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GENERAL ABSTRACT 

 
 Background: Juvenile idiopathic arthritis (JIA) comprises a heterogeneous group 

of conditions that share chronic arthritis as a common characteristic. Current classification 

criteria for chronic childhood arthritis have limitations. Despite new treatment strategies 

and medications, some continue to have persistently active and disabling disease as adults. 

Few predictors of poor outcomes have been identified.  

 Objectives: This thesis comprises two complementary studies. The objective of 

the first study was to identify discrete clusters comprising clinical features and 

inflammatory biomarkers in children with JIA and to compare them with the current JIA 

categories that have been proposed by the International League of Associations for 

Rheumatology. The second study aimed to identify predictors of short-term arthritis 

activity based on clinical and biomarker profiles in JIA patients.  

Methods: For both studies we utilized data that were collected in a Canadian 

nation-wide, prospective, longitudinal cohort study titled Biologically-Based Outcome 

Predictors in JIA. Clustering and classification algorithms were applied to the data to 

accomplish both study objectives. 

 Results: This research identified three clusters of patients in visit 1 (enrolment) 

and five clusters in visit 2 (6-month). Clusters revealed in this analysis exposed different 

and more homogenous subgroups compared to the seven conventional JIA categories. In 

the second study, the presence or absence of active joints, physician global assessments, 

and Wallace criteria were chosen as outcome variables 18 months post-enrolment. 

Among 112 variables, 17 were selected as the best predictors of 18-month outcomes. The 

panel predicted presence or absence of active arthritis, physician global assessment, and 

Wallace criteria of inactive disease 18 months after diagnosis with 79%, 82%, and 71% 

accuracy and 0.83, 0.86, 0.82 area under the curve (AUC), respectively. The accuracy 

and AUC values were higher compared to when only clinical features were used for 

prediction.  

Conclusion: Results of this study suggest that certain groups of patients within different 

JIA categories are more aligned pathobiologically than their separate clinical 

categorizations suggest. Further, the research found a small number of clinical and 
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inflammatory variables at diagnosis can more accurately predict short-term arthritis 

activity in JIA than clinical characteristics only.   
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DESCRIPTION OF CHAPTERS 

Chapter 1- Overview and rational for the research 

The first chapter is a brief overview of backgrounds, rationales, and objectives of 

studies included in this thesis. 

Chapter 2- Background literature review 

1- The background literature review provides an overview of previous 

classifications of childhood arthritis. 

2-  A review of biomarkers associated with JIA is provided. The most important 

inflammatory biomarkers involved in the pathophysiology of JIA are 

explained in this chapter.  

3- Gene and human leukocyte antigen (HLA) characteristics in JIA are discussed 

briefly. 

4- A review of suggested JIA outcome measures and predictors of disease 

activity is provided. 

5- Analytic methods, including specific variable selections, clustering and 

classification algorithms are explained.  

Chapter 3- Study 1 manuscript  

Chapter 4- Study 2 manuscript 

Chapters 3 and 4 are manuscripts of studies 1 and 2, respectively. Each 

manuscript includes the introduction, methodology, results, discussion and conclusion 

generated from the study. 

Chapter 5- Overall discussion and conclusion  

The Discussion and Conclusion chapter provides general, integrated commentary 

relating to both studies.  
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CHAPTER 1  

OVERVIEW AND RATIONAL FOR THE RESEARCH 

1.1 Background 

Chronic childhood arthritis is a heterogeneous group of diseases categorized 

predominantly by clinical manifestations (1). A classification proposed in 2001 by a 

subcommittee of the International League of Association for Rheumatology (ILAR) 

denotes the most current system for classifying chronic childhood arthritis (Table 1.1) 

(2). The impetus for developing the JIA classification system was a desire to establish 

internationally standardized disease categories to facilitate communication and research 

collaborations (3). 

 Classification criteria for chronic childhood arthritis that preceded the ILAR JIA 

criteria were the American College of Rheumatology (ACR) criteria for Juvenile 

Rheumatoid Arthritis (JRA) proposed in 1970 (4), and the European League Against 

Rheumatism (EULAR) criteria for Juvenile Chronic Arthritis (JCA), proposed in 1977 

(5). 

Both the ACR and EULAR classification systems are based on clinical features at 

disease onset. As with earlier iterations of childhood arthritis classifications, the utility of 

the current JIA classification system is limited as it was not devised primarily to predict 

clinical courses, reliably guide treatment choices, or predict treatment responses. Also, re-

classification of a patient might be necessary if clinical manifestations, test results, or 

pertinent family medical history information change. While JIA categories are intended 

to be mutually exclusive, some overlaps exist despite the application of exclusion criteria 

that aim to preserve category purity. In addition, the exclusion criteria can lead to 

ambiguity and inaccuracies in classifying some patients. 

 Only two biomarkers, rheumatoid factor (RF) and HLA-B27, are considered in 

JIA classification (2). The principle premise underlying the research described herein is 

that a more comprehensive array of biomarkers that could eventually include genomic, 

proteomic, transcriptomic, immunomic and metabolomic features, when combined with 

clinical characteristics could yield a more refined, biologically-based classification 

system. It also can provide insight into chronic childhood arthritis pathogenesis, and aid 

in predicting disease course and outcomes. 
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Although not considered in current chronic childhood arthritis classification 

systems, genomic profiles tend to be distinguishable among JIA categories. 

 

Table 1.1 ILAR JIA classification (2).   

 
   a. Psoriasis or a history of psoriasis in the patient or first-degree relative. 
        b. Arthritis in an HLA-B27 positive male beginning after the 6th birthday. 

c. Ankylosing spondylitis, enthesitis related arthritis, sacroiliitis with inflammatory 
bowel disease, Reiter’s syndrome, or acute anterior uveitis, or a history of one of these      
disorders in a first-degree relative.  
d. The presence of IgM rheumatoid factor on at least 2 occasions at least 3 months apart.  
e. The presence of systemic JIA in the patient.  
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As examples, certain HLA allotypes and nucleotide polymorphisms confer JIA 

susceptibility while others appear to be protective (6). Certain single nucleotide 

polymorphisms (SNP1s) are associated with JIA categories (7, 8).  
There has been increasing interest in identifying molecules involved in regulating 

immune responses that relate to susceptibility to, and outcome of JIA. Proteomic data have 

been studied in different subtypes of JIA with significant associations identified (9-15). The 

inflammatory process is mediated by an array of innate regulators including interleukins, 

chemokines, growth factors, and matrix metalloproteinases (MMPs). In the context of 

JIA, some of these biological markers, such as IL-6 and IL-1 in systemic JIA (16, 17) 

reflect inflammatory activity while others, like MMPs, receptor activator of nuclear factor 

kappa-B ligand (RANKL), and Osteoprotegerin (OPG) are predictive of disease 

outcomes (18, 19). Distinctive cytokine profiles and acute phase protein responses in 

polyarticular and systemic JIA have been identified (6, 20). This accumulating evidence 

of biomarker associations with JIA subgroups supports a need to more thoroughly study 

JIA in the context of clinical and biomarker profiles and to determine if panels of 

attributes can more precisely distinguish subsets of children with chronic arthritis and 

predict their disease outcomes. 

 In addition to considering the importance of clinical and biomarker features for 

classification of chronic childhood arthritis, we aimed to determine the utility of baseline 

clinical-biomarker panels for predicting short-term disease course and outcomes. Being 

able to effectively predict the disease trajectory and eventual outcomes would help 

inform the timing and aggressiveness of treatment interventions. 

Identification of the time frame during which the correct therapeutic choice can 

change the pathophysiology of disease and improve outcomes is important for optimizing 

care (21). In JIA early initiation of aggressive treatment, especially in systemic arthritis 

and polyarticular arthritis categories, results in better outcomes (22). In contrast, patients 

with mild disease do not require aggressive, potentially harmful, and expensive 

treatments as more moderate therapies are efficacious. While timing and aggressiveness 

                                                
1 SNPs are variations in DNA sequence that occur by changing a single nucleotide 

in the genome. Each individual has many SNPs, which constitutes a unique DNA pattern 
for that person. 
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of treatment interventions in JIA are currently guided by clinical characteristics 

predominantly, it is conceivable that incorporating biomarker profiling in the therapeutic 

decision-making process could further enhance treatment effectiveness, minimize adverse 

effects of therapy and reduce cost. 

 Different descriptors of JIA states of disease activity have been proposed 

including, as examples: mild, moderate, or severe disease; inactive disease; minimal 

disease activity; and remission on/off medication (23-27). ACR criteria defined disease as 

active/inactive (in remission) in oligoarticular, polyarticular, and systemic JRA by using 

the number of joints with active arthritis, physician global assessment (PGA), clinical 

manifestation of systemic arthritis, presence of active uveitis, erythrocyte sedimentation 

rate (ESR), C-reactive protein (CRP) levels, and duration of morning stiffness (26). A 

composite disease activity scoring system, the juvenile arthritis disease activity score 

(JADAS), has been developed for assessment of disease status. JADAS includes four 

variables: number of involved joints, PGA, parent/child ratings of well-being, and ESR or 

CRP (25, 27). The state of minimal disease activity has been described using number of 

active joints, PGA, and a parent’s global rating of well-being in polyarthritis and 

oligoarthritis (28). A joint was defined as active in accordance with the definition 

prescribed in the ILAR JIA classification. Specifically, “[active] arthritis is swelling 

within a joint, or limitation in the range of joint movement with joint pain or tenderness, 

which persists for at least 6 weeks, is observed by a physician, and is not due to primarily 

mechanical disorders or to other identifiable causes” (2). In accordance with this 

definition, an active joint may be effused or not but an effused joint is always active. 

 Wallace et al. proposed a set of criteria for inactive JIA including: no joints with active 

arthritis, no fever, rash, serositis, splenomegaly, or generalized lymphadenopathy 

attributable to JIA, no active uveitis, normal ESR or CRP, PGA that indicates no disease 

activity (29).  

 Clinical and laboratory features have been used to determine disease course and 

outcome (23, 30). Disease activity states, joint damage, functional ability, and quality of 

life are characteristics typically applied to determine disease outcome (31-37). Number of 

active joints at onset, polyarticular onset of JIA, Child Health Assessment Questionnaire 

(CHAQ) responses, PGA, parent’s global assessment, and joint symmetry were 
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determined to have predictive utility. There is a paucity of information on the use of 

genetic and immunological characteristics as predictors of JIA outcomes (20, 32, 38). 

1.2 Purpose of the study 

The purposes of this thesis are: 1) to identify discriminating clusters of clinical 

and biomarker characteristics and determine how well such clusters align with current 

JIA categories; and 2) to identify early predictors of JIA outcome based on clinical 

manifestations and biomarker profile of the patients at first presentation in a JIA 

inception cohort. 

The results could either support the appropriateness of the current JIA categories 

and predictors or possibly indicate that inflammatory biomarkers might add precision to 

categorizing and outcome prediction of chronic childhood arthritis.  

1.3 Software used for analyses  

To realize these aims, clinical and biological data previously collected in a 

national study, the Canadian Biologically-Based Outcome Predictors (BBOP) in JIA 

study, were used (39). Data mining algorithms were applied for data analyses. Data were 

pre-processed to make them suitable for input into data mining algorithms. Raw data are 

highly susceptible to missing values, outliers, noisy data, and inconsistency.  

Pre-processing data is an important step to enhance data efficiency. Pre-processing 

includes several techniques such as cleaning, integration, transformation, and reduction 

(40). SPSS software (IBM®) was used for pre-processing and data ranking techniques. 

Several R software packages were used for principal component analysis (PCA) and 

clustering (study 1), and the software package Waikato Environment for Knowledge 

Analysis (Weka) was used for predicting JIA outcome (study 2). Weka is open source 

software with a collection of machine learning algorithms and data pre-processing tools. 

It is easy to use and a powerful data mining tool (41). 

 

  



   
 

7 

CHAPTER 2  

LITERATURE REVIEW 

2.1 Juvenile idiopathic arthritis definition and classification 

 Arthritis, which is inflammation within a joint, is defined as joint swelling or 

effusion, or the presence of two or more of the following: limitation of range of motion, 

tenderness or pain on motion, and increased heat in one or more joint (42). Arthritis is the 

most common chronic childhood conditions. Among the many different forms of 

childhood arthritis, JIA is the most common class. JIA is a heterogeneous group of 

chronic childhood arthritis conditions for which the cause is unknown. It is a potentially 

disabling condition with incidence rate of 7.8/100,000 and a prevalence of 32.6/100,00 in 

(43). 

 That chronic arthritis commonly afflicts children is a relatively contemporary 

realization. However, early archaeological evidence has shown evidence of arthritis in 

children dating from as early as the 10th century and there are reports of childhood 

arthritis over the ensuing centuries (44). 

 Until the late 19th century, arthritis beginning during childhood was considered to 

be the same disease as adult onset arthritis. However, in 1883 rheumatic diseases in 

children as a distinctive class of pediatric disease was highlighted at a meeting of the 

British Medical Association (45, 46). Dr. George Frederic Still, in his 1897 doctoral 

dissertation, further elucidated the characteristics of chronic arthritis in children and 

introduced the idea that childhood onset arthritis was distinguishable in many cases from 

adult onset rheumatoid arthritis (RA) (1). He described the disease based on his 

observation of 22 children with chronic arthritis and wrote:  

“The occasional occurrence in children of a disease closely resembling the 

rheumatoid arthritis of adults has been recognized for several years. The identity 

of the disease seen in children with that in adults has never, so far as I am aware, 

been called in question. Although the disease known as rheumatoid arthritis in 

adults does undoubtedly occur in children, the disease which has most commonly 

been called rheumatoid arthritis in children differs both in its clinical aspect and 

in its morbid anatomy from the rheumatoid arthritis of adults; it presents, in fact, 

such marked differences as to suggest that it has a distinct pathology. The cases 

hitherto grouped together as rheumatoid arthritis in children include, therefore, 
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more than one disease; and it will be shown that there are at least three distinct 

joint affections which have thus been included under the one head, rheumatoid 

arthritis” (1). 

 Still described three types of the disease: 1) chronic childhood polyarthritis 

indistinguishable from adults arthritis; 2) chronic arthritis associated with systemic 

manifestations including splenomegaly, lymphadenopathy, and pericarditis; and 3) a 

disease identical to “chronic fibrous rheumatism” (1). As a consequence of Still’s 

reporting, chronic arthritis in children was assigned the eponymous designation, Still’s 

Disease. In 1946, the New York Rheumatism Association replaced the term Still’s 

Disease with the term JRA after reporting 56 cases of chronic childhood arthritis (3). 

 In 1970, a committee of the ACR proposed the first classification criteria for JRA. 

The JRA classification system was defined as arthritis in children younger than age 16 

years in one joint or more for 6 weeks or longer providing other diagnostic considerations 

were excluded. The JRA taxonomy included three subtypes, polyarticular, pauciarticular 

and systemic arthritis. The spondyloarthritis and psoriatic forms of childhood arthritis 

were considered distinct diseases and were not included in the JRA classification system 

(4, 47, 48). 

The polyarthritis JRA subgroup was defined by the number of involved joints (5 

or more); the presence of RF together with polyarthritis was considered to confer a poorer 

prognosis. RF-positive patients were older, were more likely to be female, had a higher 

percentage of antinuclear antibody (ANA)-positivity, predominant involvement of the 

small joints of the hands, a higher frequency of erosions and, in general, a poorer 

prognosis. Pauciarticular JRA was defined as arthritis in 4 or fewer joints. In general, 

pauciarticular JRA was considered to have a more favourable prognosis compared to the 

polyarticular subset. Systemic onset JRA included children with arthritis associated with 

intermittent fever and systemic manifestations such as rash, lymphadenopathy, 

hepatomegaly, splenomegaly and serositis. Systemic JRA was recognized to have 

variable outcomes with some children having a remitting relapsing course, some 

progressing to chronic polyarthritis as extra-articular manifestations waned, and in some 

children the disease remitted after a single episode (49). 

 Concurrent with the ACR classification initiative, the European League Against 

Rheumatism (EULAR) devised an alternate classification system (5). EULAR proposed 



   
 

9 

the term juvenile chronic arthritis (JCA) to denote children with chronic arthritis 

including those having spondyloarthropathies and psoriatic arthritis. EULAR reserved the 

term JRA for children with polyarthritis associated with RF-positivity (5). Table 2.1 

shows the comparisons between ACR and EULAR classification systems. 

 
Table 2.1 Comparison of ACR and EULAR criteria. 

 
 

The latest classification criteria for chronic childhood arthritis, JIA, was proposed 

by a subcommittee of ILAR in 1994 (50). The impetus for developing the JIA criteria 

was to establish an internationally standardized disease classification system to facilitate 

international communication and research collaborations. JIA criteria were revised in 

2004 (2) and denote a class of childhood arthritis having an unknown cause developing 

before the age of 16 years and persisting for at least 6 weeks. The JIA class comprises 

seven subgroups including 1) systemic arthritis 2) oligoarthritis, 3) RF-negative 

polyarthritis, 4) RF-positive polyarthritis, 5) psoriatic arthritis, 6) enthesitis-related 

arthritis (ERA), and 7) undifferentiated (2). The JIA subsets are defined in Table 1.1. 

Despite attempts to ensure subgroup homogeneity, some heterogeneity within JIA 

categories exists. Martini posited that the number of involved joints at onset or during the 

disease course is not a reliable criterion for defining homogenous subgroups (51). He 
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proposed that descriptors such as asymmetric arthritis, early onset age, being female, 

ANA-positivity, and uveitis should be considered as classification criteria rather than 

number of affected joints (51). Currently, children with those features tend to be clustered 

into oligoarthritis, polyarthritis or psoriatic arthritis JIA categories. Stoll et al. suggested 

that psoriatic JIA comprises two distinct subsets (52). Specifically, they proposed that 

younger children with psoriatic JIA are more likely to be female, be ANA-positive, be 

more likely to progress to polyarthritis, exhibit dactylitis and have small joint 

involvement. Older patients with psoriatic JIA are more likely to develop enthesitis, axial 

joint involvement and have persistent oligoarthritis (52, 53). 

The spondylarthropathies comprise a group of arthritis characterized by axial and 

peripheral enthesitis and arthritis, and an association with HLA-B27 (54). Although the 

spondyloarthropathies typically have their onsets during adolescence and early adulthood, 

younger children can be affected. Ankylosing spondylitis (AS) is the prototypic 

spondyloarthropathy. The spondyloarthropathy category also includes undifferentiated 

spondylitis, reactive arthritis, subsets of psoriatic arthritis, and inflammatory bowel 

disease related arthritis (54, 55). It is believed that adult onset and childhood onset AS 

represent a disease continuum with somewhat different clinical expressions; the 

childhood onset symptoms tend to include peripheral enthesitis and arthritis especially in 

lower extremities while the adult onset form presents predominantly with axial spine 

involvement (56-60). Young onset age and female sex are associated with a less 

favourable AS outcome (56, 59). The ILAR classification system considers ERA and 

psoriatic arthritis as two distinct subgroups; however, ERA and psoriatic arthritis 

subgroups can have overlapping features. Thus, some patients would be categorized as 

undifferentiated arthritis due to overlapping between categories (2). 

Childhood arthritis classification systems have been devised based on clinical 

manifestations predominantly without substantive consideration of the biologic and 

pathophysiologic basis of the conditions. As new knowledge about the underlying 

pathophysiology of childhood arthritis emerges there are likely to be new opportunities to 

refine classification criteria based on both clinical and biologically-based characteristics. 

2.2 Predictors of JIA outcomes  

JIA is the most common childhood rheumatic disease. It imposes substantial 

burden on the child’s growth and development, quality of life, and future productivity and 
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is associated with substantial burdens for families and society. A significant proportion of 

children with JIA develop permanent joint damage resulting in disability. Approximately 

half of children with JIA will have arthritis as adults (61, 62). Early identification of 

clinical and biologic characteristics that portend a poor prognosis can help direct the 

aggressiveness of initial therapy aimed at preventing joint damage and long-term 

disability. Caution must be taken in identifying patients who benefit from early 

aggressive therapy to reduce health risks of these treatments.  

A number of studies have evaluated short- and long-term JIA outcomes in relation 

to clinical remission, disability, and radiological damage. Factors such as young onset 

age, severe arthritis at onset, prolonged active disease, symmetric disease, hip or wrist 

involvement, and the presence of RF are recognized as predictors of less favourable JIA 

outcomes (30, 37, 62-69). 

The following section summarizes JIA outcome studies in relation to JIA 

categories. 

2.2.1 Systemic JIA 

Several short-term outcome studies considered the disease subtypes at onset as a 

predictive factor. In a retrospective study by Spiegel et al. early predictors of systemic 

JIA poor outcome (destructive arthritis) were identified within 6 months of disease onset. 

The outcome was measured by severity of joint damage reported by radiologists, and 

predictors included persistent systemic symptoms such as fever and thrombocytosis (70). 

The results that predicted the development of a poor functional outcome in the patients 

was validated by long-term follow-up (71). Male sex, higher number of active joints, and 

continuing disease activity were identified as risk factors for disability (72). In long-term 

and short-term studies (there is no definition of long/short-term outcome in the pediatrics 

rheumatology literature) a significant association was found between elevated levels of 

fibrin D-dimer and poor functional outcomes of systemic arthritis (73, 74). 

Modesto et al. described articular outcome in patients with systemic arthritis 

measured by Helsinki index2 (HI) and systemic symptoms of the disease. They defined 

outcomes as HI≥10 a bad articular outcome while HI<10 meant a good prognosis. The 

                                                
2 Helsinki Index is an articular index for the classification of patients with 

systemic onset juvenile chronic arthritis and is a tool for performing a quantification of 
the number of affected joints (swelling, limitation of motion).  
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onset predictors of poor outcome were presence of generalized lymphadenopathy, age<8 

years and HI>6. The presence of polyarthritis and hip involvement at 6 months were 

additional indicators of poor prognostic disease (75). 

A long-term study of systemic JIA revealed three patterns of disease course: 

monocyclic, intermittent, and persistent after 5 years follow-up. Fever and active arthritis 

at 3 months after diagnosis, an ESR>26 mm/hour, and corticosteroid use at 6 months 

were identified as predictors of a non-monophasic course. Three and 6 months after 

diagnosis, absence of active arthritis, an ESR of <26 mm/hour, and no requirement for 

corticosteroid therapy were predictors of an earlier time to remission (76).  

