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Zusammenfassung 
 
Die transversale Emittanz ist eine der wichtigsten Größen, welche die Qualität einer Elektronenquelle 
charakterisieren. Für hochqualitative Experimente werden Strahlen niedriger Emittanz benötigt. Mit 
Hilfe theoretischer Betrachtungen und Computersimulationen wurde untersucht, wie sich die 
Emittanz der Rossendorfer supraleitenden Hochfrequenz-Fotoelektronenquelle (SRF-Gun) 
minimieren lässt. 
Es stellte sich heraus, dass weder ein Solenoid-Magnet noch Raumladungskräfte benötigt werden um 
ein deutliches Minimum der Emittanz zu erzeugen. Das Emittanzminimum tritt auf, wenn die 
Startphase des Elektronenpulses bezüglich der HF-Phase in geeigneter Weise gewählt wird. 
Die Untersuchung unterschiedlicher Korrelationen zwischen den Eigenschaften der Strahlteilchen 
führt zu einer Erklärung wie das Minimum entsteht. Es wird nachgewiesen, dass der Hauptgrund für 
ein Minimum darin zu suchen ist, dass die longitudinalen Eigenschaften der Strahlteilchen (Energie) 
stark durch die Startphase beeinflusst werden. Infolge der Kopplung zwischen den longitudinalen und 
transversalen Freiheitsgraden in der relativistischen Bewegungsgleichung können die transversalen 
Freiheitsgrade und damit auch die Emittanz gleichfalls durch die Startphase stark mitbestimmt 
werden. Die Ergebnisse dieser Studie werden verwendet um die Emittanz der SRF-Gun während der 
Inbetriebnahme und Optimierungsphase zu minimieren.   
         

Summary 
 
The transverse emittance is one of the most important quantities which characterize the quality of 
an electron source. For high quality experiments low beam emittance is required. By means of 
theoretical considerations and simulation calculations we have studied how the emittance of the 
Rossendorf superconducting radio-frequency photoelectron source (SRF gun) can be minimized. 
It turned out that neither a solenoid magnet nor the effect of space charge forces is needed to create 
a pronounced emittance minimum. The minimum appears by just adjusting the starting phase of the 
electron bunch with respect to the RF phase of the gun in a suitable way.  
Investigation of various correlations between the properties of the beam particles led to an 
explanation on how the minimum comes about. It is shown that the basic mechanism of 
minimization is the fact that the longitudinal properties of the particles (energy) are strongly 
influenced by the starting phase. Due to the coupling of the longitudinal and transverse degrees of 
freedom by the relativistic equation of motion the transverse degrees of freedom and thereby the 
emittance can be strongly influenced by the starting phase as well. The results obtained in this study 
will be applied to minimize the emittance in the commissioning phase of the SRF gun. 
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1. Introduction   
 
The report deals with the behaviour of the transverse emittance of the Rossendorf superconducting 
radio-frequency photoelectron source (SRF gun). Details of the SRF gun design can be found in ref. 
[1]. The transverse emittance is one of the most important quantities which characterize the quality 
of an electron source. 
An experimental standard setup for minimizing the emittance is shown in Fig. 1. 

 

 
Fig. 1: Standard setup to minimize the emittance. 
 
