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ABSTRACT 

Despite the importance of soil organic matter (SOM) in C storage and provision of 

ecosystem services, the magnitude and direction of the response of SOM to climate change 

remains debated. Particularly contested is the role of biochemical recalcitrance in determining 

the biological stability of SOM, which in turn, may also vary with climate. Employing a 

climosequence study design controlling for confounding pedogenic factors, the research 

described in this thesis aimed to uncover the response of both SOM chemistry and SOM 

biological stability to changes in climate and associated land use shifts at the grassland-forest 

ecotone in west-central Saskatchewan. Characterization of SOM chemistry was achieved using 

two advanced analytical techniques: X-ray absorption near edge structure (XANES) 

spectroscopy and pyrolysis-field ionization mass spectrometry (Py-FIMS). Agreements between 

XANES and Py-FIMS revealed only minor differences in SOM chemistry resulting from a 0.7 

°C mean annual temperature (MAT) gradient and associated broad differences in land use, but 

revealed a clear influence of depth within soil profiles. In contrast, long-term aerobic incubations 

revealed that biological stability of SOM varied with both climate and climate-induced 

differences in land use, but was not largely influenced by depth. Together, these findings suggest 

a decoupling of SOM chemistry and its biological stability, indicating that factors other than 

biochemical recalcitrance are the primary drivers of SOM persistence in these soils. 
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1. INTRODUCTION

As the largest actively cycling terrestrial C pool—containing approximately 1500 to 2000 

Pg C in the top 1 m (Amundson, 2001; Janzen, 2004)—soil organic matter (SOM) has the 

potential to alter atmospheric carbon dioxide (CO2) concentrations and thus affect climate 

change. However, the direction and magnitude of the response of soil organic carbon (SOC) to 

changes in climate remains uncertain (Davidson and Janssens, 2006; Janssens and Vicca, 2010) 

due to the complex dynamics of controls on SOM persistence (Davidson and Janssens, 2006). 

Current models of SOM dynamics (e.g., CENTURY, RothC) partition SOM and litter inputs into 

multiple pools with different decomposition rates and emphasize the importance of biochemical 

recalcitrance in controlling SOM turnover (Kleber and Johnson, 2010; Gärdenäs et al., 2011; 

Dungait et al., 2012). However, recent evidence suggests biochemical recalcitrance may not be 

an important determinant of SOM persistence (Marschner et al., 2008; Kleber, 2010; Schmidt et 

al., 2011; Dungait et al., 2012). As such, current climate change models are predicated on limited 

and outdated knowledge of SOM, hindering our ability to accurately predict changes in SOC 

stocks. 

Soils are much more than a medium for C sequestration, contributing to the provision of 

numerous ecosystem services (Janzen, 2004). Given the magnitude of observed and forecasted 

global changes caused by elevated greenhouse gas (GHG) concentrations (IPCC, 2013, 2014), a 

key challenge humanity must meet centers on anticipating how climate change will impact 

ecosystem functioning (Janzen et al., 2011). Indeed, many of the benefits derived from high 

SOM contents are accrued from its decomposition, and as such, at fixed inputs of OM there is a 

tradeoff between climate change mitigation and soil productivity (Janzen, 2006). Consequently, 

climate change mitigation strategies aimed at enhancing stocks of stable SOC pools (Six et al., 

2002; Krull et al., 2003; Goh, 2011), including those suggesting increasing inputs of 

biochemically recalcitrant compounds (Lorenz et al., 2007), will impact soil productivity. 

Likewise, climate change and associated land use shifts may lead to the residual enrichment of 
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stable SOM (Dalias et al., 2001; Paré et al., 2006; Hilli et al., 2008), potentially leaving us with 

predominantly inert SOC and a reduction in other ecosystem services. 

Clearly, there is a need to evaluate both the chemical quality of SOM pools, and to 

examine how these pools—and their functioning—will change in a warming climate. 

Specifically, does SOM chemistry and decomposition vary with climate and climate-induced 

land use changes? In addition, are SOM chemistry and its biological stability related, and if so, in 

what manner? The goal of this thesis was to explore these questions by examining changes in 

SOM chemistry and mineralization along a pedogenically defensible climosequence at the 

grassland-forest boundary in west-central Saskatchewan, Canada, with the aim of enhancing 

knowledge regarding the potential effects of climate change on SOM dynamics.  

This thesis is organized in six chapters, beginning with an introduction (Chapter 1) and a 

literature review (Chapter 2). The following two chapters are written as stand-alone manuscripts 

for publication, with a preface linking the objectives of each manuscript to the overarching goal 

of the thesis. Chapter 3 characterizes differences in SOM chemistry that occur with latitude 

along a climosequence, with the aim of relating these differences to climate, and climate-induced 

differences in land use. Chapter 4 builds on the previous chapter by describing changes in the 

biological stability of SOM along the same climosequence, and attempts to reconcile differences 

in biological stability with differences in SOM chemistry. Furthermore, it aims to link the 

biochemical recalcitrance of SOM to its decomposition by investigating changes in SOM 

chemistry during a laboratory incubation. Finally, Chapter 5 synthesizes findings from the two 

research chapters (Chapters 3-4), providing an overall conclusion for the thesis, and is followed 

by a list of references (Chapter 6). 
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2. LITERATURE REVIEW

2.1 Soil Organic Matter Chemistry 

Despite the important role of SOM as a C storage pool and a provider of numerous other 

ecological services, a large fraction of SOM remains “molecularly uncharacterized” (Hedges et 

al., 2000). Traditional concepts of SOM chemistry, arising from early and widespread adoption 

of alkaline extractions to characterize SOM, proposed that over time, humification processes led 

to the formation of large polymeric macromolecules (Kleber and Johnson, 2010). This classical 

perception of old SOM as complex implies that the biochemical properties of SOM determine its 

stability (e.g., Waksman, 1936, and references therein). While the ubiquitous operation of 

humification processes has been questioned (Piccolo, 2001; Sutton and Sposito, 2005; Wershaw, 

2004, 1986), this biochemically-focused viewpoint of SOM has endured. Contemporary concepts 

of SOM turnover include SOM chemistry as a driver of persistence (e.g., Sollins et al., 1996; 

Krull et al., 2003; von Lützow et al., 2006), and compartment-based models of SOM cycling are 

largely based on concepts of biochemical recalcitrance (Kleber and Johnson, 2010; Gärdenäs et 

al., 2011; Dungait et al., 2012), highlighting the need to more completely characterize SOM 

chemistry. Additionally, understanding changes in SOM chemistry may be vital to our 

understanding of the effect of ecological shifts on soil functioning, as molecular level 

characterization of SOM may be sensitive to changes not observed by other measures of the 

function and status of soils (Simpson and Simpson, 2012). Thus, to make significant advances in 

predicting effects of climate and land use changes on soil functioning and soil C storage, we 

must first understand the chemical nature of SOM. 

2.1.1 Plant litter and microbial inputs 

Soil organic matter comprises all material containing organic C (OC) in soils. From a 

pedogenic perspective, plant litter and the microbial biomass represent primary and secondary 

parent materials of SOM, respectively (Kögel-Knabner, 2002). As such, relatively 
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undecomposed SOM contains a greater proportion of plant-derived constituents, while degraded 

SOM—having been processed by the microbial biomass—is characterized by microbially-

derived compounds (Grandy and Neff, 2008), and is enriched in peptides and SON (Knicker, 

2011). Contributions from plant litter primarily include polysaccharides and lignin (Kögel-

Knabner, 2002). Fungal cell walls are comprised predominately of polysaccharides and proteins 

(Rogers et al., 1980; Wessels and Sietsma, 1981; Peberdy, 1990), while carbohydrates and amino 

acids dominate bacterial inputs (Rogers et al., 1980; Koch, 1990). 

2.1.2 Transformations of soil organic matter chemistry during decomposition 

While it is well-known that SOM constituents exist as a continuum from untransformed 

biomolecules to highly altered products (Schaumann and Thiele-Bruhn, 2011), the drivers of 

SOM chemical transformations during decomposition are disputed. Three main hypotheses have 

been put forward (Wickings et al., 2012). First, the current paradigm of litter decomposition, 

termed the ‘Chemical Convergence Hypothesis’ (Wickings et al., 2012), suggests that a single 

decomposer ‘funnel’ exists (Grandy and Neff, 2008; Fierer et al., 2009), resulting from a shared 

set of physiological constraints and biochemical pathways (McGill, 2007), which lead to the 

chemical convergence of SOM. Decomposition thus follows a predictable pattern, beginning 

with the loss of relatively labile plant-derived compounds (e.g., water soluble compounds), 

followed by the degradation of more biochemically recalcitrant plant-derived compounds (e.g., 

cellulose and hemicellulose; Berg and Mcclaugherty, 2014), and culminating in the accumulation 

of microbially-derived compounds (Grandy and Neff, 2008). Due to concomitant physical 

breakdown of plant particulate OM as decomposition proceeds, trends that occur in SOM 

chemistry during degradation are also evident across soil particle sizes (Grandy and Neff, 2008). 

Second, the ‘Initial Litter Quality Hypothesis’ (Wickings et al., 2012) proposes that differences 

in initial litter quality persist throughout decomposition. Chemical characteristics of litter can be 

inherited by SOM (Angers and Mehuys, 1990; Otto and Simpson, 2005, 2006; Filley et al., 2008; 

Stewart et al., 2011; Urbanová et al., 2014), and may endure despite changes in land use (Sleutel 

et al., 2008, 2011; Dümig et al., 2009; Pisani et al., 2013). Finally, the ‘Decomposer Control 

Hypothesis’ (Wickings et al., 2012) suggests that functionally distinct decomposer communities 

lead to differences in litter chemistry during decomposition (Sinsabaugh et al., 2002; Šnajdr et 

al., 2011). However, these hypothesized controls on SOM chemistry during decomposition are 

not mutually exclusive, and recent studies have found evidence supporting multiple controls on 
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SOM chemistry during decomposition (Wickings et al., 2012; Wallenstein et al., 2013; Parsons 

et al., 2014). As such, SOM chemistry may reflect the relative state of decay of OM, differences 

in initial litter inputs, differences in decomposer communities, or a combination of these 

controls.  

2.1.3 Land use and climatic effects on soil organic matter chemistry 

Clearly, climate-induced changes in land use will alter initial litter inputs; according to 

the ‘Initial Litter Quality Hypothesis’ (Wickings et al., 2012), such alterations may persist as 

litter is decomposed and incorporated into SOM. Grass and forest litter—the initial source 

materials of SOM—are chemically distinct (e.g., Otto and Simpson, 2005, 2006; Marín-Spiotta 

et al., 2008). Higher ratios of suberin-to-cutin in grassland soils indicate a predominance of root-

derived inputs whereas leaf-derived inputs dominate in aspen soils at the grassland-forest 

ecotone of Alberta (Otto and Simpson, 2006). This finding is particularly important, as root-

derived SOM typically has a longer residence time than shoot-derived SOM (Rasse et al., 2005). 

Additionally, compared to grasslands, woodland litter inputs and non-aggregated particulate OM 

may be enriched in cutin and suberin-derived fatty acids relative to lignin (Filley et al., 2008).  

Conversions from native land uses to pasture, cropland, or tree plantations typically led to 

differences in the molecular nature of SOM (Fernandez et al., 2012; Pisani et al., 2013; Yannikos 

et al., 2014). For example, findings from studies comparing paired cultivated and grassland soils 

suggest that cultivation leads to the residual enrichment of heterocyclic-N (Schnitzer et al., 2006; 

Leinweber et al., 2009b; Gillespie et al., 2011). Notably, differences in SOM chemistry between 

land uses may be specific to different soil size fractions (Guggenberger et al., 1995) or may be 

difficult to deconvolute from changes in SOM chemistry caused by concurrent shifts in the 

microbial community (Yannikos et al., 2014), often observed to occur with land use differences 

(e.g., Cookson et al., 2007; Steenwerth and Jackson, 2002). 

Likewise, climate may alter the molecular nature of SOM, as microbial decomposition is 

influenced by temperature and moisture (Davidson and Janssens, 2006). According to the 

‘Chemical Convergence Hypothesis’ (Wickings et al., 2012), the chemistry of all SOM should be 

approaching a uniform quality, with any differences in SOM chemistry reflecting differences in 

the relative state of decomposition. We expect SOM decomposition to increase in warmer 

climates as rates of enzyme-mediated reactions increase with temperature (Conant et al., 2011), 

but concurrent increases in water-limitation may limit decomposition (Davidson and Janssens, 
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2006). Preferential decomposition of labile SOM constituents may lead to the residual 

accumulation of more recalcitrant SOM at sites with higher mean annual temperatures (MAT; 

Hilli et al., 2008).  

Consistent with these expectations, Feng et al. (2008) found carbohydrates—considered 

to be relatively labile—were depleted and lignin degradation was accelerated with soil warming. 

Additionally, leaf-derived cuticular C increased with soil warming (Feng et al., 2008). However, 

while findings suggest carbohydrates increase with mean annual precipitation (MAP; Amelung 

et al., 1997; Dalmolin et al., 2006), a lack of consensus regarding the effect of climate on other 

SOM constituents (Amelung et al., 1997, 1999a; b, 2006; Sjögersten et al., 2003; Glaser and 

Amelung, 2003; Djukic et al., 2010; Xu et al., 2010), has hindered our understanding of how 

climate change will alter SOM chemistry. Furthermore, like differences in land use, effects of 

climatic differences on SOM chemistry may be confounded by simultaneous shifts in microbial 

community composition, which have been observed to occur in soil warming treatments (Zogg et 

al., 1997; Frey et al., 2008). 

2.1.4 Analytical tools to assess soil organic matter chemistry: X-ray absorption near edge 

structure and pyrolysis-field ionization mass spectrometry 

Many challenges remain in elucidating the nature of changes in SOM chemistry that may 

occur with climate change. Particularly, the use of disparate analytical techniques make 

generalizations regarding the effect of climate and land use on SOM chemistry difficult, and 

corroboration from multiple analytical techniques has been recommended (Leinweber et al., 

2009a, 2013). Recently, XANES and Py-FIMS have been used successfully as complementary 

techniques to examine the effects of soil fractionation (Gillespie et al., 2009; Leinweber et al., 

2010), heat from vegetation burning (Kiersch et al., 2012b), soil leachate depth (Kruse et al., 

2010), landscape position (Gillespie et al., 2011), and land use (Leinweber et al., 2009b; Kruse et 

al., 2010; Gillespie et al., 2011; Yannikos et al., 2014) on SOM chemistry, but have yet to be 

applied to the examination of climate change effects on SOM chemistry. 

X-ray absorption near-edge structure—also known as near-edge X-ray absorption fine 

structure (NEXAFS)—is a type of X-ray absorption spectroscopy (XAS). This element-specific 

technique probes the electronic structure of molecules, providing information on the bonding 

environment of the target atom (Stöhr, 1992). In XAS, the energy of the incoming X-ray is 

scanned through the absorption edge of the element of interest (Lombi and Susini, 2009). In the 
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case of K-edge XANES, this excitation is targeted at core electrons in the 1s orbital. When the 

X-ray energy is near the absorption edge, these electrons are excited to unoccupied orbitals 

(Lombi and Susini, 2009). For atoms to return to their ground state, electrons from higher energy 

levels must fill the vacancies left by the excitation of the core electrons, and the difference in 

energy between the two electron levels is emitted as fluorescence or as Auger electrons (Lombi 

and Susini, 2009). The energy of the features in the resultant XANES spectrum thus provides 

information on the chemical bonding environment of the absorber atom.  

Though XANES has only recently been applied to the characterization of SOM 

(Vairavamurthy and Wang, 2002), its application has been largely successful. A wide variety of 

reference spectra have been published for SOM constituents commonly found in soils at both the 

N (Leinweber et al., 2007, 2010) and C K-edges (Myneni, 2002; Urquhart and Ade, 2002; Dhez 

et al., 2003; Cooney and Urquhart, 2004; Hardie et al., 2007; Solomon et al., 2009; Kruse et al., 

2011). Additionally, XANES analysis of SOM chemistry has been applied in diverse contexts: 

describing soils from different land uses (Leinweber et al., 2009b; Gillespie et al., 2011; 

Yannikos et al., 2014), investigating effects of burning (Lehmann et al., 2005; Kiersch et al., 

2012a), and describing variability within profiles (Gillespie et al., 2014b) and aggregates 

(Lehmann et al., 2005, 2008; Schumacher et al., 2005). 

However, while the application of XANES to SOM characterization has been largely 

successful, the technique also has limitations. For example, due to significant overlap of some 

resonances (Leinweber et al., 2007) only a few functional groups can be unambiguously 

distinguished in complex substances such as whole soils (Leinweber et al., 2013). Additionally, 

various SOM moieties have different X-ray absorption cross-sections (Stöhr, 1992), prohibiting 

the comparison of features within a single spectrum, and soft X-rays used in C and N K-edge 

XANES are inherently surface-sensitive (Sham and Rivers, 2002). Furthermore, measurements 

may have non-linear backgrounds (Regier, 2012) and be distorted by self-absorption effects (de 

Groot et al., 1994). Finally, the application of C and N K-edge XANES to the examination of 

SOM is limited due to low concentrations of these elements in soils, where relevant signals can 

be partially masked by interference from the mineral matrix (Kinyangi et al., 2006). Clearly, 

such limitations stress the need for multiple methods to obtain a more comprehensive 

understanding of SOM chemistry. 
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Pyrolysis-field ionization mass spectrometry is a powerful technique combining 

temperature-resolved pyrolysis with soft ionization. During analyses, thermal energy cleaves 

chemical bonds within a sample, and the resulting pyrolyzates are identified with high sensitivity 

and specificity using mass spectrometry (Schulten, 1996). The field ionization technique results 

in the formation of ionic molecules that have undergone little or no fragmentation (Schulten, 

1987; Schulten and Leinweber, 1996), thereby providing insight into the composition of the 

original sample (Leinweber et al., 2009a). The results obtained from Py-FIMS are rich, yielding 

a high resolution mass-spectrometric ‘fingerprint’ of the ion intensities of molecules with 

different mass-to-charge ratios (m/z) as well as thermal information provided by step-wise 

heating of samples. The former is sensitive to minor differences in SOM composition while the 

latter provides information on resistance to microbial decomposition (Leinweber et al., 2008) as 

well as the strength and type of bonds present (Schulten and Leinweber, 1999; Sleutel et al., 

2011). As such, Py-FIMS, particularly when coupled with complementary techniques such as 

XANES, can provide important insight into SOM composition.  