In systemic JIA the macrophage migration inhibitory factor (MIF)-173 

polymorphism significantly correlates with longer duration of glucocorticoid treatment, 

higher numbers of joints with active arthritis and limited range of motion, and higher 

CHAQ scores. MIF-173*C allele is identified as a predictor of poor outcome in systemic 

JIA (77). 

2.2.2 Oligoarthritis 

Historically, oligoarthritis was considered a form of JIA with a generally 

favourable long-term outcome. However, more contemporary studies have indicated that 

outcomes might not be as generally favourable as once thought (35). In one study, 

remission was defined as absence of clinical or laboratory evidence of active arthritis for 

a period of at least 6 months off medication. Thirty six percent of patients with 

oligoarticular JIA permanently remit off medication, 53% continued to have active 

disease, and 13% relapse following temporary remission (78). 

Age at onset and ANA-positivity are predictors of disability and active disease 

duration in oligoarticular JIA (68). High ESR and involvement of more than one upper 

limb joint at onset have been reported as predictive of joint damage and functional 

disability in oligoarticular JIA (35). Al-Matar et al. have shown that early involvement of 

ankle or wrist disease, symmetrical joint involvement, and an elevated ESR are predictors 

of extended oligoarticular JIA (30). 

2.2.3 Polyarthritis 

Patients with polyarthritis JIA with or without RF-positivity have high rates of 

morbidity and functional disability although RF-positive polyarthritis has a substantially 

worse prognosis than RF-negative polyarthritis. Morbidity refers to state of being 
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diseased or may result from adverse effects of therapies, which may impair the quality of 

life of patients and their families (79). Hyrich et al. reported in a cohort of children with 

polyarthritis JIA 64%, and 40% had CHAQ ≥ 0.75 at diagnosis and 1 year later 

respectively (80). These patients have low remission rates ranging from 0% to 5% off 

medications and 65% on medications (33). In another study remission rates of RF-

negative and RF-positive polyarthritis JIA 10 years after diagnosis have been reported as 

23% and 5%, respectively (62). 

Oen et al. have shown that male sex is the only predictor for RF-positive 

polyarthritis JIA that correlates with shorter active disease duration (68). In the same 

study male sex, older onset age, and rural residence were identified as predictors of good 

functional outcome for patients with RF-negative polyarthritis JIA (68). No HLA or 

genetic polymorphisms have been identified as predictors of disease activity in 

polyarthritis JIA. 

2.2.4 Psoriatic JIA 

Juvenile psoriatic arthritis is diagnosed when a child has arthritis associated with 

psoriasis. It can follow an oligoarticular, polyarticular or ERA pattern. The outcome of 

psoriatic JIA tends to relate to the pattern of joint involvement. Psoriatic JIA long-term 

outcome studies reveal that 70% of patients still have active disease and 1/3 have 

functional limitations 5 years after onset (81). Another study showed that after 15 years 

of disease 33% still require disease-modifying anti-rheumatic drug (DMARD) therapy 

(82) and a short-term study showed clinical remission in 60% of affected children (52). 

Flatø et al. have identifed early determinants of developing psoriatic JIA including 

history of psoriasis in the patient or in a first degree relative, dactylitis, ankle or toe 

arthritis, and HILA-DRB1*11/12 (82). Remission on medication occurs later in the 

disease course of patients with polyarthritis compared to oligoarthritis and ERA disease 

patterns (83) . 

2.2.5 Enthesitis-Related Arthritis  

ERA involves predominantly joints of the lower extremities and the axial 

skeleton. ERA is more prevalent in adolescent boys. Reported remission rates for ERA 

have varied from 17% to 60% (32, 61). Sacroiliac (SI) and axial spine involvement occur 

late in the disease course and can result in limitations in range of motion of the spine (84, 

85). Reported frequencies of SI involvement in ERA ranged from 9% to 75%. Severe 
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disability has been reported to occur in 4% to 52% of ERA patients (84). Evidence of 

sacroiliitis has been detected by dynamic MRI in 30% of children with ERA, 1 year after 

disease onset (85). 

Early and persistence hip disease, early ankle involvement, and a high number of 

involved joints during the first 6 months of the disease are predictors of poor functional 

outcome in ERA (86). Although ERA is strongly associated with HLA-B27, the presence 

of HLA-DRB1*08, and the absence of HLA-DPB1*02 are predictors of poor outcome 

(36). 

A number of studies have evaluated early predictors of outcomes of a cohort of 

JIA patients without considering the JIA subtypes. A long-term study aimed to predict 

three distinct disease outcomes 15 years after onset including: 1) remission according to 

the ACR definition of remission (26), 2) joint erosion according to radiological findings, 

and 3) physical disability based on the Stanford Health Assessment Questionnaire 

(HAQ), and CHAQ (38). Characteristics that were predictive of less favorable remission 

rates were young age at onset, HLA DRB1*08, positive IgM RF, long duration of 

elevated ESR, and large number of involved joints within the first 6 months. Predictors of 

joint erosion were early onset age, a large number of affected joints, positive IgM RF, 

long duration of elevated ESR, and symmetric arthritis. Predictors of physical disability 

were female sex, symmetric joint involvement, early hip joint arthritis, long term elevated 

ESR, and positive IgM RF (38). In a short-term study the outcome was clinically inactive 

disease according to Wallace et al. criteria (29); predictors were identified as active joint 

count, PGA, patient or parent global assessment of overall well-being, and CHAQ (69). 

2.3 Inflammatory biomarkers associated with outcomes considered in the analysis  

Genetic differences in the expression levels of a number of important biomarkers 

can lead to chronic inflammation (29). The measurement of inflammation-related 

biomarkers in body fluids and synovial tissue has provided insight into the underlying 

pathophysiology of JIA. 

Cytokines are a group of small proteins secreted by a variety of cells including 

those of the immune system. They modulate acute and chronic inflammation through 

elaborate cell signalling pathways and interactions. Cytokine is an umbrella term 

encompassing a large number of chemokines, interferons, interleukins (IL), lymphokines, 

tumour necrotizing factors (TNFs), and growth factors (87, 88). Although all cell types 
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are capable of producing cytokines, T-helper (Th) cells and macrophages are the principal 

sources (89). Three main classification systems for cytokines have been proposed. The 

first is based on their function and roles in immune response and consist of substances 

that: 1) induce cells of the adaptive immune response, 2) promote inflammation, and 3) 

inhibit inflammation (Table 2.2). The second proposed cytokine classification system is 

based on their action on target cells and include: 1) interleukins, 2) tumour necrosis 

factors, 3) interferons, 4) colony stimulating factors, and 5) chemokines (90). The third 

cytokine classification system is based on structure and specifically if an amino acid is or 

is not located between the first two cysteine residues (CXC and CC respectively) (91). In 

this review, the first and second cytokine classification systems are discussed.  

Functional genetic polymorphisms, including those mediating inflammatory 

cytokine expression, can alter the gene’s structure, function, and resultant phenotype and 

contribute to risk of polygenic diseases including arthritis (92). In the following 

discussion, SNPs that influence cytokine expression in the context of JIA are reviewed. 
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Table 2.2 Classification of cytokines by immune response. 

 
CNTF, ciliary neurotrophic factor; CT-1, cardiotrophin-1; GM-CSF, 
granulocyte macrophage-colony stimulating factor; IFN, interferon; 
LIF, leukaemia inhibitory factor; OPN, osteopontin; OSM, oncostatin M; TNF, 
tumour necrosis factor; TSLP, thymic stromal lymphopoietin; RANKL, Receptor 
activator of NF-kB ligand; RANTES, regulated on activation, normal T cell 
expressed and secreted. 

 

2.3.1. Pro-inflammatory cytokines 

 IL-1, IL-6, TNF-α, S100 and serum amyloid A are the most influential pro-

inflammatory cytokines in the context of childhood arthritis (90). 

2.3.1.1 IL-1 

IL-1 encompasses two distinct proteins, IL-1α and IL-1β, which are respectively 

encoded by two genes and controlled by specific inhibitors including membrane bound 

IL-1 receptor antagonist (IL-1Ra), soluble IL-1 receptor type II, and IL-1 receptor 

accessory protein (93). Monocytes, macrophages, and neutrophils, can produce IL-1 in 

response to pro-inflammatory stimuli such as cell injury, bacterial products, TNF, and 

granulocyte-macrophage colony stimulating factor (GM-CSF) (94). Also, induction of 

pattern recognition receptors (PRRs) including Toll-like receptors (TLRs) and NOD-like 

receptors (NLLs) by viral and microbial agents can lead to excessive IL-1 expression (95, 

96). The IL-1 family of proteins are produced as precursors, cleaved by the IL-1-

converting enzyme (ICE) or caspase-1 to generate active cytokine (93, 97). IL-1α 
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activates endothelial cells and macrophages, and induces production of acute phase 

reactants from the liver. IL-1β stimulates differentiation of CD4+ T cells into Th1 cells 

and Th17 cell lineages and has pyrogenic effects (98). 

The IL-1 family of proteins has nine genes located on chromosome 2 (99). Three 

IL-1 gene cluster SNPs (rs6712572, rs2071374, and rs1688075), and one IL-1 receptor 

cluster SNP (rs12712122) have been shown to be associated with risk of developing 

systemic JIA (100). Ankylosing spondylitis can be associated with IL-1A gene SNPs 

(rs1800587, rs2856836, rs17561) and these SNPs might account for ethnic variability in 

the expression of the disease (101). There are reports of IL-1 gene cluster SNP 

associations with psoriatic arthritis (102). 

Inhibiting the action of IL-1 has therapeutic benefits in certain inflammation-

mediated diseases. Pascual et al. have shown that dysregulated IL-1 production is a major 

mediator of the inflammatory cascade in systemic JIA, and IL-1 blockade with anakinra 

(recombinant IL-1Ra) is an effective treatment for the disease (16). However, response to 

anakinra among patients with systemic JIA is variable; approximately 40% have a 

favourable response while others have partial or no response (103). Ombrello and 

colleagues have shown that a variation in the IL-1RN gene influences susceptibility to 

recombinant IL-1RA therapy in systemic JIA (104). 

2.3.1.2 IL-6 

Acute and chronic inflammation induces IL-6 production by macrophages, T and 

B cells, endothelial cells, and tissue fibroblasts. The IL-6 gene is located on human 

chromosome 2 (99). Its signals are mediated by binding with IL-6 receptor, which is 

composed of two chains, IL-6R and glycoprotein 130 (gp-130). Gp-130 is a common 

signal transducing chain for other cytokine receptors. Soluble receptor of IL-6 (sIL-6R) 

also binds with IL-6, then can be attached to gp-130 (105). The pro-inflammatory 

functions of IL-6 include inducing fever, activation of endothelial cells, production of 

acute phase reactants, and B-cell proliferation. It also activates osteoclasts and promotes 

maturation of megakaryocytes, wound healing, development of Th22 and Th17, 

endothelial cell activation, fibroblast proliferation, and neuron development (106). 

Polymorphisms in the 5' flanking region of the IL-6 gene, a change from G to C at 

position 174, results in suppression of IL-6 transcription (17). 
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IL-6 and sIL-6R concentrations increase in JIA and are related to the degree of 

joint destruction (107). Levels of sIL-6R substantially increase in systemic JIA (108). It 

has been shown that in induced arthritis in mice IL-6 injection causes joint destruction, 

leucocyte aggregation, apoptosis, and T cell activation (109). Disruption of the IL-6 gene 

in knockout mice has shown that lack of this protein mitigates arthritis development 

(110). Many of the clinical features of systemic JIA such as chronic anemia, severe 

growth retardation, osteoporosis, thrombocytosis, and amyloidosis are related to IL-6 

action (111). Tocilizumab, an IL-6R antibody that blocks soluble and membrane-bound 

IL-6 receptors, is therapeutically beneficial in systemic JIA (112, 113). 

2.3.1.3 TNF 

The TNF gene-coding region is located within the major histocompatibility 

complex (MHC) class III, on chromosome 6 and includes three genes. The TNFA gene, 

encodes TNF-α; TNFB encodes TNF-β, and LTB, encodes lymphotoxin-β (114). TNF-α 

and TNF-β are similar pro-inflammatory transmembrane glycoproteins belonging to the 

TNF superfamily. TNF can be cleaved by the metalloprotease TNF-α converting enzyme 

(TACE) to form soluble TNF that may allow for more widespread cytokine effects (114, 

115). The main sources of TNF-α are activated macrophages, monocytes, B and T 

lymphocytes, and fibroblasts. Activated Th1 cells secrete TNF-β. The TNF superfamily 

consists of 20 different proteins including CD40L and RANKL. Their biological actions 

are mediated by binding to p55 and p75 (TNFRI, TNFRII) receptors. All the TNF 

receptor superfamily of ligands are capable of becoming a secreted form (116). Binding 

to the TNFRs initiates intracellular signaling leading to transcription of factors such as 

NF-kB and activation protein-1 (AP-1) that cause the production of inflammatory 

mediators and anti-apoptotic proteins (117, 118). Although TNFs usually mediate 

signalling for cell survival, the binding of TNF-α to TNFRI can result in either 

inflammation or apoptosis. Activation of caspases lead to cell death which is important 

for self-limitation of cell activation (118). The main effects of TNF are activation of 

endothelial cells, macrophages, monocytes, neutrophils, induction of the pro-

inflammatory activity of fibroblasts, and apoptosis. Similar to an endocrine hormone, 

TNF-α can circulate in blood and act at distant sites. For instance, TNF-α can stimulate 

the hypothalamus to induce fever, stimulate hepatocytes to produce acute phase reactants, 
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and promote metabolic changes leading to cachexia. TNF-α plays a major role in the 

pathogenesis of sepsis (119, 120). 

In RA and JIA patients increased levels of both TNF-α and TNF-β are detected in 

serum and synovial fluid (121). The presence of a SNP in the TNF-α gene (308 GA/AA 

and 238 GA) leads to elevation of TNF-α and increased transcriptional activity. This has 

been associated with a poorer prognosis and a lower response to anti-TNF-α drugs in 

patients with systemic JIA and RF-positive polyarticular JIA (10, 122). A genetic 

polymorphism of TNF plays a significant role in oligoarticular JIA; there is a strong 

association between the intronic 851 TNF SNP and persistence of oligoarticular JIA 

(123). Synovial tissues of patients with spondyloarthropathies, and persistent 

oligoarticular JIA express high and low levels of TNF-α, respectively. TNF-α expression 

in synovial tissues of patients with polyarticular JIA and adult-onset RA have been 

reported as intermediate. Generally, although expression of TNF-β in synovial tissues are 

low compared to expression of TNF-α in all groups, it is notably higher in children with 

polyarticular and ERA JIA (124). TNF-α levels increase in psoriatic plaques, blood, and 

in the synovial fluid of patients with active psoriatic arthritis and has correlation with 

disease severity (9, 125-127). There is an association of TNF-α promoter polymorphism 

at position -238 with psoriasis and psoriatic arthritis (128). In patients with AS, TNF-α, 

TNFRI, and TNFRII levels are high. After treatment with TNF blockade agents the level 

of TNFRI falls. In the sacroiliac joints of AS patients abundant TNF-α mRNA near the 

site of new bone formation can be detected (129). 

The significant role of TNF in the pathogenesis of RA has made it an important 

target for therapy. Anti-TNF therapy is an effective treatment choice in polyarticular JIA 

patients not responsive to methotrexate (130). An effective strategy to inhibit TNF-α 

action is to use monoclonal antibodies to block its membrane-bound or soluble receptors 

(131). Infliximab and adalimumab are chimeric IgG anti-TNF-α monoclonal antibodies 

that bind to both membrane-bound and soluble TNF-α receptors (132, 133). However, 

development of neutralizing antibodies against infliximab and adalimumab can reduce 

the clinical efficacy of the treatments (134-136). Etanercept, a soluble TNF receptor, is 

the extracellular portion of the human p75 TNF-α receptor fused to the Fc portion of 

IgG1 (137, 138). Etanercept binds to both TNF-α and lymphotoxin-α, a member of the 

TNF family that also activates the inflammatory pathway through the TNFRs (139). 
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Etanercept does not have the potential to induce the formation of neutralizing antibodies 

(137). 

High rates of treatment failure with TNF inhibitors have been reported in systemic 

JIA (140, 141). ERA subtype patients with peripheral disease who do not respond to 

DMARDs and those with axial involvement have shown clinical response with anti-TNF 

inhibitors (142, 143). Psoriatic JIA patients with inadequate response to DMARDs, axial 

disease, dactylitis and enthesitis are candidates for TNF inhibitor therapy (144). TNF 

inhibitors are indicated for intractable cases of oligoarticular JIA unresponsive to non-

biologic treatment approaches (143). 

2.3.1.4 S100 

The S100 protein family comprises the largest subgroup within the Ca2+-binding 

EF-hand (helix E-loop-helix F) protein group (145). Only vertebrates possess S100 genes, 

which are clustered at chromosome 1q21 and 21q22. Twenty-five proteins have been 

identified as belonging to the S100 family. They are small molecules, about 10-12kDa, 

classified into 3 subgroups: 1) proteins which exert intracellular regulatory effects, 2) 

those with intracellular and extracellular functions, and 3) those with only extracellular 

regulatory effects (146). 

S100 protein can be expressed intracellularly in pathological states while they are 

absent in normal physiological conditions of the cell. Their expression patterns vary 

among different S100 proteins (147). These proteins regulate cell proliferation, 

differentiation, apoptosis, Ca2+ homeostasis, energy metabolism, inflammation and 

migration/invasion through interactions with other proteins. S100 proteins derived from 

cells of myeloid origin are suggested to be new markers of inflammation (145, 146). A 

subgroup known as calgranulins including S100A8, S100A9 and S100A12 (also termed 

phagocyte-specific S100) are highly expressed in monocytes and granulocytes and have 

been associated with acute and chronic inflammation (148). They are pro-inflammatory 

mediators when appearing extracellularly. Cryopyrin-associated periodic syndromes, 

familial Mediterranean fever (FMF), hyper-zincemia and hyper-calprotectinemia, 

polyarticular JIA, and systemic JIA are autoimmune diseases associated with over 

expression and dysregulation of calgranulins (149-152). 

Increased intracellular calcium concentration stimulates activation of 

macrophages. Calcium ions initiate changes in calcium-binding proteins (S100A8, 
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S100A9, and S100A12), which interact with intracellular target structures (153). 

Expression of S100 proteins in monocytes and macrophages is tissue specific and occurs 

only during the early stages of cell differentiation (154). In humans, S100A8 and S100A9 

assemble as an S100A8/S100A9 heterodimer (155). The distribution of S100A12 in the 

cytoplasm of granulocytes is similar to S100A8/S100A9, but it is less abundant (156). 

Intracellular calcium signaling induces S100A12 protein independent of S100A8/S100A9 

(157). These proteins are released by stimulated phagocytes partly in response to calcium 

mediated signaling (158). The first cells targeted by released phagocyte-specific S100 are 

cells within the endothelial layer. The binding of S100A8/S100A9 and S100A12 to the 

surface receptors induces various intracellular inflammatory signaling pathways and 

recruitment of more leukocytes (159, 160). Besides their intracellular effects, S100A 

proteins activate immune cells. S100A8/S100A9 enhance adhesion of neutrophils to 

endothelial cells (160). S100A12 exerts chemotactic effects on phagocytes, up-regulates 

expression of TNFs and IL-1, and increases release of IL-2 (159). Their cytotoxic effects 

influence the survival or growth of inflammatory cells and homeostasis. S100A8 and 

S100A9 have direct roles in synovial inflammation and auto-immune disease (151). 

Induced arthritis in animal models indicates a direct role of phagocyte-specific 

S100 proteins in synovitis (161). Accumulation of S100A8 and S100A9 expressing 

macrophages in the cartilage surface suggests correlation between them and signs of 

cartilage destruction and direct role of S100A8 and S100A9 in the destructive process of 

inflammatory arthritis (162). It also has been shown that S100A12 induces synovial 

inflammation in mice with collagen-induced arthritis (163). Cytokine production and 

MMP’s activation within the synovium depend on interaction of S100A12 with its 

receptors (163, 164). 

S100A8 and S100A9 were first identified in the context of RA. Activated 

phagocytes expressing S100A8, S100A9 proteins are abundant in inflamed synovium 

specifically at cartilage destruction and bone erosion sites (165). Synovial fluid 

concentration of S100A8/S100A9 is 10-fold higher than their serum levels in individual 

patients with inflammatory arthritis (166). The correlation of serum S100A8/S100A9 

concentrations with the arthritis activity and their diagnostic capacity as a marker of 

synovial inflammation has been confirmed in RA patients (167, 168). Similarly, serum 

levels of S100A12 correlate well with disease activity (169). S100A12 increases in the 
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synovial fluid and serum of RA patients while it is undetectable after successful treatment 

and in patients with osteoarthritis (169, 170). 

Phagocyte-specific S100 proteins have also been detected in serum and synovial 

fluid of JIA patients (171). Similar to RA patients, the serum concentrations of these 

proteins can be considered as markers of disease activity in childhood arthritis (172). In 

JIA patients who are judged to have inactive disease by clinical indicators elevated levels 

of S100A8/S100A9 or S100A12 represent that they are at risk for disease flare (171). 

Systemic JIA patients have notably high expression and serum concentrations of 

S100A8, S100A9 and S100A12 than other JIA subtypes (20-fold higher) because of 

massive neutrophil activation (171). In addition, these patients show extensive expression 

of S100A8/S100A9 in the dermal epithelium (172). Therefore, S100A8/S100A9 and 

S100A12 can be considered as the tool to help differentiate systemic JIA from systemic 

infections. Potentially, phagocyte-specific S100 proteins might be appropriate targets for 

new anti-inflammatory therapies. 

2.3.1.5 Serum amyloid A 

Serum amyloid A (SAA) is a heterogeneous family of proteins which behave as 

acute phase reactants, and are associated with high density lipoproteins (173). The human 

SAA consists of 104 amino acid residues with six main isoforms as products of four 

active genes SAA1, SAA2, SAA3, and SAA4 in the short arm on chromosome 15 (174). 

