∆t

of a few milliseconds, the CCD is operated in a so-called Continuous Cleans regime,

which replaces a too slow mechanical shutter. Continuous Cleans removes any charge

from the CCD array until the external trigger signal is received. Once the trigger

pulse is received, the charge is acquired for a preprogrammed time ∆t and read
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out afterwards. If the trigger signal is still active at the end of the readout time,

the hardware will interpret this as a second trigger pulse. Thus, the length of the

spectrometer trigger signal ∆tS has to be shorter than the acquisition and readout

time. To be on the safe side, we choose ∆tS = ∆t− 1 ms. As for the laser trigger, we

select a warm up time of 8 ms and thus tL = t1 − 8 ms as starting point. To avoid the

illumination of the CCD during the readout process, we pick ∆tL = ∆t+8 ms for the

length of the laser pulse. The acquisition window is thus opened by the spectrometer

trigger tS = t1 and closed by the laser trigger tL + ∆tL = ∆t + 8 ms, as shown in

Fig. 3.13.



4. Direct determination of the

electron effective mass of GaAsN

Cyclotron resonance (CR) absorption spectroscopy is a powerful method to investigate

electrical properties of semiconductor materials. In particular, it is the most direct

method for electron effective mass determination and allows to study the mobility and

relaxation times of free carriers inside a system. Even though different experimental

techniques have been applied on GaAsN in order to determine the electron effective

mass, no direct method has ever been used. We perform a systematic CR absorption

spectroscopy study on a series of GaAsN alloys with different nitrogen concentrations

for the first time. Our goal is to determine the electron effective masses in dependence

of the N content. Moreover, we want to resolve the long-standing controversy (see

Sec. 4.1). In this chapter, a review of former results is provided in the first section.

The second section is dedicated to our electron effective mass study via CR absorption

spectroscopy. An energy dependent analysis of the electron effective mass is presented

in section three. The electron mobility drop of nitrogen containing samples is

investigated in the fourth section. The results are discussed and summarized in

section five. Parts of this chapter were published previously in Ref. [45].

4.1. Review of former results

Because of a significant difference in the size and electronegativity of nitrogen and

arsenide atoms in GaAsN, the system has several characteristic properties. In par-

ticular, GaAsN exhibits a huge band gap bowing [18], a drop in the electron mobility

[110] and a reduced pressure dependence of the band gap [136]. Different theoretical

models which describe these features of GaAsN are presented in Chap. 2. It is possible

to explain the band gap reduction and its pressure dependence within the band
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anticrossing (BAC) model [136, 166], which is introduced in Sec. 2.3. The effective

mass is also calculated in the framework of the BAC model [165] in Sec. 2.3.2. The

BAC electron effective mass m∗
BAC smoothly increases with the N content x. A similar

behavior of the electron effective mass up to 1.5% of nitrogen was found with an

empirical tight-binding model by Shtinkov et al. [141]. Lindsay and O’Reilly [94]

proposed a unification of the BAC model and the empirical pseudopotential method,
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Figure 4.1.: Overview of different indirect experimental and theoretical results of
the electron effective mass m∗ in GaAs1−xNx. Calculations based on
the BAC model [136, 165] are shown with a dashed line. The empirical
tight-binding [141] and the LCINS model [94] calculations are presented
with a dotted and dash-dotted line, respectively. PL and magneto-PL
results are shown in blue with circles [2], stars [101], full squares [142] and
empty squares [161]. Pink diamonds represent ODCR results [55] and the
green full diamonds stand for thermomagnetic transport measurements
[169].

which is in the focus of Sec. 2.5. They predicted a strong increase of the electron

effective mass for x ≤ 0.1%, followed by a non-monotonic composition dependence

for bigger N contents due to N-clustering. Besides different theoretical predictions,

different experimental approaches have been applied on GaAsN in order to determine

the electron effective mass. In the past, photoluminescence (PL) and magneto-PL
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have been the most popular methods. This includes the publication of Skierbiszewski

et al. on GaAs1−xNx/GaAs quantum well (QW) samples with 0.9% ≤ x ≤ 4% [142].

A smooth increase of the mass with nitrogen content was observed. Masia et al. [101]

and Alberi et al. [2] used magneto-PL on GaAs1−xNx films. However, they found a

steep increase of m∗ with nitrogen content below the concentration limit of x = 0.2%.

For higher nitrogen contents, the results diverge. The electron effective mass decreases

in case of Alberi et al. [2] and shows a non-monotonic compositional dependence in

case of Masia et al. [101] above 0.2%. The latter is consistent with the LCINS model

by Lindsay and O’Reilly [94]. Besides PL and magneto-PL, other techniques also

provided contradicting results. A steep increase of m∗ with N content was found

with optically detected cyclotron resonance (ODCR) in GaAsN/GaAs QWs with a

nitrogen concentration of 1.2% and 2% [55]. This method detects microwave-induced

photoluminescence changes versus magnetic field and should not be mistaken for the

direct cyclotron resonance absorption spectroscopy, which is introduced in Sec. 3.1.

The decrease of the electron effective mass with increasing nitrogen content was also

observed e.g. with a transport technique [169]. Fig. 4.1 illustrates the discrepancy

between the different experimental results and theoretical calculations of the electron

effective mass. However, cyclotron resonance absorption spectroscopy has never been

applied before on GaAsN bulk material for effective mass determination.

4.2. Electron effective mass determination

We investigate the electron effective mass in epitaxially grown GaAsN:Si samples

with low nitrogen concentrations of 0%, 0.1% and 0.2%. The samples were grown

on a semi-insulating GaAs substrate by molecular beam epitaxy at a lowered growth

temperature of 500◦C. A detailed overview of the investigated samples is given in

the appendix A.1. THz cyclotron resonance spectroscopy is measured in Faraday

geometry with the free-electron laser FELBE at the Dresden High Magnetic Field

Laboratory. Some experiments are carried out with a quantum cascade laser with

17.7± 0.5meV. A Ge:Ga detector is used on the detection side. A detailed description

of the experimental setup can be found in Sec. 3.1.4.

Cyclotron resonance is compared to impurity-shifted cyclotron resonance in the

first part of this section. Furthermore, the impact of artifacts is discussed. Our THz
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cyclotron resonance spectroscopy results are presented exemplarily for 41 meV in the

second part on this section. The impact of nitrogen is studied.

4.2.1. Cyclotron resonance, impurity-shifted cyclotron resonance

and the impact of artifacts

In general, CR occurs at a certain resonant magnetic field Bres, as shown in Sec. 3.1.

Free carriers resonantly absorb the THz radiation of a certain frequency at this

magnetic field. Analyzing the intensity of the transmitted THz radiation gives direct

access to Bres, which corresponds to the lowest position of the transmission curve. At
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Figure 4.2.: Normalized CR transmission spectra with a photon energy of (a)
41.4± 0.5meV and (b) 26.7± 0.5meV at 100 K. (a) CR (green) and
ICR (black) of our reference sample taken at 6K and 100K, respectively.
(b) The sweep-up (i) and sweep-down (ii) signals of the FEL measurement
are shown in green. The QCL curve (iii) is represented in blue. Fig. 4.2 (a)
was previously published in Ref. [45].

low temperatures, a similar phenomenon appears in moderately doped samples and

should not be mistaken for CR. Hydrogen-like impurity transitions occur between the

1s ground state and the 2p+ excited state at a certain resonant magnetic field BICR
res ,
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caused by carrier freeze-out [6, 106, 68, 171]. This effect is called impurity-shifted

cyclotron resonance (ICR) and takes place at lower resonant magnetic fields than the

CR of free carriers, as shown in Fig. 4.2 (a). We perform our experiments at 100 K in

order to ionize the impurities and to be able to observe CR of free carriers and the

CR electron effective mass with

m∗ =
e

ωFEL

Bres. (4.1)

The distinction between the real CR signal and possible overlapping mechanical

noise is a major issue of the data analysis in case of the FEL measurements. In fact, the

coil undergoes a mechanical and thermal shock during the magnetic pulse, which leads

to vibrations of the magnet and affects the coupling of the FEL radiation. Fig. 4.2 (b)

shows artifacts due to these oscillations, which are more pronounced in later times of

the sweep-down (ii) signal. QCL measurements are not affected, because both laser

and detector are installed inside the measuring probe (see Sec. 3.1.4). Comparing

the sweep-up and sweep-down signals of one magnetic pulse is a reliable method

to distinguish between the real signal and artifacts. Only the peak at 16.6 T in

Fig. 4.2 (b) can be associated with CR absorption.

4.2.2. THz CR absorption spectroscopy in GaAsN

CR transmission spectra of GaAsN samples with different N contents are shown in

Fig. 4.3 exemplarily for a FEL photon energy of 41.4±0.5 meV. The second minimum

at ≈ 45 T in (b) is one of the mentioned artifacts that originates from mechanical

vibrations. Only the main minimum at approximately 25 T is related to the real

CR signal. As the N content increases to 0.2%, Bres shifts only slightly to a higher

magnetic field in (c). Consequently, the electron effective mass is not significantly

affected by nitrogen content up to x = 0.2%, as can be seen with Eq. (4.1). The

transmitted THz radiation intensity T can be described with the Beer-Lambert law

as
T

T0
=

(1−R)2

T0
e−αd =

(1−R)2

T0
exp

(
−<(σxx)
ε0cn1

d

)
, (4.2)

with the reflectivity R, the intensity of the incident THz radiation T0, the absorption

coefficient α, the thickness of the active layer d, the vacuum permittivity ε0 and
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the refractive index n1(ω). Eq. (2.31) is used for the CR absorption coefficient α

of linearly polarized radiation in Eq. (4.2), which is introduced in Sec. 2.6.1. This

classical description of the CR absorption is applied as a fitting function to our

experimental results and is shown with red curves in Fig. 4.3. Eq. (4.2) gives direct
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Figure 4.3.: CR transmission spectra of GaAs1−xNx samples with (a) x = 0%, (b) x =
0.1% and (c) x = 0.2% taken with a FEL photon energy of 41.4± 0.5meV
at 100 K. Green bullets represent the experimental results and the red
line is a classical CR absorption fit to the data using Eq. (4.2). The
artifact at ≈ 45T in (b) can be associated with mechanical noise. This
figure was previously published in Ref. [45].

access to the carrier density n, the scattering time τ , the cyclotron frequency ωc and

thus the electron effective mass m∗. Fitting parameters are summarized in Tab. 4.1.

The electron effective mass indeed only increases from 0.071me to 0.08me when the

nitrogen content rises from x = 0% to x = 0.2% in GaAs1−xNx:Si.



4.3. Energy dependence of the effective mass 51

4.3. Energy dependence of the effective mass

In order to study the energy dependence of the electron effective mass m∗, we perform

CR spectroscopy experiments with different photon energies around the Reststrahlen

band of GaAs. In the first part of this section, the Reststrahlen band is briefly

presented in GaAs and GaAsN. CR spectra are shown in the second part. The

increase of the electron effective mass and nonparabolicity with N content is discussed

in part three.

4.3.1. Reststrahlen effect in GaAs and GaAsN

The Reststrahlen band is defined as the region between the transverse and longitudinal

optical phonon frequencies at k = 0. A semiconductor almost totally reflects radiation

that lies inside the electromagnetic spectrum of this band. In case of GaAs and

GaAsN, the Reststrahlen band can be found between 33.3 meV and 36.8 meV, as
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Figure 4.4.: Normalized room-temperature Fourier transform infrared spectroscopy
reflection spectra of GaAsN with different N content x. All samples
exhibit a region of high reflection in the typical Reststrahlen band (33.3−
36.8) meV of GaAs. Vertical arrows indicate the photon energies of the
performed CR absorption experiments, which lie outside of this area.

shown in Fig. 4.4. We choose photon energies with a minimal characteristic reflection

for our CR measurements, namely 17.7 meV, 26.7 meV and 41.4 meV. These energies

are indicated with vertical arrows in Fig. 4.4. The corresponding CR transmission

spectra are shown in Fig. 4.3 (41.4 ± 0.5 meV) and Fig. 4.5 (26.7 ± 0.5 meV and

17.7± 0.5 meV).
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4.3.2. CR spectroscopy with different photon energies

The comparison of the CR profiles in Figs. 4.5 (a) - (c) and 4.5 (d) - (f) indicates once

again that m∗ is not significantly affected by the nitrogen content up to x = 0.2% in

agreement with the 41.4 ± 0.5 meV measurement. The fitting results support this
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Figure 4.5.: CR transmission spectra of GaAs1−xNx with a QCL photon energy of
17.7± 0.5meV (left panel) and a FEL photon energy of 26.7± 0.5meV
(right panel). (a) and (d) show the reference sample with x = 0%, (b)
and (e) represent the x = 0.1% sample and (c) and (d) indicate the 0.2%
sample. Green bullets originate from experimental results and the red line
stands for the classical CR fit with Eq. (4.2). Artifacts due to mechanical
vibrations are highlighted with vertical arrows.

observation, as presented in Tab. 4.1. The effective mass of the reference sample is

0.067me (0.069me) and increases to 0.069me (0.072me) in case of the x = 0.2% sample

for 17.7± 0.5 meV (26.7± 0.5 meV). These results also imply a small nonparabolicity

increase with nitrogen content, which is further investigated in the following.
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Table 4.1.: Fit results for CR electron effective masses m∗, relaxation times τ and
mobilities µ, which are determined with Eq. (4.2). The underlying CR
absorption spectroscopy study is performed with the photon energies
17.7± 0.5meV, 26.7± 0.5meV and 41.4± 0.5meV. This table was pre-
viously published in Ref. [45].

hωQCL = 17.7± 0.5meV hωFEL = 26.7± 0.5meV

N content 0% 0.1% 0.2% 0% 0.1% 0.2%

m∗ (m0) 0.067± 0.067± 0.069± 0.069± 0.069± 0.072±
0.002 0.003 0.007 0.001 0.002 0.004

τ (fs) 100± 20 68± 11 43± 31 114± 10 59± 10 45± 20
µ (cm2/Vs) 2800± 600 1500± 300 1100± 400 2900± 200 1500± 200 1100± 400

hωFEL = 41.4± 0.5meV

0% 0.1% 0.2%

0.071± 0.072± 0.08±
0.001 0.003 0.005
110± 15 36± 11 36± 10
2800± 200 900± 100 600± 200

4.3.3. Increase of the electron effective mass and band

nonparabolicity with N content

Figs. 4.6 (a) - (c) show the energy dependence of the electron effective mass in the

range of the investigated photon energies. The triangles represent fit results of the

electron effective masses, which are summarized in Tab. 4.1. Comparing (a) with (b)

and (c) elucidates a moderate increase of m∗ in the investigated energy range. For a

quantitative analysis, we calculate the energy dependence of the momentum effective

mass

m∗(k) = ~2k
∣∣∣∣ ddk 12

[(
Ec

k(k) + Ed
)
−
√

(Ec
k(k)− Ed)2 + 4V 2x

]∣∣∣∣−1

, (4.3)

which was introduced in Eq. (2.19) [147, 170]. We use the BAC model [136] for

the energy dispersion of the lowest CB E−(k) of GaAsN, which is presented in

Eq. (2.7). In analogy to Sec. 2.3.1, Ec
k(k) describes the unperturbed GaAs CB and

Ed = Ec
k(0) + 0.23 eV = 1.732 eV depicts the energy of the nitrogen level. Both are

defined relative to the top of the valence band for 100 K. The interaction term is once
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again V = 2.7 eV [157]. In Sec. 2.3.2, the momentum masses are obtained for k = 0.