By changing the varies parameters in the setup like the solenoid current, the starting phase of the 
electron bunch, the length and the shape of the bunch, the shape of the cathode, the radius of the 
bunch etc. somewhere downstream behind the exit of the gun one can create an emittance 
minimum. This minimum is in general a shallow minimum (< 10%). Since it is not known why this 
minimum is appearing at all no handle is available how one can optimize the minimum 
systematically. 
In the course of the present investigation it has been found that no solenoid is needed to generate a 
minimum in the z-region downstream to the exit of the gun. Furthermore it turned out that an even 
deeper minimum appears if the space charge forces are turned off in the simulation calculations. 
Thus the appearance of the minimum can be studied under very “clean” conditions since the space 
charge contribution introduces the biggest numerical error (up to about 10%) in the calculations. If 
the space charge contribution is turned off in the calculations the math in the simulation code is 
reduced to solving the relativistic equation motion for the particles moving in the electromagnetic 
cavity fields. In the simulation codes this is done with high numerical accuracy.   
Once the reason of the appearance of the emittance minimum is understood in a step by step 
procedure different effects can be added to the “clean” conditions, like taking space charge into 
account by increasing the bunch charge starting from zero bunch charge. There are a lot of practical 
cases where small bunch charges are applied. For these cases similar condition can be assumed to 
hold as for zero bunch charge. In the simulation calculations it can be studied how the minimum 
behaves if the bunch charge is increased. 
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2. Simulation results for zero bunch charge 
 
In Fig.2 the emittance behaviour is shown in the drift region behind the gun for different starting 
phase settings. The parameters chosen are:  the maximum electric field strength in the cavity is 40 
MV/m, the bunch has cylindrical shape with 2 mm radius and 15 ps length. The bunch charge equals 
zero. The simulations were performed with the SGUN_MOTION code [2]. 
 
 

 
Fig. 2: Generation of an emittance minimum by suitable setting of the starting phase (no space 
charge forces). 
 
It can be seen that the emittance is very sensitive to the phase. For φ = 75.13o a deep minimum can 
be generated and for φ = 100.91o a steep rise occurs. 
 

 
3. Comparison with ASTRA code simulations 

 
In this chapter the results obtained in the previous section are compared to corresponding 
calculations performed with the ASTRA code [3]. The results are shown in figs. 3a, 3b, and 3c 
correspondingly. 

 

 
Fig. 3a: Comparison of SGUN_MOTION and ASTRA calculations for the starting phase 
φstart = 75.13o. 
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Fig. 3b: Comparison of SGUN_MOTION and ASTRA calculations for φstart = 82.94o and φstart = 82.45o 
respectively. 
 
 

 
 
Fig. 3c: Comparison of SGUN_MOTION and ASTRA calculations for φstart = 100.91o. 

 
As can be seen from these figures the results of the two simulation codes agree with a high degree of 
precision. 

 
4. Theoretical study of emittance 

 
From the theoretical point of view the emittance is, except from some calibration factor, the phase 
space volume occupied by the particles of the bunch in the corresponding phase space. In general to 
describe the beam in phase space we need to consider a 6N-dimensional phase space with N being 



5 
 

the number of particles in the bunch. If the space charge interaction is turned off as in the present 
case the particles of the bunch move as independent particles and the bunch can be described in a 6-
dimensional phase space.  
 
The position of a particle in the 6-dimensional phase space can be described by the generalized 
vector 
 
 𝑅�⃗ ≡ (𝑟, 𝑝) ≡ 𝑥 ∙ 𝑒1 + 𝑦 ∙ 𝑒2 + 𝑧 ∙ 𝑒3 + 𝑝𝑥 ∙ 𝑒4 + 𝑝𝑦 ∙ 𝑒5 + 𝑝𝑧 ∙ 𝑒6 (1) 
 
This vector changes in time according to 
 
 

𝑅�⃗ ̇ ≡
𝑑𝑅�⃗
𝑑𝑡 ≡ 𝑉�⃗ = �𝑟̇, 𝑝̇� = 

𝑥̇ ∙ 𝑒1 + 𝑦̇ ∙ 𝑒2 + 𝑧̇ ∙ 𝑒3 + 𝑝̇𝑥 ∙ 𝑒4 + 𝑝̇𝑦 ∙ 𝑒5 + 𝑝̇𝑧 ∙ 𝑒6 
(2) 

 
The quantity 𝑉���⃗  can be interpreted as a generalized velocity in the 6-dimensional phase space. Using 
the Hamilton formalism the motion of relativistic particles under the influence of electromagnetic 
forces can be represented in the following form 
 
 