SNPs in SAA1 are related to 5 isoforms of SAA1 (SAA1.1 - 1.5), which are associated 

with FMF, coronary artery diseases, cerebral infarction, and osteoporosis and arthritis 

related amyloidosis (175, 176). SAA1and SAA2 genes can be activated during acute-

phase responses (177). IL-1β, IL-6, TNF-α, and glucocorticoids stimulate expression of 

the SAA1 gene in hepatocytes. Acute-phase SAA genes expression involves the 

transcription factors C/EBP, NF-κB, AP2, SAF, Sp1 and STAT3. SAA1 is recognized as 

a clinical indicator for inflammation (178). 

Plasma levels of SAA1 and SAA2 increase dramatically during inflammation and 

consequently are useful biomarkers of inflammation (179). In JIA patients serum levels 

of SAA1 increase significantly with a strong positive correlation with the number of 

active joints (180). Scheinberg, et al., showed that SAA levels are high in children with 

polyarticular and systemic JIA and increase during disease exacerbation, and decrease 

during disease remission and after prednisone therapy (181). An adult study has shown 
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that the serum level of SAA may be a better biomarker for RA disease activity than CRP, 

especially during treatment with TNF antagonists (182). Elevated levels of A-SAA in 

synovium of RA patients is associated with increased cartilage degradation (183). These 

findings support SAA as an indicator of disease activity and outcome predictor in chronic 

arthritis 

2.3.2 Anti-inflammatory cytokines 

Anti-inflammatory cytokines control the pro-inflammatory cytokine response 

including specific cytokine inhibitors and soluble cytokine receptors. They have a crucial 

role in modulating the inflammatory process (99). 

2.3.2.1 IL-10  

IL-10 is a homodimer protein (consisting of two identical molecules), mIL-10 and 

hIL-10, encoded by the IL-10 gene located on chromosome 1 near the IL-19 and IL-20 

genes (184). The protein is produced by activated Th2 (helper CD4+), Tc2 (cytotoxic 

CD8+), Tr1 (regulatory T cell), B cells (185). Other cell types that produce IL-10 are, 

lymphocytes, monocytes, macrophages, and mast cells (99). The IL-10 receptor has two 

chains (IL-10R1 and IL-10R2) related to the interferon receptor (IFNR) family (186). 

IL-10 plays multiple roles in immune-regulation and inflammation. It suppresses 

the expression of TNF-α, IL-6 and IL-1, up-regulates endogenous anti-cytokines and 

down-regulates pro-inflammatory cytokine receptors (187). It stimulates B-cell survival 

and antibody production, while inhibiting Th1 and Tc1 development. IL-10 also inhibits 

production of pro-inflammatory cytokines such as IL-1α, IL-1β, IL-6, and TNF; 

chemokines such as monocyte chemoattractant protein (MCP)1, MCP5, RANTE, 

macrophage inflammatory proteins (MIP)s; and growth factors such as GM-CSF, and 

granulocyte-colony stimulating factor (G-CSF) (187, 188). IL-10 gene polymorphisms 

are associated with inflammatory diseases including JIA (189), Behçet’s disease, uveitis, 

systemic lupus erythematosus (SLE) (190), RA, B-cell lymphoma, gastric cancer, and 

Type 1 diabetes (191-193). Three SNPs in the promoter region of IL-10 at positions -

1082(G/A), −819(C/T), and −592(C/A) have been identified (194). A SNP in the IL-10 

gene promotor at position -592 increases the risk of developing JIA (187, 195). The G 

allele at the −1082 position has a negative association with JIA (196). In systemic JIA a 

low expression of IL10-1082 has been reported (197). 
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The important anti-inflammatory effect of IL-10 is to inhibit IL-1 and TNF 

production as they have synergistic and amplifying effects on the inflammatory processes 

(198, 199). In RA synovial macrophages and T cells produce IL-10 to inhibit production 

of inflammatory cytokines by synovial cells (200). In animal models of RA, IL-10 

reduces clinical manifestations of the disease and suppresses cytokine production (201). 

Because of the potential effects of IL-10 in suppressing inflammation, targeting IL-10 

therapeutically has been considered for treatment of chronic inflammatory diseases. 

(202). 

2.3.3 Adaptive immunity 

Genetic background and environmental exposures interact through adaptive 

immune system responses. Adaptive immunity includes humoral and cell-mediated 

immunity. T cells produce adaptive immune cytokines after being exposed to a specific 

antigen. 

2.3.3.1 IL-2 

IL-2 is important for the proliferation of T and B lymphocytes and natural killer 

(NK) cells (203). The IL-2 gene is located on chromosome 4 near the gene that encodes 

IL-21, and has only one allele (204). It is secreted primarily by activated T cells (CD4+ 

Th0, CD4+ Th1, and CD8Tc1) and dendritic cells (205). The IL-2 receptor has three 

subunits α (CD25), β (CD122), and γ (CD132). The gamma subunit is shared by IL-4R, 

IL-7R, IL-9R, IL-15R, and IL-21R. While assembly of the three chains results in a high 

affinity receptor, integration of two chains (β and γ) produce a receptor with medium 

affinity (206). Defects in IL-2/IL-2R profoundly affect cell-cell interactions and cell 

death when the immune system responds to antigens (207). Congenital lack of the gene 

encoding IL-2R γ chain causes X-linked severe combined immunodeficiency (SCID) 

(208). The IL-2Rα and IL-2Rβ and a SNP in the IL-2IL12 region (rs1479924) have been 

identified as a susceptibility loci for oligoarticular or RF-negative polyarticular JIA. 

(209). These findings suggest a vital role for the IL-2 pathway in JIA pathogenesis. 

2.3.4 Matrix metalloproteinases 

MMPs are zinc-dependent proteolytic enzymes. They are members of the 

metzincin group of proteases, which share structurally similar domains, in particular the 

zinc dependent catalytic domain and the activation peptide (pro-domain). In humans, 

there are 24 MMP genes that are expressed as inactive pro-proteins. To activate the 
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protein, the pro-domain is cleaved from the catalytic domain (139). The regulation of 

MMPs is controlled partly by cytokines, growth factors and tissue inhibitors of 

metalloproteinases (TIMPs) (210). MMPs participate in tissue remodelling by degrading 

extra cellular matrix. Important biological processes can be regulated by MMPs including 

cell migration, cell differentiation, growth, inflammatory processes, neovascularization 

and apoptosis, processes all operative in the context of arthritis (211). 

Most MMPs are expressed in synovial tissue of RA patients predominantly MMP-

1, MMP-9, MMP-13, MMP-14, and MMP-15. They are responsible for synovial 

remodelling and inflammatory tissue destruction (212). MMP-3 is associated with RA 

disease activity, cartilage breakdown (213), and is a predictor of radiographic disease 

outcome in RA patients (214). Elevated serum levels of MMP-3 are found in patients 

with active ankylosing spondylitis (215). Excessive expression of MMPs and low 

expression of TIMP-1 have been detected in the synovial tissue of JIA patients (210, 

212).  

Production of MMP-3 and MMP-1 can be induced by IL-1 and TNF in arthritis; 

thus, these cytokines increase cartilage degradation by inducing collagen-degradation 

mediators MMP-3 and MMP-1 (216). Gottorno et al. reported a significant increase in 

MMP-3 and MMP-1 in synovial fluid of patients with JIA (217). Peake et al. suggested 

that increased synovial fluid level of MMP-1 is consistent with inflammatory activity in 

the joint in all JIA subtypes (218). They suggested that degradation of type II collagen 

occurs early and continues throughout the disease course and that serum MMP-3 is a 

biomarker of active arthritis in JIA (218). Taken together, identifying the increased 

expression of some MMPs in RA/JIA synovial tissue and serum may provide a biomarker 

of diagnostic, prognostic, and therapeutic relevance. 

MMP inhibitors have been synthesized (zinc-binding globulins [ZBGs], non-

ZBGs inhibitors) for management of osteoarthritis, cancer, and cardiovascular disorders 

but they exert undesirable musculoskeletal side effects. Gene based therapies of TIMPs 

are being assessed in animal models (219). 

In summary, the available evidence shows that dysregulation and imbalance 

between pro- and anti-inflammatory biomarkers are important factors in JIA 

pathophysiology. Growing understanding of the immune and inflammatory pathways in 

JIA has led to development of new medications that target inflammatory cytokines. As 
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examples, inhibitors of IL-1, IL-6 and TNF-α have substantially changed the outcome of 

JIA in systemic and polyarthritis subtypes. Future opportunities will be to recognize 

specific cytokines as markers of disease activity and attributes that aid in developing 

biologically-based classification and a more personalized approach to diagnosing and 

managing individual patients. 

2.3.5 Gene and HLA characteristics in JIA 

Multiple HLA alleles, different from those in RA patients, are associated with 

JIA. The reported associations include HLA-B27 with ERA, HLA-DRB1*01, DRB1*08, 

DRB1*11, DRB1*13, DPB1*02 and DQB1*04 with oligoarticular JIA (220, 221), HLA-

DRB1*08 and DPB1*03 with polyarticular RF-negative JIA and DRB1*04, DQA1*03, 

and DQB1*03 polyarticular RF-positive JIA (221-224). HLA-DRB1*01, 

and DQA1*0101 are associated with psoriatic arthritis (221), and HLA-DRB1*04 with 

systemic JIA (224). HLA-DRB1*04 and DRB1*07 have been reported as protective 

genes for oligoarticular JIA, and DRB1*18:01 and DQB1*06:02-8 have been reported to 

be protective for all JIA groups (220-222, 225). 

Gene expression and genome-wide genotyping have identified loci outside the 

HLA gene complex associated with different JIA subtypes, particularly PTPN2, PTPN22, 

STAT4, ANKRD55, IL-2, IL-2RA, IL-21, and SH2B3-ATXN2. The functions of these 

genes are chiefly regulating production and function of inflammatory biomarkers and 

their receptors. For instance, the PTPN2 gene modulates the expression of IL-2, IL-4, IL-

6, and IFN. SNPs related to PTPN2 (rs7234029 (A>G), and rs2847293 (T>A)) cause 

impairment in the regulation of inflammatory pathways including joint inflammation 

(226-228). 

Association between early onset oligoarticular and persistent oligoarticular JIA 

with TNFA, the gene encoding TNF-α, have been reported (123, 229). Systemic JIA is 

associated with a SNP at position -857 of TNFA (230). TNFA variant is also associated 

with polyarticular JIA (231). In Norwegian children a SNP in the promoter region of IL-

1A, the gene encoding IL-1α, has been shown to be associated with early onset 

oligoarticular JIA (232). A SNP in the promoter of the IL-6 gene, several variants of the 

IL-1 gene, and IL-1R gene clusters are associated with systemic JIA (17, 100). An 

association between JIA and PTPN22 C1858T has been identified in Norwegian, Czech, 
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and British patients (233-235). Lymphoid tyrosine phosphatase (LYP), which inhibits T-

cell activation, is regulated by the PTPN22 gene (236). 

2.4 JIA outcome measures 

Three major outcomes were investigated in earlier outcome predictor studies 

including remission, physical function or health status, and joint damage (33, 62, 237, 

238). However, there has been some inconsistency in outcome definitions. Remission 

criteria are influenced by the classification system applied. Time from disease onset to 

study enrolment and last follow up visit contributes to variability in outcome study 

protocols making it difficult to precisely compare studies. 

Physical function outcome is conventionally measured with specific tools, such as 

HAQ, CHAQ, JAQQ, or Steinbrocker functional class (239-242). HAQ, a measure of 

function in adults, consists of 100 questions with five principal dimensions (death, 

disability, discomfort, drug toxicity, dollar cost), which have been separated into several 

components. Functional ability is measured by nine components (dressing and grooming, 

arising, eating, walking, hygiene, reach, grip, outside activity, and sexual activity). Each 

question is scored from 0 to 3 where 0=without any difficulty, 1=with difficulty, 2=with 

some help from another person or with a device, and 3=unable to do. The index is 

calculated by averaging the scores. The other indices also range from 0 to 3. In the dollar 

cost section, annual medical and surgical costs are calculated. HAQ can be either self or 

interview administered (240). 

CHAQ, an adaptation of the HAQ for use in children, is an effective, valid, and 

reliable tool to assess childhood arthritis (239). CHAQ evaluates performance of the 

child’s activities in their daily environments. CHAQ is designed for children from 1-19 

years old and includes 38 items grouped into 8 domains including physical function, 

dressing and grooming, arising, eating, walking, hygiene, reach, grip, activities, a pain 

index, and health status index (overall health status). CHAQ scores items are from 0-3, 

indicating the magnitude of child difficulty in performance of daily activities during the 

past week (0=without any difficulty, 1=with some difficulty, 2=with much difficulty, and 

3=unable to do) although pain and health status indices are scored on a 10 cm visual 

analogue scale. CHAQ data is acquired by self-report interview of children ≥ 8 years old, 

or a parent report for children younger than age 8 (239, 241, 243). 
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JAQQ is an instrument to assess the health-related quality of life in children with 

arthritis. It measures physical functioning, emotional well-being, and an array of general 

symptoms of quality of life in children aged 2-18 years old. JAQQ includes 74 items 

grouped into four domains including gross motor function, fine motor function, 

psychosocial function, and systemic or general symptoms. In the revised version of 

JAQQ a pain scale of 10 cm VAS has been added. JAQQ is self/parent-administered 

questionnaire with each item rated from 1 to 7 (244, 245). 

The Steinbrocker classification is a method for categorizing functional capacity of 

patients with RA (246). In 1991, ACR revised the Steinbrocker functional classes as 

follow: Class I=able to perform usual activities of daily living (self-care, vocational, and 

avocational); Class II=able to perform usual self-care and vocational activities, but 

limited in avocational activities; Class III=able to perform usual self-care activities but 

limited in vocational and avocational activities; Class IV=limited in ability to perform 

usual self-care, vocational, and avocational activities (247). 

Anatomical bone and joint outcomes are determined mainly by radiographic 

assessment of joints (63). Reported structural outcomes include joint erosion, joint space 

narrowing, and ankyloses. The radiological findings, similar to remission rates, are 

influenced by the duration of the disease. 

Most JIA prediction studies have been retrospective outcome studies. They are 

difficult to compare as different classification criteria have been used and duration of 

follow-ups have varied. New medications and treatment strategies have changed the 

disease outcome substantially, thus the results of earlier long-term studies may no longer 

be relevant in the context of contemporary therapies (248, 249). There are limited number 

of studies that have reported the role of an array of inflammatory biomarkers as 

predictors of disease outcome. 

2.5 Overview of statistical analyses methods used in this research 

In this section an overview of the application of data mining in medicine and 

select data mining methods including cross-validation, data reduction and feature 

selection, a clustering method, and a classification method are discussed.  

2.5.1 Data mining and its application in medicine 

Coincident with increasing knowledge about JIA pathophysiology and 

accumulating biologically-based data, methods and tools for analyzing large datasets 
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have emerged. Data mining is one approach that can help interpret large, complex 

clinical-biologic datasets in JIA. 

Machine learning, a computer science statistical framework that automates the 

generation of models, can help distill useful information from large amounts of complex 

data. It has been described by Mitchell as: “a computer program is said to learn from 

experience E with respect to some class of tasks T and performance measure P if its 

performance at tasks in T, as measured by P, improves with experience E” (250). 

Data mining is the process of discovering meaningful hidden patterns within data 

by applying machine learning techniques. Basic concepts in data mining are description 

and prediction. By finding useful patterns in a substantial amount of information it is 

possible to make predictions. There are two data mining methods: unsupervised 

(description approaches) and supervised (prediction approaches). Unsupervised methods 

include clustering and association rules; supervised methods include classification and 

regression. The goal of clustering approaches is to find naturally occurring, interpretable, 

rational patterns, and associations within the data, while the aim of classification is to 

construct predictive models (254, 255). Association rules are if/then statements that 

explore the relationships among variables. 

 Medicine, like other fields of science, can take advantage of such machine 

learning approaches. Diseases are mainly categorized (classified) according to their 

measurable signs and symptoms. For example, an inflamed joint can be described based 

on the size of an effusion, degree of joint warmth or redness, range of motion, and 

associated pain without considering the underlying pathophysiologic process that gave 

rise to the inflammation. Considering inflammatory biomarker profiles in individual 

patients could inform patient-specific, biologically-based personalized approaches to 

targeted therapies. In fact, applying supervised learning methods to an integrated 

biological, genetic, environmental, and clinical dataset could help develop a completely 

new disease taxonomy that can direct individual patient treatment options.  

Machine learning and data mining have provided a unique opportunity for 

medical scientists to investigate new disease taxonomy leading to accurate diagnosis, 

targeted therapy, and improved outcome. 

Predictive data mining can help solve important problems in research and clinical 

medicine. By applying predictive data mining, clinicians can use patient information to 
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predict the course and outcome of disease. Predictive data mining has received great 

attention in molecular biology and is routinely applied in genomic medicine (256). The 

majority of predictive genomic studies are related to oncology. In particular, early 

diagnosis of acute myeloid leukemia and acute lymphoblastic leukemia has dramatically 

altered patient treatment and outcome. This approach has provided a cancer classification 

strategy based on only gene expression, which is important for outcome prediction in 

cancer treatment (257-259). 

Combining clinical and gene expression data with unsupervised and supervised 

learning can further improve classification accuracy and the clinical relevance of the 

prognostic models (260, 261). 

2.5.2 Data pre-processing 

Raw data are generally incomplete as they can contain missing values, errors, and 

outliers, and are susceptible to inconsistency. Prior to applying data mining methods data 

pre-processing is highly recommended, which encompasses techniques that transform raw 

data into an understandable format from both numerical and visual standpoints. In data 

mining a variable is called a feature. For example, for a child with arthritis the features 

can be listed as number of active joints, sex, age, ESR, and CRP. In this research, 

variable and features are used interchangeably. Prior to discussing some data pre-

processing techniques, it is necessary to understand an important concept known as cross-

validation.  

2.5.2.1 Cross-validation 

Cross-validation (CV) is a commonly used method in data mining and statistics to 

evaluate models and involves assessing how the results of the analysis will generalize to 

an independent dataset. Typically, analysts perform k-fold CV or leave-one-out CV 

(LOO-CV). In k-fold CV the dataset is randomly split into k mutually exclusive subsets 

of approximately equal size (251, 252). A model is trained using k-1 subsets (called 

traning sets), and is validated on the remaining part of the data (known as test sets). The 

process repeats k times. The overall accuracy of the model is calculated by averaging the 

performance measures over k-folds (252). A common value of k is 10 (253). In LOO-CV, 

at each iteration one observation or one variable is left out from the training set, and the 

trained model is tested on the one observation or variable that is left out. At the end, 

overall accuracy of the model is calculated as described above. 
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2.5.2.2 Dimensionality reduction, principal component analysis 

In statistics, data dimension refers to the number of variables. High dimensional 

data means that the number of variables is high and can exceed the number of 

observations. There are two fundamental issues associated with multidimensional data: 

noise and redundancy. Big data can include large amounts of meaningless information 

known as noise. Noise may be introduced into a variable due to human error such as 

reporting a subject age as -40. Alternatively, a variable might be a noise. As an example, 

when evaluating half-life of a drug, weight and height should be removed from the data 

when body mass index is calculated. Noisy data may provide worthless results with poor 

accuracy. Redundancy means that the variables are highly correlated. Redundancy issues 

produce the same information from different points of view and increase the number of 

degrees of freedom. High dimensionality in a dataset can also make the data difficult to 

visualize and analyze.  

To understand large data, dimensionality reduction methods should be applied 

(254). In multidimensional datasets there are sets of variables that are uncorrelated with 

each other, while the variables within each set are correlated with one another. A set of 

correlated variables can be combined and become a single new variable (255).  

PCA, a well-known data reduction method, is a descriptive mathematical 

procedure introduced in 1901 by Pearson and later by Hotelling, that extracts important 

variables (in the form of a new set of variables called principal components [PCs]) from a 

large set of variables (256, 257). PCA extracts low dimensional sets of data with the aim 

of capturing as much information as possible.  

This technique increases interpretability of the dataset while at the same time 

minimizing information loss. With fewer variables, analysis and visualization become 

more meaningful. To preserve as much variability as possible, data are transformed 

linearly. Thus, two assumptions of PCA are: 1) variables should be linearly related to 

each other, and 2) variables should be correlated to each other to some degree (258). The 

transformation steps are an iterative procedure to identify combinations of variables with 

maximum variance and minimum correlation. The eigenvalues and their corresponding 

eigenvectors are the means for linear transformation of the data. Eigenvectors are the 

axes (directions) along which a linear transformation performs stretching/compression 
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changes, and eigenvalues (denoted by λ) are the scalers by which the 

stretching/compression occurs (259). 
 

 
 

Figure 2.1 A schematic illustration of PCA analysis. 
Multidimensional data reconstructed in 2 dimensions. Each vector represents an 
eigenvector. The PC1 (red arrow) has higher variance than the PC2 (blue arrow). The X1 
and X2 axes are geometrical coordinates.  
 

The original data is rotated to find the new axes (eigenvectors) with new 

coordinates that indicate directions of highest data variance. The axes or new variables 

are PCs and ordered by amount of their variance (maximum to minimum). The first 

component, PC1, represents the direction of the highest variance of the data; the second 

PC represents the highest remaining variance orthogonal to the first component and so 

forth. In PCA terminology, eigenvectors are termed loadings, and each loading represents 

one component. The eigenvectors corresponding to the largest eigenvalues are the PCs 

with the highest variance of the data (260). 

For visualization, the first and second component can be plotted against each 

other to obtain a two-dimensional representation of the data that captures most of the 

variance (assumed to be most of the relevant information). That approach is useful to 

analyze and interpret the structure of a dataset (Figure 2.1). Consider a dataset having a 

number of HLA and gene associations in a group of adult and child patients with chronic 

inflammatory arthritis. Applying PCA reveals the cluster of HLA and genes of children 

and adult patients localized to the same PC suggesting an adult counterpart of JIA based 

on the  genetic information  related to the disease. As an example, consider that PC1 

consists of HLA and genes from children who have developed the following subtypes of 

JIA: extended oligoarticular, polyarticular RF-positive, and psoriatic arthritis, together 

X1 

X2 
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with adults who suffer from polyarthriticular disease. PC2 retains genetic information of 

persistent oligoarticular, and polyarticular RF-negative JIA along with genetic 

information of adults with the same condition.  