Pyrolysis-field ionization mass spectrometry has been successfully applied to describe 

whole soils (e.g., Hempfling et al., 1988; Schnitzer and Schulten, 1992; Wilcken et al., 1997; 

Gillespie et al., 2009, 2011; Kiersch et al., 2012b), as well as to relate SOM thermal stability and 

chemical composition to SOM decomposition (Leinweber et al., 2008). In addition, Py-FIMS has 

been used to investigate OM composition in different sources of litter (Kögel et al., 1988; 

Leinweber et al., 2013), different soil types (Leinweber et al., 2009a, 2013; Thiele-Bruhn et al., 

2014), and different soil fractions (Leinweber and Schulten, 1995; Schulten and Leinweber, 

1999; Leinweber et al., 2010). The application of Py-FIMS has been successfully used to assess 

the effects of vegetation burning (Kiersch et al., 2012a), different land uses (Schnitzer et al., 

2006; Leinweber et al., 2009b; Kruse et al., 2010; Yannikos et al., 2014), and different land use 

histories (Sleutel et al., 2008, 2011) on OM chemistry. 

Like XANES, Py-FIMS suffers from some analytical limitations. The sensitivity of Py-

FIMS is limited due to the soft nature of field ionization required to reduce fragmentation 

(Schulten, 1996; Schulten and Leinweber, 1996). Additionally, although the step-wise heating 

process utilized in Py-FIMS transfers less energy to samples than flash-pyrolysis methods, there 

is nevertheless a possibility for pyrolytic formation of heterocyclic-N artifacts (Leinweber et al., 

2013), which must be corrected for in analysis (Kruse et al., 2011). Furthermore, the quantitative 
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data derived from the assignment of Py-FIMS marker signals represent only an approximation, 

as many selected biomarkers overlap with signals from other compounds (Schnitzer and 

Schulten, 1992; Schulten, 1996). 

2.2 Persistence of Soil Organic Matter—A Changing Paradigm 

As early as the 1800’s, conflicting observations of the decomposability of SOM 

(Waksman, 1936) led to the widespread attribution of differences in SOM persistence to 

differences in biochemical recalcitrance, as no other mechanisms for SOM stabilization were yet 

known (Kleber and Johnson, 2010). Both organo-mineral interactions and spatial inaccessibility 

were later recognized as important stabilization mechanisms, though biochemical recalcitrance 

was still considered a key determinant of SOM persistence (Stevenson, 1994; Christensen, 1996; 

Sollins et al., 1996; Krull et al., 2003), being well-aligned with traditional concepts of 

humification leading to large, complex macromolecules (Kononova, 1961). However, recent 

structural models depict SOM as supramolecular assemblies of partial degradation products held 

together by non-covalent bonds (Piccolo, 2001; Sutton and Sposito, 2005; Wershaw, 2004, 1986) 

rather than as large macromolecules (Kononova, 1961; Stevenson, 1994), implying that complex, 

biochemically recalcitrant humification products do not exist in abundance in natural 

environments. Furthermore, partial degradation products of plant litter that are generally 

assumed to be biochemically recalcitrant (e.g., lignin, lipids) may not be stable relative to the 

bulk SOM (Amelung et al., 2008; Marschner et al., 2008; Dungait et al., 2012). Together, these 

findings have led many to doubt the importance of biochemical recalcitrance in determining 

SOM turnover (Marschner et al., 2008; Kleber, 2010; Schmidt et al., 2011; Dungait et al., 2012). 

Current concepts of SOM stabilization mechanisms continue to recognize the role of biochemical 

recalcitrance and its effect of selective preservation, but note that organo-mineral interactions 

and spatial inaccessibility may exert greater influence on SOM stabilization (von Lützow et al., 

2006). The relevance of biochemical recalcitrance may be limited to early stages of 

decomposition (von Lützow et al., 2006), and may only lead to short-term stabilization of SOM 

(von Lützow et al., 2008).  

However, this changing paradigm of controls on SOM persistence has not yet been 

incorporated into models of C turnover. Given the large amount of C stored in SOM (~2000 Pg 

C) relative to the atmosphere (~785 Pg C; Janzen, 2004), soils have a significant potential to 
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influence climate change feedbacks. As such, assumptions regarding SOM persistence are key 

determinants in model-based estimates of the magnitude and direction of the response of SOM to 

climate change (Jones and Falloon, 2009). Models of SOM cycling often represent SOM as 

compartmental, with each pool having a different turnover time (e.g., CENTURY, RothC; Smith 

and Falloon, 2000). As such, both biochemically recalcitrant SOM and protected SOM may be 

partitioned into a common pool represented by a single decomposition rate (Davidson and 

Janssens, 2006). While compartmental models often incorporate clay content as a control on 

SOC turnover, transfers of SOC from fast-cycling pools to pools with longer turnover times are 

treated as a consequence of out-dated concepts of humification processes and resulting increases 

in biochemical recalcitrance (Kleber and Johnson, 2010; Gärdenäs et al., 2011). However, the 

response and potential feedback of biochemically recalcitrant SOM and protected SOM to 

climatic changes may be markedly different (Davidson and Janssens, 2006; Kleber and Johnson, 

2010), emphasizing the need to further our understanding regarding controls on SOM 

persistence. 

2.2.1 Biochemical recalcitrance: linking form and function 

Biochemical recalcitrance—though variously defined (Kleber, 2010)—is used here to 

mean refractory due to intrinsic molecular structure (Sollins et al., 1996). While both highly 

aromatic molecules, such as lignin, as well as highly aliphatic molecules, such as lipids and 

waxes, may be refractory (Derenne and Largeau, 2001), molecular properties such as size, 

polarity, and bonding influence persistence (von Lützow et al., 2006). Biochemically recalcitrant 

compounds are thought to be selectively preserved (Kalbitz et al., 2003a) as the microbial 

biomass preferentially degrade more labile compounds (Trinsoutrot et al., 2000).  

Observed discrepancies between molecular structure and turnover times of SOM (e.g., 

Amelung et al., 2008; Marschner et al., 2008) have led to controversy surrounding the role of 

biochemical recalcitrance in SOM stabilization (Kleber, 2010; Schmidt et al., 2011; Dungait et 

al., 2012). Compounds perceived as biochemically recalcitrant may not be stabilized in the long 

term (e.g., lignin), or their persistence may be controlled by other stabilization mechanisms 

influenced by chemical composition. For example, the hydrophobicity of lipids (Bachmann et al., 

2008) may reduce microbial accessibility (von Lützow et al., 2006). Conversely, compounds 

traditionally described as relatively labile such as microbially-derived peptides and proteins may 

persist for long times (Knicker, 2004; Miltner et al., 2009) and are ubiquitous in soils (Knicker et 
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al., 1993; Knicker and Kögel-Knabner, 1998; Schulten and Schnitzer, 1998; Rillig et al., 2007; 

Olk, 2008).  

Such inconsistencies between a compound’s perceived and observed stability clearly 

highlight the problematic nature of terms such as ‘labile’ or ‘biochemical recalcitrance’. While 

such terms may be appropriate in describing the degradability of compounds in relatively simple 

systems, they may be unsuitable for describing the decomposition of OM in complex systems 

such as soils. Indeed, the observed persistence of a compound in soils may be attributable to a 

variety of disparate mechanisms including microbial resynthesis and biomass recycling, 

microbial processing of old SOM, or the simultaneous operation of other stabilization 

mechanisms (von Lützow et al., 2006). As such, despite the term ‘biochemical recalcitrance’ 

denoting resistance to degradation, its role in SOM stabilization may be only minor or easily 

obscured. Confusion arising from the prevalence of such ill-defined terms are exacerbated by the 

common use of operational definitions of recalcitrance (Kleber, 2010). Nevertheless, throughout 

this thesis, the terms ‘labile’ and ‘biochemically recalcitrant’ are used to relate our findings to 

traditional concepts of SOM degradation. 

In light of the controversy surrounding biochemical recalcitrance, current concepts of its 

importance in SOM stabilization have shifted. Though previously believed to control SOM 

stabilization in the long-term (Krull et al., 2003), present views suggest that the biochemical 

recalcitrance of plant-derived and microbially-processed compounds contribute to SOM 

stabilization only in the short-term (<10 y turnover times), while charred OM and, potentially, 

humic substances lead to long-term SOM stabilization (>100 y turnover times; von Lützow et al., 

2008). Additionally, biochemical recalcitrance may determine persistence in the absence of other 

stabilization mechanisms (Kalbitz et al., 2003b). As such, recent research continues to link SOM 

chemistry to its persistence. Gillespie et al. (2014b) found strong relationships between 

cumulative C mineralization and ratios of carboxylic acids:ketones, carbohydrates:ketones, and 

phenols:ketones as measured using C K-edge XANES, highlighting the use of ketone as a 

biomarker of microbially-transformed SOM (Gillespie et al., 2014a) that may persist in soils. In 

agreement with the notion that root-derived SOM inputs are relatively stable (Rasse et al., 2005), 

Heumann et al. (2011) found N mineralization rates to be negatively correlated with the 

proportion of sterols and suberins in sandy arable soils of NW Germany. Leinweber et al. (2008) 

found relationships between SOM mineralization and specific chemical constituents, though 
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these were modified by factors such as land management. While the recent paradigm shift 

suggests a purely molecular characterization of SOM is insufficient to describe its persistence, 

SOM chemistry clearly remains a determinant of SOM turnover, both by conferring biochemical 

recalcitrance as well as by influencing the operation of other stabilization mechanisms. 

2.2.2 Interactions with surfaces and metal ions 

Organo-mineral interactions can increase SOM persistence and can occur via six 

mechanisms: ligand exchange, cation bridges, anion bridges, anion exchange, cation exchange, 

van der Waals interactions, and hydrophobic effects (Arnarson and Keil, 2000; Feng et al., 

2005). The relative dominance of these mechanisms may vary with environmental conditions 

(Arnarson and Keil, 2000; Mikutta et al., 2007), and may be zonal due to the tendency of 

amphiphilic OM fragments to self-assemble into layered structures when in contact with mineral 

surfaces (Kleber et al., 2007). Interactions between OM and mineral soil surfaces is greatest for 

clay-sized particles (von Lützow et al., 2006) and increases with specific surface area (Saggar et 

al., 1996), suggesting that soil texture influences SOM stability. While a mechanistic 

understanding of how organo-mineral associations increase OM persistence is currently lacking, 

evidence suggests that desorption must occur prior to microbial decomposition of OM (Mikutta 

et al., 2007), and degradative microbial enzymes, in addition to OM, can be adsorbed by 

minerals (Demanèche et al., 2001), further inhibiting decomposition. 

Biochemical quality modifies the strength and proclivity of organo-mineral interactions. 

Findings regarding the chemistry of SOM in organo-mineral interactions are conflicting, with 

some studies suggesting that aromatic compounds are preferentially and strongly sorbed to 

mineral surfaces (e.g., Kalbitz et al., 2005; Mikutta et al., 2007), while others suggest that 

aliphatic materials are preferentially sorbed (Wang and Xing, 2005). However, these 

contradictory observations may be resolvable as the selective sorption of different biochemical 

compounds can vary with clay mineralogy (Wattel-Koekkoek et al., 2001; Feng et al., 2005), 

suggesting that different SOM binding mechanisms operate in different clay minerals. For 

example, Feng et al. (2005) found more CH2 groups—likely derived from cutin—sorbed to 

kaolinite, while peptides were more abundant on montmorillonite. Likewise, (Kalbitz et al., 

2005) argue that increases in stability due to sorption may be greater for easily mineralizable 

dissolved organic matter (DOM) with high concentrations of carbohydrates than for poorly 

mineralizable DOM with high concentrations of aromatics. 
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In addition to stabilization via organo-mineral interactions, SOM can also be stabilized 

by complexation of metal ions such as Ca2+, Mg2+, Al3+, Fe3+, and heavy metals (von Lützow et 

al., 2006, 2008). Compared to uncomplexed DOM, Al-DOM precipitates and complexes can 

significantly reduce C mineralization (Schwesig et al., 2003; Scheel et al., 2007). However, like 

organo-mineral associations, affinities for metal complexation are thought to differ between 

various OM moieties, and the stability of the resulting complex may vary with the ions involved 

and with environmental conditions (Stevenson, 1994). Given the complexity involved, the effects 

of OM-metal complexation on OM stability are difficult to disentangle from changes in substrate 

quality, metal toxicity to microorganisms, effects of metals on extracellular enzymes, and the 

ability to form cation bridges (von Lützow et al., 2006). 

2.2.3 Spatial inaccessibility 

The spatial accessibility of SOM can be reduced via distance from preferential flow 

paths, aggregation, intercalation of OM within interlayer spaces of phyllosilicate minerals, 

hydrophobicity, and encapsulation within organic macromolecules (von Lützow et al., 2006). 

Subsoil OM is protected from decomposition due, in part, to reduced abundances and activities 

of microorganisms at depth (Taylor et al., 2002). Aggregation can compartmentalize microbes 

from substrate and decrease microbial activity by reducing diffusion of oxygen (Six et al., 2002). 

Land use can modify microbial accessibility, as evidenced by SOC losses of agricultural soils 

due to disruption of aggregates by tillage (Tisdall and Oades, 1982; Elliot, 1986; Six et al., 

2000). Notably, the biochemical composition of aggregates may be distinct from that of total OM 

(Lehmann et al., 2008), and interior (i.e., protected) SOM may differ in chemistry from exterior 

SOM, being enriched in aliphatics (Kinyangi et al., 2006; Marín-Spiotta et al., 2008). As such, 

stabilization of SOM within aggregates may arise from both occlusion as well as biochemical 

recalcitrance. Intercalation of OM within the framework of phyllosilicates can occur in mineral 

soils (Theng et al., 1986; Leinweber and Schulten, 1995) and marine sediments (Kennedy et al., 

2002), and may act to preferentially preserve aliphatics (Leinweber and Schulten, 1995). 

Intercalation is most likely to occur in acidic soils, where the pH-dependent negative charge of 

OM is suppressed, inhibiting repulsion from negatively charged interlayer surfaces (Theng et al., 

1986). However, even in acidic soils the role of intercalation may be insignificant (e.g., 

Eusterhues et al., 2003). Soil hydrophobicity occurs when a layer of hydrophobic organic 

molecules coats a mineral surface (Doerr et al., 2000). This reduces microbial access to OM, and 
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may help promote aggregation (Piccolo and Mbagwu, 1999; Jandl et al., 2004). Finally, while 

encapsulation in organic macromolecules has been proposed (Knicker et al., 1996; Zang et al., 

2000), there is currently little evidence to support the role of macromolecule encapsulation in 

SOM stabilization (von Lützow et al., 2006).  

2.2.4 Determining soil organic matter persistence: long-term aerobic incubations 

Long-term aerobic incubations are commonly used in measurements of the biologically 

active fractions of SOC and SON (Curtin and Campbell, 2008; Hopkins, 2008). While not 

analogous measurements, potentially mineralizable N and readily mineralizable C both reflect 

the size of the labile pool of SOM that can be mineralized by the indigenous microbial biomass 

under optimum conditions (Haynes, 2005). Notably, the CO2 evolved during incubations to 

estimate readily mineralizable C reflects the total metabolic activity of soil microorganisms, 

while inorganic N leached during incubations to estimate potentially mineralizable N reflects the 

balance of N mineralization-immobilization turnover (MIT; Haynes, 2005). When readily 

mineralizable C and potentially mineralizable N are expressed on a per unit mass SOC or SON 

basis, these measures reflect the degradability of SOM in a soil (Baldock and Broos, 2011), and 

as such are highly relevant to predictions of future SOM stocks in a changing climate. 

Additionally, despite recent shifts in our understanding of plant N utilization (Schimel and 

Bennett, 2004), measures of net N mineralization provide an indication of the supply of plant-

available N (Baldock and Broos, 2011), and may thereby indicate changes in ecosystem 

functioning due to climate and land use changes. 
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3. WILL CHANGES IN CLIMATE AND LAND USE AFFECT SOIL 

ORGANIC MATTER COMPOSITION? EVIDENCE FROM AN 

ECOTONAL CLIMOSEQUENCE1 

3.1 Preface 

While many studies have focused directly on predicting changes to SOM pools resulting 

from climate change and shifts in land use, less research has focused on examining changes in 

the drivers of SOM persistence in this same context. This study considers the broader impacts of 

climatic change at the grassland-forest ecotone in Saskatchewan, examining changes in one 

driver of SOM persistence resulting from differences in climate and land use. The biochemistry 

of SOM has the potential to lead to SOM stabilization through inherent biochemical recalcitrance 

as well as by affecting organo-mineral association and accessibility. By examining changes to 

one of the dominant controls of SOM decomposition, research findings from this study have 

widespread applicability for the prediction of SOM persistence under plausible climate change 

scenarios.  

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 This manuscript is currently in review for publication in Geoderma. Coauthors include Dan Pennock, 
Peter Leinweber, and Fran Walley, all of whom provided invaluable contributions to the funding of 
research, assistance in facilitation of laboratory analyses and data interpretation, as well as editing this 
manuscript. Both Dan Pennock and Fran Walley conceptualized the study design. 
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3.2 Abstract 

As the largest actively cycling pool of terrestrial C, the response of SOM to climate 

change may greatly affect global C cycling and climate change feedbacks. Despite the influence 

of SOM chemistry on decomposition, uncertainty exists regarding the response of SOM 

chemistry to climate change and associated land use shifts. Here, we adopt a climosequence 

approach, using latitude along a uniform glacial till deposit at the grassland-forest ecotone in 

central Canada as a surrogate for the effects of climate change on SOM chemistry. Additionally, 

we evaluate differences in SOM chemistry from paired native grassland, native trembling aspen 

(Populus tremuloides) forest, and cultivated soil profiles to investigate the effects of likely 

climate-induced land use alterations.  

The combination of C and N K-edge XANES with Py-FIMS techniques revealed only 

modest differences in surface SOM chemistry related to land use and latitude. Greater variation 

was apparent in the vertical stratification of SOM constituents from soil depth profiles. These 

findings indicate that pedon-scale processes have greater control over SOM chemistry than do 

processes operating on landscape (e.g., land use) and regional (e.g., climate) scales, and that 

SOM chemistry is largely unresponsive to climatic change on the magnitude of the MAT 

gradient under study (~0.7 °C) and associated land use shifts. 

3.3 Introduction 

From 1880 to 2012, global MAT increased by 0.85 °C and continues to rise, largely due 

to increasing atmospheric CO2 concentrations (IPCC, 2013). Soils have the capacity to strongly 

influence atmospheric CO2 as they represent the largest actively cycling pool of terrestrial C 

(Janzen, 2004). However, the direction and magnitude of the response of SOC to climate change 

remains uncertain (Davidson and Janssens, 2006; Janssens and Vicca, 2010) due to the 

complexity of dynamics controlling SOM decomposition (Davidson and Janssens, 2006). The 

importance of SOM chemistry in defining persistence, though recently brought into question 

(Schmidt et al., 2011), may remain an important control on SOM turnover (Conant et al., 2011). 

