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Abstract 

Chemotherapy is the predominant approach for treating cancer.  However, disease relapse 

frequently occurs because chemotherapy often fails to eliminate all tumor cells due to intrinsic 

or acquired drug resistance.  The failure of conventional chemotherapeutics regimes for cancer 

highlights the need for novel therapeutic interventions.  Recent studies have shown that human 

Rad51, an evolutionarily conserved DNA recombinase required for homologous recombination, 

exhibits elevated expression in many cancer cells and is implicated in drug resistance after 

chemotherapy.  Targeted inhibition of human Rad51 has been explored as a way to sensitize 

cancer cells to chemotherapy.  Given the properties of antibodies and their fragments as high-

affinity inhibitors, we used antibody phage display to generate antigen-binding fragments 

(Fabs) against human Rad51.  We first isolated human Rad51 specific Fabs by screening a 

synthetic Fab phage display library against recombinant human Rad51.  We isolated a human 

Rad51 Fab, referred to as Fab F2, which bound human Rad51 with a KD of 8.1 nM.  Fab F2 

inhibited the DNA binding activity of human Rad51 but did not inhibit human Rad51 ATP 

hydrolysis activity.  We converted Fab F2 into an scFv-Fc fragment (scFv: single-chain variable 

fragment; Fc: glycosylated crystallizable fragment) for expression in human embryonic kidney 

293T cells.  Overexpression of scFv-Fc fragment in human embryonic kidney 293T cells 

increased 4.48-fold more sensitivity to the DNA-damaging agent methyl methanesulfonate in 

clonogenic survival assays.  To enable the delivery of Fab F2 into cells we fused it to a cell 

membrane import tag (FabItag I2) based on a patent (WO 2014005219 A1) from iProgen 

Biotech Inc.  We labeled FabItag I2 with an 800CW fluorophore and showed that FabItag I2 

permeated human embryonic kidney 293T cells using fluorescence microscopy and flow 

cytometry.  FabItag I2 increased the sensitivity of human embryonic kidney 293T cells to 

methyl methanesulfonate by 2 folds in clonogenic survival assays. 
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Chapter 1 Introduction 
         Homologous recombination (HR) is used by cells to accurately repair DNA double-strand 

breaks (DSBs) using intact homologous DNA sequences (San Filippo et al., 2008).  The repair 

mechanism is defined by two main reactions, DNA strand invasion and joint molecule 

formation.  These reactions are catalyzed by a class of conserved proteins, which includes the 

essential recombinase Rad51 (homolog of Escherichia coli RecA), an ATPase with DNA 

binding activity (Sung and Robberson, 1995).  Rad51 polymerizes on resected single-stranded 

DNA ends to form a Rad51-DNA nucleoprotein filament (also referred to as presynaptic 

filament), promoting strand invasion and homologous pairing between two DNA duplexes 

(Benson et al., 1994; Baumann et al., 1996).  The essential role of Rad51 in HR is supported by 

studies showing that the RAD51 deletion causes early embryonic lethality (Tsuzuki et al., 

1996), and that Rad51-deficident DT40 chicken cells accumulate chromosome breaks and 

aberrations resulting in cell lethality (Sonoda et al., 1998).  Rad51 expression and activity must 

be carefully regulated in normal cells to control HR and maintain genome integrity.  In contrast, 

when Rad51 is deregulated it can lead to the loss of genomic rearrangements, which is central 

to the progress of carcinogenesis (Arias-Lopez et al., 2006). 

         Chemotherapy is currently the predominant therapeutic strategy in many cancers.  It 

damages the DNA of tumor cells by inducing adducts or single- or double-strand breaks in 

DNA.  Disease relapse often occurs because chemotherapy fails to eliminate all tumor cells due 

to the intrinsic or acquired drug resistance.  Chemoresistance can emerge because deregulated 

DNA repair removes chemotherapy-induced DNA damage in cancer cells (Vispe et al., 1998).  

The failure of conventional chemotherapeutics regimes for treating cancer highlights the need 

for novel therapeutic interventions.  Over-expression of human Rad51 (hRad51) and the 

resultant enhanced HR rates is described for a variety of cancer cells, including breast cancer, 

pancreatic, non-small cell lung carcinoma, and leukemia (Maacke, Jost, et al., 2000; Maacke, 

Opitz, et al., 2000; Bearss et al., 2002; Raderschall et al., 2002; Slupianek et al., 2002).  In 

these cancers, hRad51 over-expression gives rise to cancer resistance by promoting the repair 

of chemotherapy-induced DSBs (Vispe et al., 1998).  Targeted hRad51 inhibition using 

ribozyme or antisense treatments results in longer median survival after cancer treatment 

(Christodoulopoulos et al., 1999; Collis et al., 2001).  Therefore, targeted inhibition of hRad51 
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using small molecule or biologic drugs is being explored as a way to sensitize cancer cells to 

chemotherapy. 

         Several small-molecule hRad51 inhibitors have been isolated using high-throughput drug 

screening (Ishida et al., 2009; Huang et al., 2011; Zhu et al., 2013).  However, many of these 

small molecules are limited by their specificity and cellular toxicity, which can cause side 

effects in cancer patients.  As a result, most hRad51 small molecule inhibitors have only been 

used for in vitro studies to characterize hRad51 activities (Ward et al., 2015).  Thus, there is a 

need to develop more potent, specific, and less toxic anti-Rad51 drugs. 

         Here, we used an antibody phage display platform to generate “synthetic” antibodies 

against hRad51.  In contrast to many chemical inhibitors, antibodies have the potential to 

neutralize antigen proteins in vivo (Antman and Livingston, 1980).  However, application of 

antibody or antibody fragments for inhibiting intracellular targets is hindered by their 

inefficient delivery across the cell membrane.  In this thesis, we used a membrane import 

peptide based on iProgen Biotech Inc. to facilitate the transport of antibody fragments across 

cell membrane (Patent: WO 2014005219 A1).  This membrane import sequence consists of a 

secretion signal peptide sequence and a cleavage inhibition sequence, which exhibits efficient 

intracellular protein transduction efficiency.  Fusing this membrane import sequence to Fab 

resulting in cell membrane internalization and sensitization of cells to DNA-damaging agent 

methyl methanesulfonate (MMS). 
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Chapter 2 Literature Review 

2.1 Human Rad51 Recombinase 

         Homologous recombination (HR) is an essential mechanism for repairing a variety of 

DNA lesions in order to maintain genome stability.  HR mechanism can be defined into two 

mechanistic steps, DNA strand invasion and joint molecule formation.  Genetic and 

biochemical studies in S. cerevisiae showed that a class of enzymes known as recombinases, 

and their associated cofactors, catalyze these reactions.  Of particular interest is Rad51, which is 

structurally and functionally homologous to the RecA recombinase in bacteria 

(Kowalczykowski, 1991; Radding, 1991; Conway et al., 2004).  The filament structure of RecA 

protein has been known for over a decade, however no complete crystal structure of Rad51 has 

been determined.  NMR imaging and mutation analysis (Aihara et al., 1999) have shown that 

Rad51 contains two domains, an N-terminal DNA binding domain, both single and double 

stranded DNA (ssDNA) (dsDNA) as well as a C-terminal ATP binding domain.  Rad51 

polymerizes on ssDNA to form a Rad51-ssDNA nucleoprotein filament (also referred to as 

presynaptic filament) in which homology search and DNA joint formation are catalyzed (Sung 

and Robberson, 1995).  Although ATP binding is essential for Rad51 function in strand 

exchange, hydrolysis is not (Morrison et al., 1999).  The highest expression of Rad51 in 

proliferating cells is observed in S or S/G2 phase of the cell cycle, which correlates with high 

levels of HR observed in these stages of cell cycle (Yamamoto et al., 1996; Chen et al., 1997; 

Lundin et al., 2003).  The essential role of Rad51 in HR is supported by the Rad51 gene 

knockout in mice which leads to early embryonic lethality (Tsuzuki et al., 1996), and by 

Rad51-deficident DT40 chicken cells that accumulate chromosome breaks and aberrations, 

resulting in cell lethality (Sonoda et al., 1998). 

	

2.1.1 Homologous Recombination 

         There are many endogenous and exogenous sources of DNA damage including reactive 

oxygen species (ROS), environmental exposure to irradiation, chemical agents, and ultraviolet 

light (UV).  It has been estimated that a single human cell can suffer up to tens of thousands of 

DNA lesions per day (Jackson and Bartek, 2009).  Among all types of DNA lesions, double-

stranded break (DSB) is the most lethal as cells cannot circumvent even one unpaired DSB 
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(Jackson and Bartek, 2009).  Fortunately, cells have evolved several mechanisms to repair 

DNA lesions. 

         Homologous recombination (HR) is an important mechanism for the repair of damaged 

chromosomes, particularly in DNA damage involving DSB (Moynahan and Jasin, 2010).  At 

least two distinct HR pathways are accountable for DSB repair: double-strand break repair 

(DSBR) pathway (also referred to as double Holliday junction model) (see Figure 2.1A) and 

synthesis-dependent, strand-annealing (SDSA) pathway (see Figure 2.1B) (Sung and Klein, 

2006).  DSBR model was discovered in yeast, where it was shown that linear DNA containing 

ends that were identical in sequence to sections of a yeast chromosome could be specifically 

incorporated into the yeast chromosome at the site of identical sequence (Orr-Weaver et al., 

1981; Orr-Weaver and Szostak, 1983).  Though different modifications may be adapted from its 

original conception, key features of this model are (see Figure 2.1A): (a) introduction of DSBs, 

(b) nucleolytic resection of DSBs to produce 3’-overhangs of ssDNA on either side, (c) 

formation of a recombinase filament on the ssDNA overhangs, (d) formation of a displacement 

loop (D-loop) following strand invasion into a homologous DNA, (e) extension of the 3’-

overhangs to capture the corresponding end of DSBs, (f) generation of a DNA joint molecule 

harboring two Holliday junctions (HJ)s, and (g) resolution of the HJs to form non-crossover or 

crossover products.  Unlike DSBR, which accounts for many observations found in meiotic 

recombination that are frequently associated with crossovers, SDSA explains mitotic DSBs 

repair, which is most frequently not associated with crossovers (Strathern et al., 1982; Hastings, 

1988; Nassif et al., 1994; Ferguson and Holloman, 1996).  The SDSA pathway is similar to the 

DSBR pathway in initial pathway reactions, including steps (a), (b), (c), and (d) in DSBR.  In 

SDSA, however, a migrating D-loop never extends to capture the corresponding DSB end.  

Instead, the invading strand is displaced and re-anneals with the ssDNA tail on the other DSB 

end.  Therefore, no HJs are produced in the SDSA pathway and consequentially only non-

crossover products are made. 

         Not all DSBs associated with HR involve two DNA ends as described in DSBR and 

SDSA modes.  A third pathway called break-induced replication (BIR) is more often evoked 

when there is only one DNA end (see Figure 2.1C) (Malkova et al., 1996).  The initiation of 

BIR is similar to that of DSBR pathway in steps (a), (b), (c), and (d).  However, the single-

stranded tail invades either a homologous DNA sequence present in a sister chromatid or a 
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repeated sequence on a different chromosome.  When the sister chromatid is used in BIR, the 

copy is identical and DNA is accurately repaired.  When a repeated sequence on a non-

homologous chromosome is used in BIR, the result is a nonreciprocal recombination.  With the 

exception of some forms of BIR, all of the above HR pathways require a recombinase.  

However, DSBs can also be repaired using non-HR pathways that do not involve a 

recombinase.  One of these pathways is the single-stranded annealing (SSA) pathway, which 

does not require recombinase but still requires other HR factors to mediate annealing (see 

Figure 2.1D).  In SSA, resected ends are closely flanked by direct repeats and can be annealed 

and ligated (Lin et al., 1984).  Protruding single-strand tails are then removed, resulting in 

deletion of one repeat and sequences between repeats.  Another recombinase-independent 

pathway for DSB repair is non-homologous end joining (NHEJ), which ligates DSBs ends 

directly without requiring any homology between joining sequences (see Figure 2.1E) (Krogh 

and Symington, 2004). 
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Figure 2.1 Pathways for Repairing DNA Double-strand Breaks  
Double-strand breaks (DSBs) can be either repaired using Rad51-dependent pathways via 
homologous recombination (HR), which include double-strand break repair (DSBR), synthesis-
dependent strand annealing (SDSA), and break-induced replication (BIR) or Rad51-
independent pathways, which include single-stranded annealing (SSA) and non-homologous 
end joining (NHEJ).  All pathways are initiated by nucleolytic resection of a DSB to produces 
3’-overhangs.  For Rad51-dependent pathways, a displacement loop (D-loop) is formed after 
these 3’-overhangs invade into a homologous sequence followed by DNA synthesis at the 
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invading end.  In the DSBR pathway (A), the extension of the 3’-overhangs captures the second 
end of DSBs to form an intermediate with two Holliday junctions (HJs).  Resolution of HJs can 
produce non-crossover (green arrow heads at both HJs) or crossover product (orange arrow 
heads one HJ and green heads at the other HJ).  In the SDSA pathway (B), strand displacement 
occurs followed by annealing of the extended single-strand end to the ssDNA on the other 
break end, and by gap-filling DNA synthesis and ligation.  In the BIR pathway (C), the reaction 
proceeds in the absence of the second DNA end.  Both lagging and leading strand synthesis 
occur in the D-loop intermediate.  For Rad51-independent pathways, no homologous sequence 
is involved.  In the SSA pathway (D), direct repeats flanking the resected-ends anneal with each 
other and the protruding single-strand tails are removed.  In the NHEJ pathway (E), DSBs ends 
are directly ligated.  Dashed lines indicate the newly synthesized DNA.  Yellow solid line 
indicates repeat sequence.  Figure is adapted from (Krejci et al., 2012) 
 

 2.1.2 Human Rad51 and Cancers 

         Accumulation of DNA damage is believed to eventually give rise to cancer (Hanahan and 

Weinberg, 2000), which is evidenced by the fact that DSBs and resultant genomic 

rearrangements are commonly found in cancer cells (Aplan, 2006).  DNA repair, particularly 

HR, is essential for cells to maintain genomic integrity in response to various DNA damage 

caused by different sources.  Although HR is considered to be an error-free rearrangement for 

DSB repair and for the maintenance of genome integrity, aberrant or dysregulated HR can 

cause genome rearrangement such as chromosomal translocation, deletions or amplification, 

which are strongly linked to carcinogenesis in humans (Richardson et al., 1998; Richardson and 

Jasin, 2000; Bishop and Schiestl, 2003).   Consistent with the importance of recombinase in the 

HR pathway, it is not surprising that altered expression of Rad51 is strongly correlated with 

genesis or progression of tumors (Kato et al., 2000; Raderschall et al., 2002; Blasiak et al., 

2003).  Decreased levels of Rad51 have been observed in prostate cancer cells (Wang et al., 

2005), 30% of breast cancer cases (Yoshikawa et al., 2000), and are associated with an 

increased risk of multiple myeloma (Munshi et al., 2004).  More importantly, increased Rad51 

expression can lead to pathological recombination events between non-homologous or 

repetitive sequences, resulting in detrimental genome rearrangements (Lengauer et al., 1998) 

(Figure 2.2), which is associated with treatment resistance (Short et al., 2011; Kiyohara et al., 

2012), tumor relapse, and worse overall patient survival rate (Barbano et al., 2011).  Multiple 

immortalized and tumor cell lines show increased expression levels of Rad51 (Xia et al., 1997; 

Raderschall et al., 2002).  However, elevated Rad51 expression is not due to gene 

amplification, but rather from increased transcription of the RAD51 gene.  Rad51 promoter 
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activity, mRNA, and protein levels are increased an average of 840-, 4-, and 6-fold, 

respectively, compared to normal counterparts (Hine CM, 2008).  Regulating the diphtheria 

toxin A with the Rad51 promoter is severely toxic to cancer cells while having minimal effect 

on normal cells, indicating Rad51 promoter hyperactivity is specific to cancer cells (Hine et al., 

2014).  Several driver oncogenes activate the expression of Rad51 promoter gene in a gradual, 

step-wise manner as cells accumulate mutations and progress towards malignancy (Hine et al., 

2014).  The ensuing overexpression of Rad51 causes illegitimate and hyper-recombination that 

may advance normal cells towards neoplastic transformation or further lead to cancer 

progression and metastasis (Nagathihalli and Nagaraju, 2011).  A panel of cancers have been 

reported to exhibit elevated levels of Rad51 expression, including CML, breast cancer (Maacke, 

Opitz, et al., 2000), pancreatic cancer (Maacke, Jost, et al., 2000), head and neck (Connell et 

al., 2006), invasive breast cancer (Maacke et al., 2002), and non-small cell lung cancer (Qiao et 

al., 2005).  Elevated Rad51 expression and resultant enhanced HR rates correlate with high 

proliferation rate and radio- and chemo-resistance in cancer cells.  On the contrary, in vitro and 

in vivo studies show that depletion of Rad51 by antisense RNAs attenuated radiotherapy 

resistance (Taki et al., 1996; Ohnishi et al., 1998) and intensified killing of cancer HeLa cells 

by cisplatin (Ito et al., 2005).  As such, being able to restore Rad51 to normal levels may 

sensitize cancer cells to DNA damaging treatments. 

