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Abstract 

Complex Environmental Systems Models (CESMs) have been developed and applied as vital 

tools to tackle the ecological, water, food, and energy crises that humanity faces, and have been 

used widely to support decision-making about management of the quality and quantity of Earth’s 

resources. CESMs are often controlled by many interacting and uncertain parameters, and 

typically integrate data from multiple sources at different spatio-temporal scales, which make 

them highly complex. Global Sensitivity Analysis (GSA) techniques have proven to be 

promising for deepening our understanding of the model complexity and interactions between 

various parameters and providing helpful recommendations for further model development and 

data acquisition. Aside from the complexity issue, the computationally expensive nature of the 

CESMs precludes effective application of the existing GSA techniques in quantifying the global 

influence of each parameter on variability of the CESMs’ outputs. This is because a 

comprehensive sensitivity analysis often requires performing a very large number of model runs. 

Therefore, there is a need to break down this barrier by the development of more efficient 

strategies for sensitivity analysis.  

The research undertaken in this dissertation is mainly focused on alleviating the computational 

burden associated with GSA of the computationally expensive CESMs through developing 

efficiency-increasing strategies for robust sensitivity analysis. This is accomplished by: (1) 

proposing an efficient sequential sampling strategy for robust sampling-based analysis of 

CESMs; (2) developing an automated parameter grouping strategy of high-dimensional CESMs, 

(3) introducing a new robustness measure for convergence assessment of the GSA methods; and 

(4) investigating time-saving strategies for handling simulation failures/crashes during the 

sensitivity analysis of computationally expensive CESMs.  

This dissertation provides a set of innovative numerical techniques that can be used in 

conjunction with any GSA algorithm and be integrated in model building and systems analysis 

procedures in any field where models are used. A range of analytical test functions and 

environmental models with varying complexity and dimensionality are utilized across this 

research to test the performance of the proposed methods. These methods, which are embedded 

in the VARS–TOOL software package, can also provide information useful for diagnostic 

testing, parameter identifiability analysis, model simplification, model calibration, and 

experimental design. They can be further applied to address a range of decision making-related 

problems such as characterizing the main causes of risk in the context of probabilistic risk 

assessment and exploring the CESMs’ sensitivity to a wide range of plausible future changes 

(e.g., hydrometeorological conditions) in the context of scenario analysis.  
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Chapter 1 

Introduction 

“Models are not right or wrong, but rather sound or unsound, as judged relative to 

how well they capture uncertainty and promote sensible inferences from the data.” 

Crane and Martin (2018) 

 

1.1 Background and Motivation 

1.1.1 Challenges associated with the ever-increasing complexity of environmental models 

Environmental systems models are mainly built to simulate and predict the evolution of non-

stationary, multivariate, and nonlinear behaviors that are often generated by cross-scale 

interactions and feedbacks among several environmental processes, including hydrological (e.g., 

soil moisture and evapotranspiration), geological (e.g., erosion and weathering), geochemical 

(e.g., neutralization of acidic solutions), atmospheric (e.g. cloud formation and radiative 

transfer), biological (e.g., microbial nutrition), and anthropogenic (e.g., land–use change and 

groundwater abstraction) processes. The complexity of these models has steadily grown in terms 

of process complexity and process inclusivity. While the former refers to the sophistication of 

modeled processes and answers the question of how and to what extent these processes are 

represented, which relates to our knowledge of the physics of the environmental processes, the 

latter refers to the number of processes included in the model and answers the question of which 

processes are represented. Thus, increasing model complexity means modifying model structure 

by adding new components into the model such as parameters, feedbacks, and boundary 

conditions which may operate on a range of spatiotemporal scales.  

Building a better model is the desire that primarily derives the ever-increasing complexity of 

models, and thus it has been an important reason for decreased simplicity of models over time. It 
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is usually presumed that, in principle, the greater model complexity will lead to higher-fidelity 

models. Therefore, modelers have traditionally tended to add more details (based on Physics) to 

the models to rectify the discrepancies between model results and measured values – an 

indication of model’s ability to describe some aspects of the underlying system. Although this 

approach is usually successful, it necessarily brings about an enormous increase in model 

complexity. 

Apart from the added challenge of high computational cost associated with Complex 

Environmental Systems Models (CESMs), the inclusion of new components and process 

parameterizations (e.g., to better represent the spatial heterogeneity) increases the model’s 

degrees of freedom and imposes a heavier burden on modelers for the estimation of model 

parameters. Importantly, high degrees of freedom, high degrees of parameter interactions, and 

lack of data, all together, can cause some parameters to be non-identifiable1, and consequently 

can arise a situation that different combinations of parameter values may fit observed 

measurements equally well. As a result, unrealistic parameter values can generate a close match 

between the computed results and observed measurements. This ultimately leads to the 

“equifinality” issue that was originally introduced by Von Bertalanffy (1950a,b) and was 

formalized in the hydrologic community by Beven (1993). 

Beck (1987) points out that as the model becomes more complex, it becomes more difficult to 

unambiguously falsify, test, or validate, due to many hypotheses involved in the CESMs. Beck 

(1987) states in his review that:  

“Comprehensive models, which have become enormously complex assemblies of very many 

hypotheses, cannot be effectively falsified. This is partly a function of uncertainty in the field 

data, certainly a function of current limitations in the methods of system identification, and 

essentially a function, in the event of a significant mismatch between the model and 

observations, of being unable to distinguish which among the multitude of hypotheses have 

been falsified. In fact the detailed spatial patterns of water circulation and equally detailed 

                                                      
1 Model parameters are “identifiable” if there exists a unique parameter set that maximizes the likelihood function, 

i.e., parameters can be constrained by a given data set with a certain model structure (Sorooshian and Gupta, 1985). 
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differentiation of ecological behavior described by the more complex models would demand 

experimental observations that are simply not technically feasible.” 

Furthermore, Oreskes (2003) raises a “complexity dilemma”: as the model complexity 

increases, the uncertainty in model predictions may also increase, and as such, one would put 

little confidence in the model predictions. This is contrary to the intuitive understanding that 

more complexity in models enhances the realism through adding more components to better 

simulate the underlying system. Oreskes (2003) asserts that:  

“The closer a model comes to capturing the full range of processes and parameters in the 

system being modeled, the more difficult it is to ascertain whether or not the model faithfully 

represents that system. A complex model may be more realistic yet at the same time more 

uncertain.” 

Therefore, it has been suggested that model complexity and uncertainty exhibit a hypothetical 

U-shaped relationship such that as the model complexity increases, the uncertainty decreases due 

to adding a greater knowledge about the underlying system, but only up to a certain point, after 

which, as complexity continues to increase, so does the uncertainty due to a high level of 

interactions among various sources of uncertainty (see e.g., Hanna, 1993; Fisher et al., 2002; 

Snowling and Kramer, 2001; Perz et al., 2013). In other words, a new source of uncertainty will 

be introduced to the model (partially due to inevitable measurement errors or unavailability of 

observations) by adding a new component, which can be accumulated with other individual 

sources, and therefore amplifies the overall uncertainty. For example, Medici et al. (2012) 

investigated the circumstances in which the increasing complexity in three catchment-scale 

hydrology and nitrogen models may lead to acceptable model simulation or over-

parameterization. Because of this U-shaped relationship, there may be an optimal complexity 

level that minimizes model uncertainty; however, as claimed by Oreskes (2003), it may never be 

possible to achieve that optimal state.  

Finally, there is an additional challenge with more complex models, which is increased data 

requirements in the process of parameterization, calibration, and validation. CESMs often require 

a massive amount of distributed data collected from multiple data sources such as climatic data, 

soil properties, land use, topography, crop characteristics, groundwater levels, phosphorus and 



 

 4 

nitrogen concentrations, etc. However, data availability is a significant problem, particularly for 

ungauged sites. Due to poor representation of the gauges over the study area, systematic/random 

errors in measurement equipment, and errors in data management, the impact of input data 

uncertainty on model outcome’s accuracy can be significant in CESMs (McMillan et al., 2012; 

Zhang et al., 2016). 

Overall, the foregoing discussion shows that the increased complexity in CESMs gives rise to 

three major concerns: 

• CESMs are typically data-intensive and require more data-gathering effort, probably 

with new data collection techniques, and a more comprehensive dataset regarding 

different processes involved. This issue should indeed not be “covered up” by 

excluding some of the process from CESMs.  

• Over-parameterization and the associated non-identifiability issue are common 

problems in CESMs. These models often can be tuned to calibration data, and 

accordingly can exhibit a high prediction fit. However, their validity and acceptability 

of the calibrated model can be doubtful when used for prediction. 

• A careful attention is needed to be directed to proper treatment of the uncertainty in 

CESMs. This becomes more crucial when coming with severe uncertainties imposed 

by the anthropogenically induced socioeconomic and climatic changes.  

1.1.2 Global sensitivity analysis to cope with outstanding challenges in CESMs 

Overcoming the aforementioned challenges has greatly motivated researchers to develop 

advanced Global Sensitivity Analysis (GSA) methods. This is because GSA provides a way for 

systematically explaining how variations in different model input factors1 and their interactions 

influence the model output variability, and thus a means of assessing which factor is more 

responsible for model output variations. Regarding the increased complexity of CESMs, GSA is 

                                                      
1 To avoid distinctions between model parameters, boundary conditions, initial conditions, and forcings, all of these 

inputs to are referred to as “input factors” throughout this dissertation. 
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well recognized as being an essential aspect of the model analysis in addressing the outstanding 

challenges in CESMs (Razavi and Gupta, 2015), because: 

• GSA determines the importance of input factors, and thus can be helpful for 

prioritizing data acquisition processes. 

• GSA identifies non-influential factors; whose variations have little or no influence on 

the model output and can be fixed to reduce complexity of the CESMs. 

• GSA attributes total uncertainty of the model outputs to multiple sources of uncertainty 

and their interactions. 

Most well-known GSA algorithms are based on one of the following two schemes: (1) an 

analysis of derivatives, for example the method of Morris (Morris, 1991; Campolongo et al., 

2007; Sobol and Kucherenko, 2009), and (2) an analysis of variance, for example the method of 

Sobol’ (Sobol’, 1993; Homma and Saltelli, 1996; Tarantola et al., 2006). However, it is not 

uncommon for methods based on these two schemes to give conflicting assessments, and Razavi 

and Gupta (2016a,b) showed that both the strategies are actually special cases of a more 

comprehensive, variogram-based approach that accounts for spatial structure of the model 

response surfaces. This variogram-based approach, known as Variogram Analysis of Response 

Surfaces (VARS), is a unifying framework that bridges across the derivative- and variance-based 

approaches by introducing the notion of “perturbation scale” (Haghnegahdar and Razavi, 2017). 

Nevertheless, it is important to make an important remark concerning the uncertainty analysis. 

As categorized by Razavi (2017) and Razavi et al., (2019), uncertainty analysis techniques have 

been broadly developed under the two groups of forward uncertainty propagation (see, e.g., 

Helton et al., 2006; Rajabi et al., 2015; Williamson, 2015) and inverse uncertainty quantification 

(Bayesian inference) (see, e.g., Kuczera and Mroczkowski, 1998; Kavetski et al., 2006; Clancy et 

al., 2010). In the former, the uncertainty in input factors is propagated through the model to 

characterize the model outputs uncertainty (e.g., methods such as Monte-Carlo simulation and 

first-order second-moment techniques). However, the latter class of techniques attempts to 

improve estimates of model factors given a priori uncertainty and the discrepancy between 

model outputs and observations. On the other hand, GSA can be viewed as a third approach to 
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uncertainty analysis which can be employed to characterize the uncertainty of model outputs 

through attributing it to different uncertain model factors.  

Considering the important features of GSA, sensitivity analysis needs to become a prerequisite 

in model building and system analysis in any field where CESMs are used. When CPU-

demanding CESMs are involved, it is of vital importance to use clever techniques to efficiently 

conduct a comprehensive sensitivity analysis. Motivated by this challenge, the overarching 

objective of this dissertation is to develop efficiency-increasing strategies (as outlined in Section 

1.2.) for robust sensitivity analysis of CESMs. 

 

1.2 Objectives, Significance, and Research Questions  

With the growth in complexity, the need for sensitivity analysis of CESMs has gained more 

recognition. However, two major inter-related challenges limit GSA’s application to CESMs, 

namely (1) the curse of dimensionality, and (2) computational expense. The former refers to the 

fact that, as the number of uncertain factors increases, the volume of the factor space increases so 

rapidly that any attempt to explore the factor space in a statistically sound manner requires an 

exponentially-increasing number of model evaluations. The latter refers to the typically 

computationally intensive nature of CESMs, leading to long run-times that, together with the 

former, can make any meaningful sensitivity analysis of such models computationally 

prohibitive. Moreover, it is crucial to assess “robustness” of the GSA results for estimating the 

degree of insensitivity to sampling variation because the randomly drawn sample used to GSA is 

usually limited. This computational bottleneck in CESMs impedes effective implementation of 

the current-generation GSA methods. Three major factors can significantly affect the 

computational demand of the GSA techniques: 

• Conducting GSA usually starts with generating a sample of input factors drawn from 

the feasible factor space, which will be then used to obtain CESMs responses at each 

sample point. Therefore, having an appropriate sampling strategy is crucial in reducing 

the computational cost. An appropriate sampling strategy should be capable of 
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generating a set of sample points with minimum sample size that are properly located in 

the factor space to ensure sufficient coverage of the output space. 

• The sample size in GSA has been typically chosen based on available computational 

budget, without considerations/monitoring of the GSA’s stability and convergence. 

Hence, the results are likely to have been highly sensitive to sampling variability. To 

avoid a possible lack of robustness in GSA result, it is common to use larger sample 

sizes, which will typically impose unnecessarily higher computational demand. 

• Parameter-induced simulation crashes are a typical problem across most of the CESMs. 

When a computer code crashes, it is difficult to accomplish GSA, which can be very 

computationally costly for GSA algorithms because crashes can waste the rest of the 

model runs and prevent the completion of GSA. However, the existing GSA 

techniques, which require running CESMs for many configurations of input factors 

(some of which are prone to model crashes), are not equipped to effectively deal with 

model failures.  

Given these gaps, this dissertation aimed to address the following key research questions: 

1. How can we explore the input space of the high-dimensional CESMs efficiently and 

effectively to extract maximum amount of information from output space with 

minimum sample size?  

2. How can we quantify the convergence rate and degree of robustness of GSA when 

applied to high-dimensional CESMs? 

3. How can we handle simulation failures in GSA of computationally expensive 

CESMs? 

There are three main objectives and contributions delivered by the research undertaken in this 

dissertation to address the above-mentioned questions, as highlighted in the next sub-sections. 
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1.2.1 Objective (1): proposing a novel sequential sampling strategy  

Using an effective and efficient strategy for sampling high-dimensional factor spaces of CESMs 

is a cornerstone of sampling-based analyses such as optimization, surrogate modelling, 

uncertainty and sensitivity analysis. Performing these sampling-based analyses requires the 

computationally intensive codes to be executed on an appropriate distribution of sample points in 

factor space to extract maximum amount of information from the model response surface (i.e., 

output space).  

One major drawback of traditional sampling strategies (e.g., Latin Hypercube sampling) is that 

they generate the entire sample set at once, a process that is known as “one-stage” or “one-shot” 

sampling. This requires users to specify the sample size prior to the associated sampling-based 

analysis. As a result, it is often the case that the user is not satisfied with the resulting sampling-

based analysis (e.g., convergence criteria are not met), and needs to enlarge the sample size and 

resumes the sampling-based analysis with the updated/new samples.  

The present dissertation addresses this gap (see Chapter 2 and 3) by introducing a novel 

strategy, called PLHS (Progressive Latin Hypercube Sampling), which sequentially generates 

sample points while progressively preserving the distributional properties of interest (Latin 

hypercube properties, space-filling, etc.), as the sample size grows.  

1.2.2 Objective (2): developing a new robustness measure and factor grouping strategy 

Characterizing and improving the “robustness” of the GSA results is an essential (but often 

neglected) part of any GSA method, particularly when applied to CESMs. Since GSA is a 

sampling-based technique, it is prone to statistical uncertainty, i.e., the results will be sensitive to 

randomness in the selection of the sample (due to sampling variability). Hence, robustness can be 

defined as the stability of the GSA results (i.e., the degree of insensitivity to sampling variation). 

In other words, lower variability of the results obtained over multiple trials of the algorithm 

(performed with different, identically distributed, sample sets) indicates a higher degree of 

robustness (see e.g., Montgomery (2008)). 

The present research addresses this gap (see Chapter 4) by proposing a new measure of 

robustness for convergence assessment. This measure is based on a “factor grouping” strategy 
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that clusters sets of input factors into groups of similar properties based on their sensitivity. 

Given an ability to monitor the robustness of sensitivity analysis results, the user can improve 

efficiency by avoiding unnecessary model runs when the desired level of robustness is reached. 

In addition, the developed grouping capability is also useful when dealing with high-dimensional 

CESMs, where the user typically is not interested in the exact ranking for the many factors. 

Instead, it is beneficial to group factors into several distinct groups flagging “highly influential”, 

influential”, “moderately influential”, “slightly influential”, and “non-influential”.  

1.2.3 Objective (3): crash handling in sensitivity analysis of computationally expensive 

models 

Sensitivity analysis of CESMs often requires running a model many times (hundreds or 

thousands of times). One of the main challenges during the GSA experiment is the failure/crash 

of the model simulations (computer code), particularly in CESMs with many interacting input 

factors. A simulation failure mainly happens due to the violation of the numerical stability 

conditions or mistakes made in the course of programming. These crashes can be very 

computationally costly for GSA because they can waste the model runs and prevent completion 

of sensitivity analysis. This problem has been commonly solved through reducing the feasible 

ranges for input factor(s) responsible for the failures in a hope to prevent them in the next 

experiment.  

The present research addresses this gap (see Chapter 5) by exploring a series of automated 

strategies, suited to the majority of GSA methods, to deal with model crashes. These strategies 

allow users to cope with failed designs during GSA without knowing where they will take place 

and without re-running the entire experiment. 

 

1.3 Outline of the Dissertation 

This dissertation is a collection of published, accepted, or submitted papers from recognized peer 

reviewed Journals, as listed in the section of List of Publications within the dissertation. The 

titles of Chapters 2 to 5 reflect the titles of these papers. These chapters begin with a synopsis of 
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the research motivation and findings followed by providing the paper that has been submitted, 

accepted, or published. 

First, in Chapter 1, research questions are clearly defined, originality and significance of the 

research is highlighted, and it is explained that how this dissertation will add to, develop, or 

challenge existing literature in the field. To accomplish objective (1), Chapter 2 introduces a 

new sequential sampling algorithm suited to any sampling-based analysis (e.g., optimization, 

uncertainty and sensitivity analysis), which has further been used in Chapter 3 to evaluate the 

importance and identifiability of different parameters of a river ice model. Chapter 4 answers 

explicitly the second research question to achieve objective (2) by presenting and testing a new 

measure of robustness to monitor and evaluate convergence of the GSA algorithms based on an 

automated factor grouping strategy. Objective (3) has been attained in Chapter 5 through 

investigating and discussing the applicability of a series of alternative approaches in handling 

simulation failures during the GSA to circumvent the common need for re-running the entire 

experiment in such cases. Finally, Chapter 6 brings together the findings of the research and 

recommends possible future extensions. 
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Chapter 2 

Progressive Latin Hypercube Sampling for Robust sampling-based Analysis of 

Environmental Models 

This chapter is a mirror of the following published article with minor changes to increase its 

consistency with the body of the dissertation. Changes were only made to avoid repeating the 

contents that have been presented more appropriately in other parts. References are unified at the 

end of the dissertation.  

Sheikholeslami, R. and Razavi, S., 2017. Progressive Latin hypercube Sampling: An efficient 

approach for robust sampling-based analysis of environmental models. Environmental 

Modelling & Software, 93, 109–126. https://doi.org/10.1016/j.envsoft.2017.03.010 

Synopsis 

Efficient sampling strategies that comply with certain requirements concerning size of the 

problem, computational budget, and users’ needs are essential for various sampling-based 

analyses, such as sensitivity and uncertainty analysis. In this chapter, we propose a new strategy, 

called Progressive Latin Hypercube Sampling (PLHS), which sequentially generates sample 

points while progressively preserving the distributional properties of interest (Latin hypercube 

properties, space-filling, etc.), as the sample size grows. Unlike Latin hypercube sampling, PLHS 

generates a series of smaller sub-sets (slices) such that (1) the first slice is Latin hypercube; (2) 

the progressive union of slices remains Latin hypercube and achieves maximum stratification in 

any one-dimensional projection; and as such (3) the entire sample set is Latin hypercube. The 

performance of PLHS is compared with benchmark sampling strategies across multiple case 

studies for Monte-Carlo simulation, sensitivity and uncertainty analysis. The results indicate that 

PLHS leads to improved efficiency, convergence, and robustness of sampling-based analyses. 

 

https://doi.org/10.1016/j.envsoft.2017.03.010
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2.1 Introduction 

Simulation models have become an essential tool for environmental and water resources systems 

analysis and have been extensively employed to tackle various complex problems, including 

water supply systems design and operation, water quality and wastewater management, 

groundwater management, rainfall-runoff modelling, design optimization, risk assessment, and 

decision making (Castelletti et al., 2010). These models are typically characterized by: (1) highly 

non-linear/complex response surfaces, (2) large parameter/problem spaces (high-dimensional 

with large uncertainty at each dimension), and (3) high computational demand (long run times). 

These three characteristics challenge the use of sampling-based analyses such as uncertainty 

estimation (Liu and Gupta, 2007; Mugunthan and Shoemaker, 2006; Kuczera and Parent, 1998), 

sensitivity analysis (Sarrazin et al., 2016, Razavi and Gupta, 2015), surrogate modelling and 

optimization (Maier et al., 2014; Razavi et al., 2012a; Vrugt et al., 2006), and other Monte-Carlo 

type simulations (e.g., Rezaie et al., 2007; Linkov and Ramadan, 2004). The first characteristic 

above necessitates the collection of a sufficiently dense and properly distributed set of samples to 

adequately characterize the nonlinearity of the response surface, while the second requires a 

large sample size spreading across the entire high-dimensional space to ensure adequate 

exploration and coverage of the space. These, when coming with the third characteristic, impose 

significant computational burdens that may impede effective sampling-based analyses.  

Sampling is a main building block of a range of algorithms designed for various types of 

environmental and water resources systems analysis. Depending on the type of analysis, 

sampling may be merely “input-oriented” (also called “model-free” here), where no adaptation is 

made based on resulting model outputs, or it may also be “output-oriented”, where the sampling 

procedure is guided/adapted based on feedback received from the model outputs during 

sampling. Examples of the former, which is our focus in this chapter, include Monte Carlo 

simulation for uncertainty propagation, GLUE type methods for uncertainty analysis, sensitivity 

analysis, design of experiments, and some variations of surrogate modelling (e.g., response 

surface methodology and the other approaches categorized under “basic sequential framework” 

in Razavi et al. (2012b)). Examples of the latter include the surrogate modelling strategies where 

the response surface approximation evolves over time (i.e., the approaches categorized under 
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“Adaptive-Recursive Framework” and “Metamodel-Embedded Evolution Framework” in Razavi 

et al. (2012b)); generating perturbed hydrometeorological forcing data using the inverse 

approach (Guo et al., 2016); scenario generation and classification (Islam and Pruyt, 2016); and 

sensitivity analysis in multi-criteria decision analysis (Ganji et al., 2016). 

The performance of a sampling strategy and the quality of its resulting samples directly 

controls the efficiency and robustness of any associated sampling-based analysis. A sample is 

deemed of quality if it possesses the intended distributional properties in parameter/problem 

space. The distributional properties of a sample are commonly assessed by one-dimensional 

projections for every dimension (i.e., marginal distributions), space-filling criteria, and 

correlation analysis. There is a wealth of literature over the past several decades on developing 

and improving various sampling strategies, including pseudo random sampling, stratified 

sampling, fractional and full factorial design (Box and Hunter, 1961), regular grid sampling, 

orthogonal design (Owen, 1992), Latin hypercube sampling (Mckay et al., 1979), and Sobol’ 

sequences (Sobol’, 1967). Latin Hypercube Sampling (LHS), pioneered by Mckay et al. (1979) 

and Iman and Conover (1980) and its variations such as orthogonal array-based LHS (Tang, 

1993), orthogonal LHS (Ye, 1998), and symmetric LHS (Ye et al., 2000) are among the most 

commonly used sampling techniques for experiments with environmental and water resources 

systems models in a variety of application areas such as sensitivity and uncertainty analysis (e.g., 

Posselt et al., 2016; Gan et al., 2014; Zhan and Zhang, 2013), parameter calibration (e.g., Higdon 

et al., 2013), and surrogate modelling (e.g., Rajabi et al., 2015; Regis and Shoemaker, 2007). 