However, despite influencing future SOC stocks, interactions of SOM chemistry with climate 

change and associated land use shifts have yet to be fully explored. 

Paleorecords of rapid forest-to-grassland conversions at the prairie-forest ecotone in 

central Canada suggest that this region is particularly sensitive to environmental change 
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(Williams et al., 2009). By 2020, this region is predicted to experience a 2 °C increase in MAT 

relative to the 1961-1990 average (Sauchyn and Kulshreshtha, 2008), and concomitant increases 

in precipitation will be insufficient to offset increasing evapotranspiration (Hogg and Hurdle, 

1995; Sauchyn and Kulshreshtha, 2008; Barrow, 2009). As trembling aspen, an important boreal 

forest species, is moisture-limited in this region (Hogg and Hurdle, 1995), future drying trends 

may trigger abrupt vegetation shifts (Williams et al., 2009). Additionally, ongoing agricultural 

conversion of native forests in the region (Fitzsimmons, 2002) may increase as food demand 

grows and warming trends continue. As SOM can inherit chemical characteristics of plant inputs 

(Filley et al., 2008; Stewart et al., 2011), vegetation shifts and agricultural conversion at the 

prairie-forest ecotone may alter SOM chemistry.  

Land use change will not only modify plant inputs at the soil surface, but may also affect 

subsoil SOM chemistry. Though deep SOM comprises an important global C storage pool, 

relatively little is known about its chemistry (Rumpel and Kögel-Knabner, 2011). Land use can 

affect SOM chemistry and its vertical distribution by modifying plant inputs (Otto and Simpson, 

2005, 2006) and their distributions (Jackson et al., 1996; Jobbágy and Jackson, 2000), as well as 

through processes such as tillage-induced admixing of soil. As increased labile C inputs to 

subsoils may stimulate degradation of previously unavailable SOM (Fontaine et al., 2007), 

climate-induced land use changes at the prairie-forest ecotone may affect subsoil SOM chemistry 

and its decomposition. 

The effects of climate and land use change on SOM chemistry represents a knowledge 

gap in our understanding of SOM dynamics. Climatic effects on SOM chemistry have been 

examined using latitudinal gradients (e.g., Amelung et al., 1997, 1999a; 1999b, 2006; Glaser and 

Amelung, 2003; Kawahigashi et al., 2004), elevation gradients (e.g., Dalmolin et al., 2006; 

Djukic et al., 2010) and soil warming experiments (e.g., Sjögersten et al., 2003). Despite these 

efforts, no consensus has emerged, though findings suggest that soil carbohydrates increase with 

precipitation (Amelung et al., 1997; Dalmolin et al., 2006). Studies of land use effects have 

focused on surface SOM chemistry, and indicate that cultivation leads to enrichment of 

heterocyclic-N (Schnitzer et al., 2006; Leinweber et al., 2009b; Gillespie et al., 2011); other land 

uses are less commonly studied (e.g., Fernandez et al., 2012; Pisani et al., 2013). While studies 

of soil depth profiles suggest that aliphatic compounds increase with depth in forest soils 

(Rumpel et al., 2002; Sjögersten et al., 2003; Spielvogel et al., 2008), findings from grassland 
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profiles are conflicting (Dalmolin et al., 2006; Feng and Simpson, 2007) and comparisons of 

subsoils across land uses are lacking.  

 Accordingly, the analysis of SOM chemistry along a pedogenically defensible 

climosequence using multiple analytical techniques represents a unique opportunity to isolate 

effects of climate and land use. Previous studies have combined gas chromatography-mass 

spectroscopy (GC-MS) with nuclear magnetic resonance (NMR) (e.g., Schnitzer et al., 2006; 

Pisani et al., 2013), NMR and Py-FIMS (e.g., Kogel-Knabner et al., 1988; Wilcken et al., 1997), 

and other methods (e.g., Amelung et al., 1997; Kiem et al., 2000; Jokic et al., 2003; Solomon et 

al., 2005; Jandl et al., 2005; Djukic et al., 2010; Gillespie et al., 2013) to characterize SOM. 

Here, we combine synchrotron-based C and N K-edge XANES, and Py-FIMS to analyze SOM 

chemistry. These techniques have been used to examine effects of soil fractionation (Gillespie et 

al., 2009; Leinweber et al., 2010), vegetation burning (Kiersch et al., 2012a), soil leachate depth 

(Kruse et al., 2010), landscape position (Gillespie et al., 2011), and land use (Leinweber et al., 

2009b; Kruse et al., 2010; Gillespie et al., 2011; Yannikos et al., 2014) on SOM composition. 

These methods provide complementary information on SOM chemistry, as XANES is element 

specific and probes functional group chemistry and bonding environments (Stöhr, 1992; Myneni, 

2002), while Py-FIMS identifies nominal masses, providing a thermally-resolved mass 

spectroscopic “fingerprint” (Schnitzer and Schulten, 1992; Leinweber et al., 2009a). Ours is the 

first study to apply these advanced techniques to soils from a climosequence study design that 

controls for confounding pedogenic factors.   

Here, we explore the effects of climate change and associated land use shifts on SOM 

composition by characterizing native grassland, native trembling aspen, and cultivated soils 

along a climosequence in Saskatchewan, Canada. We utilize changes in SOM chemistry that 

occur with latitude as a surrogate for climate change effects and examine the impacts of 

associated land use shifts on surface SOM. Furthermore, we examine soil depth profiles to 20 cm 

depth to elucidate land use effects on subsoil SOM chemistry and its vertical distribution. 

3.4 Materials and Methods 

3.4.1 Sites and sampling design 

Twelve locations (denoted 1-12, south to north) located on a uniform glacial till deposit 

(‘Ice-Stream 1’ described by Ó Cofaigh et al., 2009) were selected to comprise a 46-km 



! 19 

climosequence across the prairie-forest ecotone in west-central Saskatchewan (Fig. 3.1). From 

south to north along the climosequence, MAT decreases from 0.9°C to 0.2°C, and MAP 

increases from 418 to 443 mm (Hijmans et al., 2005). Here, the prairie-forest boundary was 

static (from 10-6 ka and 2-0 ka) or in a period of forest encroachment (from 6-2 ka) during the 

past 10,000 years (Williams et al., 2009). As such, native aspen forest (n = 12), cultivated (n = 

12), and where available, native grassland (n = 4) sites were sampled at each location. In the 

summer of 2012, the top 5 cm of mineral soil was collected from a midslope position at each site. 

At location 3 sites, soils were collected in 5 cm increments to 20 cm; organic materials were 

sampled separately. All pedons were classified according to the Canadian System of Soil 

Classification (Soil Classification Working Group, 1998). 

 

!
Fig. 3.1 Map depicting study area. Points indicate locations 1 through 12. The inset map depicts the 
location of the study area in the Canadian Prairies. 

North Battleford

Lloydminster

Meadow Lake

−110.0 −109.5 −109.0 −108.5 −108.0

52
.5

53
.0

53
.5

54
.0

54
.5

12

1

La
tit

ud
e

Longitude

Locations
Cities
Waterbodies
Mid−Boreal Uplands
Boreal Transition
Aspen Parkland
Moist Mixed Grassland

AB SK MB



! 20 

3.4.2 Soil properties 

Samples were air-dried and ground for analyses. Total C (TC) and total N (TN) were 

determined by combustion using a LECO CR-12 (LECO Corp, St. Joseph, MI) and a LECO 

CNS-2000 (LECO Corp, St. Joseph, MI), respectively. Particle size distributions were 

determined using the modified pipette method after removal of OM with 30% H2O2 (Indorante et 

al., 1990). Soil pH was measured in CaCl2 (Hendershot et al., 2008). 

3.4.3 Carbon and N K-edge X-ray absorption near edge structure spectroscopy 

Prior to XANES analysis, subsamples of each soil were pulverized using a ball-mill and 

~1 mg of each sample was rehydrated in deionized H2O and air-dried on Si wafers freshly coated 

with Au. Wafers were affixed to sample plates using conductive C tape (SGE, Toronto, ON, 

Canada). Carbon and N K-edge XANES spectra were measured at the spherical grating 

monochromator (SGM) beamline 11ID-1 at the Canadian Light Source (CLS, Saskatoon, SK, 

Canada). At these edges, the beamline delivers 1011 photons s-1 with a resolving power (E/ΔE) 

greater than 104 (Regier et al., 2007a; b). The exit slit was set at 25 µm. Spectra were collected in 

fast-scanning mode, which continuously scans the monochromator energy while acquiring signal 

from the detectors. Each scan was collected for 20 s (e.g., Gillespie et al., 2013, 2014) from a 

fresh location to reduce beam-induced radiation damage (Leinweber et al., 2007). Total 

fluorescence yield (TFY) spectra of location 3 soil profile samples were collected in May 2013 

using a two-stage micro channel plate detector. Partial fluorescence yield (PFY) spectra of 

climosequence surface soils were recorded in July 2013 using a silicon drift detector. The 1s → 

π*
C=O transition at 288.6 eV (Kim et al., 2003) of citric acid was used for calibration at the C K-

edge. For calibration at the N K-edge, the 1s → π* vibrational manifold of N2 gas evolved from 

(NH4)2SO4 at 400.8 eV was used (Gillespie et al., 2008). 

A minimum of twenty scans were averaged and normalized to the incident flux using 

scans of an Au coated Si wafer. Measurements of the incident flux at the C K-edge were scaled 

and offset prior to normalization to mitigate the effect of flux attenuation by C contamination on 

beam optics (Watts et al., 2006). Spectra were background corrected with a linear regression fit 

through the pre-edge region and normalized to an edge jump of unity using custom macros 

(Gillespie et al., 2014b; a) in IGOR Pro (ver. 6.2, WaveMetrics Inc., Lake Oswego, OR, USA) 

and Athena (ver. 0.8.56, Ravel and Newville, 2005) software packages. Features at the C and N 
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K-edges were assigned according to the literature (Myneni, 2002; Urquhart and Ade, 2002; Dhez 

et al., 2003; Cooney and Urquhart, 2004; Hardie et al., 2007; Leinweber et al., 2007; Solomon et 

al., 2009; Kruse et al., 2011). 

Curve-fitting followed by non-metric multidimensional scaling (NMS) analysis was used 

to visualize differences between spectra (Gillespie et al., 2011). As NMS aims to preserve the 

ordering relationship among objects, it is suitable for semi-quantitative data such as XANES 

peak heights. Briefly, after fitting a background arctangent function (ƒ(x) = a1 * atan[(x - a2) * 

a3] + a4; Rovezzi et al., 2009) Gaussian curves were fit to assigned spectral features using the 

Fityk software package (version 1.2.1, Wojdyr, 2010). Curve parameters were constrained to 

ensure equal width of all 1s → π* features. The NMS ordination was performed on Bray-Curtis 

distances of C and N K-edge peak heights (Gillespie et al., 2014a) using package “vegan” 

(Oksanen et al., 2013) of the R software program (ver. 3.0.2, R Core Team, 2013). An 

assessment of stress vs. dimensionality determined the number of dimensions of the final 

ordination (Legendre and Legendre, 2012). Significant relationships between environmental 

variables and ordination scores were determined by permutation tests. Due to their extreme 

influence on the ordination, litter samples were omitted from analysis and carboxyl:ketone ratios 

were treated as an environmental variable. 

3.4.4 Pyrolysis-field ionization mass spectrometry 

About 5 milligrams of each air-dried and pulverized sample was pyrolyzed in the ion 

source (emitter: 4.7 kV, counter electrode -5.5 kV) of a double-focusing Finnigan MAT 95. 

Samples were heated in a vacuum of 10-4 Pa from 50 °C to 650 °C, in 10 °C steps over 15 

minutes. Between magnetic scans the emitter was flash heated to avoid residues of pyrolysis 

products. Sixty-five spectra were recorded for the mass range 15 to 900 m/z. Total ion intensities 

(TII) were referred to 1 mg of the sample. Volatile matter was calculated as mass loss in 

percentage of sample weight. Marker signals (m/z) were assigned to relevant substance groups 

according to Hempfling et al. (1988), Schnitzer and Schulten (1992), Schulten and Leinweber 

(1996), van Bochove et al. (1996), and Leinweber et al. (2009a, 2013). Thermostability, a 

predictor for microbial decomposition (Leinweber et al., 2008), was calculated by dividing mass 

loss of SOM at high temperatures (400 – 650 °C) by mass loss over the whole temperature range 

(50 – 650 °C). 
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Data from climosequence surface soils were subject to redundancy analysis (RDA), a 

canonical multivariate technique combining multiple linear regression and principal component 

analysis (PCA) to explicitly explore relationships between response and explanatory variables 

(Legendre and Legendre, 2012). The ordination was performed on a covariance matrix of Py-

FIMS m/z signals using latitude as the constraining variable. Additionally, PCA – an eigenvector 

based multidimensional analysis – was performed on Py-FIMS m/z signals of location 3 soils to 

explore differences between land use depth profiles. Ordinations were performed in package 

“vegan” (Oksanen et al., 2013) of the R software program (ver. 3.0.2, R Core Team, 2013). 

Permutation tests revealed significant relationships between compound classes, environmental 

variables, and ordination scores. 

3.4.5 Statistics 

Statistical analyses were conducted using R (ver. 3.0.2, R Core Team, 2013). Normality 

and homogeneity of variance were assessed using Shapiro-Wilk’s test and Levene’s test, 

respectively. Non-normally distributed data were transformed using the Box-Cox procedure. 

Linear regression was performed to determine relationships between response variables and 

latitude. Univariate ANOVA and Tukey’s HSD tests were used to assess differences between 

land uses, using mixed-effects models where appropriate.  

3.5 Results 

3.5.1 Climosequence surface soils 

3.5.1.1 General soil characteristics 

Our study design aimed to control for confounding pedogenic factors by sampling soils 

located on a uniform glacial till deposit. This was achieved for all sites except at location 1, 

where the forest site had higher silt content than other sites (Table 3.1). This incongruity may be 

attributed to the genesis of this soil on the margins of the glacial ice stream upon which the 

climosequence is located (‘Ice-Stream 1’ in Ó Cofaigh et al., 2009). All other sites had similar 

textures, confirming their genesis on the same parent material. Additionally, clay content 

decreased with latitude (p < 0.001; r = -0.62), consistent with the north-to-south flow of the ice-

stream (Ó Cofaigh et al., 2009). 

!  
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Other soil characteristics varied between land uses and across the climosequence (Table 

3.1). While TC (p < 0.01; r = -0.51), OC (p < 0.05, r = -0.45), TN (p < 0.001, r = -0.67), and pH 

(p < 0.05, r = -0.39) were negatively correlated with latitude, log OC:TN ratios increased (p < 

0.01, r = 0.55). Soil pH (p < 0.01; grassland: 6.4 ± 0.6; forest: 5.3 ± 0.5; cultivated: 6.0 ± 0.7) 

and OC:TN ratios (p < 0.01; grassland: 10.2 ± 0.7; forest: 13.4 ± 2.6; cultivated: 10.7 ± 2.1) 

differed between land uses (mean ± standard deviation).  

3.5.1.2 Carbon and N K-edge X-ray absorption near edge structure 

Three features dominate C K-edge XANES spectra and were tentatively assigned as: a) 

C=C in protonated/alkylated aromatics and alkenes at 285.5 eV (aromatic-C); b) aliphatic C in 

nitriles, carbonyl-C in ketones and aldehydes, and C bound in aromatic heterocycles (e.g., 

pyrrole, imidazole, and purine) at 286.5 eV (ketone); and c) carbonyl-C in carboxyl and amide at 

288.5 eV (carboxyl) (Fig. 3.2; Table 3.2). While not prominent, a minor feature at 287.2 eV, 

assigned to aliphatic CH, CH2, and CH3 as well as aromatic C bound to hydroxyl and ether 

functional groups, was present and tended to increase with latitude, particularly in the cultivated 

soil (Fig. 3.2). Visually, proportions of the dominant peaks were similar regardless of land use or 

location; however, peak heights revealed differences. Forest soils had higher proportions of 

ketone than grassland soils (p < 0.05) and greater proportions of carboxyl than cultivated soils (p 

< 0.05). Carboxyl:ketone ratios tended to be lower in forest soils than in other land uses (p < 

0.10). No trends across the latitudinal gradient were apparent. 

!  
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!!
Fig. 3.2 (A) Carbon and (B) N K-edge X-ray absorption near edge structure (XANES) spectra of 
grassland, forest, and cultivated surface soils along climosequence. Location numbers are indicated 
to the left of each spectrum. Carbon features are assigned as (a) aromatic-C at 285.5 eV; (b) ketone 
at 286.5 eV; and (c) carboxyl at 288.5 eV. Nitrogen features are assigned as (a) heterocyclic-N at 
398.8 eV; (b) amide at 401.4 eV; and (c) alkyl-N at 406 eV.  
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Dominant features at the N K-edge were tentatively assigned as: a) aromatic N in 6-

membered rings (e.g., pyridine) at 398.8 eV (heterocyclic-N); b) amidic N with possible 

contributions from pyrrolic N at 401.4 eV (amide); and c) alkyl-N, inorganic NH4
+, and the 1s → 

σ* feature at 406.0 eV (alkyl-N) (Fig. 3.2b; Table 3.2). Like C spectra, proportions of N K-edge 

XANES features were similar across samples. While not significant, amide displayed a slight 

inverse trend with latitude (p = 0.10; r = -0.43), and was highest in grassland soils (p < 0.01). 

Alkyl-N increased with latitude (p < 0.05; r = 0.57), while variations in heterocyclic-N were not 

captured by land use or location. 

3.5.1.3 Pyrolysis-field ionization mass spectrometry 

Figure 3.3 depicts mass spectra and thermograms of forest surface soils from select 

locations along the climosequence. While some m/z signals ranged widely between samples (e.g., 

m/z 394, 396, 414 and 440), most spectra were dominated by signals from carbohydrates (e.g., 

m/z 60, 84, 96, 110, 126), lignin monomers (e.g., m/z 178, 192, 208), a homologous series of 

even-numbered fatty acids C16 – C26 (e.g., m/z 256, 284, 312, 340, 368, and 396), and a 

homologous series of alkenes C20 – C24 (e.g., m/z 280, 294, 308, 322, and 336).  
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!
Fig. 3.3 Summed and averaged pyrolysis-field ionization mass spectrometry (Py-FIMS) mass 
spectra and thermograms of TII (inset) of forest surface soils from select locations along 
climosequence. 