𝑟̇ =
𝜕𝐻(𝑟, 𝑝)
𝜕𝑝  

𝑝̇ = −
𝜕𝐻(𝑟, 𝑝)

𝜕𝑟  
(3) 

 
with the Hamiltonian 
 
 

𝐻(𝑟, 𝑝, 𝑡) = 𝑒𝑈(𝑟, 𝑡) + 𝑐�(𝑚𝑐)2 + �𝑝 − 𝑒𝐴(𝑟, 𝑡)�
2
 (4) 

 
The quantities U and 𝐴 are the scalar and vector electromagnetic potentials respectively. For the 
electromagnetic forces acting in the cavity the scalar potential U is equal to zero. By inserting the 
Hamiltonian in the Hamilton equations and using the relations between the electromagnetic fields 
and the electromagnetic potentials we obtain the following well known equation of motion for 
relativistic particles moving under the influence of Lorentz-forces 
  
 

𝐹⃗ ≡
𝑑
𝑑𝑡 𝑞⃗ ≡

𝑑
𝑑𝑡 �𝑝⃗ − 𝑒𝐴� = 𝑒𝐸�⃗ + 𝑟̇ × 𝐵�⃗    (𝐿𝑜𝑟𝑒𝑛𝑡𝑧 𝑓𝑜𝑟𝑐𝑒) (5) 

 
where 
 𝐸�⃗ = − 𝜕

𝜕𝑡
𝐴  and   𝐵�⃗ = 𝜕

𝜕𝑟
× 𝐴.  

 
The momenta 𝑞⃗ and 𝑝 are the mechanical and canonical momenta of the particles respectively. 
Using the Hamilton equations we obtain for the generalized velocity vector 
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𝑉�⃗ = �

𝜕𝐻
𝜕𝑝 ,−

𝜕𝐻
𝜕𝑟� (6) 

 
We define a generalized gradient in the 6-dimensional phase space by 
 𝜕

𝜕𝑅�⃗
≡ �

𝜕
𝜕𝑟 ,

𝜕
𝜕𝑝� (7) 

 
Applying this operator to the velocity field  𝑉�⃗ (𝑅�⃗ ) we get 
 
 𝜕𝑉�⃗

𝜕𝑅�⃗
= �

𝜕
𝜕𝑟
𝜕𝑉
𝜕𝑝 −

𝜕
𝜕𝑝

𝜕𝑉
𝜕𝑟� = 0 (8) 

 
If the particles in the phase space are distributed according to a mass density distribution 𝜌�𝑡, 𝑅�⃗ �  
from the conservation of the total mass we can deduce the continuity equation 
 
 𝜕𝜌�𝑡, 𝑅�⃗ �

𝜕𝑡 +
𝜕
𝜕𝑅�⃗

�𝜌�𝑡, 𝑅�⃗ � ∙ 𝑉�⃗ �𝑡, 𝑅�⃗ �� = 0 (9) 

 
For an assumed space independent constant density distribution at  t = 0 
 
 𝜌�𝑡 = 0, 𝑅�⃗ � = 𝜌0  
 
we deduce with eq. (8) 
 
𝜕𝜌0(𝑡)
𝜕𝑡

+
𝜕
𝜕𝑅�⃗

�𝜌0(𝑡) ∙ 𝑉�⃗ �𝑡, 𝑅�⃗ �� =
𝜕𝜌0(𝑡)
𝜕𝑡

+ 𝜌0(𝑡)
𝜕
𝜕𝑅�⃗

𝑉�⃗ �𝑡, 𝑅�⃗ � =
𝜕𝜌0(𝑡)
𝜕𝑡

= 0 (10) 
  
The result 
 𝜌�𝑡, 𝑅�⃗ � = 𝜌0 = 𝑐𝑜𝑛𝑠𝑡 (11) 
 
means if the density ρ is constant in space at t = 0 it stays constant in time. The velocity field can be 
interpreted as a field of an incompressible liquid. 
 