This may be mainly because of their (1) ease of use (comparable with random sampling), (2) 

insurance of one-dimensional projection properties (“Latin Hypercube” properties), and (3) ease 

in incorporating other criteria (e.g., orthogonality and symmetry) within sampling. Due to the 

second characteristic, LHS can be deemed a form of stratified sampling because it stratifies 

across the range of variables in accordance with the distributional properties of interest.  

An effective sampling strategy needs to ensure the above properties, while being capable of 

preserving the distributional properties of the sampled points with any sample size. The “proper 

sample size”, however, for a given simulation model and sampling-based analysis is not typically 

known a priori. The proper sample size here refers to a sufficiently large number of sample 
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points that will lead to convergence or robustness (i.e., degree of insensitivity to sampling 

variability) of the analysis results. On the other hand, the computational cost of a sampling-based 

analysis is linearly proportional to the sample size (i.e., number of model runs), assuming the 

computational demand of the sampling strategy is relatively negligible. 

One major drawback of traditional LHS and many other sampling strategies is that they 

generate the entire sample points at once. This requires users to specify the sample size prior to 

the associated sampling-based analysis. Hence, users tend to utilize larger sample sizes, which 

possibly impose unnecessarily larger computational demand, to avoid “under-sampling” of the 

parameter/problem space. Also, it is often the case that the user is not satisfied with the resulting 

sampling-based analysis (e.g., convergence criteria are not met), and needs to enlarge the sample 

size and resumes the sampling-based analysis with the updated/new sample. In this case, the user 

will have a dilemma: either to generate a new sample by LHS with the size of interest and add it 

to the previously generated sample with the tradeoff that the union of the two samples will not be 

Latin hypercube, or to discard the previous sample at a computational cost and generate a new, 

larger sample to preserve the distributional properties of interest. Such needs warrant the 

development and application of “multi-stage” or “sequential” sampling, where sample size can 

grow progressively, while maintaining the desired distributional proprieties. This way, sequential 

sampling will allow the user to monitor the performance of the sampling-based analysis and 

assess the stopping criteria (e.g., convergence criteria) in an online manner.  

In this chapter, we introduce a new and efficient sequential version of LHS, called Progressive 

Latin Hypercube Sampling (PLHS). As opposed to the traditional LHS approach that generates 

the entire sample set in one stage, the proposed PLHS will generate a series of smaller sub-sets 

while: (1) the first sub-set is Latin hypercube; (2) the progressive addition of sub-sets remains 

Latin hypercube and achieves maximum stratification in any one-dimensional projection; and 

thus (3) the entire sample set is Latin hypercube. In other words, PLHS will preserve the desired 

distributional properties while the sample size grows during the analysis. With several sampling-

based numerical experiments for sensitivity and uncertainty analysis, we show that the proposed 

PLHS has multiple advantages over the one-stage sampling strategies, including improved 

convergence of the associated analysis and the robustness of the results to sampling variability. 
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This chapter is structured as follows. Section 2.2 briefly explains the properties of original 

LHS, discusses different strategies for optimal sampling, and reviews existing sequential 

sampling methods. Next, in Section 2.3, we propose the PLHS approach, followed by a 

description of a heuristic algorithm for efficiently generating the optimal PLHS. Section 2.4 

describes case studies and experimental setup that are used to assess the PLHS. In Section 2.5, 

the experimental results and the analysis of the algorithm are provided and discussed. Finally, 

Section 2.6 concludes the chapter. 

 

2.2 Literature Review 

2.2.1 What is Latin hypercube sampling? 

Latin hypercube sampling (LHS) was inspired by the concept of “Latin square” from 

combinatorial mathematics, where an n-by-n matrix is filled with n different objects (i.e., 

numbers, characters, symbols, etc.) such that each object occurs exactly once in each row and 

exactly once in each column– see Fig. 2-1a for an example with 4 objects. The term “Latin” in 

Latin squares was inspired by the work of the famous mathematician, Leonhard Euler, who used 

Latin characters as the objects (Wallis and George, 2011). Like Latin squares, the basic idea of 

LHS for a 2-dimensional space and a sample size of n is partitioning each dimension into n 

disjoint intervals (levels) with equal marginal probability of 1/n and then randomly sampling 

once from each interval to ensure that there is only one point at each level. Fig. 2-1b shows a 2-

dimensional example with 4 sample points uniformly distributed across each dimension by LHS. 

With no loss of generality, and for the sake of simplicity, the definitions and examples presented 

in this chapter are for the case of uniform distribution. For any other distribution (e.g., normal 

distribution), the uniformly distributed samples can be transformed by associated transformation 

functions. 
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Figure 2-1 An illustration of the basic idea of Latin hypercube sampling: (a) A 4 by 4 example of Latin square - 4 

different Latin characters are arranged in a way that no letter appears more than once in each row or column. (b) A 

2-dimesional example of LHS with 4 sample points - There is only one point in each row and each column (the row 

and column taken by one of the sample points are darkened). 

 

In the general case, consider a unit hypercube in a p-dimensional space, Cp = [0,1]p, divided 

into n intervals (n is the sample size) with an equal length of 1/n along each axis – this creates n 

equally probable intervals indexed by q = 1, . . ., n corresponding to [0 , 1/n), [1/n , 2/n), · · ·, 

[(n‒1)/n , 1] for each dimension. LHS can be represented as n-by-p sample matrix [xi,j] (i = 1, . . 

., n; j = 1, . . ., p), where 𝑥𝑖,𝑗  ∈  [0,1] such that xi,j in the jth column belongs to only one interval. 

In other words, q is a random permutation of {1, 2, …, n} for each column, and each row of the 

matrix is a sample point. We denote this matrix by 𝐋𝐇𝐒(𝑛, 𝑝). Original LHS ensures that the 

resulting sample possesses one-dimensional projection properties, indicating the projection of 

sample points in the p-dimensional space onto any dimension will follow the uniform 

distribution (or any other distribution of interest). Therefore, a sample is said to be “Latin 

hypercube” if and only if it possesses the one-dimensional projection properties. Such a sample, 

however, is only guaranteed to maximize the stratification in marginal distributions, while the 

multi-variate distributional properties (e.g., space-filling properties) in the p-dimensional space 

are not necessarily accounted for. There have been research efforts across a variety of fields to 

improve the performance of the original LHS, and several strategies were built on the original 

LHS, including Orthogonal Array-based LHS (Tang, 1993), Orthogonal LHS (Ye, 1998), and 

Symmetric LHS (Ye et al., 2000). For more detail, interested readers are referred to the reviews 

of the state of the art by Viana (2013) and Helton and Davis (2003). 

A D C B

C B A D

D C B A

B A D C
(a) (b)
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2.2.2 Sampling improvements based on the notion of optimization 

In addition to the methodological improvements such as orthogonal LHS and symmetric LHS 

that attempt to systematically generate Latin hypercube samples of better quality, there have 

been many studies that utilize the optimization theory to improve the performance of LHS 

(Pronzato and Müller, 2012; Xiong et al., 2009). Basically, the approach is to define secondary 

criteria (objective functions), in addition to being Latin hypercube, and formulate and solve an 

optimization problem to achieve (near) optimal Latin hypercube samples. This can be very 

effective, as in any variation of LHS, there may exist a huge number of configurations (sample 

points arrangements) that satisfy the associated LHS criteria but do poorly in terms of other 

criteria (e.g., space filling). The LHS algorithms typically randomly pick one of the many 

possible configurations, while optimization helps navigate through the myriad of choices and 

identify one that is (near) optimal in terms of secondary criteria.  

The optimization problem for improving LHS belongs to the class of combinatorial 

optimization, with a total search space of (n!) p configurations for an exhaustive search (Viana et 

al., 2010). The computational efficiency of an optimization–assisted LHS algorithm depends on 

the size of the search space and the efficiency of the optimization algorithm used. In practice, 

therefore, the sampling procedure can become computationally demanding for larger values of n 

and p. A variety of optimization algorithms have been used in the literature to solve such 

combinatorial problems, including simulated annealing, genetic algorithms, and the branch-and 

bound-algorithm (see Table 2-1 for a list of studies). However, in performing sampling-based 

analysis using LHS there are two notable remarks. First, once an optimal LHS is generated, it is 

independent of the considered application (model-free) and can be stored for future applications. 

Second, in most cases the computational cost of finding an optimal LHS is negligible in 

comparison with the time needed to run the computationally expensive computer simulations. 
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Table 2-1 A review summary of studies for constructing optimal LHS 

Search algorithm Criteria Reference 

Enhanced stochastic evolutionary algorithm Max(dist)1 Husslage et al. (2011) 

Translational propagation  Max(dist) Viana et al., (2010) 

Branch-and-bound  Max(dist) van Dam et al. (2007) 

Genetic algorithm  Max(dist) Bates et al. (2004) 

Simulated annealing Max(dist) Morris and Mitchell (1995) 

Genetic algorithm Min(L2-disc)2 Rainville et al. (2012) 

Simulated annealing Min(L2-disc), Max(dist) Iooss et al. (2010) 

Mixed integer linear programming Min(corr) 3 Hernandez (2008) 

Florian’s correlation reduction method Min(corr) Florian (1992) 

Ranked Gram-Schmidt algorithm Min(corr) Owen (1994) 

A heuristic algorithm Min(corr), Min(L2-disc) Cioppa and Lucas (2007) 

Exchange algorithm Max(ent)4 Jourdan and Franco (2010) 

Columnwise-pairwise  Max(ent), Max(dist) Ye et al. (2000) 

Enhanced stochastic evolutionary algorithm  Max(ent),Min(L2-disc), 

Max(dist)  

Jin et al. (2005) 

1Max(dist) = Maximize the inter-point distance 
2Min(L2-disc) = Minimize L2-discrepancy  
3Max(corr) = Minimize correlation 
4Max(ent) = Maximize entropy 

 

Determination of the appropriate objective function(s) to be imposed on Latin hypercube 

properties (i.e., one-dimensional projection properties) via optimization has been a major topic of 

research. Table 2-1 also reports different criteria that have been used in the literature as objective 

functions in different optimization-assisted LHS algorithms. These optimality criteria are mainly 

intended to improve space-filling properties to ensure that the sample points are uniformly 

scattered across the input space with minimal un-sampled regions. The two most commonly used 

objective functions are (1) maximizing the minimum inter-point distance among all possible 

pairs of sample points, and (2) minimizing the correlations (absolute value) between all pairs of 

columns of the sample matrix. To explain these, Fig. 2-2 presents three example configurations 

when n = 9 and p = 2. The sample shown in Fig. 2-2a is optimal because it is Latin hypercube 

with strong space-filling properties, whereas the sample shown in Fig. 2-2b is not Latin 

hypercube, although it has strong space-filling properties. Fig. 2-2c shows a very poor Latin 

hypercube sample that, despite possessing one-dimensional projection properties, its sample 

points are poorly scattered in the factor space. 
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Figure 2-2 Illustrative examples of different configurations of Latin hypercube and/or space-

filling designs. (a) An optimal sample with respect to both Latin hypercube and space-filling 

properties, (b) An optimal sample with respect to only space-filling properties, and (c) An LHS 

with very poor space-filling properties and highly correlated factors. 

 

2.2.3 Input-oriented sequential sampling 

The input-oriented (also called model-free) sequential strategies sample the input space 

iteratively without any feedback from any resulting output space (model response). At each 

iteration, they aim to sample the input space as uniformly as possible based on some pre-

specified criteria. Many strategies for input-oriented sequential sampling (hereafter called 

“sequential sampling” for simplicity) have been developed, while they can be classified under 

two general families of stochastic and deterministic strategies. Stochastic strategies extend the 

one-shot strategies by iteratively searching for new points that satisfy or optimize pre-specified 

criteria, typically by means of optimization and randomization (e.g., Vořechovský, 2009; Xiong 

et al., 2009). Deterministic strategies, however, utilize deterministic routines designed for space 

filling (e.g., Schretter et al., 2012). These strategies are very computationally efficient, while 

having certain drawbacks, as explained below. 

The so-called low-discrepancy sequences (also known as quasi-random sequences) are among 

the most well-known deterministic sequential sampling strategies. These include the Halton 

(Halton, 1960), Hammersley (Hammersley, 1960), and Sobol’ (Sobol’, 1967) sequences, most of 

which utilize prime numbers as bases to generate sample points for each dimension. These 

(a) (b) (c)



 

 20 

sequences are only constrained by a low-discrepancy criterion to promote space-filling 

properties, with a caveat of possibly creating significant correlations between the factors, 

particularly in high-dimensional spaces (Loyola et al., 2016; Ong et al., 2012). The performance 

of low-discrepancy sequences has been extensively evaluated in the context of designs for 

computer experiments (e.g., Simpson et al., 2001; Kalagnanam and Diwekar, 1997). 

The low-discrepancy sequences might have poor projection properties, particularly in high-

dimensional spaces. Proper projection properties, also referred to as non-collapsing properties, 

are essential for effective sequential sampling (Pronzato and Müller, 2012; van Dam et al., 

2007). A sample is said to possess projection properties when in any projection from its p-

dimensional space to any lower dimensional sub-space, the sample points remain distinct from 

each other. This is vital in many sampling-based analyses. For illustration, Fig. 2-3a, b, and c 

depict a 2-dimensional projection of the first 1,000 points of 100-dimensional, 10,000-point 

samples sequentially generated by Hammersley (HM), Halton (HS), and Sobol' sequences. Fig. 

2-3f, g, and h show the same samples when transformed onto a standard normal distribution. As 

can be seen, there is a strong correlation between the sample points of the two factors (58th and 

69th), leaving large regions un-sampled. It should be noted that the correlation problems on 

samples projected onto lower dimensional sub-spaces are not reflected in discrepancy 

measurements (Loyola et al., 2016). Typically, for high dimensions (>~20), the sample size of 

low-discrepancy sequences should be quite large to ensure both space-filling and projection 

properties (Broad et al., 2015). 

Various solutions have been proposed to resolve this issue, including using big prime numbers, 

leaping, and scrambling (see, e.g., Kocis et al., 1997). Fig. 2-3d and i show the improved 

performance of HS enabled with leaping and scrambling (HS-LS), where there is significant 

improvement in the dispersity of sample points but still there are some areas that remained un-

sampled and some other areas with clusters of points. Fig. 2-3e and j show the superior 

performance of an enhanced Sobol’ sequence by leaping and scrambling (Sobol’-LS), which has 

a high level of uniformity. Among these low-discrepancy samplings, we only used the Sobol’-LS 

as one of the benchmark strategies in this study. 
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Figure 2-3 Example performances of existing sequential sampling strategies in a 100-

dimensional space when projected onto a 2-dimensional sub-space. Performance of (a) 

Hammersley, (b) Halton, (c) Sobol', and improved (d) Halton and (e) Sobol’ sequences (by 

leaping and scrambling) in a uniform distribution case. The plots in the bottom panel shows the 

same samples of plots above when transformed into a standard normal distribution space. All 

samples are projected onto dimensions 58 (horizontal axis) and 69 (vertical axis). 

 

Crombecq et al. (2011) in a comprehensive study on the state-of-the-art sequential sampling 

strategies showed that the strategies with both space-filling and projective properties outperform 

the ones that only have the space-filling properties. Furthermore, Gong et al. (2016) showed that 

among various sampling schemes, the Good Lattice Points (GLP) and Symmetric Latin 

hypercube (SLH) are the most efficient methods and have the highest uniformity scores 

compared with the Halton and Sobol’ quasi-random sampling methods. Note that none of the 

existing sequential sampling strategies can explicitly consider and maintain projection (e.g., 

Latin hypercube) properties, and this was our motivation to develop Progressive Latin 

Hypercube Sampling (PLHS), as introduced in the next section. 
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2.3 Progressive Latin Hypercube Sampling 

2.3.1 Definition 

In a p-dimensional space, let 𝐒𝑘(𝑛𝑘, 𝑝), where k = 1, 2,· · ·, T, be a series of samples, each  with 

a size of nk, and let Lt be a new sample set formed by the union of these (sub-) samples such that 

𝐋𝑡 = ⋃ 𝐒𝑘(𝑛𝑘, 𝑝)
𝑡
𝑘=1 , where t = 1, 2,· · ·, T. We call sample Lt to be progressive Latin hypercube 

if and only if for any t, Lt is a Latin hypercube. In the case that t = T, we denote the new sample 

by 𝐏𝐋𝐇𝐒(𝑛, 𝑝, 𝑇) where n is the summation of the slice sizes, 𝑛 = ∑ 𝑛𝑘
𝑇
𝑘=1 . As such, 

𝐏𝐋𝐇𝐒(𝑛, 𝑝, 𝑇) is a Latin hypercube sample consisting of T sub-samples (also called slices 

hereafter) that their progressive union (Lt from k = 1 to k = T) holds Latin hypercube properties. 

2.3.2 Mathematical formulation 

Given that PLHS is an extension of LHS, in the following, we first reformulate LHS. Unlike the 

classic approach that considers LHS as a combinatorial problem, we formulate a real-valued 

problem. Let 𝐒(𝑛, 𝑝) be a sample matrix, which consists of n×p elements (variables) 𝑥𝑖,𝑗  ∈  [0,1] 

where i = 1, …, n and j = 1, …, p. Also, consider the factor space [0,1]p divided into n disjoint 

intervals (strata or bins) [0 - 1/n), [1/n - 2/n), · · ·, [(n‒1)/n - 1] indexed by q (q = 1, …, n) along 

each axis/dimension. We define a new set of auxiliary binary variables, 𝑦𝑞,𝑗, such that: 

𝑦𝑞,𝑗 = {
1 if there exist any i for which 𝑥𝑖,𝑗lies in the interval 𝑞

0 Otherwise.
                                                     (1) 

Then 𝐒(𝑛, 𝑝) is said to be Latin hypercube when the following condition is satisfied: 

∑ ∑ 𝑦𝑞,𝑗
𝑛
𝑞=1

𝑝
𝑗=1

𝑛. 𝑝
= 1                                                                                                                                      (2) 

The left-hand side of Eq. (2) is essentially a function of the sample matrix, 𝐹(𝑺(𝑛, 𝑝)), that 

varies between 1 (when the sample is Latin hypercube) and 1/n (when all sample points are in a 

single interval at every dimension).  

To extend the formulation above to PLHS, we define the set of auxiliary binary variables as 

𝑦𝑞,𝑗
𝑡 , corresponding to sample matrix 𝐋𝑡 = ⋃ 𝐒𝑘(𝑛𝑘, 𝑝)

𝑡
𝑘=1 ,  where t = 1, 2,· · ·, T represents the 
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slice number. Note that the number of sample points in 𝐋𝑡 is 𝑛𝑡 = ∑ 𝑛𝑘
𝑡
𝑘=1 , and the factor space 

[0,1]p is divided into 𝑛𝑡 disjoint intervals [0 - 1/nt), [1/ nt - 2/ nt), · · ·, [(nt ‒1)/ nt - 1] indexed by 

q (q = 1, …, nt) along each axis/dimension. Then the following equation is the necessary and 

sufficient condition for a sample to be said progressive Latin hypercube: 

∑
∑ ∑ 𝑦𝑞,𝑗

𝑡𝑛𝑡
𝑞=1

𝑝
𝑗=1

𝑛𝑡. 𝑝

𝑇

𝑡=1

= 𝑇                                                                                                                               (3) 

The left-hand side of Eq. (3) is a summation of 𝐹(𝐋𝑡(𝑛𝑡, 𝑝)) from Eq. (2) for t = 1, . . ., T, 

∑ 𝐹(𝐋𝑡(𝑛𝑡, 𝑝))
𝑇
𝑡=1 . 

Generation of PLHS via the mathematical formulation derived is an optimization problem, as 

follows: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑
∑ ∑ 𝑦𝑞,𝑗

𝑡𝑛𝑡
𝑞=1

𝑝
𝑗=1

𝑛𝑡 . 𝑝

𝑇

𝑡=1

                                                                                                                  (4) 

with 𝑥𝑖,𝑗 as decision variables and 𝑦𝑞,𝑗
𝑡  as auxiliary variables. 

2.3.3 Practical implementation 

The real-valued optimization formulation of Eq. (4) can be solved via various optimization 

solvers to generate a progressive Latin hypercube sample. As an alternative to directly solving 

this optimization problem, however, we also introduce two heuristic algorithms that efficiently 

construct PLHS for practical applications. The first algorithm, referred to as “doubling 

procedure” in this study, is an iterative approach which constructs a PLHS such that, at each 

step, the size of the sample is doubled. As such, the doubling procedure has limited flexibility in 

sample size. To gain flexibility in sample size, we develop the second algorithm for generating 

the PLHS, using an optimization approach. Any of these algorithms can be used in conjunction 

with other desired criteria such as such as maximum space filling and/or minimum correlation in 

addition to PLHS properties to improve the overall quality of sampling. Section 2.3.3.2 explains 

a range of criteria that can be used during sampling or to test the quality of an already generated 

sample. 
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2.3.3.1 An iterative approach: doubling procedure (perfect-PLHS) 

Perhaps, the only possible way to iteratively generate PLHS – adding new slices to an already 

generated LHS – is through the following algorithm. In this algorithm, the user chooses the size 

of the first slice S1 (i.e., n1), and then the size of the second slice S2 will be n2 = n1 resulting in a 

sample L2 of size 2n1. Subsequently, the size of the third slice S3 will be n3 = 2n1, resulting in a 

sample L3 of size 4n1 and so on. This means the size of sample (Lj) in this algorithm grows 

geometrically, as n1 × 2(j ‒ 1). 

Here we use an example shown in Fig. 2-4 to clarify this and explain how the algorithm 

works. With no loss of generality and for the sake of simplicity, this example is designed in a 2-

dimensional space. Fig. 2-4a shows the first slice with n1 = 3, which is Latin hypercube. In Fig. 

2-4b, each of the three intervals for each dimension is divided into two equal intervals, and in 

Fig. 2-4c, three new sample points are added to create a Latin hypercube sample of size 6. 

Again, in Fig. 2-4d, each of the six intervals at each dimension is divided into two equal 

intervals resulting in 12 disjoint intervals for each dimension, and in Fig. 2-4e, 6 new sample 

points are added such that the resulting 12-point sample is Latin hypercube. This doubling 

procedure of sample size at each slice can be continued until obtaining the required sample size 

(3, 6, 12, 24, and so on). A similar approach to the above algorithm was proposed by Sallaberry 

et al. (2008), called the “two-multiple” algorithm, and further developed by Williamson (2015) 

for uncertainty quantification. 
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Figure 2-4 A doubling procedure of sample size for generating perfect-PLHS with n = 12 and p = 

2: (a) An initial LHS with 3 sample points, (b) Dividing an initial sample domain into 6 intervals 

with equal marginal probability (c) The second slice with 6 sample points, (d) Dividing the 

second slice into 12 intervals with equal marginal probability, and (e) The third slice with 12 

sample points. 

 

2.3.3.2 An optimization approach (quasi-PLHS) 

This approach utilizes an existing sampling strategy as a building block, called Sliced Latin 

hypercube Sampling (SLHS), originally developed by Qian (2012) and further enhanced by Ba et 

al. (2015) and Chen et al. (2016). The SLHS is a special type of LHS that generates a Latin 

hypercube sample (say with size n) formed by a collection of smaller, equally sized Latin 

hypercube samples (say with size m=n/T where T is the number of sub-samples). Mathematically 

stated, let 𝐋𝐇𝐒𝑘(𝑚, 𝑝) for k = 1, 2,···, T be a set of sample matrices and St be a new sample set 

formed by the aggregation of these sub-samples such that 𝐒𝑡 = ⋃ 𝐋𝐇𝐒𝑘(𝑚, 𝑝)𝑡
𝑘=1 , where 1< t ≤ 

T. A sample matrix is 𝐒𝐋𝐇𝐒(𝑛, 𝑝, 𝑇) if and only if 𝐒𝑇, the union of all sub-samples, is Latin 

hypercube (i.e., 𝐋𝐇𝐒(𝑛, 𝑝) where n = m×T). As such, although the entire sample is Latin 

Sample Size n1 = 3

(a) (b) (c)

Sample Size n2 = 6

Sample Size n3 = 12

dividing into 
equal intervals

adding new 
sample points

adding new 
sample points
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hypercube, the progressive addition of the sub-samples may not be Latin hypercube. This is the 

fundamental difference between SLHS and our proposed PLHS.  