Relationships between m/z signals and latitude were explored using RDA. The ordination 

revealed that latitude captured 69.6% of the variation in forest surface soils (Fig. 3.4), 

represented primarily by m/z 394 and 396, which increased with latitude. Proportions of sterols 

and lipids were also positively correlated with latitude along the climosequence. In contrast, 

carbohydrates, phenols and lignin monomers, and amides had negative scores along the 
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constrained axis. Of the significantly correlated environmental variables, TC, TN, pH, and clay 

had negative scores along the constrained axis while sand and OC:TN ratios had positive scores 

along this axis. With the exception of the location 1, trends identified in the RDA are also 

apparent in Table 3.3, which additionally reveals a decrease in heterocyclic-N and nitriles with 

latitude. 

!
Fig. 3.4 Redundancy analysis (RDA) of pyrolysis-field ionization mass spectrometry (Py-FIMS) 
total ion intensities (TII) from forest surface soils along climosequence. Vectors directions and 
lengths indicate the strength of correlations between variables and the ordination. Black vectors 
correspond to m/z signals and latitude. Dark gray vectors indicate significant (p < 0.05) correlations 
between the ordination and Py-FIMS compound classes (scaled 2x for clarity). Light gray vectors 
indicate significant (p < 0.05) correlations between the ordination and environmental variables.   
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3.5.2 Soil depth profiles as affected by land use 

3.5.2.1 General soil characteristics 

Table 3.4 shows chemical and physical properties of location 3 soil profiles. Soil pH (p < 

0.01; grassland: 6.2 ± 0.2; forest: 5.1 ± 0.3; cultivated: 4.7 ± 1.3; mean ± standard deviation) and 

OC:TN ratios (p < 0.05; grassland: 11.8 ± 1.0; forest: 11.5 ± 1.4; cultivated: 7.8 ± 2.1) differed 

between land uses. Total C (p < 0.001, r = -0.91), OC (p < 0.001, r = -0.85), and TN (p < 0.001, 

r = -0.93) decreased with depth. 

Table 3.4 Properties of location 3 soil depth profiles. 

Land use Depth Horizon† TC OC TN OC:TN pH Sand Silt Clay 
 cm  ! g kg-1 !   ! % ! 

Grassland Litter F 77.4 75.0 7.1 10.6 6.1 NA‡ NA NA 
Grassland 0–5 Ah 45.6 45.4 4.1 11.0 6.1 69 15 17 
Grassland 5–10 Ah 24.7 24.4 2.1 11.4 6.1 68 15 17 
Grassland 10–15 Ah/Bm 22.9 20.2 1.8 11.1 6.3 66 13 21 
Grassland 15–20 Bm 13.4 13.3 1.0 13.0 6.5 75 5 21 
Forest Litter LF 329.6 305.6 21.5 14.2 5.7 NA NA NA 
Forest 0–5 Ah 57.6 55.9 4.2 13.2 4.9 63 19 18 
Forest 5–10 Ah/Aej 24.6 23.3 2.1 11.2 5.0 63 21 16 
Forest 10–15 Aej 11.5 11.0 1.1 9.6 5.0 61 28 11 
Forest 15–20 Aej/Bt 7.9 8.2 0.7 11.1 5.5 61 26 14 
Cultivated 0–5 Ap 41.5 24.9 3.0 8.3 4.7 64 23 14 
Cultivated 5–10 Ap 21.4 23.4 2.4 9.7 4.7 61 25 14 
Cultivated 10–15 Ap/Bt 13.1 12.1 1.5 7.9 3.1 52 29 19 
Cultivated 15–20 Bt 4.6 4.4 0.9 4.8 6.3 45 34 22 
† Soil Classification Working Group (1998). 
‡ Particle size only determinable in mineral soils. 

3.5.2.2 Carbon and N K-edge X-ray absorption near edge structure 

Features in C K-edge spectra of location 3 profiles (Fig. 3.5a; Table 3.5) were the same as 

those previously assigned (Fig. 3.2a), though the energy of the aromatic-C feature was slightly 

lower. Proportions of aromatic-C (p < 0.001, r = -0.82) and ketone (p < 0.001, r = 0.79) 

decreased with depth, while carboxyl:ketone ratios increased with depth (p < 0.01, r = 0.72).  

Dominant N K-edge spectral features of location 3 profiles (Fig. 3.5b; Table 3.5) were the 

same at those previously assigned (Fig. 3.2b). Proportions of heterocyclic-N (p < 0.05, r = -0.56) 

and amide (p < 0.001, r = -0.86) tended to decrease with depth. Amide was higher in the 
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grassland profile than cultivated and forest profiles (p < 0.01). While not significant, the 

grassland profile had higher a proportion of alkyl-N than the cultivated profile (p < 0.10). 

Peak heights of XANES features were subject to NMS ordination to visualize differences 

in SOM chemistry between land use depth profiles (Fig. 3.6). The final stress of the two-

dimensional ordination was 3.0. A linear regression of NMS distances on the original Bray-

Curtis distances indicated a goodness of fit with an R2 of 0.997. Samples were not separated by 

land use, however the ordination separated deep increments (e.g., 15 – 20 cm) from other 

samples along the first NMS axis. These soils were correlated with high proportions of alkyl-N, 

carboxyl, and high carboxyl:ketone ratios. In contrast, aromatic-C, ketone, and heterocyclic-N 

were correlated with surface soils. Of the significantly correlated environmental variables, sand 

content and OC:TN ratios had positive scores along the second NMS axis, while silt content had 

negative values along this axis. 
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!!
Fig. 3.5 (A) Carbon and (B) N K-edge X-ray absorption near edge structure (XANES) spectra of 
grassland, forest, and cultivated soil depth profiles from location 3. Depth increments (cm) are 
indicated above each spectrum. Carbon features are assigned as (a) aromatic-C at 285.0 eV; (b) 
ketone at 286.5 eV; and (c) carboxyl at 288.5 eV. Nitrogen features are assigned as (a) heterocyclic-
N at 398.8 eV; (b) amide at 401.4 eV; and (c) alkyl-N at 405.5 eV. 
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!
Fig. 3.6 Non-metric multidimensional scaling (NMS) analysis of C and N K-edge X-ray absorption 
near edge structure (XANES) peak heights from grassland, forest, and cultivated soil depth profiles 
from location 3. Vectors directions and lengths indicate the strength of the correlation between 
variables and the ordination. Black vectors correspond to XANES features used in the ordination. 
Gray vectors indicate significant (p < 0.05) correlations between the ordination and environmental 
variables (shown at ¼ scale for clarity). Symbol colors correspond to sample depth (cm): black = 0 – 
5; dark gray = 5 – 10; light gray = 10 – 15; white = 15 – 20. 

3.5.2.3 Pyrolysis-field ionization mass spectrometry 

Mass spectra of surface soils and litter from different land uses at location 3 (Fig. 3.7), 

were dominated by similar m/z signals as those present in forest surface soils along the 

climosequence (Fig. 3.3). The PCA ordination (Fig. 3.8) separated samples by depth along the 

second PCA axis, while separation by land use was not discernable. Distinct features of the 

ordination are the large influence of m/z 394 and 396 to the forest soil 10 – 15 cm increment and 

increasing proportions of m/z 96 and 110 with depth. In most samples, SOM was primarily 

comprised of alkylaromatics, phenols and lignin monomers, and carbohydrates. Proportions of 

alkylaromatics (p < 0.05, r  = 0.60), suberin (p < 0.05, r = -0.63; Fig. 3.8; Table 3.6), and 

thermostability (p < 0.05, r = 0.62; Fig. 3.9) varied with depth. While not significant, depth 

trends were also apparent in heterocyclic N (p = 0.06, r = 0.56) and log free fatty acids (p = 0.09, 

r = -0.51). 
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!
Fig. 3.7 Summed and averaged pyrolysis-field ionization mass spectrometry (Py-FIMS) mass 
spectra and thermograms of TII (inset) of litter and surface soils from grassland, forest, and 
cultivated soil depth profiles from location 3. 
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!
Fig. 3.8 Principal component analysis (PCA) of pyrolysis field ionization mass spectrometry (Py-
FIMS) total ion intensities (TII) from grassland, forest, and cultivated soil depth profiles from 
location 3. Vectors directions and lengths indicate the strength of the correlation between variables 
and the ordination. Black vectors correspond to m/z signals. Dark gray vectors indicate significant 
(p < 0.05) correlations between the ordination and Py-FIMS compound classes (shown at ½ scale 
for clarity). Light gray vectors indicate significant (p < 0.05) correlations between the ordination 
and environmental variables (shown at ½ scale for clarity). Symbol labels indicate sample land use 
(G = grassland, F = forest, C = cultivated) and sample depth (cm). 
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Differences between land use profiles were also apparent (Table 3.6). Forest soils were 

enriched in lipids (p < 0.05) and sterols (p < 0.05) relative to grassland and cultivated soils, 

decreasing in the order of forest > cultivated > grassland profiles. The forest profile also tended 

to have higher hexose:pentose ratios (p = 0.05). Thermostability tended to be lowest in the forest 

profile (p = 0.07; Fig. 3.9). 

 

!
Fig. 3.9 Mean thermostability of organic matter in depth increments from grassland, forest, and 
cultivated soils from location 3. Arrows represent standard deviation. 

3.6 Discussion 

Generally, C and N K-edge XANES and Py-FIMS results agree with previous findings. 

Specifically, C K-edge XANES spectra (Figs. 3.2, 3.6) were dominated by carboxyl and 

displayed strong signals for aromatic-C (e.g., Jokic et al., 2003; Solomon et al., 2005; Lehmann 

et al., 2005, 2008; Schumacher et al., 2005; Gillespie et al., 2011, 2014; Kiersch et al., 2012a), 

while N K-edge XANES (Figs. 3.3, 3.7) displayed alkyl-N and heterocyclic-N features (e.g., 

Vairavamurthy and Wang, 2002; Gillespie et al., 2009, 2011, 2013; Leinweber et al., 2010; 

Kiersch et al., 2012b; Yannikos et al., 2014). The prominence of amide in N K-edge spectra is 

consistent with the notion that proteinaceous N is the dominant form of organic N in soils 

(Knicker and Kögel-Knabner, 1998; Schulten and Schnitzer, 1998; Olk, 2008). While Py-FIMS 

results typically fell within the range of reported values, forest soils (Tables 3.3, 3.6) had high 
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proportions of sterols and greater variability in the proportions of lipids, sterols, suberin, and 

fatty acids than commonly reported for Luvisols (Leinweber et al., 2009a; Thiele-Bruhn et al., 

2014) and soils under poplar vegetation (Baum et al., 2013; Yannikos et al., 2014). In addition, 

all soils had low proportions of heterocyclic N and nitriles relative to soils from similar land uses 

and/or soil type (cf. Leinweber et al., 2009a; b; Gillespie et al., 2011; Heumann et al., 2011; 

Baum et al., 2013; Thiele-Bruhn et al., 2014; Yannikos et al., 2014). These differences are 

potentially attributable to differences in climate or management practices. 

3.6.1 Effects of climate on surface soil organic matter chemistry 

Predicted increases in temperature and moisture limitation in the region (Sauchyn and 

Kulshreshtha, 2008; Barrow, 2009) suggest that conditions at the northern end of the 

climosequence will become more similar to the current climate at its southern end, making 

reductions in latitude an ideal proxy for climate change. Despite a climatic gradient of ~0.7 °C 

MAT, we found SOM chemistry from soils along the climosequence to be remarkably similar, 

suggesting that climate change may have at most a modest effect on SOM chemistry. Only the 

alkyl-N XANES feature was significantly related to latitude. However, increases in alkyl-N did 

not occur consistently between sites (Table 3.2) nor were they large enough to be visually 

distinct in spectra (Fig. 3.2b). Indeed, differences in C and N K-edge XANES features across the 

climosequence were smaller than typically observed in soil spectra (cf. Gillespie et al., 2009, 

2011, 2014; Kruse et al., 2010; Kiersch et al., 2012b; Yannikos et al., 2014). Trends in Py-FIMS 

compound classes were generally small, with differences across the climosequence having a 

similar or smaller magnitude to those reported (Leinweber et al., 2009a; Baum et al., 2013; 

Thiele-Bruhn et al., 2014; Yannikos et al., 2014), or were not strongly corroborated by C and N 

K-edge XANES (e.g., lipids, sterols, suberin, fatty acids; Table 3.3). Soils from different 

landscape positions at a single site (Gillespie et al., 2011) had greater variability in 

carbohydrates, lignin dimers, and heterocyclic-N and nitriles than found in the current study with 

sites located almost 50 km apart. These findings suggest that climatic effects on SOM chemistry 

may be insignificant compared to effects of other pedogenic factors that operate on a much 

smaller scale.  

Though trends across the climosequence were minor, corroborating evidence from N K-

edge XANES and Py-FIMS indicates that the proportion of N-containing compounds decreased 
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with latitude, and minor variations in C K-edge XANES may support observed increases in 

aliphatic and phenolic Py-FIMS compound classes with latitude. Decreases in the proportion of 

N-containing compounds with latitude suggest that SON is weakly related to MAT. This is 

consistent with findings that OC:TN ratios are negatively correlated to MAT (e.g., Barrett and 

Burke, 2000; Miller et al., 2004; Callesen et al., 2007; Homann et al., 2007) and positively 

correlated to MAP (e.g., Miller et al., 2004; Homann et al., 2007). Reductions in SON relative to 

SOC at the northern end of the climosequence are reflected in decreasing proportions of amides 

(Fig. 3.4; Table 3.3) and heterocyclic-N and nitriles (Table 3.3), as well as trends in OC:TN 

ratios (Table 3.1). Furthermore, increases in alkyl-N (Table 3.2) may reflect a residual 

enrichment of mineral-associated NH4
+ (Kruse et al., 2011) as organic forms of N are reduced 

along this gradient. Location 1 forest soils are anomalous, with low proportions of N-containing 

compounds (Table 3.3), potentially caused by its fine soil texture relative to other sites along the 

transect (Table 3.1) due to its location on the boundary of the glacial deposit. Notably, while not 

a prominent spectral feature, minor increases in the feature at 287.2 eV (Fig. 3.2a)—representing 

changes in aliphatic- and phenolic-C—with increasing latitude may support the increases 

observed in associated Py-FIMS compound classes (Table 3.3), though variations are difficult to 

discern. As different soil size fractions are characterized by different proportions of plant- and 

microbially-derived compounds (Grandy and Neff, 2008), effects of texture on SOM chemistry 

may have obscured differences attributable to latitude, suggesting that minor changes in soil 

physical properties can overwhelm climatic effects.  

While changes in SOM chemistry along the climosequence were modest, decreasing 

proportions of SON with latitude may result from differences in N inputs or degradation rates. 

Higher MATs at the southern end of the climosequence may enhance decomposition by 

increasing substrate availability (Curtin et al., 2012) and mineralization rates (Stanford et al., 

1973), potentially leading to the relative enrichment of peptides and proteins during SOM 

maturation (Knicker, 2011). In contrast, decreases in SON with latitude may result from a 

decrease in microbial protein synthesis at the northern end of the climosequence. Nitrogen-

limitation may restrict SOM degradation and lead to the relative enrichment of plant-derived 

compounds, potentially accompanied by increasing fungal dominance (Gillespie et al., 2014a). 

Indeed, lower proportions of phenols and lignin monomers relative to lignin dimers at northern 

locations along the transect (Table 3.3) may indicate less decomposition of lignin (Leinweber 
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and Schulten, 1995). Together with decreasing proportions of SON along the climosequence, this 

suggests a less decomposed state of SOM and increasing N-limitation. Additionally, increasing 

proportions of m/z 394 and 396 (dehydroergosterol and ergosterol, respectively) with latitude 

(Figs. 3.4, 3.5) suggest greater fungal biomass at the northern end of the transect, as the latter is 

produced almost exclusively by fungi (Djajakirana et al., 1996). These trends suggest that SOM 

degradation may be constrained by climatic conditions at northern locations along the 

climosequence, and may account for the slight decrease in SON compounds along this gradient.  

3.6.2 Effects of land use on soil organic matter chemistry 

Like trends with latitude, differences in surface SOM chemistry attributable to land use 

were small. No differences between land uses were detectable in C and N K-edge XANES 

spectra (Figs. 3.2, 3.3), suggesting that land use only modestly affects SOM chemistry. This 

supports previous findings that broad land use categories are poor predictors of SOM chemistry, 

having undetectable (Grandy et al., 2009) or only minor (Guggenberger et al., 1995) effects on 

SOM composition. 

Despite the small magnitude of land use effects, C and N K-edge XANES peak heights 

revealed minor differences in SOM chemistry of surface soils (Table 3.2), suggesting that shifts 

from aspen forest to grassland or cultivated land use will alter SOM chemistry in different 

directions. Forest soils had greater proportions of ketones and carboxyls than grassland and 

cultivated soils, respectively, but had the lowest carboxyl:ketone ratios, suggesting that forest 

soils are relatively biodegraded (Gillespie et al., 2014b; a). In contrast, grassland soils had high 

proportions of carboxyls and amides as well as the highest carboxyl:ketone ratios, indicating that 

they contain primarily labile SOM. Nitrogen K-edge XANES peak heights (Table 3.5) and Py-

FIMS (Table 3.6) of land use depth profiles were consistent with this finding, revealing higher 

proportions of amide in the grassland profile than forest or cultivated profiles. Finally, the 

relatively low proportions of carboxyls and amides in cultivated soils (Tables 3.2, 3.5) suggest 

that tillage results in their depletion. Findings of land use effects on SOM chemistry have thus 

far been inconsistent (e.g., proportion of amides in grassland and cultivated soils; c.f. Schnitzer 

et al., 2006; Leinweber et al., 2009b) or from incomparable land uses (e.g., Fernandez et al., 

2012; Pisani et al., 2013). Notably, our findings did not support previous evidence that 

cultivation increases the proportion of heterocyclic-N (Schnitzer et al., 2006; Leinweber et al., 

2009b; Gillespie et al., 2011). 
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3.6.3 Soil organic matter chemistry in soil depth profiles 

Carbon and N K-edge XANES and Py-FIMS revealed that depth more strongly 

influences SOM chemistry than land use or climate. This is evident in the clear ordering of 

samples by depth in the ordinations (Figs. 3.8, 3.10), as well as the higher variability in C and N 

K-edge XANES peak heights and Py-FIMS compound classes across depth increments than 

across land use types (Tables 3.5, 3.6) or length of the transect (Tables 3.2, 3.3). This supports 

previous findings that SOM chemistry shows marked changes with depth (e.g., Djukic et al., 

2010; Vancampenhout et al., 2012) and that subsoil SOM is highly influenced by pedogenic 

processes such as eluviation (e.g., Rumpel et al., 2002, 2004; Feng and Simpson, 2007). 

