EFFECTS OF SEED-PLACED SULFUR FORMS ON WHEAT, CANOLA AND PEA YIELDS IN SASKATCHEWAN SOILS

Tom King¹, Jeff J. Schoenau¹, Ryan Hangs¹, S. S. Malhi² and Ron Urton¹

¹Dept. of Soil Science, 51 Campus Drive, University of Saskatchewan, Saskatoon, SK, CANADA S7N 5A8 ²Agriculture & Agrifood Canada (AAFC), Melfort, SK, CANADA S0E 1A0

Soils and Crops Meeting, Saskatoon, SK. March 16, 2015

UNIVERSITY OF SASKATCHEWAN

College of Agriculture and Bioresources

Introduction

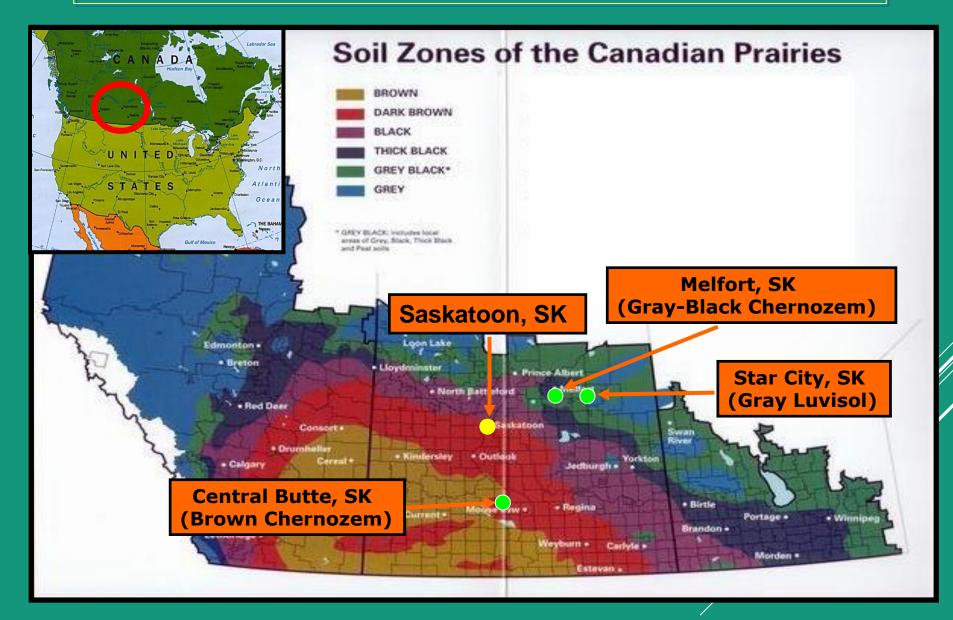
Sulfur fertilizers are important for not only canola, but also sometimes recommended for cereal and pulse crops.

Sulfur sources include:

- <u>soluble forms</u> (Ammonium Sulfate, Potassium Sulfate)
- <u>slightly soluble forms (Calcium Sulfate [Gypsum])</u>
- insoluble forms (Elemental Sulfur)
- <u>liquid forms (Ammonium Thiosulfate)</u>

Is there an advantage of using one or more of the <u>S fertilizer forms</u> in conjunction with phosphorus fertilizer in cereal, oilseed and legume crops in different Saskatchewan soils?

(Dept. of Soil Science, University of Saskatchewan)



STUDY OBJECTIVE

To examine the effects that <u>different forms of sulfur</u> <u>fertilizers</u>, with and without the addition of phosphorus fertilizer, have on wheat, canola and pea yield in: Brown Chernozem, Gray Luvisol and Gray-Black Chernozem soils in Saskatchewan.