Therefore, PCA analyses create a new dataset of new variables while retaining the 

important information of the original set. Although PCA has been widely used in genetic 

studies, it has several limitations. Lack of probabilistic components in PCA confines the 

potential to extend the scope of application of PCA. As an example, PCA cannot be 

applied to nominal and ordinal data and does not work well when handling data that is 

too sparse. It has been shown that the PCs with the larger eigenvalues do not necessarily 

contain more information (261). The assumption of linearity of relationships among 

variables is another constraint. Finally, the inability of PCA to deal with missing data 

restricts its application (256). The shortcomings of PCA can be addressed by integrating a 

probabilistic approach, resulting in probabilistic PCA (PPCA) (262). In PPCA, the 

expectation maximization (EM) algorithm estimates the model parameters (for example, 

mean) through estimation of latent variables within the data, which can deal with missing 

data (263). The maximum likelihood of the latent variables is equivalent to the principal 

eigenvectors of conventional PCA (262). EM is described later in this chapter. 

An important question is how many PCs should be retained in order to account for 

most of the variation in the dataset? As eigenvalues are ordered they can be truncated; 

that is, the first few principal components that account for a desired amount of variance in 

the original data can be selected. There is no definite method for selecting the number of 

PCs. One way is to represent the data in scree plot of eigenvalues (264). Figure 2.2 shows 

a scree plot with the number of eigenvalues ordered from biggest to smallest. The 

optimum number of components is the number that appears prior to the sharp change in 

the plot (the elbow) (264). 
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Figure 2.2 Scree plot. 
A scree plot displays all eigenvalues in their decreasing order. The appropriate number of 
components prior to the elbow is 3. 
 
 Another method for selecting the optimal number of PCs is calculating a 

Q#	index. Q#	is an index that estimates the external prediction capability of a model and 

can be used for selecting the number of PCs. The basis of Q# is similar to computing the 

goodness of fit (coefficient of determination) or R2 in regression models. Because of the 

mathematical properties of R2, as the number of factors which can be variables (even 

noisy ones) increases, the R2 value increases and therefore it cannot be a criterion for a 

model’s predictive capability (it measures the strength of the least-squares fit to the 

training set). An R2 value of 0.7 means that the model accounts for 70% of the variance 

for the training set. Q#	is the R2 value calculated from applying the model to the test set 

instead of the training set and it may or may not increase when more factors are added. It 

has a value between 0 and 1; the higher the	Q#, the closer the reconstructed data is to the 

original data (Figure 2.3) (265-267). It can be interpreted as the ratio of variance that can 

be predicted independently by the PCA/PPCA. In another words, low Q#	indicates that 

the PCA/PPCA model only describes noise and that the model is not a true representative 

of data structure.  
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Figure 2.3 A Q2 plot. 
Q2 plot, the goodness of prediction, (defines the average error of prediction) used for 
internal cross-validation which allows optimising the choice of number of PCA loadings. 
In this graph, the appropriate number of PCs is 3. 
 

2.5.2.3 Feature selection 

High-dimensional data increases the risk of over-fitting3 and cannot provide 

statistically meaningful results due to irrelevant, redundant and noisy data (268). Feature 

(variable) selection (FS) techniques are essential steps of data pre-processing. FS 

algorithms attempt to project the original data, which has a large number of features and a 

small number of subjects, onto a smaller number of variables while preserving as much 

information as possible (269). FS accelerates learning processes, reduces storage space, 

facilitates data visualization and understanding, and decreases data dimensionality, which 

improves prediction accuracy (270).  

Many FS techniques have been developed for machine learning and can be 

categorized into filter and wrapper methods (271). Filter methods are heuristic, fast, and 

utilize the general characteristics of the data. In comparison, wrappers use learning 

algorithms to evaluate the utility of feature subsets. Two filter-based approaches that have 

                                                
3 Overfitting is a modeling error that occurs when an algorithm fits all or the most 

of data for the training set, even noise, to generate the model. Thus, the model has high 
accuracy for a classifier when evaluated on the training set but low accuracy when 
evaluated on a new test set. 
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been used in this research are correlation-based feature selection (CFS) and ReliefF. Both 

are multivariate methods that consider relationships among the features (268). 

CFS is based on the rationale “a good feature subset is one that contains features 

highly correlated with the class variable (in prediction problems), yet uncorrelated with 

each other” (272), and assesses the features’ redundancies by use of a correlation that 

evaluates the predictive ability of subsets of features (273). The algorithm first 

standardizes variables and then computes correlation coefficients within various 

composites of variables, and between composites and class variables. The final result is a 

composite of variables with low inter-correlations, which in turn is highly correlated with 

the class variable (272). 

ReliefF, a multivariate algorithm based on a statistical method instead of heuristic 

searches, is an instance (observation)-based learning algorithm. In a binomial class 

variable problem, the algorithm first draws an observation randomly from the training 

data, and then computes Euclidean distance4 between the observation and the nearest 

observation of the same class (nearest hit) and a different class (nearest miss). After m 

iterations, the last step is to give high weight to the feature that discriminates between the 

nearest miss and the observation while it has the same value for the nearest hit. The only 

limitation of ReliefF is the inability to recognize redundant features (274). 

2.5.3 Clustering 

Clustering is an unsupervised pattern recognition method that distributes a set of 

observations into subsets, denoted as clusters. The goal of clustering algorithms is 

partitioning the data where a collection of observations within a cluster is similar within 

the cluster but dissimilar between clusters (275). 

There are two distinct clustering methods, hard and soft (276). In hard clustering 

each observation belongs only to one group, and there is no overlap among clusters. In 

soft clustering, groups can overlap and a single individual can fall into more than one 

group with different degrees of belonging. In other words, a single observation could be 

in several groups at the same time with different probabilities. K-means and Gaussian 

Mixture Model (GMM) are examples of hard and soft clustering methods, respectively 

                                                
4 The Euclidean distance between two points measures the length of a straight 

segment connecting the two points. 
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(276). In soft clustering probability measures identify the observations which belong to a 

cluster. In this thesis, the GMM soft clustering algorithm was used. 

2.5.3.1 Gaussian Mixture Model 

GMM is a common clustering method; it is alternatively referred to as 

expectation-maximization (EM) clustering based on optimization strategy. The Gaussian 

(normal) distribution is bell-shaped. Mean and standard deviation are two characteristics 

of a probability distribution. The Gaussian distribution formula is termed the probability 

density function. Using the formula, for a given event X, the associated Y values can be 

computed, which are the probabilities for X values. GMM refers to multiple Gaussian 

distributions of multiple hidden bell-shaped curves (277). For a set of events from a 

distribution with unknown parameters (mean, SD), the probability that an individual 

event belongs to a specific Gaussian distribution can be computed. The solution to 

estimate the parameters of the hidden Gaussian distributions is given by the EM 

algorithm. EM is an iterative mathematical optimization that can compute the maximum 

likelihood of hidden parameters given observed data points. Each hidden Gaussian 

distribution represents a cluster in the data (278) (Figure 2.4). 

GMM can determine the maximum likelihood estimates of all the distributions’ 

means. If the means are known, then the probability of each data point belonging to one 

or the other Gaussian distributions can be determined. Thus, the clusters within the data 

are revealed. 
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Figure 2.4 Gaussian mixture model. 
Two distributions within a dataset are plotted using means and standard deviations (upper 
graph). GMM starts with initial guesses for means (A), determines the new estimate of 
means (B), and iterates (C) until convergence (D). Axes are gemetrical co-ordinates. 
(Figure inspired by Ihler: https://www.youtube.com/watch?v=qMTuMa86NzU) 
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Figure 2.5 Schematic representation of EM algorithm. 
Each black dot and blue dot represent an observation in the dataset. The EM algorithm 
starts with randomly selected parameters (μ1, μ2), and iterates up to points of convergence 
(μc1, μc2). (Figure inspired by Computer Science Department, University of North 
Carolina: https://www.youtube.com/watch?v=XepXtl9YKwc) 
 

In the EM algorithm a set of random initial means are selected (Figure 2.5).  For 

example in a two-dimensional dataset h, assume that the means and covariance of the 

hidden distributions are initially μ1, μ2, 𝜎#&,𝜎##	. Then, the algorithm iterates with the E-

step and the M-step (Equations 2.1 to 2.3). 

E-step:   

The expected value 𝐸)𝑧+,- of each latent variable z is calculated. That is, the probability 

that data point i comes from cluster j has either mean 𝜇&	𝑜𝑟	𝜇#	 using the following 

formula:  

 

 𝐸)𝑧+,- =
𝑃(𝑥 = 𝑥+|𝜇 = 𝜇+, 𝜎2+		)

∑ 𝑃(𝑥 = 𝑥+|𝜇 = 𝜇,,𝜎2,	)	9
+:&

 (2.1) 

 

M-step: 



   
 

40 

A new maximum likelihood hypothesis (ℎ′ = 𝜇′&,	𝜇′#	) is calculated, using computed 

latent variable in E-step (𝐸)𝑧+,-) by the following formula: 

 

𝜇′&	 =
∑ 𝐸)𝑧+,-𝑥+9
+:&

∑ 𝐸)𝑧+,-9
+:&

 (2.2) 

𝜎2′&	 =
∑ 𝐸)𝑧+,-(𝑥𝑖−µ𝑗)

29
+:&

∑ 𝐸)𝑧+,-9
+:&

 (2.3) 

These steps iterate until the difference between two consecutive calculated means 

becomes small in absolute value, which is the point of convergence. The algorithm stops 

and the last two means are the estimated maximum likelihood of parameters (means) by 

which the hidden clusters can be revealed (279, 280). EM is the main element of both 

PPCA and clustering with GMM, which are used in the first study in this thesis (Chapter 

3).  

To determine the number of hidden Gaussian distributions required, the Bayesian 

Information Criterion (BIC) can be applied. BIC is an integrated log likelihood and 

includes a penalty for including too many parameters in the model (Equation 2.4). The 

aim of BIC is to quantify the support for one model over others using odds ratios of 

posteriors of the models that have equal priors5. It compares models with differing 

parameterizations and/or differing numbers of clusters. The larger the value of the BIC is, 

the stronger the evidence for the model and number of clusters (281, 282). 
 

 BIC=-2	*	log	likelihood	(L)	+	p*	log	(N)	 (2.4) 

 
where log likelihood (L) is the maximized log-likelihood of the data given a particular 

model, p is the total number of parameters, and N is sample size. 

2.5.4 Classification 

Classification is a supervised machine learning technique that takes data as input 

and places it into correct categories based on its features (275). For example, 

                                                
5 Prior probability is the probability of an outcome or an event based on the 

current knowledge before an experiment is performed. The prior probability will be 
revised as new data or information become available to produce a more accurate measure 
of the outcome or the event. That revised probability is known as posterior probability. 
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classification could allow the prediction of whether a JIA patient with either blood 

marker A or B will develop persistent or extended oligoarthritis subtypes over time. In 

this example, the blood markers A and B are variables/features and oligoarthritis 

extended or persistent are categories (class/response variable). 

The model first must be trained in order to make precise decisions based on the 

relationship between features (predictor variables) and known class labels (response 

variables). The aim of classification is to predict a response variable based on a set of 

observed predictor variables. It is called supervised machine learning because of the 

training procedure with the known labeled class. There are unsupervised classification 

algorithms in which the response variable is not predetermined. Supervised machine 

learning includes techniques that provide either classification (when the response variable 

is categorical) or regression (when the response variable is continuous) (283).	
2.5.4.1 Classifier 

The classification algorithm is known as a classifier. One of the most popular 

classifiers is decision tree (DT) which can be used for both classification and regression 

purposes. It recursively divides the observations to generate a model that predicts the 

value or class of a variable by learning simple decision rules inferred from input 

variables. A DT consists of internal nodes from which the tree splits into branches, and 

end branches that do not split further (terminal nodes or leaves). The first node is called 

the root node (284). The aim of this classifier is to make a tree with low generalization 

error. The generalization error is the probability of misclassified observations when using 

a trained model in a new set of data. Although it is not possible to calculate the 

generalization error for a future dataset, we can estimate it by calculating the testing set 

error rate of the data to find a desired confidence interval for the generalization error 

(285). 

There are several measures of node impurity, which represents how well the trees 

split the data. The two most common measures of impurity are the Gini impurity criterion 

(Gini index) and an entropy measure. Both are measures of uncertainty or 

misclassification. In other words, they measure how often a randomly chosen observation 

from the set would be misclassified. Gini impurity and entropy are defined as:  
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 𝐺𝑖𝑛𝑖	𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦 = 1 −Y𝑝#Z#
[

Z:&

 (2.5) 

 

 

 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = Y𝑝Z

[

Z:&

𝑙𝑜𝑔#(𝑝Z) (2.6) 

where there are m classes of the response variable indexed by k=1, 2, 3,…, m, and pk is 

the proportion of observations in the mth region that are from the kth class. The measures 

range between 0 and 1. A small value indicates that a node contains observations from a 

single class. In both the Gini index and entropy measure 0 indicates the preferred lower 

error rate. The Gini impurity value is small if all of the pk are close to zero or one, which 

means a node contains predominantly observations from a single class (pure node). In the 

two-class case, the two measures are maximized at pk =0.5 (when observations are 

equally belong to each class) (286). The value of Gini impurity is always between 0 and 1 

regardless of the number of classes; while the value of entropy is larger than 1 if the 

number of classes is more than 2. 

Entropy and Gini impurity can be used to evaluate the quality of a particular split. 

The measure is calculated before and after the split. The impurity value before the split is 

subtracted from those after the split, which are weighted by the proportion of 

observations falling into the classes at each split. The impurity value should be smaller 

after the split than the value before the split. The best and the next split is chosen by 

comparing the reduction in the measures across all possible splits (287). The process 

recursively partitions the remaining training observations until each leaf contains 

observations from one class (288). These two measures are incorporated into the 

classification algorithm that is used in this project (the task of growing a DT). Figure 2.6 

is an example of a DT.  

 A DT produces a model that is easy to understand and can achieve high accuracy, 

but inclines to overfitting (289, 290). Pruning is a method that can handle overfitting. 

After growing the tree to the full depth, the branches that decrease the generalizability of 

the model for future data are removed in succession. The dataset is randomly split into a 

training set and a validation set. The tree is grown on the training portion and then each 

node of the tree is removed successively. The new classifier (pruned tree) is applied to 
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the validation set and its accuracy is evaluated. Based on the accuracy measures of the 

classifier, the algorithm either removes or keeps the node. The process iterates until the 

point that pruning does not make any further improvement in the classifier accuracy 

measures (291). 

 Another drawback of DT is that a small variation in the training set results in a 

completely different tree. Ensemble methods can handle such tree instability issues. The 

methods involve combining several models to improve the accuracy and the individual 

predictions are combined through averaging or voting (289). 

 

 
Figure 2.6 A decision tree.  

 
2.5.4.2 Random forest 

Ensemble learning6  is an approach that trains and combines multiple learners to 

solve the same problem. Ordinary machine learning methods learn one hypothesis from 

training data, while ensemble methods construct a set of hypotheses and combine them. 

Thus, ensemble methods construct a predictive model by integrating multiple models 

(292).  

Random forest, an ensemble learning technique that overcomes the instability problems 

of DT, was first proposed by Breiman (293). The algorithm generates many DTs using a 

                                                
6 A computer program that uses the data to build a DT is called the learner and the 

DT is called the classifier. 
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bootstrap sample of the data (randomly selected subset of observations with 

replacement). For each bootstrap sample, an unpruned classification or regression tree is 

grown (273, 293). At each node, instead of using the best split among the features, a 

subset of variables is selected randomly. 

 The class is assigned by aggregating the predictions of the trees (majority vote in 

classification or averaging in regression problems) (293, 294). Random forest can be 

applied in problems involving more than two classes, can handle noisy variables, and can 

be used when the number of variables is larger than the number of observations. The 

unpruned trees result in low bias, and random variable selection results in low correlation 

among the individual trees (295). 

2.5.4.3 Performance evaluation 

Evaluation of classifiers involves comparing the classification results against 

ground truth or another set of results. In this comparison there are four types of metrics, 

two types of agreement and two types of disagreement. The two forms of agreement are 

called a true positive (TP) and a true negative (TN). A TP result is a state that appears in 

actual and predicted sets (observation that is actually positive and predicted positive). A 

TN result is a state that appears in neither set (observation that is actually negative and 

predicted negative). The two forms of disagreement are false positive (FP) and false 

negative (FN). A FP result is a situation that detects the condition when it is absent. FN, 

opposite of TP,  

does not detect the condition when the condition is present. The FP concept is related to 

type I error and FN is related to type II error used in hypothesis testing. All four types of 

results can be shown in a confusion matrix (Table 2.3).  
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Table 2.3 The confusion matrix for comparing two sets of conditions. 

 
 

Classifier performance evaluations consist of: 

 

 Sensitivity	(recall)=
TP

TP+FN	
(2.7) 

Sensitivity measures the proportion of positive observations that are correctly classified. 

  

 Specificity=
TN

TN+FP	
(2.8) 

   

Specificity measures the proportion of negative observations that are correctly classified. 

 

 Precision	(PPV)=
TP

TP+FP	
(2.9) 

Precision or positive predictive value (PPV) is the proportion of observations identified 

as positive and are truly positive. 
 

 Negative	predictive	value	(NPV)=
TN

TN+FN	
(2.10) 

Negative predictive value (NPV) is the proportion of observations that identify as 

negative and are truly negative. 
 

 Accuracy=
TP+TN

TP+TN+FP+FN	
(2.11) 

Accuracy represents the proportion of observations classified correctly. 
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 F-measure=2 ×
precision×recall
precision	+	recall	 (2.12) 

F-measure is harmonic mean of the precision (PPV) and recall. It is a measure to see the 

balance between precision and recall when there is an uneven class distribution (296). 

There is a trade-off between FN and FP outcomes. Being more stringent typically 

results in fewer FPs and more FNs. The opposite is true when one is less stringent. The 

classifier accuracy measures capture this trade-off, which can be characterized by the 

receiver operating characteristic (ROC) curve (Figure 2.7). ROC graph is a two-

dimensional graph plotting the sensitivity on the y-axis versus (1 – specificity) on the x-

axis. The graph shows the cut-off points between benefits (TP) and costs (FP) and the 

ability of a binary classifier to rank the positive observations against the negative 

observations. The diagonal line on the graph represents guessing a class randomly. The 

point (0.5, 0.5) in ROC space shows when a classifier randomly predicts the positive 

class half of the time. It can be expected to get 50% of the positives and 50% of the 

negatives correct (i.e., no better than random guessing; see Figure 2.7, line C). Any 

classifier that appears in the upper left triangle performs better than random guessing and 

any classifier situated in the lower right triangle performs worse than random guessing. 

Between two models (for example, A and B in Figure 2.7) that test the same hypothesis, 

the model with the higher area under its ROC curve is considered the better one (Figure 

2.7 comparing the ROC curves of Model A and Model B). A perfect classifier would 

have an AUC of 1 while random guessing would result in an AUC of 0.5 (297, 298).  
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Figure 2.7 ROC curve.  
An example of two ROC curves (A and B), and the performance level that could be 
expected from random guessing (C). In this case, model A is more accurate than B. 

 

In summary, data reduction methods help to transform a large dataset into a small 

set that is more understandable numerically and visually. Before applying clustering and 

classification algorithms, the data used in this research was reduced into new sets of 

variables in the first study (JIA clustering), and for the second study (predicting 

outcomes), variable selection methods were used. For study 1, clusters should be 

identified as much as possible by patients’ information but in a consice form. For study 2, 

the idea was to identify a limited number of reliable predictors of disese activity, 

especialy if they could predict outcomes of all JIA categories. For that reason, feature 

selection methods were applied in the second study. In study 1, data-driven unsupervised 

machine learning clustering algorithms were used to reveal hidden patterns that enable 

categorization of disease based on clinical and biological attributes. Supervised machine 

learning algorithms help overcome limitations of conventional statistical models and find 

reliable predictors in a relatively small panel of clinical measures and inflammation-

related biomarkers. Because class variables were binomial, classification was used for 

study 2.  
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CHAPTER 3 

STUDY 1. CLINICAL AND BIOLOGICAL FEATURES FOR CLUSTERING WITHIN A COHORT 

OF CHILDREN WITH CHRONIC ARTHRITIS 

3.1 Abstract 

  Objective: To identify discrete clusters comprising clinical features and 

inflammatory biomarkers in children with JIA and to determine cluster alignments with 

JIA categories.  

Methods: A Canadian prospective inception cohort comprising 150 children with 

JIA was evaluated at baseline (visit 1) and after six months (visit 2). Data included 

clinical manifestations and inflammation-related biomarkers. PPCA identified sets of 

composite variables or PCs, from 191 original variables. To discern New Clinical-

Biomarker Clusters (Clusters), GMM were fit to the data. Newly-defined Clusters and 

JIA categories were compared. Agreement between the two was assessed using Kruskal-

Wallis tests and heat map plots. 

Results: Three PCs recovered 35% (three Clusters) and 40% (five Clusters) of the 

variance in patient profiles in visits 1 and 2, respectively. None of the Clusters aligned 

precisely with any of the seven JIA categories, but rather spanned multiple categories. 

Results demonstrated that the newly defined Clinical-Biomarker Clusters are more 

homogeneous than JIA categories.  

Conclusion: Applying unsupervised data mining to clinical and inflammatory 

biomarker data discerns discrete Clusters that intersect multiple JIA categories. Results 

suggest that certain groups of patients within different JIA categories are more aligned 

pathobiologically than their separate clinical categorizations suggest. Applying machine 

learning analyses to complex datasets can generate insights into JIA pathogenesis and 

should contribute to biologically-based refinements in JIA classification. 

 

 

  



   
 

49 

3.2 Background 

JIA is a heterogeneous group of diseases categorized predominantly according to 

clinical manifestations by ILAR (299, 300). 

Only two biomarkers, RF and HLA-B27, are considered when classifying JIA (2). 