         Aberrant levels of Rad51 alone may not be sufficient to initiate tumorigenesis.  One study 

examined the potential for Rad51 to promote tumorigenesis at the earliest steps following 

injection of Rad51-transfected cells into athymic nude mice.  It showed that the rate of tumor 

formation and size of tumor recovered 20 days post-injection is not elevated, indicating that 

overexpression of Rad51 alone in cells is not sufficient to progress normal cells to cancer cells 

in vivo (Bertrand et al., 2003).  It was recently found that Rad51 acts as a transcriptional co-

factor to regulate metastatic gene expression in concert with c/EBPβ (Wiegmans et al., 2014).  

Elevated expression of Rad51 promotes c/EBPβ transcription and upregulates subsequent 

metastatic genes that control cell mobility, proliferation, adhesion, and extra-cellular matrix.  

Therefore, cancer progression provoked by Rad51 can occur by two distinct mechanisms: (i) 

direct upregulation of pro-metastatic expression or (ii) aberrant HR pathway activation 

(Wiegmans et al., 2014).  Taken together, Rad51 is shown to be a clinically relevant biomarker 
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and an important target for the development of inhibitors to promote the efficiency of 

chemotherapy. 

 

 
Figure 2.2 Effects of Rad51 Expression on Genome Stability 
(A) In response to DSBs generated either from endogenous and exogenous sources or drug 
treatment, physiological expression of Rad51 maintains the normal activity of HR for DSB 
repair, maintaining genome stability.  (B) Overexpression of Rad51 leads to hyperactivity of 
HR for DSB repair, which in turn results in genome instability.  The loss of genome stability 
could advance normal cells towards neoplastic transformation ending up with tumorigenesis 
and along with selective pressure drive the accumulation of gene mutations and Rad51 
expression. 
 

2.1.3 Human Rad51 as a Therapeutic Target 

         Different molecular and cellular features between cancer and normal tissue are usually the 

basis for cancer therapy.  Most cancer cells proliferate faster than their normal counterparts, 

making the cell cycle a potential therapeutic target.  Efforts to inhibit the cell cycle have 

targeted mitotic spindle assembly in cell division, preventing equal division of DNA to 

progeny. Therapeutic antibodies and hormonal manipulation strategies have also been used to 

block growth signaling pathways intended for cell cycle initiation (Dickson and Schwartz, 

2009).  The most common means of targeting cell cycle is to introduce DNA damage into 

rapidly dividing cells using ionizing radiation (IR) and chemotherapy.  DNA damage causes 

cell-cycle arrest and cell death directly or following DNA replication during the S phase of the 
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cell cycle.  Because differentiated somatic cells of adult mammals generally replicate 

infrequently or not at all, DNA-damaging treatments are more toxic to cancer cells.  Moreover, 

cancer cells are often addicted to a single DNA repair pathway whereas normal cells often 

possess two or more pathways.  From a cancer risk perspective, an innate deficiency in DNA 

repair is undesirable, however, it can be exploited with chemotherapy to create synthetic 

lethality. 

         Synthetic lethality exists when a cell bearing mutations in two genes cannot survive 

whereas a mutation in only one of these two genes is not lethal to the cell (Jalal et al., 2011).  

For example, DNA repair enzyme poly(ADP-ribose) polymerase 1 (PARP-1) and the BRCA 

(Breast Cancer Associated) proteins are both important players for cells to repair DSBs through 

HR (Farmer et al., 2005; Ashworth, 2008).  Inhibition of either (PARP-1) or BRCA cannot kill 

the cell, but the impairment of both is lethal to the cell.  In fact, BRCA-deficient breast cancer 

cells exhibit extreme sensitivity to the inhibition of the PARP-1 (Farmer et al., 2005; Ashworth, 

2008).  One study showed that the reason for PARP inhibition sensitivity is implicated with HR 

deficiency rather than a BRCA deficiency (McCabe et al., 2006), which provides a sight to 

explore PARP inhibition in a wider range of tumors bearing HR deficiency.  On the other hand, 

finding new strategies to inactivate specific proteins of the HR pathway in combination with 

DNA damaging agents can be an alternative therapeutic approach for clinical anti-cancer 

treatments.  Because Rad51 plays an indispensable role in HR, approaches to target Rad51 

expression in tumor cells have gained much interest. 

         Inhibition of Rad51 can be achieved by down regulating Rad51 expression, impairing the 

recombinase activity, or interfering with interactions between Rad51 and its partners.  

Depletion of hRad51 by siRNA has been successfully shown to attenuate radiotherapy 

resistance in vitro and in vivo for a variety of tumor cells (Taki et al., 1996; Ohnishi et al., 

1998; Ito et al., 2005; Kiyohara et al., 2012).  However, it is not without its limitations such as 

off-target effects, side effects, and delivery difficulties.  Microarray gene analysis showed that 

the expression of dozens of non-targeted genes is modestly altered by siRNA transfection into 

cells (Jackson et al., 2003).  Side effects result from activation of the immune system in 

response to the exogenous RNA molecules or the delivery vehicle (Judge et al., 2005).  

Difficulties associated with delivery include cellular membrane transport and accumulation of 

systemically delivered siRNAs in the liver (Jackson and Linsley, 2010). 
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         Another indirect approach is targeting histone deacetylases (HDACs), which are a class of 

epigenetic regulators that control chromosome packing and transcription silencing.  HDACs 

inhibition leads to chromatin reorganization, resulting in changes in expression profiles of cells.  

Expression of HR proteins, including Rad51, is repressed upon HDACs inhibition (Kachhap et 

al., 2010).  Several HDAC inhibitors (HDACi) have been shown to downregulate Rad51 

(Kachhap et al., 2010; Xie et al., 2013) and exhibit synergistic effect in combination with 

PARPi and radiotherapy (Adimoolam et al., 2007).  However, the lack of specificity in 

epigenetic targeting limits clinical success for HDACi-mediated reduction of Rad51.  In 

addition, a study conducted by Du et al., found that Rad51 foci formation is also inhibited by 

methotrexate, a molecule acting as an inhibitor of folic acid metabolism that is clinically used 

in the treatment of acute lymphoblastic leukemia and osteosarcoma cancers (Du et al., 2012).  

Despite potential clinical application in combination therapies that induce DNA damage, the 

effect of methotrexate on HR requires more investigation in a variety of Rad51 overexpressing 

cancer cell lines. 

         Rad51 assembles on both ssDNA and dsDNA to form similar filaments for HR reactions 

(Ristic et al., 2005).  As a result of the affinity of Rad51 for DNA, Martinez et al., explored 

whether Rad51 could be directly inhibited by DNA aptamers, which consist of single-stranded 

oligonucleotides capable of entering tissues and binding a specific target (Martinez et al., 

2010).  In this study, they isolated three specific DNA aptamers against Rad51 (see Table 1) 

using Systematic Evolution of Ligands by Exponential enrichment.  These aptamers inhibited 

DNA strand exchange activity and ATP/Rad51/ssDNA filaments formation, however, more 

studies are required to investigate the therapeutic potential of these aptamers with respect to 

their effects on Rad51 focus formation, HR rate, and cell survival after DNA damaging 

treatment. 

         Small molecule modulators of Rad51 remain the most conventional and effective 

approach.  These molecules act directly on the catalytic steps of Rad51 recombinase activity, 

including interference of Rad51 heptamer formation and ATP/Rad51/ssDNA filament 

formation (Arkin and Wells, 2004).  The most extensively studied small molecule inhibitors of 

Rad51 are summarized in Table 2.1.  Among them is a chemical compound 4’-

Diisothiocyanostilbene-2, 2’-disulfonic acid (DIDS) that directly interacts with Rad51 close to 

the DNA-binding site thereby competing with DNA for Rad51 binding (Ishida et al., 2009).  
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DIDS binds to Rad51 with KD of 2 µM and the IC50 of DIDS on strand exchange activity is in 

1-10 µM ranges when Rad51 is 6 µM (Ishida et al., 2009).  However, the effect of DIDS on the 

HR and DNA repair was not evaluated in human cells because DIDS exhibits high level 

toxicity on cells due to its ability to inhibit ionic channels and membrane transporters (Wulff, 

2008). 

        Another Rad51 inhibitor compound 1 (RI-1) was isolated by performing high-throughput 

screening of a 10,000-compound pool (Chembridge DIVERSetTM) using fluorescence 

polarization to assay nucleoprotein filament formation (Budke et al., 2012).  The IC50 of RI-1 

inhibition of ssDNA binding is 5-30 µM with corresponding Rad51 in 0.2-0.4 µM ranges 

(Budke et al., 2012).  Even though consistent reduction in IR and mitomycin C (MMC) induced 

Rad51 foci formation is observed following RI-1 treatment, RI-1 may have limited therapeutic 

applications because RI-1 exhibits off-target effects and instability in biological systems 

(Budke et al., 2012).  Takaku et al., identified a compound halenaquinone that can impair D-

loop formation and homologous pairing from 160 crude extract fractions of marine sponges 

(Takaku et al., 2011).  Interestingly, halenaquinone only inhibits strand exchange of 

nucleoprotein filament but not the formation of filament, which is because halenaquinone 

blocks Rad51 binding to dsDNA but not ssDNA.  However, halenaquinone were reported to 

associate with toxic effects on cells, limiting its therapeutic applications (Budke et al., 2013). 

         Huang et al., identified a small molecule B02 that inhibited Rad51 DNA strand exchange 

activity by screening >20,000 compounds from the NIH Small Molecule Repository (Huang et 

al., 2011).  B02 binds directly to Rad51 with a KD of 5.6 µM and inhibits human Rad51 (1 µM) 

in a D-loop assay with an IC50 of 27.4 µM.  B02 blocks the binding of ssDNA to Rad51 thereby 

disrupting the nucleoprotein filament formation, which subsequently inhibits ATP hydrolysis 

by Rad51 (Huang et al., 2012).  In mouse embryonic fibroblasts, a 17- and 5-fold increase in 

cell sensitivity to cross-linking agents cisplatin and MMC, respectively is observed following 

B02 treatment.  However, inhibition of Rad51 by B02 exhibits little effect on the survival of 

MEF cells with DNA damage induced by MMS (Huang et al., 2012). 

         Using yeast two-hybrid system, Zhe et al., isolated a small molecule IBR2, which mimics 

the interaction between Rad51 and BRC repeats (conserved domains of BRCA2) (Zhu et al., 

2013).  Because BRC binding occupies the Rad51 hydrophobic pocket responsible for Rad51 

multimerization, IBR2 binding inhibits HR by preventing Rad51 multimerization following 
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filament formation.  Unexpectedly, IBR2 also increases proteasome-mediated degradation of 

Rad51 in cells.  IBR2 was shown effectively inhibiting cell growth in a panel of cell lines (Zhu 

et al., 2013).  

           Most small molecule Rad51 inhibitors are chemotherapeutic agents isolated by screening 

large collections of commercialized chemical compounds for their inhibitory effects on Rad51 

recombinase activity.  However, many of these small molecules have limitations such as non-

specificity and high cellular toxicity, thereby causing significant side effects on cancer patients.  

Therefore, there is a need to develop more potent, specific, and less toxic anti-Rad51 agents. 

Because antibodies are highly specific for their targets both in vitro and in vivo, antibodies and 

their fragments have gained a lot interest for screening anti-Rad51 agents. 

2.2 Phage Display 

        Antibody phage display is a library selection technology for isolating “synthetic” 

antibodies without using animals (Smith, 1985).  Being the first artificial antibody selection 

platform, phage display has had a major impact on immunology, cell biology, pharmacology, 

and the development of therapeutic antibodies (Bradbury and Marks, 2004; Hoogenboom, 

2005).  In contrast to traditional methods of antibody generation, such as mouse hybridoma 

techniques (Watters et al., 1997), antibody phage display can be readily modified to manipulate 

selection conditions and stringencies (Winter and Milstein, 1991; Watters et al., 1997).  In 

addition, antibody phage display obviates the disadvantage of hybridoma antibodies that may 

cause human anti-mouse antibody reaction (Courtenay-Luck et al., 1986; Tjandra et al., 1990).  

Both the hybridoma system and antibody phage display provide a means of selecting potential 

antibodies against specific antigens, but the latter one can be performed in a high throughout 

manner.  Phage display allows antibody specificities to be obtained that would have otherwise 

been eliminated in animal expression system because of tolerance mechanisms (Roovers et al., 

2001).  Further, phage display technique is inexpensive, simple, rapid to set up, and accessible 

to most molecular biology laboratories. 
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Table 2.1 Small Molecule Inhibitors of Rad51 

Compound Kd/IC50 
values Mechanism Effects Limitations Reference 

DIDS 

Kd=2 µM; 
IC50=1-10 
µM/(6 µM 

Rad51) 

Blocks Rad51 
binding to ssDNA 

↓Stand 
exchange 
reactions 

High cellular 
toxicity 

(Ishida et 
al., 2009) 

RI-1 
IC50=5-30 
µM/(0.2-0.4 
µM Rad51) 

Inhibits Rad51 
polymerization 

↓IR and MMC 
induced Rad51 
foci formation 

Irreversibly 
binding to 

Rad51; long 
pre-treatment 

time (24h) 

(Budke et 
al., 2012) 

Halenaquinone IC50=60 µM 
Blocks Rad51-ssNDA 

filament binding to 
dsDNA 

↓Exchange of 
nucleoprotein 

filament  
↓IR induced 
Rad51 foci 
formation 

High cellular 
toxicity because 

of Michael 
acceptor 
activity 

(Takaku 
et al., 
2011) 

B02 
IC50=27.4 
µM/(1 µM 

Rad51) 

Disrupts Rad51 
binding to DNA 

↓Rad51 DNA 
strand exchange 

activity 
↓IR and 
cisplatin 

induced Rad51 
foci formation 
↑Sensitivity to 

MMC and 
cisplatin 

 

Long pre-
treatment time 

required to 
sensitize cells 

(Huang et 
al., 2011) 

IBR2 IC50=10 µM 

Disrupts Rad51 
binding to BRC2, 
prevents Rad51 

multimerisation and 
filament formation; 

Increases proteasome-
mediated Rad51 

degradation 

↓IR induced 
Rad51 foci 
formation; 
↓Cell 

proliferation 
and tumor 
growth rate 
↑Sensitivity to 

imatinib 

Long incubation 
time with IBR2 
required (32h) 

(Zhu et 
al., 2013) 

Non-small 
molecule Rad51 

inhibitor 
DNA aptamers 

IC50: 
A13=20 nM 
A30=22 nM 
A79=25 nM 

Promotes dissociation 
of 

ATP/Rad51/ssDNA 
complex 

↓Rad51 DNA 
strand exchange 

activity 

Therapeutic 
potential needs 

to be 
investigated 

(Martinez 
et al., 
2010) 
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        Antibody phage display has provided approximately 30% of all human antibodies 

currently in clinical development.  The clinically most advanced human antibody derived from 

phage display is the D2E7 anti-TNFα IgG1 antibody, adalimumab (den Broeder et al., 2002).  