Utilizing SLHS, we developed an algorithm to approximately generate (quasi-) PLHS 

efficiently. The algorithm has two main steps. In the first step, SLHS is used to generate a set of 

T slices. In the second step, the order (arrangement) of theses slices is permutated to maximize 

one-dimensional projection properties when the slices are progressively combined. In other 

words, in this step, we search for an optimal permutation (ordering) of the slices to maximize 

objective function defined by Eq. (4). The two steps can be repeated (with different initial 

random seed for SLHS) until a desirable sample is found.  

Mathematically stated, we define a permutation π as a bijective function from {1, 2,· · ·, T} to 

{1, 2,· · ·, T}. It is convenient to think of permutation π as sequence {π(1), π(2), · · ·, π(T)}. For 

example, if π = {2, 1, 3} then π(1) = 2, π(2) = 1, and π(3) = 3; hence, π(k) is the kth element of 

this sequence. Let Π be a set of random permutations of the integers {1, 2, · · ·, T}. Then, the 

problem is finding an optimal permutation of slices, 𝜋∗ ∈ 𝚷, to maximize 

𝐹(⋃ 𝐋𝐇𝐒𝜋∗(𝑘)(𝑚, 𝑝)𝑡
𝑘=1 ),   for t = 1, . . ., T (Eq. (4)). 

This optimization formulation is an ordering problem of Latin hypercube slices to maximize 

PLHS properties. Here, we employ a greedy search algorithm explained in the following to find 

a near optimal solution to this optimization problem. Note that in this algorithm, the initial slice 

π*(1) is chosen randomly. Table 2-2 shows a straightforward heuristic Algorithm 1 which is 

based on the so-called nearest neighbor greedy heuristic. Using Algorithm 1, we construct a 

permutation of slices π* = {π*(1), π*(2), · · ·, π*(T)} with the initial slice π*(1) chosen 

randomly. In general, the next π*(k) is selected such that it maximizes F at each stage. The 

proposed procedure can be further improved if we repeat the algorithm by running it for different 

initial SLHS trials and then choosing the best PLHS among them. For each experiment in this 

study, we ran the algorithm 100 times with different random seeds and reported the best sample 

found based on the objective function. Note that in general, the choice of m and T is rather 

arbitrary. However, to generate a sample with size T×m, the algorithm is more computationally 
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efficient for smaller numbers of slices, T. For example, producing T = 10 slices with m = 1,000 

samples in each slice is much more efficient than producing T = 1,000 slices with m = 10. 

 

Table 2-2 The pseudo-code of the greedy search for generating quasi-PLHS 

Algorithm 1 

• Select sample size n, number of dimensions/factors p, and total number of slices T. 

• Generate a set of T slices using SLHS algorithm, 𝐒𝐋𝐇𝐒(𝑛, 𝑝, 𝑇) = ⋃ 𝐋𝐇𝐒𝑘(𝑚, 𝑝)𝑇
𝑘=1  

• Randomly arrange slices in a sequence, {π(1), π(2), · · ·, π(T)}. 

• Select an integer randomly, r, between 1 and T, and set k = 1, π*(1) = r, and 𝐒 =  𝐋𝐇𝐒𝜋∗(1)(𝑚, 𝑝). 

• Mark the rth slice as visited and the other T‒1 slices as unvisited. 

 

while k is smaller than T 

  Set Fbest = 0 and k = k + 1. 

  For j = all unvisited slices 

    Construct a new set as 𝐒𝜋(𝑗) =  𝐒 ∪ 𝐋𝐇𝐒𝜋(𝑗)(𝑚, 𝑝). 

    Evaluate the objective function value using Eq. (4), 𝐹(𝐒𝜋(𝑗)). 
    If 𝐹(𝐒𝜋(𝑗)) >Fbest 

     Fbest = 𝐹(𝐒𝜋(𝑗)) 
       𝜋∗(𝑘) = 𝜋(𝑗) 
    end if 

  end for 

  Mark the π*(k)-th slice as visited and the other (T‒k) slices as unvisited. 

  𝐒 =  𝐒 ∪ 𝐋𝐇𝐒𝜋∗(𝑘)(𝑚, 𝑝). 

end while 

 

• Set  𝐏𝐋𝐇𝐒(𝑛, 𝑝, 𝑇) = ⋃ 𝐋𝐇𝐒𝜋∗(𝑘)(𝑚, 𝑝)𝑇
𝑘=1  

 

2.3.3.3 Other criteria 

Like many other sampling strategies, a range of secondary criteria is available to be used in 

conjunction with the primary criteria such as the PLHS requirements (i.e. progressively attaining 

the projection properties). Any of these criteria can be optimized during sampling or used to 

evaluate an already generated sample. Below, we outline three possible criteria that work for 

maximum space-filling, lower discrepancy, and minimum pairwise correlation. 

The maximin distance criterion is a measure of space-filling, which aims to maximize the 

minimum distance among every pair of points in a sample, dist: 
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𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒: 𝑑𝑖𝑠𝑡 = min
𝑖,𝑗=1,…,𝑛

𝑖≠𝑗

{𝑑(𝐗𝑖, 𝐗𝑗)}                                                                                                  (5) 

where d(.,.) is a distance measure (here the Euclidean measure) and n is the sample size. 

The maximin criterion is mainly intended to improve space-filling properties to ensure that 

generated sample points are evenly spread across the entire factor space – i.e., sample points are 

located almost equally far apart. This optimality criterion has reportedly worked well to ensure 

adequate space-filling (Santner et al., 2003).  

The so-called L2-star discrepancy is a metric to evaluate the uniformity and discrepancy of 

sample points in an input space. Given a set of n points S = {X1, · · ·, Xn}
T with 𝑿𝑖 ∈ ℝ𝑝 in the 

p-dimensional unit cube Cp = [0, 1)p, this metric can be approximately calculated by (Warnock, 

1972): 

𝐷𝐿2(𝐒) = (
1

3
)
𝑝

+
1

𝑛2
∑∑∏[1− max(𝑥𝑘,𝑗, 𝑥𝑖,𝑗)]

𝑝

𝑗=1

𝑛

𝑖=1

𝑛

𝑘=1

−
21−𝑝

𝑛
∑∏(1− 𝑥𝑖,𝑗

2 )

𝑝

𝑗=1

𝑛

𝑖=1

                        (6) 

where xi,j is the jth coordinate of the ith point (Xi) in the sample set S. This metric varies between 

0 and 1, and lower discrepancy values indicate better spread of points in the input space. In 

addition to the L2-star discrepancy, other types of discrepancy metrics are available in the 

literature such as centered discrepancy, symmetric discrepancy, and wrap-around discrepancy 

(Hickernell, 1998; Gong et al., 2016).  Here, we used the L2-star discrepancy (Eq. (6)), which is 

a popular metric representing the overall uniformity in the high-dimensional space (Niederreiter, 

1992). 

Finally, the maximum pairwise correlation is a standard measure of linear dependence between 

two variables. This measure is based on the Pearson product-moment correlation coefficient. For 

any two columns (𝑖 ≠ 𝑗 ) of a sample matrix, it can be calculated by: 

𝜌𝑖𝑗 =
∑ (𝑥𝑘,𝑖 − �̅�:,𝑖)
𝑛
𝑘=1 (𝑥𝑘,𝑗 − �̅�:,𝑗)

√∑ (𝑥𝑘,𝑖 − �̅�:,𝑖)
2𝑛

𝑘=1 ∑ (𝑥𝑘,𝑗 − �̅�:,𝑗)
2𝑛

𝑘=1

                                                                                       (7) 

where �̅�:,𝑖 = ∑ 𝑥𝑘,𝑖/𝑛
𝑛
𝑘=1  and  �̅�:,𝑗 = ∑ 𝑥𝑘,𝑗

𝑛
𝑘=1 /𝑛. 
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The maximum absolute value of ρij for all pair-wise combinations of factors is commonly used 

as a measure of sample quality and denoted by ρmax (Cioppa and Lucas, 2007). Therefore, a 

sample with smaller ρmax is deemed to be of higher quality. 

In our experiments in this study, we utilized the maximin distance criterion directly during 

sampling. We also used the L2-star discrepancy and maximum pairwise correlation criteria to 

independently evaluate the generated samples via different strategies. In PLHS, the maximin 

distance criterion for every slice as well as for the entire sample were calculated and aggregated 

via a weighting approach.  

 

2.4 Computational Experiments 

We used two test problems and designed four experiments to evaluate the performance of PLHS 

against other sampling methods in the input space in terms of space-filling, correlation, and 

projective properties (first experiment), and in the output space in terms of the statistical 

measures and sensitivity metrics (last three experiments). The two test problems and the 

experimental setup are described as follows. 

2.4.1 Test problems 

2.4.1.1 A 2-D analytical test function 

We compared the performance of the different sampling algorithms on a two-dimensional toy 

function, Y, defined by 

𝑌(𝑥1, 𝑥2) = 2(𝑥1)
2 + 3(𝑥2)

2 + 𝑥1. 𝑥2                                                                                                    (8) 

where x1 and x2 are random variables uniformly distributed in interval [‒1, 1]. This function, 

adapted from the analysis of Razavi and Gupta (2015), is a quadratic function with an interaction 

term (the third term).  
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2.4.1.2 A real-world problem 

We employed the HYMOD conceptual hydrologic model (Fig. 2-5) to assess PLHS in real-world 

problems. HYMOD has five parameters that need to be specified/calibrated by the user (Table 2-

3). Details of HYMOD can be found in Boyle (2000) and Wagener et al. (2001). The HYMOD 

model used in this study was adopted from Vrugt et al. (2003), developed for the Leaf River 

watershed located north of Collins, Mississippi, USA. We used the Nash-Sutcliffe metric on 

streamflows (NS) as well as on the logarithm of streamflows (NS-log) as the model outputs. 

 

Figure 2-5 The structure of the HYMOD rainfall-runoff model that consists of a soil moisture 

module (parameters: bexp and Cmax) and a routing module (parameters: alpha, Rs, and Rq). 

 

Table 2-3 Description of the HYMOD parameters 

Parameter Range Unit Description 

Cmax 1.00 ‒500.00 [mm] Maximum storage capacity  

bexp 0.10 ‒2.00 [‒] Degree of spatial variability of the soil moisture capacity  

alpha 0.10 ‒0.99 [‒] Factor distributing the flow between two series of reservoirs  

Rq 0.10 ‒0.99 [day] Residence time of the quick release reservoirs  

Rs 0.00 ‒0.10 [day] Residence time of the slow release reservoir 

 

We ran the model with 500,000 randomly generated parameter sets (uniformly distributed in 

the parameter ranges of Table 2-3) by original LHS to generate the “true” cumulative 
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distribution functions (CDFs) of the model responses. Fig. 2-6 shows the CDFs for NS and NS-

log metrics. 

 

Figure 2-6 The true cumulative distribution functions (CDFs) of the HYMOD model outputs: 

Nash-Sutcliffe metrics on streamflows (NS) and on the logarithm of streamflows (NS-log) 

 

2.4.2 Design of experiments 

2.4.2.1 Experiment I 

We designed the first experiment to evaluate PLHS in terms of achieving the maximum 

stratification when projected onto univariate margins using the proposed objective function (Eq. 

(4)) in 2-, 5-, and 100-dimensional input spaces. Moreover, in this experiment the quality of 

different sampling strategies were compared using the low-discrepancy (Eq. (6)) and maximum 

pairwise correlation (Eq. (7)) as the performance measures. 

2.4.2.2 Experiment II 

One of the frequent uses of sampling is in Monte Carlo simulation. This experiment investigated 

the effectiveness of PLHS in Monte-Carlo-based estimation of the first- and second-order 

moments (mean and variance) of variable Z as a function of two uniformly distributed variables, 

as defined by Eq. (8). Here, the performance of sampling methods was evaluated based on the 
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deviation (error) of the estimates of the mean, E(Z), and variance, Var(Z), from their true values, 

which can be analytically calculated as E(Z) = 1.6667 and Var(Z) = 1.2667. 

2.4.2.3 Experiment III 

In this experiment we assessed how PLHS works to improve the convergence and robustness of 

global sensitivity analysis (GSA). We used a recently developed GSA framework, known as 

Variogram Analysis of Response Surfaces (VARS), proposed by Razavi and Gupta (2016a). 

VARS is a general framework that utilizes directional variogram and covariogram functions to 

characterize the full spectrum of sensitivity-related information, thereby providing a 

comprehensive set of global sensitivity metrics with minimal computational cost. VARS 

generates a new set of sensitivity metrics called IVARS (Integrated Variogram Across a Range 

of Scales) that summarize the variance of change (rate of variability) in model response at a 

range of perturbation scales in the parameter space. VARS also generates the Sobol’ (variance-

based) total-order effect and the Morris (derivative-based) elementary effects. Here, we utilized 

the STAR-VARS implementation of VARS developed in Razavi and Gupta (2016b). It has been 

shown that STAR-VARS is highly efficient and statistically robust, providing stable results 

within 1-2 orders of magnitude smaller numbers of sampled points (model runs), compared with 

the original Sobol’ and Morris approaches (Razavi and Gupta (2016 a,b)).  

STAR-VARS utilizes a star-based sampling, which consists of two elements: (1) Latin 

hypercube sampling to identify star centers, and (2) a structured-sampling approach to identify 

star points. In this experiment, we replaced the first element by PLHS (and the benchmark 

sampling algorithms) to generate star centers. The sample size reported in this experiment refers 

to the number of star centers taken by the first element above. The total number of function 

evaluations (the total sample including sample points from the second element) were 2,300 and 

950 for the HYMOD and 2-dimensional case studies, respectively. We set ∆h (VARS resolution 

parameter) to 0.1 (as recommended in Razavi and Gupta (2016b)). We compared the 

performance of VARS enabled with the different sampling algorithms in generating IVARS10 

(integrated variogram in range 0 to 10% of the parameter range), IVARS50 (integrated variogram 

in range 0 to 50% of the parameter range), and VARS-TO (VARS-derived Total-Order effect). 
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These global sensitivity metrics are calculated simultaneously in a VARS run. The global 

sensitivity of NS to the five HYMOD model parameters and two-dimensional test function were 

assessed. The “true” values of these global sensitivity metrics for this case study were adopted 

from Razavi and Gupta (2015; 2016b). 

2.4.2.4 Experiment IV 

This experiment was designed to evaluate PLHS in an uncertainty analysis context, where of 

interest is to understand how uncertainty in model inputs propagates to the model output via 

Monte-Carlo simulations. Here, we tested how PLHS works to approximate the distribution of 

the output of the HYMOD model. This experiment has fundamental elements in common with 

GLUE-type analyses and was also intended to reflect how PLHS could improve the efficiency 

and robustness of GLUE. The goal here was to assess how accurate and robust PLHS could 

approximate the true distribution of the model output as the sample size grows. The accuracy 

was assessed by comparing the approximate CDF with the true CDF using two similarity metrics 

that measure the difference between the distributions of random variables.  

The first metric is the Kolmogorov-Smirnov (K-S) distance measure (Kolmogorov, 1933). As 

a measure of similarity, the K-S calculates the maximum distance between the two CDFs as 

follows  

𝐾 − 𝑆 = max
𝑦

|𝐶𝐷𝐹𝑡𝑟𝑢𝑒(𝑦) − 𝐶𝐷𝐹𝑎𝑝𝑝𝑟𝑥(𝑦)|                                                                                         (9) 

where y is the model output (NS or NS-log), and CDFtrue and CDFapprx are the true and 

approximated distributions of the model output.  

The second metric is called energy distance which characterizes the equality of two 

distributions (Székely and Rizzo, 2005). Suppose that X and Y are independent sets of real-

valued random variables with cumulative distribution functions CDFtrue and CDFapprx, 

respectively; the energy distance is the squared root of  

𝐷2(𝐶𝐷𝐹𝑡𝑟𝑢𝑒 , 𝐶𝐷𝐹𝑎𝑝𝑝𝑟𝑥) = 2𝐸‖𝑋 − 𝑌‖ − 𝐸‖𝑋 − �́�‖ − 𝐸‖𝑌 − �́�‖                                             (10) 
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where ||.|| denotes the Euclidean norm, and �́� denotes an independent and identically distributed 

(iid) copy of 𝑋; and similarly, 𝑌 and �́� are iid. Mathematically, it has been proven that the 

Energy distance is twice the Cramér’s distance (Székely and Rizzo, 2013), i.e. 

𝐷2(𝐶𝐷𝐹𝑡𝑟𝑢𝑒 , 𝐶𝐷𝐹𝑎𝑝𝑝𝑟𝑥) = 2 ∫ (𝐶𝐷𝐹𝑡𝑟𝑢𝑒(𝑦) − 𝐶𝐷𝐹𝑎𝑝𝑝𝑟𝑥(𝑦))
2

𝑑𝑥

∞

−∞

                                         (11) 

In this experiment, we used the normalized version of energy distance, D2
N, which can be 

estimated by dividing D2 by an estimate of 𝐸‖𝑋 − 𝑌‖. For more details on energy distance, see 

Székely and Rizzo (2013, 2005) and Aslan and Zech (2005). 

The K-S and D2
N values vary between zero and one, with zero indicating the two distributions 

are identical. In this experiment, we compared different sampling strategies based on how 

rapidly their values of K-S and D2
N converge to zero as the sample size grows. 

2.4.3 Setup for sampling strategies 

The two developed PLHS algorithms, using the doubling procedure (called perfect-PLHS) and 

optimization approach (called quasi-PLHS), were tested in the four different experiments 

explained above. For comparison purposes, the same experiments were also carried out with 

random sampling (RAND), original LHS, Sobol’ sequence, and SLHS. Table 2-4 summarizes 

the experimental setup for each case study. 

Table 2-4 Setup summary of computational experiments 

Case study Sample 

size (n) 

Number of 

slices (T) 

Slice size 

(m) 

Dimension 

(p) 

Experiment I 

1,000 100 10 2-D 

1,000 10 100 5-D 

1,000 10 100 100-D 

Experiment II 1,000 100 10 2-D 

Experiment III 
50 10 5 2-D 

50 10 5 5-D 

Experiment IV 500 10 50 5-D 

 

For RAND and LHS techniques, to construct samples sequentially, we simply generated 

sample points at each new slice and added them to previous ones, regardless of the properties of 
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previously generated slices. It should be noted that the samples generated for Experiment I were 

also used for numerical simulations in Experiment II. For Sobol’ sequence (enabled with leaping 

and scrambling), RAND, and original LHS techniques, we used the built-in functions of 

MATLAB to generate the samples and for the SLHS technique, we employed the method 

introduced by Ba et al. (2015). Moreover, for each replicate of LHS, SLHS, and PLHS 

algorithms, we ran 100 trials with different random seeds and reported the best sample according 

to the maximin criterion. Also, to ensure a fair comparison, we accounted for sampling 

variability due to randomness in the comparisons by carrying out 100 replicates of each 

experiment. This allowed us to see a range of possible performances for each algorithm and to 

assess their robustness against their random components. 

 

2.5 Results and Discussion 

2.5.1 Performance evaluation in the input space 

Fig. 2-7 compares the average objective functions (Eq. (4)), F, as the sample size grows for 

different sampling methods obtained from the 100 replicates (to normalize this value, it is 

divided by the total number of slices T). The results are based on 2, 5, and 100-dimensional input 

spaces.  The value of F associated with perfect-PLHS remains at one for all the slice numbers 

(not shown), and that of quasi-PLHS (using Algorithm 1) is higher than those produced by 

RAND, LHS, Sobol’ and SLHS. This indicates that PLHS better preserves the projective 

properties and achieves the best stratification. Importantly, the F values of RAND and LHS tend 

to degrade by increasing the sample size, suggesting they might not be appropriate for sequential 

sampling. As shown in Fig. 2-7, in lower dimension the Sobol’ sequence is better than RAND 

and LHS; however, by increasing the dimensionality of the space to 100, it performs almost like 

the RAND technique in terms projection properties. 
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Figure 2-7 Comparison of different sampling algorithms in preserving one-dimensional 

projection properties as the sample size grows (the average of objective function defined by Eq. 

(4) over 100 replicates) – the objective function value of one indicates perfect performance – 

perfect-PLHS not shown as it remains on one for all slice numbers. 

 

Fig. 2-8 compares the discrepancy metric DL2 of different sampling strategies defined by Eq. 

(7) for the 100-dimensional input space. Here, the perfect-PLHS was constructed by doubling the 

initial sample size of 100, resulting in 100, 200, 400, and 800 sample points, equivalent to slice 

numbers 1, 2, 4, and 8 of the other sampling strategies. As can be seen, the Sobol’ sequence has 

the lowest DL2 discrepancy values, which is comparable with the perfect-PLHS. The best 

performance of Sobol’ is because this method is inherently constrained by a low-discrepancy 

criterion. Then, the quasi-PLHS is the superior algorithm, as it consistently has the lower 

discrepancy values for any sample size. SLHS comes fourth, followed by LHS and RAND. 

Slice number Slice number Slice number

2-D 5-D 100-D

RAN
D

LHS SLHS X quasi-PLHS + Sobol’

F F F
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Figure 2-8 Comparison of different sampling strategies in uniformly spreading sample points 

based on the discrepancy metric (Eq. (7)) – The results are average of 100 replicates for the 100-

dimenasional case – a lower discrepancy metric indicates a better dispersion of sample points. 

 

The maximum pairwise correlations (ρmax) for different sampling strategies in the 100-

dimenasional input space are illustrated in Fig. 2-9. Like Fig. 2-8, the perfect-PLHS was 

constructed with total sample size of 800 (equivalent to slice numbers 1, 2, 4, and 8). Overall, at 

each slice number, the performance of all the algorithms are close, with the perfect- and quasi-

PLHS strategies having the minimum (best) ρmax of all. The results of RAND, LHS, and SLHS 

are comparable in terms of ρmax in most cases, except for the last slice, where SLHS demonstrates 

considerable improvement. Furthermore, the Sobol’ method has the higher ρmax values compared 

to the SLHS and LHS. 
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Figure 2-9 Comparison of different sampling strategies in terms of maximum pairwise 

correlation between the factors (Eq. (8)) – The results are average of 100 replicates for the 100-

dimenasional input space. 

 

2.5.2 Estimating the mean and variance of the 2-D problem 

Fig. 2-10 shows the performance of the different sampling algorithms, as their sample size 

grows, in estimating the mean and variance of the 2-dimensional test problem described by Eq. 

(8). The average error of these estimates was computed as the proportion of the “true” mean 

(1.6667) and variance (1.2667). According to Fig. 2-10a and b, the Sobol’, perfect- and quasi-

PLHS methods outperformed the other algorithms, as they resulted in the lowest average error 

(over 100 replicates) in estimating both of the mean and variance. To further scrutinize this 

observation, Fig. 2-10c and d show the standard deviation of the estimates of the mean and 

variance over the 100 replicates. Both perfect- and quasi-PLHS resulted in the least standard 

deviation among all the algorithms for any given number of function evaluations; however, the 

Sobol’ method has the higher values of standard deviations. SLHS performs better than LHS and 

RAND in these analyses. Moreover, the empirical cumulative distribution functions (CDFs) of 

the estimates are compared in Fig. 2-10c and d for the 80th slice, i.e., after 800 function 

evaluations. These results indicate the superiority of the proposed variants of PLHS compared 

with the alternatives (1) in approximating statistics of a model response surface with fewer 

function evaluations (model runs), and (2) in terms of robustness against sampling variability and 
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randomness, as with perfect- and quasi-PLHS, the estimates of the mean and variance across the 

100 replicates with different random seeds were significantly closer to each other.  

 

 

Figure 2-10 Case study 2: Comparison of different sampling strategies in estimating the mean (a 

& c) and variance (b & d) of the 2-dimensional problem. In (a) and (b), the deviations (errors) 

from the true mean and true variance were averaged over 100 replicates. In (c) and (d), the 

standard deviation of the estimated mean and variance (regardless of the true values) over the 100 

replicates were calculated. 
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2.5.3 Comparison in a sensitivity analysis context  

Fig. 2-11 & 12 demonstrate the performance of different sampling algorithms in global 

sensitivity analysis of the test problems. The 5th and 95th percentiles (90% interval) of the 100 

replicates of this experiment with different random seeds were investigated to gain a view of the 

range of possible performances of different algorithms. This also helped to assess the robustness 

of the sensitivity analysis to sampling variability. The first test problem has only two input 

variables (x1 and x2) where parameter x2 is more sensitive than x1 according to all used sensitivity 

metrics. The second test problem has 5 parameters, and their ranks according to IVARS50 and 

VARS-TO are as follows Rq, Cmax, alpha, bexp, and Rs. Results of IVARS10 and VARS-TO for 

test problem 1 and IVARS50 and VARS-TO for test problem 2 were (arbitrarily) chosen to be 

shown.  