Ravelli et al. showed that ANA-positive patients belonging to oligoarticular or 

polyarticular JIA categories share the same characteristics, suggesting that they represent 

the same disease (301, 302). However, considering a broader panel of clinical and 

biologic features was shown to generate childhood arthritis subsets distinguishable from 

conventional JIA categories (39).  

By applying unsupervised data mining algorithms, this present study aimed to 

identify discrete clusters of patients comprising clinical and inflammatory biomarker 

attributes and ascertain the extent to which these patient clusters align with currently 

defined JIA categories. This study extends earlier observations as it assesses a broader 

array of inflammatory biomarkers and determines changes in cluster composition over 

time. Applying machine learning analytical frameworks to large clinical and biologic 

datasets can contribute new insights into JIA pathogenesis and should help inform a 

future biologically-based JIA classification. 

3.3 Methods and data collection 

Data were from a Canadian prospective longitudinal inception cohort, The BBOP 

Study, comprising children with new-onset JIA enrolled consecutively within six weeks 

of first presentation at a participating pediatric rheumatology centre (N=11 participating 

sites). Ethics review boards from all sites approved the study (Appendix, supplementary 

text 1and 2) and informed consent/assent was obtained. The recruitment strategy aimed 

for a reasonable number of participants in each of the seven JIA categories rather than 

aspiring to achieve a typical JIA subgroup distribution. To achieve this aim, only 

participants with polyarthritis or systemic JIA were eligible during the first six months of 

the enrollment period; after six months and until the end of the two-year enrollment 

period participants with any JIA category were eligible. Demographic, clinical, functional 

ability (CHAQ) (239), quality of life (JAQQ) (31) and laboratory data were collected at 

enrolment and six months later (visits 1 and 2). 

Blood was collected in P100 tubes (BD Biosciences) (39, 303) at both visits and 

plasma stored at -80°C. Biomarkers were assayed by bead-based multiplex or individual 
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enzyme immunoassays as detailed in Appendix A, supplementary text 2. The biomarker 

panel was selected to broadly represent Th1 and Th2 pro- and anti-inflammatory 

cytokines, growth factors, chemokines, and extra-cellular matrix and bone degradation 

markers. High mobility box 1 protein (HMGB1) and soluble low-density lipoprotein 

receptor-related protein 1 (sLRP1) were tested as upstream mediators of inflammatory 

pathways (304-307). Test results for ANA by indirect immunofluorescence assays, RF, 

and HLA-B27 were from clinical laboratory testing facilities affiliated with each study 

site and results dichotomized as positive or negative. The biomarkers assayed are listed in 

Table 3.1. 

 
Table 3.1 Plasma biomarkers measured at enrolment and 6 months after. 

 
MMP, matrix metalloproteinases; TIMP, tissue inhibitor of metalloproteinase; IL, 
interleukins; OPG, osteoprotegerin; RANKL, receptor activator of nuclear factor 
kappa-Β ligand; RANTES, regulated on activation normal T cell expressed and 
secreted; IP-10, interferon gamma-induced protein 10; MCP-1, monocyte 
chemoattractant protein; MIP, macrophage inflammatory proteins; G-CSF, 
granulocyte-colony stimulating factor; GM-CSF, granulocyte macrophage colony-
stimulating factor; VEGF, vascular endothelial growth factor; EGF, epidermal 
growth factor; FGF-2, Fibroblast growth factor; INF, interferons; TNF, tumor 
necrosis factor; HMGB1, high mobility group box; sLRP-1, soluble low-density 
lipoprotein receptor-related protein. 

3.4 Data analysis 

Software and data pre-processing: Statistical analyses were performed using 

SPSS Statistics Professional, version 23, and R, version 3.2.2. Circos, version 0.63, was 
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used for generating contingency wheels to depict relationships between New Clinical-

Biological Clusters (Clusters) and JIA categories (308). Extreme values were removed 

using outlier-labeling (309). Data had 20% missing values were imputed using multiple 

imputation regression (310). Protein concentrations and continuous variables were log- 

and Z -score- transformed.  

Variable selection and dimensionality reduction: PPCA reduced the 

dimensionality of the dataset from 191 variables, consisting of clinical and biomarker 

measurements, to a reduced number of PCs (255, 262, 280, 311).  
 

 
Figure 3.1 Q2 plots for both visits. 
They identify the number of principal components in visit 1 (left) and visit 2 (right). Q2 is 
the goodness measure of prediction (defining the average error of prediction) used for 
internal cross-validation, which allows the identification of the optimal number of PCA 
loadings. 

 
The number of PCs retained from PPCA was selected by maximizing the Q2 

metric, which reflects how well the original dataset could be reconstructed from the 

retained PCs. Q2 was calculated using 10-fold cross-validation and plotted against the 

number of PCs (Figure 3.1) (312, 313). 

 To facilitate interpretation and increase the stability of each retained PC, we 

performed leave-one-variable-out cross-validation with PPCA and if at least 5% of the 

runs resulted in a contribution (variable contribution -in percentage- involves squaring the 

variables’ loading) less than 2% then the variable was eliminated. In the end, 37 and 38 

variables were retained in three PCs in visit 1 and three PCs in visit 2, respectively. 

Clustering: To identify Clusters of patients using the PCs, GMMs were applied as 

provided by the R package mclust (v5.0). Mclust software fits various GMMs (280), 
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which assume data arise from multiple Gaussian distributions, and uses BIC to select the 

model with the optimal number of Gaussian kernels and shape constraints (314). 

Stability: Homogeneity of Clusters was compared to JIA categories using 

Kruskal-Wallis test p-values (ranging from 10-9 to 10-1) (315). The proportion of 

variables with p-values less than each threshold was graphed separately for Clusters, JIA 

categories, clinical variables, and biological variables. 

For sensitivity analysis, LOO-CV was performed to assess robustness of Clusters 

to choices of both variables and patients (252, 316). In the first LOO-CV analysis, each 

variable was removed sequentially, and the entire analysis was repeated to produce 

Clusters comprising all but the excluded variable. The second analysis (sensitivity toward 

patients) was conducted in a similar manner, except that instead of removing variables, 

10% randomly selected patients were removed at a time. 

3.5 Results  

The distributions of JIA categories and demographic characteristics of the 150 

patients are shown in Table 3. 2. 

 

Table 3.2 JIA category and demographic characteristics represented in the study cohort.  

 
IQR, interquartile range; ERA, enthesitis related arthritis 

Three indicators produced by principal components: For visit 1, 3 PCs (PC-1a, 

PC-1b, and PC-1c) effectively represented the original dataset as reflected by the Q2 

score; for visit 2, the Q2 score was highest when 2 PCs were chosen, but to be consistent 

with the first visit, three PCs (PC-2a, PC-2b, and PC-2c) were also retained for visit 2. 

The three PCs recovered 35% and 40% of the variance from patient profiles in visit 1 and 

2, respectively. 



   
 

53 

As depicted in Figure 3.2, in visit 1, PC-1a comprised only inflammation-related 

cytokines and growth factors. PC-1b was defined by the number of active and effused 

joints, PGA, CHAQ scores, levels of CRP, RF positivity, MMPs, TIMPs, and MIP-1α. 

PC-1c comprised fever, onset age, systemic onset JIA rash, erythrocyte sedimentation 

rate (ESR), CRP, hemoglobin level, white blood cell (WBC) count, and levels of TIMP-

1, epidermal growth factor (EGF), and vitamin D. 

 
Figure 3.2 Variables contribution. 
Normalized principal component (PC) loadings of variables. Variables and the strength of 
their respective contributions to each of the PCs at visits 1 (left) and 2 (right) are shown. 
The darker the color, the stronger the contribution that variable makes to the PC.  
 

As shown in Figure 3.2, in visit 2, PC-2a comprised inflammation-related 

cytokines, growth factors, and MMPs.  

PC-2b was defined by clinical manifestations including onset age, serositis, 

hepatosplenomegaly and enthesitis, levels of MMPs and TIMP-4, inflammatory 

cytokines, and bone degradation biomarkers. PC-2c comprised the number of active and 

effused joints, PGA and JAQQ scores, RF positivity, and laboratory measures of disease 

activity including hemoglobin, platelet count, ESR, CRP, and vascular endothelial growth 

factor (VEGF). 

Three and five Clusters of patients recovered by GMMs: On the basis of the BIC 

(visit 1 model EVI with BIC=-1710.7 and visit 2 model EEE with BIC=-1698.3), three 
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and five patient clusters were retained in visit 1 and 2 respectively (Figure 3.3) and 

designated as V1.1 to V1.3 and V2.1 to V2.5. 

 
Figure 3.3 The mclust options to select Cluster number and shape.  
Bayesian information criterion (BIC) identified three Clusters in visit 1 and five Clusters 
in visit 2; in visit 1 the model VEI and in visit 2 the model VVI had the highest BICs 
respectively. Constraints imposed on Clusters by different criteria: EII, spherical, equal 
volume; VII, spherical, unequal volume; EEI, diagonal, equal volume and shape; VEI, 
diagonal, varying volume, equal shape; EVI, diagonal, equal volume, varying shape; 
VVI, diagonal, varying volume and shape; EEE, ellipsoidal, equal volume, shape, and 
orientation; EVE, ellipsoidal, equal volume and orientation; VEE, ellipsoidal, equal shape 
and orientation; VVE, ellipsoidal, equal orientation; EEV, ellipsoidal, equal volume and 
equal shape; VEV, ellipsoidal, equal shape; EVV, ellipsoidal, equal volume; VVV, 
ellipsoidal, varying volume, shape and orientation; *, indicator of the chosen model. 
 

Visit 1 (Table 3.3): In visit 1, V1.1, the largest Cluster (87 patients) comprised 55 

females (63.2%), older children (mean first presentation age, 10.0±4.5 years) and was 

characterized by having the fewest number of active joints compared to other V1 Clusters 

(four on average with knees most frequently involved); intermediate levels of laboratory 

indicators of disease activity (LIDA), including WBC count, platelet count, ESR, and 

CRP; and low levels of inflammatory cytokines. ANA and HLA-B27 positivity were both 

most frequent in V1.1.  

V1.2 was an intermediate-sized Cluster (45 patients) comprising 33 (73.3%) 

females and with patients having an average age of 9.6 + 5.2 years. This group had the 

highest number of active joints (14) with wrists predominantly involved, the highest 

LIDA, and intermediate levels of inflammatory cytokines.  

The smallest Cluster in visit 1, V1.3, comprised 18 patients, all female, with a 

mean age of 7.2 + 4.6 years. Patients in this group had an average of six active joints, 
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predominantly knees, and intermediate levels of LIDAs. This group had the highest levels 

of inflammatory related cytokines, chemokines, and growth factors and the highest levels 

of sLRP1, HMGB1 and vitamin D. Appendix A, Table A.1 shows biomarker ranks for 

each cluster at visit 1. 

Visit 2 (Table 3.3): In visit 2, V2.1 was the largest of the five Clusters (45 

patients) and included 35 (77.8%) females; patients had a mean age of 11 + 4.5 years, and 

an average of five joints involved, predominantly ankles. This group was characterized 

by intermediate LIDAs and low levels of plasma cytokines except for OPG.  

V2.2 comprised 27 patients of whom 17 (63.0%) were female. Mean age was 10 

+ 4.7 years. An average of two joints were involved, predominantly knees. The group 

was characterized by intermediate levels of inflammatory cytokines/chemokines with 

predominance of IL IL-1b, IL-8, IL-6, MCP-1, and MIP-1a.  

V2.3 with 13 patients comprised 10 (76.9%) females and had an average age 7.0+ 

5.2 years, an average joint count of six active joints (predominantly ankles), and high 

LIDAs. Patients had high levels of sLRP1 and HMBG1 and the highest proportion of RF 

positivity.  

V2.4, with 29 patients, included 24 (82.8%) females. The group had an average 

age of 9+4.8 years and on average two active joints (predominantly wrist). This group 

had the highest LIDAs and inflammatory related cytokine levels, and high sLRP1 and 

HMBG1.  
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Table 3.3 Cluster characteristics in visits 1 and 2.  
ANA, RF, and HLA-B27 are not included in the table due to amount of missing data in 
visit 2.  

 
NSAID, non-steroidal anti-inflammatory; DMARD, disease modifying anti-
rheumatic drug; Biologic, biologically-based therapies; IQR, interquartile range. 
 

V2.5, with 36 patients, was the second-largest Cluster in visit 2. The group 

included 31 (86.1%) females, had an average age of 10 + 4.1 years, the lowest number of 

active joints (one on average) with a high rate of knee involvement. The group had low 

inflammation-related cytokine levels and had the highest frequency of ANA-positivity.  

Appendix A, Table A.2 lists biomarker ranks for each Cluster at visit 2.  

Clinically meaningful patterns: Clusters were compared to JIA categories using, 

chi-square test, Circos (Figure 3.4), and the Kruskal-Wallis test (Figure 3.6). The 

analyses demonstrated that the Clusters did not align consistently with JIA categories 

(chi-square p<0.001) and that PC scores of patients in each Cluster were more 

homogenous than in each JIA category, especially for the first PC, which represents 

inflammatory biomarkers.  
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Figure 3.4 Contingency wheel plots comparing JIA and Clusters. 
The contingency wheel plots depict the relationships between Clusters (right semicircle) 
and JIA categories (left semicircle) at visit 1 (left circle) and visit 2 (right circle). 
Individual patient scores for each of the three principal components (PCs) are depicted as 
stacks of three rectangles in the three outermost layers of the wheel (labeled as PC 1/2 a, 
b, c). The color scale in each of the three rectangles comprising the stacks from each 
individual patient indicates the magnitude of patient scores for each PC in accord with the 
gradient color scale legend. Each Cluster and each JIA category, shown in layer a, is 
distinguished by a different color. The right-hand side of the innermost layer (b) of each 
Circos figure illustrates the alignment of each individual patient (represented by the 
patient’s JIA category color) within the respective Clusters. Similarly, the left side of 
each Circos figure illustrates the alignment of each individual patient (represented by the 
Cluster color) within the respective ILAR-defined JIA categories. Colored ribbons link 
clusters and JIA subtypes. Numbers of patients are proportional to the width of the 
ribbons; thus, thicker ribbons depict that more patients are shared between newly defined 
Clusters and JIA category. 

 

In visit 1 (Table 3.3), patients in four of the seven JIA were predominantly 

assigned to V1.1; specifically, all seven of those in the undifferentiated category (100%), 

10 of 1l (90.9%) in the psoriatic arthritis group, 9 of 11 (81.8%) in the ERA group and 30 

of 42 (71.4%) in the oligoarticular group aligned with V1.1. The majority of patients with 

oligoarthritis (30 of 42 patients; 71.4%) and nearly half of those with RF-negative 

polyarthritis (24 of 50 patients; 48%) were assigned to the V1.1. Five of the seven JIA 

categories had some patients with strong associations with variables in PC-1a and PC-1b, 

PCs comprising predominantly inflammatory cytokines and MMPs/TIMPS; in contrast, 

all patients with strong PC-1a and PC-1b associations clustered in one group (V1.3) in the 

new clustering scheme. 
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Table 3.4 Percentages of patients in each JIA category and their distribution into Clusters 
in visit 1 and 2. 

 
Large subsets of patients with RF-negative polyarthritis grouped to V2.1 (Table 

3.3). Few patients with psoriatic arthritis, ERA, and undifferentiated arthritis had high 

levels of inflammatory cytokines after six months; they grouped into either V2.3 or V2.4. 

Figure 3.5 shows how visit 1 clusters split to constitute visit 2 clusters. Next, we assessed 

homogeneity of Clusters relative to JIA category using chi-square (p<0.001) and Kruskal-

Wallis tests (Figure 3.6). Relative to JIA category, both visit 1 Clusters and Visit 2 

Clusters had a higher proportion of variables that were statistically significant at any p-

value threshold (Figure 3.6, upper graph). When considering only clinical variables, visit 

2 clusters had the highest proportion followed by JIA category and visit 1 Clusters 

(Figure 3.6, middle graph). Lastly, when considering biologic variables only, both 

clusters had a markedly larger proportion of statistically significant variables at any p-

value threshold relative to JIA category (Figure 3.6, lower graph). 
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Figure 3.5 Contingency wheel comparing visit 1 and visit 2. 
The contingency plot depicts the relationship between Clusters at enrollment (visit 1) and 
Clusters at six months after enrollment (visit 2). See Figure 3.4 for description of wheel 
elements. 
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Figure 3.6 Kruskal-Wallis p-values. 
Proportion of Kruskal-Wallis p-values ≤ 0.05 for Clusters in visit 1 and 2 tended to be 
higher than for the JIA categories when considering all variables (upper graph) and 
biological data (lower graph). JIA categories have a higher proportion of Kruskal-Wallis 
p-values ≤ 0.05 compared to the visit 1 Clusters and lower values than the visit 2 while 
considering only clinical variables (middle graph). 

 

These results demonstrate that Clusters are more homogeneous than JIA 

categories and that homogeneity improves from visit 1 to visit 2 (which might be in part 
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due to treatment response). For example, profiles characterized by intermediate levels of 

cytokines (Figure 3.5) were almost exclusively aligned with V2.4, a Cluster containing 

patients from all seven JIA categories. This suggests that, with respect to inflammatory 

cytokines, subsets of patients from different JIA categories are more concordant than 

their distinctive JIA categorizations might imply. 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.7 Variable sensitivity analysis. 
Leave-One-Variable-Out Cross-Validation (LOVO-CV), visit 1 (upper) and visit 2 
(lower). By removing one variable at a time and measuring the co-clustering probability, 
the Clusters remain the same with median of 93% in visit 1 and 89% in visit 2. 
 

Sensitivity analysis determined how robust clustering was to removal of different 

variables and patients. In variable sensitivity analysis, the entire analysis was repeated 37 

times for visit 1 and 38 times for visit 2, each time holding back one variable. Then co-

clustering probabilities were computed. Results indicate that in visit 1, 70%-100% 
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(median=93%) and in visit 2, 69%-100% (median=89%) of the time patients remained in 

the same Clusters (Figure 3.7). 

Sensitivity analysis for patients showed that visit 1 and visit 2 were approximately 

equally sensitive to removal of 10% of patients; in visit 1, 73%-94% (median=84%) and 

in visit 2, 74%-92% (median=86%) of the time patients remained in the same Clusters 

(Figure 3.8). 

 
Figure 3.8 Subject sensitivity analysis. 
Boxes show the co-clustering probability (calculated using 100 iterations) after removal 
of 10% of subjects at visit 1 (left) and visit 2 (right). In visit 1, patients remain co-
clustered with median of 84%, and in visit 2, with median of 86%. 
 

3.6 Discussion 

Using data-driven, machine learning analytical approaches in a JIA cohort, 

discrete Clusters arise comprising clinical and inflammatory biomarker attributes that 

tend to intersect multiple JIA categories and that change from the time of diagnosis to 6 

months later. Our results suggest that certain pathobiologic processes are shared among 

JIA categories and fluctuate during the course of the disease. 

PC-1a of visit 1, comprised mostly pro-inflammatory cytokines (ILs, IFNs, GM-

CSF, and TNF-β), demonstrating the role of inflammatory cytokines in the 

pathophysiology of chronic childhood arthritis early in the disease. Anti-inflammatory 

cytokines including IL-10, IL-2, and IL-4 were also expressed in PC-1a. PC-1b 

constituted clinical features including number of joints with active arthritis and 
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parent/patient/physician assessment of overall well-being and functional ability. In 

addition, PC-1b identified significant correlations among MMP-1, -8, and -9, TIMP-4, 

and MIP-1a. Our findings and previous reports of expression of MMP-1 and -3, and 

TIMP-1 in JIA synovial fluid and correlation with disease activity (218, 317) suggests 

that type II collagen degradation, mediated partly by MMP-1 and -3, can begin early in 

some patients and might portend a poorer prognosis (218). PC-1c was characterized by 

fever, systemic rash, low hemoglobin and elevated acute phase reactants, all features of 

systemic JIA (318). 

In visit 2, plasma inflammatory cytokine levels were retained in PC-2a, although 

their contribution was weaker than in visit 1 (Figure 3.2). PC-2b showed associations of 

both systemic JIA and ERA features with IL-7 and TNF-α. IL-7 promotes Th1 and Th17 

activation and production of pro-inflammatory mediators MIP-1, MIP-3, MCP-5, and 

TNF-a (319-321) in addition to promoting osteoclastogenesis by up-regulating RANKL 

(322, 323). Although systemic JIA and ERA are clinically distinguishable, bone 

degradation seen in some patients with systemic JIA and in some with ERA could be 

mediated by common osteoclastogenic pathways in both conditions. PC-2c grouped 

clinical measures of disease activity including numbers of active and effused joints and 

parent/patient/physician assessments of overall well-being and functional ability. 

When considering inflammatory biomarkers along with clinical features, Cluster 

assignments are dynamic; patients aligned with one of three Clusters at enrollment but to 

one of five Clusters six months later, reflecting alterations of clinical and inflammatory 

processes over time. These temporal changes could be a consequence of treatment 

interventions and/or inherent modulations of inflammatory processes.  

In visit 1, 100%, 78%, and 42% of ANA-positive patients with psoriatic arthritis, 

oligoarthritis, and RF-negative polyarthritis, respectively, were retained in Cluster-

1(V1.1). Ravelli et al. suggested that some patients with similar characteristics can be 

assigned to different JIA categories (324). For example, ANA-positive female patients 

classified as oligoarthritis, RF-negative polyarthritis, and psoriatic arthritis are more 

similar than their different designations might suggest (51, 324). Our findings tend to 

support this idea although ANA was not a determinant variable in our models (324).  

In this study, variable and subject sensitivity analysis indicated that Clusters 

described are robust to small variations in data. In visit 1, removal of any of 15 of 37 
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variables resulted in insignificant disruption of clustering. Our results are in accord with 

those of Eng et al. in a study that considered a smaller subset (n=102 compared to our 

with n=150) of the enrolment BBOP cohort and a smaller number of biomarkers (18 

compared to our 48) (39). 