TNFα (tumor necrosis factor alpha) is a proinflammatory mediator implicated in autoimmune 

conditions.  Adalimumab has been approved for the treatment of several conditions including 

rheumatoid arthritis, ankylosing spondylitis, chronic plaque psoriasis, and Crohn’s disease, 

which was the first fully human antibody approved by the FDA in 2002.  Another example of 

an antibody isolated by phage display against a cytokine target is the B-lymphocyte 

stimulator(Blys) blocking antibody, belimumab (Edwards et al., 2003).  Blys is a potent 

cytokine for B-cell proliferation and differentiation.  Belimumab shows specificity for secreted 

Blys and was affinity matured and shown to be a potent inhibitor of Blys signaling (Baker et al., 

2003).  The FDA has approved this antibody in March 2011 for use in treatment of systemic 

lupus erythematosus.  A number of other antibodies against soluble ligands have been 

generated by phage display (Kabir et al., 2009; Lloyd et al., 2009; Moreland et al., 2012). 

         Phage-derived antibodies have been selected that show high specificity for a chosen 

protein target.  For example, selections have been carried out to identify antibodies with the 

ability to discriminate between chicken and quail lysozyme, which differ by only one surface 

amino acid (Ayriss et al., 2007).  Another example shows antibodies have been generated that 

distinguish between the SH2 domains of ABL1 and ABL2 tyrosine kinase (Mersmann et al., 

2010; Pershad et al., 2010), which differ in sequence by only 11%.  To generate antibodies with 

desired specificity in such studies, negative selection steps have been incorporated into phage 

display selections.  Antibody phages binding to unrelated target are eliminated by preincubating 

the antibody phage library with the unrelated target prior to each round of selection against the 

expected target. 

         The pace of phage display development is largely encumbered by difficulties in producing 

antibodies in sufficient quantity and quality.  Establishment of faster expression systems is 

needed to fully exploit the use of antibody phage display technology.  Because E. coli enables 

rapid growth of expression cultures and permits efficient mutagenesis and DNA manipulation, 

antibody expression in bacterial host is of great interest.  Despite the challenges faced in the 

development of efficient expression protocols in bacteria, researchers now have successfully 

developed efficient systems for displaying antigen-binding sites in antigen-binding fragment 
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(Fab) domain format (Schenone et al., 2010; Cortes et al., 2012).   Fabs retain the antigen-

binding specificity of IgG molecule necessary for effector functions (Figure 2.3).  The 

development of methods for expressing Fabs in E. coli is a major progress in antibody research 

since it provides a way of purifying the antigen-binding fragment of antibodies in microbial 

systems (Better et al., 1988), providing benefits regarding large scale and ease of manufacture 

(Humphreys, 2003).  It has been reported that high-affinity Fab antibodies can be generated 

from Fab libraries with completely synthetic complementarity-determining regions (CDRs) 

displayed on a single scaffold (Lee et al., 2004). 

 
Figure 2.3 Schematic View of IgG Molecule 
IgG molecule has a four-chain monomeric structure composed of two identical light chains and 
two identical heavy chains.  The light chain contains one variable domain (VL) and one 
constant domain (CL).  The heavy chain contains one variable domain (VH) and three constant 
domains (CH1, CH2, and CH3).  The hinge connects the region between the CH1 and CH2.  
IgG molecule can be divided into two functional portions: antigen binding fragment (Fab), 
which is the antigen-binding site, and crystallizable fragment (Fc).  N, N-terminus; C, C-
terminus.	
 
 



	 17 

         The development of phage display technology has made it possible to produce large in 

vitro antibody fragment libraries (Nelson and Sidhu; Marks et al., 1991; Barbas et al., 1992; 

Griffiths et al., 1993; Nissim et al., 1994; Barbas and Burton, 1996; Knappik et al., 2000; 

Frisch et al., 2003; Fellouse et al., 2004; Jespers et al., 2004; Lee et al., 2004; Bond et al., 

2005).  The design of these synthetic libraries is based on the knowledge of CDRs contained in 

Fabs, which determine the antigen-binding site (Hoogenboom and Winter, 1992; Winter, 1998).  

Introduction of diversity into only a subset of positions within four of the six CDRs (one is 

variable region of an antibody light chain VL3; three are variable regions of heavy chain VH1, 

VH2 and VH3) can generate high-affinity antibodies (Birtalan et al., 2008).  In 1991, the Scripps 

group reported the first display and selection of human antibodies on phage (Barbas et al., 

1991).  This initial study described the rapid isolation of a human antibody Fab that bound 

tetanus toxin and the method was then extended to rapidly clone human anti-HIV-1 antibodies 

for vaccine design and therapy (Barbas et al., 1992; Barbas et al., 1993; Barbas, 1995). 

         The central principle behind phage display relies on the expression of antibody fragments 

on the surface of phage particles (Willats, 2002) (Figure 2.4).  This is accomplished by fusing 

DNA that encodes antibody fragments into filamentous phage coat protein genes.  In this case, 

a physical link between the phenotype and genotype of the expressed protein fragments is 

established.  Specific phage-displayed antibodies can be selectively enriched from library pools 

by exposing phage particles to an antigen immobilized on a solid support (e.g. microtiter plates, 

or magnetic beads) while weakly-or non-binding phage particles are removed by washing.  

However, the selection often yields non-specific phage binders or binders that interact with the 

solid support rather than the target, making it necessary for the introduction of negative 

selection steps (Menendez and Scott, 2005).  Ultimately, the sequence of single phage 

populations with desired specificities can be deduced by sequencing the encapsulated DNA 

within phage particles. 
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Figure 2.4 Phage Display Selection 
(a) The phage library displaying variant peptides or proteins are exposed to target molecules 
and phages with appropriate specificity are captured.  (b) Non-binding phage are washed off – 
although some non-specific binding may also occur.  (c) Bound phages are eluted by conditions 
that disrupt the interaction between the displayed peptide or protein and the target.  (d) Eluted 
phage are infected into host bacterial cells and thereby amplified.  (e) This amplified phage 
population is in effect a secondary library that is greatly enriched in phage displaying peptides 
or proteins that bind to the target.  (f) After several (usually three to five) rounds of selection 
monoclonal phage populations may be selected and analyzed individually. 
	

2.2.1 Intracellular Antibody Delivery 

        Phage display is a powerful technology to produce antibodies specific for extracellular or 

cell-surface targets.  However, if an intracellular target like hRad51 is of interest, then the 

antibody must across the cell membrane.  In the late 1970s, investigators found microinjecting 

purified antibody into individual cells could block the function of intracellular target molecules 

(Antman and Livingston, 1980).  However, examples published since the first report of this 

method are scarce, mainly is because of the very tedious process.  For intracellular antibody to 

become a broadly applicable technology, it requires a means of expressing or introducing 

antibodies into large cell populations or in animals.  Some success was made in the early 

attempts to express antibodies in the cytosol of cells (Biocca et al., 1990; Carlson, 1993), but in 

general such antibodies or antibody fragments were found malfunctioning because they either 

failed to express or did not bind to their target in the context of intracellular environment. 

a 

b 

c 

d 

e 

f 
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         In nature, antibodies are produced within B-cells, secreted into the extracellular space to 

be part of the body’s defense system, and hence are capable of surviving in various harsh 

environments.  Their resistance to denaturation is dependent on a rigid antiparallel β sheet core 

that is stabilized by disulfide bridges.  However, when antibody fragments are expressed in 

cytosol, that is normally a reducing environment, this prevents the formation of disulfide 

bridges, which, in turn, compromises the structural integrity and function of antibodies.  To 

overcome the problem of incorrect folding and reduced stability of antibodies expressed in the 

reducing environment, both new ways of designing antibody libraries and new methods of 

selecting from those libraries have been developed as outlined in the review by Stocks (Stocks, 

2005). 

         Therefore, introducing antibodies into the cytosol from outside the cell would be highly 

desirable to meet the increasing demand of antibody fragments delivery.  First, It would enable 

use of the increasing number of antibodies that target intracellular targets.  Furthermore, 

intracellular delivery of antibodies to live cells may offer a convenient way to replace siRNA or 

gene transfections.  However, efficient application of antibody fragments is limited by their 

inefficient delivery to the target sites.  One major intracellular barrier is the cell membrane, 

which represents a non-permissive barrier for hydrophilic macromolecules.  Therefore, delivery 

of macromolecules generally depends on endocytosis, which is the most common 

internalization pathway.  After uptake, the macromolecules are still considered “extracellular” 

because they are trapped in endosomes where they are most likely destined for lysosomal 

degradation.  In order to elicit effect, both cellular uptake and endosomal release have to occur. 

         One approach used in recent years to overcome the cell membrane barrier is to link the 

cargo macromolecule to one of the protein transduction domains (PTDs), which are a class of 

short peptide sequences that are capable of entering cells efficiently, either alone or lined to 

bulky cargos (Mae and Langel, 2006).  The application of PTDs emerged from the discovery 

that the human immunodeficiency virus transactivator of transcription (HIV-TAT) protein was 

able to penetrate cells (Prochiantz, 2000).  The most widely studied and used PTDs are a class 

of arginine-rich PTDs, which includes HIV1-TAT-PTD, nona-arginine and Antennapedia-PTD 

(Brooks et al., 2005; Futaki, 2005; Torchilin, 2008).  Although the exact internalization 

mechanism for PTDs is not known, it is widely accepted that PTDs are primarily taken up by 
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endocytosis (Richard et al., 2003; Fuchs and Raines, 2004; Futaki, 2006; Duchardt et al., 2007).  

The positive charge of the oligoarginine in PTDs may help to concentrate the peptide on the 

cell surface by electrostatic interactions with negatively charged lipids in the plasma membrane 

(Gump et al., 2010).  After endocytic uptake, the internalized PTDs (either alone or linked to 

cargos) should escape endosome/lysosome degradation, which is believed to be a bottleneck in 

the efficient intracellular delivery of macromolecules.  

         Some models have been proposed for the mode of endosomal escape for free PTDs.  One 

model suggests that oligoarginine bound to membranes and rigidified the local area, resulting in 

leakiness and rupture of the membrane (Hitz et al., 2006).  In agreement with this, PTDs are 

reported in another model to form a nonpolar ion pair with negatively charged lipids and 

partition this ion pair to cell membranes (Rothbard et al., 2004).  Some other factors are 

stressed, including the importance of the pH gradient across the endosomal membrane 

(Bjorklund et al., 2006) and the need for a minimum threshold concentration of PTDs for 

translocation across membranes (Magzoub et al., 2005). 

         With our increasing understanding of PTDs mechanism of action, their potential 

application in various diseases has been exploited.  In 2005, two groups of researchers 

independently claimed to have created cell-permeable antibodies (transbody) by linking an PTD 

to an antibody (Heng and Cao, 2005; Muller et al., 2005).  Afterwards, different antibody 

formats have been linked to PTDs for intracellular delivery as shown in Table 2.3.  Tetanus in 

chromaffin cells and influenz a A viral activity were neutralized by antibodies or antibody 

fragments fused to PTDs (Stein et al., 1999; Poungpair et al., 2010).  Transbodies have also 

been used to promote or suppress apoptosis (Cohen et al., 1998; Zhao et al., 2003).  Further 

application include inhibition of cell cycle progression by an anti-cyclin D1 transbody (Chen 

and Erlanger, 2006).  Tumor cell retention of a Fab fragment is enhanced by conjugating to a 

HIV1 TAT protein-derived peptide (Anderson et al., 1993). 
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Table 2.2 Different Antibody Formats Linked to PTDs for Intracellular Delivery 
Construct PTD Cell lines Reference 

scFv HIV1 TAT (44-57) HEK293 mice 
(injection) 

(Niesner et al., 
2002) 

scFv MTS 293T, BT-474 and 
PyVmT cells (Shin et al., 2005) 

Fab HIV1 TAT (37-62) A431 breast 
carcinoma cells 

(Anderson et al., 
1993) 

Fab 
HIV1 REV peptide 

(positions 34–50) (TRQAR 
RNRRR RWRER QRGC) 

HeLa, rats (Kameyama et al., 
2006) 

Whole IgG R68 

HeLa cells 
MCF-7 cells 

SK-BR-3 cells 
Murine lung 

enthothelial line 

(Chen and Erlanger, 
2002) 

Whole IgG KGEGAAVLLPVLLAAPG 
(“MTS“) NIH 3T3 cells (Zhao et al., 2001) 

PTD, protein transduction domain; scFv, single chain fragment variable; Fab, fragment antigen-
binding; MTS, membrane transport sequence. 
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Chapter 3 Hypothesis and Aims 

3.1   Hypothesis 

         We hypothesize that specific antibody fragments against hRad51 can be generated using 

phage display technology.  These antibody fragments can be used as potential therapeutic 

agents to specifically inhibit the aberrant activity of hRad51.  By linking them to a protein 

transduction domain, these antibody fragments can be delivered across cell membrane to 

sensitize cancer cells to chemotherapy. 

3.2   Aims 

1. To isolate Fabs against hRad51 from Fab phage display library. 

 

2. To characterize anti-hRad51 Fab activities, including binding affinity, binding 

specificity, DNA-binding, and ATPase inhibitory activity. 

 

3. To develop intracellular anti-hRad51 Fab and test its ability to sensitize cells to DNA 

damaging agent MMS. 
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Chapter 4 Materials and Methods 

4.1 General Information 

4.1.1 Reagents and Suppliers 

Table 4.1 Reagents 
Reagent Supplier 
PCR Purification Kit Thermo Scientific 
Plasmid Miniprep Kit Thermo Scientific 
QIAPrep Spin M13 Kit Qiagen 
BCA Protein Assay Kit Thermo Scientific 
Oligonucleotides Integrated DNA Technologies 
Nitrocellulose Bio-Rad 
Odyssey Blocking Buffer LI-COR Biosciences 
Fast SYBR® Green Master Mix Thermo Scientific 
Gibson Assembly® Master Mix New England Biolabs 
Nunc MaxiSorp® Flat-Bottom 96-Well 
Plate 

Thermo Scientific 

Tissue Culture Flat-Bottom 96-, 48- & 24-
Well Microplates 

Corning 

Ultra Low Cell Culture Flask, 25 & 75cm2 Corning 
Pierce Zeba® Desalting Spin Columns Thermo Scientific 
IRDye® 800CW Protein Labeling Kit LI-COR Biosciences 
Dip and ReadTM Biosensors ForteBio 
Lipofectamine 2000® Regent Invitrogen Life Technologies 
MMS Sigma-Aldrich 
DMSO Fisher Scientific 
FBS Invitrogen Life Technologies 
DMEM Invitrogen Life Technologies 
Trypan Blue, 0.4% Invitrogen Life Technologies 
 
 
Table 4.2 Enzymes 
Enzyme Supplier 
XhoI Thermo Scientific 
SacI Thermo Scientific 
HotStarTaq® DNA Polymerase Qiagen 
Phusion High-Fidelity DNA Polymerase Thermo Scientific 
T4 DNA Ligase New England Biolabs 
T4 Polynucleotide Kinase (PNK) New England Biolabs 
T7 DNA Polymerase New England Biolabs 
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4.1.2 Strains 

 
Table 4.3 E. coli Strains and Genotypes 
Strain Genotype Reference 
XL1-Blue recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac (F ́ proAB 

lacIqZΔM15 Tn10 (Tetr)) 
Stratagene 

MC1061 F-araD139 Δ(araA-leu)7697 galE15 galK16 Δ(lac)X74 rpsL 
(Strr) hsdR2 (rK-mK+) mcrA mcrB1 

(Wertman 
et al., 
1986) 

SS320 hsdR mcrB araD139 Δ(araABC-leu)7679 ΔlacX74 galUgalK 
rpsL thi 

Lucigen 

CJ236 FΔ(HindIII)::cat (Tra+ Pil+ CamR)/ ung-1 relA1 dut-1 thi-1 
spoT1 mcrA 

New 
England 
Biolabs 

BL21(DE3) F-ompT hsdSB(rB
–, mB

–) gal dcm (DE3[lacI lacUV5-T7 gene 
1 ind1 sam7 nin5]) 

Novagen 

Rosetta(DE
3)pLysS 

 F-ompT gal dcm lon? hsdSB(rB
–mB

–) λ(DE3 [lacI lacUV5-T7 
gene 1 ind1 sam7 nin5]) [malB+]K-12(λS) 
pLysSRARE[T7p20 ileX  argU thrU tyrU glyT thrT argWmetT 
leuW proL orip15A](CmR) 

Novagen 

 
 
Table 4.4 Mammalian Cell Lines 
Strain Disease Description Reference 
HEK293T Human 

embryonic 
adherent kidney 
cells 

Application: Efficacy testing 
transfection host viruscide testing 

ATCC-
CRL1573 

 
 
Table 4.5 Antibodies 
Antibody Supplier 
Goat Anti-Human IgG IRDye 800CW LI-COR Biosciences 
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4.1.3 Oligonucleotides 

         Oligonucleotides were obtained from Integrated DNA Technologies.  Sequences are given 

in 5’ to 3’ direction.  Serial numbers (S.No) are used as reference for oligonucleotides in the 

subsequent work.  P1, P2, Seq, and Temp represent forward primer, reverse primer, sequencing 

primer, and template, respectively. 