As can be seen, for the first test problem perfect-PLHS, quasi-PLHS, and Sobol’ techniques 

outperformed the other sampling algorithms, as their 90% intervals are consistently narrower for 

any sample size for the 2-D case study. However, the performance of Sobol’ method decreased 

for the sensitivity analysis of the 5-D HYMOD model, particularly in lower number of function 

evaluations. As expected, perfect-PLHS worked slightly better than quasi-PLHS, at the trade-off 

of not providing flexibility in sample size. The performance of SLHS was significantly better 

than LHS and RAND in most cases, and RAND comes the last one. These results indicate that 

enabling VARS with PLHS improves the convergence and robustness of sensitivity analysis, 

specifically in more complex problems. 
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Figure 2-11 Comparison of different sampling strategies in global sensitivity analysis of 2-D problem 

using the VARS method. The 5th and 95th percentiles of the 100 replicates are shown along with true 

values. Here, the IVARS10 and VARS-TO (Total-Order effect) metrics were illustrated. 

 

Figure 2-12 Comparison of different sampling strategies in global sensitivity analysis of NS criterion to 

HYMOD model parameters. The top panel is for the IVARS50 metric and the bottom panel is for VARS-

TO (Total-Order effect) metric. The 5th and 95th percentiles of the 100 replicates are shown along with 

true values as the sample size grows. 
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2.5.4 Comparison in an uncertainty analysis context 

Fig. 2-13 shows the performance of the different sampling algorithms in approximating the 

CDFs of the model outputs in a Monte-Carlo simulation setting. Also, to assess the efficiency of 

different sampling algorithms in GLUE-type analyses (Beven and Binley, 1992), we set a 

behavioral/non-behavioral threshold of NS = 0.50 (Fig. 2-13c). As can be seen, both variants of 

PLHS resulted in minimum average K-S and D2
N similarity measures almost everywhere, 

followed by Sobol’, SLHS, LHS, and RAND. This superiority demonstrates that PLHS can 

adequately explore the model response surface for any sample size and can characterize the CDF 

of the model response more efficiently, within less numbers of model runs. 
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Figure 2-13 Comparison of different sampling strategies in approximating the CDFs of the 

HYMOD model using K-S distance (top panel) and energy distance (bottom panel) metrics. 

Subplots (a) and (b) show the results for NS and NS-log, respectively. Subplot (c) shows the 

results for NS when of interest is to approximate the CDF of the model outputs with NS > 0.5 

(only model outputs for behavioral parameter sets) to assess the sampling performance in a 

GLUE-type analysis – in each plot, the values were averaged over 100 replicates. 

 

This feature of PLHS is helpful when performing density-based (moment-free) uncertainty and 

sensitivity analysis, such as in regional sensitivity analysis approach of Hornberger and Spear 

(1981). The density-based techniques aim to characterize uncertainty and sensitivity in terms of 

the entire distribution of the model output (density functions). Typically, these methods measure 

the difference between the conditional and unconditional density functions using a distance-

based metrics such as Minkowski class of distance (Chun et al., 2000) or δ-density (Borgonovo, 

2007) or entropy-based metrics such as Shannon entropy (Krykacz-Hausmann, 2001) or 

Kullback-Leibler entropy (Liu et al., 2006). Regardless of the chosen metric, quantifying 

density-based statistics with desirable accuracy and robustness requires many function 

evaluations, which may come with a high computational burden (Castaings et al., 2012). The 

proposed PLHS can be an alternative sampling approach in performing density-based techniques 

by reducing the computational cost and improving the robustness and accuracy of estimations. 

 

NS NS-log NS > 0.5

Function evaluations Function evaluations Function evaluations

(d) (e) (f)
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2.6 Conclusions 

Modern environmental models are typically characterized by complex response surfaces, large 

parameter/problem spaces, and high computational demands. These attributes impede effective 

implementation of various sampling-based analyses which require running such computationally 

intensive models many times to adequately explore and characterize the model response surface 

across the parameter/problem space. In this context, the proper choice of sample size to 

maximize the amount of information extracted from the model and the proper distribution of the 

sample points in the input space are very important.  

To address these issues, in this chapter we introduced a novel strategy, called PLHS 

(Progressive Latin hypercube sampling), for sequentially sampling the input space while 

progressively maintaining the Latin hypercube properties. The proposed PLHS is composed of a 

series of smaller slices generated in a way that the union of these slices from the beginning to the 

current stage optimally preserves the desired distributional properties and at the same time 

achieves maximum space-filling. Motivations behind developing PLHS include: 

• PLHS rectifies a disadvantage of the original LHS that new sample points cannot be 

added sequentially to the sample set. The lack of this capability limited the utility of LHS 

in any sampling-based analyses where termination criteria are often checked 

incrementally.  

• PLHS is superior to traditional sequential sampling strategies such as Halton, 

Hammersley, and Sobol’ sequences in most cases, as unlike those, it preserves projection 

properties along with other desired sample properties, particularly in high-dimensional 

problems. 

We tested the performance of PLHS against benchmark sampling strategies by numerical 

experiments across four case studies using two test problems. These experiments were designed 

to evaluate PLHS in the input space in terms of space-filling, correlation, and projection 

properties and in the output space in terms of statistical measures and sensitivity metrics. The 

numerical experiments indicated that PLHS can minimize the computational burden of sampling-
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based analyses of computationally expensive models by conducting only model runs that are 

necessary to achieve the results of desired quality. 
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Chapter 3 

Characterizing the Role of Internal Parameters on the Functioning of River 

Ice Model Using Global Sensitivity Analysis 

This chapter is a mirror of the following published article with minor changes to increase its 

consistency with the body of the dissertation. Changes were only made to avoid repeating the 

contents that have been presented more appropriately in other parts. References are unified at the 

end of the dissertation. 

Sheikholeslami, R., Yassin, F., Lindenschmidt, K.E. and Razavi, S., 2017. Improved 

understanding of river ice processes using global sensitivity analysis approaches. Journal of 

Hydrologic Engineering, 22(11), p.04017048. https://doi.org/10.1061/(ASCE)HE.1943-

5584.0001574 

Synopsis 

The high impact of river ice phenomenon on the hydrology of cold regions has led to the 

extensive use of numerical models in simulating and predicting river ice processes. 

Consequently, there is a need to utilize efficient and robust sensitivity analysis methods to 

characterize the role of different parameters on the functioning of these models. To gain greater 

insight into how the internal parameters affect a river ice model’s behavior, this chapter presents 

a comparative performance investigation of the two global SA methods: (1) the recently 

proposed Variogram Analysis of Response Surfaces (VARS), and (2) the widely-used Regional 

Sensitivity Analysis (RSA). The methods are benchmarked on a one-dimensional hydrodynamic 

river ice model of the Lower Dauphin River, Manitoba, Canada. Furthermore, using a 

bootstrapping strategy, a procedure is developed to estimate confidence intervals on the resulting 

sensitivity indices and evaluate reliability of the inferred parameter rankings.  

 

https://doi.org/10.1061/(ASCE)HE.1943-5584.0001574
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001574
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3.1 Introduction 

For a majority of cold regions, river ice has a significant impact on hydrologic processes and is a 

potential cause of extreme floods and low winter flows (river ice formation can abstract water 

making this stored water unavailable for flow until the next spring). Dynamics of the formation, 

transport, and decay of the river ice ‒as complex physical phenomena‒ are generally governed 

by the interactions between river geometry, flow conditions, and mechanical and thermal energy 

transfer between ice, water, and atmosphere (Beltaos and Prowse, 2009; Ohara et al., 2014). 

River ice, in turn, may significantly affect the morphological and hydraulic properties of rivers. 

For example, water velocity distribution, channel conveyance capacity and sediment transport 

can be changed by ice cover development because the ice adds an extra boundary layer on top of 

the river and increases the flow resistance (Ettema and Daly, 2004; Aghaji Zare et al., 2015). The 

accuracy of real-time streamflow data can also be reduced during ice-affected periods due to the 

blocking of the channel by ice and increased flow resistance (Holtschlag and Grewal, 1998). 

River ice also modifies chemical processes (e.g., oxygen exchange), stream and wetland ecology, 

and various in-stream, deltaic, and riparian habitats (Prowse, 2001; Hicks et al., 2006; 

Lindenschmidt and Sereda, 2014).  

Furthermore, river ice can degrade the performance of engineering structures, by damaging 

hydraulic structures (e.g., dams and bridges), hampering water supply or intakes, and impeding 

river navigation. Ice-induced flooding can be more severe than open water flooding, thereby 

threatening human safety and quality of life (Hicks, 2009, Xiong and Xu, 2009; Zufelt and 

Walton, 2012). Therefore, the provision of technically feasible options for river ice management 

(monitoring, control, and mitigation) plays a crucial role in flood control and risk assessment and 

is vital for water resources planning and management in cold regions.  

A successful river ice management plan may heavily utilize computer-aided analysis (i.e., 

mathematical models) to simulate and predict river ice processes based on the available amount 

of field data. Since the 1990s, research into river ice modelling has steadily advanced through the 

introduction of several numerical models, such as RICE (Lal and Shen, 1991), RIVJAM 

(Beltaos, 1993), RICEN (Shen et al., 1995), ICEPRO, ICESIM (Carson et al., 2001), DynaRICE 

(Shen et al., 2001), CRISSP1D (Chen et al., 2006), RIVICE (EC, 2013), and YRIDM (Fu et al., 
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2014). These models can be divided into static and dynamic models. Dynamic models, which 

consider dynamic ice conditions, can be further divided into one-dimensional (e.g., YRIDM) and 

two-dimensional models (e.g., DynaRICE). Generally, river ice models are non-linear and 

characterized by several parameters, which may have wide variation domains and be difficult to 

measure, leading to high uncertainty in their values. 

Despite significant research efforts focused on understanding and modelling river ice 

processes, there is still a need for an improved characterization of the role and impact of different 

parameters on the functioning of the system. Sensitivity analysis (SA) can be helpful in this 

respect by providing diagnostic insights into the river ice models and identifying the key factors 

(i.e., boundary conditions, forcings, and parameters) controlling ice dynamics and model 

performance. Hence, in modelling practice, it is advisable to employ SA, adjusted to the specific 

needs of river ice modelling. 

Various methods are available to carry out SA, for example derivative-based methods, one-

factor-at-a-time methods, regression-based methods, regional sensitivity analysis, and variance-

based methods (see, e.g., Hall et al., 2009; Saltelli et al., 2010 for general discussion). These 

techniques can be broadly classified into local and global SA methods. Local methods measure 

how model outputs respond to local variations of the uncertain input factors around a single point 

in the factor space. The limitations of local SA methods have been shown in previous studies, 

particularly, when applied to hydraulic and hydrologic models (Tang et al., 2007; Saltelli and 

Annoni, 2010). By contrast, global methods focus on the influence of an uncertain input factor 

across the entire factor space. Apart from the many successful applications of existing global SA 

(GSA) methods, two major challenges persist with GSA (Razavi and Gupta, 2015), namely: (1) 

an ambiguous definition of global sensitivity, and (2) high-computational demand. The former 

indicates that different GSA methods are based on different philosophies; hence, different 

methods lead to different and sometimes conflicting assessments of sensitivity. The latter is due 

to current-generation GSA methods requiring simulation models (e.g., river ice models) to be run 

many times to achieve reliable and robust sensitivity results. These challenges and outlook of SA 

have been comprehensively discussed in Gupta and Razavi (2017). 
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To overcome these challenges, Razavi and Gupta (2016a) recently proposed a novel GSA 

framework, called Variogram Analysis of Response Surfaces (VARS). VARS provides a 

comprehensive spectrum of information about the underlying sensitivities of a model to its 

factors. Unlike existing global methods, VARS characterizes important sensitivity-related 

properties of the model outputs, including local sensitivities and their global distribution, the 

global distribution of model responses, and the spatial structure of the model response surface. 

VARS develops and utilizes directional variograms and covariograms that contain useful 

information about the variability of the model response surfaces in a factor space across a full 

range of parameter “perturbation scales”. The concept of perturbation scale is included in the 

VARS framework, which can overcome the perturbation scale issue of traditional GSA methods 

(from the small-scale features such as roughness and noise to large-scale features such as 

multimodality). Its effectiveness, efficiency, and robustness has been tested in dealing with 

several mathematical benchmark problems and two real-world hydrological models (Razavi and 

Gupta, 2016a,b). 

With the use of GSA, this chapter aims to evaluate the importance and identifiability of 

different parameters of river ice modelling. Here, our numerical experiments are performed 

through a one-dimensional hydrodynamic river ice model, RIVICE, which was originally 

developed by Environment Canada (EC, 2013). The model has been successfully applied to a 

number of studies in Canada, such as simulating the behavior of ice jams along the Red River in 

Winnipeg (Lindenschmidt et al., 2011), modelling the ice cover formation during winter freeze-

up in Lake St. Martin and the Dauphin River (Lindenschmidt et al., 2012), and evaluating the 

impact of macrophyte growth on the probability of overbank flooding during winter in the Upper 

Qu’Appelle River (Lindenschmidt and Sereda, 2014).  

In this chapter, the VARS and the widely used regional sensitivity analysis (RSA) method of 

Hornberger and Spear (1981) are utilized and compared using the RIVICE model. In addition, a 

bootstrapping strategy is developed to assess the reliability of the results obtained from both 

methods. The model was used to simulate river ice processes in the Lower Dauphin River, 

Manitoba, Canada. To understand the geomorphological controls on the formation of ice covers 

along the Dauphin River, Lindenschmidt and Chun (2013) previously applied the traditional 
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RSA method and compared the parameter sensitivities of two modelling exercises of the upper 

and lower stretches of the river. However, in this chapter, we used a newly developed VARS 

framework as a new GSA approach, with the aim of providing a comparative performance 

investigation of the two methods. Moreover, as discussed in the Methodology section, we 

developed an algorithm to estimate confidence intervals on the resulting sensitivity metrics and 

evaluate reliability of the inferred parameter rankings. Therefore, specific contributions of this 

study are: (1) improving our understanding of the importance and identifiability of different 

parameters involved in river ice modelling; (2) investigating performance of the newly 

developed VARS for GSA of a river ice model; and (3) comparing the effectiveness and 

reliability of the VARS with the well-known RSA method. 

 

3.2 RIVICE Model Overview 

The key river ice processes simulated in RIVICE that are relevant to this study are shown in Fig. 

3-1 and briefly described below. 

 

Figure 3-1 River ice processes simulated in RIVICE. 

There are two sources of ice for the establishment of an ice cover and/or ice jam. The first 

source is frazil ice (‘A’ in Fig. 3-1) that is generated in the river when the overlying air 

temperature is freezing, inducing a transfer of heat from the river water to the atmosphere, and 
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the river water temperature drops to a fraction below 0 deg. C (supercooling). The frazil crystals 

conglomerate into flocs and further into slush pans that float to the top and flow along the water 

surface to the leading edge of the downstream ice cover. The second source is the volume of 

inflowing ice per time step (‘B’ in Fig. 3-1), representing ice blocks broken apart from upstream 

ice sheets or border ice, or additional slush pans from frazil ice generated upstream of the model 

control volume. This ice floats along the water surface at the mean flow velocity of the river until 

it reaches the downstream ice cover’s leading edge. 

Once the ice reaches the leading edge, two processes are at hand for the progression of the ice 

cover:  

(1) The first process is the retraction of the ice cover (‘C’ in Fig. 3-1) in the downstream 

direction through shoving of the ice, which thickens the already existing ice cover further 

downstream (telescoping). Shoving occurs when the summation of external forces on the 

cover – thrust of the flowing water against the leading edge FT, the weight of the ice cover 

in the sloping direction FW and the drag force on the ice cover’s underside by the flowing 

water FD – exceed the ice cover’s internal resistance FI plus the frictional force of the ice 

cover along the river banks FF. Shedding of longitudinal forces in the ice cover laterally to 

the river banks constitutes the frictional force and the thickening of the ice cover, which 

distributes longitudinal forces along the thickness of the ice. Shoving continues until FI > 

FT + FW + FD – FF. External forces due to the cohesion of the ice cover to the river 

banks were not incorporated into the Dauphin River model due to the high river discharge 

at freeze-up that led to a rapid progression of the ice front and formation of the ice cover.  

(2) The second process is the progression of the ice cover upstream through juxtapositioning 

of the ice cover (‘D’ in Fig. 3-1) when the internal resistance within the cover FI plus the 

frictional force FF remain larger than the summation of the external forces, FT, FW and 

FD, and the ice blocks and/or slush pans accumulate at the leading edge, stacking up 

against each other to extend the ice cover upstream. As more and more ice accumulates, 

external forcing anywhere along the juxtapositioned ice cover may be large enough for 

collapsing and shoving of the ice cover to occur. 
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Ice under the cover may be eroded and transported downstream as ice in-transit. Should the 

mean flow velocity drop to below a velocity threshold value vdeposit, the ice will deposit on the ice 

cover underside (‘E’ in Fig. 3-1). If the mean flow velocities underneath the ice cover increase 

and exceed a threshold value verode the ice will erode from the underside (‘F’ in Fig. 3-1).  

Roughness of the river bed and the undersurface of the ice cover are important parameters 

controlling the hydraulics of the flow and ice regimes. Bed roughness is a constant value 

represented by Manning’s coefficient, while ice cover roughness is a function of ice cover 

thickness. Important boundary conditions are the upstream discharge of the water entering the 

modelled stretch of the river and the downstream water level elevation where the water exits the 

stretch. 

 

3.3 Methodology 

This section briefly describes the utilized GSA methods as well as the bootstrapping procedure 

used to assess the level of confidence in the GSA results. 

3.3.1 Regional sensitivity analysis (RSA) 

Regional sensitivity analysis (RSA), also called generalized SA and Monte Carlo filtering, is a 

widely-used SA method proposed by Hornberger and Spear (1981). In RSA the basic idea is to 

generate distributions for each parameter, extracted from a portioning of the Monte Carlo 

simulations into “behavioral” and “non-behavioral” classes, and comparison of the similarities 

between their distributions. To do this, first, n input parameters are randomly sampled from a 

feasible range of the parameter space. Then the model is evaluated using these random 

parameters. In the second step, the parameters are divided into behavioral and non-behavioral 

sets according to the associated model output, whether it is above or below a pre-defined 

threshold value based on a goodness of fit measure. Finally, using the empirical cumulative 

distribution functions (CDFs) of the model outputs, the behavioral parameters are compared to 

the non-behavioral parameters for detection of the significant differences between both groups. If 

the CDFs of an input parameter in the two sets (i.e., behavioral and non-behavioral) are 
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dissimilar, then the parameter is deemed influential. On the other hand, strong similarity between 

the CDFs reveals an insensitive parameter. 

The RSA method has several advantages such as being conceptually simple, ease of use, and 

being model-independent. However, a major disadvantage is that results of RSA are highly 

dependent on the choice of threshold value (filtering criterion) to separate the model outputs into 

behavioral and non-behavioral sets, which is usually subjective. In other words, different 

filtering criteria may result in different sensitivities and parameter ranks (Fraga et al., 2016; Song 

et al., 2015; Yang, 2011). 

In RSA, the classical Kolmogorov-Smirnov (K-S) measure (Kolmogorov, 1933) is usually 

employed to determine if the behavioral and non-behavioral parameter sets come from the same 

probability distribution. The K-S measure calculates the maximum distance between the two 

CDFs as follows: 

K‒ S(𝑖) = max
𝑥𝑖

|𝐶𝐷𝐹𝑏(𝑥𝑖|𝑦 ∈ 𝑌𝑏) − 𝐶𝐷𝐹𝑛𝑏(𝑥𝑖|𝑦 ∈ 𝑌𝑛𝑏)|                                                                                 (1) 

where y is the model output, CDFb and CDFnb are the behavioral and non-behavioral CDFs of an 

input parameter xi, and Yb and Ynb are the subsets of behavioral/non-behavioral outputs, 

respectively. Hence, a larger K–S(i) value corresponds to a higher sensitivity of the parameter xi. 

3.3.2 Variogram analysis of response surfaces (VARS) 

Consider a response surface of a numerical model as 𝑦(𝑿) = 𝒇(x1, x2,…, xd), where 𝑿 = {x1, 

x2,…, xd} is a vector representing parameters in d-dimensional space. Let 𝑿𝑖 and 𝑿𝑗 be the 

locations of two distinct points in the parameter space separated by a distance 𝒉. The variogram 

can be defined as the expected difference between any pair of variables 𝑦(𝑿𝑖) and 𝑦(𝑿𝑗). 

Assuming a constant mean, the variogram can be formulated as (Cressie, 1993): 

𝛾(𝒉) =
1

2
𝐸 [(𝑦(𝑿 + 𝒉) − 𝑦(𝑿))

2
]                                                                                                     (2) 

Using Eq. (2), an empirical variogram can be estimated for response surface from square 

increments computed from a sample set of values 𝑦(𝑿𝑖) taken at several locations 𝑿𝑖. That is 
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𝛾(𝒉) =
1

|𝑁(𝒉)|
∑ (𝑦(𝑿𝑖) − 𝑦(𝑿𝑗))

2

(i,j)∈𝑁(𝒉)                                                                                       (3) 

where 𝑁(𝒉) denotes the set of all pairs (i , j) such that ‖𝑿𝑖 − 𝑿𝑗‖ = 𝒉, and the number of pairs 

in 𝑁(𝒉) is |𝑁(𝒉)|.  

For any given set of ordered ℎ𝑘 (for k = 1, 2, …, d), the associated variogram estimates (Eq. 

(3)) are denoted by 𝛾𝑘  =  𝛾(ℎ𝑘), and the empirical variogram for a d-dimensional response 

surface can be obtained by calculating the set of all (hk ,γ
k
). The VARS framework utilizes 

information about the regional variability of the response surfaces in a parameter space obtained 

from 𝛾(𝒉). This variability determines the spatial structure of the model response surfaces as 

well as the sensitivity of the parameter concerned.  

Generally, the larger the variability 𝛾𝑘 the more heterogeneous is the response surface along 

the kth direction/parameter, at the perturbation scale represented by ℎ𝑘. Accordingly, in the 

VARS framework, the 𝛾𝑘 values for any given ℎ𝑘 can be considered as a comprehensive 

illustration of sensitivity information, through linking variogram analysis to both direction and 

perturbation scale concepts. In fact, the variograms are defined over the full range of scales; 

therefore, the rate of variability at a particular perturbation scale can represent the perturbation 

scale-dependent sensitivity of the response surfaces. In other words, the 𝛾𝑘 at very small values 

of ℎ𝑘 shows the average small-scale sensitivity of the model to kth parameter, whereas at large 

values of ℎ𝑘, it indicates the average larger-scale sensitivity. The effect of parameter perturbation 

scale on sensitivity analysis of environmental models has been discussed by Haghnegahdar and 

Razavi (2017). They showed that perturbation scale has a significant impact on the results of 

GSA. Hence, using the strategies that consider this scale-dependency (e.g., VARS) may be 

advisable. 

Based on the above discussion, the VARS framework provides a set of sensitivity metrics by 

integrating the directional variograms within a perturbation scale range of interest. Considering a 

perturbation scale, ranged from zero to 𝐻𝑘, for the kth input parameter, the ‘‘Integrated 

Variogram’’ can by defined as: 

Γ(𝐻𝑘) = ∫ 𝛾(ℎ𝑘)𝑑ℎ𝑘
𝐻𝑘

0
                                                                                                                         (4) 
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In VARS, the integrated variogram across a range of perturbation scales, Γ(𝐻𝑘), is called 

IVARS. Therefore, the IVARS-based sensitivity indices can be employed to rank the different 

parameters in terms of their influence on model outputs. In this study, IVARS10, IVARS30, and 

IVARS50 are used, which means that Eq. (4) is computed for 𝐻𝑘 = 10%, 30%, and 50% of the 

parameter range, respectively.   