Sensitivity analysis shows that the Clusters are robust and unaffected by data 

perturbation. Nine biological variables (INF-γ, IL-12p70, IL-15, IL-1Rα, IL-1α, IL-2, IL-

4, TNF-β, and VEGF) in visit 1, and one (IL-17) in visit 2 had co-clustering probability 

equal to 1, which indicates that removal of each of them individually cannot affect the 

clustering scheme. The IL-2/IL-21 gene locus 4q27 is associated with susceptibility to 

JIA (325). Variant loci of IL-2, IL-2RA, and IL-2RB are associated with oligoarticular 

and RF-negative polyarticular JIA (325, 326). The role of IL-2 in defining disease groups 

by sensitivity analysis at visit 2 supports a role for IL-2 in the immunopathogenesis of 

JIA. 

This study did not include other biomarkers relevant to JIA, such as S100 and 

serum amyloid A (180), genomic markers (broad HLA typing, genetic polymorphisms), 

gene expression, or metabolomics profiling. Applying the same machine learning 

analytical frameworks to a broader array of clinical and biologic features should help 

further elucidate underlying pathogenic processes and might aid in refining disease 

classification.  

We did not investigate reasons for changing profiles over time. Future studies are 

required to ascertain how treatments influence clinical-biomarker profiles. Panels 

comprising a small number of clinical-biomarker attributes could then be applied to 

predict and detect treatment responsiveness and provide more conceived rational, 

biologically-directed personalized treatment at a lower cost.  

Biomarker levels can be influenced by diurnal variations and physical activity 

(327), variables not controlled for in this research. Further, in addition to our sensitivity 

analyses and cross-validation, generalizability of the reported PCs requires validation in 

an independent cohort.  

3.7 Conclusion 

In JIA, data-driven machine learning algorithms uncover distinctive Clusters 

comprising clinical and biomarker attributes. Considering biomarker profiles with clinical 

characteristics can contribute to understanding JIA pathogenesis and may lead to refining 
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subgroup classifications. We anticipate that this type of data-driven classification of 

patients will ultimately allow for a more precise personalized approach to diagnosis, 

prognostication,and treatment of children with JIA.  

 

 
 
 
 
  



   
 

66 

CHAPTER 4 

STUDY 2. BIOLOGICAL AND CLINICAL PREDICTORS OF SHORT-TERM OUTCOMES OF JIA 

4.1 Abstract 

Objective: The objective of this study was to identify early predictors of short-

term arthritis activity in JIA using clinical and biomarker profiling. 

Methods: Clinical and inflammatory biomarker data were collected in a 

prospective longitudinal cohort of 96 newly-diagnosed children with JIA. Presence or 

absence of active joints, PGA, and Wallace criteria were chosen as outcome variables 18 

months post-enrolment. Correlation-based feature (variable) selection and ReliefF were 

used for feature selection. A random forest was trained to predict outcomes based on the 

selected features. 

Results: From the original 112 features, 17 effectively predicted outcome after 18 

months. The variables included onset age, wrist/foot involvement, number of active and 

effused joints, systemic JIA rash, white blood cell count, erythrocyte sedimentation rate, 

platelet counts, and plasma levels of eight inflammatory biomarkers (IL-1α, IL-10, IL-15, 

IL-17, IL-12p70, TIMP-4, GM-CSF, and VEGF). The panel predicted presence or 

absence of active arthritis, physician global assessment, and Wallace criteria of inactive 

disease after 18 months with 79%, 82%, and 71% accuracy and 0.83, 0.86, 0.82 AUC, 

respectively. The accuracy and AUC values were higher compared to when only clinical 

features were used for prediction.  

Conclusion: This study showed that a small number of clinical and inflammatory 

features at diagnosis can more accurately predict short-term arthritis activity in JIA than 

clinical characteristics only. Considering clinical features together with a broader array of 

biomarkers should yield more refined prediction of future arthritis activity and guide 

more rationally-conceived, biologically-based early JIA treatment strategies.  
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4.2 Background 

JIA encompasses a heterogeneous group of diseases categorized predominantly by 

clinical manifestations including the number of affected joints and the presence of certain 

extra-articular features (328). Only two biological variables, RF and HLA-B27 are 

considered in the JIA classification system. The intent of the JIA taxonomy is to assign 

patients, for research purposes, with similar characteristics at onset to categories 

presumed to share similar pathophysiology, treatment responses, and outcomes. 

However, even within the same JIA category patients exhibit different disease courses 

and outcomes. Thus, JIA category assignment alone does not always reliably predict 

which children are destined for a favourable or unfavourable outcome (61, 62).  

In general, studies in the era of biologically-based pharmacotherapies indicate 

improving outcomes (329). Nearly half of children with JIA are estimated to have 

inactive disease within a year after diagnosis when biologics are used sparingly (330). 

More generous use of biologics results in up to 80% of JIA patients having inactive 

disease (331, 332). However, recommending a biologic in a child with JIA requires 

judicious assessment of baseline disease characteristics and severity and an informed 

expectation that outcomes will improve with the chosen therapy. Previous studies have 

identified predominantly clinical predictors of poor prognosis (30, 37, 68, 71). Improving 

the effectiveness with which JIA outcomes can be predicted early in the disease course by 

encompassing clinical characteristics with biomarker profiling could further refine patient 

selection for early aggressive treatment. There are limited studies that have evaluated the 

utility of a broad array of inflammatory biomarkers together with clinical characteristics 

for predicting JIA outcomes (333, 334). Our objective was to identify, in a JIA inception 

cohort, panels of clinical and biomarker attributes that could predict short-term disease 

activity as reflected by presence of active arthritis, PGA, and Wallace criteria (29).  

4.3 Methods and materials 

Data collection: Data were from The BBOP Study. Ethics review boards at the 11 

participating sites approved the study. BBOP data included 282 clinical characteristics 

and 48 plasma inflammatory biomarkers. Study participants were diagnosed according to 

ILAR classification (328). Prior to enrollment, subjects had not received systemic 

therapies beyond non-steroidal anti-inflammatory medications and/or methotrexate. From 

the entire BBOP cohort of 186 participants 96 were selected for the current study based 
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on availability of complete outcome data at the 18-month follow-up visit. Demographic 

(Table 4.1), clinical, and laboratory data were collected prospectively at enrolment (visit 

1) and 18 months later (visit 2). Pediatric rheumatologists conducted a joint examination 

at each assessment and documented the number of active joints and number of effused 

joints. The pediatric rheumatologist also completed a physician global assessment of 

disease activity using a horizontal 10 cm visual analogue scale from 0=no disease activity 

to 10=maximum disease activity. 

In accord with previously described standardized protocols peripheral blood was 

collected in P100 tubes (BD Biosciences) and plasma stored at -80°C until assayed (303). 

The list of biomarkers included in the panel is shown in Table 3.1. 

Table 4.1 Patient’s characteristics at the first visit. 

 
    M, male; F, female; IQR, interquartile range; SD, standard deviation; outcome 1, active   
joint; outcome 2, PGA; outcome 3, Wallace criteria. 
 

Biomarkers assayed are described in supplementary text 2. ANA test results were 

from indirect immunofluorescence assays performed at clinical laboratory facilities at 
each study site and results dichotomized as positive or negative; ANA patterns and titers 

were not recorded. 
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4.4 Outcome indicators  

Three independent outcome measures were considered to define inactive and 

active disease 18 months after diagnosis. The first outcome indicator was based on the 

presence or absence of active arthritis (n=88), with active arthritis defined as the presence 

of intra-articular swelling and/or limitation of joint motion with one or more of the 

following: swelling, warmth, pain on motion, tenderness. The second indicator was based 

on PGA score (n=93), with active disease defined as PGA>1cm and inactive disease 

defined as PGA<1 cm. The third was based on Wallace criteria of active/inactive disease 

(n=54) (29).   

4.5 Feature selection  

FS can be applied to a large dataset to select the optimal features for class 

prediction and it is valuable for analyzing high-dimensional data (that is, datasets in 

which the number of features exceeds the number of subjects) (268). By eliminating 

redundant and irrelevant features, FS techniques improve prediction accuracy. FS aims to 

project the original data, which has a large number of features, onto a smaller number of 

features while preserving the most important information. In this study, we used two 

filter-based FS approaches: CFS and ReliefF (335). In filter methods, features are 

selected on the basis of their scores in various statistical tests by looking at the properties 

of the data (336). CFS and ReliefF are multivariate methods that consider relationships 

among the features. CFS is based on the rationale “a good feature subset is one that 

contains features highly correlated with the class, yet uncorrelated with each other” 

(272). It assesses both redundancy of features by applying correlation algorithms and the 

predictive ability of a subset of features (273). ReliefF chooses the features that are 

distinct among different classes (337). The basic idea of ReliefF is to select subjects 

randomly, compute their nearest neighbors (nearest subjects), and to identify features that 

discriminate the subject from neighbors of different classes. Specifically, ReliefF 

randomly draws a subject (A) and then identifies its two nearest neighbors: one from the 

same class (nearest hit, H) and the other from the different class (nearest miss, M). It then 

calculates differences between features from subjects A and H and between A and M. A 

desirable scenario is when the subjects A and M have different values of a particular 

feature and that feature discriminates two subjects with different class values. If subjects 
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A and H have similar values of the individual feature, then that feature does not separate 

two subjects with the same class values. 

To estimate a weight for each feature (f), the algorithm uses the following 

probability equation:  

 

 

The operation is iterative and gives more weight to the features that discriminate the 

subject from the neighbors of a different class (338). High-ranked features identified by 

both CFS and ReliefF were selected for further analysis. 

4.6 Predicting outcome in JIA based on clinical and biological features 

To determine how well a constellation of selected features predicts JIA outcome, 

the random forest classification algorithm was applied (339). In the dataset used to derive 

the random forest algorithm, each patient represented a subject. A prediction model was 

trained using 90% of the data (training set) randomly, and then the model was tested on 

the remaining 10% of the data (test set). This procedure is iterative and is called10-fold 

cross-validation. The ultimate goal of the random forest classification algorithm was to 

maximize the predictive accuracy of the trained model on the new data (290). 

The random forest algorithm generates many decision trees (each of which 

predicts the class value by learning simple decision rules inferred from the selected 

features) from randomly selected subsets of the subjects and features (339). There are two 

assumptions: first, most of the trees correctly predict the class for most of the subjects, 

and second, the trees make mistakes at different places. According to these assumptions, 

the algorithm conducts voting for each of the classes and collectively ranks the 

importance of features in predicting the correct class (294, 339).  

By default, Weka (data mining software) injected randomness into the training 

procedure by randomly selecting log2 (number-of-features+1) subjects from the dataset 

prior to training each decision tree. 

The mean decrease in accuracy of a feature was determined during the cross-

validation. A single feature was excluded from the test set then accuracy rate of the 

Weight (f)=  

P(different value of (f)|different class)−P(different value of (f)|same class)                (4.1) 
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model was calculated. The feature was considered more important if its removal caused a 

large decrease in the model accuracy measurements.  

4.7 Data analysis  

Statistical analyses were performed using SPSS Statistics Professional v23, and R 

v3.2.2. Weka was used for feature selection and prediction (340). The outlier-labeling 

rule was applied to identify and remove extreme values (309). Protein concentrations and 

continuous features were log and Z-score transformed.  

For each outcome, ROC curves were plotted, where the y-axis represents true 

positive rate (TPR, sensitivity/recall) and the x-axis represents false positive rate or 1− 

specificity (FPR). Each outcome was evaluated based on the area under its ROC curve 

(AUC) where a value of 1 represents perfect discrimination and 0.5 represents 

performance at chance level. AUC is a threshold-independent measure of overall 

classification accuracy. Accuracy, precision, recall, and F-Measure were calculated for 

each model as additional indicators of classifier performance.  

The performances of our classifiers were compared to the results of the same 

analysis when using clinical-only features and the results reported by Oen et al (69). The 

latter included predominantly clinical predictors at enrollment including: age, sex, JIA 

subtype, pain score, active joint count, number of active joints with limited range of 

movement, PGA, patient or parent global assessment of overall well-being measured on a 

10-cm visual analog scale, CHAQ, JAQQ, ESR, and c-reactive protein CRP (69).  

4.8 Results 

 From an initial set of 112 features, uninformative and redundant features were 

removed using CFS and ReliefF. As a result, 31 features were selected. The final sets of 

features for predicting each outcome are shown in Table 4. 2 In addition to clinical 

disease manifestation, eight inflammation-related biomarkers including pro-inflammatory 

IL-1α, IL-10, IL-15, IL-12p70, IL-17, TIMP-4, GM-CSF, and VEGF were identified as 

predictors. Wrist joint involvment and IL-12p70 were common predictors among all 

outcomes. Foot joint involvment, number of active joints and number of effused joints, 

white blood cell count (WBC), ESR, and IL-1α were shared as predictors by both 

outcomes 1 and 2 (Table 4.2). The selected features were used as input for the random 

forest algorithm.  
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Eighteen months after diagnosis, 33%, 37%, and 26% of patients had active 

disease in defined outcomes 1, 2, and 3, respectively. For each outcome, the random 

forest classifier was trained. Characteristics of the classifiers’ performances are listed in 

Table 4.3 and illustrated in ROC curves (Figure 4.1). Classifiers predicted arthritis 

activity outcome, PGA, and Wallace outcomes with 79%, 82%, and 71% accuracy, 

respectively. When considering presence/absence of active joint as the outcome, the 

classifier achieves a higher specificity. In contrast, other performance measures (AUC, 

sensitivity, precision, and F-measure) were slightly higher when PGA was used as the 

disease outcome. Wallace outcome had the lowest predictive performance. 

 
Table 4.2 Predictive features. 
Features at first presentation predictive of active arthritis, physician global assessment 
(PGA), and Wallace criteria outcome at 18 months.  

 
IL, interleukin; VEGF, vascular endothelial growth factor; TIMP-4, tissue inhibitor 
of metalloproteinase; GM-CSF, granulocyte macrophage colony-stimulating factor; 
WBC, white blood cell counts; ESR, erythrocyte sedimentation rate. 
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Table 4.3 Performance measures of classifiers. 
Combined clinical and biological predictors and clinical predictors only for 
the outcome 1 (active arthritis) and the outcome 2 (Physician Global Assessment [PGA]), 
and the outcome 3 (Wallace criteria).  

 
  AUC, area under the curve; CI, confidence interval. 
 

The same analysis was applied to the clinical characteristics of the patients. Table 

4.4 shows the clinical predictors of the three outcomes. The performances of clinical 

predictors are shown in the Table 4.3, which alone were not as satisfying as performances 

of clinical and biological predictors combined.  

The performances of the identified classifiers in Table 4.2 were compared with 

those of the previous study (clinical predictors) reported by Oen et al. (Figure 4.1) (69). 

Results indicate that the former predicts outcomes more accurately than the latter.  

 

 

 Performance                    
measures  
 

Classifiers Outcomes 
Active arthritis 
(n=88)  

PGA 
(n=93) 

Wallace criteria 
(n=54) 

AUC Clinical-Biological 
 

0.83 0.86 0.82 

Clinical 
 

0.76 0.79 0.67 

F-measure 
 

Clinical-Biological 
 

0.79 0.82 0.7 

Clinical 
 

0.71 0.75 0.65 

Generalization  
error 

Clinical-Biological 
 

0.23 0.20 0.29 

Clinical 
 

0.27 0.26 0.35 

Accuracy 
(CI) 
 

Clinical-Biological 
 

79% 
(0.317-0.142) 

82% 
(0.281-0.118) 

71% 
(0.477-0.222) 

Clinical 
 

72% 
(0.362-0.177) 

74% 
(0.349-0.170) 

65% 
(0.399-0.160) 

Precision 
(CI) 
 

Clinical-Biological 
 

79% 
(0.654-0.871) 

82% 
(0.732-0.914) 

72% 
(0.384-0.758) 

Clinical 
 

73% 
(0.615-0.839) 

75% 
(0.596-0.814) 

65% 
(0.384-0.758) 

Specificity 
(CI) 

Clinical-Biological 
 

76% 
(0.670-0.878) 

82% 
(0.708-0.904) 

57% 
(0.509-0.823) 

Clinical 
 

72% 
(0.609-0.839) 

70% 
(0.603-0.817) 

57% 
(0.458-0.798) 

Sensitivity 
(CI) 

Clinical-Biological 
 
          

79% 
(0.716-0.920) 

82% 
(0.732-0.914) 

71% 
(0.615-0.974) 

Clinical 
 

73% 
(0.615-0.842) 

75% 
(0.684-0.889) 

65% 
(0.483-0.867) 
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Table 4.4 predictors of the three outcomes. 
Features at first presentation predictive of active arthritis, physician global assessment 
(PGA), and Wallace criteria at 18 months when applying the models on clinical-only 
features.  

 
WBC, white blood cell; ESR, erythrocyte sedimentation rate. 
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Figure 4.1 Receiver Operating Characteristic (ROC). 
ROC curve for clinical and biological predictors (A) and clinical predictors (B) for 
outcome 1 (active arthritis-upper), outcome 2 (PGA-middle), and outcome 3 (Wallace 
criteria-lower). The diagonal line denotes the expected performance of a tool that uses 
random guessing. 
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4.9 Discussion  

Using a composite panel of clinical and biomarker features in JIA patients at first 

presentation, we found improved prediction of short-term disease outcomes compared to 

historic clinical features alone.  

The panel was developed from a set of clinical and biomarker attributes by 

applying feature selection and random forest techniques. Random forest is a robust 

machine learning classification algorithm that can investigate prediction power of 

features in a compound (quantitative or categorical) and high-dimensional dataset. It is 

among the most accurate methods of classification and permits both a measure of the 

relative importance of features and prediction. Previous studies have focused on the 

utility of clinical or laboratory characteristics of patients separately (341). Among clinical 

and laboratory predictors of JIA outcomes previously reported (36, 38, 62, 68, 69) our 

analysis confirmed only active joint count, effused joint count, wrist involvement, age at 

disease onset, systemic JIA rash, and ESR, and added foot joint involvement, WBC, and 

platelet counts as the clinical predictors in the composite panel.   

 The cytokine profile we identified is pertinent to JIA. IL-1, a pathogenic cytokine 

in systemic JIA (100) is among the predictive biomarkers, an observation that aligns with 

systemic JIA rash, a sign of active disease, being among the clinical predictors. It has 

been suggested that IL-15 may trigger the overproduction of IL-17 in joints of 

rheumatoid arthritis patients (342). IL-17 expressing T cells are abundant in JIA joints 

and correlate with number of involved joints (343). Increased IL-17 levels in synovial 

fluid of patients with ERA correlate with disease activity (12). IL-12p70 promotes the 

induction and activation of both Th1-cells and Th17-cells, key mediators in the 

pathophysiology of JIA (344). Yamasaki et al. showed that VEGF is an indicator of 

disease activity in oligoarticular and polyarticular JIA in remission and can be employed 

as a marker for guiding, tapering, or discontinuing treatment (345). Ramamurthy et al. 

reported an association between experimental systemic arthritis in rats and elevated 

gingival tissue MMPs that was reversed with TIMP-4 gene therapy (346). GM-CSF 

stimulates the production of macrophages and is an inflammatory mediator in JIA. 

Therapeutic antibodies targeting the GM-CSF receptor chain may be a viable therapeutic 

option in treatment-resistant JIA (347, 348). 
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Van Dijkhuizen et al. showed that in a cohort of JIA patients outcomes could not 

reliably predict inactive disease in the entire cohort using clinical, cytokine, and 

microbiome inputs (334). However, when certain JIA categories were considered 

separately (oligarticular, RF-negative polyarthritis and ANA-positive), prediction of 

inactive disease was moderately robust. In this current study, we did not investigate 

predictors for individual JIA categories as the number in each group was small.  

If we use only clinical characteristics, a higher number of predictors was needed 

to reach acceptable test performances but considering a combination of clinical and 

biomarker features resulted in a higher classifier performance than clinical data only. 

 Somewhat unexpectedly, systemic JIA rash but not systemic JIA fever was a 

predictive clinical feature, and IL-1α but not TNF-α a predictive biomarker. In the 

analytical frameworks applied, elimination of features having equal importance (fever 

and systemic rash and TNF-α and IL-1α) might account for the unanticipated exclusion of 

certain features. Finally, it should be noted that JIA ILAR category was not retained as a 

predictor in any of the models. This observation could suggest that JIA categories might 

not align precisely with category-specific pathobiological process that mediates 

outcomes. 

Medications started at enrollment and continued to 18 months included 

nonsteroidal anti-inflammatory drugs (NSAIDs) for 89 (95%), DMARDs for 57 (50%), 

prednisone for 25 (29%), and intra-articular corticosteroid injections in 7 (7%) patients. 

Biologically-based medications were prescribed at approximately 6 months post-

enrollment in 18 patients (19%). As there were insufficient numbers of patients to stratify 

into on/off a particular treatment group, effects of medication on outcomes were not 

assessed in this study. 

The results of this study, if confirmed in an independent JIA validation cohort, 

could help inform the development of a clinically useful tool for early prediction of JIA 

outcomes and thereby aid in treatment selection. We found that readily accessible clinical 

measures alone had reasonable performance statistics. However, while adding biomarkers 

improved accuracy and should add a more personalized approach to assessing individual 

patients, reliable biomarker analyses are not easily accessed in current routine clinical 

settings. Until such time as evidenced-based, comprehensive, and personalized biomarker 

assessments become integrated into usual clinical care a two-step approach to 
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prognostication and treatment selection could be applied. Under such a model clinical 

feature could be considered first in all patients and then, if indicated, targeted biomarker 

assessments undertaken with reference to the respective clinical contexts.  

4.10 Study limitation 

Fluctuations in biomarkers can be influenced by diurnal variations, physical 

activity, sleep, and food intake (327), features that were not controlled for in this study. 

Recent studies suggest joint ultrasound features are predictive of inactive disease (349); 

however, we did not include imaging as a potential outcome predictor. Further, this study 

did not include a validation cohort; the generalizability of the results requires validation 

in an independent cohort of children with JIA.  

Our study did not include genetic markers (HLA and single nucleotide 

polymorphisms, as examples) or gene expression and metabolomics profiling. 

Considering these additional biologic markers could further enhance and refine panels of 

outcome predictors. In this study, we used three clinical indicators of disease activity; a 

broader array of outcome measures and longer duration of follow-up should further 

strengthen the reliability of clinical-biomarker predictive panels.  