S.No Name Sequence (5’->3’) 
1 Rad51 P1 GCA ATG CAA ATG CAA CTG 
2 Rad51 P2 GTC TTT AGC ATC GCC AAC 
3 FS Temp P1 CCA TCT CAT CCC TGC GTG TCT CCG ACT CAG 

AAC CAT CCG CCC GGA AGA CTT CGC AAC TTA 
4 FS Temp P2 CCT CTC TAT GGG CAG TCG GTG ATA CGG TGA 

CCA GGG TTC CTT G 
5 TGS157 TCC AGATGA CCC AGT CCC CGA GCT CCC TG 
6 TGS160 CAA ATC TTG TGA CAA AAC TCA CAC GGG TGG 

TTC GCA CCA CCA CCA CCA CCA CTG AG 
7 TGS163 GGA AAC AGG ATC AGCTTA CTC C 
8 TGS164 CTA AGA AAC CAT TAT TAT CAT GAC 
9 Import Tag (Itag) ATG GCC TTG GGC CCT TGC ATG TTG TTG TTG TTG 

TTG TTG TTG GGT TTG CGC CTG CCG GGT GTT TGG 
GCG CCG CCG CGT CGC CGC CGC CGT CGT CGC 
CGT CGT 

10 L3-H3 Kunkel ACG TTC GGA CAG GGT TAT TAT TGT GCT CGC 



	 26 

4.1.4 Plasmids 
         The following four plasmid maps were created from free online web source PlasMapper 

(http://wishart.biology.ualberta.ca/PlasMapper/) (Dong et al., 2004). 

 
Figure 4.1 Fab-Phagemid 
Fab-phagemid is used for Fab display.  The phagemid backbone contains a single-stranded 
DNA filamentous phage origin of replication (f1 ori) to allow packaging into phage particles 
and a double-stranded DNA origin of replication (pBR322 ori) to enable replication as a 
plasmid in E. coli.  A selective marker, β-lactamase gene (amp marker), was used to maintain 
plasmid in E. coli.  For Fab display, a DNA cassette consisting of a promoter (Pho A Prom) was 
used to drive transcription of a bi-cistronic message that encodes for the light chain (VL-CL) as 
well as the variable and first constant domains of the heavy chain (VH-CH1).  The N-terminus 
of each chain was fused to a Pel B secretion signal for directing expressed chains to the 
periplasm while the C-terminus of the heavy chain was fused to a phage coat protein (PIII 
domain).  In the periplasm of E. coli, the light and heavy chains associated with each other to 
form intact Fab, which was incorporated into phage particles that were secreted from E. coli 
host. 
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Figure 4.2 pCW Bacterial Expression Plasmid 
pCW plasmid is used for expressing Fabs in E. coli.  pCW was designed for receiving Fab 
(light and heavy chain) coding sequences from phagemid for bacterial expression.  The 
expression and termination are tightly controlled by tac promoter (tac prom) and trpA 
terminator (trpA term), respectively.  pCW contains a Pel B secretion signal on the light chain 
for directing expressed chain to the periplasm .  Fabs were cloned between SacI and XhoI sites 
using Gibson Assembly.  pCW contains a double-stranded DNA origin of replication (pBR322 
ori) to enable replication in E. coli. The ampicillin-resistance gene (amp marker) is used to 
maintain the plasmid in E. coli. 
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Figure 4.3 pCW-Itag Bacterial Expression Plasmid 
pCW-Itag plasmid is based on pCW with the addition of an  import tag (Itag) followed by a 
stop codon following the His6. 
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Figure 4.4 DNA837 Mammalian Cell Expression Plasmid 
DNA837 plasmid was a reconstructed plasmid suitable for a mammalian expression system.  It 
contains: (i) A double-stranded DNA origin of replication (pBR322 ori) to enable replication as 
aplasmid in E. coli.  (ii) Selective marker (amp marker) to maintain plasmid in E. coli.  For 
scFv-Fc expression in mammalian cells, a human CMV immediate-early promoter (CMV 
immearly prom) is used to drive transcription of the message that encodes for heavy and light 
chain variable regions followed by fragment crystallizable region (Fc region).  C-terminus of Fc 
region was fused to ubiquitin carboxyl-terminal hydrolase to prevent ubiquitin-mediated 
degradation. 
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4.2 General Protocols 

4.2.1 DNA Extraction and purification 

         Plasmid DNA was extracted from the cell lysate using a Plasmid Miniprep Kit (Thermo 

Scientific GeneJETTM) as per manufacturer’s instructions.  ssDNA was extracted from phage 

particles using QIAPrep Spin M13 Kit (Qiagen) as per manufacturer’s instructions.  PCR 

products were purified using PCR Purification Kit (Thermo Scientific) as per manufacturer’s 

instructions. 

4.2.2 DNA Sequencing 

         Individual DNA samples were diluted to a concentration of 50 µg/mL in Milli-Q water 

(Millipore).  DNA was sequenced using 3500 Genetic Analyzer (Thermo Scientific) or Next 

Generation Sequencing (NGS) (Ion TorrentTM).  Plasmid DNA, ssDNA and PCR products were 

prepared in an A260/280 ratio of 1.8-2, diluted to a concentration of 50-60 µg/mL in 10 mM 

Tris-HCl pH 8.5, 0.1% Tween 20. 

4.2.3 Polymerase Chain Reactions 

4.2.3.1 High Fidelity PCR 

         Gene amplification from high fidelity PCR was used for DNA sequencing.  The PCR 

protocol was modified from “Phusion High-Fidelity DNA Polymerase” (Thermo Scientific) 

manufacture’s condition.  PCR (50-100 µL) contained the following reagents: 1x Phusion HF 

Buffer (60 mM Tris-SO4 pH 8.9, 180 mM (NH4)2SO4, 1.5 mM MgSO4), 200 µM dNTPs, 1 µM 

of forward and reverse primers, 100-200 ng template DNA, and 1 Unit/50 µL of Phusion High-

Fidelity DNA Polymerase.  Reactions were performed under the following cycling conditions: 

initiation step at 98 °C for 30 seconds, 25-30 cycles of amplification with denaturation step at 

98 °C for 10 seconds, annealing step at 55 °C for 15 seconds, extension step at 72 °C for 20 

seconds per kilobase pair, final extension step at 72 °C for 5 minutes. 
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4.2.3.2 PCR Amplification of Kunkel Product 

         Kunkel product was amplified by high fidelity PCR to bring light and heavy chain 

complementarity-determining regions closer together for NGS analysis.  PCR (50-100 µL) 

contained the following reagents: 1x Phusion HF Buffer (60 mM Tris-SO4 pH 8.9, 180 mM 

(NH4)2SO4, 1.5 mM MgSO4), 200 µM dNTPs, 1 µM of forward and reverse primers, 100-200 

ng Covalently Closed Circular dsDNA (CCC-dsDNA) (Section 4.4.1.2), and 1 Unit/50 µL of 

Phusion High-Fidelity DNA Polymerase.  Kunkel PCR was performed under the following 

cycling conditions: initiation step at 98 °C for 30 seconds, 25-30 cycles of amplification with 

denaturation step at 98 °C for 10 seconds, annealing step at 56 °C for 10 seconds, extension 

step at 72 °C for 5 seconds, final extension step at 72 °C for 15 seconds. 

4.2.3.3 E. coli Colony PCR 

         Colony PCR was used as a rapid test to verify the correct insertion of a DNA segment into 

a plasmid prior to plasmid purification and sequencing.  From a fresh 2YT/Agar plate 

containing appropriate antibiotic, a single colony was picked and resuspended in 200 µL of 

sterile H2O.  One microliter of the colony suspension was used as the template for PCR 

reaction.  If the PCR result was positive, the remaining colony suspension was used to inoculate 

5 mL of 2YT buffer supplemented with appropriate antibiotic to maintain corresponding 

plasmid, followed by plasmid purification after a period of incubation. 

4.2.3.4 Agarose Gel Electrophoresis 

         Agarose gel electrophoresis was used to visualize PCR products and plasmids based on 

their relative molecular size.  Agarose gel was prepared in a mix of 1x TAE Buffer (40 mM 

Tris-acetate, 1 mM EDTA, pH 8.0), 0.5-1.0% (w/v) ultrapure agarose and 0.5 µg/mL ethidium 

bromide.  Samples were mixed with 1x loading dye (10% (v/v) glycerol, 0.04 M EDTA pH 8.3, 

0.01% (w/v) bromophenol blue).  Following sample loading, gels were electrophoresed at 100 

to 200V for 30 to 60 minutes in 1x TAE Buffer and photographed using a Gel-Doc Imager 

(Bio-Rad). 



	 32 

4.2.4 Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE) and 

Western Analysis 

         SDS-PAGE was used to separate proteins based on their electrophoretic mobility.  Protein 

samples were resuspend in final 1x SDS loading dye (60 mM Tris-HCl (pH 6.8), 5% (v/v) 

glycerol, 2% (w/v) SDS, 4% (v/v) 2-mercaptoethanol, 0.0025% (w/v) bromophenol blue).  

Homogenized E. coli samples containing protein mix were resuspended in 1x SDS loading dye 

for loading.  Prior to loading, sample suspension was heated at 95 °C for 5 minutes and cooled. 

         The methodology of SDS-PAGE used in the thesis employed the Laemmli method 

(Laemmli, 1970) utilizing a 4-12% (stacking – separating) polyacrylamide gel.  Sample 

fractions were resolved in this 4-12% polyacrylamide gel in 1x running buffer (25mM Tris-HCl 

pH 8.3, 190 mM glycine, 0.1% (w/v) SDS) at 150 V for 60 minutes using a Mini-Protean 3 

electrophoresis unit (Bio-Rad). 

         For Western analysis, proteins in the SDS-PAGE gels were transferred to nitrocellulose 

membranes using Bio-Rad Mini Trans-Blot Cell (wet electrophoretic transfer cell) at 100 V 

with constant 350 mAmps for 1 hour in the presence of transfer buffer (48 mM Tris-HCl pH 

8.3, 39 mM glycine, 20% (v/v) methanol).  To develop the blot, membranes were blocked with 

Odyssey blocking buffer (LI-COR Biosciences) for 1 hour at room temperature, followed by 

incubation with a IRDye® 800CW dye-labeled antibody (diluted Odyssey blocking buffer, 

0.2% Tween-20) for an additional 1 hour followed by washing with PBS for three times.  

Developed blots were visualized and scanned using an Odyssey infrared imager (Li-COR 

Biosciences). 

4.2.5 Gibson Assembly Cloning Reactions 

         DNA encoding Fabs were PCR amplified using TGS150 and TGS160 primers from the 

Fab phagemid.  pCW (or pCW-Itag) plasmid (Figure 4.2 & 4.3) for Gibson Assembly was 

digested using SacI and XhoI restriction enzymes as per FastDigest’s instruction (Thermo 

Scientific).  PCR-generated insert was cloned into linearized pCW (or pCW-Itag) using Gibson 

Assembly® Master Mix (New England Biolabs) as per manufacturer’s instructions. 
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4.3 General E. coli Protocols 

4.3.1 Bacterial Media 

         2x Yeast Extract Tryptone (2xYT) Medium: 2xYT media was prepared in 1 L of the 

Milli-Q water (Millipore) with 31 g of BD DifcoTM 2xYT.  The media was mixed thoroughly 

with frequent agitation to completely dissolve the powder, followed by autoclaving at 121 °C 

for 15 minutes.  Solid media contained 18 g/L of agar. 

         Luria Broth (LB) glucose Media: LB media was prepared in 900mL of Milli-Q water 

(Millipore) containing 10 g Bacto-tryptone, 5 g yeast extract, 10 g NaCl, and 3 g D-glucose.  

Media was prepared as previously described.  

         Super Optimal Broth with Catabolic Repressor (SOC) Medium: SOC media were 

prepared in 1 L of Milli-Q water (Millipore) with 20 g Peptone, 5 g Yeast Extract, 2 mL of 5 M 

NaCl, 2.5 mL of 1 M KCl, 10 mL of 1 M MgCl2, 10 mL of MgSO4, and 20 mL of 1 M D-

glucose.  Media was prepared as previously described. 

         Overnight ExpressTM Instant TB Medium (Novagen®): Instant TB media is a 

complete granulated culture medium for high-level protein production in the pET and other 

isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible bacterial expression systems without 

the need to monitor cell growth.  The medium was prepared in 1 L of Milli-Q water (Millipore) 

with 60 g Overnight Instant TB Medium, supplement with 10 mL glycerol, followed by 

sterilization using Stericup® vacuum filtration system (Millipore). 

         Antibiotics: Antibiotic powder was resuspended in Milli-Q water (Millipore) at a 1000x 

stock and stored at -20 °C.  The appropriate antibiotics were added into media at indicated 

concentration listed on Table 4.6. 

 

Table 4.6 Antibiotic In-Use Concentration 
Antibiotic In-Use Concentration (µg/mL) 
Carbenicillin (carb) 50 
Kanamycin (kan) 25 
Tetracycline (tet) 5 
Chloramphenicol (cap) 5 
 

2xYT/tet medium: 2xYT media containing 5 µg/mL tetracycline 

2xYT/carb medium: 2xYT media containing 50 µg/mL carbenicillin 
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2xYT/carb/kan medium: 2xYT media containing 50 µg/mL carbenicillin and 25 µg/mL 

kanamycin 

4.3.2 Preparation of Electrocompetent E. coli cells 

         E. coli were cultured as described using standard techniques (Elbing and Brent, 2001).  

Unless otherwise noted, E. coli in liquid media were grown at 37 °C with shaking (200 RPM).  

E. coli grown on solid media were incubated at 37 °C overnight. 

         Electrocompetent E. coli cells were optimized for high transformation efficiency by 

electroporation.  A single E. coli colony was used to inoculate 500 mL 2xYT liquid medium 

followed by incubation.  When the OD600 of the culture reached 0.35-0.4, the culture was 

immediately put on ice for 20-30 minutes with occasional swirling.  Cells were harvested by 

centrifugation at 5,000 g at 4 °C for 10 minutes in a Sorvall GS-3 rotor.  Cells were 

subsequently washed three times using ice-cold Milli-Q water (Millipore) and isolated by 

centrifugation at 5,000 g at 4 °C for 10 minutes.  Cells were resuspended in 50 mL of ice-cold 

10% ultrapure glycerol and stored at -80 °C. 

4.3.3 Preparation of Plasmid DNA  

         Individual colonies were inoculated in 5-10 mL of 2xYT media containing appropriate 

antibiotic.  Cells were collected by centrifugation at 5,000 g for 10 minutes.  Plasmid DNA was 

extracted using Plasmid Miniprep Kit (Thermo Scientific) as per manufacturer’s instructions.  

Plasmid concentration was determined by measuring the OD at 260 nm using a NanoDrop 

2000c spectrophotometer (Thermo Scientific). 

4.3.4 E. coli Electroporation 

         Electrocompetent DH10B E. coli cells were used in transformation of plasmids.  50 µL of 

frozen cells were thawed on ice and mixed with DNA solution (5-10 µL of a ligation reaction 

or 1 µL of 50-150 ng/µL plasmid DNA) and transferred to an ice-cold 0.2 cm gap 

electroporation cuvette.  Cells were electroporated in field strength of 12.5 kV/cm (Ec2 on Bio-

Rad Micro Pulser).  Immediately following electroporation, 500-1,000 µL of SOC (no 

antibiotics) was added to cells with subsequent incubation in 37 °C shaker for 30-60 minutes.  