In the current approach, we want to investigate particularly the k-dependence of the

momentum effective mass. This can be realized with two different treatments of the

GaAs energy dispersion Ec
k(k). First, we assume that the CB of GaAs is perfectly
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Figure 4.6.: Energy dependence of the electron effective mass of GaAs1−xNx with (a)
x = 0%, (b) x = 0.1% and (c) x = 0.2%. CR electron effective masses
are determined for different photon energies and shown as triangles.
Momentum masses [147, 170] are calculated with Eq. (4.3) using the
BAC model [136] for the lowest CB E−(k) of GaAsN. The CB of GaAs
is treated in the parabolic approximation (solid lines) and with a k · p
approximation for the nonparabolicity (dashed lines). The inset (d)
depicts Bres in dependence of the photon energy for x = 0.1%. The
experimental values are represented by circles and the BAC fit is shown
as a dashed line. This figure was previously published in Ref. [45].
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parabolic. The calculated values are shown in Fig. 4.6 by a solid line. In the second

approach, we use a k · p approximation [19] with

Ec
k(k)

∼=
~2k2

2m∗
GaAs

− 0.824

Ec
0

(
~2k2

2m∗
GaAs

)2

(4.4)

in order to describe the band nonparabolicity with a small negative nonparabolic-

ity coefficient −0.824. The calculation is illustrated in Fig. 4.6 by a dashed line.

The experimental cyclotron masses can be well described by the calculated BAC

momentum masses using the k · p approximation method. The observed increase of

the nonparabolicity with increasing nitrogen content is also depicted by the second

treatment. However, the nonparabolicity is relatively small in the shown energy range.

This is why we obtain an almost perfectly linear behavior of Bres in the inset (d)

of Fig. 4.6, which can be well described by the BAC model (dashed line) [136] as

well. In the proximity of the nitrogen impurity level (~ω > Ec
0 + 100 meV), the

nonparabolicity is expected to increase significantly. Nevertheless, the experimentally

observed CR effective mass and band nonparabolicity increase can be well explained

in the framework of the BAC model.

4.4. Mobility drop with increasing N content

The line broadening of the CR transmission curves in Fig. 4.3 (b) - (c) is probably

the most striking feature. A tremendous mobility loss in nitrogen containing systems

causes this characteristic behavior, which is accompanied by a decrease in relaxation

time τ . The CR mobilities can be deduced from the CR transmission curve fits with

Eq. (2.31), Eq. (4.2) and

µ =
eτ

m∗ . (4.5)

The fit results are summarized in Tab. 4.1 and shown in Fig. 4.7 by red triangles.

The determined values are in a good agreement with Hall mobilities [119], which are

shown with blue diamonds. Both CR and Hall measurements are performed on the

same sample set at 100 K. However, Hall measurements have a weaker sensitivity to

forward-scattering [35] in comparison to CR spectroscopy and yield slightly higher

mobility values. Furthermore, tight-binding calculations [46] and Anderson’s many-

impurity model calculations [155] were used for theoretical predictions of the mobility
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Figure 4.7.: Mobility decrease of GaAsN with increasing N content. Red triangles and
blue diamonds represent CR and Hall [119] mobilities, respectively. The
dashed and dotted lines illustrate mobility calculations by Ref. [155] and
Ref. [46], respectively, for n-doped (1017 cm−3) GaAsN at room tempera-
ture. The shown CR mobilities are taken at 41.4± 0.5meV and 100 K
and Hall measurements were performed on the same samples at 100 K
[119]. This figure was previously published in Ref. [45].

and are shown in Fig. 4.7 by a dotted and dashed line, respectively. The theoretical

values are much higher that the experimentally observed ones. This is due to the

neglect of several possible scattering mechanisms in the calculation procedure. Even

though N related alloy scattering can be recognized as the main scattering mechanism,

scattering by interstitial nitrogen atoms, ionized impurities (neglected by Ref. [46]) or

NN-clusters (neglected by Ref. [155]) have also to be considered. The mobility might

be further diminished by additional structural defects in samples grown at 500 K (see

App. A.1).

4.5. Discussion and summary

Our cyclotron resonance (CR) absorption spectroscopy study shows a moderate

increase of the electron effective mass in GaAsN samples with a low nitrogen con-

tent. This result is in agreement with the band anticrossing (BAC) model [136, 165]

and empirical tight-binding [141] calculations, as can be seen in Fig. 4.8. Magneto-

photoluminescence (magneto-PL) investigations [2, 101] on the other hand, yield

much higher mass values (see blue symbols in Fig. 4.8), which are to some extent

consistent with the linear combination of isolated nitrogen states (LCINS) model [94].
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As the name suggests, the LCINS model prioritizes cluster formation and predicts

a tremendous impact of these structures on the effective mass. This issue is in the

focus of Sec. 2.5 and the calculated LCINS masses are also shown in Fig. 4.8. At

the same time, photoluminescence is very sensitive to carrier localization by disor-

der effects and clusters, which explains the agreement between LCINS masses [94]

and magneto-PL masses [101]. CR is only sensitive to delocalized states and thus

in agreement with models that neglect cluster formation, namely BAC [136, 165]

and empirical tight-binding [141]. Consequently, CR probes delocalized states and

measures the average mass at the Fermi energy whereas magneto-PL is dominated by

emission from localized states in regions with higher N. This explains the difference

between our CR absorption and other magneto-PL results. The CR effective masses

are the relevant ones for transport and electronics. The utilization of different indirect

methods [101, 2, 142, 161, 55, 169] with different sensitivity to carrier localization

effects is responsible for the discrepancy.
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Figure 4.8.: Impact of increasing N content on the electron effective mass. Cyclotron
resonance effective masses (triangles) are compared with calculations
based on the band anticrossing model [136, 165] (dashed line), the empiri-
cal tight-binding [141] (dotted line) and the LCINS model [94] calculations
(dash-dotted line). Magneto-photoluminescence results on m∗ are shown
with circles [2] and stars [101], respectively. The cyclotron resonance
effective masses are taken at 41.4± 0.5meV and 100K. This figure was
previously published in Ref. [45].

In summary, we performed detailed cyclotron resonance (CR) absorption spec-

troscopy investigations in bulk silicon doped GaAsN samples with low nitrogen

concentrations. We used the unique combination of the large-scale facilities free-

electron laser FELBE and the Dresden High Magnetic Field Laboratory for our THz
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spectroscopy study in pulsed magnetic fields up to 62 T. A slight increase of the CR

electron effective mass with N content is observed, which is in excellent agreement

with calculations based on the band anticrossing (BAC) model [136, 165] and the

empirical tight-binding predictions [141]. The band nonparabolicity increases with

increasing N concentration. Our calculations of the energy dependent momentum

effective mass [147, 170] based on the BAC model [136] and a k · p approximation

of the GaAs conduction band [19] deliver results in good agreement with the ex-

perimentally observed values. The electron mobility strongly decreases in nitrogen

containing samples and matches the decrease of Hall mobilities [119]. Deviations

between different results [101, 2, 142, 161, 55, 169] on the electron effective mass in

GaAsN are explained with the utilization of different indirect methods and different

sensitivity to carrier localization effects. The consideration of N clustering is also

responsible for different theoretical predictions [165, 141, 94].



5. Photoluminescence study of

GaAsN and GaAsN:Si

Photoluminescence (PL) is a very powerful method to investigate optical properties

of semiconductor materials near the band edge. We use continuous-wave (cw) and

time-resolved PL in order to study optical transitions and the recombination dynamics

of different GaAsN samples. The experimental setup is introduced in Sec. 3.2. Our

sample series consists of Si-doped GaAsN samples with various N content and is

named VN-series. The same series is used for our cyclotron resonance study in Chap. 4.

It was grown by molecular beam epitaxy (MBE) at the University of Sheffield by M.

Hopkinson and coworkers. Furthermore, we investigate two intrinsic GaAsN samples

with a nitrogen concentration of 0.095% (K105) and 0.21% (K106), respectively.

The K-samples were grown by metalorganic vapour phase epitaxy (MOVPE) by

W. Stolz and coworkers at the Philipps-Universität Marburg [77]. An overview of

all investigated samples is provided in appendix A.1. The physical principle of PL

spectroscopy is introduced in the first part of this chapter. Luminescence processes in

crystalline semiconductors are discussed very generally and then particularly for GaAs.

Low-temperature PL spectra of all investigated samples are shown in the second part.

The impact of nitrogen and silicon is studied with temperature- and power-dependent

PL-series. The last section is dedicated to the recombination dynamics. Time-resolved

PL measurements on Si-doped GaAsN samples are presented.

5.1. Photoluminescence spectroscopy

Every semiconductor can be optically, thermally or electrically pumped to an excited

state. After a certain time, the so-called lifetime, the system relaxes back to its

ground state. The surplus energy is released via radiative or non-radiative channels.
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Photoluminescence spectroscopy analyzes the radiative part of the emission in case of

an optical excitation. In analogy to that, electroluminescence and thermoluminescence

can be applied after electrical and thermal excitation, respectively. In case of a non-

resonant excitation above the band edge of a direct semiconductor, an electron-hole

pair is created in the conduction and valence band (VB). Both particles relax very fast

towards the minimum of the particular band by phonon emission. The subsequent

radiative recombination strongly depends on the material properties and the number

of excited electrons (holes) per unit area, also known as excitation density. Different

luminescence processes in crystalline semiconductors are presented below.

5.1.1. Luminescence processes in crystalline semiconductors

A simplified overview of possible luminescence processes for a weak continuous-wave

excitation (0.01− 10 W/cm2) is given in Fig. 5.1 [121]. The band-to-band transition

(e−h) represents the simplest case. The emitted photon energy hν = Eg reveals the

band gap energy Eg and is shown in Fig. 5.1 (a). A free exciton (FE) has a slightly

smaller photon energy hν = Eg−EX. The difference corresponds to the binding energy

(a) e−h (b) FE (c) e−A0

A0

(d) h−D0

D0

(e) D0−A0

D0

A0

CB

VB

EX

Figure 5.1.: Overview of luminescence processes in crystalline semiconductors: (a)
band-to-band (e−h), (b) free exciton (FE), (c) free electron to a neutral
acceptor (e−A0), (d) free hole to a neutral donor (h−D0) and (e) neutral
donor to neutral acceptor (D0−A0).

EX of the quasi-particle, as illustrated in 5.1 (b). The other processes in Fig. 5.1 have

even smaller photon energies, which depend on the involved localization centers. For

instance, the excited electron can recombine with a neutral acceptor A0, as shown

in 5.1 (c). In analogy, radiative transitions can imply an exciton bound to a neutral
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(A0−X) or ionized acceptor (A−−X). Further possible recombination channels are a

free hole with a neutral donor (h−D0) (see Fig. 5.1 (d)), an exciton bound to a neutral

(D0−X) or ionized donor (D+−X), and a donor-acceptor pair transition (D0−A0), as

shown in Fig. 5.1 (e). Excitons can be also bound to a variety of impurities, caused by

alloy fluctuations, lattice or point defects, vacancies, clusters etc. PL spectra of highly

disturbed systems like GaAsN usually contain a variety of different contributions.

The transitions appear as sharp PL peaks [135, 99, 139, 103, 82] or blend into a broad

asymmetrical PL profile [51, 26, 29, 98], depending on the nitrogen content, sample

quality and resolution. Diverse relaxation processes behave differently under varying

temperature or illumination power and have different lifetimes. These characteristic

properties can be used to analyze the PL spectrum and to investigate the origin of

the peaks. Possible strategies are discussed below.

5.1.2. Photoluminescence of gallium arsenide

In order to understand the impact of nitrogen on GaAs, it is necessary to understand

the PL spectrum of pure GaAs first, which is one of the best-known semiconductor

systems. The same is valid for Si-doped GaAs. The first report on a MBE-grown GaAs

with silicon doping was published by Cho and Hayashi [32]. Many photoluminescence

investigations (e.g. [140, 126, 22, 111]) have followed in subsequent years. Silicon is

an amphoteric dopant, which acts as a donor at the gallium site and as an acceptor

at the arsenic site. Nevertheless, MBE-grown GaAs:Si behaves as n-type material in

the doping range 1 · 1015 − 5 · 1018 cm−3 [32]. Acting as a donor, Si forms a shallow

impurity level with a binding energy of ≈ 6 meV and increases the Fermi energy

of GaAs. Fig. 5.2 shows a typical low-temperature PL spectrum of GaAs. It is

obtained from our reference sample (VN463), which is doped with silicon to a level of

nominally 1 · 1017 cm−3. The observed peaks are well-known from the literature and

are discussed from top to bottom on the energy scale. The free exciton (FE) transition

is located at the high-energy side of the spectrum. The recombination principle is

illustrated in the inset. The observed transition corresponds to the dominant n = 1

state. Below the FE, small features can be found around 1.5 eV. These transitions

are attributed to defect-induced localized excitons (LEs), involving carbon impurities

[22]. Furthermore, three impurity-related transitions are resolved below in Fig. 5.2.