Increasing proportions of labile SOM components (e.g., increasing carboxyl:ketone 

ratios, carbohydrates; Tables 3.5, 3.6) and plant-derived compounds (e.g., decreasing 

hexose:pentose ratios; Table 3.6) indicate that the degree of microbial processing decreases with 

depth. This may be at least partially attributable to increasing proportions of SOM in organo-

mineral associations with depth as indicated by increasing thermostability, particularly in 

cultivated and grassland profiles (Fig. 3.9), as the proportion of mineral-bound OM typically 

increases with depth and differs in SOM chemistry from particulate OM (Kögel-Knabner et al., 

2008). For example, carboxyl-C is often enriched in mineral-associated OM, reflecting increased 

oxidation of SOM (Kögel-Knabner et al., 2008) or stabilization of labile carboxylic acids 

mobilized as DOM and rapidly adsorbed in subsoils (van Hees et al., 2003). 

Evidence from both Py-FIMS (Fig. 3.8; Table 3.6) and C and N K-edge XANES (Figs. 

3.6, 3.7; Table 3.5) suggests that cultivated and grassland soil profiles are more homogenous 

with depth than the forest profile. The vertical distribution of SOM components is influenced by 

both subsoil OM inputs, including plant roots and exudates, DOM, bioturbation, and 

translocation of free or bound OM, as well as by pedological processes (Rumpel and Kögel-

Knabner, 2011). The clear ordering of grassland increments in the PCA ordination (Fig. 3.8) 

suggests relatively homogenous SOM chemistry and may arise from bioturbation, a common 

process in prairie soils of the region (Pennock et al., 2011). In contrast, bioturbating animals 

(Zaitlin and Hayashi, 2012) are generally absent from forest soils in the boreal region of 

Saskatchewan, enhancing horizonation and consequently, the vertical stratification of various 

SOM constituents, visible in the relatively wide spread of forest soil increments (Figs. 3.8, 3.10). 

The separation of the two upper increments of the cultivated profile from the deeper two (Figs. 
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3.8, 3.10) coincides with the depth of tillage in this profile (11 cm), implying that cultivation has 

homogenized and altered surface soil SOM chemistry.  

Characteristics of the cultivated profile suggest a lasting influence of historical vegetative 

inputs on SOM chemistry. In the PCA ordination (Fig. 3.8), the uppermost increment of the 

cultivated profile is located adjacent to the forest and grassland litter samples, suggesting the 

incorporation of litter into the tillage profile upon land use conversion. Further support for the 

preservation of SOM constituents following conversion to cultivated land use is the intensity of 

the m/z signal for ergosterol in the two plowed increments, which decreases in the order of forest 

> cultivated > grassland at these depths. Ergosterol content of cultivated soils is typically lower 

than that of either grassland or forest soils (Djajakirana et al., 1996), suggesting that the 

relatively high proportion of ergosterol in the cultivated soil profile may be a remnant of 

previous vegetation. Indeed, the influence of historical vegetation on SOM chemical composition 

has been reported in studies of different land use types (Dümig et al., 2009; Pisani et al., 2013), 

including cultivated soils (Sleutel et al., 2008, 2011).  

3.7 Conclusions 

The joint application of C and N K-edge XANES and Py-FIMS to a climosequence of 

native grassland, native aspen forest, and cultivated soils revealed that differences in land use 

and climate lead to only modest differences in SOM chemistry, despite controlling for 

confounding pedogenic processes such as parent material, topography, and soil age. Remarkably, 

soil depth profiles showed greater variability in SOM chemistry over 20 cm than was apparent in 

surface soils across the 46-km climosequence and despite broad differences in land use, with the 

vertical stratification of SOM components reflecting land use specific processes (e.g., 

bioturbation, tillage). Our findings suggest that within-profile dynamics have a greater effect on 

SOM chemistry than processes operating on landscape (e.g., land use) and regional (e.g., 

climate) scales. 

The observed similarity of SOM chemistry in soils regardless of latitude or land use 

indicates that SOM chemistry at the prairie-forest ecotone in Saskatchewan is largely 

unresponsive to changes in MAT on the scale of those predicted to occur with climate change 

(~0.7 °C) and associated shifts in land use. We found little evidence for the evolution of SOM 

chemistry with latitudinal changes in climate and land use, suggesting a uniform metabolism of 
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different biochemical compounds regardless of their intrinsic stability, with no indication that 

relatively labile SOM components are preferentially degraded. This suggests that any reductions 

in SOM along the latitudinal gradient are controlled by factors other than biochemical 

composition, in line with emerging views of SOM turnover (Marschner et al., 2008; Kleber et al., 

2011; Schmidt et al., 2011; Dungait et al., 2012). 

Limitations of individual analytical techniques necessitate a multi-methodological 

approach when examining SOM chemistry (Leinweber et al., 2009a, 2013). Here we successfully 

combine complementary C and N K-edge XANES and Py-FIMS techniques to elucidate the 

chemical nature of SOM from a climosequence of soils in Saskatchewan, interpreting 

agreements between the techniques as strong evidence of SOM chemical quality. We attributed 

discrepancies between C and N K-edge XANES and Py-FIMS to both their fundamentally 

different perspectives of SOM chemistry (i.e., electronic structure of molecules vs. nominal 

masses of ionized molecules) as well as their limitations. For example, soft X-rays used in C and 

N K-edge XANES are inherently surface-sensitive (Sham and Rivers, 2002), and overlapping 

resonances make unambiguous assignment of spectral features difficult (Leinweber et al., 2007). 

Likewise, the sensitivity of Py-FIMS is limited due to the soft nature of field ionization required 

to reduce fragmentation (Schulten and Leinweber, 1996), and, while the step-wise heating 

process utilized in Py-FIMS transfers less energy to samples than flash-pyrolysis methods, there 

is nevertheless a possibility for pyrolytic formation of heterocyclic-N artifacts (Leinweber et al., 

2013). Clearly, limitations of various analytical techniques highlight the need for multiple 

methods to obtain a more comprehensive understanding of SOM chemistry, as results from a 

single analytical technique may be misleading and provide only a limited understanding of SOM 

chemical quality. 
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4. BIOLOGICAL STABILITY OF SOIL ORGANIC MATTER AND 

RELATION TO ORGANIC MATTER CHEMISTRY ALONG AN 

ECOTONAL CLIMOSEQUENCE1 

4.1 Preface 

The previous chapter demonstrated that only minor variations in SOM chemistry 

occurred with differences in climate and land use along a latitudinal transect in north-central 

Saskatchewan. However, SOM persistence is also influenced by organo-mineral interactions and 

accessibility. As such, despite a similar chemistry, variations in the biological stability of SOM 

along the climosequence may occur nonetheless. In this chapter, we aim to relate SOM chemistry 

to the biological stability of SOM as measured in a long-term aerobic laboratory incubation. 

Assays of biological stability directly measure the persistence of SOM, regardless of the 

mechanisms influencing its stability. As such, this study examines the ‘real-world’ differences in 

SOM pools as affected by climate and land use to improve predictions of changes in soil C 

storage and N supply at the grassland-forest ecotone in Saskatchewan.  

 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 This manuscript is currently in preparation for publication. Coauthors include Dan Pennock, Peter 
Leinweber, and Fran Walley, all of whom provided invaluable contributions to the funding of research, 
assistance in facilitation of laboratory analyses and data interpretation, as well as editing this manuscript. 
Both Dan Pennock and Fran Walley conceptualized the study design. 
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4.2 Abstract 

Understanding the relationship between SOM decomposition dynamics and climate 

change is essential to predicting future SOM stocks and potential climate change feedbacks. 

Here, we employ a space-for-time substitution to explore the effects of climate change on the 

susceptibility of SOM to degradation. Using a 24-wk laboratory incubation, we examine C and N 

mineralization in native grassland, native trembling aspen, and cultivated soils along a latitudinal 

climosequence at the grassland-forest ecotone in central Canada to evaluate the effect of climate 

shifts and associated land use changes on SOM biological stability. Furthermore, we investigate 

the role of SOM chemistry, measured using XANES spectroscopy and pyrolysis-field ionization 

mass spectrometry (Py-FIMS), on SOM stabilization. 

Despite a MAT gradient of only ~0.7 °C along the transect, laboratory incubation 

revealed large changes in SOM stability with latitude along the climosequence. Soils from 

cooler, moister sites at the northern end of the transect contained a greater proportion of labile 

SOM: from the southernmost to the northernmost site along the climosequence, proportions of C 

mineralized ranged from 10.7 to 42.3% and proportions of N mineralized ranged from 0.9 to 

10.3%. Furthermore, land use differences in SON stability were revealed, and tended to decrease 

in the order of grassland < cultivated < forest soils. Finally, SOM chemistry did not vary 

predictably with measures of biological stability, and did not evolve consistently across soils and 

litter from different land uses throughout the incubation. These findings suggest the biological 

stability of SOM is influenced by climate, and to a lesser degree, land use, with SOM in forests 

from the northern end of the climosequence being the most susceptible to degradation with 

climate change. Our exploration of SOM chemistry as a regulation on decomposition indicates 

that biochemical recalcitrance alone does not determine SOM stability at the boreal forest 

ecotone, suggesting that other stabilization mechanisms such as physico-chemical protection are 

involved.  

4.3 Introduction 

Understanding the response of soil C and N dynamics to climate change is essential to 

predicting future SOM stocks. Changes in global MAT, predicted to be 0.3–0.7 °C for the period 

of 2016–2035 (relative to 1986–2005; IPCC, 2013), may alter SOM pools by increasing C 

(Raich and Schlesinger, 1992) and N mineralization (MacDonald et al., 1995). However, while 
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soils represent a large SOC pool—containing 2000 Pg C (Janzen, 2004)—various chemical 

components of SOM may be differently susceptible to biodegradation, making predictions of 

future SOM stocks difficult. Accordingly, there is a need to determine the proportion of SOM 

susceptible to degradation in a warmer climate, particularly in regions sensitive to climate 

change. 

The climate-driven ecotone at the prairie-forest boundary in central Canada is one such 

vulnerable region (Hogg, 1994; Williams et al., 2009). Here, MAT is expected to increase 2 °C 

by 2020 (relative to 1961–1990; Sauchyn and Kulshreshtha, 2008). Accompanying increases in 

evapotranspiration (Hogg and Hurdle, 1995; Sauchyn and Kulshreshtha, 2008; Barrow, 2009) 

may lead to rapid shifts in dominant plant species, as evidenced by paleoclimate records 

(Williams et al., 2009). Likewise, a northern shift in plant hardiness zones (McKenney et al., 

2014) and ongoing deforestation (Fitzsimmons, 2002) in the region indicate that native lands will 

continue to be converted to agricultural production at the southern boundary of the boreal forest. 

Both climate and land use may affect SOM decomposition and consequently, future SOM 

stocks. Climate can alter decomposition directly, as microbial decomposition of SOM is 

temperature dependent (Davidson and Janssens, 2006; Conant et al., 2011), and indirectly, with 

temperature influencing rates of chemical processes involved in SOM protection and 

stabilization. Temperature controls the adsorption of SOM to mineral surfaces and regulates 

enzyme production, which is involved in aggregate formation (Davidson and Janssens, 2006; 

Conant et al., 2011). However, findings of climatic effects on mineralization pool size and 

dynamics are conflicting (e.g., MacDonald et al., 1995; Douglas et al., 1998; Giardina and Ryan, 

2000; Franzluebbers et al., 2001; Dalias et al., 2001; Paré et al., 2006; Meyer et al., 2006; 

Bolinder et al., 2007; Hilli et al., 2008; Dessureault-Rompré et al., 2010). Land use can also 

influence SOM stabilization (John et al., 2005; Kögel-Knabner et al., 2008) through differences 

in inputs and disturbances (Six et al., 2002). Consequently, differences in land use may also 

affect SOM mineralization in soils from different vegetation types (Raich and Tufekcioglu, 

2000; Arevalo et al., 2012), land uses (Ajwa et al., 1998; Arevalo et al., 2012), or tree species 

(Giardina et al., 2001). 

However, SOM decomposition is regulated not only by physical protection and chemical 

stabilization, but is also modified by biochemical quality (Conant et al., 2011). While the notion 

that inherent biochemical recalcitrance determines SOM persistence has recently been 
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questioned (Marschner et al., 2008; Kleber, 2010; Schmidt et al., 2011; Dungait et al., 2012), 

SOM chemistry remains important as it can influence other stabilization mechanisms (von 

Lützow et al., 2006). For example, peptides may play an important role in the formation of 

organo-mineral associations (Knicker, 2011), and SON chemistry may limit or enhance SOC 

decomposition (Hessen et al., 2004; Craine et al., 2007; Knicker, 2011). However, linking 

changes in climate and land use to SOM chemistry and biological stability remains to be fully 

explored. Climate may affect SOM chemistry (e.g., Amelung et al., 1997, 1999a; b, 2006; 

Sjögersten et al., 2003; Glaser and Amelung, 2003; Dalmolin et al., 2006; Montané et al., 2007; 

Djukic et al., 2010; Xu et al., 2010), which in turn may alter biological stability. Vegetation 

changes may also alter SOM chemistry via inheritance of chemical compounds from plant inputs 

(Filley et al., 2008; Stewart et al., 2011), while cultivation may lead to the selective enrichment 

of stable compounds such as heterocyclic N (Schnitzer et al., 2006; Leinweber et al., 2009b; 

Gillespie et al., 2011).  

Our goal was to assess the effects of latitude and land use on the susceptibility of SOM to 

degradation, using grassland, forest, and cultivated soils across a climosequence at the grassland-

forest ecotone in Saskatchewan, Canada as an analogue for the future effects of climate change. 

We accomplished this by characterizing the biological stability of SOM using readily 

mineralizable C and potentially mineralizable N!evaluated during a 24-wk incubation!as 

indicators of labile SOM stocks (Haynes, 2005). Additionally, we aimed to relate SOM stability 

to its chemistry using synchrotron-based XANES spectroscopy and Py-FIMS. Finally, we 

evaluated changes in SOM chemistry during incubation to further explore the link between 

lability and substrate chemistry. 

4.4 Materials and Methods 

4.4.1 Sites and sampling design 

The study area comprises a 46-km climosequence in west-central Saskatchewan 

described by Purton et al. (2015). Briefly, MAP ranges from 418 to 443 mm and MAT ranges 

from 0.9 to 0.2 °C from the southern to northern end of the climosequence (Hijmans et al., 

2005). Dominant vegetation in this region has been relatively static since deglaciation, aside 

from a period of forest encroachment from 6–2 ka (Williams et al., 2009). To control for 

confounding effects of other pedogenic factors, sites were located on a uniform glacial till 
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deposit (‘Ice Stream 1’ described by Ó Cofaigh et al., 2009) and soils were sampled from 

midslope positions. In twelve locations (Fig. 3.1) mineral surface soils (0–5 cm) were sampled 

from paired native trembling aspen forest and cultivated sites, with paired native grassland sites 

(n = 4) sampled where available. At native sites, litter material was collected separately. To 

further explore land use differences, soils were collected in 5-cm increments to a depth of 30 cm 

at adjacent location 3 sites. Soils were classified according to the Canadian System of Soil 

Classification (Soil Classification Working Group, 1998). 

4.4.2 Soil properties 

Samples were air-dried and ground prior to determination of soil properties. Total and 

organic C contents were determined by combustion using a LECO CR-12 (LECO Corp, St. 

Joseph, MI); prior to analysis of OC content, samples were acidified with vapors from 

concentrated HCl. Total N was determined using a LECO CNS-2000 (LECO Corp, St. Joseph, 

MI). Soil pH was measured in CaCl2 (Hendershot et al., 2008). Particle size distributions of 

mineral samples were assessed using the modified pipette method (Indorante et al., 1990), after 

samples were pretreated with 30% H2O2 to remove OM. 

4.4.3 Readily mineralizable C 

Readily mineralizable C was assessed on a subset of grassland and forest surface soils (n 

= 4, and 10, respectively) and litter samples (n = 1, 5, respectively) in triplicate, using the 

procedure described by Hopkins (2008). Three empty vials were included in the assay as blanks. 

Briefly, 15 g dry-weight equivalent of field-moist soil was sieved to 2 mm and 5 g dry-weight 

equivalent of litter was sieved to 4 mm before being placed in a 110 mL plastic vial. Samples 

were adjusted to 22.5% moisture (w/w) with deionized H2O, covered with a perforated plastic 

lid, and incubated at 25 °C and 85-90% relative humidity. Samples were preincubated for 14 d to 

allow equilibration to occur. Once weekly throughout the 24-wk incubation, lids were removed 

and vials were placed into 1 L glass jars containing a vial of 10 mL deionized H2O to prevent 

sample drying. Jars were sealed with airtight lids fitted with rubber septa. Background gas 

samples were taken immediately before incubation in the sealed jars, and gas samples from each 

jar were taken after 6 h during the first two samplings and after 24 h for all subsequent sampling 

dates. During sampling, the headspace of each jar was thoroughly mixed and ~20 mL of gas was 

extracted using a polypropylene syringe and injected into an 12 mL evacuated glass vial 
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(Exetainer®, Labco Ltd.) containing approximately 2 mg of Mg(ClO4)2 and fitted with  silicon 

and rubber septa. Carbon dioxide concentrations were analyzed using a Varian CP-4900 Micro 

Gas Chromatograph (Varian Inc.) using 400 ppm and 2000 ppm CO2 standards for calibration. 

Moisture was adjusted weekly with deionized H2O.  

Concentrations of CO2 were converted from ppm to mg CO2-C using the ideal gas law, 

with pressure considered constant at 101.3 kPa. Cumulative respiration over the 24-wk 

incubation was calculated from weekly respiration rates according to Paré et al. (2006), with the 

equation: 

Ct = Ct-1 + (kp + kp-1)/2 × (JJp - JJp-1) Eq. 4.1 

where Ct is mineralized C (mg kg-1) at time t (d), k is the daily respiration rate (mg kg-1 d-1), p is 

the incubation period (1–24), and JJ is the Julian day.  

4.4.4 Potentially mineralizable N 

Following the procedure described by Curtin and Campbell (2008), potentially 

mineralizable N was determined for grassland, forest, and cultivated samples in triplicate, 

including climosequence surface soils (n = 4, 11, and 8, respectively), litter (n = 2, 7, and 0, 

respectively), and location 3 subsoils (n = 5, 5, and 5, respectively). Briefly, soil and litter 

samples were sieved and weighed as described for the C mineralization assay, then were mixed 

in a 1:1 ratio with acid-washed sand (GRANUSIL®, GHP Systems, Inc.) to facilitate drainage. 