This result means that any arbitrary closed region in the 6-dimensional phase space changes its shape 
in time but not its “volume” (s. Fig.4). This is just what the well known Theorem of LIOUVILLE states. 
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Fig. 4: Conservation of phase space volume. 

 
 

5.  Emittance behaviour at the exit of the gun 
 

Next we study in detail the emittance behaviour of the SRF gun downstream of the gun exit. In this   
region there are no forces acting on the beam particles (i.e., a setup like in Fig.1 but without a 
solenoid present). The relativistic equation of motion as given in eq. (5) is then reduced to 
 
 

𝐹⃗ ≡
𝑑
𝑑𝑡 𝑞⃗ = 0. (12) 

 
With 𝑝 ≡ 𝑞⃗ we get for the momentum of particles 
 
 

𝑝 = �
𝑝𝑥
𝑝𝑦
𝑝𝑧
� = 𝑐𝑜𝑛𝑠𝑡. (13) 

 
Rewriting the relativistic momenta in terms of the velocity components we get 
 
 

𝑝 = 𝑚0𝛾𝑣⃗ = 𝑚0𝛾𝑐2
1
𝑐2 𝑣⃗ =

𝐸�𝑣𝑥, 𝑣𝑦, 𝑣𝑧�
𝑐2 𝑣⃗ (14) 

 
with E(vx,vy,vz) being the total energy of the particles as given by 
 
 

𝐸�𝑣𝑥, 𝑣𝑦, 𝑣𝑧� =
𝑚0𝑐2

��1 −
�𝑣𝑥2 + 𝑣𝑦2 + 𝑣𝑧2�

𝑐2 �

 
(15) 

 
The quantity m0  is the rest mass of the particles. 
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Decomposing the momentum vector into components yields 
 
 

𝑝𝑥 =
𝐸�𝑣𝑥, 𝑣𝑦, 𝑣𝑧�

𝑐2 𝑣𝑥 (16a) 

 
𝑝𝑦 =

𝐸�𝑣𝑥, 𝑣𝑦, 𝑣𝑧�
𝑐2 𝑣𝑦 (16b) 

 
𝑝𝑧 =

𝐸�𝑣𝑥, 𝑣𝑦, 𝑣𝑧�
𝑐2 𝑣𝑧 (16c) 

 
Looking at eq. (16) we see that even for zero external forces the momenta of the three components 
are not unique functions of their respective velocities but depend also on the remaining velocities. 
This coupling is lifted only in the limit of zero velocities i.e., in the nonrelativistic limit. In this case the 
energy takes on the value of the rest mass of the particles E=m0c2 and the equations (16) will 
decouple. 
The coupling of the velocity (momentum) degrees of freedom for relativistic particles originates from 
the relativistic mass increase if the velocity of the particles is increased. This coupling leads to the 
very important conclusion that the (x, px)-subspace in the 6-dimensional phase space (x,y,z,px,py,pz) is 
not a separate subspace but is coupled to the py and pz degrees of freedom in the 6-dimensional 
phase space. Therefore the Liouville-theorem is not valid in the (x,px)-subspace and the 
corresponding emittance εx is not constant. One should keep in mind that εx is just the quantity 
which is usually measured in experiments set up to determine the transverse emittance. 
We want to stress that the preceding considerations are the most important features in studying and 
understanding the appearance of a minimum in the εx emittance. It is by this coupling that one can 
influence the transverse properties of the particles, like the emittance εx, by changing the 
longitudinal properties like vz (and thereby the total energy E). At the exit of the gun there is a strong 
dependence of the transverse velocity vx on the longitudinal velocity vz since after acceleration vz is 
very close to the velocity of light c. 
Based on the presented theoretical background we will now study the εx emittance behaviour for the 
drift region in greater detail and in practical terms. We analyse the situation depicted in fig.5. Here it 
is assumed that the bunches are drifting along the beam axis from z1 to z2. Then we have to answer 
the question how the emittance εx changes by going from position z1 to z2. To answer this question 
one has to refer to the phase space plots of the bunch at the exit of the gun at position z =z1 and at 
the position z=z2 after the drift process of the bunch has occurred. 