3.3.3 Bootstrapping strategy for reliability assessment 

Sampling from the parameter space is a building block of implementing GSA algorithms such as 

RSA and VARS. However, sampling-based techniques which explore the space of possible 

model inputs often require a large sample size to obtain reliable and robust results. The bootstrap 

technique, introduced by Efron (1979, 1982), can be used as an efficient way of estimating the 

confidence level of statistical parameters. Bootstrapping is based on the idea of generating p 

samples by re-sampling with replacement from the initial sample set (p is a large number, e.g., 

100 or 1,000). Based on these bootstrap re-samplings, p estimations of the statistical parameters 

(e.g., sensitivity metrics) can be calculated. In the re-sampling process, the new samples are 

extracted from the original sample set, and thus additional model runs are not necessary, which 

makes the method computationally efficient. Finally, the distribution of the parameters can be 

derived through these p estimated values.  

It should be noted that the representativeness of the distributions resulting from bootstrapping 

depends on the quality of the original sample set. In other words, the resulting distributions are 

only approximations of the true distributions. The VARS framework is originally enabled by 

bootstrapping (Razavi and Gupta, 2016b). In this study, based on the above-mentioned 

bootstrapping strategy, an algorithm is developed to provide confidence level estimates (95% 

intervals) for the RSA sensitivity metrics and to evaluate the reliability of inferred sensitivity 

results (i.e., parameter sensitivity ranking). A brief description of the steps in the utilized 

algorithm for bootstrapping is given below: 

Step 1. Initialization. 

• Generate a sample with size of n and set the number of bootstrap re-samplings as p. 
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Step 2. Bootstrapping.  

• Draw p samples of size n (the bootstrap samples) with replacement from initial sample 

set.  

• For each bootstrap sample, calculate the sensitivity metrics 𝜃𝑖 for 𝑖 = 1, 2, …, p, using 

the related SA method. 

• Estimate the confidence intervals on the results from the empirical distribution of θ ̂. 

Step 3. Reliability assessment. 

• Compute the fraction of times among all p bootstrap attempts that the sensitivity ranks of 

the parameters are equal to the original sensitivity ranks obtained by the initial sample 

set. 

 

3.4 Study Site 

The Dauphin River serves as the terminus of the Lake Winnipegosis/Lake Manitoba/Lake St. 

Martin/Dauphin Lake catchment area, draining into Lake Winnipeg (see Fig. 3-2). Extensive 

flooding along the Assiniboine River in 2011 forced a diversion of the floodwaters from the 

Assiniboine River into Lake Manitoba, via the Portage Diversion, to reduce flood risk in 

Winnipeg. The diversion was as much as half of the Assiniboine River’s discharge at the flood 

peak. This caused extensive flooding along the lake shores, particularly the southern basin of 

Lake Manitoba, whose surface area almost doubled at its peak floodwater elevation. Wind-driven 

seiches exacerbated the shoreline flooding, causing extensive damage to property and 

infrastructure. Many First Nations communities along Lake St. Martin had to be evacuated. 
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Figure 3-2 Catchment area of the Dauphin River consisting of the subbasins of the lakes: (a) 

Dauphin Lake; (b) Lake Winnipegosis; (c) Lake Manitoba; (d) Lake St. Martin; inset shows the 

Emergency Outlet Channel diverting water from Lake St. Martin into Buffalo Creek and onward 

into Lake Winnipeg [adapted from Cold Regions Science and Technology, Vol. 82, Karl-Erich 

Lindenschmidt, Maurice Sydor, Richard W. Carson, “Modelling Ice Cover Formation of a Lake–

River System with Exceptionally High Flows (Lake St. Martin and Dauphin River, Manitoba),” 

36–48, 2012, with permission from Elsevier]. 

 

The Dauphin River is the “bottleneck” for drainage from its upstream catchment area. Flows at 

freeze-up would have been double those ever recorded during the previous 60 years of gauge 

recordings. Due to the steep bed of the river’s lower reach (= 0.017 m/m) and the high flows, 

extensive frazil ice generation and freeze-up jamming was anticipated, which would have 

exacerbated flooding in the communities along the Dauphin River and Lake St. Martin. Hence, 

an emergency outlet channel was constructed to divert approximately half of the Dauphin 
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River’s flow from Lake St. Martin to Buffalo Creek, exiting near the Dauphin River’s outlet at 

Lake Winnipeg. 

Because of the long extent of the Dauphin River (~53 km), a longitudinal change of variables 

can be approximated in a 1-D simulation of RIVICE. The intensive river ice modelling was 

carried out to predict the degree of backwater flooding along the river and Lake St. Martin. 

Maximum backwater levels were predicted to serve as a benchmark for the construction of new 

dikes and raising of existing dikes prior to the freeze-up season (see Lindenschmidt et al., 2012; 

Lindenschmidt and Chun, 2013 for more details).  

 

3.5 Computational Experiments 

The RIVICE parameters and their allowable ranges that were used for the sensitivity analysis 

are shown in Table 3-1.  

 

Table 3-1 RIVICE parameters considered for the RSA and VARS sensitivity analysis, and their ranges of 

variation 

Parameter Description Lower 

bound a 

Upper bound 

b 

Unit 

Ice cover properties     

PC Porosity of ice cover 0.4 0.9 ‒ 

FT Thickness at the ice cover front 0.16 0.26 m 

Slush ice properties     

PS Porosity of the slush 0.3 0.7 ‒ 

ST Thickness of the slush pans 0.1 0.5 m 

Strength properties     

K1TAN Lateral: longitudinal forces (ratio) 0.10 0.22 ‒ 

K2 Longitudinal:vertical forces (ratio) 7 10 ‒ 

Hydraulic roughness     

nice Ice roughness 0.07 0.13 s/m1/3 

nbed River bed roughness 0.025 0.035 s/m1/3 

Boundary conditions     

Q Upstream discharge 240 300 m3/s 

W Downstream water level 214 219 masl 
a,b The values are adopted from the RIVICE manual (EC, 2013) and Lindenschmidt and Chun (2013) 
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To assess the performance of RIVICE under each parameter set, we used the root-mean-

squared-errors (RMSE) metric between the simulated and observed values of the water levels: 

𝐹𝑜𝑏𝑗 = 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝑠 − 𝑦𝑜)2
𝑁

𝑖=1

                                                                                                       (5) 

where ys and yo are the simulated and the observed water level values, respectively, and N is the 

number of observation points for the Lower Dauphin River. The maximum water level elevations 

recorded at the gauges located along the river (as shown in Fig. 3-2) was used as the observation 

points for the Lower Dauphin River model. 

Moreover, in this study progressive Latin hypercube sampling (PLHS), introduced in Chapter 

2, was used instead of ordinary Latin hypercube sampling (LHS) to generate sample points for 

function evaluation. Sheikholeslami and Razavi (2017) showed that PLHS has some advantages 

over traditional LHS in terms of different criteria such as space-filling and one-dimensional 

projection properties. For RSA using PLHS algorithm, 1,000 parameter sets were randomly 

selected from a uniform distribution within the parameter ranges listed in Table 3-1. After 

calculating the Fobj values for each parameter set, the best 10% of the parameter sets in terms of 

Fobj (the simulations most consistent with the observations) were deemed behavioural; the other 

90% was deemed non-behavioural. 

For VARS, we applied the STAR-VARS implementation of VARS developed by Razavi and 

Gupta (2016b). STAR-VARS uses a specific sampling procedure to generate sample points, 

called star-based sampling. First, using PLHS technique, star centers are generated randomly, 

and then a structured-sampling approach is used to sample star points from the parameter space. 

Here, the number of star centers was set to 10, which results in a total of 910 function 

evaluations of RIVICE for VARS (the total sample size includes all sample points and star 

centers). Also, the ∆h (VARS resolution parameter) was set to 0.1 (as recommended by Razavi 

and Gupta (2016b)).  

Using a computer with an Intel Core i7 CPU, 3.6-GHz processor, and 16.0 GB RAM each run 

of RIVICE took approximately 90 minutes. To allow for a more comprehensive analysis of the 
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performance and reliability of the RSA and VARS methods in our numerical experiments, 95% 

confidence intervals of the sensitivity metrics were determined using p = 1,000 bootstrap 

replicates. 

 

3.6 Results and Discussion 

3.6.1 Sensitivity analysis and parameter rankings 

Fig. 3-3 presents GSA results of the RSA method, by empirical cumulative distribution functions 

(CDFs) of behavioural versus CDFs of all parameter values. A larger distance between a 

behavioral (blue) CDF and the corresponding non-behavioral CDF (grey) indicates a higher 

sensitivity of the associated parameter. When parameters are insensitive (see, e.g., the nice or nbed 

results given in Fig. 3-3), the behavioral and non-behavioral curves plot over each other in a 

linear trend, illustrating uniformly distributed Fobj values. As can be seen in Fig. 3-3, Q and PC 

are the most sensitive parameters. In addition, Fig. 3-3 provides useful information for 

identifying sub-ranges of the model parameters that have no influence on the output above/below 

the threshold, which can clarify the identifiability of different parameters. These are the sub-

ranges where the CDFs are either zero or one, for example FT > 0.25.  

 

Figure 3-3 Evaluating the RIVICE parameters sensitivities using RSA; each subplot belongs to 

one model parameter, with its feasible range on the horizontal axis and the distribution of the 

RIVICE responses (cumulative RMSE distribution) on the vertical axis. 
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The VARS-based sensitivity indices are demonstrated in Fig. 3-4, where plots (a) and (b) 

show the directional variograms and integrated variograms, respectively, for the RIVICE 

parameters. Plots (c) and (d) display zoom-in images of plots (a) and (b). The values of the 

directional variograms (Fig. 3-4c) for less sensitive parameters (i.e., ST, nice, PS, and nbed) are 

similar for the perturbation scale h < 0.1, but above this value the variogram of ST becomes 

significantly larger. As clearly shown in Fig. 3-4a and b, PC, FT, and Q are the most sensitive 

parameters. The IVARS values (Fig. 3-4b) for FT remain less than those for Q over the 

perturbation scale from h = 0 to about h = 0.3, indicating less small-scale sensitivity, while FT 

becomes more sensitive than Q for h > 0.3. These results confirm that, unlike the most traditional 

GSA methods, VARS method can characterize perturbation scale-dependency in sensitivity 

analysis (different sensitivity rankings at different perturbation scales) of the model response 

surfaces. In addition, by looking at the respective variograms, useful insights into the spatial 

structure of the model response surface can be gained. As demonstrated in Fig. 3-4c, the 

response surface exhibits strong non-monotonic and nonlinear behaviour for some parameters, 

such as W and nice.  

 

Figure 3-4 Evaluating RIVICE parameter sensitivities using VARS: (a) directional variograms; 

(b) integrated variograms (IVARS); the bottom plots (c and d) show a zoom-in of the top plots for 

very small values on the vertical axis (note that for variograms to remain meaningful, the distance 

between any two points within a given parameter range cannot exceed half of its range, i.e., Hk ≤ 

50%). 
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Fig. 3-5 shows the sensitivity indices and associated parameter rankings using VARS 

(subplots (a) to (c)) and RSA (subplot (d)), where a ranking of 1 represents the least sensitive 

and a ranking of 10 represents the most sensitive parameter. As shown in Fig. 3-5, parameter 

sensitivity rankings of different SA metrics vary from each other. IVARS50 is the most 

comprehensive metric generated by VARS to estimate the global sensitivity of the RIVICE 

response surface to each parameter. On the contrary, IVARS10 and IVARS30 provide smaller 

perturbation scale assessments of parameter sensitivity. It is interesting to note that the sensitivity 

of the nice parameter has a higher dependency on the perturbation scale as its ranking changes 

from 1 considering the IVARS10 to 3 considering IVARS30, while IVARS50 ranks the same 

parameter in 4th place.  

 

Figure 3-5 Sensitivity indices for the RIVICE parameters using the RSA and VARS methods: (a) 

IVARS10; (b) IVARS30; (c) IVARS50; (d) K-S indices for RMSE measure; the numbers on the 

bars represent the parameter ranking obtained based on the sensitivity indices. 

 

It is apparent that the more sensitive parameters identified by these two methods are 

consistent, i.e. parameters Q, PC, and FT. Overall, based on these results (Fig. 3-5), the 
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parameters can be categorized into three groups according to their sensitivities: (1) the ice cover 

characteristics (PC and FT) and upstream discharge (Q) as the most important parameters in the 

Lower Dauphin River, which is a straight and steep section; (2) the hydraulic roughness 

parameters (nice and nbed) and slush ice properties (PS and ST), with lower impacts on the 

RIVICE model; and (3) the ice strength parameters (K2 and K1) and downstream water level (W) 

as the medium sensitive parameters. However, the VARS method leads to more distinctive 

sensitivity indices, as compared to RSA. As can be seen in Fig. 3-5, IVARS50 and K-S measures 

provide very conflicting assessments regarding PS and nice sensitivities. The VARS approach 

identifies PS as a low-sensitivity parameter, whereas the RSA determines it to be one of the 

medium-sensitivity parameters. Also, nice has the 4th rank based on the IVARS50, while it takes 

first place in the sensitivity ranking (most insensitive parameter) based on the RSA method. This 

example illustrates how inconsistent sensitivity assessment can arise through use of these 

philosophically different approaches. 

The obtained sensitivity results have the potential for facilitating a deeper understanding of the 

physical processes affecting rive ice phenomenon. For example, Fig. 3-5 revealed that PC is one 

of the highly sensitive parameters, which is reasonable because the steeped channel of the Lower 

Dauphin River can have more compact ice shoving than mildly steep channels. Additionally, 

considering the RIVICE boundary condition parameters, W has a relatively low impact on water 

level predictions compared to Q, due to the large downstream cross section of the Lower 

Dauphin River at the inlet to Lake Winnipeg (see Fig. 3-2). 

It is worth mentioning that the sensitivity results can also provide guidance on the design of 

the flood mitigation scheme along the Lower Dauphin River. For example, having the discharge 

Q as a very sensitive parameter to the ice cover formation and backwater staging justifies the 

diversion of water from the Dauphin River via the Emergency Outlet Channel (see Fig. 3-2). 

Thus, due to the high impact of the ice cover characteristics and upstream discharge on water 

level predictions, it is necessary to monitor them at the Lower Dauphin River using effective 

tools such as observations by personnel or remote sensing (for a general review of different 

methods for monitoring real-time ice conditions the reader is referred to Vuyovich et al. (2009)). 

Furthermore, the sensitivity of K1 (K1TAN), the parameter associated with the shedding of the 
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longitudinal compressive forces within the ice cover laterally to the banks, suggests that 

armouring of the dike sides facing toward the river could increase the friction between the ice 

cover and dikes to provide extra internal resistance to ice cover shoving. This would reduce the 

compaction and ice thickening of the ice cover, leading to an overall reduction in the backwater 

staging. 

3.6.2 Assessment of confidence in GSA results by bootstrapping 

Fig. 3-6 depicts the degree of uncertainty in SA results, which was estimated via bootstrapping. 

To assess the uncertainty in estimated sensitivity indices, the width of the 95% confidence 

intervals (CI) of the sensitivity metrics distributions obtained by bootstrapping were compared. 

Considering the width of the CIs across all the model parameters, it can be concluded that the 

CIs of the VARS products are significantly narrower than the RSA. A wider CI shows higher 

uncertainty in associated sensitivity assessment. Another feature that can be observed is the 

lower uncertainties of the results generated by IVARS50, which is a representation of the 

comprehensive assessment of sensitivities. 
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Figure 3-6 Ninety-five-percent confidence intervals (CIs) estimated based on the bootstrapping; 

subplots: (a) IVARS10; (b) IVARS30; (c) IVARS50 show the VARS-based metrics; subplot (d) 

shows the 95% CIs of K-S measure for RSA. 

 

A further assessment of the reliability that can be associated with parameter sensitivity 

rankings is given in Fig. 3-7. The success rates were calculated based on the percentage of times 

among 1,000 bootstrap re-samplings that the sensitivity ranks of the parameters were equal to the 

original rank obtained by the initial sample. The results in Fig. 3-7 reveal that IVARS10, 

IVARS30, and IVARS50 provide higher success rates than those of RSA for all parameters, 

thereby confirming the reliability of the VARS method in parameter sensitivity rankings. 

 

 

Figure 3-7 Reliability assessment of VARS and RSA for RIVICE model parameter ranking based 

on bootstrapping. 

 

3.7 Conclusions 

The significant impacts and complexity of river ice processes have led to the extensive use of 

numerical models within the water resources research community in cold regions. Parameters of 

these models can lead to large variation in model outputs. Hence, it is crucial to identify the key 

parameters that affect river ice model performance. To address this issue, we conducted a 

comprehensive evaluation of the effectiveness and reliability of two global sensitivity analysis 

methods, namely Regional Sensitivity Analysis (RSA) and Variogram Analysis of Response 
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Surfaces (VARS) using the RIVICE model as a test problem. The Lower Dauphin River at 

Manitoba, Canada, which has a very steep and straight reach, was selected as a case study.  

The results show that the water level simulated by the RIVICE model in the Lower Dauphin 

River is more sensitive to ice cover characteristics, due to the greater compaction and thickening 

of the ice cover along this steep gradient. In addition, RIVICE simulations are very sensitive to 

changes in upstream discharge. It may be because the steeper slopes will form denser, more 

compact frazil ice covers, which are more sensitive to inflowing discharge than those in milder 

sloping sections. Furthermore, the results revealed that hydraulic roughness parameters and slush 

ice properties are medium- and low-sensitivity parameters, respectively. 

To explore the strengths and limitations of both methods, sensitivity rankings obtained by 

VARS were compared to those obtained by RSA, with significant differences found regarding 

porosity of the slush and ice roughness parameter sensitivities. Moreover, the reliability of 

VARS and RSA methods, as well as the uncertainty in SA results, were assessed using the 

bootstrapping procedure. The bootstrapping results confirmed that the sensitivity rankings were 

estimated more reliably using the newly developed VARS framework than the traditional RSA. 

Consequently, the VARS-based rankings are less ambiguous, as compared with the RSA 

method. 

The results of this study can be used by modelers for a variety of purposes, such as uncertainty 

quantification and model calibration. By way of example, in RIVICE model calibration, the 

insensitive parameters can be fixed at constant values to improve model parameter identifiability. 

Additionally, the insight gained through this study can increase the transparency of the RIVICE 

model and provide a deeper understanding of how the model simulates river ice processes, which 

is an aid to robust decision-making. 
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Chapter 4 

An Automated Factor Grouping Strategy for Robustness and Convergence 

Assessment of the Global Sensitivity Analysis Algorithms 

This chapter is a mirror of the following published article with minor changes to increase its 

consistency with the body of the dissertation. Changes were only made to avoid repeating the 

contents that have been presented more appropriately in other parts. References are unified at the 

end of the dissertation. 

Sheikholeslami, R., Razavi, S., Gupta, H.V., Becker, W., and Haghnegahdar, A. 2019. Global 

sensitivity analysis for high-dimensional problems: how to objectively group factors and 

measure robustness and convergence while reducing computational cost. Environmental 

Modelling and Software, 111, 282–299. https://doi.org/10.1016/j.envsoft.2018.09.002 

Synopsis 

Dynamical earth and environmental systems models are typically computationally intensive and 

highly parameterized with many uncertain parameters. Together, these characteristics severely 

limit the applicability of Global Sensitivity Analysis (GSA) to high-dimensional models because 

very large numbers of model runs are typically required to achieve convergence and provide a 

robust assessment. Paradoxically, only 30 percent of GSA applications in the environmental 

modelling literature have investigated models with more than 20 parameters, suggesting that 

GSA is under-utilized on problems for which it should prove most useful. In this chapter, we 

develop a novel grouping strategy, based on bootstrap-based clustering, that enables efficient 

application of GSA to high-dimensional models. We also provide a new measure of robustness 

that assesses GSA stability and convergence. For two models, having 50 and 111 parameters, we 

show that grouping-enabled GSA provides results that are highly robust to sampling variability, 

while converging with a much smaller number of model runs. 

https://doi.org/10.1016/j.envsoft.2018.09.002
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4.1 Introduction 

4.1.1 Motivation 

Computational models are widely used to understand and simulate the complex physical 

behaviors of Complex Environmental Systems Models (CESMs) (Benett et al., 2013; Provenzale 

2014; Bathiany et al., 2016). By enabling prediction and scenario analysis regarding the quality 

and quantity of Earth’s future resources (Poff et al., 2015; Guo et al., 2016; Maier et al., 2016), 

such models have become essential to management and decision making under uncertainty and 

non-stationary conditions (Castelletti and Soncini-Sessa, 2007). However, the drive to 

incorporate our ever-growing understanding of underlying system processes and their feedback 

mechanisms leads to progressively more complex and computationally intensive model 

formulations. With growth in complexity, and presumably fidelity, it is now not uncommon for 

CESMs models to contain hundreds, and even thousands, of parameters and factors whose values 

are uncertain and need to be characterized. 

Global sensitivity analysis (GSA) has proven to be an effective means for characterizing the 

impact and significance of uncertainty in various model components (e.g., parameters, initial 

conditions, boundary conditions, etc.) on model behavior and predictions (Razavi and Gupta, 

2015). GSA techniques are now widely used for a variety of purposes, including uncertainty 

apportionment (e.g., Marino et al., 2008; Borgonovo et al., 2012), parameter screening (e.g., 

Trocine and Malone, 2000; Touzani and Busby, 2014), and diagnostic testing (e.g., Saltelli et al., 

2006; Gupta et al., 2008; Haghnegahdar et al., 2017a). However, two major interrelated 

challenges limit their application to advanced CESMs, namely (1) the curse of dimensionality 

and (2) computational expense. The former refers to the fact that, as the number of uncertain 

parameters/factors increases, the volume of the problem space increases so rapidly that any 

attempt to investigate and characterize it in a stable, robust, and statistically sound manner 

requires an exponentially-increasing sample size. The latter refers to the typically 

computationally intensive nature of CESMs models, leading to long run times that, together with 

the former, can make any meaningful analysis of such models computationally prohibitive. 
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These two challenges are the primary reason why GSA applications reported in the literature 

are often limited to relatively simple models having smaller numbers of uncertain parameters. 

However, this is paradoxical to the underlying goals of GSA to facilitate the development, 

understanding, and use of more realistic CESMs models. In this regard, it is interesting to note 

that a major goal of GSA, commonly stated in the literature, is to help reduce the dimensionality 

of a problem by identifying non-influential parameters. However, as the dimensionality of the 

problem space grows beyond a few tens of parameters, most GSA methods quickly become 

handicapped by their need for impractically large sample sizes (due to the excessively large 

computational times involved) and are therefore unable to provide robust assessments of 

sensitivity that have an adequate level of confidence (Razavi and Gupta, 2016b).  

A further class of sensitivity analysis approaches, known as metamodel-enabled GSA, can 

substantially reduce the number of model runs needed to estimate sensitivity indices, but is 

mostly restricted to low or moderate-dimensionality problems. In fact, as discussed in Razavi et 

al. (2012a) about 85% of metamodel applications have been on problems having less than 20 

factors. In higher dimensions, the performance of metamodel-enabled GSA algorithms can 

substantially deteriorate due to over-fitting (Becker, 2015). As another potential remedy, analysts 

sometimes use local sensitivity analysis (LSA) methods that require lower computational 

demand. However, it is well-known that LSAs provide inadequate assessments that can often be 

misleading (Saltelli and Annoni, 2010). 

In this chapter, we present an approach that addresses the problem of robust sensitivity 

assessment for high-dimensional problems. There are two main aspects to this approach. The 

first aspect is based on the “sparsity of factors” principle (otherwise known as the Pareto 

Principle), which states that a small subset of factors is often responsible for most of the system 

output uncertainty (Box and Meyer, 1986). To exploit this principle, we need a way to identify 

which of the individual factors have similar properties in terms of their influence on model 

output variations. In doing so we also recognize that, when the number of factors is very large, 

the user is typically not interested in an exact ranking of factor importance; for example, with 

100 factors, it may not matter whether a given factor has a sensitivity ranking of 49 or 50. 

Instead, it may be more profitable to use the available computational budget to reliably 



 

 71 

categorize factors into a small number of distinct groups; for example, these could be labelled as 

“strongly influential”, “influential”, “moderately influential”, “weakly influential”, and “non-

influential”. 

The second aspect deals with an essential (but often neglected) element of GSA, which is that 

of characterizing and improving the “robustness” of the GSA results. This is extremely 

important, given that GSA is a sampling-based technique and as such is prone to statistical 

uncertainty due to sampling variability; i.e., the results will be sensitive to randomness in the 

selection of the sample. Hence, robustness can be defined as the stability of the GSA results (i.e., 

the degree of insensitivity to sampling variation). In other words, lower variability of the results 

obtained over multiple trials of the algorithm (performed with different, identically distributed, 

sample sets) indicates more robustness (see, e.g., Montgomery (2008)).  