(e,C0) is the most consistent feature in the literature and can be associated with a
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transition from the CB to the neutral acceptor carbon (C) [133, 7, 140, 111], as shown

in the lower inset. Carbon has a ionization energy of ≈ 26 meV [7] in GaAs and is

usually introduced into the system unintentionally during the growth process. The

1.491 eV peak originates from neutral donor to neutral acceptor transitions (D0−A0)

[140, 111] and the 1.488 eV peak is identified as another transition from the CB to a

neutral acceptor (e−A0) [111]. The acceptor state can be formed by a gallium antisite
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Figure 5.2.: Low-temperature PL of GaAs:Si. The experiment is performed with a
frequency-doubled Nd:YAG laser at 4.5 K with an average power density
of 1.15 W/cm2. The resolved peaks are labeled as in Sec. 5.1.1. The
inset shows the principles of the free exciton (FE) and electron to neutral
acceptor (e−A0) transition.

defect and is not present in very pure semi-insulating GaAs films [150] or can be

compensated by growth conditions [63]. Finally, phonon replicas (PR) are present

at the low-energy side of the spectrum. In summary, the PL spectrum of GaAs:Si

features all the identified transitions, known from undoped GaAs and no additional

peaks from the doping. Thus, the PL spectrum of VN463 can act as a reference for

both the Si-doped VN-series and the undoped K-series. In the following, the focus

returns to GaAsN.
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5.2. Radiative recombination in GaAsN alloys

GaAsN samples are characterized with cw PL spectroscopy using the measuring

principle described in Sec. 3.2.1. Instead of a pulsed Ti:Sa laser, we utilize the

frequency-doubled Nd:YAG laser in cw-mode and a spectrometer with a nitrogen

cooled silicon CCD on the detection side. The Princeton Instruments detection unit is

discussed in detail in Sec. 3.3.1. Fig. 5.3 shows the characteristic low-temperature cw

PL spectra of n-doped GaAsN samples (VN-series) in (a) and undoped GaAsN samples
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Figure 5.3.: Low-temperature PL of (a) the Si-doped and (b) intrinsic GaAs1−xNx

sample series with x = 0%− 0.5%. The experiment is performed at 4.5 K
with an averaged power density in the range of 0.3− 5.7 W/cm2.

(K-series) in (b). The PL spectra illustrate several typical features of GaAsN. First of

all, the main transition peaks systematically shift to lower energies when the nitrogen

content is elevated. The observed red-shift of the PL indicates the typical band gap

reduction of the dilute nitride and was discovered by Weyers et al. [162] in 1992.

Many others (e.g. [51, 26, 16, 130]) have confirmed this observation in subsequent

years. The red-shift is accompanied by a progressive line width broadening, which
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indicates a reduced crystal quality of the N containing samples. This is especially

valid in case of the x = 0.5% sample, which is consequently not part of the following

investigations. Furthermore, the line shape significantly differs among the samples. In

order to understand the impact of nitrogen on GaAs, very dilute GaAsN is compared

to the N-free reference GaAs:Si in the first part of this section. The PL evolution

with increasing N content is studied in the second part.

5.2.1. Radiative recombinations of GaAs1−xNx with x = 0.095%

It is possible to distinguish between typical GaAs transitions (see Sec. 5.1.2) and

N-induced features in luminescence spectra of very dilute GaAsN samples. Thus, we

start the investigation with cw PL spectra of intrinsic GaAs1−xNx with x = 0.095%

(K105), which are shown in Fig. 5.4. The temperature is elevated from 4.5 K (top

spectrum) to 100 K (bottom spectrum). The solid line and blue area are taken with an

average power density of 34 W/cm2 and 6 W/cm2, respectively. The low-temperature

PL is dominated by an asymmetric spectrum with several distinct features, which

are indicated by vertical lines. Increasing the temperature to 20 K does not crucially

affect the line shape. A single peak arises at ≈ 1.48 eV in the 50 K spectrum and

dominates the PL at 100 K. This peak is designated as FE/EHP in the figure and is

discussed first.

Free exciton/electron-hole plasma transition: FE/EHP

The free exciton/electron-hole plasma (FE/EHP) peak has a high-energy tail and

significantly red-shifts when the temperature is elevated. The power dependence of

the transition is shown exemplarily for 50 K in Fig. 5.5 (a) on a double-logarithmic

scale. The luminescence varies superlinearly with the excitation intensity, which is

typical for intrinsic recombinations of electron-hole pairs or excitons [121]. The fit of

the PL intensity

IPL = c · Ikex (5.1)

shows that it depends almost quadratically (k = 1.9) on the excitation power Iex.

The full width at half maximum (FWHM) is presented in Fig. 5.5 (b). Its mean

value corresponds to 1.2kBT = 5.08 meV. These observations prove that the 1.48 eV
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peak originates from FEs or (e−h) transitions with contributions of the EHP on the

high-energy side of the spectrum [121].
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Figure 5.4.: Temperature series of intrinsic GaAs1−xNx with x = 0.095%. The upper
solid curves are taken at 34 W/cm2 and the lower area corresponds to an
average power density of 6 W/cm2 (multiplied by 3). Grey vertical lines
mark cluster features. Note the different scaling on the vertical axis.
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Figure 5.5.: Power dependence of the 1.48 eV peak in intrinsic GaAs1−xNx with
x = 0.095% (K105) at 50 K. (a) PL intensity increases with excitation
power. The blue circles indicate the experimental values and the red
line shows the fit with Eq. (5.1). The FWHM is shown in (b). The blue
circles result from a Gauss fit of the 1.48 eV peak.

GaAs related transitions: (e,C0) and (D0−A0)

Another peak appears 23 meV below the FE/EHP. Similarly to the reference, it

dominates the low-temperature and low-power PL and is designated as a (e,C0)

transition [130]. The same is valid for the 1.457 eV peak, which is located 3.8 meV

below (e,C0) and thus connected with (D0−A0) transitions. Further transitions cannot

be associated with GaAs (see Fig. 5.4 and Fig. 5.3) and must be related to the nitrogen

incorporation.

Localized excitons on the high-energy side of the spectrum: LEs

The low-temperature PL is characterized by a broad spectral feature on the high-energy

side, which is indicated by a pink vertical line. In analogy to the reference sample, it

is associated with LEs. The FE/EHP transition emerges from a high-energy shoulder

of this broad peak. The position of LEs indicates that the corresponding localization
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centers lie just below the CB minimum. Their origin has been extensively studied in

the past. Deep donor-like states were found mainly responsible for the localization

in case of GaAsN and InGaAsN [84, 89, 82]. Alternatively, they were attributed to

compositional fluctuations [26, 108, 103] in N content. Such fluctuations usually create

regions with a locally reduced band gap and lead to PL emission at lower energies.

Semiconductor quantum dots [108] usually exhibit a similar behavior. The observation

of sharp distinct peaks in near-field spectroscopy [108, 103] of (In)GaAsN supports this

interpretation. According to the empirical pseudopotential and the LCINS method

(see Sec. 2.4 and Sec. 2.5), nitrogen pairs and clusters create localization potentials

in the vicinity of the CB minimum E− of GaAsN. Despite the different semantics,

alloy fluctuations and nitrogen clusters both describe localization potentials due to a

non-uniform N distribution [24].

Interexcitonic population transfer of LEs

LEs on the high-energy side of the spectrum exhibit a redistribution towards higher

energies with increasing illumination power (see Fig. 5.4 at 4.5 K). This redistribution

indicates that high-energy side LEs are efficiently transferred. The mechanism of this

E
Exciton band

k

Em

LE emissionTransfer
ExcitonFE

emission

E

Egap

ρ(E)

(a) (b)

Figure 5.6.: Schematic representation of localized excitonic states and recombination
processes after optical excitation of GaAsN. (a) E represents the energy
of an excitonic state and (b) ρ(E) is the density of localized states.
The so-called mobility edge Em corresponds to an energy with an equal
recombination and transfer rate. The figure is adapted from Ref. [117].
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interexcitonic population transfer is in the focus of this paragraph. In case of low

temperatures and moderate excitation powers (< kW/cm2), excitons are created in the

system GaAsN after interband laser excitation. Fig. 5.6 illustrates possible subsequent

recombination processes. As mentioned above, GaAsN has a variety of shallow cluster

states just below the CB minimum (pink and blue horizontal lines). These localization

centers can efficiently trap excitons. Thus, the luminescence largely consists of LE

transitions (red arrows). Baranowski et al. proposed the so-called model of hopping

excitons [11] in order to explain the observed behavior. According to this model, a

trapped exciton can recombine radiatively (red arrow) or hop to another localization

center (black arrow). This interexcitonic transfer (here exciton hopping) is realized

by overlapping LE wave functions. At low temperatures, excitons preferentially

hop several times to lower energies (exciton transfer) before they recombine. For

a quantitative description of the hopping transport a characteristic energy Em is

introduced. This so-called mobility edge corresponds to an equal recombination

and transfer rate [117]. The transfer dominates for E > Em and the recombination

dominates for E < Em. Raising the temperature pushes Em to lower values and

transfers excitons from localized into delocalized states. Simultaneously, the FE/EHP

(orange arrow) transition emerges from the high-energy shoulder of the LE-band.

Low-energy tail-LEs

The low-energy tail of the PL is also characterized by LEs. The underlying states

are associated with N clusters of higher binding energies [50] and thus of larger

sizes [50, 112]. They can be attributed to deeper lying cluster states in Fig. 5.6 (a).

Since the formation of similar-sized large clusters is less likely in very dilute GaAsN

samples, the spatial overlap of cluster exciton wave functions decreases with cluster

size [42, 3]. Consequently, low-energy tail-LEs are less efficiently transferred than

those on the high-energy side. This is revealed by PL series at varied excitation power,

shown in Fig. 5.4 and Fig. 5.7 (a). In contrast to high-energy LEs, tail-LEs exhibit

no redistribution towards higher energies with increasing excitation power.

Temperature dependence of the PL

GaAs1−xNx with x = 0.095% behaves like GaAs with a small amount of impurities.

The low-temperature PL is dominated by LEs and GaAs related transitions (e,C0)
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and (D0−A0). High-energy LEs merge to a spectral band with an efficient population

transfer. Tail-LEs are less efficiently transferred and gain spectral weight at higher

temperatures (T > 50 K). They can be attributed to deeper lying cluster states in

Fig. 5.6 (a). An enhanced thermal energy increases the contribution of non-radiative

relaxation. High-energy LEs are more affected by these processes. Simultaneously,

the FE/EHP peak appears on the high-energy side (ionization of LEs) and dominates

the PL for T ≥ 100 K.

5.2.2. PL evolution with increasing N content

The PL spectrum of GaAs1−xNx with x = 0.095% exhibits a variety of distinct peaks.

They can be attributed to both GaAs-like transitions and typical GaAsN cluster

features. Increasing the N content to x = 0.21% dramatically changes the line-shape

of the PL, as can be seen in Fig. 5.3 (b) and Fig. 5.7. Besides the well-understood

red-shift (see Sec. 2.3), the distinct features of the x = 0.095% sample merge into a

broad and asymmetric PL spectrum of GaAs1−xNx with x = 0.21%.

Formation of a LE-band

The number of different cluster states increases with increasing N content. These

cluster states trap excitons after optical excitation and create numerous LEs with

adjacent energetic positions. Because of the energetic proximity, distinct LE peaks

cannot be resolved in undoped GaAs1−xNx with x = 0.21% (K106) and a merged band

of LEs evolves. Fig. 5.7 illustrates the formation of this so-called LE-band in K106.

Vertical arrows mark the energy positions of the band gap Eg, which are determined

with the BAC model [136]. The calculated energy is in excellent agreement with the

FE/EHP shoulder of intrinsic GaAs1−xNx with x = 0.095% (K105) in Fig. 5.7 (a).

On the other hand, no PL feature is observed at Eg for K106 in Fig. 5.7 (b). The

LE-band dominates the low-temperature PL for all applied power densities.

Partially delocalized character of the LE-band

The energetic proximity of individual LEs to each other affects the localization

character of the LE-band. Fig. 5.7 illustrates a low-temperature PL series at varied

excitation power of GaAs1−xNx with (a) x = 0.095% and (b) x = 0.21%. Equal
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LEs contribute to the PL of both N-containing samples, as highlighted with gray

vertical lines in the regions A - B. Thus, the energy of LEs is independent of the N

content and the band gap energy. However, the LE-band exhibits a power-induced

blue-shift in Fig. 5.7 (b), whereas the position of LEs (region B) remains fixed in
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Figure 5.7.: Power series of intrinsic GaAs1−xNx with (a) x = 0.095% (K105) and (b)
0.21% (K106) taken at 4.5 K. The average power density is increased from
0.6 W/cm2 to 34.4 W/cm2 in (a) and from 5.7 W/cm2 to 114.8 W/cm2

in (b) from bottom to top. Vertical arrows indicate the band gap energy
Eg according to the BAC model [136] for 0 K. Common cluster features
of K105 and K106 are marked with vertical lines. The PL spectra for
different pump intensities are shifted vertically for clarity.

Fig. 5.7 (a). Consequently, the LE-band has a higher degree of delocalization in

comparison to the corresponding LEs in Fig. 5.7 (a). Besides the energetic proximity,

the actual interexcitonic population transfer is most crucial (see Fig. 5.6). In particular,

LE-bands differ from real delocalized transitions, like FEs. In contrast to the CB that
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is composed of Bloch states and therefore features a well-defined dispersion relation,

the LE-band is rather a fusion of discrete LEs with an efficient interexcitonic transfer.