Finally, 10-100 µL cells were plated onto 2xYT agar plates containing appropriate antibiotics. 
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4.3.5 Storage of E. coli cells 

         Transformed cells were stored in -80 °C for long-term use.  Briefly, individual colonies 

were picked from plate and grown overnight in 5 mL 2xYT media containing appropriate 

antibiotic(s).  The next morning, 0.5 mL of the overnight culture was added into 0.5 mL of 80% 

sterile glycerol, followed by gentle vortexing.  The glycerol E. coli stock was stored in -80 °C. 

4.4 Phage Display 

4.4.1 Kunkel Mutagenesis 

4.4.1.1 Preparation of dU-ssDNA Template 

         A single colony of E. coli CJ236 harboring a Fab-phagemid was used to inoculate 1 mL 

of the 2xYT/carb/kan medium with 1x1010 phage/mL of M13K07 helper phage.  After 2 hours, 

kanamycin was added (25 µg/mL) and the culture incubated for 6 hours.  Then the culture was 

transferred to 30 mL of 2xYT/carb/kan medium supplemented with uridine (0.25 µg/mL) and 

incubated overnight at 37 °C. 

         Phages were purified from cell culture supernatant using PEG/NaCl precipitation as 

described (Rajan and Sidhu, 2012).  Briefly, the culture supernatant was separated from cell 

pellet by centrifuging for 10 minutes at 16,000 g and the supernatant was added into a fresh 

tube containing 1/5 volume of PEG/NaCl.  The mixture was incubated for 5 minutes at room 

temperature and centrifuged for 10 minutes at 12,000 g at 4 °C.  The supernatant was removed, 

and the phage pellet resuspended in 1/25 volume of the overnight culture in PBT buffer.  The 

suspension was centrifuged for another 5 minutes at 27,000 g to pellet the remaining insoluble 

matter.  The phage concentration was estimated using NanoDrop 2000c spectrophotometer 

(OD280=1.0 for a solution of 2.33x1012 phage/mL).  Purified phage was immediately used for 

next round of selection or stored at -80 °C in 10% glycerol. 

         dU-ssDNA was extracted from above purified phage using QIAPrep Spin M13 Kit 

(Qiagen) as per manufacturer’s instructions. 

4.4.1.2 In Vitro Synthesis of Covalently Closed Circular dsDNA (CCC-dsDNA) 

         Mutagenic oligonucleotides were incorporated into heteroduplex CCC-dsDNA using a 

three-step procedure based on a published method (Kunkel et al., 1987).  First, mutagenic 

oligonucleotides were phosphorylated using 0.6 µg of the oligonucleotide, 2.5 µL of 10x TM 

buffer, 2.0 µL of 10 mM ATP, 1.0 µL of 100 mM DTT, and Milli-Q water to a total volume of 
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25 µL.  T4 polynucleotide kinase was then added into the mixture followed by incubation for 1 

hour at 37 °C.  Following phosphorylation, the oligonucleotide was immediately used for 

annealing step in a PCR tube containing 1 µg of ssDNA, 2 µL of 10x TM buffer, 2 µL of the 

phosphorylated oligonucleotide, and Milli-Q water to a total volume of 20 µL.  To obtain 

optimum annealing, the molar ratio of oligonucleotide to ssDNA template was 3:1.  The 

reaction mixture was then incubated in a thermocycler at 90 °C for 3 minutes, 50 °C for 3 

minutes, and 20 °C for 5 minutes.  Following annealing, primer extension occurred in the 

annealed oligonucleotide/template mixture by adding 1 µL of 10 mM ATP, 1 µL of dNTPs, 1.5 

µL of 100mM DTT, 3 units of T4 DNA ligase, and 3 units of T7 polymerase.  The reaction 

mixture was incubated overnight at 20 °C.   CCC-dsDNA was affinity purified and desalted 

using the QIAquick DNA purification kit (Qiagen) as per manufacturer’s instructions. 

4.4.1.3 Phage Display Library Construction 

         The heteroduplex CCC-dsDNA was introduced into E. coli SS320 strain (E. coli MC1061 

strain with F’ episome from XL1-blue) to convert CCC-dsDNA into a phage-displayed Fab 

library.  Briefly, 350 µL of electrocompetent SS320 cells were thawed on ice and mixed with 

20 µg CCC-dsDNA and transferred to an ice-cold 0.2 cm gap electroporation cuvette.  Cells 

were electroporated using a BTX ECM-600 electroporation system with the following settings: 

12.5 kV/cm field strength, 129 ohms resistance, and 50 µF capacitance.  Immediately following 

electroporation, 1mL of SOC (no antibiotics) was added to cells and the cells then transferred to 

22 mL of SOC medium in a 250-mL baffled flask.  The cuvette was rinsed twice with 1 mL 

SOC media and transferred to the flask to a final volume of 25 mL followed by subsequent 

incubation for 30 minutes.  To determine the library diversity, serial dilutions were plated on 

2xYT/carb plates and incubated overnight to select for the phagemid.  The remaining culture 

was transferred to a 2 L baffled flask containing 500 mL of 2xYT/carb/kan/ medium 

supplement with M13K07 helper phage followed by overnight incubation.  The phage library 

was purified using PEG/NaCl precipitation protocol (Section 4.4.1.1). 

4.4.2 Phage Display Selection Against Immobilized hRad51 

         The following is a general procedure of phage display selection that was performed.  5 

µg/mL of hRad51 (dissolved in 100 µL of phosphate-buffered saline [PBS] buffer) was used to 

coat Maxisorp plates (Nunc) at 4 °C overnight or room temperature for 2 hours.  hRad51 that 
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was not absorbed to the plates was removed and wells were blocked with 0.5% BSA (resolved 

in 200µL of PBS buffer) for 1.5 hours at room temperature.  In parallel, an equal number of 

uncoated wells were blocked BSA as a negative control.  BSA blocking solution was then 

removed and wells were washed 4 times with PT (0.05% Tween20 in PBS) buffer.  One 

hundred microliters of the library FS phage solution was added to each coated well in a 

concentration of 1 x 1010 phage/mL in PBT buffer (0.5% BSA and 0.05% Tween20 in PBS), 

and incubated for 2 hours at room temperature, followed by 10 washes (6 washes for 1st round) 

with PT buffer to eliminate unbound phages.  Bound phages were eluted using 100 mM HCl for 

5 minutes and neutralized with 1.0 M Tris–HCl (pH 8.0).  Half the eluted phage solution was 

added to 10 volumes of actively growing E. coli XL1-Blue (OD600 ~0.8) in 2xYT/tet medium 

and incubated for 30 minutes.  To determine the enrichment, 10-fold serial dilution of the 

infected E. coli culture was plated on 2xYT/carb plates followed by overnight incubation.  The 

remaining culture was infected with M13K07 helper phage in a final concentration of 1010 

phage/mL followed by incubation for 45 minutes.  The culture was then transferred to 25 

volumes of 2xYT/carb/kan medium and incubated overnight.  The amplified phage was 

extracted and used for next round of selection.  This selection cycle was repeated until the 

enrichment ratio reached a maximum.  Typically, enrichment is first observed in round 3 or 4, 

sorting beyond 6 is seldom necessary. 

4.5 General Protein Protocols 

4.5.1 Protein Purification 

4.5.1.1 hRad51 Purification 

         Human Rad51 (hRad51) was overexpressed in E. coli Rosetta(DE3)pLysS cells and 

purified using a combination of ammonium sulfate precipitation and Ni-chelating 

chromatography.  More specifically, Rosetta(DE3)pLysS cells containing hRad51 plasmid were 

inoculated in 10 mL of LB glucose media containing kanamycin and grown overnight.  The 

next morning, 5 mL of overnight culture was inoculated 900 mL of LB-glucose media 

containing Kanamycin.  Culture was grown to an OD600 nm of 1.2 at 37 °C. Cells were induced 

with 0.25 mM IPTG and cultured for an additional for 4 hours at 37 °C.  Cells were harvested 

by centrifugation at 5,000 g for 10 minutes at 4 °C, resuspended in binding buffer (20 mM 

sodium phosphate, 0.5 M NaCl, 25 mM imidazole at pH 7.4) for immediate purification.  Cells 
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were lysed by sonication using two pulse sequences under the following conditions:  3-second 

pulse, 6-second rest, 90-second total pulse time.  Cell debris and inclusion bodies were removed 

by centrifugation at 12,000 g for 15 minutes at 4 °C. 

         Ammonium sulfate was added to the supernatant to a final concentration of 0.35 g/mL 

with constant stirring at 4 °C for overnight.  The proteins were precipitated by centrifugation at 

12,000 g for 15 minutes at 4 °C.  The protein pellet was dissolved in binding buffer, filtered 

through 0.22 micron filter, and passed through DE52 anion exchange column (Sigma-Aldrich) 

to remove bound DNA.  The resuspended proteins were loaded onto a 1 mL HiTrap Ni-

chelating column (GE Healthcare) using an ÄKTAprime plus system (GE Healthcare).  After 

washing with at least 30 mL of binding buffer, hRad51 was eluted in buffer containing 500 mM 

imidazole.  Elution fractions were analyzed by SDS-PAGE.  Fractions containing hRad51 

protein were dialyzed against 300 volumes of PBS buffer overnight at 4 °C with a 10-kDa 

molecular weight cutoff membrane (Amicon® Ultra Centrifugal Filter).  Protein concentration 

was determined using PierceTM BCA Protein Assay Kit as per manufacturer’s instruction. 

4.5.1.2 Fab Purification 

         BL21-DE3 containing the pCW-Fab plasmid was inoculated in 10 mL of 2xYT/carb 

medium and grown overnight at 37 °C.  The following morning, 1 mL of overnight culture was 

used to inoculate 1L of Overnight ExpressTM Instant TB Medium (Novagen®), supplemented 

with carbenicillin.  The culture was then incubated for 18-24 hours at 30 °C.  Cells were 

harvested by centrifugation at 5,000 g for 10 minutes at 4 °C and resuspended in binding buffer 

(20 mM sodium phosphate pH 8.0, 0.15 M NaCl) for immediate purification.  Cells were 

homogenized using French press disrupter (Constant Systems LTD) as per manufacturer’s 

instruction.  Cell debris was removed by centrifugation at 12,000 g for 15 minutes at 4 °C. 

         Fab was purified from supernatant as described in hRad51 purification except that a 1 mL 

HiTrap Protein L-affinity column (GE Healthcare) was used.  Fab was eluted in elution buffer 

(0.1 M glycine pH 2.5) and neutralized in neutralization buffer (1 M Tris-Amino pH 8.5). A 30-

kDa molecular weight cutoff membrane (Amicon® Ultra Centrifugal Filter) was used to dialyze 

Fab solution against PBS buffer. 
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4.5.1.3 Quick Protein Extraction from Bacteria 

         Soluble protein is extracted from small-scale culture using B-PER® Bacterial Protein 

Extraction Reagent (ThermoScientific). Bacterial cells were harvested by centrifugation at 

5,000 g for 10 minutes at 4 °C.  Cell pellet was resuspended in 4 mL of B-PER Reagent per 

gram of cell pellet.  The suspension was incubated at room temperature for 10 minutes and the 

supernatant containing soluble proteins was separated from insoluble lysate by centrifugation at 

12,000 g for 5 minutes at 4 °C.  Supernatant was used for crude estimate for binding in biolayer 

interferometry analysis. 

4.5.2 Bio-layer Interferometry Analysis 

         Octet® biolayer interferometry (BLI) platform (ForteBio Inc) was used to measure 

binding to the sensor tip as a wavelength shift (in nm) in real time.  All the steps were 

performed at 25 °C with a stirring speed at 1000 RPM in a tilted-bottom 384-well plates 

(ForteBio Inc) containing 80 µL of solution.  PBS buffer (pH 7.4) containing 0.1% (v/v) Tween 

20 and 10 mg/mL bovine serum albumin (BSA) was used to dilute analytes and to wash the 

sensors.  Purified Fab was loaded onto a Protein L biosensor (ForteBio) from a 0.5 µM solution 

until a wavelength shift of 0.5 nm had been achieved.  5’-biotinylated oligo(dT)36 was loaded 

onto a streptavidin biosensor from a 1 µM solution until a wavelength shift of 1 nm had been 

achieved.  Association rates were obtained by monitoring changes in wavelength shift for 

indicated concentration of hRad51 for 2-3 minutes.  Dissociation rates were obtained by placing 

the loading biosensors from the association step into wells containing blank buffer and changes 

in the wavelength shift (nm) were monitored until the wavelength shift was stable.  Association 

and dissociation rates and dissociation constants were calculated by Data Analysis software 

(version 7.1-Forte Bio, 1:1 (Langmuir) binding model) where a buffer blank was used as a 

reference cell subtraction. 

4.5.3 ATPase Assay 

         hRad51 (2 µM) was incubated with Fab F2 in different ratios in 100 µL of 50 mM HEPES 

buffer (pH 7.4), containing 1 mM MgCl2, 45 mM NaCl, 3% glycerol, 0.6 mM 2-

mercaptoethanol, 1 mM dithiothreitol, 30 µM EDTA and 0.1 mg/mL bovine serum albumin 

(BSA), in the presence of 20 µM oligo(dT)36.  The reaction was performed in a 37 °C water 

bath.  After 10 minutes pre-incubation, the reaction was initiated by addition of 50 mM ATP.  
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After 20 minutes of incubation, 30 µL of 100 mM EDTA was mixed with a 20 µL aliquot of 

the reaction mixture to quench the reaction.  The release of inorganic phosphate by ATP 

hydrolysis was determined using the malachite green assay.  Briefly, 50 µL of the quenched 

sample solution was incubated for 1 min with a 470 µL aliquot of malachite green dye (0.034% 

(w/v) malachite green oxalate, 1.05% (w/v) hexaammonium heptamolybdate tetrahydrate, and 

0.1% (w/v) polyvinyl alcohol in 1 M HCl).  Color development was stopped by addition of 50 

µL of 34% (w/v) sodium citrate dehydrate.  The absorbance was measured at 620 nm with a 

spectrophotometer.  1 mg/mL NaH2PO4 was used to prepare phosphate standard.  The reaction 

is in a linear range for up to 30 minutes. 

4.5.4 Protein Labeling 

         Fab and anti-IgG antibody were labeled with IRDye® 800CW dye for in-cell imaging and 

Western analysis.  Briefly, 500 µg of protein was dissolved in 600 µL of PBS buffer at room 

temperature and mixed with 1.35 µL of 10 mg/mL IRDye® 800CW dye.  The reaction mixture 

was incubated at room temperature for 2 hours with mild rotation followed by overnight 

incubating at 4 °C with mild rotation, in the absence of UV light.  The next morning, the free 

IRDye® 800CW was separated from the protein conjugates using Piece Zeba® Desalting Spin 

Columns (Thermo Scientific) as per manufacturer’s instruction.  IRDye® 800CW/Fab ratio and 

Fab concentration were determined by measuring the absorbance of the conjugate at 280 nm 

and 780 nm using UV-Vis spectrophotometer, and calculated using the formula provided by 

IRDye® 800CW Protein Labeling Kit. 

4.6 Mammalian Cell Studies 

4.6.1 Tissue Culture 

         Mammalian cell cultures were maintained at 37 °C with 5% CO2.  HEK293T cells were 

cultured in Dulbecco’s Modified Eagle’s Medium (DMEM).  Cells were passaged at a ratio of 

1:10 to 1:20 for general maintenance when the confluence reached 80-90%. 

4.6.2 Transient HEK293T Cell Transfection 

         DNA837 (expressing anti-hRad51 scFv-Fc) plasmid was transfected into HEK293T cells 

using Lipofectamine 2000® Regent (Invitrogen Life Technologies).  HEK293T cells were 

seeded onto 10 cm tissue culture dishes at densities of 4 x 106 cells/dish and incubated 
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overnight in DMEM supplemented with 10% FBS.  Following removal of media and 

replacement with fresh media, 500 µL of room-temp Opti-MEM® and 5µg plasmid was mixed 

with a solution containing 500 µL Opti-MEM® and 20 µL Lipofectamine 2000® regent.  After 

incubating for 5 minutes at room temperature, the above mixture was added to seeded cells in 

drop-wise manner.  Cells were cultured for 48 hours, collected and a portion of the sample was 

lysed for Western analysis as descried in Section 4.2.5 to confirm the presence of scFv-Fc 

expressed from DNA837. 

