Evaluation of Column Separation Methods for Simplification of the Wet Chemistry Approach to Isolation of ²¹¹At

S. Watanabe^{a,b}, K. Gagnon^{a,c}, D.K. Hamlin^a, M.-K. Chyan^a, E. Balkin^a and D.S. Wilbur^{a,1}

^aDepartment of Radiation Oncology, University of Washington, Seattle, WA 98105 ^bMedical Radioisotope Application Group, Japan Atomic Energy Agency, Takasaki, Japan ^cDepartment of Radiology, University of Alberta, Edmonton, AB, Canada

Introduction

Difficulties with reproducibility of isolation yields when distilling ²¹¹At from irradiated bismuth targets led us to use a "wet chemistry" approach for that process¹. The wet chemistry approach has provided ²¹¹At isolation yields of ~ 78 % after decay and Bi attenuation corrections². However, the use of diisopropyl ether (DIPE) in the separation process has made it difficult to reach our goal of automating the ²¹¹At isolation. Therefore, we have investigated the use of column materials to simplify the isolation of ²¹¹At and remove DIPE from the process. In this investigation we evaluated the use of a strong anion exchange resin (AG1×8), a strong cation exchange resin (AG MP-50) and a polyethylene glycol (PEG)-coated resin for separation of ²¹¹At from the bismuth target material.

Material and Methods

Anion and cation resins AG1×8 and AG MP-50 were obtained from commercial sources. A PEGcoated resin was prepared by reaction of the Merrifield resin with mPEG-OH 2000 in the presence of tBuOK at 80 °C for 3 days, followed by drying under vacuum. Prior to use of the PEG resin, it was soaked in H₂O. Resins (400-800 mg) were loaded into polypropylene columns (Applied Separations, Inc.). Column elution studies were conducted with and without reductants (0.75M FeSO₄/1M H_2SO_4 or $Na_2S_2O_5$) to determine their effect on capture of ²¹¹At. After target dissolution in HNO₃ (and in most cases subsequent removal of HNO₃ by distillation and redissolution of solid in 8M HCl), ²¹¹At solution was loaded onto the column, then the column was washed with 2M HCl or H₂O to separate the Bi, and finally was eluted with strong base to remove the ²¹¹At.

Initial studies were conducted with stable iodine to determine if reductants were effective in the presence of large amounts of bismuth ions. Studies with AG1×8 used ¹²⁵I to determine if that radiohalogen could be captured and recovered from the column when eluting with boric acid buffers at pH 5.3, 8.0 or 10, or H₂O at pH 7. Capture and recovery of ²¹¹At was evaluated under the same conditions. Further studies with AG1×8 involved eluting with 4M H₂SO₄. A limited study with AG MP-50 resin used 1M HCl as eluant. Studies with PEG-coated columns used 2M HCl, 4M HCl, 8M HCl, 16 M HNO₃ and 8M HNO₃ as initial (capture) eluants. Strong base (0.2, 1 or 12.5 M NaOH; 15M NH₄OH) and 3 or 500 mM tetrabutylammonium bromide (TBAB) were evaluated for removal of ²¹¹At from the columns tested.

Results and Conclusion

The efficiency for capture of ²¹¹At on the AG1×8 column was high (99%) when loading with strong acid, but decreased when using 0.1–0.2M boric acid (69–91%) buffer. Low ²¹¹At capture efficiencies were obtained with AG MP-50 columns (15–29%). High ²¹¹At capture efficiencies (96–100%) were obtained with PEG-coated resins when loading with 8M HCl or 8M HNO₃, irrespective of whether reductant was in the acid solution.

Four column washings (2 mL of 2M HCl each) were required to remove all Bi prior to elution of 211 At. No bismuth was detected in solution from the 4th washing in any of the elutions studied.

Low (< 6%) recovery of ²¹¹At from the AG1×8 columns was obtained using the conditions studied. Good (60–79%) recovery of ²¹¹At was obtained from PEG-coated resin using 15M NH₄OH. Isolation of the ²¹¹At from NH₄OH solution was accomplished by distillation. In an initial study ²¹¹At distilled before obtaining a dry residue.

However, later studies demonstrated that addition of NaOH prior to distillation kept the ²¹¹At in the distilling flask.

These studies demonstrated that PEG-coated columns could be used to isolate ²¹¹At from HNO_3 -dissolved bismuth targets with good non-optimized (~60%) overall recovery yields. The studies are continuing with optimization of elution conditions and automation of the process.

References

- R. D. Neirinckx, J. A. Smit: <u>Analytica Chimica Acta</u> <u>63</u>, pp. 201–204, 1973.
- E. R. Balkin, D. K. Hamlin, K. Gagnon, M.-K. Chyan, S. Pal, S. Watanabe, D. S. Wilbur: <u>Appl. Sci. 3</u>, pp. <u>636–655, 2013</u>.

Acknowledgements. We thank the US DOE (DE-SC0010502) for funding this research.