Consequently, the observed power-induced blue-shift of the LE-band is caused by
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Figure 5.8.: Temperature series of GaAs1−xNx with x = 0.21%. The upper solid
curves are taken at 34 W/cm2 and the lower area corresponds to an
average power density of 6 W/cm2 (multiplied by 10). Grey vertical lines
mark cluster features. Note the different scaling on the vertical axis.



72 5. Photoluminescence study of GaAsN and GaAsN:Si

a redistribution towards higher LEs inside the LE-band: First of all, the amount

of created excitons increases with illumination power. Subsequently, most of these

excitons are captured by different cluster states (see Fig. 5.6). Since many cluster

states are occupied simultaneously, the excitonic transfer towards lower lying cluster

states is partially suppressed. Consequently, the LE-band maximum shifts to higher

energies when the illumination power increases.

Activation of tail-LEs, FE/EHP and non-radiative relaxation channels

Besides the LE-band formation, GaAs1−xNx samples with higher N content behave

similar to those with x = 0.095% (K105). Fig. 5.8 shows a temperature series of

intrinsic GaAs1−xNx with x = 0.21% (K106). In analogy to Fig. 5.4, the solid line

and red area are taken with an average power density of 34 W/cm2 and 6 W/cm2,

respectively. The low-temperature PL is discussed above and applies equally to the

20 K case. The LE-band red-shifts at higher temperatures, which is characteristic for

delocalized transitions. However, the underlying mechanism of the shift is not related

to the typical band gap reduction. It results from a carrier redistribution [49] towards

lower lying cluster states at higher temperatures. Tail-LEs dominate the PL spectrum

at 50 K, especially at lower average power densities. Furthermore, non-radiative

relaxation processes considerably decrease the radiation yield in comparison to the

PL of intrinsic GaAs1−xNx with x = 0.095% (K105). Note that the decrease in PL

intensity (factor 6 for temperature increase from 20 K to 50 K) is twice as large in

K106 than observed for K105. This indicates that the increased lattice disorder results

in a stronger contribution of non-radiative recombination channels. Simultaneously,

the band gap related FE/EHP appears also in intrinsic GaAs1−xNx with x = 0.21%

(K106) at 100 K. Lower lying cluster states contribute equally to the PL, as can be

seen in the pronounced low-energy plateau. Furthermore, the (e,C0) and (D0−A0)

transitions cannot be resolved anymore.

5.3. Luminescence of silicon-doped GaAsN

Our PL study reveals fascinating optical properties of GaAsN with increasing N con-

tent. GaAs-like transitions and typical cluster features are observed in the spectrum of

intrinsic GaAs1−xNx with x = 0.095%. When the N content is increased, the spectrum
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merges to a broad and asymmetric band with a large set of LEs. These LEs exhibit

an efficient interexcitonic population transfer. Consequently, the LE-band shows a

partially delocalized character even though it comprises localized transitions. But

how does silicon incorporation for n-type doping change the picture? Recombination

processes of GaAsN:Si with low N content are studied in the first part of this section.

They are compared to the processes of intrinsic GaAsN. A discussion on different

LE-bands is presented in the second part.

5.3.1. Recombination processes in GaAsN:Si

Because of the nearly identical N content, n-type GaAs1−xNx samples with x = 0.1%

(VN459) and x = 0.2% (VN460) are compared to undoped GaAs1−xNx with x =

0.095% (K105) and x = 0.21% (K106), respectively. An overview of all samples is

provided in App. A.1. PL spectra of samples with a comparable N content are shown

in Fig. 5.3 with the same color. Obviously, the K-series sample peaks are located at a

lower photon energy as the corresponding VN-series sample peaks. This observation

is not related to the small N content difference between the samples. Otherwise,

the spectrum of the x = 0.095% sample would have to be blue-shifted with respect

to the x = 0.1% one. Furthermore, the undoped samples show a more pronounced

asymmetric line shape [26, 29] and low-energy tail in comparison to the Si-doped

ones. In the first part of this subsection, the high-energy side of the peaks is in the

focus. The low-energy tail is discussed in the second part.

Continuous-wave PL measurements are performed under the same conditions as

in Sec. 5.2. Fig. 5.9 illustrates a temperature series of the Si-doped GaAs1−xNx with

x = 0.1% (VN459). The solid lines and areas represent an average power density of

34 W/cm2 and 6 W/cm2, respectively. For comparison, the corresponding PL curves

of the intrinsic GaAs1−xNx with x = 0.095% (K105) are shown with dotted lines.

Besides the energy position, the line shape of VN459 shows similarities to the shape

of the undoped GaAs1−xNx sample with 0.095% < x ≤ 0.21%. The low-temperature

PL is dominated by a broad peak on the high-energy side.

“Localized” LE-band and the high-energy part of the luminescence

The energy position of the dominant PL peak suggests that a LE-band evolved from

distinct LEs already at x = 0.1%. This peak shows no signs of redistribution towards
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higher states with illumination power increase, as observed in intrinsic GaAs1−xNx

with x = 0.095% (K105) and x = 0.21% (K106) in Fig. 5.4 and Fig. 5.8, respectively.
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Figure 5.9.: Temperature series of the Si-doped GaAs0.999N0.001 sample (VN459). The
upper solid curves are taken at 34 W/cm2 and the lower area corresponds
to an average power density of 6 W/cm2 (multiplied by 5). The dotted
curves belong to the PL of undoped GaAs1−xNx with x = 0.095% (K105),
which are shown for comparison with 34 W/cm2. Grey vertical lines mark
cluster features of VN459. Note the different scaling on the vertical axis.
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Consequently, Si contributes to an apparent increase of the localization character of

the LE-band. The underlying mechanism is discussed below. Furthermore, GaAs-like

(e,C0) and (D0−A0) transitions are not resolved in the Si-doped GaAs1−xNx with

x = 0.1% (VN459). Small features appear at 50 K, which might by associated with

these peaks (see positions of green vertical lines at 50 K). Increasing the temperature

to 50 K slightly red-shifts the peak maximum of the LE-band. Simultaneously, a

high-energy shoulder evolves at 50 K and dominates the 100 K spectrum in analogy to

intrinsic GaAs1−xNx with x = 0.095% (K105). This transition originates from the FE

or unbound (e−h) pairs with contributions of a dense EHP. However, the FE/EHP

transition is most probably still coupled to LEs. Only a merged FE/EHP/LE-band

peak is observed in the 100 K spectrum of Si-doped GaAs1−xNx with x = 0.1% (see

Sec. 6.1.3).

Emergence of a second LE-band on the low-energy side

Low-energy tail-LEs are less dominant in the low-temperature PL of the Si-doped

sample. This behavior seems to be characteristic for LE-band formation (see Sec. 5.2.2).

The PL emission from deep cluster states gains spectral weight at higher temperatures,

similarly to intrinsic GaAs1−xNx with x = 0.21% (K106). However, low-energy tail-LEs

form two radiative bands around 1.4 eV and 1.44 eV in the Si-doped GaAs1−xNx

with x = 0.1% (VN459), as can best be seen in the 50 K spectrum of Fig. 5.9. The

1.44 eV band is also pronounced in the 50 K PL spectrum of intrinsic GaAs1−xNx

with x = 0.095% (see Fig. 5.4). LEs around 1.4 eV, on the other hand, have a much

smaller contribution in K105. They merge into a second LE-band and dominate the

PL at higher temperatures in VN459. The second LE-band probably appears in the

PL of GaAsN:Si because more free carriers are available in the system. Consequently,

more LEs are created and more deep cluster states are occupied. In order to prove the

origin of the second LE-band, a sample series with the same N content but varying

Si-doping should be studied. The investigation of such a series is beyond the scope of

this thesis.

Comparison of LE-bands in Si-doped and intrinsic GaAsN samples

A LE-band develops in the low-temperature PL of GaAs1−xNx:Si with x = 0.1%

(VN459) just below the band gap. The situation is very similar in case of GaAs1−xNx:Si
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with x = 0.2% (VN460), as shown in Fig. 5.10. Once again, solid curves and full areas

represent the high- and low-power PL of VN460, respectively. The dotted lines belong
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to the PL of intrinsic GaAs1−xNx with x = 0.21% (K106). The LE-band of VN460 is

designated LEB1 and the one of K106 LEB2. Interestingly, LEB1 evolves at 1.44 eV

and LEB2 has its maximum 20 meV below that value. Furthermore, LEB1 has the

same temperature and power response as the LE-band of the Si-doped GaAs1−xNx

with x = 0.1% (VN459). In particular, LEB1 appears to be more localized than LEB2.

The latter significantly shifts with increasing temperature and illumination power

(see also Sec. 5.2.2). The positions of the FE/EHP shoulders of K106 and VN460 are

located only 8 meV apart from each other at 50 K ≤ T ≤ 100 K. Thus, a potential

band gap difference cannot be responsible for the red-shift between LEB1 and LEB2

at lower temperatures. The origin of the red-shift is in the focus of Sec. 5.3.2.

5.3.2. Discussion: LE-bands in GaAsN:Si

Several novel features are obtained in Si-doped GaAsN samples in comparison to

undoped GaAsN. First, a LE-band evolves in the low-temperature PL of GaAs1−xNx:Si

already in the x = 0.1% (VN459) sample. Second, this band exhibits no redistribution

towards higher energies with increasing illumination power. Third, because of an

enhanced coupling between the FE/EHP transition and the LE-band, only a merged

FE/EHP/LE-band is obtained on the high-energy side of the 100 K PL spectrum.

The same behavior is observed in GaAs1−xNx:Si with x = 0.2% (VN460). Fourth, the

LE-band of the Si-doped GaAsN sample is blue-shifted with respect to the LE-band

of undoped GaAsN with x = 0.2% at low temperatures. This subsection provides a

possible explanation for the enhanced localization character of GaAsN:Si LE-bands

and the blue-shift of LE-bands between Si-doped and undoped GaAsN.

As discussed in Sec 5.1.2, Si acts as a donor in GaAs and forms a shallow impurity

level ≈ 6 meV below the CB edge. This behavior is expected to be similar in GaAsN.

Unlike nitrogen cluster states, the energetic position of silicon impurities remains

fixed with respect to the CB edge when the N content increases. Thus, shallow cluster

states can be partially occupied by carriers from the Si-level. Consequently, more

cluster states are occupied simultaneously below the CB minimum, similarly to the

behavior at elevated excitation power. The formerly efficient interexcitonic population

transfer towards lower lying cluster states (overlap of cluster-exciton wave functions)

is partially suppressed by silicon. Thus, less non-radiative recombination processes

occur in the PL before a radiant event takes place at low temperatures. Mostly
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higher lying cluster states contribute to the low-temperature PL in VN samples and

a red-shift occurs between low-temperature PL spectra of Si-doped and undoped

samples (see Figs. 5.3, 5.9 and 5.10). Since LE-bands of GaAsN:Si are located just

below the CB edge, a blue-shift cannot be achieved as easily as in intrinsic GaAsN.

Only in case of strong pulsed excitation, a shift is observed (not shown here). Thus,

LE-bands appear to be more localized in Si-doped samples. The actual localization

character is investigated in Chap. 6.

5.4. Recombination dynamics in GaAsN:Si

Nitrogen incorporation significantly changes typical properties of GaAs, as shown in

Chap. 4 and 5. Continuous-wave luminescence spectra have different appearances,

depending on the N content, sample quality and resolution and are discussed in

Secs. 5.2 - 5.3. Nevertheless, the underlying recombination dynamics is similar in all

(In)GaAsN epilayers [98, 27, 10, 49]. We saw in the previous section that GaAsN:Si has
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Figure 5.11.: Streak camera images of the PL decay from GaAs1−xNx:Si with (a)
x = 0%, (b) x = 0.1% and (c) x = 0.2% and an average power density of
9.5 W/cm2 at 10 K. The intensities are normalized for better comparison
between samples.

some additional PL-features in comparison to intrinsic GaAsN samples. Considering

possible applications, it is essential to know if the underlying recombination dynamics

also differs in Si-doped samples. We apply a systematic time-resolved PL study on

Si-doped GaAs1−xNx with x = 0%− 0.2% for the first time. Parts of this section are

currently under review for publication in Applied Physics Letters. The experimental
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setup is introduced in Sec. 3.2 and an overview of the samples can be found in

A.1. Fig. 5.11 shows low-temperature streak camera images of the time-resolved

PL. Several characteristic features of the N-containing samples in 5.11 (b) - 5.11 (c)

are conspicuous. In particular, the PL decay of GaAsN exhibits a strong energy

dispersion in comparison to the reference sample in 5.11 (a). Similar observations

were made in undoped InGaAsN [98, 10] and GaAsN quantum-wells and epilayers

[29, 27]. The decay times of GaAsN are obviously shorter on the high-energy side than

in the reference and much longer on the low-energy side of the LE-band luminescence.
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Figure 5.12.: Streak camera images of the PL decay from GaAs1−xNx:Si with x = 0.1%
at (a) 5 K, (b) 20 K, (c) 50 K and (d) 100 K taken at different power
densities.

Furthermore, the line width significantly broadens and smears out with increasing

N content, as already observed in cw PL in Sec. 5.2. Fig. 5.12 shows streak camera

images of GaAs1−xNx:Si with x = 0.1% at four different temperatures. The PL

decay considerably shortens with increasing temperature and decreases the energy

dispersion of the decay. A similar temperature behavior was found in undoped

(In)GaAsN [98, 10, 70].

The energy dispersion of the decay times is studied in the first part of this section.

The temperature dependence of the decay times is discussed. The second part is

dedicated to the impact of the N content on the decay times.
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5.4.1. Dispersion of PL decay times

The asymmetric streak camera images of GaAsN:Si in Fig. 5.11 and Fig. 5.12 illustrate

qualitatively the energy dispersion of the PL decay times. A quantitative analysis is

performed in this subsection. Three neighboring low-temperature decay line profiles

are shown in Fig. 5.13 (a) - (c). The underlying time-resolved PL measurement is taken

at 5 K and 9.5 W/cm2 and corresponds to the streak camera image in Fig. 5.12 (a).