4.11 Conclusion 

Supervised machine learning algorithms are enabling us to overcome limitations 

of conventional statistical models especially when large datasets are available in 

relatively small study populations. We proposed a model that can evaluate the predictive 

ability of a relatively small panel of clinical measures and inflammation-related 

biomarkers simultaneously. We have shown that combined clinical and biological 

measures of JIA shortly after diagnosis can be used to predict clinically important 18-

month outcomes.  
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CHAPTER 5 

OVERALL DISCUSSION AND CONCLUSION 

The studies presented in this thesis were designed to develop and assess new 

approaches for categorizing and predicting outcomes of chronic childhood arthritis. 

Biologically-based characteristics of JIA patients in concert with clinical disease 

manifestations were used to identify and characterize distinctive subgroup clusters and 

ascertain their alignments with conventional JIA taxonomy (Chapter 3). These same 

patient characteristics were investigated as short-term JIA outcome predictors (Chapter 

4). Since Chapters 3 and 4 each includes a discussion section, this present chapter 

provides a general overview and discussion of sample characteristics, methods, and 

findings of both studies in the context of the literature reviewed in Chapter 1. Finally, this 

chapter includes concluding remarks relating to the entire study’s strengths, limitations 

and implications for clinical practice and future research. 

5.1 Study participant characteristics 

Data were derived from a Canadian prospective longitudinal inception cohort 

(The BBOP Study) comprising children with new-onset JIA who were enrolled within six 

weeks of first presentation to the pediatric rheumatology care service. Initially 186 JIA 

participants were enrolled in the BBOP study. However, some participants did not 

complete all BBOP study elements. As a consequence, 150 participants were included in 

the categorization study (Study 1; Chapter 3) and 96 were included in the prediction 

study (Study 2; Chapter 4) (Table 5.1). Due to BBOP selection criteria explained in the 

following section (5.2) the prevalence of BBOP patients by design differ from the typical 

distribution of JIA categories in North American JIA clinic populations. 
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Table 5.1 The number of participants in each JIA category in Studies 1 and 2 compared to 
the JIA category distribution in typical clinical populations (350).  

 
      ERA, enthesitis related arthritis. 

5.2 Sample characteristics 

The demographic characteristic of participants in both studies the categorization 

study (Study 1) and the prediction study (Study 2) were similar (Table 3. 2). Females 

predominate in JIA cohorts (female/male ratios ranging from 2 to 6:1 depending on the 

JIA category) as was the case in our study population (350, 351). 

Oligoarticular and RF-positive polyarthritis JIA categories tend to predominantly 

affect girls while ERA has a higher frequency in boys. Sex distribution within JIA 

subgroups in study 1 cohort follows the expected trend (Table 5. 2). 

In North America 50-80% of JIA patients are affected by oligoarthritis while 

15%-20% of patients have polyarticular subtypes. However, because of BBOP’s 

recruitment strategy, the number of patients with oligoarthritis in our cohorts is 

proportionately lower than those having polyarthritis. BBOP aimed for a reasonable 

number of participants in each of seven JIA subgroups rather than aspiring to achieve a 

typical JIA subgroup distribution. To achieve this, only participants with polyarthritis or 

systemic JIA, the least common categories, were eligible during the first six months of 

the enrollment period; after six months and until the end of the two-year enrollment 

period participants with any JIA subtype were eligible. 
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Table 5.2 Sex distribution of JIA categories in study 1.  

 
      ERA, enthesitis related arthritis. 

In the current studies the average age distribution of the patients in JIA categories 

were oligoarthritis (mean 4.8), RF-positive polyarthritis (mean 11.4), RF-negative 

polyarthritis (mean 6.2), psoriatic arthritis (mean 9), ERA (mean 11.4), systemic arthritis 

(mean 7.4), undifferentiated arthritis (mean 7.4). Mean and Median age in the BBOP 

study are: oligoarthritis (mean 7, median 6), RF-positive polyarthritis (mean 10, median 

13), RF-negative polyarthritis (mean 10, median 11), psoriatic arthritis (mean 12, median 

13), ERA (mean 10, median 12), systemic arthritis (mean 9, median 9), undifferentiated 

arthritis (mean 12, median 13). 

In summary, the sex ratio and ages of participants in both studies are 

representative of the typical JIA populations. The distribution of JIA categories, by 

design, differed from the typical JIA population. 

5.3 Data pre-processing  

The analyses began by pre-processing data including dealing with missing values, 

removing outliers, and log- and Z-transformation. There were cases where missing values 

were concentrated in certain variables. MMP7, a biomarker for which there was 

substantial missing data (<60% available data), was removed from the dataset. Missing 

values of the other variables were distributed randomly. Biomarker variables (continuous 

variables) had missing values completely at random. To retain as much data as possible in 

the analysis, multiple imputation was done using SPSS. Multiple imputation was done for 

variables with ≤40% missing values. To impute missing data in several variables a 

multivariate model should be fitted to all of the variables with missing values. SPSS 

default method was used, which scans the data to determine the best imputation method. 

For continues variables linear regression is the default method.  

Resolving missing values is important for generating correct hypothesis testing 

and making valid inferences, while in predictive models’ accuracy is the main concern. 
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In normal conditions, blood concentrations of cytokines are low or undetectable. 

However, there is no reliable information about upper limits of normal for respective 

cytokines under various physiological states influenced, for example, by diurnal 

variations, physical activity, nutrition, or sample collection, processing and storage. In the 

presence of inflammation, extracellular and intracellular cytokine concentrations 

increase. 

Data pre-processing is an important step before analysing biological data. There 

were some data points in cytokine levels that diverge from the overall pattern of the data. 

They had influential effect on regression analysis and cause the coefficient of 

determination to be bigger (R2=0.963 with outliers and R2=0.388 without outliers). Thus, 

outliers were removed. Although removal of outliers improves data stability there was no 

evidence in our study that the biomarker outlier values were a consequence of technical 

issues or other artifactual influences rather than accurate biomarker measures.  

Data reduction and variable selection techniques are another class of data 

transformation. For the clustering study, PPCA was applied and for the prediction study 

CFS and ReliefF methods were used. We used a probabilistic PCA algorithm for data 

reduction. The conventional PCA method for data reduction defines a linear projection of 

the data and cannot handle categorical or binomial data; PCA cannot be applied to mixed 

datasets comprising various data types. Due to lack of association with a probabilistic 

model, the scope of applications for using PCA is limited and can fail to reveal latent data 

structure as large data may comprise a mixture of two or more Gaussian distributions 

with common covariance. By using PPCA, variables were reduced into three uncorrelated 

components, which were used for clustering. In the prediction model, we needed to find 

variables that possess reliable predictive power that can be simply implemented in the 

clinical setting. As the number of variables retained in the PCs was large, feature 

selection methods were applied. 

In summary, data pre-processing methods used in this study enabled us to create a 

smaller dataset that was easier to work with while still yielding robust and informative 

results. 

5.4 Principal components 

Three PCs have been retained, each containing variables with maximum 

correlation. The first PCs from visit 1 and 2 (PC1a and PC2a) were explained by levels of 
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pro/anti-inflammatory cytokines, interferons, and growth factors. The biomarkers 

retained in the first PC in both visits comprised: G-CSF, GM-CSF, VEGF, IFN-γ, IFN-α, 

IL-10, IL-12p40, IL-12p70, IL-13, IL-15, IL-17, IL-1α, IL-1Ra, IL-2, IL-4, IL-5, IL-6, 

IL-7, TNF-α, and TNF-β. 

Cytokines mediating Th1 and Th2 immune responses are retained in the first PC. 

Although these two cytokine pathways tend to be antagonist to each other our data 

suggest a positive correlation between these two pathways at enrolment and also 6 

months later. 

As an example of inflammatory joint disease, adult patients with early arthritis 

who develop RA have a distinct but transient synovial fluid cytokine profile, which does 

not persist. In early RA synovial fluid elevated levels of IL-1, IL-2, IL-4, IL-13, IL-15, 

and IL-17 are found within 3 months after symptom onset, compared with early arthritis 

patients who do not develop RA (352). IL-6 was present in all type of all inflammatory 

arthritis (352). Our results show high levels of both Th1 and Th2 cytokines, which 

change over time and are more biased toward Th1 when the disease is well-established. 

Longer-term follow-up studies should help reveal changes in cytokine profiles in 

different JIA categories over time. 

An essential mechanism in the pathogenesis and persistence of RA, and probably 

JIA, is angiogenesis (353, 354). Oxygen and nutrients necessary for metabolism of high 

metabolic cells involved in the arthritic process are delivered via new vascularization. 

Growth factors, mainly VEGF, induce angiogenesis which starts very early in the arthritis 

process (353). Biomarkers that modulate angiogenesis (353). Biomarkers that modulate 

angiogenesis have been associated with pathogenesis, severity, and progression of JIA 

(354). VEGF correlates with the degree of inflammation in JIA patients (354). Serum 

levels of G-CSF and GM-CSF, which regulate hematopoiesis, are elevated in RA and 

correlate with measures of disease. Comparable to studies in RA, early imbalance of 

grow factors are evident from our results (355). Future studies are required to determine 

if levels of growth factors in JIA reflect disease activity. 

Clinical characteristics of JIA together with PGA were grouped in the second PC 

at enrolment and the third PC at the 6-month visit. At enrolment, clinical data and levels 

of MMPs, MIP, and TIMP were retained together in one PC, while at the 6-month visit, 

the same cytokines along with specific clinical findings of systemic arthritis retained in 
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one PC. Clinical findings in patients with active systemic JIA (such as serositis and 

hepatosplenomegaly) grouped with MMPs suggesting that these cytokines might be 

markers reflective of disease activity in systemic JIA. The regulation of MMP-1, 3 and 

TIMP1 in synovial fluid of JIA patients has previously been studied. The finding revealed 

that regardless of JIA category and age groups, degradation of type II collagen is present 

early in the disease (218). MMPs pathways mediate cartilage and bone remodelling (19, 

356). 

At enrolment, the third PC retained some of the features of systemic disease (skin 

rash and fever) together with conventional measures of disease activity such as WBC, 

ESR, CRP, and platelet count while the same measures grouped with the number of 

active and effused joints and PGA 6 months later. Again, these findings show that 

conventional measures of disease activity are reliable; however, their importance might 

fluctuate in various stages of the chronic arthritis. 

In summary, the PCs recovered three important aspects of JIA, clinical 

manifestations, underlying biology, and laboratory markers. Three PCs were used as new 

variables for clustering patients in the first study.  

5.5 Clustering 

The aim of this study was to identify panels of clinical and biomarker attributes 

that could define homogenous chronic childhood arthritis disease categories. According 

to ACR and ILAR criteria, disease duration of 6 months is required to determine the 

JRA/JIA disease categories based predominantly on clinical manifestations. When 

considering biological factors in conjunction with clinical features for classifying disease 

subtypes a similar temporal trajectory to assigning subtypes is required; we found 

patients aligned with one of three Clusters at enrollment but were assigned to one of five 

Clusters six months later. 

The purpose of a disease classification system is to identify differences among 

patients using measurable, discretely defined metrics. Although clinical manifestations 

are measurable, they can be prone to inter-observer variations. Considering both clinical 

and biological characteristics when categorizing patients should lead to a more refined 

disease taxonomy. 

The finding of three Clusters at enrolment and five Clusters six months later is 

consistent with the current notion that time is required for children with chronic arthritis 
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to settle into more representative subcategories of the disease. Augmenting clinical 

characteristics with biomarker profiling at the time of diagnosis should contribute to 

informing more rationally conceived, biologically-based treatment interventions resulting 

in mitigation of disease progression. 

Children with RF-negative polyarthritis seem to have two clinical trajectories. 

Disease course and manifestations of ANA-positive, RF-negative polyarthritis patients 

are comparable to those with the oligoarthritis subset (357). New Clusters in visit one 

also divided RF-negative polyarthritis patients mainly into two subgroups (Figure 4.4); 

almost half were aligned with oligoarticular patients in Cluster-1a while the other half 

grouped with RF-positive and systemic arthritis patients in Cluster-1b. The statistical 

differences that distinguished the two subsets of RF-negative patients included number of 

active and effused joints, CRP, MMP-1, 8, 9, TIMP-4, EGF, GM-CSF, IP10, TNF-α, IL-

6, IL-1α, and IL-1Ra. The subset of RF-negative patients in Cluster-1a has fewer 

involved joints and lower levels of inflammatory biomarkers compared to those that 

grouped in Cluster-1b. Only 4 of 50 patients with RF-negative arthritis who had the 

highest levels of inflammatory biomarkers grouped into Cluster-1c. These three subsets 

of the patients did not have significantly different frequencies of ANA-positivity. The 

findings reveal that at least two distinct subsets, defined by clinical and biomarker 

features, can be discerned from within the conventional RF-negative polyarthritis JIA 

category. 

In Visit 1, when considering ANA-positive patients with psoriatic arthritis, 

oligoarthritis, RF-negative polyarthritis, and undifferentiated JIA, 100%, 78%, 42%, and 

57% respectively were retained in Cluster-1a. The dataset included 66 ANA-positive 

patients at visit 1; of these 57% were grouped in Cluster-1a, 28% in Cluster-1b, and 

13.6% in Cluster-1c. Earlier report have posited that ANA-positive patients assigned to 

different JIA categories actually constitute a homogeneous patient population with 

similar characteristics (51, 301, 302); our results support this suggestion as ANA-positive 

patients in our cohort tended to align together (51). 

Patients received a single medication or a combination of medications including 

NSAIDs (mainly Naproxen, n=120), DMARDs (only Methotrexate, n=41), and 

corticosteroids (oral, n= 41or intra-articular, n=29). Only two patients in our cohort were 

treated with biologic agents. There were different responses to the same treatment 
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regimen, even within each apparently homogenous JIA category. For example, of two 

patients with RF-positive polyarthritis who had received Naproxen and Methotrexate 

during the first 6 months, one Clustered into the group with high levels of biomarkers, 

higher measures of disease activity, and higher number of active joints, while the other 

experienced mild disease activity after 6 months and Clustered into a group with similar 

characteristics. Thus, disease course and response to therapy might not be consistently 

predictable in the context of the current JIA taxonomy. Having a classification system 

based on the underling pathophysiology of the disease might be expected to lead to 

development of more biologically-based, personalised treatment interventions. 

5.6 Predicting outcome  

The importance of biomarkers in the pathophysiology of JIA lead us to investigate 

whether a composited panel of clinical and biomarker variables in patients at disease 

onset could predict short-term disease outcomes. A number of studies have elucidated 

predictors of JIA prognosis. Adib et al. (2005), and Dijkhuizen et al. (2018) noted 

substantial variances in the prognosis even within JIA categories (23, 334). However, to 

reduce that variance Wallace et al. developed and validated a set of criteria for disease 

remission (26, 29, 358, 359). However, these criteria were derived mainly in relation to 

polyarticular, oligoartricular, and systemic JIA. 

Clinical measures of active arthritis such as joint swelling, warmth, tenderness 

and pain on motion, together with PGA are applied as indicators of disease activity and 

outcome variables in almost all JIA predictor studies. Consequently, in our study, we 

defined outcomes as 1) presence/absence of clinical manifestations of active arthritis, 2) 

PGA, and 3) Wallace criteria. The first two outcome measures are easily determined in 

the clinic setting and are more responsive than functional ability and laboratory measures 

(360). Responsiveness is an element of validity and defined as how a clinical measure is 

sensitive to change over time or between groups (361).  

Wallace outcome criteria is an accepted outcome measure among clinicians and 

include both absence of active joints and PGA score together with no fever, rash, 

serositis, splenomegaly, or generalized lymphadenopathy attributable to JIA, no active 

uveitis, and normal ESR or CRP (29).  

A number of potential outcome predictors have been suggested by various studies. 

The most commonly suggested predictors are disease activity parameters, sex, age, active 
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disease duration and severity, JIA categories, HLA type, ANA, RF, WBC, ESR, CRP, 

and patients’ socio-economic status (37, 67-69, 71, 76, 78, 85, 362-364). However, some 

of these variables, such as demographic and laboratory measures, are not valuable 

predictors because they show too much variability. Disease activity parameters, such as 

the number of active joints at onset, PGA, the parent or patient global assessment, CHAQ 

score, and symmetric joint involvement were identified as valuable outcome predictors. 

Other potential predictors such as cytokine levels in blood or synovial fluid, and genetic 

markers, like HLA and SNPs in genes associated with the immune system are seldom 

applied as outcome predictors in the clinical setting. Many of the predictor studies were 

retrospective and used univariate analysis, consequently. Thus, they were prone to 

selection bias and failed to effectively exclude confounding factors. 

In a prospective cohort study, Guzman et al predicted JIA severe disease course 

by assessment of quality of life, pain, medication requirements, patient-reported side 

effects, and active joint counts (365). They identified four disease courses in JIA based 

on variables derived from clinical experience. In 2011, ACR published recommendations 

for JIA treatment informed by features putatively predictive of a poor prognosis. Their 

predictors were evidence-based and were shown to correlate with outcome but were not 

applied to predict outcome (231). 

Earlier studies analyzed clinical or laboratory characteristics separately and used 

univariate analysis which describes the linear relationship between two variables. A 

number of investigations were correlation studies that did not identify predictors; 

correlation analysis simply detects an association between two variables, which may 

reflect that they are related to an unknown factor, or another variable. 

In study 2, the predictive powers of clinical, laboratory, and inflammatory 

biomarkers have been evaluated using random forest, a robust classification algorithm 

with good accuracy (293, 295). Random forest is the best choice when the number of 

predictor variables is greater than the number of subjects. Logistic regression has less 

power to deal with this situation as the degrees of freedom increase dramatically 

including higher-order interactions in the model (366). Random forest provides a measure 

of the relative importance of variables that is helpful for selecting a small number of key 

predictors. 
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The classification tree algorithm rapidly selects significant features resulting in a 

classification tree with binary split criteria and enables automatic classification, for 

instance lung cancer patients and control subjects based on their individual genetic 

profile. Logic regression is a generalized regression methodology for predicting the 

outcome in classification and regression problems based on Boolean combinations of 

logic variables. Even though a logic regression is able to include continuous covariates, 

the predictors must be binary in order to be considered as a Boolean combination. This 

can be somewhat limiting when compared to other tree-based classifiers. 

Results of the current study identify factors that are predictive of active arthritis 

and PGA 18 months after the first presentation of JIA including number of active and 

effused joints, wrist and foot joint involvement, age, ESR, WBC, systemic rash, IL-1α, 

IL-10, IL-17, IL-15, IL-12p70, VEGF, GM-CSF, and TIMP-4. 

Number of active joints is the most prominent clinical manifestation of the disease 

and considered as a criterion for JIA classification, prediction and disease activity 

outcome measure (2, 38, 61, 69). Al-Matar et al. and Magin-Manzoni et al. have shown 

that wrist involvement is among the best predictors of long-term IJA outcome predictors 

(30, 63). Age at onset, wrist involvement, and number of active joints during the first 6 

months of disease, ESR, and systemic arthritis manifestations were previously reported as 

outcome predictors in JIA (36, 38, 62, 68, 69). Our results are in concordance with these 

studies. 

JIA categories and age at onset usually served as proxies for one another. For 

example, oligoarthritis has a peak age range of 2-4 years, RF-positive polyarthritis 

disease and ERA occur mostly during late childhood or adolescence, RF-negative 

polyarthritis has biphasic distribution with a peak in early childhood (2-4 years of age) 

and later peak (6-12 years of age), and psoriatic also with a biphasic age distribution 

(early peak at 2-4 years of age and later peak at 9-11 years of age). Systemic JIA has no 

particular age predominance. Young age at onset has been reported as a predictor of 

persistent disease and joint erosions (38). In addition, associations between certain HLA 

allotypes and onset age have been reported. HLA-DR11 and HLA-DR13, are more often 

observed in patients with younger onset age (less than 6 years old), while HLA-B27 and 

HLA-DR4, and are associated with protection early in life but with increased risk of 

disease later in childhood (224). The disease-predisposing HLA-DRB1/DPB1 alleles 
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(including: DRB1*0801; DQA1*0400; DQB1*0402, DRB1*1103/4; DQA1*0500; 

DQB1*0301, and DRB1*1301; DQA1*0103; DQB1*0603) were observed in 78% of 

patients with JIA onset age ˂6 years. Frequency of these alleles occurred in 68% of 

patients with oligoarticular JIA with disease onset age≥6 years. DRB1*0801 was reported 

with increased frequency in JIA children with polyarthritis whose onset was 6 years or 

older (367). 

ESR is a marker of both systemic and organ-specific inflammation. It is one of the 

ACR core set criteria for definition of improvement. In a Nordic population-based JIA 

study, ESR showed strong correlation with disease activity in JIA (27). It also has been 

identified as a predictor of persistent disease and joint erosions in long term studies (38). 

Long duration of elevated ESR within the first 6 months is a risk factor for the absence of 

remission at follow-up (69). Long duration of elevated ESR within the first 6 months is a 

risk factor for the absence of remission at follow-up (69). Elevated ESR>35 mm at 

disease onset is reported to be a predictor for the occurrence of uveitis 2-3 years later 

(368, 369). 

The study 2 indicates that arthritis involving foot and wrist, together with eight 

biomarkers (IL-1α, IL-10, IL-15, IL-17, IL-12p70, TIMP-4, GM-CSF, and VEGF) 

collectively predict short-term arthritis activity in JIA. 

Imbalance in the pro/anti-inflammatory cytokines is the main underlying 

pathogenic process in arthritis. IL-1 is an important biomarker in the pathogenesis of 

arthritis (370). In systemic JIA dysregulation of IL-1 production plays a critical 

pathogenic role. Pascual et al. have shown that the serum of patients with systemic JIA 

up-regulates the expression of IL-1α and IL-1β genes by healthy peripheral blood 

mononuclear cells and treatment with IL-1Ra efficiently treats the disease (16). 

Biologically active pro IL-1α, which is released from cells in systemic JIA, is a 

main activator of acute inflammatory responses. IL-1α is important in arthritis 

development and progression; levels of membrane-bound IL-1α correlate with the 

severity of arthritis in a mouse model. RA patients who have higher levels of anti-IL-1α 

antibodies develop less destructive joint disease. SNPs in IL-1R2, IL-1α, IL-1F10 and IL-

1RN genes are linked to systemic JIA (100). Ravindran et al. found a higher frequency of 

the IL-1α polymorphism in adult Caucasian patients with psoriatic arthritis (371). 