 
Fig. 5: Scheme for the investigation of the emittance in the drift region. 
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The respective values of the areas occupied by the particles in the two phase space plots determine 
the emittance εx (apart from a possible calibration factor). To answer the question whether the area 
of the plot has changed by the drift process we look at fig.6. 
 

 
 
Fig.6 Details of the drift process in terms of phase space 
 
Since according to eq.(12) through eq.(16) all momenta and all velocities of the particles stay 
constant to obtain the phase space plot after the drift process the particles in the left-hand plot in 
Fig.6 are simply shifted to the right. The shift in x-direction is given by xp --->xp +vxnT with vxn being 
the drift velocity vx of particle n in x-direction. 
To compare the areas of the two phase space plots in greater detail we decompose the total area of 
the initial plot at z=z1 into small virtual boxes around the particles with an assumed momentum pxs 
with some channel width Δpx . In the simulation calculations Δpx must be chosen wide enough to 
have at least a few particles in this momentum channel. By choosing a big number of particles in the 
bunch this requirement can always be fulfilled. 

In nonrelativistic mechanics all particles contained in the box with momentum pxs have the velocity 
vxs = pxs /m0 . Here the width of the box is assumed to be small enough so that velocity changes due 
to the width of the box can be neglected. Since all momenta and all velocities of the particles stay 
constant for the drift process the change of the phase space plot by the drift process simply comes 
down to shifting the respective boxes by an amount of vxsT. In this case the lengths of the boxes do 
neither expand nor shrink. Since this is true for all boxes the whole area of the phase space plot does 
not change by the drift process, i.e., the emittance stays constant. 
This result is true only for nonrelativistic particles. In mathematics terms this result is caused by the 
fact that there is a unique relation between the velocity vx and the momentum px. The electrons at 
the exit of the gun however can not be treated as non-relativistically but are highly relativistic. Their 
velocity vz in beam direction is close to the velocity of light c. In this case according to eq.(16a) the 
velocity vx is no longer a unique function of px but for a given value of px the velocity vx depends also 
on the total energy E(vx, vy, vz). This means in this indirect way vx also depends on vy and vz. Here the 
dependence on the longitudinal velocity vz is very strong since after acceleration vz is very close to 
the velocity of light c. Therefore according to Eq.(16) it can be concluded that for a given momentum 
px the transverse velocity vx of the particles in the bunch is strongly coupled  to the longitudinal 
properties , i.e., to the total energy. 
If this result is transferred to the picture in Fig.6 this means that inside a box, however small, there 
can occur particles with (slightly) different velocities. This result is corroborated by simulation 
calculations shown in Fig.7. Rather than having a unique relation between px and vx we observe a 
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band of velocities whose width characterizes the range of the velocities for a given px. According to 
Eq.(16) this range reflects the range of the values of the total energy of the bunch particles. 

 

 
Fig.7: Band of velocities versus momentum values. 
 
Having a range of velocities inside a box in Fig.7 leads to the fact that the boxes may change their 
length and thereby their area in the drift process so that the area of the whole phase space plot may 
change. This means the emittance will no longer be constant in the drift process. Going even further 
into the details one can study the correlation of the particle velocities inside a box with their position 
x. There are three interesting cases which can be observed in the simulation calculations:  
 1. The particles at larger x are faster than the ones at smaller x. This will cause the boxes to get 
longer in the drift process. In this case the emittance will grow.  
2. If the particles at lower x-values are faster than the ones at larger x the length of the boxes will 
first shrink  and then after the faster particles catch up with the slower ones the area of the boxes 
will start to rise. This scenario will lead to a minimum in the emittance curve if plotted over the beam 
axis z.  
3. If there is no correlation between the velocity vx and x then the emittance will stay constant. These 
theoretical considerations will now be corroborated by simulation results. At first in Fig.s 8a and 8b 
the existence of the emittance minimum at 75.13o is shown by comparing the phase space plot at 
position z1 with a plot at the emittance minimum position z2.  
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Fig.8a: Phase space plots at two z-positions in the drift area. 