The decay dynamics is characterized by a monoexponential function with an offset,
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Figure 5.13.: (a) - (c) PL decay line profiles of different energy positions of time-
resolved PL in GaAs1−xNx:Si with x = 0.1% (VN459) at 5 K and
9.5 W/cm2. Circles represent experimental data points and red lines
illustrate monoexponential fit functions. (d) Temperature dependence
of the decay time dispersion is shown with full circles. Solid lines corre-
spond to a fit from Eq. (5.2). The normalized PL intensity of the 5 K
spectra is shown for comparison (empty circles). The energy positions of
the shown PL line profiles in (a) - (c) are indicated with vertical arrows
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as shown with red curves. The offset accounts for recombination processes with

ultra-long decay times, which originate from efficiently trapped carriers, as observed

e.g. in n-type InGaAs/GaAs quantum dots [17]. The monoexponential function

mainly describes the decay of localized excitons. Another decay feature appears in

the first 100 ps in Fig. 5.13 (a) - (c) shortly after laser excitation. This ultra-short

PL decay is mostly pronounced on the high-energy side of the spectrum, as shown in
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Fig. 5.13 (a). While this fast decay is related to carrier cooling, we now focus on the

PL decay after this thermalization. We use the monoexponential decay function after

a certain thermalization time of 50 ps for our data analysis. The PL decay time of

localized excitons decreases by a factor of 3.1 in a small energy interval of 14 meV.

The resulting PL decay times are summarized in Fig. 5.13 (d). They correspond

to different PL energies in a temperature range of 5 K - 50 K. For a better overview,

the time-integrated low-temperature PL spectrum of GaAs1−xNx:Si with x = 0.1%

is also displayed. At low temperatures, the mentioned energy dispersion of the PL

decay times τ(E) is very pronounced in this representation. It can only be explained

by the existence of an additional non-radiative energy transfer channel. The energy

dependent PL decay of localized excitons can be fitted by [117, 98]

τ (E) =
τR

1 + exp (α (E − Em))
, (5.2)

with a maximum decay time τR, an energy Em corresponding to the mobility edge

(see also Fig. 5.6) and an energy scaling factor α with 1/α in the order of 2.59 meV−
9.55 meV. According to Eq. (5.2), excitons with an energy E can recombine radiatively

or be transferred non-radiatively towards deeper lying cluster states. The non-radiative

transfer can be regarded as an exciton hopping process and was introduced in Sec. 5.2.1

(see Fig. 5.6). After optical excitation, excitons preferentially hop several times to

lower energies before they recombine radiatively [11]. Consequently, the non-radiative

transfer dominates on the high-energy side of the PL spectrum, which corresponds

to all energies E > Em. The observed radiative transitions are either delocalized

or slightly localized excitons, which can be easily transferred out or their sites [98].

Thus, they have extremely short decay times: e.g. τ(1.476 eV) = 0.24 ns for 5 K.

On the other hand, most transitions are radiative below Em and correspond to

strongly localized excitons with longer decay times. In case of GaAs0.999N0.001:Si, slow

recombination processes dominate for E < 1.47 eV. Thus, the so-called mobility edge

[117] Em corresponds to an energy with equal recombination and transfer rates [98].

Furthermore, the non-radiative transfer rate scales exponentially with the energy

difference. An overview of the fitting results is provided in Tab. 5.1.

We now turn to the temperature dependence of the PL decay times. It is evident

that the energy dispersion of the PL decay rapidly decreases in the investigated

temperature range, as shown in Fig. 5.13 (d). A similar behavior was observed in
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undoped (In)GaAsN [98, 70, 10]. Increasing the temperature enhances the diffusion

of excitons towards lower lying cluster states. Furthermore, some LEs are ionized into

delocalized states. Both reduces the PL decay time τR of LEs. A strong reduction

of the PL decay time by more than one order of magnitude occurs in GaAs1−xNx:Si

with x = 0.1% in the range of 5 K - 50 K. This observation matches cw PL results in

Fig. 5.9, where the FE/EHP transition is recognized as a high-energy shoulder of the

50 K PL. On the other hand, α and Em show no significant temperature dependence

in the investigated range (see Tab. 5.1).

VN459 VN460

Temperature 5 K 10 K 15 K 20 K 30 K 10 K
Em (eV) 1.472 1.473 1.472 1.471 1.464 1.445
τR (ns) 0.78 0.63 0.63 0.48 0.27 0.44
1/α (meV) 3.8 2.6 2.8 3.3 9.5 3.6

Table 5.1.: Fit results for the decay time dispersion with Eq. (5.2) for VN459 with
x = 0.1% and VN460 with x = 0.2%.

5.4.2. Impact of nitrogen on the PL decay times of GaAsN:Si

Localized excitons of GaAs1−xNx:Si with x = 0.2% can be similarly described by

Eq. (5.2), as shown in Fig. 5.14. In analogy to Fig. 5.13 (d), energy dependent decay

times and fits are presented with time-integrated PL curves. The reference sample

(VN463) has a negligible dispersion in the investigated range, as shown in Fig. 5.14 (a).

The decay times are almost constant with 73.9 ns ≤ τ ≤ 75.4 ps, as shown in the inset

of Fig. 5.14 (a). The reference sample has a better lattice quality in comparison to

nitrogen containing samples. Thus, exciton hopping is insignificant and the PL decay

exhibits practically no energy dispersion. The apparent low decay time values are

caused by a reduced growth temperature of the samples under study. Low-temperature

growth is known to strongly reduce the PL decay time [54] by a higher amount of

non-radiative recombination processes.

As mentioned before, the decay time dispersion is very pronounced in both N

containing samples in Fig. 5.14 (b) - (c). Furthermore, the maximum decay time τR

is reduced in the x = 0.2% sample in comparison to x = 0.1%, as shown in Tab. 5.1.
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This observation is attributed to a more efficient exciton transfer (hopping) because

of an enhanced defect density in the x = 0.2% sample in comparison to the x = 0.1%

sample. The mobility edge energy Em continuously decreases with the N content and

α only varies within the margin of error (see Tab. 5.1).
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Figure 5.14.: Energy dispersion of the decay time (full circles) in GaAs1−xNx:Si with
(a) x = 0%, (b) x = 0.1% and (c) 0.2% at 10 K. Solid lines correspond
to a fit from Eq. (5.2). The normalized PL spectra are shown for
comparison (empty circles). The time-resolved PL is performed at 10 K
with 9.5 W/cm2. The inset zooms in on the smaller energy dispersion
of the reference in (a).

A similar decay time asymmetry was observed in intrinsic GaAsN epilayers before

[29, 27]. However, our determined maximum decay time values are significantly shorter

than the reported values of τR ≈ 5− 8 ns [27] in the intrinsic material. This can be

explained by a higher contribution of non-radiative Auger and Shockley-Read-Hall

recombinations, as was observed in n-type GaAs [97]. The emitted energy of an

electron-hole pair is directly absorbed by a third particle in case of Auger recombina-

tion. This particle relaxes by phonon-emission or diffusion on its part. The excited

electron is transferred non-radiatively to an impurity level and subsequently relaxes
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radiatively in case of Shockley-Read-Hall recombination. It resembles the interexci-

tonic transfer via exciton hopping [11], which is discussed in Sec. 5.2.1. However, the

Shockley-Read-Hall recombination describes single electrons and holes in contrast to

the exciton hopping, which applies to excitons. Nevertheless, in case of n-doped GaAs

[62, 30] the impact of the doping is insignificant below 1018 cm−3. We conclude that

the contribution of Shockley-Read-Hall and possibly Auger recombinations is higher

in n-type GaAsN in comparison to n-type GaAs and intrinsic GaAsN. Especially

Shockley-Read-Hall recombinations significantly increase with the defect density. This

behavior has a substantial impact on possible applications.

5.5. Summary and outlook

We performed continuous-wave photoluminescence (PL) in GaAsN and GaAsN:Si.

Furthermore, we studied the PL dynamics of GaAsN:Si. The PL of the intrinsic

GaAs1−xNx with x = 0.095% has GaAs-related transitions and typical N-induced

cluster features. In particular, the low-temperature PL is dominated by localized

excitons (LEs) and GaAs related transitions (e,C0) and (D0-A0). High-energy LEs

emerge in a LE-band at low temperatures and tail-LEs only gain spectral weight for

T > 50 K because of a lower interexcitonic population transfer. The latter ones can

be attributed to deeper lying cluster states. The free exciton/electron-hole plasma

(FE/EHP) transition emerges from the high-energy shoulder of the LE-band and

dominates the PL for T ≥ 100 K. By increasing the N content of undoped GaAsN,

distinct PL features merge into a broad and asymmetric spectral band. This band

consists of sharp LEs with adjacent energetic positions, which cannot be resolved in

our PL study. Despite the localized character of individual LEs inside the LE-band, it

exhibits a partially delocalized character. This is achieved by an efficient interexcitonic

transfer mechanism of high-energy LEs and the underlying overlap of exciton wave

functions. Tail-LEs dominate the PL spectrum at T ≥ 50 K and the FE/EHP

transition emerges at T = 100 K. Furthermore, non-radiative relaxation processes

considerably decrease the radiation yield in comparison to the x = 0.095% sample.

Si-doped GaAs1−xNx samples show novel properties in comparison to undoped

GaAsN. In particular, merged spectral bands dominate the PL spectra for x ≥ 0.1%.

These bands exhibit a diminished shift with excitation power or temperature increase.
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Consequently, they have an apparent higher localization character in comparison to

intrinsic GaAsN LE-bands. The actual localization character is analyzed in Chap. 6.

Furthermore, the LE-band of the Si-doped GaAs1−xNx sample is blue-shifted with

respect to the LE-band of intrinsic GaAs1−xNx with x = 0.2% at low temperatures.

This can be explained with a partially suppressed interexcitonic transfer towards lower

lying LEs in GaAsN:Si. The incorporation of shallow dopants has a similar effect on

the PL as the increase of the illumination power. In both cases, more cluster states

are occupied simultaneously and the interexcitonic population transfer is partially

suppressed.

A temperature-dependent time-resolved PL investigation was performed on Si-doped

GaAsN for the first time. The PL decay is predominantly monoexponential and

exhibits a strong energy dispersion with ultra-short decay times on the high-energy side

and long decay times on the low-energy side. This asymmetry can be explained by the

existence of an additional non-radiative energy transfer channel. The recombination is

predominantly non-radiative on the high-energy side of the spectral band and LEs are

mainly transferred towards lower lying cluster states. The radiative transitions mainly

correspond to FE/EHP transitions with extremely short decay times. Transitions are

predominantly radiative on the low-energy part of the PL and have longer decay times.

An increase of the thermal energy transfers excitons towards lower lying cluster states

and consequently reduces the PL decay time of LEs. Even though a similar decay

time asymmetry and temperature dependence was observed in GaAsN epilayers before

[27, 29], the determined maximum decay times of GaAsN:Si are significantly reduced

in comparison to undoped GaAsN. This can be explained by a higher contribution of

Shockley-Read-Hall and possibly Auger recombinations in GaAsN:Si in comparison to

undoped GaAsN. In order to find a quantitative relationship between the decay time

reduction of GaAsN:Si and the Si-doping, a GaAsN:Si sample series with a constant

N content and varying Si-doping should be investigated. Such a study could be part

of a follow-up project.





6. Photoluminescence study of

GaAsN and GaAsN:Si in high

magnetic fields

In this chapter, photoluminescence properties of GaAsN are investigated in high

magnetic fields up to 62 T. We study both intrinsic as well as Si-doped GaAsN

epilayers. While the former type of samples has previously been investigated by Alberi

et al. [2], the latter system has not been studied with magneto-PL. The analysis

of the interexcitonic transfer of GaAsN in high magnetic fields and its temperature

dependence is another new contribution. A new magneto-PL setup is built for this

task, which works in pulsed magnetic fields of the HLD. The experimental details

are shown in Sec. 3.3.1 and App. A.3. In the first section, the PL characteristics of

LE-bands is studied in high magnetic fields. Section two is dedicated to a magneto-PL

study for electron effective mass determination. All results are summarized in section

three.

6.1. LE-bands in high magnetic fields

Incorporating nitrogen into GaAs reduces the band gap of the system. In addition,

nitrogen forms clusters of different sizes. The empirical pseudopotential method

[74, 75] and the LCINS model [94, 114] describe the formation and its consequences

on the band structure from a theoretical perspective, as shown in Chap. 2. Clusters

have a strong impact on the PL characteristics, as shown in Chap. 5. However, only

assumptions are made concerning the actual localization character of LE-bands. Only

delocalized or partially delocalized transitions exhibit a field-induced blue-shift in a

magnetic field. Consequently, high magnetic fields grant access to the localization
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character. Furthermore, the formation and evolution of LE-bands can be studied in

high magnetic fields. Increasing the N content pushes the CB edge to lower energies

[136] but the energy levels of highly localized clusters remain fixed. Consequently,

the CB hybridizes with cluster states. The magnetic field reverses this trend, lifts the

CB edge and reveals formerly hybridized cluster states [2].

It is instructive to start the PL investigation with intrinsic GaAsN samples. They

exhibit a more obvious separation between the FE transition, the LE-band and LEs

of the low-energy tail, as shown in Secs. 5.2.1 - 5.2.2. Consequently, this chapter is

structured in the same manner. Undoped samples are presented in the first section and

Si-doped ones in the third section. The second section is dedicated to the population

transfer of LEs in intrinsic GaAsN. The influence of a higher thermal energy is studied.

The interexcitonic transfer is discussed in GaAsN and GaAsN:Si in section four.