Razavi and Gupta (2016b) developed one of the first techniques to assess the robustness of 

GSA factor rankings (incorrectly termed “reliability” measure in their paper) based on the use of 

bootstrapping. Here, we extend that approach and integrate it with optimal factor grouping (i.e., 

the first aspect mentioned above) to provide a GSA solution for high-dimensional problems that 

are often intractable with traditional approaches. 

4.1.2 Objectives and Scope 

The primary goal of this chapter is to introduce an automated “factor grouping” strategy that is 

based on the integration of clustering with bootstrapping. The method is designed to group input 

factors into a certain number of groups based on information gained during GSA where the 

resulting groups can be of any size. Importantly, if the number of groups is not pre-specified, the 

algorithm efficiently determines an optimal number of groups.  

Further, to evaluate performance of the grouping-based GSA, we develop a measure of 

robustness that provides a way to monitor convergence of the GSA results. The overall 

procedure can be used in conjunction with any GSA technique. Here, we demonstrate the utility 

of this approach on two high-dimensional problems, by coupling it with the VARS methodology. 
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The rest of this chapter is structured as follows. In Section 4.2, we discuss the curse-of-

dimensionality challenge associated with GSA of high-dimensional problems, review existing 

strategies for factor grouping, and discuss their limitations. In Section 4.3, we introduce the new 

grouping technique and explain the details of its implementation. The two case studies are 

developed in Section 4.4 and the numerical results and analyses are presented in Section 4.5. 

Finally, conclusions and future recommendations appear in Section 4.6.  

 

4.2 Review of the Literature 

4.2.1 Difficulties associated with GSA of high-dimensional problems 

In the vast majority of GSA studies reported in the literature, the dimensionality of the problem 

space has been quite low.  Fig. 4-1 shows a cumulative distribution function (CDF) of the factor 

space dimensionality for Environmental Modelling studies during the period 2007-2017 that 

reported applications of GSA.  In ~70% of the cases, the number of factors was less than or equal 

to 20, while ~85% had less than 40 and almost all (97%) had less than 90 factors. Only very few 

studies used models with more than 100 factors; Radomyski et al., (2016) used 156, Tang et al., 

(2007) used 403, and Herman et al., (2013) used 1092. So, although one of the main goals of 

GSA is to assist in reducing the dimensionality of a problem by screening out non-influential 

parameters, the evidence suggests that it is seldom applied to the high-dimensional problems in 

which it is most needed.  

The reason for this can (in part) be attributed to the curse of dimensionality which, coupled 

with the high computational costs typically associated with running complex CESMs, makes 

application of GSA to high-dimensional problems very expensive. The curse of dimensionality 

manifests through the fact that, to achieve stable and robust results, current GSA techniques 

require large numbers of sample points (i.e., model runs) to be drawn in some representative 

manner from the factor space. While this issue can be partially addressed using optimized 

sampling algorithms such as Progressive Latin Hypercube Sampling (PLHS; Sheikholeslami and 
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Razavi, 2017) and Good Lattice Points (GLP; Gong et al., 2016), the computational cost remains 

high (Song et al., 2017). 

 

Figure 4-1 Cumulative distribution function for total number of input factors in GSA of 

environmental models. To make this plot we updated the data provided by Vanrolleghem et al. 

(2015) and Song et al. (2013). The Thomson Reuters Web of Science was used (August 2017) 

based on the search terms ‘‘Global Sensitivity Analysis’’ + “Environmental Model” + 

“Hydrology” 

 

To further synthesize the status quo, Table 4-1 provides an overview of recent papers that 

have used GSA to study “higher-dimensional” models; here we have arbitrarily selected only 

studies where the number of factors was greater than or equal to 40. It is important to note that 

the sample size in these studies was typically chosen based on available computational budget, 

without considerations of GSA stability and convergence. Consequently, the results are likely to 

have been highly sensitive to sampling variability (i.e., may not have been robust). Studies of the 

convergence behavior of various GSA techniques generally show that factor ranking (order of 

relative sensitivity) typically converges more quickly than factor sensitivity indices computed by 

the GSA (perhaps as expected), and that factor ranking is more robust to sampling variability 

(Benedetti et al., 2011; Yang, 2011; Cosenza et al., 2013; Wang et al., 2013; Vanrolleghem et al., 
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2015; Razavi and Gupta, 2016b; Sarrazin et al., 2016). Overall, this fact indicates that if a 

modeler is interested in factor screening or prioritization, rather than in generating accurate 

estimates for the sensitivity indices, the number of required model simulations (and hence 

computational cost) can be reduced. Interestingly, Vanrolleghem et al. (2015) and Wang et al. 

(2013) found that, for the GSA methods they used, sensitivity index convergence rates were 

typically slowest for the factors having the highest importance while, conversely, Sarrazin et al. 

(2016), Nossent et al. (2011), and Yang (2011) reported that the sensitivity index convergence 

rates were slowest for factors having lowest importance. This lack of agreement in their results 

suggests that convergence rates may be case-specific and depend on other aspects of the problem 

at hand including, but not limited to, sampling variability and the choice of GSA algorithm. 

From this review of the literature (Table 4-1), we make three observations: 

• Regardless of GSA method used, it is typical for only a small sub-group of factors (on 

average ~20%) to exert significant control over variations in the model outputs (a 

manifestation of the “sparsity of factors” principle).  

• Historically, the grouping of factors into “strongly influential” versus “non-influential” 

has typically been done in a subjective and case-specific manner, the most common 

approach being to specify a threshold sensitivity value and to group factors based on 

sensitivity relative to the threshold value.  

• When different GSA methods were applied to the same problem, while actual rankings 

varied, the factor rankings were typically such that, the relative positions of factors in the 

higher, middle or lower parts of the rankings were often quite similar (e.g., Cosenza et 

al., 2013; Vanuytrecht et al., 2014; Sheikholeslami et al., 2017). In other words, different 

methods generally tended to identify the same “groups” of factors in terms of the strength 

of their influence on model response. From a practical point of view, this suggests that 

one might focus on whether a factor belongs to a high, medium, or low-influence group 

rather than on its exact ranking, particularly given the demonstrated effects of sampling 

variability on estimated rankings. 
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Table 4-1 Recent studies that applied GSA to environmental models with 40 or more uncertain 

parameters 

Model Description Dimensionality 

of factors space 

# of highly 

influential 
afactors  

#of 

model 

runs 

Stability and 

convergence 

consideratio

ns 

GSA 

method 

Reference 

ASM2d-

SMP-P 

Wastewater 

treatment 

systems 

79 10 

16 

 

800 

39500 

No Morris 

EFAST 

Cosenza et 

al. (2013) 

CLM3.5 Land surface 

model 

66 10 1000 No Eigen 

decomp

osition 

Göhler et 

al. (2013) 

CoupMod

el v5 

Peatland carbon 

dioxide 

model 

54 10 3200 No RSA Metzger et 

al. (2016) 

EFDC Water quality 

model 

54 9 b3300 Yes Morris Yi et al. 

(2016) 

MESH Hydrologic 

model 

50 c6 or 8 22550 No VARS Yassin et 

al. (2017) 

SWAT Hydrologic 

model 

50 3 102000 

30000 

520000
b 

Yes Morris 

RSA 

Sobol 

 

Sarrazin et 

al. (2016) 

WOFOST Crop growth 

model 

47 6 b16385 Yes EFAST Wang et al. 

(2013) 

MESH Hydrologic 

model 

45 NA  Yes VARS Razavi and 

Gupta 

(2016b) 

AquaCrop Crop simulation 

model 

43 

32 

33 

19 

24500 Yes Morris 

EFAST 

Vanuytrech

t et al. 

(2014) 

SiB3 Land surface 

model 

42 27-31 45,000 No Sobol Rosolem et 

al., (2012) 

LU4-R-N Water quality 

model 

41 4 100000 No RSA Medici et 

al. (2012) 

WOFOST 

& Noah 

LSM 

Crop growth 

and soil 

moisture model 

40 d4 or 7 N/A No Morris Eweys et al. 

(2017) 

CoLM Land surface 

model 

40 2-8 410 

2,000 

Yes 

No 

Morris 

MARS+

Sobol 

Li et al. 

(2013) 

a Numbers in this column is based on the reported results in the cited papers.  
b Maximum number of function evaluations 
c Depending on the objective function 
d Depending on the case study 
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In high-dimensional problems, grouping input factors of similar sensitivity can help reduce the 

effective dimensionality of the factor space. This is useful because when the problem has more 

than ~20 factors, it can be difficult to analyze the GSA results for extraction of relevant 

information. It seems beneficial, therefore, to categorize factors into subsets to facilitate 

interpretation. Together, these issues highlight the need for an effective, automated, and non-

subjective strategy for grouping model factors based on information developed during the 

execution of a GSA. In the next subsection, we review the few strategies for grouping that have 

been proposed in the literature, discuss their characteristics, and identify shortcomings. 

4.2.2 Review of existing grouping strategies for GSA 

Despite significant research dedicated to the advancement of GSA, there is a surprising paucity 

of literature on the development of efficient grouping strategies. Relevant studies have focused 

mainly on enabling GSA methods to compute an overall sensitivity measure for a pre-identified 

group of factors. For example, in the variance-based Sobol’ method (Sobol’, 1993), the set of 

uncertain factors 𝑿 can be partitioned into pre-specified groups 𝑿𝑢 and 𝑿𝑤, where 𝑿𝑢 ∪ 𝑿𝑤 = 𝑿 

and 𝑿𝑢 ∩ 𝑿𝑤 = ∅, so that the variance of the response 𝑉𝑎𝑟(𝑌) can be decomposed as 𝑉𝑿𝑢
+

𝑉𝑿𝑤
+ 𝑉𝑿𝑢,𝑿𝑤

= 1, where 𝑉𝑿𝑤
= 𝑉𝑎𝑟𝑿𝑤

(𝐸𝑿𝑢
(𝑌|𝑿𝑤)) 𝑉𝑎𝑟(𝑌)⁄  is the normalized variance of the 

conditional expectation that measures the first order effect of  𝑿𝑤 on the model output. This 

decomposition can be performed for any number of factors (Saltelli et al., 2006). Extending this, 

Saltelli et al. (2008) provided a multi-stage factor grouping strategy to perform variance-based 

sensitivity analysis based on the concept presented above. In their approach, the number of 

groups is specified a priori and then the members of each group are populated by testing a 

variety of combinations. 

Similarly, Campolongo et al. (2007) modified the Morris’ Elementary Effects method (Morris, 

1991) to work with pre-specified groups of factors for which total sensitivity indices can be 

estimated (Ciuffo and Azevedo, 2014; Patelli et al., 2010). In all the grouping techniques 

reviewed here, the factor grouping scheme is determined before application of GSA, based on 

the nature of the problem, physical interpretation, previous experience, intuition, randomized 

grouping, etc.  
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Another commonly-used approach is to group factors based on arbitrary, pre-specified 

sensitivity index thresholds (Eweys et al., 2017; Hou et al., 2015; Göhler et al. 2013; Tang et al., 

2007). For example, in variance-based GSA, a group of factors can be deemed “strongly 

influential” if each member individually contributes at least 10% of the overall model output 

variance, or “weakly/non-influential” if each member individually contributes less than 1% of the 

model variance (note that these thresholds are selected rather arbitrarily). However, in the 

Morris’ method of Elementary Effects, the definition of thresholds is necessarily case-specific 

because the estimated sensitivity indices can have different ranges of variation, depending on the 

model output and particularities of the case study.  

For screening purposes (identifying non-influential factors), Khorashadi Zadeh et al. (2017) 

proposed the interesting approach of adding a “dummy” variable (i.e., a variable known a priori 

to be fully non-influential) to the set of factors under investigation. Factor screening has also 

been accommodated by applying a statistical testing approach originally introduced by Andres 

(1997) and further extended by Sarrazin et al. (2016), Tang et al. (2007), and Nossent et al. 

(2011). As a more objective way to achieve factor grouping, Klepper (1997) used a clustering 

method to categorize model factors based on the sensitivity analysis results. To our knowledge, 

this method is the only method to date that is based on the analysis on a clustering concept. It 

does not, however, provide an “optimal” grouping and is prone to uncertainty associated with 

sampling variability. 

A major disadvantage with a priori specification of the grouping is that the results can depend 

strongly on the user’s selection of groups, a task that can become complicated (if not impractical) 

as the number of factors grows. Overall, our review leads us to conclude that an effective 

grouping strategy must address the following questions as part of the GSA methodology itself:  

1) What is an optimal grouping of model factors into a given number of groups? 

2) What is the optimal number of groups? 

3) To what extent are the grouping results robust?  

Regarding the first question, the members of a factor group should be as similar (in some 

sense) as possible while being as distinct as possible from the members of the other groups. To 
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achieve this, a metric must be defined that quantifies similarity between input factors according 

to the way they influence the model outputs. Regarding the second question, removal of 

subjectivity about the number of groups should be somehow based on the goal of obtaining a 

maximum level of homogeneity within groups and distinction across groups. Finally, the third 

question addresses the need for some degree of confidence in the grouping results, meaning that 

the results are not overly sensitive to sampling variability. None of the aforementioned grouping 

strategies addresses these challenges explicitly and in a systematic manner. This gap motivated 

our development of the automated factor grouping method introduced in the next section. 

 

4.3 The Proposed Factor Grouping Strategy 

Our proposed method for factor grouping (Fig. 4-2) combines agglomerative hierarchical 

clustering with bootstrapping and introduces a new robustness measure that enables an objective 

assessment of GSA convergence. The algorithm consists of five steps; details of each are 

provided in the following subsections. 
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Figure 4-2 Flowchart of the factor grouping algorithm developed in this study 

4.3.1 Generating the sensitivity matrix by bootstrapping 

In the traditional approach to GSA, the model is run n times to generate the (original) sample of 

n points drawn from factor space, and then a vector of sensitivity indices for the d factors is 

computed using the information provided by these points: 

𝑺1,𝑑 = {s1, … , 𝑠𝑑} 

In general, the size n of the randomly drawn sample used to estimate 𝑺1,𝑑 will be limited and 

so, due to sampling variability, we can expect a degree (often considerable) of statistical 

uncertainty to be associated with these estimates. The distribution-free (and easy to implement) 

bootstrap method (Efron, 1979) can be used to estimate the magnitude of that uncertainty 

(Davison et al., 2003); example applications in the GSA context can be found in Razavi and 

Gupta (2016b) and Archer et al. (1997). Importantly, in bootstrapping, the set of bootstrap 

Generate n sample points 
randomly drawn from factor 
space (original sample set)

Run the model using the original 
sample set and compute the 

corresponding model outputs

Calculate the sensitivity 
indices using the GSA method

Randomly generate r bootstrap 
replicates of size n from 

original sample set

Calculate the sensitivity indices 
for each bootstrap replicate

Create the sensitivity index matrix

Generate dendrogram of factors using 
agglomerative hierarchal clustering

Determining optimal 
number of groups

Use elbow method to find 
optimal number of groups

Assign a minimum 
robustness value

Evaluate the grouping-based 
robustness measure for all factors 

Desired level of
robustness achieved?

Transform sensitvity 
indices to normality

• Define model output
• Select input factors

• Choose a method for GSA

Stop and output
the groups

Use minimum robustness-based method 
to find optimal number of groups

Increase the 
sample size n

If strategy 
no. 1

If strategy 
no. 2

No Yes
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samples is extracted from the original sample set, and thus additional model runs are not 

necessary. We apply the following two steps to implement the bootstrap technique:  

1. Select the number of bootstrap re-samplings to be r and randomly draw (with replacement 

from original sample set) r bootstrapped samples, each having the same size n as the 

original sample. The result is the so-called set of r bootstrap samples. Note that r is selected 

to be some arbitrarily large number (e.g., 1,000) as has been commonly used in the 

literature). 

2. For each bootstrap sample 𝑖(𝑖 = 1, … , 𝑟) in the set, re-compute the vector of sensitivity 

indices 𝑺𝑖,𝑑
𝐵 = {𝑠𝑖,1

𝐵 , … , 𝑠𝑖,𝑑
𝐵 } using the GSA method. 

Following the above procedure, a two-dimensional r×d bootstrapped sensitivity matrix 𝑴 

containing r bootstrap replicates for the sensitivity indices is formed: 

𝑴 = (
𝑠1,1
𝐵 ⋯ 𝑠1,𝑑

𝐵

⋮ ⋱ ⋮
𝑠𝑟,1
𝐵 ⋯ 𝑠1,𝑑

𝐵
)                                                                                                                         (1) 

Because the matrix 𝑴 contains information regarding estimation uncertainty, it provides 

valuable information that enables a robust evaluation of how each factor impacts the model 

outputs. Note that the values that make up the matrix 𝑴 should be “normalized” (transformed) as 

discussed in the next section, before proceeding with the analysis.  

4.3.2 Transforming the distribution of sensitivity indices to be un-skewed 

As shown in Fig. 4-3(a), when analyzing many factors, the distribution of factor sensitivity 

indices obtained during GSA will usually be heavily skewed to the right. This is because 

typically only a small subset of the parameters of a high-dimensional model exerts a strong 

influence on the model response. To reduce bias, and to improve discrimination of factor 

importance across the full range of sensitivities, it is helpful to transform the sensitivity indices 

to be more “normalized” as shown in Fig. 4-3(b). This transformation makes it possible to better 

distinguish factors on the left end of the sensitivity axis so that, for example, groups that are 

“moderately influential”, “weakly influential”, and “non-influential” can be easily identified as 

distinct categories. Without such transformation, if the level of skewness is high, there will be a 
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tendency for the factor grouping to become highly biased, with a large group at the left end 

(containing non-influential to moderately influential factors) and smaller groups towards the 

right (containing strongly influential factors), leading to conclusions that may not be sufficiently 

granular to be informative.  

 

Figure 4-3 Conceptual distributions of (a) original sensitivity indices without normalization and 

(b) normalized sensitivity indices. Subplot (c) shows a zoom-in of the subplot (a) for small values 

on the vertical axis. When transforming the data in subplot (a), the differences between smaller 

sensitivity indices (moderately influential factors) should be expanded, whereas the differences 

between larger sensitivity indices (strongly influential factors) should be reduced. 

 

A further reason for normalization is that our proposed grouping scheme divides factors into 

subsets using a similarity metric based on the Euclidean distance. Consequently, if the 

distribution is highly skewed, the Euclidean distance (and resulting grouping) will be strongly 

affected by large magnitudes (e.g., outliers) associated with a very small number of sensitivity 

indices. Normalization helps to remove any such bias, by ensuring that the distance metric 

assigns appropriate importance to each variable. 

Logarithmic, square root, and arcsine transformations are among the more frequently-used 

methods to normalize data. Here we used the well-known Box-Cox transformation (Box and 

Cox, 1964) that provides a particularly flexible approach encompassing many of the 

aforementioned transformations (logarithm, square root, reciprocal square root, and many 

others). Given that the sensitivity indices have a skewed distribution, a Box-Cox transformation 

is applied, parametrized by a non-negative value 𝜆: 
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𝑛𝑠𝑖,𝑗
𝐵 (𝜆) = {

(𝑠𝑖,𝑗
𝐵 )

𝜆
− 1

𝜆
             (𝜆 ≠ 0)

log(𝑠𝑖,𝑗
𝐵 )           (𝜆 = 0)

                                                                                              (2) 

By selection of an appropriate value for 𝜆, matrix M is transformed into matrix nM consisting 

of normalized sensitivity indices 𝑛𝑠𝑖,𝑗
𝐵 ,  where 𝑖 = 1,… , 𝑟 and 𝑗 = 1,… , 𝑑. The distribution of the 

elements of nM is approximately symmetrical (i.e., having skewness close to zero). We used 

Nelder-Mead simplex direct search optimization (Lagarias et al., 1998) to find an optimal value 

for 𝜆 that maximizes the following log-likelihood function (Sakia, 1992; Box and Cox, 1964): 

𝐿𝐿𝐹(𝜆) = −
𝑛

2
log(�̂�𝜆

2) + (𝜆 − 1)∑∑log(𝑛𝑠𝑖,𝑗
𝐵 )

𝑑

𝑗=1

𝑟

𝑖=1

                                                                      (3) 

where �̂�𝜆 is the standard deviation of the normalized sensitivity indices for a given λ. Note that 

the matrix 𝒏𝑴 of normalized sensitivity indices will be used in the proposed grouping algorithm. 

4.3.3 Factor grouping using agglomerative hierarchal clustering 

Having constructed the matrix 𝒏𝑴 of normalized sensitivity indices, factor grouping can proceed 

with the aid of cluster analysis to identify groups of sensitivity indices whose values are as 

similar as possible, while being as distinct as possible from other groups. Many clustering 

algorithms are available, including hierarchical clustering, k-means, and density-based clustering 

(see Tan et al. (2006) and Hair et al. (2006) for more details).  

Here we use the popular agglomerative hierarchical clustering method (AHC; Johnson, 1967), 

a bottom-up approach that clusters data based on iterative merging of the two closest groups. In 

our implementation, AHC starts with d groups by assigning each column of 𝒏𝑴 (each factor) to 

a group having a single-element (called a leaf). At each successive step, the two groups that are 

deemed most similar are joined (or agglomerated) into a new, larger group (called a node). 

Iterative application of this procedure is continued until all the columns of 𝒏𝑴 (all factors) are 

contained in one single large group (called the root). The result is a clustering tree, commonly 

referred to as a “dendrogram”. Once the dendrogram has been constructed, the user can examine 

the resulting cluster hierarchy, and cut the dendrogram at any level (cutoff threshold) to 
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determine the groups. A major advantage of AHC over other clustering techniques, such as the k-

means algorithm, is that it does not require a pre-specification of the final (i.e., desired) number 

of groups. 

A critical step in implementation of AHC is selection of a metric to quantify the pairwise 

similarities between factors. Most available methods are based on Euclidean distance, such as 

single linkage (Sneath, 1957), complete linkage (Sørensen, 1948), weighted average linkage 

(Sokal and Michener, 1958; Lance and William, 1967), centroid (Lance and William, 1967), 

Ward’s method (Ward, 1963), etc. Here we used Ward’s method, because it attempts to both 

maximize between-cluster distances and minimize within-cluster distances using a single 

objective function called “merging cost”. The literature suggests that Ward’s method typically 

outperforms other distance metrics and is among the most commonly-used techniques (see e.g., 

Hands and Everitt, 1987; Milligan and Cooper, 1988; Ferreira and Hitchcock, 2009; Terada, 

2013). 

4.3.4 A measure of robustness and convergence of GSA 

Given an ability to monitor convergence rates of a GSA experiment, the user can improve 

efficiency by avoiding unnecessary model runs. Monitoring can be performed through subjective 

visual inspection of the results (e.g., Vanrolleghem et al. (2015)) or by objective quantitative 

criteria (e.g., Sarrazin et al., 2016; Yang, 2011, Razavi and Gupta, 2016b). Bear in mind that 

convergence rates can differ from one GSA algorithm and experiment to another.  

Razavi and Gupta (2016b) developed the first robustness measure for factor ranking 

(incorrectly termed a “reliability” measure therein) based on a bootstrap method, by following 

these steps: 

1. Based on the vector of sensitivity indices 𝑺1,𝑑 = {s1, … , 𝑠𝑑} obtained by application of 

GSA to the original sample set, compute the vector of the original factor rankings 𝑭𝑹1,𝑑 =

{𝑓𝑟1, … , 𝑓𝑟𝑑}. 

2. Using the set of bootstrap-based vectors of sensitivity indices 𝑺𝑖,𝑑
𝐵 = {𝑠𝑖,1

𝐵 , … , 𝑠𝑖,𝑑
𝐵 } (𝑖 =

1, … , 𝑟), construct the matrix of factor rankings: 
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 𝑭𝑹𝐵 = (
𝑓𝑟1,1

𝐵 … 𝑓𝑟1,𝑑
𝐵

⋮ ⋱ ⋮
𝑓𝑟𝑟,1

𝐵 … 𝑓𝑟𝑟,𝑑
𝐵
) 

3. For each column 𝑗 of 𝑭𝑹𝐵 (𝑗 = 1, … , 𝑑), count the number of times 𝑛𝑗  that 𝑓𝑟𝑖,𝑗
𝐵 = 𝑓𝑟𝑗 (for 

𝑖 = 1, … , 𝑟). 