STUDY LOCATIONS

(Dept. of Soil Science, University of Saskatchewan)

(Henry's Handbook of Soil and Water, 2003)

STUDY METHODOLOGY

- Study set up as a randomized complete block design (RCBD), complete with 4 replicate blocks for each of the 3 crops at 3 sites in Saskatchewan.
- S Crops: Cereal: Hard Red Spring Wheat (Waskada HRSW) Oilseed: Canola (Liberty Link 150) Legume: Yellow Pea (Meadow)
- Plot Size: 3 metre X 1 metre
- Plots seeded & seed-row fertilizer placement using a single row seeder.
- Now Spacing: 25 cm
- \triangleright Seedbed utilization (SBU) = ~ 5%
- Harvest samples: 1.0 metre row length

(Dept. of Soil Science, University of Saskatchewan)

STUDY METHODOLOGY

	Fertilizer Rates		
Treatments	Sulfur	Phosphorus [†]	Nitrogen [‡]
Urea	0	0	100
Urea+Monoammonium Phosphate (MAP)	0	20	100
Ammonium Sulfate	20	0	100
Ammonium Sulfate + MAP	20	20	100
Ammonium Thiosulfate	20	0	100
Ammonium Thiosulfate + MAP	20	20	100
Gypsum	20	0	100
Gypsum + MAP	20	20	100
Potassium Sulfate	20	0	100
Potassium Sulfate + MAP	20	20	100
Elemental Sulfur	20	0	100
Elemental Sulfur + MAP	20	20	100

^{*}Phosphorus fertilizer added as P₂O₅ equivalent. Phosphorus fertilizer applied as monoammonium phosphate (MAP: 12-51-0).

*Nitrogen fertilizer applied as urea (46-0-0). Sulfur and/or phosphorus fertilizer containing N is taken into account to maintain a 100 kg N ha⁻¹ rate. No N fertilizer (other than the N contained in sulfur and/or phosphorus fertilizer) was added to the pea crop.

2014 STUDY RESULTS

(Dept. of Soil Science, University of Saskatchewan)

SOIL TEST EXTRACTABLE P AND S SPRING 2014

	Р		S	
	kg ha ⁻¹ (0-15 cm))
Central Butte (Brown Chernozem) [†]	17	48[‡]	37	11
Star City (Gray Luvisol)	13	50	43	20
Melfort (Gray-Black Chernozem)	42	59	32	14

†Sulfates present in sub-soil (30-60 cm) at Central Butte (Brown Chernozem) site.

[‡]Values in red indicate spring 2013 soil extractable P and S

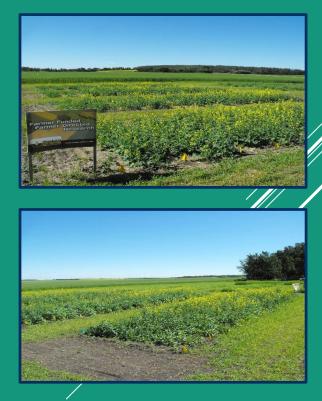
(Dept. of Soil Science, University of Saskatchewan)

2014 Wheat Grain Yield

	Central Butte	Star City	Melfort
	Brown Chernozem	Gray Luvisol	Gray-Black Chernozem
Treatments		(kg ha ⁻¹)	
Urea	3373 ⁺	2323	4130
Urea+Monoammonium Phosphate (MAP)	3494	3501	4581
Ammonium Sulfate	4659	3511	3778
Ammonium Sulfate + MAP	4304	3822	4477
Ammonium Thiosulfate	3366	3196	3720
Ammonium Thiosulfate + MAP	4188	3658	3726
Gypsum	4431	3377	3617
Gypsum + MAP	3888	3192	4201
Potassium Sulfate	3611	3088	3616
Potassium Sulfate + MAP	4175	2796	3848
Elemental Sulfur	3311	3639	4004
Elemental Sulfur + MAP	2963	3562	4229
	Pr > F	Pr > F	Pr > F
Сгор	0.0005	0.1730	0.0247
Treatment	<0.0001	0.1620	<0.0001
Crop*Treatment	<0.0001	<0.0001	0.0001
⁺ Least significant difference at $P \leq 0.10$			

2014 Wheat Crop Summary

- At Brown Chernozem (Central Butte) ammonium sulfate and gypsum produced highest yields.
- Addition of MAP to S fertilizers slightly boosted wheat yields at Gray-Black Chernozem (Melfort) site.
- No significant response of wheat grain yield to S fertilizers at Gray Luvisol or Gray-Black Chernozem sites.