6.1.1. Magneto-photoluminescence of intrinsic GaAsN

Fig. 6.1 shows magneto-PL results of undoped GaAs1−xNx samples with (b) x =

0.095% (K105) and (c) x = 0.21% (K106). Common cluster features are highlighted

with vertical lines A - J. The reference sample is shown in (a) for comparison. We

perform the experiments in the HLD at 20−30 K, using the setup that is introduced in

Sec. 3.3.1. The origin of the individual transitions is discussed in Sec. 5.2. However, the

spectral weight slightly differs from Fig. 5.4 and Fig. 5.8 at 0 T. A higher illumination

power might be responsible for this observation.

The FE/EHP transition is the most dominant contribution of the reference sample

in (a) and continuously blue-shifts with increasing magnetic field. This is because

of a field-induced shift of the CB and VB edges to higher and lower energies, re-

spectively. Consequently, the band gap increases proportionally to the applied

magnetic field, which leads to the continuous blue-shift of the FE/EHP in the high-

field limit (see also Fig. 6.5). The same transition can be found in (b) - (c) on

the high-energy side. However, it exhibits a diminished blue-shift and vanishes

at around 30 T in case of N containing samples. This observation is discussed

in Sec. 6.1.4. The high magnetic field behavior of LEs and LE-bands of intrin-

sic GaAsN is in the focus of this subsection. Both the LE-band of K106 with

x = 0.21% (area B at 0 T) and the envelope of high-energy LEs of K105 with
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Figure 6.1.: Magneto-PL study of GaAs1−xNx with (a) Si-doped reference, (b) x =
0.095% (K105) and (c) x = 0.21% (K106) at 20− 30 K. The magnetic
field increases from bottom to top in increments of 5 T. Common cluster
features are highlighted with vertical lines in areas A - J.
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x = 0.095% (area F at 0 T) clearly blue-shift with increasing magnetic field. This

points to a partially delocalized character of these transitions. Our power-dependent

PL investigation led to the same conclusion for LE-bands of intrinsic GaAsN in

Sec. 5.2.2. The magneto-PL study supports this interpretation and shows that the

envelope of distinct LEs of intrinsic GaAs1−xNx with x = 0.095% (K105) has a similar

degree of delocalization as the LE-band of intrinsic GaAs1−xNx with x = 0.21%

(K106). We noticed already in Sec. 5.2.1 that the population of high-energy side

LEs of K105 is affected by the illumination power and proposed a possible model

for interexcitonic population transfer in Sec. 5.2.1. As pointed out in Sec. 5.2.2, the

efficiency of the population transfer gradually decreases with cluster state depth. This

conclusion is supported by the behavior of LEs from area A in (b) - (c). They exhibit

no measurable shift in the magnetic field in both N containing samples and can be

classified as localized transitions. The magnetic field behavior of N containing samples

can thus be explained in terms of the population transfer of LEs: The magnetic

field reduces the Bohr radius of excitons. Consequently, LEs with the smallest wave

function overlap decouple from the LE-band first. This applies to the low-energy tail

and LEs from the low-energy side of the LE-band. Already a weak magnetic field

and thus small decrease of the Bohr radius is sufficient to break up the interexcitonic

transfer. When the magnetic field is elevated, more and more LEs decouple from the

LE-band. This corresponds to LEs of the region B in Fig. 6.1 (b). Simultaneously,

more and more of formerly hybridized cluster states are exposed just below the CB

minimum when the CB blue-shifts. Excitons are trapped by these states and interact

with LEs of the LE-band. Consequently, a blue-shift of the LE-band can be obtained

in magnetic fields.

6.1.2. Interexcitonic population transfer and the impact of a

higher thermal energy

The partially delocalized character of LE-bands is discussed in terms of an efficient

interexcitonic transfer mechanism in Sec. 6.1.1. But how does a temperature in-

crease influence this delocalized character? Magneto-PL investigations at higher

temperatures can help us better understand the population transfer of LEs. The only



6.1. LE-bands in high magnetic fields 91

1.35 1.40 1.45 1.50

N
or
m
al
iz
ed

P
L
in
te
n
si
ty

w
it
h
off

se
t
(a
.u
.)

Photon energy (eV)

B CD FGH I JE

1.55

A

62 T

0 T

(a)
x = 0%
50 K

(c)
x = 0.21%
50 K

(b)
x = 0.095%
50 K

0 T

62 T
50 T

0 T

62 T
50 T

50 T

35 T

45 T
40 T

Figure 6.2.: Magneto-PL study of GaAs1−xNx with (a) Si-doped reference, (b) x =
0.095% (K105) and (c) x = 0.21% (K106) at 50 K. The magnetic field
increases from bottom to top in increments of 5 T. Common cluster
features are highlighted with vertical lines in areas A - J.



92 6. Photoluminescence study of GaAsN and GaAsN:Si in high magnetic fields

comparable study on low-temperature PL in fields up to 57 T was done by Alberi et

al. [2]. Fig. 6.2 shows magneto-PL of intrinsic GaAs1−xNx samples with (b) x = 0.095%

(K105) and (c) x = 0.21% (K106) at 50 K. The reference sample GaAs:Si (VN463) is

presented in (a) for comparison. In analogy to Fig. 6.1, the spectral weight of the PL

slightly differs from the 50 K spectra, which are shown in Sec. 5.2.1. This is probably

caused by higher illumination powers.

The FE/EHP transition of the reference sample exhibits the expected blue-shift

in (a). Deeper lying peaks are less occupied in comparison to Fig. 6.1. Intrinsic

GaAs1−xNx with x = 0.095% has a similar behavior in (b). As observed in Fig. 5.4,

the intensity of the FE/EHP transition increases with temperature. Thus, FE/EHP is

the most dominant peak and it blue-shifts continuously up to 45 T. At low magnetic

fields, LEs below FE/EHP are diminished (region D - F) in Fig. 6.2 (b). They gain

spectral weight with increasing magnetic field and appear as a broad LE-band for

B ≥ 35 T. In case of intrinsic GaAs1−xNx with x = 0.21% (K106), the FE/EHP

transition is also pronounced in Fig. 6.2 (c) and it blue-shifts. Simultaneously, LEs

contribute to the PL in regions A and B already at 0 T within a plateau.

In order to study the impact of a higher thermal energy on the population transfer

of LEs, which affects both the occupation of LE states and the scattering via optical

phonons, the field-induced blue-shift of the LE-band is also investigated at 50 K. In

case of undoped GaAs1−xNx with x = 0.21% (K106), the blue-shift of the LE-band is

very weak in Fig. 6.2 (c). Only a slight redistribution towards higher cluster states can

be observed. The LE-band of intrinsic GaAs1−xNx with x = 0.095% (K105) can only

be analyzed for B > 35 T in Fig. 6.2 (b). However, its blue-shift is similarly diminished

in this field range. In particular, the maximum of the LE-band lies between I and J at

62 T in Fig. 6.1 (b) and at H in Fig. 6.2 (b). Consequently, the population transfer of

LEs is significantly quenched at 50 K and thus the partially delocalized character of the

LE-band. Our magneto-PL study illustrates that a higher thermal energy efficiently

interferes with the population transfer of LEs. Consequently, the interexcitonic

transfer mechanism only works below a critical temperature 20 K < T < 50 K.

6.1.3. Magneto-PL of GaAsN:Si

While Si-doping has only a weak influence on the PL of GaAs, it strongly influences

the PL spectra from GaAsN. All investigated GaAsN:Si samples have characteristic
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spectral bands with an apparent higher localization character, as shown in Sec. 5.3.

The actual localization character of the LE-band can be investigated with magneto-PL.

It is shown exemplarily for GaAs1−xNx:Si with x = 0.2% (VN460) at two different
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Figure 6.3.: Magneto-PL in GaAs1−xNx:Si with x = 0.2% at (a) 30 K and (b) 50 K.
The magnetic field increases from bottom to top in increments of 5 T.
Common cluster features are highlighted with vertical lines A - D.

temperatures in Fig. 6.3. In comparison to Fig. 5.10, the spectral weight is shifted

towards higher energies. Higher illumination powers are most probably responsible.
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The broad spectral band is divided into two equal contributions at 0 T, as can be seen

in Fig. 6.3 (a). The FE/EHP transition cannot be identified with sufficient certainty.

It could be part of the high-energy shoulder of the LE-band in region C. Several

subfeatures also appear in the spectrum (region B - C). They correspond to LEs

and exhibit no blue-shift in the magnetic field on their own. However, the envelope

of different LEs indeed blue-shifts. A similar behavior is visible in Fig. 6.3 (b) at

50 K. Even though the spectral distributions are slightly different in Fig. 6.3 (a) and

Fig. 6.3 (b), the magnetic-field behavior is equivalent. In particular, the maxima of

the LE-bands lie in the same region at 62 T. In contrast, the blue-shift of the LE-band

is substantially quenched in intrinsic GaAsN at 50 K (see Fig. 6.2 (c)) in comparison

to 30 K (see Fig. 6.1 (c)). Consequently, an increase of the thermal energy does not

significantly influence the interexcitonic transfer and thus the partially delocalized

character of the LE-band in GaAs1−xNx:Si with x = 0.2%.

Fig. 6.4 illustrates magneto-PL spectra of all GaAsN:Si samples at 50 K. The

FE/EHP transition of the reference sample exhibits the expected blue-shift in (a). In

case of GaAs1−xNx:Si with x = 0.1% (VN459), only one broad PL peak appears in

the spectrum of Fig. 6.4 (b). This peak represents merged FE/EHP and LE-band

transitions (see also Fig. 5.10). The merged peak continuously blue-shifts up to 35 T.

The corresponding PL profile is marked with an arrow. At higher fields, the spectral

band broadens and only shows a small redistribution towards higher energies. Taking

a closer look at the magnetic field response of GaAs1−xNx:Si with x = 0.2% (VN460)

in Fig. 6.4 (c), a similar behavior can be found. The two magnetic field ranges of the

magneto-PL in Fig. 6.4 (b) - (c) most probably originate from saturating FE/EHP

transitions at B > 35 T. Since FE/EHP transitions are not observed in undoped

GaAsN samples between 30 T and 45 T (see Figs. 6.1 - 6.2), the same saturation can

be expected in GaAsN:Si. Consequently, the FE/EHP transition contributes to an

enhanced blue-shift of the merged FE/EHP/LE-band PL below 35 T. The partially

delocalized character is diminished for higher fields, where it most probably only

corresponds to the LE-band (saturated FE/EHP transition).

6.1.4. Discussion on the interexcitonic transfer mechanism

The PL characteristics of intrinsic GaAsN and GaAsN:Si is affected by the N content,
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temperature, illumination power, resolution and incorporation of shallow dopants.

Secs. 5.2 - 5.4 give a detailed overview of the most important PL properties of GaAsN

and GaAsN:Si. Besides experimental conditions, like resolution, other aspects directly

modify the interexcitonic population transfer of LEs. As discussed in Sec. 5.2.1, the

interexcitonic transfer originates from overlapping cluster-exciton wave functions and

can be explained e.g. within the model of hopping excitons [11]. According to this

model, a trapped exciton can recombine radiatively, hop to the mobility edge Em or

hop to another localization center. At low temperatures, excitons preferentially hop

several times to lower energies before they recombine. This interexcitonic transfer (e.g.

via hopping) is responsible for the partially delocalized character of LEs envelopes and

LE-bands in intrinsic GaAs1−xNx with x = 0.095% (K105) and x = 0.21% (K106),

respectively.

As mentioned above, the population transfer can easily be affected. Increasing the

temperature, for instance, diminishes the transfer in intrinsic GaAsN, as shown in

Sec. 6.1.2. The incorporation of shallow dopants has a similar effect on the PL as the

increase of the illumination power. In both cases, more cluster states are occupied

simultaneously and the efficient interexcitonic population transfer is suppressed at

lower energies. Thus, the FE/EHP transition and LEs with highest energies merge and

dominate the PL in GaAsN:Si. Consequently, a blue-shift of GaAsN:Si LE-bands and

shorter maximum decay times are observed in comparison to undoped samples (see

Secs. 5.3 and 5.4) at low temperatures. Furthermore, a divided magnetic field response

of the GaAsN:Si PL is obtained in Sec. 6.1.3. In particular, an enhanced blue-shift

and thus delocalized character of the merged band is observed below 35 T in Fig. 6.4

in comparison to LE-bands of intrinsic GaAsN in Fig. 6.2. However, the blue-shift is

reduced above this critical magnetic field. Furthermore, an increased thermal energy

has a diminished impact on the interexcitonic transfer of GaAs1−xNx:Si, as shown

in Fig. 6.3. In case of intrinsic GaAs1−xNx with x = 0.095% (K105) and x = 0.21%

(K106), the partially delocalized character is strongly affected at 50 K (see Fig. 6.1

and Fig. 6.2). This indicates that the interexcitonic population transfer of Si-doped

GaAsN is more complex than in undoped samples. Interactions with negative trions

may be responsible.

The variety of shallow cluster states and the efficient interexcitonic population

transfer is also responsible for the saturation of the FE/EHP peak intensity in high

magnetic fields, as depicted in Fig. 6.1 - 6.4. The Coulomb interaction of Wannier
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excitons can be neglected in the high-field limit. However, excitonic transitions are

favored in comparison to (e−h) transitions. Thus, LEs predominantly appear on the

high-energy side at B ≥ 45 T in N containing samples. Because of a much smaller

amount of localization centers in the reference, FE/EHP/(e−h) also dominates the

high-field spectrum. FE/EHP already saturates for B ≥ 30 T at 30 K. This behavior

is promoted by a more efficient population transfer of LEs on the high-energy side at

lower temperatures, as can be seen in Fig. 6.1.

