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Introduction  
Recently in our laboratory we needed a reliable 
and relatively simple source of aqueous solu-
tions of [11C]CO2. We examined various methods 
of trapping [11C]CO2 gas both in solution and on 
ion exchange resins, followed by elution into 
aqueous phase. We favor simple methods that 
have high trapping and elution efficiencies and 
produce a highly concentrated solution. Fur-
thermore, we desired methods that would min-
imize the use of hazardous reagents and materi-
als with respect to both handling and disposal. 
We also considered the formulation of the final 
solution in terms of chemical compatibility with 
contacted materials, working with the assump-
tion that dilute bicarbonate or carbonate solu-
tions will have little reactivity with many materi-
als. In a phantom, compatibility with materials 
(i.e. plastics, glues, metals, etc.) is important (1-
4), while in (bio)geochemical studies – where 
transport of carbon is important – the chemical 
form of the radiolabelled molecule is important, 
but compatibility must be determined on a case-
by-case basis (5-7). 
 
Small medical cyclotrons can easily produce 
carbon-11 as gaseous [11C]CO2, and various 
methods are utilized to incorporate carbon-11 
into solution, often with unfavorable resource 
requirements, costs, or chemical properties. 
Commonly [11C]CO2 gas is bubbled through a 
strong base, forming the carbonate anion; but 
neutralizing a strong base (as to avoid special 
handling or disposal requirements) requires a 
large volume of diluent or buffer; or a very pre-
cise addition of acid – which if done improperly 
– may lead to an acidic pH and subsequent loss 
of [11C]CO2 from solution (8,9). Alternatively, 
[11C]CO2 (or [11C]CH4) can be converted to 
[11C]CH3I at  high-yield, but requires specialized, 
expensive radio-synthesis equipment (10-12). 
[11C]CH3I can then be trapped in DMSO (albeit 
providing a volatile and hazardous solution) or 
used as a synthon en route to water soluble 
compounds such as [11C]choline (13). Finally, 
leftover radiolabelled radiopharmaceuticals 
from a carbon-11 imaging experiment could be 
used, but chemical compatibility (i.e. lipophilici-
ty) of the radiolabelled compound may be of 
concern.  

 
Carbon dioxide gas will dissolve with a solubility 
of 1.5 g/L at STP (9) and slowly react with water 
to generate carbonic acid (H2CO3), a weak acid.  
 
 

 
 
 
Passing [11C]CO2 through a base-activated ion 
exchange cartridge, the [11C]CO2 reacts with 
hydroxide ions to form [11C]carbonate which is 
bound to the resin due to its higher selectivity 
for carbonate than hydroxide (14). Elution with 
excess bicarbonate displaces [11C]carbonate and 
neutralizes any remaining hydroxide, providing a 
11C aqueous solution that is mildly basic, chemi-
cally non-hazardous, and very concentrated.  
 
 

 
 
 
Material and Methods  
[11C]CO2 gas trapping efficiency was evaluated 
for solutions and base-activated ion exchange 
resins. The gas was delivered either rapidly in a 
high-flow bolus directly from the cyclotron tar-
get or slowly in a low-flow helium stream during 
heating of a carbosieves column. Elution effi-
ciency of ion exchange cartridges were evaluat-
ed for both fraction of trapped activity eluted 
and volume of solution needed for elution. 
 
[11C]CO2 was produced via the 14N(p,α)11C reac-
tion on a CTI RDS111 – 11 MeV cyclotron at the 
Lawrence Berkeley National Laboratory’s Bio-
medical Isotope Facility. The 7 mL target is pres-
surized to 315 psi with 1% O2/N2 gas, equating 
to 150 mL gas at STP. For direct-from-target 
trapping experiments, the target was decom-
pressed and routed to the cartridge via 50 feet 
of 0.020” I.D. tubing until the target falls to at-
mospheric pressure (~55 seconds) providing an 
inhomogeneous flow – a short rapid burst of 
flow followed by a longer low-flow bleed. For 
helium-eluted experiments, the [11C]CO2 was 
unloaded from the cyclotron target and trapped 



 

on a room-temperature carbosieves column 
(15). Target gases were subsequently flushed 
from the column for 30 seconds with  helium at 
50 mL/min. After heating the column to 125 °C 
without gas flow, [11C]CO2 was eluted off the 
column in helium at 15 mL/min. 
 