2014 Canola Grain Yield

	Central Butte	Star City	Melfort
	Brown Chernozem	Gray Luvisol	Gray-Black Chernozem
Treatments		(kg ha ⁻¹)	
Urea	3773 [†]	3402	5576
Urea+Monoammonium Phosphate (MAP)	5021	3308	3957
Ammonium Sulfate	4093	2646	3888
Ammonium Sulfate + MAP	5332	2714	4974
Ammonium Thiosulfate	4071	3164	4168
Ammonium Thiosulfate + MAP	2452	2258	3254
Gypsum	6192	3266	4424
Gypsum + MAP	6119	5076	5421
Potassium Sulfate	4186	3635	7819
Potassium Sulfate + MAP	5672	3154	3945
Elemental Sulfur	5298	2725	3744
Elemental Sulfur + MAP	4226	3735	4763
	Pr > F	Pr > F	Pr > F
Сгор	0.0005	0.1730	0.0247
Treatment	<0.0001	0.1620	<0.0001
Crop*Treatment	<0.0001	<0.0001	0.0001
⁺ Least significant difference at $P \leq 0.10$			

2014 Canola Crop Summary

- In Brown Chernozem soil, calcium sulfate (gypsum)(± MAP) produced significant canola yield response.
- At Gray Luvisol site, addition of calcium sulfate + MAP <u>increased</u> <u>canola yields.</u>
- For Gray-Black Chernozem site, potassium sulfate had highest yield.
 Gypsum + MAP had similar high yields.
- Some issues with injury for seedplaced AS, ATS and MAP at Gray and Gray-Black sites.

2014 Yellow Pea Grain Yield

	Central Butte	Star City	Melfort
	Brown Chernozem	Gray Luvisol	Gray-Black Chernozem
Treatments		(kg ha ⁻¹)	
Control (No Urea)	3436 ⁺	3278	5237
Monoammonium Phosphate (MAP)	4478	2893	7268
Ammonium Sulfate	3995	3857	3761
Ammonium Sulfate + MAP	4146	3225	3755
Ammonium Thiosulfate	3023	2665	2633
Ammonium Thiosulfate + MAP	1995	1481	1620
Gypsum	3070	2988	2569
Gypsum + MAP	3034	2002	3131
Potassium Sulfate	3815	2701	4904
Potassium Sulfate + MAP	3055	2752	5791
Elemental Sulfur	4665	3009	4937
Elemental Sulfur + MAP	2968	2019	4814
	Pr > F	Pr > F	Pr > F
Сгор	0.0005	0.1730	0.0247
Treatment	<0.0001	0.1620	<0.0001
Crop*Treatment	<0.0001	<0.0001	0.0001
[†] Least significant difference at $P \leq 0.10$			

2014 Pea Crop Summary

- No significant positive yield responses of pea to S fertilizer.
- ATS treatment (with MAP) significantly decreased pea grain yield.
 - 20 kg P₂O₅/ha plus 20 kg S/ha in seed-row may have caused injury especially with the low SBU (~ %5).
- At Brown and Gray-Black Chernozem sites, positive yield responses to MAP.

General Conclusions

- Calcium sulfate (gypsum) and potassium sulfate were <u>effective fertilizer S sources in the seed-row for crops</u> evaluated. Suitable alternative to ammonium sulfate.
- Elemental S produced some positive yield responses, especially in wheat.
- Of the three crops, <u>canola most consistent in response</u> <u>to added S</u>. Peas showed no positive response.
- Addition of ATS, especially in combination with MAP placed in seed row in contact with seed impaired canola and especially pea crop germination and growth at all three Saskatchewan sites.
- Better response to P fertilizer application at Brown Chernozem and Gray Luvisol sites due to lower residual soil available phosphorus.

ACKNOWLEDGEMENTS

Funding provided by:

- Saskatchewan Agriculture Development Fund
- Western Grains Research Foundation
- Sask Canola Development Commission
- ✓ Saskatchewan Pulse Growers

The authors greatly appreciate the support and assistance provided by:

- Darwin Leach & Karen Strukoff (AAFC, Melfort, SK.)
- Team Schoenau Research Group (Univ. of Sask., Saskatoon, SK.)

College of Agriculture and Bioresources