6.2. Determination of the reduced effective mass of

GaAsN via magneto-PL

Magneto-PL has been numerously applied in the past for electron effective mass

determination. It is instructive to use this method for the same goal in order to get a

deeper insight into this approach. As mentioned before, CR absorption spectroscopy

is the most direct method for electron effective mass determination and was utilized

by our group for the first time on GaAsN:Si. Our CR results were published in

Ref. [45] and also presented more detailed in Chap. 4 of this thesis. Investigating the

field-induced shift of a band-to-acceptor transition, like (e,C0) in GaAs also leads to

the electron effective mass, as was shown for GaAs [133, 134, 172] and zinc telluride

[34]. However, this method requires the precise identification of the band-to-acceptor

transition. Nevertheless, it has been numerously applied to GaAsN in the past

[101, 102]. We lack the confidence to identify this transition in GaAs1−xNx with

x > 0.095% with certainty and use an alternative approach. The field-induced shift

of the FE transition can theoretically be investigated for the same goal, as was shown

by Refs. [2, 125, 127] on GaAsN. Due to a complicated and not fully understood

field-induced shift of the valence band, we limit our study to the investigation of the

reduced mass µ. The procedure is explained in the following.

6.2.1. Landau level approximation

External magnetic fields efficiently modulate energetic states of bulk semiconductors.

In particular, they shift and quantize the energetic levels of all charged carriers. The

ratio between the field strength and the electron-hole Coulomb interaction regulates
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the modification of excitonic eigenstates [124], which are mostly relevant for PL

studies. The effective exciton Rydberg

Ry [eV] =
µe4

2 (4πεrε0)
2 ~2

=
13.6

ε2r

µ

m0

(6.1)

defines the Coulomb energy scale with the exciton reduced mass

1

µ
=

1

m∗
e

+
1

m∗
h

. (6.2)

It contains the electron and hole effective masses m∗
e and m∗

h, respectively. Further-

more, ε0 and εr describe the dielectric constant of free space and of the material,

respectively. As usual, ~, e and m0 symbolize the Planck constant, the elementary

charge and the electron rest mass. The characteristic energy scale of excitons in a

magnetic field is the cyclotron energy

~ωc [eV] =
~eB
µ

= 1.16 · 10−4m0

µ
B [T] (6.3)

with the magnetic field strength B and cyclotron frequency ωc. The ratio

γ =
~ωc

2Ry
(6.4)

is a dimensionless parameter, which weights the magnetic field strength with respect

to the electron-hole interaction. γ >> 1 describes the high magnetic field limit, which

corresponds to B >> 3.8 T for GaAs with RyGaAs = 4.2 meV and µGaAs = 0.053m0

[124], and applies to our magneto-PL study. The energy dispersion of Bloch electrons

and holes in magnetic fields can be calculated with the effective mass approximation

[109, 124]. In the parabolic case, the energy is given by

Ec(kz, n) = E0
c +

(
n+

1

2

)
~eB
me

+
~2k2z
2me

(6.5)

Ev(kz, n) = E0
v −

(
n+

1

2

)
~eB
mh

− ~2k2z
2mh

. (6.6)

E0
c and E0

v describe the bottom and top of the conduction and valence band, re-

spectively. Eqn. (6.5) - (6.6) illustrate how the magnetic field quantizes the bands
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into so-called Landau levels with the characteristic quantum number n = 0, 1, 2, . . . .

In the high-field limit, we observe a linear increase of the band gap energy with

magnetic field B, which is known as Landau level approximation. We can determine

the reduced mass µ by investigating the magnetic shift

∆EFE(k, n = 0) = Ec(kz, 0)− Ev(kz, 0) =
~e
2µ
B (6.7)

of the FE energy, which is indirectly proportional to the slope of ∆EFE. Consequently,

the electron effective mass can be directly determined if the hole mass is known. More

details on behalf of the magnetic field behavior of electronic states can be found in

Refs. [109, 124].

6.2.2. Reduced mass of GaAsN with low N content

Because of the merged character of FE/EHP and LE-band transitions in GaAsN:Si,

only intrinsic GaAsN samples are studied in this section. Fig. 6.5 demonstrates the
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∆
E

F
E
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)
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x = 0.095%

x = 0.21%

50 K

Figure 6.5.: Field-induced shift of the FE/EHP transition of GaAs1−xNx with x = 0%
(full circles), x = 0.095% (empty circles) and x = 0.21% (half-empty
circles). Solid lines represent linear fits of the magnetic shift in the
high-field limit.
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field-induced shift of the FE transition ∆EFE in GaAs1−xNx:Si with x = 0% (VN459)

and undoped GaAs1−xNx with x = 0.095% (K105) and x = 0.21% (K106) at 50 K.

The corresponding magneto-PL spectra are shown in Fig. 6.2. Obviously, the FE

transition is most dominant in all samples at 50 K and can easily be distinguished from

other peaks. In the low-field limit, the FE transition shifts quadratically to higher

energies when the magnetic field increases. This diamagnetic shift can be observed

for approximately 0 T ≤ B ≤ 6 T in Fig. 6.5. The blue-shift is linear for B ≥ 15 T

and can be fitted with Eq. (6.7), as shown with solid lines in Fig. 6.5. Comparing

the slopes ∆EFE of the different samples, it is obvious that the magnetic blue-shift

is significantly reduced by nitrogen incorporation. This observation is in agreement

with previous magneto-PL results [102]. Using the arguments from Sec. 6.2.1, we

expect an elevated reduced mass in N-containing samples. However, the slope of

∆EFE is almost similar in both samples with x > 0%. The same must be valid for

the reduced masses. In order to get quantitative results, the slopes are linearly fitted

with Eq. (6.7) in the high-field limit for B ≥ 15 T. The results are summarized in

Tab. 6.1.

VN463 K105 K106

N content 0% 0.095% 0.21%
Si-doping yes no no
µ (kg) 5.76 · 10−32 6.91 · 10−32 7.51 · 10−32

µ (m0) 0.072 0.113 0.131

Table 6.1.: Fit results for the reduced mass in VN463, K105 and K106 with Eq. (6.7).

The accepted value of the reduced mass in GaAs lies between 0.052 m0 and 0.058 m0

[123]. However, our enhanced reduced mass of µ = 0.072 m0 exactly corresponds

to the published result of another study with Landau level approximation [129] on

undoped GaAs. It was performed with magneto-PL in the range between 15 T and

30 T. Even though a perfectly linear shift of ∆EFE was already obtained between

15 T and 30 T in Ref. [129], a better agreement with accepted reduced mass values

was expected for higher magnetic fields by the author of that study. Our magneto-PL

study suggests something else. Further investigations are necessary to clarify the

discrepancy between the reduced masses. However, it is very unlikely that the perfect

agreement between our result and Ref. [129] is accidental.
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The reduced masses of the N containing samples are significantly enhanced in

comparison to the reference sample. However, the difference is rather small between

both N samples. Unfortunately, we cannot draw any conclusions concerning the

electron effective mass from this result. The field-induced shift of the valence band is

already very complicated in GaAs and not well-understood in GaAsN. Consequently,

we only conclude that the reduced mass increases in GaAsN in comparison to GaAs.

6.3. Summary and outlook

A detailed magneto-photoluminescence (magneto-PL) study of GaAsN and GaAsN:Si

is presented in this chapter. The magnetic field behavior of different transitions is

investigated. The free exciton/electron-hole plasma (FE/EHP) transition is the most

dominant peak of undoped GaAs1−xNx with x ≤ 0.2% for T > 50 K. However, it

exhibits a diminished blue-shift in the magnetic field compared to GaAs and vanishes

above a critical field value. This critical field increases with the lattice temperature

and lies between 30 T and 45 T in intrinsic GaAs1−xNx with x = 0.095% (K105)

and x = 0.21% (K106). Since the coupling of Wannier excitons can be neglected

in the high-field limit, excited carriers preferentially relax non-radiatively towards

cluster states and form localized excitons (LEs). These LEs are the most dominant

radiant transitions at high magnetic fields at all temperatures. In case of the Si-doped

GaAsN samples, the FE/EHP merges with the LE-band. Both transitions cannot be

investigated separately. Nevertheless, the merged spectral band exhibits a varying

magnetic field response below and above 35 T. This indicates that the FE/EHP-part

of the merged band also vanishes at 35 T in GaAsN:Si.

LE-bands of undoped GaAsN and GaAsN:Si exhibit a blue-shift in magnetic fields

and consequently have a partially delocalized character. Their magnetic field response

can be explained in terms of the interexcitonic population transfer. The magnetic

field lifts the conduction band minimum and reveals formerly hybridized cluster states.

Furthermore, it reduces the effective Bohr radius of excitons. Thus, LEs with the

smallest wave function overlap decouple from the LE-band on the low-energy side

of the spectrum for B ≥ 10 T . Simultaneously, formerly hybridized cluster states

are split off the conduction band just below the conduction band minimum and
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trap excitons. Consequently, a blue-shift of the LE-band can be obtained when the

magnetic field rises.

The blue-shift of the LE-band is diminished in intrinsic GaAsN at higher tem-

peratures. An increased thermal energy reduces the partially delocalized character

of LE-bands and thus the interexcitonic transfer mechanism. Consequently, the

population transfer of LEs only works below a critical temperature 20 K < T < 50 K.

This temperature is not determined exactly within this thesis and could be part of a

follow-up project. The merged spectral band of GaAsN:Si is not significantly affected

by a temperature increase. This indicates that the interexcitonic transfer of Si-doped

GaAsN is more complex than in the undoped case.

The reduced mass is determined in GaAs:Si and two undoped GaAs1−xNx samples

with x = 0.095% and x = 0.21%, using a field-induced shift of the FE/EHP transition.

A Landau level approximation is applied in the high-field limit. The investigation

of the reference sample GaAs:Si allows to test the functionality of our measuring

technique and analysis procedure. An excellent agreement with Ref. [129] is obtained.

In analogy to Ref. [129], the determined mass lies 20% above accepted mass values

of GaAs. We conclude that the reduced mass is enhanced in the high-field limit.

Furthermore, the determined GaAsN masses are 1.5 times larger than in the reference.

The difference between both N containing samples however is very small. A similar

enhancement of the electron effective mass was obtained in GaAsN in comparison to

GaAs [101].

Magneto-PL has been numerously applied in the past for effective mass determi-

nation in GaAsN. However, the determined masses are inconsistent among different

groups (e.g. [101, 2]). Our experience with magneto-PL for effective mass determina-

tion shows that this method is prone to errors. In particular, a precise identification

of the band-to-acceptor or FE transition is necessary. In case of the FE transition

investigation, the field-induced shift of the valence band is rather complicated. Con-

sequently, it is difficult to get reliable electron effective mass values with incomplete

knowledge of hole effective masses in GaAsN. Nevertheless, it would be interesting to

have more studies of the valence band behavior of GaAsN in high magnetic fields. The

same is valid for the investigation of pure GaAs in high magnetic fields. In particular

more theoretical investigations on magneto-excitons in GaAs and GaAsN would be of

interest.



7. Conclusions and outlook

The purpose of this thesis is a detailed magneto-optical study of GaAsN in high

magnetic fields. We applied different spectroscopic methods to the dilute nitride in

order to study its electronic and optical properties. The highlights of this thesis are

summarized in this chapter. Possible future investigations are proposed.

The first direct determination of the electron effective mass of GaAsN is an essential

part of this work. We performed detailed cyclotron resonance (CR) absorption

spectroscopy investigations in bulk Si-doped GaAsN samples with a nitrogen content

of up to 0.2%. We used the unique combination of the large-scale facilities free-electron

laser FELBE and the Dresden High Magnetic Field Laboratory for the implementation

of terahertz spectroscopy in pulsed magnetic fields up to 62 T. A slight increase of

the CR electron effective mass with N content is obtained in excellent agreement

with calculations based on the band anticrossing model [136, 165] and empirical

tight-binding predictions [141]. Furthermore, we observe an increase of the band

nonparabolicity with increasing N concentration. This experimental result is in

agreement with our calculations of the energy dependent momentum effective mass

[147, 170] based on the band anticrossing model [136]. We obtain a strong decrease

of the electron mobility in GaAsN:Si with CR spectroscopy, which matches formerly

determined Hall mobility values [119]. In summary, our investigation led to a complete

and consistent understanding of the so far controversially discussed GaAsN effective

mass. Further investigations of GaAs1−xNx:Si with x < 0.1%, 0.1% < x < 0.2%

and 0.2% < x < 0.5% with CR absorption spectroscopy can provide additional

quantitative details.

In the second part of this thesis, we performed continuous-wave photoluminescence

(PL) in GaAsN and GaAsN:Si and investigate the different transitions of the systems.

Furthermore, we studied the PL dynamics of GaAsN:Si. GaAs-related transitions

(e,C0) and (D0-A0) are identified besides localized excitons (LEs) in the PL of intrinsic

GaAs1−xNx with x = 0.095%. The latter emerge in a LE-band at low temperatures
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and also contribute to the low-energy tail with a lower interexcitonic population

transfer. Increasing the N content red-shifts the PL because of a N-induced band

gap reduction [162, 136]. Furthermore, distinct PL peaks broaden and smear out to

a nearly featureless LE-band. This band exhibits a partially delocalized character

because of overlapping exciton wave functions and an efficient interexcitonic transfer.

A reduced lattice quality increases non-radiative relaxation processes and considerably

decreases the radiation yield in comparison to the x = 0.095% sample. The PL of

Si-doped GaAs1−xNx is dominated by merged spectral bands. They have contributions

of localized excitons (LEs), free excitons (FEs) and of the electron-hole plasma

(EHP) on the high-energy side of the spectrum. In case of GaAs0.998N0.002, the

LE/FE/EHP-band of the Si-doped sample is blue-shifted with respect to the one of

intrinsic GaAsN. Similar to an illumination power increase, Si-incorporation leads to

a higher occupation rate of different cluster states and thus to a partially suppressed

LE transfer towards lower lying cluster states. Consequently, more high-energy LEs

contribute to the spectral band of GaAsN:Si. This band is systematically studied

with time-resolved PL in GaAsN:Si for the first time. The PL decay is predominantly

monoexponential and has a strong energy dispersion. The determined maximum

decay times of GaAsN:Si are significantly reduced in comparison to undoped GaAsN

epilayers [29, 27]. Consequently, Si reduces the decay time of GaAsN to a greater

extent as in GaAs. The determination of a quantitative relationship between the

decay time reduction of GaAs:Si and GaAsN:Si could be part of a follow-up project.