4. The robustness measure for the 𝑗-th factor is estimated by computing 𝑛𝑗 𝑟⁄ . This measure 

can be any positive number smaller than or equal to 1, where a value equal to 1 indicates 

that the obtained factor ranking is fully (i.e., 100%) robust to sampling variability. 

Here, we extend the above robustness measure to accommodate factor grouping. Our proposed 

measure quantifies the robustness of the factor rankings based on its membership within a factor 

group. After performing a grouping operation on matrix 𝒏𝑴, model factors can be organized into 

k groups 𝑔1, … , 𝑔𝑘. Then, we implement the following procedure to calculate the factor 

grouping-based robustness measure for the j-th factor: 

1. Identify the group  𝑔𝑚 that contains the j-th factor. 

2. For all factors in  𝑔𝑚, based on the original sample set, compute the vector of the original 

factor rankings 𝑭𝑹1,𝑐𝑚

𝑔𝑚 = {𝑓𝑟1
𝑔𝑚 , … , 𝑓𝑟𝑐𝑚

𝑔𝑚}, where  𝑐𝑚 is the number of factors in  𝑔𝑚. 

3. For the j-th column in 𝑭𝑹𝑩,  count the number of times 𝑞𝑗 that 𝑓𝑟𝑖,𝑗
𝐵  (for 𝑖 = 1,2, … 𝑟) is 

equal to either 𝑓𝑟1
𝑔𝑚 , 𝑓𝑟2

𝑔𝑚 , … , or 𝑓𝑟𝑐𝑚
𝑔𝑚. 

4. Compute the grouping-based robustness measure for the j-th factor by 𝑞𝑗 𝑟⁄ . 

For example, assume that four factors of a d-dimensional model are clustered into the second 

group as e.g., 𝑔2 = {𝑥3, 𝑥1, 𝑥8, 𝑥5} and that the corresponding ranks for these factors obtained 

from the original sample set are 𝑭𝑹1,4
𝑔2 = {3, 4, 5, 6}. To evaluate the robustness of factor ranking 

for each factor in  𝑔2, say 𝑥1, we count the number of times, 𝑞1, out of r bootstrap replicates that 

the ranking of 𝑥1 is either 3, 4, 5, or 6. Thus, the probability that the rank of 𝑥1 belongs to 𝑭𝑹1,4
𝑔2  

is  𝑞1 𝑟⁄  which provides an estimate of the grouped factor ranking robustness. By monitoring the 

convergence behavior of this measure, we can terminate the algorithm at any desired level of 

robustness for that factor. Given that in high-dimensional models, it is the general position of the 
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factors in the higher, middle or lower parts of the ranking that is of actual interest, as opposed to 

the precise ranking, the approach developed here is of more practical relevance.  

4.3.5 Determining an optimal number of groups 

In this study, we used two efficient strategies to determine the optimal number of groups. The 

first, known as the elbow method, finds the number of groups by analysis of the cluster hierarchy 

of the dendrogram, while the second chooses the number of groups by assessing the robustness 

measure  

4.3.5.1 An elbow method for finding optimal number of groups 

To determine the optimal number of groups, one can simply examine changes in the merging 

cost of combining groups across all successive merging steps and select the point at which the 

merging cost approaches a plateau and thereafter decreases gradually. This approach, known as 

the elbow method (Kodinariya and Makwana, 2013), is because the clustering procedure 

typically reaches a point (elbow point) after which it is no longer worth further grouping the 

factors. In other words, the merging cost corresponding to this point is “good enough”, and the 

performance improvement achieved by clustering levels off as the number of groups grows 

further. 

As shown in Fig. 4-4(a), the elbow method can be objectively implemented by plotting the 

merging cost versus the number of groups and finding the elbow point of this curve, which is 

mathematically the point of maximum curvature. We apply a widely-used heuristic for 

identifying this point based on the concept of Menger curvature (Satopää et al., 2011), which 

defines the curvature of a triple of points as the curvature of the circle circumscribed about those 

points. Thus, the elbow point can be simply found by drawing a line from start to end of the 

curve, and then calculating the perpendicular distance from each point to the curve. The point 

that is farthest away from that line (maximum perpendicular distance) is the elbow point 

corresponding to the optimal cluster number. In the dendrogram, this point is analogous to the 

cutoff threshold (as shown in Fig. 4-4(b)).  
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Figure 4-4 Subplot (a) shows a typical plot of a distance metric (y-axis) for a cluster analysis 

versus the number of groups (x-axis). As can be seen, the distance metric decreases 

monotonically by increasing the number of clusters 𝒌, but from some 𝒌𝒐𝒑𝒕𝒊𝒎𝒂𝒍 onwards it flattens 

significantly. Subplot (b) shows the corresponding clustering tree or dendrogram constructed by 

AHC. The height of each node in (b) represents the distance value between the right and left sub-

branch clusters. The dashed line in (b) is the cutoff threshold for cutting the dendrogram into 

𝒌𝒐𝒑𝒕𝒊𝒎𝒂𝒍 groups. 

 

4.3.5.2 Identifying optimal number of groups based on robustness assessment 

After generating a dendrogram, one can cut it at different cutoff thresholds and evaluate the 

respective factor grouping-based robustness values. Given a user-chosen minimum acceptable 

robustness value, the optimal number of groups can be selected such that the estimates of 

robustness values are equal to or greater than the minimum value.  In other words, at each 

iteration, once the dendrogram has been created, we cut the dendrogram at different levels to 

determine the maximum number of groups that guarantees the estimated grouping-based 

robustness of all factors to be higher than the pre-specified minimum value. An important 

attribute of this method (hereafter called “minimum robustness method”) is that it provides the 

user with flexibility in selecting the number of groups based on the obtained robustness values. 

However, unlike the elbow method, the subjectivity involved in finding the optimal number of 

groups is not completely removed, because this method requires the user to specify a minimum 

acceptable robustness value. In general, choosing a higher value for this minimum acceptable 
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robustness value will result in a smaller number of groups, so the user might find it useful to try 

several values (e.g., in range 0.50 to 0.95) and pick the one that best suits the objectives of the 

problem at hand. 

4.3.6 The GSA method 

The grouping strategy developed here is “GSA method-free” and can be implemented in the 

context of any GSA algorithm, including the variance-based (e.g., FAST (Cukier et al., 1973) 

and eFAST (Saltelli et al., 1999)) or density-based (e.g., δ-density (Borgonovo, 2007) and 

PAWN (Pianosi and Wagener 2015)) methods. In the next section, we illustrate its use with the 

VARS approach introduced by Razavi and Gupta (2016a), which has been applied to several 

real-world problems of varying dimensionality and complexity (Sheikholeslami et al., 2017; 

Yassin et al., 2017; Haghnegahdar and Razavi, 2017; Razavi and Gupta 2016b). Note that VARS 

generates a set of sensitivity indices called IVARS (Integrated Variogram Across a Range of 

Scales), that evaluate the rates of variability in model outputs at a range of different perturbation 

scales. The precise implementation of VARS used here is the STAR-VARS method developed 

by Razavi and Gupta (2016b). Here, we use progressive Latin hypercube sampling (PLHS; 

Sheikholeslami and Razavi, 2017) to sequentially locate star centers and STAR sampling to 

sample star points in the parameter space. It has been shown that PLHS outperforms other 

traditional sampling strategies in terms of a variety of evaluation criteria (e.g., space-filling and 

one-dimensional projection properties). 

 

4.4 Numerical Experiments 

In the first case study, we demonstrate application of the grouping strategy to a theoretical 

benchmark function. In the second case study, we apply the method to a real-world modelling 

problem having more than 100 uncertain parameters. 

4.4.1 Illustration using the Sobol g-function 

A commonly used benchmark problem for GSA known as the Sobol g-function (Saltelli and 

Sobol, 1995) has the following mathematical form: 
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𝑌(𝑥1, 𝑥2, … , 𝑥𝑑) = ∏
|4𝑥𝑗 − 2| + 𝑎𝑗

1 + 𝑎𝑗

𝑑

𝑗=1

                                                                                                   (3) 

where factors 𝑥𝑗  (𝑗 = 1,2, … , 𝑑) are uniformly distributed over a [0,1]𝑑 hypercube, and the 𝑎𝑗 are 

non-negative constants. 

The non-linearity and non-monotonicity of this function along with the availability of 

analytical sensitivity indices make it a suitable problem for the study of GSA techniques. 

Moreover, since the Sobol g-function is the product of contributions from each input factor, the 

function is non-additive and features interactions of all orders (Archer et al., 1997). The strength 

of contribution of each factor 𝑥𝑗 to the variability of the response 𝑌 can be controlled by 

changing the values of the 𝑎𝑗 terms. When 𝑎𝑗 is smaller, the factor 𝑥𝑗 becomes more influential, 

and thus factors can be classified in terms of their importance by assigning appropriate values to 

these coefficients. This makes it particularly useful for evaluating the performance of any factor 

grouping scheme. For illustrative purposes, the number of factors 𝑑 was set to 50, and the 

coefficients were chosen (as listed in Table 4-2) to form four groups of factors with differing 

relative sensitivities. 

To implement STAR-VARS, the number of star centers was arbitrarily set to 200 and the 

resolution was set to 0.05, resulting in a total of 190,200 evaluations of the Sobol g-function. The 

total number of bootstrap replicates was set to r = 1,000. For the sensitivity index, we used 

IVARS-50, also referred to as “total-variogram effect”, as it encompasses sensitivity analysis 

information across a comprehensive range of perturbation scales.  
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Table 4-2 The coefficients used in this study for 50-dimensional Sobol g-function 

Group Coefficient 

Strongly influential 𝑎1 = 𝑎2 = 0 

{𝑎3, 𝑎4… , 𝑎9} = {0.005, 0.020, 0.040, 0.060, 0.08, 0.090, 1} 

 

Moderately influential 𝑎10 = 𝑎11 = ⋯ = 𝑎16 = 2; 

{𝑎17, 𝑎18… , 𝑎24} = {2.10, 2.25, 2.75, 3, 3.10, 3.15, 3.25, 3.50} 

Weakly influential 𝑎25 = 𝑎26 = ⋯ = 𝑎30 = 9; 

{𝑎31, 𝑎32… , 𝑎44}

= {8, 8.5, 9, 10, 10.5, 11, 12, 12.5, 13, 13.5, 14, 14.5, 15, 16} 

Non-influential {𝑎45, 𝑎46… , 𝑎50} = {70, 75, 80, 85, 90, 99} 

 

4.4.2 Modelling case study 

4.4.2.1 Model description 

This case study was adopted from Haghnegahdar et al. (2017b) where the highly-parameterized 

MESH (Modélisation Environmentale–Surface et Hydrologie; Pietroniro et al., 2007) model was 

calibrated to the Nottawasaga river basin in Southern Ontario, Canada (Fig. 4-5). MESH is a 

semi-distributed coupled land surface-hydrology modelling system developed by Environment 

and Climate Change Canada (ECCC) for large-scale watershed modelling with consideration of 

lateral and cold region processes in Canada.  
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Figure 4-5 Location of the Nottawasaga river basin in Canada 

MESH treats a watershed as being discretized into grid cells and accounts for within pixel 

heterogeneity using the concept of Grouped Response Units (GRUs, Kouwen et al., 1993). The 

dominant land cover in the area is cropland followed by deciduous forest and grassland. The 

dominant soil type in the area is sand followed by silt and clay loam. MESH version 1.3.006 was 

implemented in this study. More details are provided in Appendix. 

4.4.2.2 Experimental setup 

In the sensitivity analysis study reported here, a total of 111 model parameters were considered. 

Most of these parameters are related to land cover and soil classes tied to the GRU types. Out of 

the existing 16 GRU types, only parameters corresponding to the top five GRU types covering 

areas greater than 5% were included. The rest of parameters are associated with the interflow 

process, initial conditions, ponding, and channel routing. Parameter ranges were specified using 

a combination of expert knowledge, previous studies (Dornes et al., 2008), and recommendations 

in the manual (Verseghy, 2012).  
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Taking the available computational budget into consideration, 100 star centers were generated 

with a resolution of 0.1 (chosen arbitrarily) for implementation of STAR-VARS, requiring a total 

of 100,000 model runs. This large number of MESH runs was performed using the University of 

Saskatchewan’s Linux-based high-performance computing cluster called Plato. Approximately 3 

minutes were required to complete a single evaluation of the model on one core of Plato. If a 

single CPU core is used, the entire set of 100,000 samples will take approximately 6.85 months 

of computational time to generate (we used 160 CPU cores). The Nash-Sutcliffe coefficient of 

efficiency (NS) was used to measure daily model streamflow performance, calculated for a 

period of three years (October 2003 to September 2007) following a “one year” model warmup 

period that was excluded in the NS calculations. Sensitivity was assessed using the IVARS-50 

index, called “total-variogram effect”, of the VARS methodology. The total number of bootstrap 

replicates was set to r = 1,000. 

 

4.5 Results and Discussion 

4.5.1 Factor grouping results 

4.5.1.1 Results for the Sobol g-function 

Fig. 4-6(a) shows the factor grouping dendrogram for the first case study (Sobol g-function), 

obtained by the normalized IVARS-50 sensitivity indices. Applied to Fig. 4-6(a), the elbow 

method automatically identified the four groups of factors labeled as {𝑔1, 𝑔2, 𝑔3, 𝑔4}; this result is 

consistent with the groups defined in Table 4-2 (for clarity we use lower case 𝑔 to represent 

normalized grouping). To demonstrate the value of applying a normalizing transformation prior 

to factor grouping, Fig. 4-6(b) presents the dendrogram obtained using the untransformed 

IVARS-50 sensitivity index (upper case 𝐺 is used to represent un-normalized grouping). Without 

normalization, the 9 strongly influential factors of Table 4-2 are clustered into 3 smaller groups 

as  𝐺1 = {𝑥1}, 𝐺2 = {𝑥4, 𝑥7}, and 𝐺3 = {𝑥3, 𝑥8, 𝑥2, 𝑥6, 𝑥5, 𝑥9}, while the remaining 41 factors are 

gathered into one big group (𝐺4).  
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Figure 4-6 Factor grouping results for Sobol g-function based on (a) normalized sensitivity 

indices, and (b) sensitivity indices without normalization. The dashed lines show a zoom-in of the 

dendrogram for small values. Note that groups are labeled in order of importance (g1 is the most 

important one). 

Overall, the proposed factor grouping strategy makes the problem more tractable and results in 

a significantly higher convergence rate. To elaborate, consider factors 𝑥1 and 𝑥2that are (by 
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design) equally the most influential factors (𝛼1 = 𝛼2 = 0,  see Table 4-2). While we would 

expect 𝑥1 and 𝑥2 to converge to the same sensitivity index value, Fig. 4-7 shows that 

convergence has not been achieved after performing 190,200 function evaluations. In contrast, 

application of the grouping algorithm (Fig. 4-6(a)), quickly clustered 𝑥1 and 𝑥2 into the same 

group 𝑔1 (the group of most influential factors), indicating a high convergence rate. Comparison 

of Fig. 4-6(a) and Fig. 4-6(b) additionally highlights the importance of normalization because 

without normalization 𝑥1 and 𝑥2 are clustered into two different groups 𝐺1and 𝐺2 respectively 

(see Fig. 4-6(b)). 

 

Figure 4-7 Convergence plot for the sensitivity indices associated with 𝒙𝟏 and 𝒙𝟐 for the Sobol 

g-function estimated using an increasing number of model evaluations. 

 

4.5.1.2 Effect of sampling variability on factor grouping results 

Robustness of the factor grouping algorithm depends directly on how robust our estimate of the 

sensitivity matrix is. If the GSA algorithm provides sufficiently robust estimates of the 

sensitivity indices, the grouping results can be expected to be robust as well. The AHC algorithm 

that has been used in our proposed grouping strategy is a deterministic algorithm without any 

random components. As a result, it provides a unique dendrogram (i.e., clustering) for a given set 

of sensitivity indices until these indices change. Therefore, one can evaluate the impact of 
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sampling variability on factor grouping results by performing multiple trials of sensitivity 

analysis with different sample sets and comparing the resultant dendrograms. However, 

accounting for sampling variability using multiple trials of GSA may be an impractical approach 

for high-dimensional and computationally intensive models such as MESH. On the other hand, 

to ensure that our proposed grouping technique operates as expected, various testing methods 

should be implemented during the numerical experiments. Therefore, in this section, we 

investigate the effects of sampling variability on grouping-enabled VARS algorithm by carrying 

out several trials of sensitivity analysis initiated using different random seeds. We do this only 

for the Sobol g-function which is computationally cheaper than MESH, by running 40 

independent trials of STAR-VARS. 

Comparing multiple trials of sensitivity analysis through factor grouping requires a method for 

comparing dendrograms. Different measures for assessing the degree of similarity (association) 

between various classifications (i.e., dendrograms) exist, including the cophenetic correlation 

coefficient (Sokal and Rohlf, 1962) and Baker’s index (Baker, 1974). Here, we used Baker’s 

index to investigate how the results of the factor grouping algorithm vary between several 

replicates of the STAR-VARS.  Given a pair of dendrograms, Baker’s index can be calculated by 

taking two factors (model parameters) and finding the highest possible level of 𝑘 (number of 

groups created when cutting the dendrogram) for which these two factors belongs to the same 

tree. This procedure is repeated for the same two factors in the other dendrogram. Overall, in a d-

dimensional model, there are 𝑑(𝑑 − 1)/2 possible combinations of such pairs of factors, and 

accordingly all these numbers can be computed for each of the two dendrograms. Finally, these 

two sets of numbers are paired with respect to the pairs of factors compared, and a rank 

correlation (e.g., Spearman’s correlation coefficient) between them is calculated (Galili, 2015). 

Accordingly, unlike other measures, the Baker’s index is only sensitive to the relative position of 

branches in the dendrograms and is insensitive to the heights of the branches. This important 

feature makes it suitable for comparing factor grouping results. 

Calculation of the Baker’s indices associated with pairwise comparison of the 40 dendrograms 

obtained from the GSA of Sobol g-function resulted in a 40-by-40 symmetric correlation matrix 

containing the Baker’s indices between each dendrogram and the others as shown in Fig. 4-8. 
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Inspection of these results reveals that almost all runs yielded very similar factor groupings, i.e., 

the minimum value of Baker’s index we obtained is 0.991 and the median is 0.999 in Fig. 4-8. 

This is not surprising, since it has been shown that STAR-VARS is a robust GSA technique that 

provides stable results (Razavi and Gupta, 2016b), and consequently the comparison of the 

grouping results confirms the robustness of STAR-VARS to sampling variability.  

 

Figure 4-8 Baker’s index for comparing factor grouping results obtained from 40 runs of Sobol 

g-function. This measure varies between -1 to 1, with values close to 0 indicates that the two 

dendrograms are not statistically similar. The diagonal elements in this matrix is equal to 1 as 

they indicate the similarity of a dendrogram with itself. 

 

4.5.1.3 Results for the MESH model 

The model parameter grouping obtained for the second case study (MESH model) is shown in 

Fig. 4-9. Using the elbow method, the 111 MESH model parameters were automatically 

classified into 7 groups. These groups are ordered based on their importance, i.e., 𝑔1 contains the 

most strongly-influential parameters, while parameters in 𝑔7 are minimally-influential. The first 

group (𝑔1) consists of 4 parameters controlling water storage and movement in the soil (SDEP, 
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DRN), river channel routing (WFR22), and snow cover fraction (ZSNL). Groups 2 through 6 

contain parameters related to soil and vegetation properties, control of overland and interflow 

generation, and initial conditions. Note that the parameters specifying initial conditions, 

including soil initial moisture content (THLQ1,2,3), temperature (TBAR1,2,3) and initial surface 

ponding (TPOND) are all located in 𝑔4, except for initial canopy temperature (TCANO), which 

is in 𝑔7(least influential). This placement of TCANO may be due to the fact that model 

simulations start in October, which is not part of the canopy growing season. Other parameters in 

𝑔7 are ponding parameters corresponding to GRU number 7 that has small area fractions 

compared to that of other GRU types (ZPLG7 and ZPLS7), and the Manning’s coefficient 

(MANNG) used in calculation of overland flow (see Appendix for parameter description). 

 

 

Figure 4-9 Factor grouping results for MESH model. The dashed line shows a zoom-in of the 

dendrogram for small values. The x-axis labels correspond to model parameters. The groups are 

labeled in order of importance. 
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4.5.2 Assessment of the convergence and robustness of factor ranking results 

4.5.2.1 Results for the Sobol g-function 

For the first case study, Fig. 4-10(a) illustrates the convergence behavior of the proposed 

robustness measure, while Fig. 4-10(b) shows the robustness values based on individual factor 

ranking computed as described in Razavi and Gupta (2016b). Whereas the robustness values 

estimated based on individual factors deteriorates for the first 28,350 evaluations (clearly 

indicating insufficient sample size), the factor grouping converges quickly towards probability 1 

(i.e., 100%) after about only half that number (~15,000), and from 28,350 function evaluations 

onwards the grouping is stable (Fig. 4-10(a)). Note also that the robustness measure based on 

individual factor rankings continue to vary between 0.18 and 1 (median = 0.55) even for well 

over 150,000 evaluations. 

 

Figure 4-10 Comparison of the assessment of robustness based on (a) factor grouping and (b) 

individual factor ranking. In subplots (a) and (b) each line represents the evolution of robustness 

values associated with each factor of the Sobol g-function. 

4.5.2.2 Results for the MESH model 

The robustness assessment results for the second case study are shown in Fig. 4-11(a) and (b). 

After 90,000 function evaluations, the estimated factor grouping-based robustness values are all 

higher than 0.50 (Fig. 4-011(a)), whereas for individual factor ranking-based values they 

continue to vary between 0.04 and 1.0 (Fig. 4-11(b)). For clarity, Fig. 4-11(c) shows the 

trajectories of the medians of both the individual (red dashed line) and group-based (blue solid 

line) factor ranking results. Notice that the group-based median rank is already quite high (0.80) 
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after 20,000 function evaluations and increases rapidly thereafter to be above 0.90 from 50,000 

evaluations on, finally reaching 0.99 at 100,000 model runs.  Given there are 111 parameters, 

this means the grouping-based approach has achieved greater than 90% robustness in identifying 

the 55+ most sensitive parameters of this model with only 40,000-50,000 sample points. In 

contrast, the median rank for the individual factor method remains low and is only 0.17 at the 

termination of the experiment. 

 

Figure 4-11 Comparison of the assessment of robustness based on (a) factor grouping and (b) 

individual factor ranking. Subplot (c) shows the median of the individual (red dashed line) and 

group-based (blue solid line) factor ranking results. In subplots (a) and (b) each line represents the 

evolution of robustness values associated with each parameter of the MESH model. 

 

In support of this, Fig. 4-12(a-g) shows the trajectories of robustness values for each member 

of each of the 7 identified groups (from most strongly influential to non-influential). We see 

clearly that groups 1 (Fig. 4-12(a)) and 2 (Fig. 4-12(b)) (the two most strongly-influential) and 

group 7 (Fig. 4-12(g)) (the least influential) have been well established (with high robustness) 

after about 50,000 function evaluations. In contrast, the robustness values for members of the 
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intermediate groups (3-6) (Fig. 4-12(c-f)) tend to be more variable, with some members having 

high robustness and others having relatively lower robustness. For the latter, this indicates that 

their group membership is less certain and that they may continue to shift between groups as the 

sampling proceeds. Nonetheless, the most and least influential parameter groups are relatively 

well established quite early in the GSA procedure. Finally, Fig 4-12(h) shows, together, the 

trajectory of median robustness values for each of the seven groups. This plot can be useful for 

oversight monitoring of the convergence of the factor grouping procedure. 

 

Figure 4-12 Trajectories of robustness values for each parameter of the MESH model in groups: 

(a) g1, (b) g2, (c) g3, (d) g4, (e) g5, (f) g6, and (g) g7. Subplot (h) shows the evolution of median of 

the robustness values for each of the seven groups for the increasing number of function 

evaluations. 