4.6.3 Clonogenic Survival Assay 

          A clonogenic survival assay was used to test the sensitivity of HEK293T cells to 

increasing doses of DNA-damaging agents in the presence of Fab or scFv-Fc, (Essers et al., 

1997).  HEK293T cells were trypsinized and reseeded in a 6-well tissue culture plate at 200 

cells/well.  After culturing overnight, cells were treated with indicated concentrations of MMS 

alone, or in combination with indicated amount of Fab F2 or FabItag I2.  For scFv-Fc, DNA837 

transfected 293T cells (Section 4.6.2) were seeded in a 6-well tissue culture plate at 200 

cells/well.  After culturing overnight, MMS was added to cells in indicated concentrations.  

After 7 days, cells were fixed and stained using staining solution (0.3% crystal violet, 50% 

methanol in PBS).  Colonies were counted using light microscopy (EVOS® FL Cell Imaging 

System, ThermoFisher Scientific).  Cells treated with PBS and DMSO, or empty vector 

transfected cells were used as negative controls, respectively. 

4.6.4 Fluorescence Imaging and Flow Cytometry 

         The ability of Fabs to internalize in HEK293T cells was analyzed using fluorescent 

microscopy (EVOS® FL Cell Imaging System, ThermoFisher Scientific).  Cells were seeded in 

a 48-well plate at 5x104 cells/well, and IRDye® 800CW dye-labeled Fab (Section 4.5.4) was 

added to cells.  Cells were incubated for indicated hours followed by imaging.  Briefly, cells in 

each well were washed using 300 µL of PBS.  Fluorescence images were obtained with a 

fluorescent microscopy using Cy7 channel (EVOS® FL Cell Imaging System, ThermoFisher 

Scientific).  Image optimization of contrast and brightness was performed to the same extent for 

respective panels.  For quantitative analysis of uptake cells were detached from the walls after 

incubating for indicated hours.  The cells were washed twice with PBS and the internalized 

fluorescence signal was immediately measured using Gallios Flow Cytometry (Beckman 
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Coulter, Inc.).  For excitation of IRDye® 800CW dye the 640 nm laser was used and 

fluorescence emission was monitored through 755 LP filter.  Five thousand cells were analyzed.  

Untreated cells were used to set the gate on live cells (FSC/SSC).  Mean fluorescence intensity 

are reported for gated cells in each sample. 

4.6.5 Statistical Analysis 

         P-values for clonogenic survival assay were determined by performing an unpaired t test 

using SPSS 16.0 (SPSS, USA).  Data were represented by the mean ± S.D. (Standard 

Deviation) based on at least three independent experiments.  A p value of less than 0.05 was 

considered significant (*p<0.05, **p<0.005). 
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Chapter 5 Results 

5.1 Specific Aim 1: Isolation of Fabs Against hRad51 using the Fab Phage Display 
Library 

5.1.1 Expression and Purification of hRad51 Protein 

         In order to isolate antibody fragments specific to human Rad51 (hRad51), we used 

recombinant hRad51 as the target antigen.  hRAD51 gene (GenBank: CAG38796.1) was 

isolated from a testis cDNA library by the polymerase chain reaction (PCR) and cloned into the 

EcoRV and XhoI site of pET28a expression vector.  The resulting plasmid, designated pET28a-

hRad51 was provided by Dr. Luo (University of Saskatchewan).  To optimize the condition for 

hRad51 expression, cell cultures were grown either at 18 °C for 16 hours or 37 °C for 4 hours 

post IPTG induction.  We observed that the 4-hour IPTG induction at 37 °C was sufficient to 

induce high levels of hRad51 expression.  Using this protocol, we obtained a yield of 4.7 mg 

hRad51 protein per 1 L of culture compared to 2.7 mg of hRad51 protein when the culture was 

incubated at 18 °C for 16 hours (Figure 5.1). 

 

 

            

 
Figure 5.1 Comparison of hRad51 Expression Levels Using Different Induction 
Conditions 
E. coli Rosetta (DE3) pLysS cells were cultured at 37 °C for 4 hours or at 18º for 16 hours 
following IPTG induction.  His-tagged hRad51 was purified using nickel-affinity 
chromatograph, analyzed by polyacrylamide gel electrophoresis, and visualized by Coomassie 
blue staining.  (Lane L) Protein molecular weight (MW) ladder; (Lane 1) whole-cell lysate; 
(Lane 2) soluble protein; (Lane 3) flow-through of Ni-affinity resin; (Lane 4) elution from Ni-
affinity resin.  Arrow indicates the expected MW (37kDa) of the hRad51 protein. 
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5.1.2 Antibody Phage Display Against hRad51 Using Fab-Phage Library 

         We performed phage display selection as outlined in Section 4.4.1.  Based on several 

published protocols (Tonikian et al., 2007; Rajan and Sidhu, 2012), we chose 5 µg/mL of 

purified hRad51 to coat maxisorp plates for phage display selection using a Fab-phage library.  

The Fab-phage library was constructed by V.M. Bharathikumar in Dr. Geyer’s lab and contains 

1x1010 diversity in complementarity-determining region of light and heavy chain 3 (L3 and H3) 

(Figure 5.2).  To isolate a hRad51 binding Fab, the Fab-phage library was incubated with 

immobilized hRad51 and non-binding phage were washed away. Bound phage were eluted and 

amplified for next round of selection.  The number of phage eluted after each round of selection 

was calculated based on the number of colonies formed after reinfection of the eluted phage 

particles in the host bacteria.  After four rounds of selection, an increase in the enrichment of 

the number of hRad51-bound phage relative to BSA-bound phage was observed (Figure 5.3). 

 

 
Figure 5.2 L3 and H3 Diversity in Fab-phage Library 
(A) Fab framework used for library construction is shown in carton representation.  The 
framework is composed of a light (heavy grey) and a heavy (light grey) chain.  Six 
complementarity-determining regions (CDRs) are colored and located in the variable light (VL) 
and variable heavy (VH) chains.  Fab-phage library contains four fixed CDRs:  L1 (orange), L2 
(light green), H1 (red) and H2 (heavy green) and two diversified CDRs: L3 (blue) and H3 
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(teal).  (B) Library diversity designs in L3 and H3 regions.  Z denotes any of the following 
thirteen amino acids introduced at different proportions: Y (20%), S (20%), G (20%), T (6.5%), 
A (6.5%), P (6.5%), H (3.5%), R (3.5%), E (3.5%), F (2.5%), W (2.5%), V (2.5%) or L (2.5%).  
X denotes any of the following nine amino acids introduced at different proportions: Y (25%), 
S (20%), G (20%), A (10%), F (5%), W (5%), H (5%), P (5%) or V (5%).  The lengths of L3 
and H3 are varied by altering the number of Z and X.  (C) Theoretical diversity represents the 
number of combinatorial possibilities.  Actual diversity represents the sequence composition 
determined by next generation sequencing. 
 
 

 
Figure 5.3 Enrichment of Phage-Displayed Fabs During Rounds of Phage Display 
Selection 
The library of Phage-displayed Fabs were selected against hRad51 (5 µg/mL).  After each 
round of selection, number of eluted phage were calculated.  The enrichment after each round 
was determined by dividing the number of hRad51-bound phage eluted by the number of eluted 
phage from a control plate containing immobilized BSA. 

5.1.3 Next Generation Sequencing of the Enriched Fab-Phagemid Pool 

         Enrichment in the number of target-bound phage is a suitable indicator to monitor the 

progress of selection for antibody phage display.  However, it does not provide sequence 

information on changes in the antibody repertoire after each round of selection.  Next 

Generation Sequencing (NGS) technologies have been used to monitor phage display selections 

and to speed up the identification of specific antibodies by monitoring enrichment of antibody 
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sequences during successive rounds of selection (Fischer, 2011).  However, NGS read lengths 

using ion torrent sequencing technology are limited to 50-400 continuous base pairs. 

          LCDR3 and HCDR3 in variable regions in the Fab-phage Library (i.e. LCDR3 and 

HCDR3) are separated by ~ 928 base pairs.  Therefore, in order to retain information on 

specific pairings of LCDR3 and HCDR3 in a given antibody fragment, we used the Kunkel 

protocol to bring LCDR3 and HCDR3 closer together in DNA sequence space (Figure 5.4).  To 

do this, we extracted ssDNA from third and fourth round phage pools (Section 4.4.1.1) and 

used them as templates for Kunkel reaction (Section 4.4.1.2).  The modified phagemid with 

LCDR3 and HCDR3 separated by 30 bases was used as a template to generate a PCR amplicon 

for Ion Torrent NGS analysis.  Three predominant clusters were enriched from rounds 3 and 4 

(Figure 5.5).  Peptide YSYY-HAYYAGGSSHYYYYYGMDV (from cluster 1) has the highest 

enrichment in frequency from rounds 3 to 4.  However, this peptide is thought as a non-specific 

Fab because it has been isolated by several members in our lab from the same Fab-library using 

completely different target proteins. 

 

 
Figure 5.4 Schematic of Kunkel Reaction to Bring LCDR3 and HCDR3 Closer Together 
ssDNA extracted from phage was incubated with 5’-phosphorylated Kunkel oligos followed by 
denaturation.  Oligos were annealed to the ssDNA template, enzymatically extended, and 
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ligated to form heteroduplex CCC-dsDNA, which was then used as a template to PCR amplify 
LCDR3-HCDR3 fragments.  ssDNA, single stranded DNA; LCDR3, light chain 
complementarity-determining region 3; HCDR3, heavy chain complementarity-determining 
region 3; CCC-dsDNA, covalently closed circular double stranded DNA. 
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(B) 
 

 
Figure 5.5 NGS Analysis for Phage-displayed Peptides Selected after Three and Four 
Rounds of Selection to hRad51 
DNA from third and fourth round phage pools against hRad51 was used to perform Ion Torrent 
Next Generation Sequencing (NGS) sequencing analysis.  (A) Consensus profile generated 
from phage-displayed LCDR3-HCDR3 peptide sequence.  Three clusters were enriched after 
three and four rounds of phage display selection.  Sequence is arranged from the N terminus to 
the C terminus.  (B) Frequency of the MaxPeptide from each cluster for third and fourth round 
of selection.	
	

5.1.4 Kinetic Analysis of hRad51 Fabs 

         Although potential hRad51 interaction Fabs can be enriched following phage display 

selection, there is the possibility that they represent false positives that do not interact with 

hRad51.  False positive binders may refer to non-binding phage or phage binding to the 

polystyrene surfaces of Maxisorp plate (often referred to as background binders), or even weak 

binding phage.  Additionally, some phage clones predominate because of their advantage in 

phage display propagation that allows them to outgrow other clones in the pool.  Recovery of 

such clones is not solely dependent on their affinity to the target.  To identify the true positive 

Fabs, it is necessary to use an additional strategy to identify true positive binders from the 

enriched phage display pool. 

         Octet® biolayer interferometry (BLI) analysis was used to identify true positive Rad51 

bound Fabs by monitoring biosensor-immobilized Fabs interaction with hRad51.  We expressed 

individual Fabs from the fourth round of enriched phage pool.  First, the phagemid pool after 

0	

0.05	

0.1	

0.15	

0.2	

0.25	

0.3	

0.35	

Cluster	1	 Cluster	2	 Cluster	3	

Fr
eq

ue
nc

y 

MaxPeptide 

Round	3	

Round	4	



	 49 

the fourth round of phage display was extracted from the phage-infected bacterial cells using 

Plasmid Miniprep Kit.  DNA encoding Fab fragments containing heavy and light chains were 

amplified from the phagemid pool (Section 4.2.3.1) and cloned into the pCW expression vector 

(Figure 4.2) using the Gibson Assembly cloning strategy (Section 4.2.5).  The resultant pCW-

Fab pool was transformed into E. coli BL21-DE3 (Section 4.3.4) and eighteen individual 

transformants were isolated for small-scale Fab expression (Section 4.5.1.3).  Supernatants 

containing Fabs were collected to determine binding to a Protein A biosensor using BLI 

(Section 4.5.2).  Protein A binds to the first constant domain (CH1) of correctly folded Fabs 

(Bouvet, 1994).  Three out of eighteen Fabs bound Protein A, designated Fab F1, F2, and F3 

(Figure 5.6).  Plasmids for F1, F2, and F3 were extracted from corresponding bacteria 

transformants (Section 4.3.3) and sequenced using the 3500 Genetic Analyzer (Table 5.1).  In 

agreement of NGS data, the sequence showed that these three Fabs are also enriched in NGS 

analysis. 

 

 
Figure 5.6 Binding of Anti-hRad51 Fabs  (F1 – F18) to Protein A 
Real-time binding of eighteen individual Fabs (F1 – F18) to Protein A was measured using 
Octet® BLI.  Protein A biosensors were immersed in the wells containing Fabs, and the 
wavelength shift (in nm) was recorded versus time (sec). 
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Table 5.1 Sequence for Anti-hRad51 Fabs (F1, F2, and F3). 
Fab LCDR3 HCDR3 

F1 CQQYSYYPL CARHAYYAGGSSHYYYYYGMDV 

F2 CQQGTYLPL CARTYSYASRGWYFDY 

F3 CQQYYAPL CARSWGGGSGYYAYYYYYMDY 

Fab, fragment antigen-binding; LCDR3, light chain complementarity-determining region 3; 
HCDR3, heavy chain complementarity-determining region 3.  Variable regions are italicized. 
 

5.2 Specific Aim 2: In vitro Characterization of Anti-hRad51 Fabs 

5.2.1 Expression and Purification of Anti-hRad51 Fabs (F1, F2, and F3) 

         Anti-hRad51 Fabs, Fab F1, F2, and F3, were expressed and purified and their in vitro 

binding kinetics determined.  Fab expression plasmids pCW-F1, pCW-F2, and pCW-F3 were 

transfected by electroporation into BL21-DE3 cells (Section 4.3.4).  Transformed cells were 

cultured in Overnight ExpressTM Instant TB Medium for 12 hours and Fabs were purified from 

whole cell lysates using HiTrap Protein L column.  Fabs were analyzed by SDS-PAGE (Figure 

5.7).  Approximately 10 mg of each Fab was obtained from 1 L of culture. 

 

 

 
Figure 5.7 SDS-PAGE Analysis of Anti-hRad51 Fabs 
Fabs F1, F2 and F3 were expressed in E. coli BL21-DE3 strain and purified using HiTrap 
Protein L column.  Purified Fabs were analyzed by SDS-PAGE and visualized by Coomassie 
blue staining.  Arrow indicates the expected molecular weight (MW) of the light and heavy 
chain of Fabs.  L is a protein MW ladder. 

5.2.2 Binding Affinity of Fabs F1, F2, and F3 to hRad51 

         To confirm that Fabs F1, F2, and F3 bound hRad51, we immobilized Fabs F1, F2, and F3 on 

Protein L biosensors.  Protein L binds to kappa light chains in Fabs with a KD less than 1 nM 

(Nilson et al., 1992).  We then immersed the biosensors in wells containing hRad51 and 
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analyzed the hRad51 interaction using Octet® BLI.  hRad51 was preferentially bound by Fab 

F2 and showed no interactions with Fab F1 and F3 (Figure 5.8).  To determine the dissociation 

constant (KD) of Fab F2 with hRad51, we immobilized Fab F2 on Protein L biosensor and 

immersed the biosensor in different concentrations of hRad51.  By monitoring the change in 

wavelength (nm) versus time, we obtained the kon, koff, and KD values (Figure 5.9).  Fab F2 

bound to hRad51 with a KD value of 8.10  ± 0.21 nM.  Despite phage F1, F2, and F3 being 

enriched from phage display selection against hRad51, Fab F1 and F3 were not capable of 

binding recombinant hRad51.  These results confirmed the presence of false positive binders 

enriched from phage display selection. 