Six sand blanks were included in the incubation. Samples were incubated in Buchner funnels 

containing a glass microfiber pad (type GF/B, Whatman®, GE Co.) placed between 30 µm nylon 

mesh. Glass microfiber pads were also placed on sample surfaces to reduce soil disturbance 

during leaching. Samples were preleached prior to incubation. Samples were brought to 22.5% 

moisture (w/w) with deionized H2O, covered with perforated parafilm and incubated at the same 

conditions described in the C mineralization assay to facilitate direct comparison of estimated 

parameters. Sample moisture was adjusted weekly with deionized H2O. Samples were extracted 

with 100 mL 0.01 M CaCl2 followed by 25 mL N-free nutrient solution at wk 2, 4, 6, 8, 12, 16, 

20, and 24. During extraction, vacuum suction was used to reduce samples to 15% moisture 

(w/w). Leachates were collected and sample moisture was adjusted to 22.5% (w/w) with 
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deionized H2O before being replaced in the incubation chamber. Leachates were analyzed for 

NO3
- and NH4

+ using a Technicon AutoAnalyzer (Technicon Industrial Systems).  

4.4.5 Model parameterization 

Model parameterization was performed using R statistical software (v. 3.0.2; R Core 

Team, 2013), using package nlrwr (Ritz and Streibig, 2008). For both C and N mineralization 

data, various kinetic models (Table 4.1) were fit using least squares nonlinear regression. Model 

fits were tested to determine which model best described the data using the procedure outlined 

by Ritz and Streibig (2008), with the aim of utilizing a common equation for all samples to 

enable comparison of parameters while minimizing residuals. Data from three subsamples was 

used to parameterize cumulative C and N mineralization curves for each sample. 

Table 4.1 Kinetic models tested for goodness-of-fit in describing mineralization data (adapted from  
Nieder and Benbi, 2008). 

Eq. Model Formula† Reference(s) 

4.2 Zero-order (ZO) Nt = Kt 
Tabatabai and Al-Khafaji (1980); Addiscott 
(1983) 

4.3 First order single 
compartment (FOSC) Nt = N0 (1-e-kt) Stanford and Smith (1972) 

4.4 First order double 
compartment (FODC) 

Nt = Nd (1-e-k
d

t) + 
Nr (1-e-k

r
t) 

Molina et al. (1980); Nuske and Richter 
(1981); Deans et al. (1986) 

4.5 First order plus zero order 
(FOZO) 

Nt = Nd (1-e-k
d

t) + 
Kt 

Bonde and Rosswall (1987); Lindemann et al. 
(1988); Seyfried and Rao (1988) 

† where Nt = cumulative N mineralized (mg kg-1) at time t (d); K = zero-order rate constant (d-1); N0 = N 
mineralization potential (mg kg-1); k = first order rate constant (d-1); Nd = readily decomposable organic N 
fraction (mg kg-1); kd = first order rate constant of Nd (d-1); Nr = recalcitrant organic N fraction (mg kg-1); 
kr = first order rate constant of Nr (d-1). 

4.4.6 Carbon and N K-edge X-ray absorption near edge structure 

Three surface soils (location 2) and two litter samples (location 1) from the N 

mineralization assay were subsampled at weeks 0, 2, 4, and 8 of the incubation. Subsamples 

were frozen at -80 °C prior to being lyophilized and pulverized with a ball mill. Spectra were 

collected at the spherical grating monochromator (SGM) beamline 11ID-1 at the CLS 

(Saskatoon, SK, Canada). At the C and N K-edges, this beamline has a resolving power (E/∆E) 

greater than 104 and delivers 1011 photons s-1 (Regier et al., 2007a; b). Prior to acquisition, ~1 mg 

of each sample was mixed with deionized H2O, deposited on a freshly Au-coated Si wafer, and 

air-dried. Conductive C tape (SGE, Toronto, ON, Canada) affixed wafers to sample plates. 
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Spectra were acquired in fast-scanning mode with the exit slit set at 25 µm (e.g., Gillespie et al., 

2014b; a). Partial fluorescence yield scans of a subset of climosequence surface soils (n = 8) and 

litter (n = 3) were collected using a silicon drift detector (SDD) in February 2014. Total 

fluorescence yield N K-edge scans of soils and litter subsampled during the incubation were 

collected in May 2013 using a two-stage micro channel plate detector; C K-edge PFY scans of 

these samples were collected using a SDD in September 2013. Each scan was collected for 20 s 

(Gillespie et al., 2014a; b) from a fresh location to reduce X-ray exposure (Leinweber et al., 

2007). Carbon and N K-edge energies were calibrated using the 1s → π*
C=O transition at 288.6 

eV (Kim et al., 2003) of citric acid and the 1s → π* vibrational manifold of N2 gas evolved from 

(NH4)2SO4 at 400.8 eV (Gillespie et al., 2008), respectively. 

Spectra were processed using custom macros in Igor Pro (ver. 6.2, WaveMetrics Inc., 

Lake Oswego, OR, USA) and using the Athena software package (Ravel and Newville, 2005). 

Spectra were normalized to the incident flux (I0) using measurements of a Au-coated Si wafer. 

To account for C contamination of beamline optics (Watts et al., 2006), I0 measurements at the C 

K-edge were scaled and offset prior to normalization. Data from a minimum of 15 (TFY) or 30 

(PFY) scans produced the averaged spectra of each sample. Averaged spectra were background 

corrected with a linear regression fit through the pre-edge region and were scaled to an edge step 

of unity. Features at the C and N K-edges were assigned according to the literature (Myneni, 

2002; Urquhart and Ade, 2002; Dhez et al., 2003; Cooney and Urquhart, 2004; Hardie et al., 

2007; Leinweber et al., 2007; Solomon et al., 2009; Kruse et al., 2011). A background arctangent 

function parameterized as ƒ(x) = a1 * atan[(x - a2) * a3] + a4 (Rovezzi et al., 2009) and a series of 

Gaussian peaks were fitted to the normalized XANES spectral features using the Fityk software 

package (version 1.2.1; Wojdyr, 2010). Curve parameters were constrained to ensure equal width 

of all 1s → π* features. Ratios of peak heights were calculated to determine the relative 

abundance of carboxyls-to-ketones (carboxyl:ketone), thought to be related to mineralization 

potential (Gillespie et al., 2014b).  

4.4.7 Pyrolysis-field ionization mass spectrometry 

Approximately 5 mg of location 3 soil increments (to a depth of 20 cm) were air-dried 

and pulverized prior to being pyrolyzed in the ion source (emitter: 4.7 kV, counter electrode -5.5 

kV) of a double-focusing Finnigan MAT 95. Samples were heated from 50 °C to 650 °C, in 10 
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°C steps over 15 minutes in a 10-4 Pa vacuum. To prevent pyrolysis product residues, the emitter 

was flash heated between magnetic scans. For each sample, 65 spectra were recorded over the 

mass range 15–900 m/z. Ion intensities were normalized to 1 mg of the sample. Marker signals 

(m/z) were assigned to relevant substance classes according to the literature (Hempfling et al., 

1988; Schnitzer and Schulten, 1992; Schulten and Leinweber, 1996; van Bochove et al., 1996; 

Leinweber et al., 2009a, 2013). Compound classes used in data amalgamation were: 

carbohydrates, phenols and lignin monomers, lignin dimers, lipids (lipids, alkanes, alkenes, fatty 

acids and n-alkyl esters), alkylaromatics, heterocyclic N (and nitriles), sterols, amides (amino 

acids, peptides and amino sugars), suberin, and free fatty acids. Additionally, Py-FIMS analyses 

yielded information on ratios of hexoses-to-pentoses (hexose:pentose), interpreted as a measure 

of microbial origin of SOM (Cheshire et al., 1990). Thermostability, a measure predicting 

resistance to microbial degradation (Leinweber et al., 2008), was calculated as mass loss over 

400–650 °C relative to mass loss over the whole temperature range. 

4.4.8 Statistics 

Statistical analyses were conducted using the R software package (ver. 3.0.2, R Core 

Team, 2013). Variables were tested for normality using Shapiro-Wilk’s test and homogeneity of 

variance between land uses was assessed using Levene’s test. Non-normally distributed variables 

were transformed prior to analysis. Relationships between response variables and both latitude 

and depth were tested using linear regression. Univariate ANOVA was used to test for land use 

effects, with Tukey’s range tests used for post-hoc comparisons. Mixed-effects models were used 

when analyzing samples from depth profiles. In surface soils, Pearson correlations between C 

and N mineralization parameters and XANES (n = 7, 9, respectively) and Py-FIMS (n = 5, 6, 

respectively) variables were calculated and tested for significance. Likewise, correlations 

between N mineralization parameters and SOM chemistry variables were calculated (n = 12) for 

soil depth profiles. 

4.5 Results 

4.5.1 General soil characteristics 

General characteristics of climosequence surface soils have been described previously 

(Purton et al., 2015). Briefly, our aim was to select sites located on a uniform glacial till deposit. 

The similarity in particle size distributions (Table 4.2) at all locations support their genesis on the 
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same glacial ice stream unit (Ó Cofaigh et al., 2009) with the exception of the forest site at 

location 1, which was not included in the mineralization assays. Clay content decreased with 

latitude (p < 0.001, r = -0.62), in accordance with the flow direction of the ice-stream. 

Additionally, TC (p < 0.01, r = -0.51), OC (p < 0.05, r = -0.45), and TN (p < 0.001, r = -0.67) 

decreased with latitude while log OC:TN increased with latitude in surface soils (p < 0.01, r = 

0.55) and in litter samples (p < 0.01, r = 0.71; Tables 4.2, 4.3). 

!  



!
57

 

57 

T
ab

le
 4

.2
 L

oc
at

io
ns

 a
nd

 p
ro

pe
rt

ie
s 

of
 c

lim
os

eq
ue

nc
e 

su
rf

ac
e 

so
ils

 u
se

d 
in

 in
cu

ba
tio

n.
 

La
nd

 u
se

 
Lo

ca
tio

n 
La

tit
ud

e 
Lo

ng
itu

de
 

TC
 

O
C

 
TN

 
O

C
:T

N
 

pH
 

Sa
nd

 
Si

lt 
C

la
y 

!
 S

oi
l c

la
ss

ifi
ca

tio
n 
!

 
 

 
°N

 
°W

 
!

 g
 k

g-1
 !

 
 

 
!

 %
 !

 
C

an
ad

ia
n†  

W
R

B
‡  

U
SD

A
§  

G
ra

ss
la

nd
 

1 
53

.2
94

 
10

8.
76

0 
49

.7
 

43
.8

 
4.

2 
10

.4
 

5.
7 

49
 

26
 

25
 

O
.B

LC
 

C
H

-c
c 

C
.H

ap
lo

cr
yo

ll 
G

ra
ss

la
nd

 
2 

53
.3

21
 

10
8.

77
7 

44
.5

 
39

.0
 

4.
2 

9.
3 

7.
0 

69
 

12
 

19
 

C
A

.B
LC

 
C

L-
ha

 
T.

C
al

ci
cr

yo
ll 

G
ra

ss
la

nd
 

3 
53

.3
41

 
10

8.
76

4 
45

.5
 

45
.4

 
4.

1 
11

.1
 

6.
1 

68
 

17
 

15
 

O
.B

LC
 

C
H

-c
c 

C
.H

ap
lo

cr
yo

ll 
G

ra
ss

la
nd

 
6 

53
.4

38
 

10
8.

76
5 

29
.6

 
25

.2
 

2.
5 

10
.1

 
7.

0 
81

 
6 

13
 

O
.B

LC
 

C
H

-c
c 

C
.H

ap
lo

cr
yo

ll 
Fo

re
st

 
2 

53
.3

19
 

10
8.

77
6 

63
.8

 
55

.8
 

5.
4 

10
.3

 
5.

4 
64

 
17

 
19

 
D

.G
L 

LV
-c

t-h
u 

T.
H

ap
lo

cr
ya

lf 
Fo

re
st

 
3 

53
.3

41
 

10
8.

76
5 

57
.6

 
55

.9
 

4.
2 

13
.3

 
4.

9 
62

 
21

 
17

 
D

.G
L 

LV
-c

t-h
u 

T.
H

ap
lo

cr
ya

lf 
Fo

re
st

 
4 

53
.3

65
 

10
8.

77
5 

13
.2

 
12

.6
 

1.
2 

10
.5

 
5.

1 
84

 
6 

10
 

B
R

.G
L 

LV
-c

t-a
p 

T.
H

ap
lo

cr
ya

lf 
Fo

re
st

 
5 

53
.3

94
 

10
8.

78
5 

25
.9

 
27

.6
 

2.
6 

10
.6

 
5.

1 
58

 
28

 
13

 
D

.G
L 

LV
-c

t-h
u 

T.
H

ap
lo

cr
ya

lf 
Fo

re
st

 
6 

53
.4

38
 

10
8.

76
4 

78
.9

 
71

.3
 

4.
8 

14
.9

 
5.

2 
56

 
31

 
13

 
B

R
.G

L 
LV

-c
t-a

p 
T.

H
ap

lo
cr

ya
lf 

Fo
re

st
 

7 
53

.4
49

 
10

8.
77

2 
23

.1
 

21
.5

 
2.

0 
10

.8
 

5.
7 

50
 

36
 

14
 

D
.G

L 
LV

-c
t-h

u 
T.

H
ap

lo
cr

ya
lf 

Fo
re

st
 

8 
53

.4
89

 
10

8.
80

9 
30

.9
 

32
.1

 
2.

1 
15

.3
 

5.
5 

65
 

20
 

15
 

D
.G

L 
LV

-c
t-h

u 
T.

H
ap

lo
cr

ya
lf 

Fo
re

st
 

9 
53

.5
09

 
10

8.
75

5 
18

.8
 

19
.2

 
1.

5 
12

.8
 

5.
4 

69
 

24
 

7 
B

R
.G

L 
LV

-c
t-a

p 
T.

H
ap

lo
cr

ya
lf 

Fo
re

st
 

10
 

53
.5

65
 

10
8.

80
1 

36
.9

 
31

.9
 

1.
8 

17
.7

 
4.

5 
51

 
40

 
9 

O
.G

L 
LV

-c
t 

T.
H

ap
lo

cr
ya

lf 
Fo

re
st

 
11

 
53

.6
28

 
10

8.
76

5 
20

.8
 

20
.4

 
1.

2 
17

.0
 

5.
4 

64
 

31
 

5 
O

.G
L 

LV
-c

t 
T.

H
ap

lo
cr

ya
lf 

Fo
re

st
 

12
 

53
.7

07
 

10
8.

80
5 

6.
1 

5.
9 

0.
4 

14
.8

 
4.

9 
67

 
28

 
5 

D
.G

L 
LV

-c
t-h

u 
T.

H
ap

lo
cr

ya
lf 

C
ul

tiv
at

ed
 

3 
53

.3
47

 
10

8.
78

2 
41

.5
 

24
.9

 
3.

0 
8.

3 
4.

7 
64

 
23

 
14

 
O

.B
LC

 
C

H
-c

c 
C

.H
ap

lo
cr

yo
ll 

C
ul

tiv
at

ed
 

5 
53

.3
97

 
10

8.
81

2 
28

.5
 

27
.6

 
2.

4 
11

.5
 

6.
1 

61
 

29
 

10
 

O
.B

LC
 

C
H

-c
c 

 
C

.H
ap

lo
cr

yo
ll 

C
ul

tiv
at

ed
 

7 
53

.4
48

 
10

8.
77

7 
23

.3
 

23
.3

 
2.

1 
11

.1
 

5.
8 

59
 

29
 

13
 

O
.B

LC
 

C
H

-c
c 

 
C

.H
ap

lo
cr

yo
ll 

C
ul

tiv
at

ed
 

10
 

53
.5

42
 

10
8.

80
3 

18
.4

 
18

.9
 

1.
5 

12
.6

 
6.

3 
70

 
20

 
10

 
D

.G
L 

LV
-c

t-h
u 

T.
H

ap
lo

cr
ya

lf 
† 

So
il 

C
la

ss
ifi

ca
tio

n 
W

or
ki

ng
 G

ro
up

 (
19

98
). 

O
.B

LC
 =

 O
rth

ic
 B

la
ck

 C
he

rn
oz

em
; C

A
.B

LC
 =

 C
al

ca
ro

us
 B

la
ck

 C
he

rn
oz

em
; D

.G
L 

= 
D

ar
k 

G
ra

y 
Lu

vi
so

l; 
B

R
.G

L 
= 

B
ru

ni
so

lic
 G

ra
y 

Lu
vi

so
l; 

O
.G

L 
= 

O
rth

ic
 G

ra
y 

Lu
vi

so
l. 

‡ 
IU

SS
 W

or
ki

ng
 G

ro
up

 W
R

B
 (

20
14

). 
C

H
-c

c 
= 

C
al

ci
c 

C
he

rn
oz

em
; C

L-
ha

 =
 H

ap
lic

 C
al

ci
so

l; 
LV

-c
t-h

u 
= 

C
ut

an
ic

 L
uv

is
ol

 (
H

um
ic

); 
LV

-c
t-a

p 
= 

C
ut

an
ic

 L
uv

is
ol

 (A
br

up
tic

); 
LV

-c
t =

 C
ut

an
ic

 L
uv

is
ol

. 
§ 

So
il 

Su
rv

ey
 S

ta
ff

 (2
01

4)
. C

 =
 C

al
ci

c;
 T

 =
 T

yp
ic

. 
! !

 

!



! 58 

Differences between land use were also evident. Soil pH was lowest (p < 0.01; grassland 

6.4 ± 0.6; forest: 5.3 ± 0.5; cultivated: 6.0 ± 0.7) and OC:TN ratios were highest (p < 0.01; 

grassland: 10.2 ± 0.7; forest: 13.4 ± 2.6; cultivated: 10.7 ± 2.1) in forest surface soils. Forest 

litter had the highest amount of TC (p < 0.001; grassland: 76.3 ± 16.1 g kg-1; forest: 244.1 ± 61.5 

g kg-1), OC (p < 0.001; grassland: 66.6 ± 22.0 g kg-1; forest: 226.9 ± 66.5 g kg-1), and TN (p < 

0.01; grassland: 6.4 ± 3.0 g kg-1; forest: 14.1 ± 3.5 g kg-1), while pH was highest in grassland 

litter (p < 0.01; grassland: 6.4 ± 0.5; forest: 5.8 ± 0.3). In the location 3 soil profiles, OC:TN 

ratios and texture differed between land uses (Table 4.4). 

Soil profiles also revealed trends in soil properties with depth (Table 4.4). Clay content (p 

< 0.05, r = 0.53) increased with depth while log TC (p < 0.001, r = -0.87), log OC (p < 0.001, r = 

-0.90), log TN (p < 0.001, r = -0.91), and OC:TN (p < 0.05, r = -0.58) decreased with depth. 
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4.5.2 Readily mineralizable C 

A subset of grassland and forest surface soils (Table 4.5) and forest litter samples (Table 

4.6) were incubated and parameters for the proportion of potentially mineralizable C (C0/OC) 

and C mineralization rates (kC) were extracted. Cultivated surface soils and location 3 soil depth 

profiles excluded from the assay as the investigation of the effects of cultivation on the 

susceptibility of SOC to degradation was outside the scope of this study. 