 
 
 
Fig. 8b: Zooming in the phase space distribution of Fig. 8a. 
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Fig. 8b shows the much smaller area A2 of the phase space plot for the minimum position as 
compared to the area A1 at position z1 at the gun exit.   

 

 
Fig.9a: Comparison of the phase plots at positions z1 and z2 for starting phase φstart = 83.15o. 
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Fig.9b: Zooming in the details of Fig.9a. 

 
Fig.10a: Comparison of the phase plots at positions z1 and z2 for starting phase φstart = 100.91o. 
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Fig.10b: Zooming in the details of Fig.10a. 
 
Next we will study the correlations between the velocity and the position x of the particles in the 
phase space plots for a very small momentum channel Δpx. Theoretically the width of this channel 
should be chosen equal to zero but in the simulation calculations one has to choose some finite 
width so that at least there are a few particles falling in this channel.  The scheme is shown in fig.11 
where we have 5 particles in the channel 0 .7*10-2 MeV ≤ cpx ≤ 0.7025*10-2 MeV.  
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Fig.11: A small momentum channel is chosen between 0.7*10-2 MeV ≤ cpx ≤  0.7025*10-2 MeV to 
create a kind of a virtual box as demonstrated in Fig.6. The five coloured particles fall into this box.  
 
Next in fig.12 we look at the velocity vx-distribution for the 5 particles inside the virtual box. 
 

 
 
Fig.12: Velocity correlation of the particles inside the virtual box. The numbers indicated at the 
particles in the right-hand side picture are the respective particle numbers in the simulated bunch. 

 
As can be seen from fig.12 there is a clear correlation between the position x of the particles in the 
phase space plot and the velocity vx. The particles for smaller x-values are faster than the ones for 
higher x-values. This is the scenario where according to the theoretical discussion an emittance 
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minimum is expected and where in fact a minimum is seen (fig.8a). In fig.13 we compare the velocity 
correlations for the 3 starting angles. 

 

 
Fig.13: Correlations for the three different starting angles 
 
The next thing to study is the correlation of the 5 particles in the chosen momentum channel with 
total energy. This correlation is shown in fig.14. 

 

 
Fig.14: The correlation of the particles in the chosen momentum channel between the bunch 
position versus the total energy E. 
 
One should note that according to eq. (16a) we have the relation 
 
 

𝑝𝑥 =
𝑐2

𝐸 𝑣𝑥. (17) 
 
Referring to eq. (16) this is easy to understand since the 5 particles belong to the same very small 
momentum channel. 
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Fig.15: General coupling scheme. 
 
Next we trace back the selected particles in the small momentum channel Δpx to the cathode of the 
gun. This can be done in a second run of the simulation calculation since the particle numbers are 
known. In this way one is able to understand how the respective vx – x correlations come about.  

 

 
 
Fig. 17: The vx behaviour of the selected particles inside the gun. 
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Fig.18: Detailed representation of fig.17. The velocity behaviour at the gun exit can be traced back to 
a cross over at z = 410 mm. 
 

 
 
Fig.19: No cross over is observed for the constant emittance case. 
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Fig. 20: For the increasing emittance case a cross over is observed at z =370 mm. 

 
6. Emittance minimum with space charge 

switched on 
 

In fig. 20 through 22 we show calculations with the space charge interaction switched on. One can 
see that the emittance minimum of the 0 pC case survives even at 1 nC bunch charge. But with 
increasing bunch charge the minimum gets shallower. 
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Fig. 20: Emittance minimum for 0 pC bunch charge. 
  

 
 



21 
 

 
 
Fig.21: Emittance minimum for 77 pC bunch charge. 
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Fig. 22: Emittance minimum for 1 nC bunch charge. 
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