 

 
Figure 5.8 Binding of Fabs F1, F2 and F3 to hRad51 
Real-time binding of Fabs F1, F2, and F3 to hRad51 was measured using Octet® BLI.  Fabs 
were immobilized on Protein L biosensors and immersed in the wells containing hRad51 (500 
nM).  The wavelength shift (nm) was recorded versus time (sec).  Empty sensor was used as 
negative control (-Ctrl). 
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 hRad51˙F2 

kon (1/Ms) 

koff (1/s) 

KD (nM) 

1.93x104 ± 4.32x102 

15.63x10-5 ± 3.23x10-6 

8.10  ± 0.21 

Figure 5.9 Kinetic Analysis of Fab F2 Binding to hRad51 
Fab F2 was immobilized on a Protein L biosensor and the biosensor was immersed in different 
concentrations of hRad51.  Octet® BLI measured their binding as wavelength shift (in nm) 
versus time (sec).  Kinetic parameters (kon and koff) and dissociation constants (KD) were 
determined by globally fitting a reference cell-subtracted concentration series to a 1:1 
(Langmuir) binding model. 

5.2.3 Binding Specificity of Fab F2 to hRad51  

         To confirm that Fab F2 bound hRad51 specifically (DE3)pLysS cells were transformed 

with empty vector or hRad51 expression plasmid.  hRad51 was detected by Fab F2 using 

Western analysis (Section 4.2.4) (Figure 5.10).  RecA protein is a central bacterial recombinase 

that possesses 30% common sequence identity with hRad51 (Shinohara et al., 1993), thus we 

also compared the binding of Fab F2 to recombinant hRad51 and RecA using Western analysis  

(Figure 5.10).  Fab F2 bound hRad51 but not other proteins in E. coli Rosetta(DE3)pLysS, or 

recombinant RecA. 
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Figure 5.10 Western Analysis for hRad51 Using Fab F2 
E. coli Rosetta(DE3)pLysS cells transformed with hRad51 expression plasmid (+) were 
induced to express by IPTG.  Cell lysates, or purified recombinant hRad51 and RecA were 
analyzed by polyacrylamide gel electrophoresis followed by Western analysis using IRDye® 
800CW dye-labeled Fab F2.  Arrow indicates the expected molecular weight (MW) of hRad51 
or RecA.  L is a protein MW ladder. 

5.2.4 Effect of Fab F2 on hRad51 DNA Binding Activity 

         To determine whether Fab F2 blocked the ability of hRad51 to interact with ssDNA, we 

used Octet® BLI.  We first determined the KD of hRad51 to ssDNA.  To do this, we 

immobilized 5’-biotinylated oligo(dT)36 onto a streptavidin biosensor and immersed the 

biosensor in different concentrations of hRad51 (Figure 5.11).  The KD of hRad51 for single-

stranded DNA was 27.60 ± 4.75 nM, which was similar to the KD reported previously for the 

interaction of hRad51 with oligo(dT)50 (Tombline et al., 2002). 

         Next, we developed a BLI assay to evaluate the ability of Fab F2 to inhibit hRad51 DNA 

binding activity.  In this assay, hRad51 was incubated with different concentrations of Fab F2 

for 30 minutes at room temperature.  5’-biotinylated oligo(dT)36 was immobilized onto a 

streptavidin biosensor and the biosensor was immersed in the Fab F2 / hRad51 mixture.  The 

wavelength shift (until the biosensor was fully saturated) was recorded.  Fab F2 inhibited 

hRad51 DNA binding activity in a nanomolar range, indicating that Fab F2 might bind near the 

DNA binding sites of hRad51 (Figure 5.12). 
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 hRad51˙oligo(dT)36 

kon (1/Ms) 

koff (1/s) 

KD (nM) 

3.25x104 ± 1.10x103 

7.26x10-4 ± 7.36x10-5 

27.60 ± 4.75 

Figure 5.11 Kinetic Analysis of Single Stranded DNA Binding to hRad51 
5’-biotinylated oligo(dT)36 was immobilized on a streptavidin biosensor and the biosensor was 
immersed in different concentrations of hRad51.  Octet® BLI measured their binding as 
wavelength shift (in nm) versus time (sec).  Kinetic parameters (kon and koff) and dissociation 
constants (KD) were determined by globally fitting a reference cell-subtracted concentration 
series to a 1:1 (Langmuir) binding model. 
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Figure 5.12 Fab F2 Inhibits hRad51 DNA Binding 
hRad51 (0.5 µM) was incubated with indicated concentrations of Fab F2 for 30 minutes at room 
temperature.  5’-biotinylated oligo(dT)36 was immobilized onto a streptavidin biosensor and the 
biosensor was immersed in hRad51/Fab F2 mixtures.  When the biosensor was fully saturated, 
the response for each condition was determined by subtracting the hRad51-free control of that 
condition.  The response was normalized to the condition in the absence of Fab F2, which was 
expressed as 1.0.  Error bars represent standard deviation from three independent measurements. 

5.2.5 Effect of Fab F2 on hRad51 ATPase Activity 

         We investigated whether Fab F2 inhibits hRad51 ATPase activity.  To do this, we 

monitored the release of inorganic phosphate by ATP hydrolysis over the time using the 

malachite green assay as an indicator of hRad51 ATPase activity (Ishida et al., 2009).  We 

found that hRad51 ATPase activity was not inhibited by Fab F2 in the presence or absence of 

DNA (Figure 5.13). 
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Figure 5.13 Fab F2 does not inhibit hRad51-mediated ATP Hydrolysis 
ATP hydrolysis reaction was carried out with hRad51 and Fab F2 in different ratios.  The 
release of inorganic phosphate by hRad51 ATP hydrolysis was monitored using the malachite 
green assay.  Phosphate (Pi) production rate was calculated for each reaction.  Fab F2 alone did 
not hydrolyze ATP.  Error bars represent standard deviation from at least three independent 
measurements.  *P<0.05. 

	

5.3 Specific Aim 3: Development of Intracellular Anti-hRad51 Antibody	

         So far we have demonstrated the in vitro specificity, affinity and the inhibitory effects of 

anti-hRad51 antibody on purified hRad51 protein.  However, because hRad51 is an intracellular 

target, if anti-hRad51 antibody were to elicit its effects, it should be able to cross mammalian 

cell membrane.  In this specific aim, our initial attempt was to express anti-hRad51 antibody in 

a scFv-Fc format inside HEK293T cells because scFv-Fc can increase antibody stability in a 

reducing intracellular environment by avoiding the formation of inter-molecular disulfide-

bonds.  It is likely chemotherapy will benefit more from anti-hRad51 scFv-Fc than Fab.  

However, our subsequent experiments showed that this anti-hRad51 svFv-Fc could not be 

purified when fused to a protein transduction domain, which limits the direct application of 

scFv-Fc.  Therefore, our second attempt was to introduce anti-hRad51 Fab into the cytosol from 

outside the cell by fusing Fab to a protein transduction domain. 
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5.3.1 Effect of Anti-hRad51 scFv-Fc on HEK293T Cell Sensitivity to MMS 

         In collaboration with Iprogen Biotech Inc., we cloned the CDR sequences from Fab F2 

into scFv (single-chain variable fragment) format in which the VH and VL domains are joined 

with a flexible polypeptide linker preventing dissociation.  The scFv was cloned into a 

mammalian expression vector as a fusion to an Fc (crystallisable fragment) domain, designated 

DNA837 plasmid (Figure 4.4).  Using a Lipofectamine 2000-mediated transient cell 

transfection strategy (Section 4.6.2), DNA837 plasmid was transfected into HEK293T cells.  

Cells were cultured for 48 hours and a portion of cells were lysed for Western analysis to 

confirm the expression of DNA837 in HEK293T cells (Figure 5.14). 

         We examined whether DNA837 could enhance HEK293T cell sensitivity to DNA-

damaging agent MMS.  We used the clonogenic survival assay to assess sensitivity to MMS in 

the presence or absence of DNA837.  DNA837-transfected HEK293T cells were treated with 

concentrations of MMS ranging from 0 to 100 µM.  Colonies were grown for 7 days and 

enumerated by light microscopy.  The number of colony-forming unit (cfu) was significantly 

decreased when HEK293T cells were transfected with DNA837 in the absence of MMS, 

indicating that anti-hRad51 scFv-Fc alone can inhibit HEK293T cell proliferation (Figure 5.15).  

Moreover, DNA837-transfected HEK293T cells became 4.48-fold more sensitive to 20 µM of 

MMS.  100 µM of MMS in combination with DNA837 completely inhibited HEK293T colony 

formation (Figure 5.15).  These results indicated that anti-hRad51 scFv-Fc could significantly 

potentiate the activity of MMS to inhibit the cell proliferation. 

 

 

 
Figure 5.14 Expression of Anti-hRad51 scFv-Fc in HEK293T Cells 
HEK293T cells were transfected with DNA837 encoding anti-hRad51 scFv-Fc.  Western 
analysis was used to validate the expression of scFv-Fc.  Cell lysates of the selected transfected 
cells were immunoblotted using Anti-IgG antibody.  pcDNA-transfected 293T cell were used as 
control.  L is a protein molecular weight (MW) ladder. 
 
 

MW 
kDa 

55 

L DNA837 

70 

pcDNA 

scFv-Fc	



	 58 

 
Figure 5.15 Anti-hRad51 scFv-Fc Sensitizes HEK293T Cell to Methyl Methanesulfonate 
HEK293T cells transiently expressed anti-hRad51 scFv-Fc DNA837 were exposed to indicated 
concentrations of methyl methanesulfonate (MMS).  Cells were cultured for 7 days post MMS 
treatment.  Colonies were stained with 0.3% crystal violent and enumerated by light 
microscopy.  pcDNA transfected HEK293T cell was used as control.  Error bars represent 
standard deviation from three independent measurements.  **P<0.005 (DNA837 with MMS 0 
µM and 20 µM vs. pcDNA). 

5.3.2 Fusing a Membrane Import Tag (Itag) onto C-terminus of Anti-hRad51 Fab F2 

         Iprogen Biotech Inc. developed a proprietary membrane import tag (Itag), which 

promotes intracellular protein transduction when fused to a protein in a recombinant expression 

system (Patent No. WO 2014005219 A1).  The Itag consists of a secretion signal peptide 

sequence in combination with a cleavage inhibition sequence.  This combination efficiently 

blocks cleavage of the secretion signal peptide on a recombinant protein and halts secretion of 

the protein from a cell.  Itag shows enhanced efficiency as a protein transduction domain when 

the secretion peptide sequence precedes the cleavage inhibition sequence in the N to C-terminus 

direction.  Although the mechanism for the transduction efficiency is unknown, it appears that 

the intracellular delivery is achieved through receptors in a recipient cell surface.  To determine 

whether Itag facilitates the transport of Fab F2 across the cell plasma membrane to reach cytosol, 

we fused the Itag to the C-terminus of Fab F2, designated FabItag I2 (Figure 5.16).  FabItag I2 

sequence was cloned into pCW-Itag vector  (Figure 4.3), designated pCW-I2.  To overexpress 

FabItag I2, plasmid pCW-I2 was transfected by electroporation into BL21-DE3 strain.  

Transformed cells were cultured in Overnight ExpressTM Instant TB Medium for 12 hours and 
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Fab I2 was purified from whole cell lysates using HiTrap Protein L column.  A fraction of Fab 

I2 solution was analyzed by SDS-PAGE (Figure 5.17).  Approximately 12 mg of FabItag I2 was 

obtained from 1 L of culture. 

 

 

 
Figure 5.16 Schematic View of FabItag I2 Molecule 
The import tag (Itag) was fused to the end of C-terminus of Fab F2.  N, N-terminus; VL, 
variable light chain; CL, constant light chain; VH, variable heavy chain; CH1, constant heavy 
chain 1; C, C-terminus; LCDR, light chain complementarity-determining region; HCDR, heavy 
chain complementarity-determining region.  Both Light chain and heavy chain contain three 
variable regions. 
 
 
 
 
	

 
Figure 5.17 Coomassie-stained SDS-PAGE Analysis of Anti-hRad51 FabItag I2 
FabItag I2 was expressed in E. coli BL21-DE3 strain and purified using HiTrap Protein L 
column.  The purified FabItag I2 was analyzed by polyacrylamide gel electrophoresis and 
visualized by Coomassie blue staining.  Arrow indicates the expected size of the light and 
heavy chain of FabItag I2.  L is a protein molecular weight (MW) ladder. 

 

5.3.3 Binding Affinity of FabItag I2 to hRad51 

         To determine the dissociation constant (KD) of FabItag I2 with hRad51, we immobilized 

FabItag I2 on Protein L biosensor and immersed the biosensor in different concentrations of 

hRad51.  FabItag I2 bound tightly to hRad51 with KD value of 18.20  ± 0.47 nM (Figure 5.18), 

which is slightly decreased compared to Fab F2 and hRad51 binding (8.10 ± 0.21 nM). 
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 hRad51˙I2 

kon (1/Ms) 

koff (1/s) 

KD (nM) 

3.71x104 ± 3.97x102 

6.58x10-4 ± 1.41x10-5 

18.20  ± 0.47 

Figure 5.18 Kinetic Analysis of FabItag I2 Binding to hRad51 
FabItag I2 was immobilized on a Protein L biosensor and the biosensor was immersed in 
different concentrations of hRad51.  Octet® BLI measured their binding as wavelength shift (in 
nm) versus time (sec).  Octet® BLI measured their binding as wavelength shift (in nm) versus 
time (sec).  Kinetic parameters (kon and koff) and dissociation constants (KD) were determined 
by globally fitting a reference cell-subtracted concentration series to a 1:1 (Langmuir) binding 
model. 

5.3.2 Internalization of FabItag I2 into HEK293T Cells 

         In order for anti-hRad51 FabItag I2 to inhibit hRad51 it needs to cross mammalian cell 

membrane.  To determine if FabItag I2 can be internalized into HEK293T cells, we incubated 

cells with IRDye® 800CW dye-labeled Fab F2 and FabItag I2 and analyzed by fluorescent 

microscopy.  After 2 hours of cellular exposure to the Fab F2 and FabItag I2, no Fab seemed to 

be internalized in both cases.  After 8 hours an increase in FabItag I2 fluorescence signal was 

observed (Figure 5.19 I2).  FabItag I2 was bound to the plasma membrane while no punctuate 

staining of the cytosol was observed for Fab F2 (Figure 5.19 F2).  After 24 hours of incubation, 

FabItag I2 was not only bound to the plasma membrane but had entered the cells.  Under the 

same condition, no Fab F2 fluorescence signal was observed using fluorescent microscopy 

although flow cytometry indicated Fab F2 might bind or enter the cells (Figure 5.20).  
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Furthermore, quantitative analysis using flow cytometry indicated that Itag significantly 

enhanced intracellular protein transduction efficiency  (Figure 5.20). 

 

     

     

     
Figure 5.19 Internalization of Fab F2 and FabItag I2 into HEK293T Cells 
HEK293T cells were incubated with IRDye® 800CW-labeled Fab F2 (40 µM) or FabItag I2 (40 
µM), respectively, for indicated hours and fluorescence images were taken using a fluorescent 
microscopy.  PBS was used as control.  Bars indicate 200 µM. 
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(A) 

   
 

(B) 

 
Figure 5.20 Comparison of Fab F2 and FabItag I2 Internalization into HEK293T Cells 
HEK293T cells were incubated with indicated concentrations of IRDye® 800CW dye-labeled 
Fab F2 or FabItag I2.  (A) IRDye® 800CW fluoresce was measured using flow cytometry after 
24 hours.  (B) Mean fluorescence intensity was compared between Fab F2 and FabItag I2.  Error 
bars represent standard deviation from three independent measurements. 
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5.3.4 Effect of Anti-hRad51 FabItag I2 on HEK293T Cell Sensitivity to MMS 

         We examined whether FabItag I2 could enhance HEK293T cell sensitivity to the DNA-

damaging agent MMS.  HEK293T cells were treated with 80 µM of MMS and concentrations 

of FabItag I2 ranging from 0 to 40 µM, both alone and in combination.  We used the clonogenic 

survival assay to assess sensitivity to MMS in the presence or absence of hRad51 Fabs.  

Colonies were allowed to grow for 7 days and were enumerated by light microscopy.  Although 

the number of colony-forming unit (cfu) was not changed significantly when HEK293T cells 

were treated with FabItag I2 alone, a decreasing trend in the number of cfus was observed when 

HEK293T cells were treated with FabItag I2 and MMS.  Moreover, 10 and 40 µM FabItag I2 in 

combination with MMS significantly inhibited colony formation, indicating that FabItag I2 

enhances the cell sensitivity to MMS (Figure 5.21). 
 