Rahman et al. noted that the IL-1 gene, with at least 2 independent regions, appears to be 
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a high-priority susceptibility locus in psoriatic arthritis (100, 102). IL- 1 and TNF-α 

enhance cartilage degradation by inducing MMP-3 and MMP-1 expression, but not TIMP 

expression (372). Agarwal et al. noted that ERA and polyarticular JIA patients have 

elevated IL-17 levels in their synovial fluid, which correlated with measures of disease 

activity. They suggested that IL-17 might play an important role in pathogenesis of 

synovitis in these patients. IL-17 also specifically induces MMP expression in ERA 

synovial fibroblasts, without inducing TIMP, suggesting a role of this cytokine in 

cartilage destruction (12). The T cell subset that produces IL-17, IL-21, and IL-22 (the 

Th17 subset) is more abundant in the joints of JIA patients compared with their blood. 

There are significantly higher numbers of Th17 cells type in the synovial infiltrate in the 

joints of children with extended oligoarticular JIA than in those with persistent 

oligoarticular JIA (343). There is a notion that IL-15 may trigger the overproduction of 

IL-17 in joints of rheumatoid arthritis patients. IL-12p70 promotes the induction and 

activation of both Th1-cells and Th17-cells and IL-12B (a subunit of IL-12p70) gene was 

associated with the development and disease severity of ankylosing spondylitis in adults 

(344, 373). 

Vignola et al. noted that VEGF levels in synovial fluid of JIA patients are higher 

than serum. They suggested that this factor may have a major role in the outgrowth of 

hyperplastic pannus and tissue damage in JIA (374). A strong correlation between serum 

VEGF levels and disease activity in polyarticular patients has been found suggesting the 

importance of VEGF in joint inflammation (375). Yamasaki et al. showed that VEGF is 

an indicator of disease activity in oligoarticular and polyarticular JIA in remission. They 

suggested that this biomarker can be employed as a marker for guiding tapering or 

discontinuing treatment (345). 

There are a limited number of studies that considered biomarkers and genes 

together as predictors of outcome in JIA. Oen et al. found significant correlations 

between pain and IL-6 genotypes; between PGA and IL-10 genotypes; and between joint 

space narrowing on early radiographs and TGF-1and IL-10 genotypes using univariate 

analysis. In the same study, multivariate analyses revealed that only IL-6 genotype was 

significantly correlated with pain scores (20). Another genetic study revealed that 

polymorphism of RANTES gene is associated with an early relapse of childhood arthritis 

after clinical remission (374, 376). 
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Overall, the results of this study show the contributions that clinical and biologic 

profiles can have in predicting short-term JIA outcomes as indicated by arthritis activity, 

PGA, and Wallace criteria. 

5.7 Limitations 

Small sample size, particularly at the 6-month visit (study 1) and 18-month visit 

(study 2), limited the robustness of the analysis. For example, there was not enough data 

for indicators of functional capacity or quality of life 18 months after enrolment to 

consider as a potential JIA outcome. Due to sampling method during the first few months 

of the data collection, our cohort, by design, was not precisely representative of a typical 

JIA population. The variance of our study population from a typical JIA population might 

influence our results. For example, ANA was not identified as an important predictor 

variable. In contrast to the typical JIA population our cohort had more polyarthritis than 

oligoarthritis patients.  

We did not include HLA, genetic information, and radiologic measures of joint 

damage as potential outcome predictors. Lack of a validation cohort reduced the 

generalizability of the results. A longer duration of follow up and larger sample size 

could potentially increase the predictive power of the analysis. 

larger sample size could potentially increase the predictive power of the analysis. 

In addition to sensitivity analyses and cross-validation, the generalizability of the 

PCs and Clusters need to be evaluated by applying them in an independent cohort of 

children with chronic arthritis. To improve generalizability of the results, the validation 

cohort should be ethnically diverse, a goal that can best be achieved by multi-centered, 

international collaborations. In the present cohort, 75% of the study participants were of 

European lineage.  

Biomarker profiling is increasingly recognized as important for understanding and 

managing inflammatory diseases such as JIA. However, accurately detecting and 

quantifying biomarkers can be compromised by fluctuations in biomarker measures 

influenced by sample collection, processing and storage (303) and by influences of 

physiologic diurnal variations, physical activity, sleep, and food intake (377). Circadian 

variations in inflammatory biomarkers have not been evaluated in the context of 

childhood arthritis. A number of parameters can affect reliable measurements of 

circulatory levels of cytokines such as, timing of sampling, handling, storage, and 
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processing. Cytokines have a diurnal rhythm (378). IL-1, IL-6, TNF-α and IFN-γ peak 

early in the morning (379). Exercise also has an impact on the blood level of cytokines, 

for example physical activity increases release of IL-6 from muscle cells (380). The 

diurnal rhythm and exercise effect have not been considered in the current study. 

Determining whether variations in biomarker levels result from physiologic fluctuations 

or reflect disease activity requires further study.  

Plasma and serum should be separated soon after blood draw and be frozen at  

-80°C within 1 hour after blood draw. Interruption in sample processing may cause 

degradation, absorption, or cellular production of cytokines (381). Another consideration 

is the type of the blood collection tubes. Sodium heparin tubes show more consistent 

cytokine recovery than EDTA tubes. In this study, P100 tubes were used, which contain 

spray-dried K2EDTA anticoagulant (377). Earlier studies have shown that the integrity of 

cytokine measures are retained over longer periods of time using P100 tubes (303, 305-

307). 

5.8 Conclusion 

Emerging insights into underlying pathobiologic processes in JIA provide 

opportunity to predict and measuer disease outcoms. Supervised machine learning 

algorithms provide opportunities to overcome limitations of conventional statistical 

models especially in rare diseases with small numbers of patients and large amounts of 

data. Machine learning analytical frameworks can evaluate the predictive ability of a 

relatively small panel of clinical measures and inflammation-related biomarkers 

simultaneously.  

5.9 Future research 

Characterizing a broad array of biomarkers could inform refinements in JIA 

classification, treatment, and outcome prediction. We need to investigate methods that are 

reliable, simple to perform, economically reasonable, and robust for integrating 

biomarkers measurements into clinical practice. We have shown that clinical and 

biological measures of JIA shortly after diagnosis can be used to categorize and predict 

clinically important outcomes. Nevertheless, the present results suggest that further study 

of inflammatory biomarkers along with clinical manifestations of JIA in relation to 

patient outcome is warranted as they may prove to be useful prognostic markers. 
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There remains a need for the further evaluation of biomarkers and methods of 

selecting candidate biomarkers for JIA classification and outcome prediction. They need 

to be tested and validated in large patient cohorts. Reliable biomarker tests may assist 

with aiding treatment choices at disease onset, predicting response to medication and thus 

contribute to improving outcomes. They also can help to accurately identify patients who 

can safely stop medication once biological remission is reached. Another goal of 

biomarker profiling in childhood arthritis is to help to minimize adverse effects of 

treatments. To fulfill these goals, multi-centre and international collaborations are 

needed. 

We hope to continue this work with a larger cohort of JIA patients and with 

longer follow up to validate and extend these results. Then it will be possible to explore 

more thoroughly the utility of clinical and biomarker characteristics together to help 

refine approaches for diagnosing, managing, and predicting courses of JIA.   
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APPENDIX A 

Supplementary text 1 

Biomedical Research Ethics Board, University of Saskatchewan: #07-86; Clinical 

Research Ethics Board, University of British Columbia: #H07-01204; Health Research 

Ethics Board, University of Alberta: #6984; Biomedical Research Ethics Board, 

University of Manitoba: #H2007:111; Research Ethics Board, Hospital for Sick Children: 

#1000011118; Research Ethics Board, Children’s Hospital of Eastern Ontario: #09-16E; 

Biomedical Research Ethics Board, McGill University: #PED-07-020; Research Ethics 

Committee, Université Laval: #123.05.09; Institutional Ethics Committee of Research 

Involving Humans, University of Sherbrooke: #07-119; IWK Health Centre Research 

Ethics Board: #1001241; Human Investigation Committee, Memorial University: 

#06.047. 

Supplementary text 2 

Cytokine, chemokine, growth factor, and metalloproteinase plasma levels were 

assayed by bead-based immunoassays. Product codes for analytes (Milliplex, Milllipore 

Sigma) were as follows: RANKL (HBN51K1RANKL), RANTES (HCYTOMAG-60K-

01), OPG (HBN1B-51K-01), TIMP-1/2 (HTIMP1-54K-02), TIMP-3/4 (HTIMP2-54K-

01), MMP-3/12/13 (HMMP1-55K-03), MMP-1/2/7/9/10 (HMMP2-55K-05), MMP-8 

(HSP2MAG-63K-01), 29-plex cytokine/chemokine panel (HCYTMAG-60K-PX29), and 

FGF-2 (HCYTOMAG-60K-01). All bead-based analytes were analyzed on a 

Luminex100 LabMAP system (Luminex, Austin, TX; Analytical Facility for Bioactive 

Molecules, Hospital for Sick Children, Toronto) according to manufacturer’s instructions. 

sLRP1 was assayed in duplicate by ELISA as follows: 96-well micro-titer plates 

(Microlon, Greiner Bio-One Inc., Monroe, NC USA) were coated with 100 µl per well of 

monoclonal antibody specific for sLRP1 (clone α2-MRα2; Genway Biotech, San Diego, 

CA, USA), 1 µg/ml diluted in carbonate-bicarbonate (15mM Na2CO3, 35mM NaHCO3) 

with overnight incubation at 4oC. Plates were washed 3 times with 0.1% phosphate 

buffered saline (PBS; 0.14M NaCl, 1.5mM KH2PO4, 2.7mM KCl, 18.9mM Na2HPO4) 

containing 0.1% Tween 20 (PBST) and then 100 µl of plasma diluted 1/500 (or 1/1000, 

as needed to bring the sample ELISA values within the standard curve) was added to 

duplicate wells. After incubation at 37oC for 1 hour the plates were washed 3 times with 

PBST and 100 µl biotin-labeled anti-human LRP1 (Pierce, Thermo Scientific, and 
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Waltham, MA, USA) diluted 1:2500 in PBST was added. The plates were incubated for 1 

hour at 37oC, then washed 3 times with PBST. 100 µl of horseradish peroxidase (HRP)-

conjugated Avidin (Vector Laboratories, Burlingame, CA, USA) were then added at a 

1:5000 dilution for 30 minutes at room temperature. Plates were washed 3 times in PBST 

and 100 µl of the substrate (2 mM ortho-phenylenediaminine 0.02M citric acid, 0.05 M 

Na2HPO4, 0.012% H2O2) added. After a 30-minute incubation at 20oC, the reactions were 

terminated by addition of 100 µl of 4M H2SO4. Optical densities were measured at 492 

nm (Universal Microplate Reader EL800, Bio-Tek Instruments Inc. Winooski, VT, 

USA). Concentrations of sLRP1 were calculated based on a standard curve, which had a 

sensitivity of 1 ng/ml to 100 ng/ml. The standard curve was generated using sLRP1 

purified by affinity chromatography, using anti-sLRP (Genway Biotech, San Diego, 

USA) linked to Pierce NHS-Activated Agarose Slurry (Thermo Scientific, Waltham, 

USA). HMGB1 and vitamin D assays were performed as previously described (382, 383). 

 

A.1 Biomarkers that have a significantly different ranking in visit 1 Clusters. 

Biomarkers Clusters Mean Rank Chi-Square P value 

MMP-8 
V1.1 
V1.2 
V1.3 

60 
88 
98 

19.2 0.000 

MMP-10 
V1.1 
V1.2 
V1.3 

68 
76 
103 

9.5 0.009 

MMP-13 
V1.1 
V1.2 
V1.3 

73 
69 
108 

11.5 0.003 

TIMP-4 
V1.1 
V1.2 
V1.3 

68 
78 
98 

7.4 0.025 

FGF-2 
V1.1 
V1.2 
V1.3 

66 
72 
128 

30.4 0.000 

RANKL 
V1.1 
V1.2 
V1.3 

71 
71 
107 

10.7 0.005 

EGF 
V1.1 
V1.2 
V1.3 

64 
83 
96 

10.8 0.005 

Exotoxin 
V1.3 
V1.1 
V1.2 

60 
81 
120 

29.6 0.000 
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GCS-F 
V1.1 
V1.2 
V1.3 

55 
85 
129 

46.7 0.000 

GM-CSF 
V1.1 
V1.2 
V1.3 

51 
88 
136 

63.6 0.000 

IFN-α 
V1.1 
V1.2 
V1.3 

52 
85 
139 

63.3 0.000 

IFN-γ 
V1.1 
V1.2 
V1.3 

53 
84 
139 

60.9 0.000 

IL-10 
V1.1 
V1.2 
V1.3 

52 
86 
137 

60.4 0.000 

IL-12p40 
V1.1 
V1.2 
V1.3 

51 
88 
136 

64.0 0.000 

IL-12p70 
V1.1 
V1.2 
V1.3 

59 
77 
138 

48.3 0.000 

IL-13 
V1.1 
V1.2 
V1.3 

53 
84 
138 

58.8 0.000 

IL-15 
V1.1 
V1.2 
V1.3 

53 
86 
134 

56.0 0.000 

IL-17 
V1.1 
V1.2 
V1.3 

59 
78 
135 

44.5 0.000 

IL-1Ra 
V1.1 
V1.2 
V1.3 

47 
93 
135 

76.4 0.000 

IL-1α 
V1.1 
V1.2 
V1.3 

52 
85 
139 

61.1 0.000 

IL-1β 
V1.1 
V1.2 
V1.3 

57 
86 
115 

31.6 0.000 

IL-2 
V1.1 
V1.2 
V1.3 

53 
84 
137 

58.8 0.000 

IL-4 
V1.1 
V1.2 
V1.3 

58 
79 
138 

51.4 0.000 

IL-5 
V1.1 
V1.2 
V1.3 

59 
81 
126 

35.9 0.000 
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IL-6 
V1.1 
V1.2 
V1.3 

48 
92 
134 

69.9 0.000 

IL-7 
V1.1 
V1.2 
V1.3 

58 
79 
137 

49.1 0.000 

IL-8 
V1.1 
V1.2 
V1.3 

61 
82 
112 

22.2 0.000 

IP-10 
V1.1 
V1.2 
V1.3 

63 
82 
108 

17.4 0.000 

MCP-1 
V1.1 
V1.2 
V1.3 

64 
81 
103 

13.0 0.002 

MIP-1α 
V1.1 
V1.2 
V1.3 

54 
88 
123 

44.4 0.000 

MIP-1β 
V1.1 
V1.2 
V1.3 

56 
84 
129 

44.8 0.000 

TNF-α 
V1.1 
V1.2 
V1.3 

55 
83 
135 

51.7 0.000 

TNF-β 
V1.1 
V1.2 
V1.3 

52 
85 
141 

65.5 0.000 

VEGF 
V1.1 
V1.2 
V1.3 

55 
82 
139 

56.6 0.000 

HMGB-1 
V1.1 
V1.2 
V1.3 

68 
76 
103 

9.4 0.009 

sLRP-1 
V1.1 
V1.2 
V1.3 

64 
81 
103 

12.9 0.002 

1 
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A.2 Biomarkers that have a significantly different ranking in visit 2 Clusters. 

Biomarkers Clusters Mean Rank Chi-Square P value 

MMP-1 

V2.1 
V2.2 
V2.3 
V2.4 
V2.5 

81 
56 
70 
108 
59 

27.5 0.000 

MMP-2 

V2.1 
V2.2 
V2.3 
V2.4 
V2.5 

52 
79 
90 
78 
95 

22.4 0.000 

MMP-3 

V2.1 
V2.2 
V2.3 
V2.4 
V2.5 

76 
58 
74 
130 
45 

68.2 0.000 

MMP-8 

V2.1 
V2.2 
V2.3 
V2.4 
V2.5 

68 
83 
80 
109 
51 

30.5 0.000 

MMP-9 

V2.1 
V2.2 
V2.3 
V2.4 
V2.5 

77 
62 
53 
122 
55 

47.6 0.000 

MMP-12 

V2.1 
V2.2 
V2.3 
V2.4 
V2.5 

65 
59 
94 
119 
59 

43.0 0.000 

MMP-13 

V2.1 
V2.2 
V2.3 
V2.4 
V2.5 

50 
68 
101 
127 
62 

65.2 0.000 

TIMP-1 

V2.1 
V2.2 
V2.3 
V2.4 
V2.5 

86 
51 
76 
77 
79 

11.6 0.021 

TIMP-3 

V2.1 
V2.2 
V2.3 
V2.4 
V2.5 

75 
70 
79 
104 
57 

19.5 0.001 
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TIMP-4 

V2.1 
V2.2 
V2.3 
V2.4 
V2.5 

87 
64 
58 
106 
53 

30.8 0.000 

FGF-2 

V2.1 
V2.2 
V2.3 
V2.4 
V2.5 

52 
72 
126 
123 
52 

76.1 0.000 

OPG 

V2.1 
V2.2 
V2.3 
V2.4 
V2.5 

71 
60 
65 
131 
53 

61.6 0.000 

RANKL 

V2.1 
V2.2 
V2.3 
V2.4 
V2.5 

78 
64 
85 
120 
42 

54.9 0.000 

EGF 

V2.1 
V2.2 
V2.3 
V2.4 
V2.5 

72 
76 
87 
94 
59 

11.7 0.020 

Exotoxin 

V2.1 
V2.2 
V2.3 
V2.4 
V2.5 

54 
83 
96 
106 
64 

31.1 0.000 

GCS-F 

V2.1 
V2.2 
V2.3 
V2.4 
V2.5 

42 
96 
119 
119 
52 

85.5 0.000 

GM-CSF 

V2.1 
V2.2 
V2.3 
V2.4 
V2.5 

49 
82 
118 
133 
42 

102.0 0.000 

IFN-α 

V2.1 
V2.2 
V2.3 
V2.4 
V2.5 

42 
90 
134 
126 
45 

109.2 0.000 

IFN-γ 
V2.1 
V2.2 
V2.3 

43 
90 
131 

108.8 0.000 



   
 

123 

V2.4 
V2.5 

127 
44 

IL-10 

V2.1 
V2.2 
V2.3 
V2.4 
V2.5 

38 
94 
127 
127 
49 

112.4 0.000 

IL-12p40 

V2.1 
V2.2 
V2.3 
V2.4 
V2.5 

39 
93 
129 
123 
49 

104.1 0.000 

IL-12p70 

V2.1 
V2.2 
V2.3 
V2.4 
V2.5 

42 
85 
113 
135 
50 

105.4 0.000 

IL-13 

V2.1 
V2.2 
V2.3 
V2.4 
V2.5 

40 
96 
132 
124 
44 

112.9 0.000 

IL-15 

V2.1 
V2.2 
V2.3 
V2.4 
V2.5 

41 
88 
114 
134 
48 

110.3 0.000 

IL-17 

V2.1 
V2.2 
V2.3 
V2.4 
V2.5 

40 
87 
117 
129 
53 

98.3 0.000 

IL-1Ra 

V2.1 
V2.2 
V2.3 
V2.4 
V2.5 

48 
84 
112 
129 
47 

88.5 0.000 

IL-1α 

V2.1 
V2.2 
V2.3 
V2.4 
V2.5 

43 
86 
133 
125 
47 

102.8 0.000 

IL-1β 

V2.1 
V2.2 
V2.3 
V2.4 
V2.5 

52 
84 
104 
126 
48 

72.8 0.000 

IL-2 V2.1 40 107.7 0.000 
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V2.2 
V2.3 
V2.4 
V2.5 

88 
122 
130 
49 

IL-3 

V2.1 
V2.2 
V2.3 
V2.4 
V2.5 

59 
65 
70 
123 
68 

45.3 0.000 

IL-4 

V2.1 
V2.2 
V2.3 
V2.4 
V2.5 

39 
90 
119 
131 
50 

110.2 0.000 

IL-5 

V2.1 
V2.2 
V2.3 
V2.4 
V2.5 

41 
92 
96 
135 
51 

100.9 0.000 

IL-6 

V2.1 
V2.2 
V2.3 
V2.4 
V2.5 

48 
92 
118 
129 
39 

103.1 0.000 

IL-7 

V2.1 
V2.2 
V2.3 
V2.4 
V2.5 

42 
96 
132 
114 
51 

90.3 0.000 

IL-8 

V2.1 
V2.2 
V2.3 
V2.4 
V2.5 

55 
85 
89 
121 
52 

54.5 0.000 

IP-10 

V2.1 
V2.2 
V2.3 
V2.4 
V2.5 

63 
68 
102 
119 
53 

47.8 0.000 

MCP-1 

V2.1 
V2.2 
V2.3 
V2.4 
V2.5 

60 
80 
73 
104 
69 

18.9 0.001 

MIP-1α 

V2.1 
V2.2 
V2.3 
V2.4 

53 
94 
107 
119 

72.8 0.000 
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 V2.5 43 

MIP-1β 

V2.1 
V2.2 
V2.3 
V2.4 
V2.5 

48 
93 
119 
118 
47 

78.8 0.000 

TNFα 

V2.1 
V2.2 
V2.3 
V2.4 
V2.5 

49 
90 
112 
120 
49 

73.4 0.000 

TNF-β 

V2.1 
V2.2 
V2.3 
V2.4 
V2.5 

40 
89 
118 
135 
47 

114.8 0.000 

VEGF 

V2.1 
V2.2 
V2.3 
V2.4 
V2.5 

55 
69 
139 
111 
54 

66.8 0.000 

HMGB-1 

V2.1 
V2.2 
V2.3 
V2.4 
V2.5 

63 
83 
86 
94 
68 

11.9 0.018 

Vitamin-D 

V2.1 
V2.2 
V2.3 
V2.4 
V2.5 

64 
71 
76 
98 
75 

11.0 0.027 

sLRP-1 

V2.1 
V2.2 
V2.3 
V2.4 
V2.5 

56 
75 
121 
97 
67 

32.1 0.000 