 

!
Fig. 4.1 Cumulative C mineralized in grassland and forest surface soils throughout 24-wk 
incubation. Lines represent means of three subsamples at each weekly gas sampling, with numbers 
referring to specific sampling locations. 

The amount of C mineralized (Cm) in surface soils throughout the 24-wk incubation 

decreased with latitude (Fig. 4.1; p < 0.05, r = -0.60), reflecting concomitant decreases in OC 

(Table 4.2). However, when normalized to initial OC content, no trends with latitude were 

discernible in the proportion of C mineralized (log Cm/OC). Neither Cm nor log Cm/OC differed 

between land uses (Table 4.5). In litter samples, both Cm and Cm/OC were unrelated to latitude 

(Table 4.6). While the FOZO model generally provided the best fit for C mineralization data, 

FOSC parameters also described the data well, with model convergence occurring within 25 

iterations, suggesting the existence of a single pool of SOC in climosequence soils. Although 
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assumptions of the FOSC model have recently been brought into question (Curtin et al., 2012), 

these parameters are presented (Tables 4.5, 4.6) to allow comparison with the literature as well as 

with N mineralization data from the current study. 
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In surface soils, calculated FOSC parameters describing the proportion of readily 

mineralizable C (log C0/OC) and kC did not differ between land use types. However, log C0/OC 

(Fig. 4.2, p < 0.05, r = 0.60), but not kC, was related to latitude. No latitudinal trends were found 

in FOSC parameters of litter samples (Table 4.6). 

 

!
Fig. 4.2 Pearson’s correlation between readily mineralizable C and latitude in a 24-wk incubation 
for grassland and forest surface soils.  
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4.5.3 Potentially mineralizable N 

The amount of N mineralized (log Nm) in surface soils was not significantly related to 

latitude or land use (Fig. 4.3); however, trends followed those in C mineralization (Fig. 4.1). In 

contrast, the proportion of N mineralized (log Nm/TN) in surface soils increased with latitude (p 

< 0.001, r = 0.72) and was lowest in grassland soils (Table 4.5). In agreement with C 

mineralization results, litter Nm and Nm/TN were not related to latitude (Table 4.6). In location 3 

soil depth profiles, log Nm decreased with depth (Fig. 4.4; p < 0.001, r = -0.84), reflecting 

decreases in TN with depth (Table 4.4); no differences between land uses were discernible 

(Table 4.7). In contrast, Nm/TN did not vary with depth and was significantly higher in the forest 

soil profile than grassland or cultivated profiles (Table 4.7). 

 

!
Fig. 4.3 Cumulative net N mineralized in cultivated, grassland, and forest surface soils throughout 
24-wk incubation. Lines represent means of three subsamples at each leaching date, with numbers 
referring to specific sampling locations. 
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!
Fig. 4.4 Net N mineralized throughout 24-wk incubation in grassland, forest, and cultivated soil 
depth profiles from location 3. Error bars represent standard deviation of three subsamples. 

In the majority of samples—particularly in surface soils—N mineralization data 

conformed best to the FOSC kinetic model, suggesting the existence of a single pool of 

mineralizable SON. Notably, the ZO kinetic model outperformed the FOSC model when 

describing litter samples, while the FOZO kinetic model best described subsurface soils. Given 

the model’s superior performance, FOSC parameters for the proportion of potentially 

mineralizable N (N0/TN) and N mineralization rates (kN) were calculated (Tables 4.5–4.7). 

Strong mineralization lags prevented FOSC model convergence in 12 samples (8 surface soils 

and 4 litter samples), which were excluded from further analysis.  
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Table 4.7 Amount of mineralized N (Nm) in 24-wk incubation and associated parameters estimated 
using the first-order single compartment (FOSC) kinetic model of location 3 soil depth profiles used 
in incubation. 

Land use Depth Nm Nm/TN N0 N0/TN kN 
 cm mg N kg-1 soil % mg N kg-1 soil % d-1 
Grassland 0–5 49 1.2 –‡ – – 
Grassland 5–10 33 1.6 129 6.1 0.0017 
Grassland 10–15 30 1.6 72 4.0 0.0028 
Grassland 15–20 23 2.3 13 1.3 0.0268 
Grassland 20–25 21 1.9 11 1.0 0.0304 
Grassland 25–30  19 2.2 22 2.5 0.0092 
Forest 0–5 158 3.8 1954 46.5 0.0005 
Forest 5–10 49 2.3 145 6.9 0.0025 
Forest 10–15 31 2.8 115 10.4 0.0018 
Forest 15–20 23 3.3 31 4.5 0.0072 
Forest 20–25 21 3.0 30 4.3 0.0057 
Forest 25–30  24 3.4 47 6.8 0.0038 
Cultivated 0–5 97 3.2 207 6.9 0.0036 
Cultivated 5–10 43 1.8 134 5.6 0.0023 
Cultivated 10–15 30 2.0 55 3.7 0.0043 
Cultivated 15–20 20 2.2 25 2.8 0.0078 
Cultivated 20–25 20 ND† 28 ND 0.0066 
Cultivated 25–30  17 2.2 19 2.3 0.0118 
Summary statistics of soil profiles by land use§ 
Grassland  29 ±!11 1.8 ± 0.4 b 50 ± 51 b 3.0 ± 2.1 b 0.0142 ± 0.0135 
Forest  51 ± 54 3.1 ± 0.5 a 387 ± 769 a 13.2 ± 16.4 a 0.0036 ± 0.0025 
Cultivated  38 ± 30 2.3 ± 0.5 b 78 ± 76 b 4.3 ± 1.9 b 0.0061 ± 0.0035 
ANOVA  ns p < 0.01 p < 0.05 p < 0.01 ns 
† Nitrogen content not determined due to limited sample quantity. 
‡ FOSC model did not fit the data. 
§ Values are means of all depth increments of each land use ± standard deviation; values with different 
lowercase letters are significantly different according to Tukey’s HSD test (p < 0.05). 

 

The FOSC parameters describing N mineralization were not related to latitude or land use 

in surface soils or litter samples. However, analysis of soil depth profiles revealed that both log 

N0/TN (p < 0.05, r = -0.61) and log kN (p < 0.01, r = 0.69) varied with depth. Additionally, 

N0/TN was highest in forest soils (Fig. 4.5a, Table 4.7). 
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!
Fig. 4.5 Boxplots of (A) potentially mineralizable N pools, and (B) thermostability by land use in soil 
depth profiles from location 3. 

4.5.4 Soil organic matter chemistry 

Features in C K-edge XANES spectra (Fig. 4.6) were assigned as: a) C=C in 

protonated/alkylated aromatics and alkenes at 285.0 eV (aromatic-C); b) aliphatic-C in nitriles, 

carbonyl-C in ketones and aldehydes, and C bound in aromatic heterocycles at 286.5 eV 

(ketone); and c) carbonyl-C in carboxyl and amide at 288.5 eV (carboxyl). At the N K-edge (Fig. 

4.7), dominant features were assigned as a) aromatic N in 6-membered rings at 398.8 eV 

(heterocyclic-N); b) amidic-N with possible contributions from pyrrolic-N at 401.4 eV (amide); 

and c) alkyl-N, inorganic NH4
+, and the 1s → σ* feature at 405.5 eV (alkyl-N). 

In a subset of surface soils from the mineralization assay, Py-FIMS but not XANES 

analysis revealed latitudinal trends in SOM chemistry. Carbohydrates (p < 0.05, r = -0.90), 
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< 0.05, r = -0.85), sterols (p < 0.001, r = 0.99), and amide (p < 0.05, r = -0.88) all varied with 

latitude. Additionally, thermostability decreased with increasing latitude (p < 0.05, r = -0.81).  

While too few observations were present to examine contrasts between forest, grassland, 

and cultivated surface soils, soil depth profiles revealed differences in SOM chemistry with land 

use. The forest profile had a greater proportion of lipids (p < 0.05; grassland: 4.7 ± 0.3%; forest: 

7.5 ± 2.7%; cultivated: 5.5 ± 0.8%) and sterols (p < 0.05; grassland: 1.2 ± 0.5%; forest: 7.1 ± 

6.0%; cultivated: 3.0 ± 1.5%) than the grassland profile. While not significant, the forest profile 

also had higher hexose:pentose ratios (p = 0.05; grassland: 2.1 ± 0.2%; forest: 2.6 ± 0.4%; 

cultivated: 2.1 ± 0.2%) and lower thermostability (p = 0.07; grassland: 0.66 ± 0.12%; forest: 0.51 

± 0.08%; cultivated: 0.65 ± 0.10%) than grassland or cultivated soils. Nitrogen K-edge XANES 

of soil depth profiles revealed differences in amide, which was highest in the grassland profile (p 

< 0.01; grassland: 0.37 ± 0.04; forest: 0.32 ± 0.03; cultivated: 0.32 ± 0.05; normalized 

absorbance, arbitrary units [a.u.]). Though not significant, the grassland profile tended to have 

higher proportions of carboxyl than the cultivated profile (p = 0.08; grassland: 0.53 ± 0.03; 

forest: 0.50 ± 0.01; cultivated: 0.47 ± 0.04; a.u.).  

Depth trends were revealed by Py-FIMS measurements, with alkylaromatics (p < 0.05, r 

= 0.60), suberin (p < 0.05, r = -0.63), and thermostability varying with depth (p < 0.05, r = 0.62). 

While not significant, heterocyclic N (p = 0.06, r = 0.56) and log free fatty acids (p = 0.09, r = -

0.51) also tended to vary with depth. Additionally, XANES features for aromatic-C (p < 0.01, r = 

-0.79), ketone (p < 0.01, r = -0.78), and amide (p < 0.01, r = -0.77) decreased with depth while 

log carboxyl:ketone increased with depth (p < 0.01, r = 0.77).  

4.5.5 Correlations of mineralization parameters with soil properties and soil organic matter 

chemistry 

In surface soils, mineralization parameters tended to be negatively correlated with TC, 

OC, TN, and sand content (Table 4.8). While few parameters were correlated with measures of 

SOM chemistry, lipids were correlated with both log Cm/OC and log Nm/TN. Few correlations 

were found between litter samples and measured variables, though SOM chemistry (i.e., 

XANES, Py-FIMS) was not measured. In soil depth profiles, a number of correlations were 

found between N mineralization parameters and soil properties, XANES, and Py-FIMS 

variables. Log N0/TN and log kN values tended to be correlated with these variables in opposing 
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directions. This is likely related to the inverse correlation between N0/TN and log kN (p < 0.001, 

r = -0.94), which resulted from fitting the FOSC model in samples that lack a distinct plateau 

(Campbell et al., 1993). Given the interdependence of these parameters, we interpret only the 

former.  

!  
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4.5.6 Trends in soil organic matter chemistry during incubation 

To determine the role of SOM chemistry as a control on stability, the evolution of SOM 

chemistry throughout the first 8 wk of the 24-wk incubation was measured by C (Fig. 4.6) and N 

(Fig. 4.7) K-edge XANES of surface soils (location 2), and litter samples (location 1) from 

different land uses. Prior to incubation (wk 0), SOM chemistry of litter and mineral samples did 

not differ significantly. Additionally, differences between land uses were minor, with forest 

samples having the greatest proportion of ketones (p < 0.05; grassland: 0.20 ± 0.02; forest: 0.28 

± 0.02; cultivated: 0.18; a.u.).  

 

 

!
Fig. 4.6 Carbon K-edge X-ray absorption near edge structure (XANES) spectra of (A) grassland, 
forest, and cultivated surface soils, and (B) forest and grassland litter samples throughout the first 8 
wk of incubation. Carbon features are assigned as (a) aromatic-C at 285.0 eV; (b) ketone at 286.5 
eV; and (c) carboxyl at 288.5 eV. 
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!
Fig. 4.7 Nitrogen K-edge X-ray absorption near edge structure (XANES) spectra of (A) grassland, 
forest, and cultivated surface soils, and (B) forest and grassland litter samples throughout the first 8 
wk of incubation. Nitrogen features are assigned as (a) heterocyclic-N at 398.8 eV; (b) amide at 
401.4 eV; and (c) alkyl-N at 405.5 eV. 

Differences in SOM chemistry between subsampling periods (i.e., wk 0, 2, 4, and 8) were 

difficult to discern by visual inspection of spectra (Figs. 4.6, 4.7). For all samples, Pearson’s 

correlations of XANES features with subsampling period were not significant. Likewise, no 

trends in SOM chemistry over time were found when mineral and litter samples were analyzed 

separately. Only when samples were separated by both type (mineral surface soil or litter) and 

land use were trends with incubation time revealed. In the grassland soil, the proportion of alkyl-

N decreased with incubation period (p < 0.05, r = -0.99), while in the forest soil the proportion of 

ketones declined over time (p < 0.05, r = -0.99). In the cultivated soil, proportions of aromatic-C 

increased throughout the incubation (p < 0.05, r = 0.99). No changes in grassland or forest litter 

chemistry occurred during the incubation.  

4.6 Discussion 

Generally, C and N mineralization results agree with previous findings from similar land 

uses (e.g., Ajwa et al., 1998; Côté et al., 2000; Arevalo et al., 2012). Net amounts of N 
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mineralized throughout the incubation, expressed on a TN basis, ranged from 0.9–10.3%, 1.3–

2.2%, and 1.2–3.8% in surface soils, litter samples, and depth profiles, respectively. The 

proportion of Cm/OC ranged to a greater extent: from 8.7–40.9% in surface soils and 6.7–20.8% 

in litter samples. 

4.6.1 Climatic trends in C and N mineralization  

Predicted increases in MAT and evapotranspiration in the study region (Sauchyn and 

Kulshreshtha, 2008; Barrow, 2009) suggests current climate norms, and subsequently vegetation, 

will shift northward. As such, climatic and vegetation differences with decreasing latitude along 

the climosequence can serve as a surrogate for future characteristics at the northern end. The 

~0.7 °C gradient in MAT along the climosequence lead to two discernible trends in surface soil 

mineralization parameters. First, log Nm/TN increased with increasing latitude, and log Cm/OC, 

while not significant, showed an increasing trend with latitude (p = 0.07, r = 0.50), indicating 

that greater proportions of SOM were mineralized in samples from the northern end of the 

climosequence during the incubation. Second, increasing log C0/OC with latitude (Fig. 4.2) 

reveal that the proportion of biologically stable SOC is greatest at the southern end of the 

transect. Indeed, values derived from the sites at the two endpoints of the transect (site 1 

grassland – site 12 forest) represent both extremes of Nm/TN, Cm/OC, and C0/OC values (Table 

4.5). The wide range in these parameters across the climosequence (9.4, 32.2, and 31.6%, 

respectively) suggests a strong climatic effect on SOM mineralization. 

While increases in log C0/OC with latitude suggest the pool of stable SOC was influenced 

by climate, the absence of this trend in log N0/TN may indicate that SON is less susceptible to 

climatic changes. However, potentially mineralizable C and N are not analogous measurements: 

while C mineralization reflects the gross heterotrophic activity of soil microorganisms, N 

mineralization represents the net flux of mineral N released from the soil (Haynes, 2005). As 

such, differences between C and N mineralization parameters may result from the incorporation 

of immobilization processes into N, but not C, mineralization measurements. Alternatively, 

although log Cm/OC and log C0/OC values were highly correlated (p < 0.001, r = 0.93), log 

Nm/TN and log N0/TN values were not, suggesting that the FOSC model better described the C 

mineralization data. This may be due, in part, to the increase in net N mineralization near the end 

of the incubation (Fig. 4.3), causing deviations from the FOSC model. Likewise, an initial lag 
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phase in net N mineralization, most evident in forest soils (Fig. 4.3), may reflect a predominance 

of immobilization during this period (Scott et al., 1998) due to the significantly higher OC:TN 

ratios of forest surface soils and the relatively low incubation temperature (Campbell et al., 

1993). This lag may also have contributed to deviations from the FOSC model. As such, while 

the absence of correlation between N0/TN and latitude—despite the relationship between C0/OC 

and latitude—may reflect the greater responsiveness of mineralizable C concentrations (Haynes, 

2005), it may also indicate difficulties in modeling N mineralization in climosequence surface 

soils.  

Soil organic matter chemistry is one of the dominant controls defining its resistance to 

degradation (Stevenson, 1994; Christensen, 1996; Sollins et al., 1996). Despite recent 

controversy surrounding its importance (Marschner et al., 2008; Kleber, 2010; Schmidt et al., 

2011; Dungait et al., 2012), it remains a key component of conceptual models of SOM 

decomposition (Conant et al., 2011). However, we found little evidence that biochemical 

recalcitrance dominates SOM stability in climosequence surface soils. Indeed, neither C0/OC nor 

N0/TN were correlated to measures of SOM chemistry (Table 4.8). Additionally, while both 

Cm/OC and Nm/TN were correlated with XANES and Py-FIMS measures of chemistry, the only 

shared trend was a positive relationship with the proportion of soil lipids, which also increased 

with latitude. Notably, Cm/OC was inversely related to the C K-edge XANES ketone feature, in 

agreement with Gillespie et al. (2014b). As ketones are indicators of biologically transformed 

SOM (Gillespie et al., 2014a) and can be produced via fatty acid oxidation (Dent et al., 2004), 

the gradient in SOM chemistry with stability may reflect a continuum of SOM degradation. This, 

in turn, may result from differences in climate, in agreement with findings that warmer 

temperatures encourage the accumulation of stable SOM (Dalias et al., 2001; Paré et al., 2006; 

Hilli et al., 2008). However, while lipids were correlated with latitude (p < 0.01, r = 0.96), 

ketones were not, suggesting that climate may not be responsible for the observed ketone-lipid 

continuum. Additionally, given that lipids comprised only 4.5–13.1% of SOM in the subset of 

climosequence surface soils under study (Purton et al., 2015), it is unlikely that variation in lipids 

could lead to the comparatively large ranges in C (32.3%) and N (9.4%) mineralization across 

the climosequence (Table 4.5). 

While the current study explicitly focused on biochemical recalcitrance as a SOM 

stabilization mechanism, we found indirect evidence suggesting an important role of physico-
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chemical protection along the climosequence. All mineralization variables exhibiting a 

latitudinal trend were also negatively correlated with clay content (Table 4.8), which decreased 

by ~20% with latitude (Table 4.2). Like climate, clay content influences SOM adsorption 

(Baldock and Skjemstad, 2000), and can increase physical protection of OM (Six et al., 2002; 

von Lützow et al., 2006), making it difficult to disentangle the effects of climate from those of 

clay on mineralization dynamics across the climosequence. Furthermore, the role of a dominant 

stabilization mechanism other than biochemical recalcitrance is supported by the absence of a 

latitudinal trend in litter mineralization parameters (Table 4.6), suggesting organo-mineral 

interactions may be responsible for SOM stabilization in surface soils. Notably, 

thermostability—often interpreted as representing differences in bond type and strength 

(Schulten and Leinweber, 1999; Sleutel et al., 2011) as well as indicating resistance to further 

microbial degradation (Leinweber et al., 2008)—was not correlated with mineralization 

parameters in surface soils (Table 4.8), suggesting physical protection may play a key role in 

stabilization of climosequence SOM at the soil surface.  