 

Figure 5.21 Anti-hRad51 FabItag I2 Sensitizes HEK293T Cell to Methyl 
Methanesulfonate 
HEK293T were treated with methyl methanesulfonate (MMS) alone, or in combination with 
Fab F2 (or FabItag I2) with indicated concentration in parentheses (µM).  Cells were cultured 
for 7 days and colonies were stained with 0.3% crystal violent and enumerated by light 
microscopy.  Cells without addition or with PBS addition were used as negative and diluent 
control, respectively.  Error bars represent standard deviation from three independent 
measurements. 
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Chapter 6 Discussion 
         Approximately 40% of Canadians are expected to develop cancer during their lifetimes 

and chemotherapy is currently the predominant therapeutic strategy for many cancer treatments 

(www.cancer.ca).  The efficacy of many chemotherapeutics is based on damaging the DNA of 

cancer cells by inducing adducts or single- or double-strand breaks (DSBs) in DNA.  However, 

in ~50% of cases cancer cells survive the chemotherapy via varieties of mechanisms, including 

upregulation of DNA repair proteins (Hannay et al., 2007).  It was reported that hRad51, a 

central DNA repair and recombinase factor in homologous recombination (HR), is almost 

ubiquitously overexpressed in cancer cells (Maacke, Jost, et al., 2000; Hannay et al., 2007; 

Klein, 2008).  hRad51 overexpression is implicated with the required drug resistance after 

chemotherapy (Vispe et al., 1998).  Therefore, targeted inhibition of hRad51 has been explored 

as a way to enhance the anticancer activity of the chemotherapeutics and slow down drug 

resistance. 

         Although several small molecule hRad51 inhibitors have been isolated by screening large 

collections of commercialized chemical compounds, most of them are limited to in vitro 

applications.  The aim of this thesis work was to generate a specific antibody with high affinity 

to hRad51 because target-specific antibodies are reported to have the potential to neutralize 

antigen proteins in vivo (Antman and Livingston, 1980).  We used phage display as a central 

technique to identify anti-hRad51 antibodies because this technique can generate specific 

antibodies more efficiently and cost-effectively compared to conventional mouse hybridoma 

technique.  Although antibody library diversities may be impaired as a result from loss of DNA 

during library construction, the final antibody library - by virtue of its ability to screen up to 

1010 phage to select those with antigen binding – offers sufficient depth of coverage to find 

antigen-specific antibodies even if they are rare in the natural repertoire. 

         To generate Fabs using phage display, we first expressed and purified hRad51.  In our 

initial attempts, we found that hRad51 was expressed at very high levels in BL21-DE3, 

however most of the expressed protein was found in inclusion bodies.  The remaining soluble 

protein resulted in relatively low yield.  In order to increase the yield of soluble protein from 

bacteria we used Rosetta (DE3) E. coli for hRad51 expression under different IPTG induction 

conditions.   Rosetta (DE3) strain is BL21 derivative designed to enhance the expression of 
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eukaryotic proteins that contain codons rarely used in E. coli.  Using this strain, more than 90% 

of the protein was still found in the insoluble fraction.  However, the soluble fraction contained 

2-4 mg of protein per 900 mL of bacterial culture.  The DNA binding and ATPase activities of 

hRad51 were characterized, confirming the correct hRad51 activity. 

          After four rounds of antibody phage selection, approximately one thousand unique 

potential binders were retained from the naïve Fab library containing 109 -1010 different clones.  

A great majority of initial clones that do not bind to the target protein or any other components 

of the screening system were removed during multiple washing steps.  However, the selected 

binders may still represent false positive clones binding to other components of the screening 

system that predominate during rounds of panning selection.  Those false positive clones can be 

classified as selection-related target-unrelated clones, and were categorized into three main 

groups in our study, including contaminants in the target sample, solid phase (Maxisorp plate) 

and propagation-related target-unrelated clones.  One possible explanation for the presence of 

non-specific binders is the presence of impurities in the target protein preparations, such as cell 

debris including DNA, protein aggregates or other components of cell growth media.  A second 

possibility for non-specific binders is that to some extent virtually all proteins or non-protein 

targets absorb nonspecifically and noncovalently to polystyrene surfaces of Maxsorp plate via 

hydrogen bonds and nonpolar interactions (Adey et al., 1995).  Likewise, phage clones 

displaying certain Fab fragments show greater affinity for plastic surface.  To prevent 

interactions between library phage and solid surface, we blocked the target-immobilized surface 

with BSA.  However, blocking unoccupied surfaces did not necessarily prevent the 

predominance of background binders.  For example, peptide YSYY-

HAYYAGGSSHYYYYYGMDV (from NGS cluster 1) has the highest enrichment in 

frequency from round three to round four.  However, this peptide is thought as a background 

binder because it has been isolated by several members in our lab from the same Fab-library 

using completely different target proteins.  Another possibility is that some phage clones 

predominate because of their advantage in propagation that allows them to outgrow other 

clones in the pool.  Therefore, recovery of such non-specific clones is independent of their 

affinity binding to the target.  During the panning, we concluded that for some clones the faster 

propagation was because a small DNA fragment was deleted in the phagemid, which might be 

shortening the DNA replication time, accelerating the process of phage particle assembly.  
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Within three or four rounds of selection, these clones predominated although they were not 

related to hRad51 or even more, they lose the capability to correctly express Fab on the surface 

of phage particles (Figure 5.6). 

         The next aim of this thesis was to characterize the specificity and affinity of the Fab to 

hRad51 selected during the phage display selection using recombinant hRad51 as target.  Three 

potential phage clones (F1, F2 and F3) were predominant from numerous background clones 

after several rounds of panning selection.  Sequence analysis showed that these three phage 

clones came from those three predominant clusters identified by NGS.  However, kinetic assay 

showed that only Fab F2 possesses high binding affinity for hRad51.  When comparing the 

kinetic assay with NGS results, there was some correlation.  The Fab (GTYL-

TYSYASRGWYFDY from cluster 2) that had a higher frequency was more likely to bind 

hRad51 compared to the Fab from cluster 3 (SYSY-YYHYVYGYYSSPYYYDY).  This result 

suggests that following phage display selection with NGS analysis can accelerate the 

identification of specific antibodies. 

         Because hRad51 mediated homologous recombination involves two hRad51 domains, a 

ssDNA and dsDNA binding N-terminal domain and an ATP binding C-terminal domain 

(Aihara et al., 1999), we can inhibit hRad51 by targeting its DNA binding site and ATPase 

activity.  The DNA binding assay showed that Fab F2 inhibited hRad51 DNA binding activity, 

indicating that Fab F2 might bind near the DNA binding sites of hRad51. 

         When analyzing the ATPase activity of hRad51, we found that the ATPase activity was 

not inhibited by Fab F2 in either the presence or absence of DNA.  One possible explanation 

could be that, for panning selection, we employed the most straightforward approach to 

immobilize antigen where hRad51 protein was directly absorbed onto the surface of Maxisorp 

plate.  This approach does not depend on any protein modification, but requires some 

conformational change of protein.  When the protein is absorbed to the Maxisorp plate surface, 

it exposes hydrophobic residues toward the plastic (Butler et al., 1992).  Crystal structure of a 

Saccharomyces cerevisiae Rad51, sharing conserved core domain with hRad51, shows that 

ATPase site is located at the interface between two protomers (Conway et al., 2004).  It is 

highly possible that the ATPase site is hidden from exposure or changed conformation to some 

extend when immobilized onto plate.  Therefore, the antibody raised in the panning selection 

may not recognize the ATPase active site.  The fact that hRad51 was denatured and recognized 
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by Fab F2 in the Western analysis might also indicated that Fab F2 recognizes an structural 

epitope in hRad51 rather than a conformational epitope in hRad51. 

          As part of the in vitro characterization of Fab F2 in this thesis work, we have demonstrated 

the specificity, affinity and the inhibitory effects of Fab F2 on hRad51.  However, if anti-

hRad51 antibodies were to elicit their effects, they should be able to cross mammalian cell 

membrane in order to physically interact with hRad51.  To test the efficacy of Fab F2 to inhibit 

the hRad51 activity intracellularly, we used clonogenic survival assay to monitor the cell 

response to DNA damage.  First, we cloned the CDR sequences from Fab F2 into a mammalian 

expression vector in a scFv format in which the VH and VL domains are joined with a flexible 

polypeptide linker preventing dissociation.  The scFv was cloned into a mammalian expression 

vector as a fusion to an Fc (crystallisable fragment) domain, designated DNA837 plasmid.  

Western analysis confirmed the expression of anti-hRad51 scFv-Fc from DNA837 in HEK293T 

cells.  The number of colony-forming unit (cfu) was significantly decreased when HEK293T 

cells were transfected with DNA837 in the absence of MMS, indicating that anti-hRad51 scFv-

Fc alone can inhibit HEK293T cell proliferation.  Moreover, DNA837-transfected HEK293T 

cells became significantly more sensitive to low concentration of MMS.  High concentration of 

MMS in combination with DNA837 completely inhibited HEK293T colony formation.  These 

results indicate that anti-hRad51 scFv-Fc can significantly potentiate the activity MMS to 

inhibit the cell proliferation. 

         Despite the insights that the above clonogenic survival assay has provided for anti-

hRad51 antibody, expressing antibodies inside cells is inconvenient for application.  For 

intracellular antibody to become a broadly applicable technology it requires a direct means of 

introducing antibodies into large cell populations.  However, because of the selective 

permeability of the cell membrane, a larger molecule like a Fab is not able to cross the cell 

membrane under normal conditions.  Therefore, a delivery system to transport Fabs inside cells 

is necessary.  To achieve this goal, Fab F2 was fused with a membrane import tag designated as 

FabItag I2.  Itag shows intracellular protein transduction properties when fused to a protein 

(Patent No. WO 2014005219 A1).  It consists of a secretion signal peptide sequence in 

combination with a cleavage inhibition sequence.  This combination efficiently blocks cleavage 

of secretion signal peptide in a recombinant protein and also halts secretion of the protein from 

a cell.  Moreover, Itag can work efficiently as a protein transduction domain when the secretion 
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signal peptide sequence precedes the cleavage inhibition sequence in an N- to C-terminus 

direction.  Although a particular theory for the superior transduction efficiency is unknown, it 

appears that the intracellular delivery is achieved through receptors in a recipient cell surface.  

BLI binding analysis showed that FabItag I2 retained Fab F2 affinity to hRad51, indicating that 

the binding capacity of a Fab was not affected by the fusion of Itag.  In order to ensure that 

FabItag I2 crosses the cell membrane, HEK293T cells were incubated with IRDye® 800CW 

dye-labeled FabItag I2 and signal detected by fluorescent microscopy.  The results show that 

FabItag I2 started internalization into HEK293T cells after 8 hours and accumulated inside 

cytoplasm after 24 hours.  In agreement with this result, quantitative analysis using flow 

cytometry indicated that Itag significantly promotes intracellular protein transduction efficiency.  

Importantly, clonogenic survival assays showed that when HEK293T cells were treated with 

FabItag I2 and MMS simultaneously, the number of colony formed decreased significantly.  

Since colony formation is a measure of cell proliferation, this result indicates that anti-hRad51 

antibody may have the ability to sensitize those cancer cells with hRad51 overexpression to 

DNA damaging therapies. 

         Recently several hRad51 inhibitors were reported to exhibit inhibitory effect on the 

biochemical activities of hRad51 (Ishida et al., 2009; Takaku et al., 2011; Budke et al., 2012; 

Budke et al., 2013).  However, their in vivo experiments were not continued either because of 

inhibitor non-specificity or high cellular toxicity.  In this project, we developed more potent, 

specific, and less toxic anti-Rad51 antibody using phage display technology.  Our data 

demonstrate that anti-hRad51 antibody potentiates the anti-cancer activity of MMS in vivo.  

Although more experiments are needed for anti-hRad51 antibody in hRad51 overexpressing 

cancer cells, our data have shown that anti-hRad51 antibody has the potential to improve the 

efficacy of chemotherapies of cancer and development of novel combination cancer therapies. 

         From the methodology perspective, we have demonstrated a number of things in this 

project.  First, we show that phage display technology is feasible and efficient to discover novel 

inhibitors for intracellular targets.  Second, phage display combined with NGS and BLI analysis 

significantly accelerates the selection process, which can provide an insight to establish 

standard protocol for discovery of antibody inhibitors.  Third, we provide evidence that Fab can 

be introduced into the cytosol from outside the cell by fusing Fab to a protein transduction 
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domain, and function as intracellular inhibitors of protein activity.  The techniques described in 

development of these Fabs could be transferable to a variety of intracellular targets. 
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Chapter 7 Conclusions and Future Directions 
         hRad51 protein was successfully over-expressed, purified from E. coli Rosetta (DE3) 

cells using nickel affinity column.  Combined with technology of NGS, we were able to select a 

hRad51 specific Fab F2 from a large synthetic Fab-phage library (~1x1010 independent clones) 

using phage display technology.  We found that Fab F2 has high binding affinity and specificity 

to hRad51.  In vitro ATPase studies showed that Fab F2 does not inhibit hRad51 ATPase 

activity in the presence or absence of DNA.  However, DNA binding assay showed that Fab F2 

inhibits hRad51 DNA binding activity, indicating that Fab F2 may bind near the DNA binding 

sites of hRad51.  In addition, we cloned the CDR sequences from Fab F2 into a mammalian 

expression vector as a format of scFv-Fc.  Clonogenic survival assay showed that anti-hRad51 

scFv-Fc increases sensitivity of HEK293T cells to DNA-damage agent MMS.  Importantly, we 

were able to transport Fab across the cell membrane into cytoplasm by fusing Fab into a 

membrane import tag.  We found that anti-hRad51 Fab F2 significantly increased the sensitivity 

of HEK293T cells to MMS. 

         Despite the encouraging results, many questions could be addressed for the future 

improvements.  First, the yield of recombinant hRad51 protein is relatively low until E. coli 

Rosetta (DE3) is used for protein expression.  Also DNA may remain bound hRad51 protein 

during purification.  The expression conditions and purification procedures need to be 

optimized.  We can try a wide spectrum of bacterial strains, like BL21(DE3)-pLysS, BL21 Star-

pLysS, or Rosetta pLysS, to determine which strain produces the best yield of recombinant 

hRad51.  Besides, after the cell pellet was homogenized but before nickel affinity purification, 

DNase enzyme should be added into hRad51 protein solution to degrade any remaining 

bacterial DNA in the solution. 

        Furthermore, direct absorption of the purified hRad51 on a Maxisorp plate may change the 

original protein conformation.  As was investigated in this study, hRad51 ATP binding site may 

be hidden from exposure or changed conformation to some extend when immobilized onto 

plate.  To address this question, we can try to covalently immobilize hRad51 to the solid phase 

using chemistry reactive on accessible lysine at the protein surface.  Alternatively, we can 

perform selection against biotinylated antigen to avoid the adsorption process as described 

previously by Habicht (Habicht et al., 2007).  Both approaches have the potential to select 
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hRad51 specific binders able to bind a structural epitope of the target. 

         Since the membrane import tag from iProgen significantly promotes Fab F2 transduction 

efficiency into HEK293T cells, studies should be performed to investigate the internalization of 

Fab across a wider spectrum of cancer cell lines.  Also intracellular effects of Fab F2 in 

hRad51-related cancer cells should be investigated, such as breast cancer, pancreatic cancer, 

head and neck, invasive breast cancer as well as non-small cell lung cancer.  Since these cancer 

cells are all reported to exhibit elevated levels of hRad51 expression, and hRad51 is the target 

of Fab F2, the activity of Fab F2 in these cells are worth investigation. 

         Finally, the intracellular activity of other forms of anti-hRad51 antibody should be 

investigated.  As was performed in this study, when CDR sequences from Fab F2 were cloned 

into a mammalian expression plasmid in an scFv-Fc format followed by expression inside 

HEK293T cells, the cells exhibited elevated sensitivity to DNA-damaging agent.  Although we 

have difficulties in producing scFv-Fc with a protein transduction domain in mammalian cells, 

we can try to engineer smaller antibody fragment scFv to improve production in bacterial 

expression system.  Similar to scFv-Fc, scFv can increase antibody stability in a reducing 

intracellular environment by avoiding the formation of inter-molecular disulfide-bonds.  It is 

likely chemotherapy will benefit more from anti-hRad51 scFv.  
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