[11C]CO2/He was bubbled through 9 aqueous 
and 2 organic solutions to test for trapping effi-
ciency in a slow, steady helium stream at 15 
mL/min (sodium hydroxide (0.96M, 0.096M, 
0.0096M), sodium bicarbonate (1.14M, 0.57M, 
0.057M), sodium carbonate (2.0M, 1.0M, 
0.10M), ethanol, and DMSO (2mL ea.). An Asca-
rite-filled cartridge was attached to trap any 
untrapped [11C]CO2. Measures of radioactivity 
were made using a Capintec CRC-15R dose cali-
brator. Trapping efficiency for solutions is calcu-
lated as the fraction of radioactivity captured in 
solution relative to the sum of the solution and 
the Ascarite trap. 
 
Three different commercially available, ion ex-
change cartridges were evaluated for trapping 
and elution efficiencies. FIGURE 1 shows a photo-
graphic comparison of the physical size and 
shapes of the cartridges as well as a X-ray com-
puted tomography (CT) cross sectional view of 
the internal ion exchange resin volume and dead 
volume of the cartridges.  
 

 
FIGURE 1. Photo and X-Ray of IX Cartridges (L-R, Alltech 
IC-OH, ORTG, Waters QMA) 
 
All cartridges were activated with 1 mL of 1 N 
aqueous NaOH followed by passing 10 mL deion-
ized water then 10 mL of air through the car-
tridge.   
 
In both direct-from-target (n = 4) and helium-
stream experiments (n = 3 or 4), cartridges were 
connected to [11C]CO2 delivery lines via Luer 
connections. The gas exiting the cartridge 
passed through an empty 3 mL crimp-top vial as 
a liquid trap en route to an Ascarite trap on the 
vent needle as described above. Trapping effi-
ciency for cartridges is calculated as the fraction 
of radioactivity captured on the cartridge rela-
tive to the sum of the cartridge, the empty vial, 
and the Ascarite trap. 
 

Cartridges were eluted with 0.5 mL of saturated 
sodium bicarbonate solution (1.14 M @ 20°C) 
followed by 9.5 mL water and 10 mL air. Elution 
efficiency is calculated as the fraction of radioac-
tivity eluted in 10 mL relative to the sum of the 
spent cartridge following elution and the 10 mL 
eluate (Equation 5). The pH of the eluate was 
measured using 0-14 pH test strips. 
 
Results and Conclusion  
The trapping of [11C]CO2 in all solutions was less 
than 70% of the total radioactivity with the ex-
ception of the 0.96 M and 0.096 M NaOH. With 
a higher concentration of base driving equilibri-
um towards carbonate stability, it could be ex-
pected that the most basic solution had the best 
trapping efficiency, but this attribute also means 
it is least desirable solution to work with from a 
hazardous material or chemical compatibility 
perspective.  
 
When [11C]CO2 was delivered in a helium stream, 
all three cartridges performed at near 100% 
efficiency, as shown in FIGURE 4. With higher 
flow, direct-from-target delivery, the cartridges 
trapped [11C]CO2 with a wider range of efficien-
cies: ICOH (99 ± 1 %), ORTG (90 ± 2 %), and QMA 
(79 ± 4 %). Elution resulted in > 99 % release of 
carbon-11 activity for both QMA and ORTG car-
tridges, but only 39 ± 3 % release from the ICOH 
cartridge. Elution efficiency of the trapped radi-
oactivity (Equation 5) was independent of the 
method of [11C]CO2 delivery. Across all cartridges 
and delivery methods, the eluate was at about 
pH = 10. 
 
We recommend that the ORTG cartridge be used 
for trapping of [11C]CO2 gas with elution by > 300 
µL of saturated bicarbonate solution. This rec-
ommendation is based on the better trapping 
for ORTG cartridges compared to the QMA car-
tridges in the direct-from-target [11C]CO2 deliv-
ery method and the smaller volume needed for 
elution of all trapped carbon. This method excels 
based on its simplicity, adaptability to automa-
tion, low-cost ($5/cartridge), and observations 
that a single ORTG cartridge suffers no loss of 
performance after multiple uses. A potential 
disadvantage to this method is that it involves 
using a carbon-containing eluent, which means 
that this method cannot be used for imaging 
experiments that require high specific activity. 
However, considering the eluate is a mildly basic 
aqueous solution, we expect that it will be com-
patible with a wide variety of materials and 
experimental applications. 
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