4.6.2 Land use effects on C and N mineralization 

Despite broad differences in vegetation and land use, observed differences in SOM 

mineralization were relatively small. While no differences were found in surface SOC 

mineralization parameters, when expressed on a TN unit basis, biological stability of SON 

tended to follow the order of grassland > cultivated > forest soils in both surface soils (Table 4.5) 

and soil profiles (Table 4.7). Notably, Nm/TN of grassland surface soils was significantly lower 

than that of forest and cultivated soils. As grassland sites were located at the southern end of the 

climosequence (Table 4.2), their apparent stability may reflect the influence of latitude, rather 

than land use. However, results from adjacent soil profiles revealed land use differences in both 

Nm/TN and N0/TN (Table 4.7), indicating that land use does influence SOM stability. These 

findings are inconsistent with others from this region: Arevalo et al. (2012) found Cm/OC to be 

lower in a native trembling aspen forest soil than in paired agricultural and non-native grassland 

soils. However, Cm/OC and Nm/TN are not analogous measurements, with CO2 respired 

measuring the total activity of heterotrophic soil microorganisms while N leachates represent the 

net flux of inorganic N released from the soil (Haynes, 2005). Furthermore, the dominance of 

different stabilization mechanisms may explain incongruities with previous studies. 
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The detection of few differences in SOM chemistry between land use profiles indicates 

that biochemical recalcitrance is not the dominant stabilization mechanism resulting in observed 

differences in SON lability. Of the SOM chemistry variables measured, only Py-FIMS lipid and 

sterol compound classes and the N K-edge XANES amide feature differed significantly between 

land use types. However, aside from sterols, SOM chemistry variables correlated with N 

mineralization parameters (Table 4.8) were not the same as those that differed between land uses. 

Yet, sterols have been found to be negatively correlated with SON mineralization in sandy arable 

soils from NW Germany (Heumann et al., 2011), and can exhibit an anti-microbial effect 

specific to microorganisms actively involved in N cycling (Heumann et al., 2013), and thus 

remain unlikely to lead to the increase in SOM lability as observed here. Likewise, while N 

mineralization parameters in surface soils and soil profiles were correlated with soil pH, which 

was found to be significantly lower in forests, Curtin (1998) found differences in pH to be 

unrelated to N0 in cultivated soils in Saskatchewan, suggesting pH is not responsible for the 

observed land use differences in SON lability.  

Notably, while not significantly different between land use profiles (p = 0.07), 

thermostability was inversely correlated with log N0/TN, and tended to mirror land use 

differences in N0/TN (Fig. 4.5a, b). Unlike compound classes, each of which represent only a 

portion of SOM, thermostability incorporates information from the entire range of m/z measured, 

and thus is a broad measure of SOM stability. As such, thermostability is a more plausible 

influence on SOM lability than individual compound classes, suggesting that decreased organo-

mineral association may be responsible for the observed lability of SON in the forest soil profile. 

Indeed, all Py-FIMS compound classes correlated with N0/TN in soil profiles were also 

correlated with thermostability (p < 0.01, |r| > 0.75), suggesting that correlations between these 

variables and log N0/TN may reflect the influence of thermostability—rather than biochemical 

recalcitrance—on the resistance of SON to degradation. Furthermore, though potentially the 

result of mineralization-immobilization dynamics, some correlations of SOM chemistry variables 

with log N0/TN ran counter to expectation. For example, as measured by N K-edge XANES, 

heterocyclic-N was positively correlated with N0/TN, suggesting that this feature contributes to 

SOM lability. However, heterocyclic forms of N are thought to be resistant to decomposition 

(Mengel, 1996; Kögel-Knabner, 2002; Jokic et al., 2004), particularly relative to other forms of 

N (Gärdenäs et al., 2011), and thus it would be expected that this XANES feature be negatively 
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correlated with N0/TN. As such, trends in SOM chemistry remain difficult to reconcile with 

observed differences in SON lability, suggesting another mechanism is responsible for SOM 

stabilization. 

4.6.3 Dynamics of soil organic matter chemistry during decomposition   

Carbon and N K-edge XANES revealed that SOM chemistry does not evolve predictably 

during decomposition. Despite the view of some chemical features as biochemically labile or 

recalcitrant, we did not find trends in the relative depletion or enrichment of XANES features 

throughout the first 8 wk of the incubation that were consistent across sample type (surface soil 

or litter) or land use. This suggests SOM mineralization is not controlled by biochemical 

recalcitrance, with losses in SOC and SON reflecting relatively uniform depletion of all chemical 

features, in accordance with the existence of a single pool of mineralizable SOM as indicated by 

conformation of climosequence soil C and N mineralization to the FOSC kinetic model. Modest 

trends in SOM chemistry over time were only discernible when correlations were performed on 

individual samples, despite similarity in initial XANES chemistry (Figs. 4.6, 4.7). Specifically, 

alkyl-N and ketones were depleted in grassland and forest surface soils, respectively, while 

aromatic-C was enriched in cultivated soils. Such changes, along with the static SOM chemistry 

of litter samples, suggest the existence of land use- or soil-specific interactions between SOM 

chemical features and other stabilization mechanisms, such as the association of OM with 

minerals. 

4.7 Conclusions 

Assessment of SOM along a climosequence of grassland, forest, and cultivated soils with 

a similar pedogenic history revealed both latitudinal trends and land use differences in the 

biological stability of SOM. The susceptibility of SOM to degradation was greatest at the 

northern end of the climosequence and in forest soils. As such, cooler, moister climates may 

promote the accumulation of labile SOM that may be lost with climate change. Likewise, the 

conversion of forests to cultivated soils and vegetation shifts from forest to grassland may trigger 

the loss of this labile pool of SOM. However, despite a MAT gradient of only ~0.7 °C, 

differences in the biological stability of SOM attributable to land use were small relative to the 

magnitude of differences associated with latitude, suggesting that climatic processes may affect 

SOM stabilization mechanisms to a greater extent than land use. 
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Our findings suggest that SOM chemistry does not strongly influence its biological 

stability. While lipids were correlated with C and N mineralization in surface soils, only sterols 

were consistently correlated with measures of N mineralization in both surface soils and soil 

depth profiles. Furthermore, negative correlations of mineralization measures with clay content 

in climosequence surface soils and with thermostability in depth profiles suggests a greater 

influence of other stabilization mechanisms on the biological stability of SOM. Finally, our 

assessment of SOM chemistry evolution throughout the incubation revealed that changes in 

SOM chemistry are not consistent across land uses, indicating that biochemical recalcitrance 

alone did not control the preservation of SOM. 
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5. SYNTHESIS AND CONCLUSIONS 

The response of SOM and terrestrial C stocks to global climate change has been the focus 

of much research, yet key questions remain. The magnitude and direction of the response of SOC 

stocks to predicted changes in climate (e.g., Kirschbaum, 2000; Friedlingstein et al., 2006; 

Heimann and Reichstein, 2008; Janssens and Vicca, 2010), remains uncertain, due to the 

complex nature of SOM decomposition dynamics. Indeed, while it is well known that SOM 

decomposition is temperature-dependent, biological and chemical constraints to SOM decay are 

themselves affected by temperature, and potentially other climatic factors (Thornley and Cannell, 

2001; Davidson and Janssens, 2006). Of these constraining factors, the role of biochemical 

recalcitrance in determining SOM stability is particularly uncertain, and has recently been 

brought into question (Marschner et al., 2008; Kleber, 2010; Schmidt et al., 2011; Dungait et al., 

2012). These important knowledge gaps highlight the need to enhance our understanding of 

SOM decomposition and constraints on SOM decay, particularly as they relate to environmental 

changes that can be expected to occur during this period of global climate change.  

The research presented in this thesis addresses these gaps in our collective understanding 

by examining and attempting to reconcile the response of SOM chemistry and SOM biological 

stability to differences in climate and land use along a pedogenically defensible climosequence at 

the grassland-forest ecotone in west-central Saskatchewan. Using paired trembling aspen forest, 

grassland, and cultivated soils developed on the same glacial ice stream unit and controlling for 

topographic differences allowed us to study changes in SOM chemistry and persistence resulting 

from differences in climate and land use. This rigorous study design allowed us to use latitudinal 

variations in these properties as a surrogate for changes that are likely to occur in the region with 

global climate change, elucidating relationships that may otherwise have remained obscured. 

5.1 Summary of findings 

Our study of the effects of climate and land use on SOM chemistry (Chapter 3) 

demonstrated that SOM chemistry was relatively insensitive to changes in climate and land use 
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on the magnitude of those predicted to occur with climate change in the near future. We found 

SOM chemistry to be remarkably similar despite a climatic gradient of 0.7 °C MAT and broad 

differences in land use. In contrast, SOM chemistry varied more markedly within 20-cm depth 

profiles than across the entire 46-km transect. Additionally, these depth trends were modified by 

land use, revealing that pedon-scale processes (e.g., bioturbation, tillage) have a greater impact 

on SOM chemistry than landscape- or regional-scale processes. 

In Chapter 4, the examination of SOM biological stability using a 24-wk incubation 

revealed trends that diverged from those found in SOM chemistry across the climosequence. The 

biological stability of SOM tended to vary most greatly with latitude. Despite the intent of our 

study design to control for other pedogenic factors, confounding effects of soil texture impeded 

the attribution of latitudinal variation in biological stability solely to climatic differences. 

Nonetheless, SOM tended to be least stable in cooler, moister sites at the northern end of the 

climosequence, though this observation may also be due, in whole or in part, to concomitant 

decreases in clay content. Biological stability also varied with land use, being least stable in 

forest soils. Measures of SOM biological stability were generally not well correlated with 

measures of SOM chemistry, and individual SOM chemical moieties were not selectively 

preserved—or preferentially depleted—across samples from different land uses during 

decomposition. These findings suggest that biochemical recalcitrance does not control SOM 

persistence in the soils studied. Instead, correlations with clay content and thermostability 

suggest that organo-mineral association may play a greater role in SOM stabilization in these 

soils, with land use and—potentially—climate modifying the operation or effectiveness of this 

stabilization mechanism, thereby leading to the observed differences in SOM biological stability. 

The finding that SOM chemistry has a relatively homogenous composition across land 

uses and climates is consistent with the ‘Chemical Convergence Hypothesis’ (Wickings et al., 

2012) of SOM chemical transformations, supporting the existence of a common decomposition 

sequence that serves to homogenize SOM despite differences in initial litter input chemistry 

(Grandy and Neff, 2008). The model of Grandy and Neff (2008) proposes that decomposition 

leads to consistent and predictable changes in SOM chemistry as well as concomitant physical 

and biological breakdown of particulate fractions. As such, SOM chemistry converges during 

decomposition, and various particulate fractions are linked to SOM in different stages of 

decomposition, with silt and clay fractions being more decomposed than sand-associated and 
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particulate SOM (Grandy and Neff, 2008). Given that our study design explicitly sampled soils 

from the same parent material, differences in particle size, though present, may not have been 

great enough to yield differences in SOM chemistry, thereby potentially explaining the similarity 

in SOM chemistry across the climosequence. Also consistent with this model, trends in SOM 

chemistry within soil depth profiles may be attributable to variation in organo-mineral 

association, which studies in other environments have shown increases with depth (von Lützow 

et al., 2008; Rumpel and Kögel-Knabner, 2011). However, as no explicit measures of the 

microbial biomass were examined in the research described in this thesis, the contribution of the 

microbial community composition to the observed similarity in SOM chemistry along the 

climosequence remains unknown. Relatively homogenous edaphic properties across the 

climosequence may have led to similarities in decomposer communities (Lauber et al., 2008), 

which may have also led to the convergence of SOM chemistry. 

Observations that SOM chemistry and SOM biological stability are largely unlinked is 

consistent with the recent paradigm shift which suggests biochemical recalcitrance is not an 

important determinant of SOM preservation (Marschner et al., 2008; Kleber, 2010; Schmidt et 

al., 2011; Dungait et al., 2012). Latitudinal and depth trends as well as land use differences in 

SOM chemistry and biological stability were often mutually exclusive: SOM chemistry was 

relatively homogenous across climosequence surface soils but varied markedly with depth, while 

SOM biological stability varied with latitude and differed between land uses but exhibited only 

minor variation with depth. Moreover, the relatively uniform depletion of SOM chemical 

moieties during long-term incubations supported our finding that a single compartment model of 

SOM mineralization tended to best describe decomposition, further indicating that SOM 

persistence is not controlled by various chemical ‘pools’ of differing biochemical recalcitrance, 

as is assumed in many SOC cycling models (e.g., CENTURY, RothC). Examinations of the 

evolution of SOM chemistry during decomposition revealed only sample-specific trends as 

decomposition proceeded. As biochemically recalcitrant compounds, by definition, must be 

stable regardless of the environment in which they are placed (Kleber, 2010), such sample-

specific trends must be reflective of soil- or land use-specific interactions between different 

SOM chemical components and other stabilization mechanisms (i.e., organo-mineral association, 

microbial inaccessibility). Together, these findings indicate that biochemical recalcitrance is not 

the dominant SOM stabilization mechanism in these soils.  
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5.2 Future research directions 

While the research presented in this thesis examined the influence of climate and climate-

induced land use differences on SOM chemistry and biological stability, future investigations 

should expand their scope to determine if these findings are broadly applicable regardless of 

parent material, or if responses are different in soils of different mineralogy or texture. Indeed, 

soil texture has been observed to influence SOM chemistry (Grandy et al., 2009), particularly in 

subsoil horizons (Vancampenhout et al., 2012). Since both the physical and chemical breakdown 

of SOM occur simultaneously, SOM chemistry and degree of microbial processing varies with 

soil particle size (Grandy and Neff, 2008). As such, SOM in relatively fine-textured soils—such 

as those found along the climosequence examined in this research—is often highly degraded, and 

as such it is more likely to have already converged to a common chemistry (Grandy and Neff, 

2008). As coarser soils may be associated with less processed SOM (Grandy and Neff, 2008), 

initial differences in plant litter chemistry may persist and be reflected in SOM chemistry. 

Likewise, soil texture is a strong predictor of microbial biomass, diversity, and community 

composition, with fine-textured soils buffering against land use effects (Crowther et al., 2014). 

As virtually all SOC is processed by the microbial biomass at some point (Grandy and Neff, 

2008), diminished differences in microbial dynamics may have potentially led to the observed 

uniformity in SOM chemistry along the climosequence. While we found SOM biological 

stability to be largely unrelated to SOM chemistry, it remains to be investigated whether this 

holds true in other soil types. Sandy soils are of particular interest, as the relative importance of 

biochemical recalcitrance in SOM stabilization may be enhanced (Six et al., 2002), the chemistry 

of SOM is more likely to be divergent (Grandy and Neff, 2008), and the buffering effect of clay 

on microbial dynamics is diminished (Crowther et al., 2014) in coarse-textured soils. 

Our finding that biochemical recalcitrance does not significantly control SOM biological 

stability suggests that future inquiries into the response of SOM persistence to changes in climate 

and land use should explicitly examine the roles of organo-mineral association and microbial 

inaccessibility in SOM stabilization. Notably, these stabilization mechanisms may be more 

responsive to environmental changes than SOM biochemical recalcitrance. While the production 

of biochemically recalcitrant SOM is controlled by environmental factors (e.g., plant litter 

inputs), by definition its decomposition is not (Kleber, 2010). An important caveat to this is that 

kinetic theory implies that the decomposition of stable SOM—regardless of the stabilization 
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mechanism(s) involved in its protection (von Lützow and Kögel-Knabner, 2010)—is more 

temperature sensitive (Bosatta and Ågren, 1999; Fierer et al., 2005; Davidson and Janssens, 

2006; Craine et al., 2010). Nonetheless, organo-mineral association and microbial inaccessibility 

may be influenced by environmental changes to a greater extent than biochemical recalcitrance: 

both the formation and destruction of soil aggregates (modifying microbial accessibility) as well 

as the adsorption and desorption of SOM to minerals are regulated by temperature (Davidson and 

Janssens, 2006). As such, SOM protected by organo-mineral association and microbial 

inaccessibility may become a readily available substrate as soon as these protection mechanisms 

cease to operate (Kleber, 2010), highlighting the need for future investigations into the controls 

on these constraints to SOM decomposition.  
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as

s a
nd

 k
in

d 
no

t a
pp

lic
ab

le
 to

 li
tte

r s
am

pl
es

. 
§ 

C
ol

or
 o

f l
itt

er
 sa

m
pl

es
 w

as
 n

ot
 d

et
er

m
in

ed
 d

ue
 to

 h
ig

h 
va

ria
bi

lit
y 

w
ith

in
 a

 si
ng

le
 sa

m
pl

e.
 

¶ 
B

ul
k 

de
ns

ity
 o

f d
ee

p 
ho

riz
on

s w
er

e 
no

t d
et

er
m

in
ed

 d
ue

 to
 th

e 
va

ria
bl

e 
vo

lu
m

e 
of

 sa
m

pl
e 

co
lle

ct
ed

 u
si

ng
 a

 so
il 

A
ug

er
. 

# 
N

itr
og

en
 c

on
te

nt
 o

f d
ee

p 
ho

riz
on

s w
as

 a
ss

um
ed

 to
 b

e 
ne

gl
ig

ib
le

 a
nd

 w
as

 th
er

ef
or

e 
no

t d
et

er
m

in
ed

. 
††

 V
al

ue
 a

pp
ro

ac
he

s i
nf

in
ity

 d
ue

 to
 e

xt
re

m
el

y 
lo

w
 (<

 0
.0

 g
 k

g-1
) n

itr
og

en
 c

on
te

nt
. 

‡‡
 V

C
Sa

 =
 v

er
y 

co
ar

se
 sa

nd
; C

Sa
 =

 c
oa

rs
e 

sa
nd

; M
Sa

 =
 m

ed
iu

m
 sa

nd
; F

Sa
 =

 fi
ne

 sa
nd

; V
FS

a 
= 

ve
ry

 fi
ne

 sa
nd

. C
um

ul
at

iv
e 

va
lu

es
 e

qu
al

 th
e 

pe
rc

en
ta

ge
 o

f s
an

d 
in

 a
 sa

m
pl

e.
 

§§
 S

an
d 

fr
ac

tio
ns

 o
nl

y 
de

te
rm

in
ab

le
 in

 m
in

er
al

 so
ils

.  
¶¶

 P
ar

tic
le

 si
ze

 o
nl

y 
de

te
rm

in
ab

le
 in

 m
in

er
al

 so
ils

.  

!