A GaAsN:Si sample series with a constant N content and varying Si-doping should

be investigated for this purpose.

A detailed magneto-PL study of GaAsN and GaAsN:Si in pulsed magnetic fields

up to 62 T is presented in the third part of this thesis. LE-bands dominate the PL at

high magnetic fields in all samples. Because of their partially delocalized character,

they exhibit a blue-shift in rising magnetic fields, which can be explained with the

interexcitonic transfer mechanism. However, the blue-shift is diminished in intrinsic

GaAsN at higher temperatures. Thus, the population transfer of LEs is only active

below a critical temperature 20 K < T < 50 K. The determination of the exact

critical temperature could be part of a follow-up project. In case of GaAsN:Si, a

temperature increase has no significant impact on the delocalized character of the

merged LE/FE/EHP band. Consequently, the interexcitonic transfer of Si-doped

GaAsN is more complex than in undoped GaAsN. The reduced mass of undoped
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GaAsN and GaAs:Si is investigated by exploiting the observed field-induced shift of

the FE/EHP transition in the high-field limit. In case of the reference sample, an

excellent agreement with Ref. [129] is obtained. However, the determined mass lies

20% above accepted mass values of GaAs, in analogy to Ref. [129]. This exciting result

should be investigated further in a follow-up project. In particular, the complicated

field-induced shift of the valence band should be in the focus. The determined GaAsN

masses are 1.5 times larger than in the reference. A similar increase of the electron

effective mass of GaAsN was obtained before [101]. Our magneto-PL study shows

that it is worth it to perform further investigations on GaAsN and pure GaAs in very

high magnetic fields. More theoretical investigations on magneto-excitons in GaAs

and GaAsN would also be of interest.
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A.1. Overview of the investigated samples

Different GaAsN samples are investigated in this thesis. The VN sample series consists

of molecular beam epitaxy (MBE) grown, silicon n-doped GaAs1−xNx:Si samples with

x = 0.1%− 0.5%. The samples were grown by M. Hopkinson and coworkers at the

University of Sheffield. In particular, the GaAsN layer was grown on a semi-insulating

GaAs substrate at a lowered growing temperature of 500◦C on top of a 20 nm GaAs

buffer layer grown at 580◦C. The thickness of the nitrogen containing layer is 1µm

and the n-doping is nominally 1 · 1017 cm−3. The N content was monitored by x-ray

diffraction. In addition to these samples, two undoped GaAs1−xNx samples K105

and K106 with a nitrogen content of x = 0.095% and x = 0.21%, respectively, are

investigated in our PL-studies. These samples were grown by metalorganic vapour

phase epitaxy (MOVPE) by W. Stolz and coworkers at the Philipps-Universität

Marburg [77]. They were deposited pseudomorphically on semi-insulating (100)

GaAs substrates. The chosen GaAs substrates and buffer layers have a thickness of

500± 25 µm and 250 nm, respectively. For both samples, the GaAsN layer is 500 nm.

The source materials were triethylgallium, 1,1-dimethylhydrazine, and tertiarybutyl

arsine. Our CR spectroscopy study is only performed on samples of the VN series.

Photoluminescence and magneto-photoluminescence is applied to both VN-series and

K-series. Tab. A.1 shows an overview of all investigated samples.

Sample name VN459 VN460 VN461 VN463 K105 K106
N content x (%) 0.1 0.2 0.5 0 0.095 0.21
Layer thickness (µm) 1 1 1 1 0.5 0.5
Growth technique MBE MBE MBE MBE MOVPE MOVPE

Table A.1.: Characteristics of the GaAs1−xNx samples studied in this work.



108 A. Appendix

A.2. Experimental parameters for magneto-PL in the

HLD

Tab. A.2 gives an overview of the experimental details for the realization of magneto-PL

experiments in pulsed magnetic fields of the HLD. In particular, it shows the coil

voltages and acquisition times. The desired magnetic field strength is defined by

B (T) 1 3 4 5 6 7 8 9 10
∆B (T) 0.38 0.26 0.33 0.42 0.45 0.50 0.60 0.40 0.50
V (kV) 0.78 0.78 1.30 1.70 2.00 2.20 2.50 2.85 3.38
Modules 1 6,7,8 6,7,8 6,7,8 6,7,8 6,7,8 6,7,8 6,7,8 6,7,8

t1 (ms) 28.55 40.43 40.43 40.40 40.70 40.70 40.70 42.37 42.37
t2 (ms) 48.07 59.96 59.96 59.92 60.22 60.22 60.22 57.24 57.24
tL (ms) 20.55 32.43 32.43 32.40 32.70 32.70 32.70 34.37 34.37
∆tL (ms) 27.52 27.52 27.52 27.52 27.52 27.52 27.52 22.87 22.87
tS (ms) 28.55 40.43 40.43 40.40 40.70 40.70 40.70 42.37 42.37
∆tS (ms) 18.52 18.52 18.52 18.52 18.52 18.52 18.52 13.87 13.87
∆t (ms) 19.52 19.52 19.52 19.52 19.52 19.52 19.52 14.87 14.87

15 20 25 30 35 40 45 50 55 60
0.56 0.75 0.70 0.80 0.80 0.80 0.73 0.80 0.89 1.00
5.20 6.90 8.70 10.40 12.30 14.00 15.80 17.80 19.60 22.00
6,7,8 6,7,8 6,7,8 6,7,8 6,7,8 6,7,8 6,7,8 6,7,8 6,7,8 6,7,8

43.23 42.91 43.97 44.35 44.44 44.61 44.99 44.85 44.55 44.10
56.52 56.2 55.46 54.83 54.46 53.98 53.43 53.30 53.00 52.55
35.23 34.91 35.97 36.35 36.44 36.61 36.99 36.85 36.55 36.10
21.29 21.29 19.49 18.49 18.02 17.37 16.44 16.45 16.45 16.45
43.23 42.91 43.97 44.35 44.44 44.61 44.99 44.85 44.55 44.10
12.29 12.29 10.49 9.49 9.02 8.37 7.44 7.45 7.45 7.45
13.29 13.29 11.49 10.49 10.02 9.37 8.44 8.45 8.45 8.45

Table A.2.: Overview of the experimental details in regards to the magnetic field
strength B, the required voltage values V , the chosen field variation ∆B
and integration time ∆t = t2 − t1 for certain capacitor modules. The
times t1 and t2 were chosen symmetrically around the magnetic field
maximum. A magnetic field delay of 5 ms after the trigger time ttr had
to be considered and resulted in new t1,2 = ttr + 5 ms + told1,2 values. The
delay times of the laser tL, ∆tL and spectrometer tS, ∆tS for the delay
generator are defined as follows: tL = t1− 8 ms, ∆tL = ∆t+8 ms, tS = t1,
∆tS = ∆t− 1 ms.
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the applied voltage, but can vary with the actual coil temperature and is strongly

dependent on the particular capacitor module. Thus, it is advisable to always use the

same module set and constantly monitor the actual field strength with a pick-up coil.

All experiments were performed with the modules 6, 7, 8, except of the 1 T pulses,

which were realized with module 1.

A.3. Detailed drawings for the magneto-PL probe

A new experimental setup was built for magneto-PL measurements in pulsed magnetic

fields of the HLD in the framework of this PhD. This setup is described in detail

in Sec. 3.3.1. In particular, a special measuring probe was constructed for this task,

as discussed before. In this section, detailed drawings for the construction of this

probe are shown. They were prepared in cooperation with Stefan Findeisen who is

employed in the division of mechanical engineering (FWFM) of the HZDR. The actual

production was carried out by the central workshop of the HZDR. The technical

drawings are presented in the following.



110 A. Appendix



A.3. Detailed drawings for the magneto-PL probe 111



112 A. Appendix



A.3. Detailed drawings for the magneto-PL probe 113



114 A. Appendix



A.3. Detailed drawings for the magneto-PL probe 115



116 A. Appendix



A.3. Detailed drawings for the magneto-PL probe 117



118 A. Appendix



A.3. Detailed drawings for the magneto-PL probe 119





Bibliography

[1] S. Adachi. Properties of semiconductor alloys: group-IV, III-V and II-VI semi-

conductors. John Wiley & Sons, Ltd, 2009.

[2] K. Alberi, S. A. Crooker, B. Fluegel, D. A. Beaton, A. J. Ptak, and A. Mas-

carenhas. Magnetic-field-induced delocalized to localized transformation in

GaAs:N. Phys. Rev. Lett., 110:156405, 2013.

[3] K. Alberi, B. Fluegel, D. A. Beaton, A. J. Ptak, and A. Mascarenhas.

Localization-delocalization transition of electrons at the percolation thresh-

old of semiconductor GaAs1−xNx alloys: The appearance of a mobility edge.

Phys. Rev. B, 86(4):041201(R), 2012.

[4] F. Alexandre. Chapter 2 - Epitaxial growth of dilute nitrides by metal-organic

vapour phase epitaxy. In M. Henini, editor, Dilute nitride semiconductors, pages

93 – 117. Elsevier, Amsterdam, 2005.

[5] P. W. Anderson. Localized magnetic states in metals. Phys. Rev., 124(1):41 –

53, 1961.

[6] J. R. Apel, T. O. Poehler, C. R. Westgate, and R. I. Joseph. Study of the

shape of cyclotron-resonance lines in indium antimonide using a far-infrared

laser. Phys. Rev. B, 4:436 – 451, 1971.

[7] D. J. Ashen, P. J. Dean, D. T. J. Hurle, J. B. Mullin, A. M. White, and P. D.

Greene. The incorporation and characterisation of acceptors in epitaxial GaAs.

J. Phys. Chem. Solids, 36(10):1041 – 1053, 1975.

[8] S. R. Bank, H. P. Bae, H. B. Yuen, M. A. Wistey, L. L. Goddard, and J. S.

Harris Jr. Room-temperature continuous-wave 1.5 µm GaInNAsSb laser on

GaAs. Electron. Lett., 42(3):156 – 157, 2006.



122 Bibliography

[9] S. R. Bank, M. A. Wistey, L. L. Goddard, H. B. Yuen, V. Lordi, and J. S.

Harris. Low-threshold continuous-wave 1.5 µm GaInNAsSb lasers grown on

GaAs. Quantum Electronics, IEEE, 40(6):656 – 664, 2004.

[10] M. Baranowski, R. Kudrawiec, M. Latkowska, M. Syperek, J. Misiewicz, and

J. A. Gupta. Dynamics of localized excitons in Ga0.69In0.31N0.015As0.985/GaAs

quantum well: Experimental studies and Monte-Carlo simulations. Appl. Phys.

Lett., 100(20):202105, 2012.

[11] M. Baranowski, M. Latkowska, R. Kudrawiec, and J. Misiewicz. Model of hop-

ping excitons in GaInNAs: simulations of sharp lines in micro-photoluminescence

spectra and their dependence on the excitation power and temperature. J. Phys.

Condens. Mat., 23(20):205804, 2011.

[12] Bastard, G. Wave mechanics applied to semiconductor heterostructures. Wiley,

New York, 1990.

[13] C. Becker, C. Sirtori, O. Drachenko, V. Rylkov, D. Smirnov, and J. Leotin.

GaAs quantum box cascade lasers. Appl. Phys. Lett., 81(16):2941 – 2943, 2002.

[14] L. Bellaiche, S.-H. Wei, and A. Zunger. Composition dependence of interband

transition intensities in GaPN, GaAsN, and GaPAs alloys. Phys. Rev. B,

56:10233 – 10240, 1997.

[15] H. Benaissa, A. Zaoui, and M. Ferhat. First principles calculations for dilute

InAs1−xNx alloys. J. Appl. Phys., 102(11):113712, 2007.
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Klar, and W. Stolz. Early manifestation of localization effects in diluted

Ga(AsN). Appl. Phys. Lett., 82(2003):4474 – 4476, 2003.

[103] K. Matsuda, T. Saiki, M. Takahashi, A. Moto, and S. Takagishi. Near-field

photoluminescence study of GaNAs alloy epilayer at room and cryogenic tem-

perature. Appl. Phys. Lett., 78(11):1508 – 1510, 2001.

[104] J. W. Matthews and A. E. Blakeslee. Defects in epitaxial multilayers: I. Misfit

dislocations. J. Cryst. Growth, 27:118 – 125, 1974.

[105] T. Mattila, S.-H. Wei, and A. Zunger. Localization and anticrossing of electron

levels in GaAs1−xNx alloys. Phys. Rev. B, 60:R11245 – R11248, 1999.

[106] B. D. McCombe, R. Kaplan, R. J. Wagner, E. Gornik, and W. Müller. Absorp-

tion and emission studies of the quantum-limit cyclotron resonance linewidth

in n− InSb. Phys. Rev. B, 13:2536 – 2539, 1976.

[107] J. C. Mikkelsen and J. B. Boyce. Extended x-ray-absorption fine-structure

study of Ga1−xInxAs random solid solutions. Phys. Rev. B, 28(12):7130 – 7140,

1983.

[108] A. Mintairov, T. Kosel, J. Merz, P. Blagnov, A. Vlasov, V. Ustinov, and

R. Cook. Near-Field Magnetophotoluminescence Spectroscopy of Composition

Fluctuations in InGaAsN. Phys. Rev. Lett., 87(27):277401, 2001.

[109] N. Miura. Physics of semiconductors in high magnetic fields, volume 15 of Series

on semiconductor science and technology. Oxford University Press, Oxford,

2007.

[110] R. Mouillet, L.-A. de Vaulchier, E. Deleporte, Y. Guldner, L. Travers, and J.-C.

Harmand. Role of nitrogen in the mobility drop of electrons in modulation-doped

GaAsN/AlGaAs heterostructures. Solid State Comm., 126(6):333 – 337, 2003.



132 Bibliography

[111] J. H. Neave, P. J. Dobson, J. J. Harris, P. Dawson, and B. A. Joyce. Silicon

doping of MBE-grown GaAs films. Appl. Phys. A, 32(4):195 – 200, 1983.
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