0

0.2

0.4

0.6

0.8

1

10000 30000 50000 70000 90000

DRNC

SDEPC

WFR22

ZSNL3

0

0.2

0.4

0.6

0.8

1

10000 30000 50000 70000 90000

LAMING
PSGAG
PSGBG
MANNG
ROOTD
VPDBD
PSGAD
PSGBD
ZPLS11
ZPLG11

0

0.2

0.4

0.6

0.8

1

10000 30000 50000 70000 90000

ROOTC
VPDAC
DDENC
XSLPC
VPDAG
SDEPG
LAMIND
LNZ0D
VPDAD
SDEPD
RATIOSa
ZSNL1
ZSNL4
ZPLS4
ZPLG4

0

0.2

0.4

0.6

0.8

1

10000 30000 50000 70000 90000

LAMAXC RSMNC

QA50C VPDBC

LNZ0G ROOTG

DRNG DDENG

XSLPG DRND

DDEND XSLPD

SANDSa1 SANDSa2

SANDSa3 CLAYSa1

CLAYSa2 CLAYSa3

SANDSi3 CLAYSi3

ZSNL7 ZSNL1

ZPLS1 ZPLS3

ZPLG1 ZPLG3

0

0.2

0.4

0.6

0.8

1

10000 30000 50000 70000 90000

LNZ0C CMASC
ALVCC ALICC
PSGAC PSGBC
GRKFC MANNC
LAMAXG ALICG
PSMNG QA50G
RSMND QA50D
SANDCL1 SANDCL2
SANDCL3 SANDSi1
SANDSi2 CLAYSi1
CLAYSi2 ORGSi1
ORGSi2 ORGSi3
RATIOSi TBAR1
TBAR2 TBAR3
TPOND THLQ1
THLQ2 THLQ3
ZPOND

Fa
ct

o
r 

gr
o

u
p

in
g-

b
as

ed
 r

o
b

u
st

n
es

s

Number of function evaluations

0

0.2

0.4

0.6

0.8

1

10000 30000 50000 70000 90000

CMASG ALVCG
VPDBG GRKFG
LAMAXD CMASD
ALVCD ALICD
GRKFD CLAYCL1
CLAYCL2 CLAYCL3
ORGCL1 ORGCL2
ORGCL3 RATIOCL
ORGSa1 ORGSa2
ORGSa3

0

0.2

0.4

0.6

0.8

1

10000 30000 50000 70000 90000

MANND

TCANO

ZPLS7

ZPLG7

(a)

(b)

(c)

(d)

(e)

(f)

(g)
0

0.2

0.4

0.6

0.8

1

10000 30000 50000 70000 90000

g1

g2

g3

g4

g5

g6

g7

Number of function evaluations

(h)



 

 100 

Overall, these results clearly illustrate the value of using factor grouping-based robustness 

estimates for monitoring convergence of GSA applied to high-dimensional models. As indicated 

in Fig. 4-2, when convergence has not yet been achieved, the user can iterate by increasing the 

original sample size n using a sequential sampling scheme such as PLHS. 

4.5.3 Comparison of the proposed strategies for finding optimal number of groups 

Fig. 4-13 (top panel) illustrates the evolution of the optimal number of groups obtained by the 

elbow method. As the STAR-VARS algorithm progresses (Fig. 4-13(a) and (b)), the grouping 

algorithm evolves and discovers groups of parameters that share specific properties in terms of 

their sensitivity. To further investigate the performance of the elbow method, the merging costs 

(distance metric) versus the number of groups are plotted for the Sobol g-function (Fig. 4-13(c)) 

and MESH model (Fig. 4-13(d)) when the number of function evaluations is 190,200 and 

100,000 respectively. Fig. 4-13 (bottom panel) confirms the ability of the elbow method to 

successfully determine the optimal number of groups by finding the elbow point of the curve 

(point of maximum curvature). For the Sobol g-function, the elbow method converges rather 

quickly to an optimal number of groups; however, for the MESH model, the optimal number 

continues to vary over the range 7-13 for the number of function evaluation examined. 
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Figure 4-13 Top panel shows the evolution of the optimal number of groups with computational 

budget for (a) Sobol g-function and (b) MESH model. Bottom panel shows plots of the distance 

metric (y-axis) versus number of groups (x-axis) for (c) Sobol g-function and (d) MESH model 

when number of function evaluations is maximum. From 𝒌 = 𝟒 in subplot (c) and 𝒌 = 𝟕 in 

subplot (d) onwards the curves flatten notably. 

 

To illustrate the performance of the minimum robustness method in determining optimal 

number of groups, we calculated the maximum number of groups that is required to have 

minimum robustness values of 0.90 for the Sobol g-function (Fig. 4-14(a)) and 0.45 for the 

MESH model (Fig. 4-14(b)), as the number of function evaluations grows. The top panel of Fig. 

4-14 indicates that the number of groups tends to be small for low numbers of function 

evaluations and tends to increase as the number of function evaluations increases.  
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Figure 4-14 Maximum number of groups that is required to achieve minimum robustness values of (a) 

0.90 for Sobol g-function and (b) 0.45 for MESH model parameters as the number of function evaluations 

grows. Bottom panel shows the histograms of the estimated robustness values for MESH model after (c) 

40,000 and (d) 90,000 function evaluations. 

 

Finally, histograms of the estimated robustness values are shown in Fig. 4-14 (c) and (d) for 

the MESH model for 40,000 and 90,000 function evaluations, when the number of groups is 

equal to 9 and 10, respectively. Although the minimum desired robustness level was set to 0.45, 

the estimated robustness value for most of the parameters is greater than 0.60. In fact, when the 

number of function evaluations is 40,000, only two parameters, out of 111 parameters, have 

robustness values less than 0.60, while after 90,000 function evaluations, except one parameter, 

all the parameters have the robustness values greater than 0.60. 
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4.6 Conclusions 

Global sensitivity analysis (GSA) is a powerful tool for deepening our understanding of 

Complex Environmental Systems Models (CESMs), providing information helpful for model-

development, parameterization, calibration, and data-acquisition. Advanced CESMs are 

commonly characterized by large parameter/problem spaces and high computational overheads, 

which impede the effective implementation of the modern GSA techniques because an extensive 

sensitivity analysis often requires a computationally infeasible number of model runs. To break 

down this barrier, we have introduced an automated “factor grouping” strategy that can be used 

with any GSA algorithm to reliably cluster input factors into groups of different sizes using 

information gained during the GSA. Our proposed grouping approach is based in the use of an 

efficient strategy (elbow method and/or minimum robustness method) to determine the optimal 

number of groups. While the elbow method removes the subjectivity involved in selecting the 

number of groups, the minimum robustness method is more flexible but requires specifying a 

minimum robustness value. Additionally, we developed and tested a new measure of robustness 

based on factor grouping to monitor and evaluate convergence of the GSA algorithm.  

To illustrate the approach, we implemented the factor grouping algorithm the VARS 

variogram-based GSA technique and demonstrated its utility for parameter sensitivity analysis of 

two high-dimensional case studies, the 50 parameter Sobol g-function and the 111 parameter 

MESH large-scale land surface-hydrology model. For the Sobol g-function, we assessed the 

effect of sampling variability on the grouping-enabled VARS algorithm by running multiple 

replicates of the algorithm with different original sample sets. The results of our experiment 

illustrate the robustness of the grouping strategy combined with VARS method for GSA. The 

results confirm that grouping-enabled GSA approach successfully recognizes the dominant 

groups of factors that contribute significantly to the variability of the model outputs, while 

requiring only a limited number of function evaluations to converge. Of course, to better 

understand how robustness of the chosen GSA method can affect the robustness of factor 

grouping results, several GSA methods should be tested in conjunction with the proposed 

grouping strategy.  
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Chapter 5 

Efficient Strategies for Handling Simulation Model Crashes in Global 

Sensitivity Analysis 

This chapter is a mirror of the following manuscript with minor changes to increase its 

consistency with the body of the dissertation. Changes were only made to avoid repeating the 

contents that have been presented more appropriately in other parts. References are unified at the 

end of the dissertation. 

Sheikholeslami, R., Razavi, S., and Haghnegahdar, A. 2019. What do we do with model 

simulation crashes? Recommendations for global sensitivity analysis of earth systems models. 

Geoscientific model Development, Discussion, https://doi.org/10.5194/gmd-2019-17  

Synopsis 

Complex, software-intensive, technically advanced, and computationally demanding models, 

presumably with ever-growing realism and fidelity, have been widely used to simulate and 

predict the dynamics of the Earth and Environmental Systems. The parameter-induced 

simulation crash (failure) problem is typical across most of these models, despite considerable 

efforts that modelers have directed at model development and implementation over the last few 

decades. A simulation failure mainly occurs due to the violation of the numerical stability 

conditions, non-robust numerical implementations, or mistakes made in the course of 

programming. However, the existing sampling-based analysis techniques such as global 

sensitivity analysis (GSA) methods, which require running these models under many 

configurations of parameter values, are ill-equipped to effectively deal with model failures. To 

tackle this problem, we propose a novel approach that allows users to cope with failed designs 

(samples) during the GSA, without knowing where they will take place and without re-running 

the entire experiment. This approach deems model crashes as missing data and uses strategies 

such as median substitution, single nearest neighbor, or response surface modelling to fill in for 

https://doi.org/10.5194/gmd-2019-17
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model crashes. We test the proposed approach on a 10-parameter conceptual rainfall-runoff 

model and a 111-parameter land surface-hydrology model. Our results show that response 

surface modelling is a superior strategy, out of the data filling strategies tested, and can comply 

with certain requirements concerning the dimensionality of the model, sample size, and the ratio 

of number of failures to the sample size. Further, we conduct a “failure analysis” and discuss 

some possible causes of the MESH model failure. 

 

5.1 Introduction 

5.1.1 Background and motivation 

Since the start of the digital revolution and subsequent increase in computers’ processing power, 

the advancement of information technology has led to significant development of the modern 

software programs for Complex Environmental Systems Models (CESMs). The current-

generation CESMs typically span upwards of several thousand lines of code and require huge 

amounts of data and computer memory. The flip side of the growing complexity of CESMs is 

that running these models will pose many types of software development and implementation 

issues such as simulation crashes/failures. The simulation crash problem happens mainly due to 

violation of the numerical stability conditions needed in CESMs. Certain combinations of model 

parameter values, improper integration time step, inconsistent grid resolution, or lack of iterative 

convergence as well as model thresholds and sharp discontinuities in model response surfaces, 

all associated with imperfect parameterizations, can cause numerical artefacts and stop CESMs 

from properly functioning. 

When model crashes occur, the accomplishment of automated sampling-based model analyses 

such as sensitivity analysis, uncertainty analysis, and optimization (e.g., Raj et al., 2018; 

Williamson et al., 2017; Metzger et al., 2016; Safa et al., 2015) becomes challenging. These 

analyses are often carried out by running CESMs for a large number of parameter configurations 

randomly sampled from a domain (parameter space). In such situations, for example, the model’s 

solver may break down because of the implausible combinations of parameters (“unlucky 
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parameter set” as termed by Kavetski et al., (2006)), failing to complete the simulation. It is also 

possible that a model may be stable against perturbation of one parameter, while it may crash 

when several parameters are perturbed simultaneously. “Failure analysis” is a process that is 

performed to determine the cause(s) that have led to such crashes while running CESMs. Before 

achieving a conclusion on the most important causes of crashes, it is necessary to check the 

software code used in the CESMs and make sure if it is error-free; for example, a proper 

numerical scheme was adopted and correctly coded in the software. This often requires 

investigating both the software documentation and a series of nested modules. However, the 

existence of numerous nested programming modules in a typical CESMs can make the 

identification and removal of all software defects so tedious. In addition, as argued by Clark and 

Kavetski (2010), the numerical solution schemes implemented in CESMs are sometimes not 

presented in detail. This is one important reason why detecting the causes of simulation crashes 

in DESMs is usually troublesome. For example, Singh and Frevert (2002) and Burnash (1995) 

described the governing equations of their models without explaining the numerical solvers that 

were implemented in their codes. 

Importantly, the impact of simulation crashes on the validity of global sensitivity analysis 

(GSA) results has often been overlooked in the literature, where simulation crashes are 

commonly classified as ignorable (see section 1.2). As such, a surprisingly limited number of 

studies have reported simulation crashes (examples related to uncertainty analysis include Annan 

et al., 2005; Edwards and Marsh, 2005; Lucas et al., 2013). This is despite the fact that these 

crashes can be very computationally costly for GSA algorithms because they can waste the rest 

of the model runs, prevent completion of GSA, or inevitably introduce ambiguity into the 

inferences drawn from GSA. For example, Kavetski and Clark (2010) demonstrated how 

numerical artefacts can contaminate the assessment of parameter sensitivities in six hydrological 

models. Therefore, it is important to devise solutions that minimize the effect of crashes on GSA 

results. In the next subsection, we critically review the very few strategies for handling 

simulation crashes that have been proposed in the literature and identify their shortcomings. 
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5.1.2 Existing Approaches to handling simulation crashes 

We have identified four types of approaches in the modelling community to handling simulation 

crashes, outlined below. The first two are perhaps the most common approaches (based on our 

personal communications with different modelers), however, we could not identify any 

publication that formally reports their application. 

1. After the occurrence of a crash, modelers commonly adopt a conservative strategy to 

address this problem by altering/reducing the feasible ranges of parameters and re-starting 

the experiment in a hope to prevent a recurrence of the crash for new analyses.    

2. Instead of GSA that runs many configurations of parameter values, analysts may choose to 

employ local methods such as local sensitivity analysis (LSA) through running the model in 

the vicinity of the known plausible parameter configurations. 

3. Some modelers may adopt an ignorance-based approach by using only a set of ‘‘good’’ (or 

behavioral) outcomes/responses in sampling-based analyses and ignoring unreasonable (or 

non-behavioral) outcomes such as simulation crashes. This can be done via defining a 

performance metric to determine which simulations should be excluded from the analysis 

(see, e.g., Pappenberger et al., 2008; Kelleher et al., 2013). 

4. The most rigorous approach seems to be a non-substitution approach that tries to predict 

whether a set of parameter values will lead to a simulation crash. Webster et al. (2004), 

Edwards et al. (2011), Lucas et al. (2013), Paja et al. (2016), and Treglown (2018) are 

among few studies that mainly aimed at developing statistical methods to predict whether a 

given combination of parameters is likely to result in a simulation failure. For example, 

Lucas et al. (2013) adopted a machine learning method to estimate the probability of crash 

occurrence as a function of model parameters. They further applied this approach to 

investigate the impact of various model parameters on simulation failures.  

The above approaches, however, have major shortcomings and limitations in handling 

computer crashes in the GSA context, because:   
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1. Locating regions of parameter space responsible for crashes (i.e., “implausible regions”) is 

difficult and requires analyzing the behavior of CESMs throughout the often high-

dimensional parameter space. Implausible regions usually have irregular, discontinuous, and 

complex shapes, and thus are too effortful to identify. Also, changing/reducing the 

parameter space changes the original problem at hand. 

2. It is well-known that local methods (e.g., LSA) can provide inadequate assessments that can 

often be misleading (see e.g., Saltelli and Annoni, 2010, Razavi and Gupta, 2015). 

3. When applying a sampling-based technique that uses an ad-hoc sampling strategy with 

particular spatial structure (e.g., the variance-based GSA proposed by Saltelli et al. (2010) 

or STAR-VARS of Razavi and Gupta (2016b)), ignorance-based procedures become 

impractical. In this case, excluding sample points associated with simulation crashes will 

distort the structure of the sample set, causing the failure of the entire GSA experiment. As a 

result, a new sample set (or a succession of sample sets) must be generated to resume the 

experiment, leading to a waste of previous model runs. 

4. The implementation of the non-substitution procedures necessitates significant prior efforts 

to identify many model crashes based on which a statistical model can be built to predict 

and avoid simulation failures in the subsequent use of the model. Such procedures can easily 

become infeasible in high-dimensional models, as then they would require an extremely 

large sample size to ensure an adequate coverage of the parameter space for characterizing 

implausible regions and building a reliable statistical model. These strategies can be more 

challenging when a model is computationally intensive. For example, to determine which 

parameters or combinations of parameters in a 16-dimensional climate model were 

predictors of failure, Edwards et al. (2011) used 1,000 evaluations (training samples) for 

constructing a statistical model to identify parameter configurations with high probability of 

failure in the next 1,087 evaluations (2,087 model runs in total). As pointed out by Edwards 

et al. (2011), although 2,087 evaluations might impose high computational burdens, a much 

larger sample size spreading out over the parameter space is required to guarantee 

reasonable exploration of the 16-dimensional space. 
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These shortcomings and gaps motivated our investigation to develop effective and efficient 

crash handling strategies suitable for GSA of CESMs introduced in section 5.2. 

5.1.3 Objective and scopes 

The primary goal of this chapter is to identify practical “substitution” strategies to handle 

parameter-induced crash problem in GSA of high-dimensional CESMs. Here, we treat computer 

crashes as missing data and investigate the effectiveness of three efficient strategies to replace 

them using available information rather than directly discarding them. Our approach allows the 

user to cope with failed designs in GSA without knowing where they will take place and without 

re-running the entire experiment. The overall procedure can be used in conjunction with any 

GSA technique. In this chapter, we assess the performance of this approach on two hydrological 

models, by coupling it with the variogram-based GSA technique (VARS; Razavi and Gupta 

(2016a,b)). 

The rest of this chapter is structured as follows. We begin in the next section (5.2) by 

introducing our proposed solution methodology for dealing with computer crashes. In section 

5.3, two real-world hydrological modelling case studies are presented. Next, in section 5.4, we 

evaluate and discuss the performance of the proposed methods across these real-world problems, 

before drawing conclusions and summarizing major findings in section 5.6. 

 

5.2 Methodology 

5.2.1 Problem statement 

We denote the output of each model run (realization) 𝑦(𝑿), which corresponds to a d-

dimensional input vector 𝑿 = {𝑥1, 𝑥2, … , 𝑥𝑑}, where 𝑥𝑖 (𝑖 = 1,2, … , 𝑑) is a factor that may be 

perturbed for the purpose of GSA (e.g., model parameters, initial conditions, or boundary 

conditions). Running a GSA algorithm usually requires generating 𝑛 realizations of a computer 

code using an experimental design 𝑿𝑠 = {𝑿1, 𝑿2, … , 𝑿𝑛}
T. Then, the model responses will form 

an output space as 𝒀 = {𝑦(𝑿1), 𝑦(𝑿2), … , 𝑦(𝑿𝑛)}
T. Here we deem simulation crashes as missing 

data and consider the model mapping of  𝑿𝑠 → 𝒀 as an incomplete data matrix. For a given 𝒀 ∈
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ℜ1×𝑛 with missing values, let the vector 𝒀𝑎 consist of the 𝑛𝑎 locations in the input space for 

which, in the given 𝒀, the model responses are available, and let the vector 𝒀𝑚 consist of the 

remaining 𝑛𝑚 locations (𝑛𝑚 = 𝑛 − 𝑛𝑎) for which, in the given 𝒀, the model responses are 

missing due to simulation crashes. For convenience of expression and computation, we use the 

“𝑁𝐴𝑁𝑗” symbol to represent the jth missing value in vector 𝒀. The main goal now here is to 

develop and test data recovery methods that can be used to substitute model crashes 𝒀𝑚  using 

available information (i.e., 𝒀𝑎 and  𝑿𝑠).  

 

5.2.2 Proposed strategies for crash handling in GSA 

We propose and test three techniques adopted from the “incomplete data analysis” for missing 

data replacement; the process known as imputation (Little and Rubin, 1987). We use imputation 

techniques to fill in missing values that ignore the mechanisms leading to the missingness. 

Therefore, only the non-missing responses and the associated sample points are included in our 

analysis to infill model crashes during GSA, as described in the next sub-sections. 

5.2.2.1 Median substitution 

Perhaps replacing each simulation crash with some “central” value is the easiest and 

computationally simple method for imputation. Depending on the distribution of the model 

response variables 𝒀, the central value can be mean or median. For example, if the distribution of 

model responses is not highly skewed, the crashes may be imputed with the mean of the non-

missing values. Otherwise, if the distribution exhibits skewness, then the median may be better 

replacement. This strategy, known as statistical imputation, treats each model response as a 

realization of a random function, while ignoring the covariance structure of model responses, and 

thus considers the mean/median as a reasonable estimate for missing data. Although mean 

substitution preserves the mean of 𝒀, a major shortcoming of this technique is that, depending on 

the number of crashes, it can distort other statistical characteristics of 𝒀 through reducing its 

variance. In this chapter, the median substitution technique has been utilized. 
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5.2.2.2 Nearest neighbor substitution 

The Nearest Neighbor (NN) technique (also known as hot deck imputation) uses observations in 

the neighborhood to fill in missing data. Let 𝑿𝑗 ∈ 𝑿𝑠 be an input vector for which a simulation 

model fails to return an outcome, i.e., 𝑦(𝑿𝑗) = 𝑁𝐴𝑁. Basically, in the NN-based techniques, 

𝑦(𝑿𝑗) is replaced by either a response value corresponding to a single nearest neighbor (single 

NN) or a weighted average of the response variables corresponding to 𝑘 nearest neighbors (k-

NN) where 𝑘 > 1. In the k-NN techniques weights are typically assigned based on the degree of 

similarity between 𝑿𝑗 and kth nearest neighbor 𝑿𝑘 where 𝑦(𝑿𝑘) ∈ 𝒀𝑎 (Tutz and Ramazan, 

2015).  

The underlying rationale behind NN procedure is that the sample points closer to 𝑿𝑗  may 

provide better information for imputing 𝑦(𝑿𝑗). An important feature of the NN technique is that 

the variance of the 𝒀 variables tend to be preserved for 𝑘 = 1 but not for 𝑘 > 1 (Moeur and 

Stage, 1995; McRoberts, 2009). Another advantage of the single NN over the k-NN techniques is 

that it does not require a pre-specification of the number of neighbors. Furthermore, single NN 

substitution does not extrapolate outside the range of the sampled output space and, instead, fill-

in values are determined from the pool of non-missing values. Here, we used the single NN 

technique with Euclidean distance measure. 

5.2.2.3 Model emulation-based substitution 

Model emulation is a strategy that develops statistical, cheap-to-run surrogates of response 

surfaces of complex, often computationally intensive models (Razavi et al., 2012a; Castelletti et 

al., 2012a,b). Here we develop an emulator �̂�(. )which is a statistical approximation of the 

simulation model based on response surface modelling concept. This strategy consists in finding 

an approximate/surrogate model with low computational cost that fits the non-missing response 

values 𝒀𝑎 to predict the fill-in values for the missing responses 𝒀𝑚. In the literature various types 

of response surface surrogates exist and are extensively discussed (see e.g. Razavi et al., 2012a). 

Examples are polynomial regression, radial basis functions (RBF), neural networks, kriging, 

support vector machines, and regression splines. In this chapter, we employed RBF 
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approximation as a well-established surrogate model. It has been shown that RBF can provide an 

accurate model for high-dimensional problems (Jin et al., 2001; Herrera et al., 2011), particularly 

when the computational budget is limited (Razavi et al., 2012b). The predictive response �̂�(𝑿) at 

design point 𝑿 can be approximated by an RBF model as a weighted summation of 𝑛𝑎 basis 

functions (and a polynomial or constant value) as follows: 

�̂�(𝑿) = ∑𝜔𝑖𝑓(‖𝑿 − 𝑿𝑖‖)

𝑛𝑎

𝑖=1

= 𝒇(𝑿)𝝎                                                                                                  (1) 

where 𝒇 = {𝑓1, 𝑓2, … , 𝑓𝑛𝑎} is the vector of the basis functions, 𝜔𝑖 is the ith component of the 

radial basis coefficient vector 𝝎 = {𝜔1, 𝜔2, … , 𝜔𝑛𝑎}
T
, and ‖𝑿 − 𝑿𝑖‖ is the Euclidian distance 

between two sample points. 

There are various choices for the basis function, such as Gaussian, thin-plate spline, multi-

quadric, and inverse multi-quadric (Jones, 2001). In the present study, we choose the widely-

used Gaussian kernel function for RBF as 

𝑓(‖𝑿 − 𝑿𝑖‖) = 𝑒𝑥𝑝 (
‖𝑿 − 𝑿𝑖‖

2

𝑐𝑖
2 )                                                                                                        (2) 

where 𝑐𝑖 is the shape parameter which determines the spread of the ith kernel function 𝑓𝑖.  

After choosing the form of the basis function, the coefficient vector 𝝎 can be obtained by 

enforcing the accurate interpolation condition, i.e., 

[
 
 
 
𝑦(𝑿1)

𝑦(𝑿1)
⋮

𝑦(𝑿𝑛𝑎)]
 
 
 

=

[
 
 
 
 
𝑓11 𝑓12 … 𝑓1𝑛𝑎
𝑓21 𝑓22 … 𝑓2𝑛𝑎
⋮

𝑓𝑛𝑎1

⋮
𝑓𝑛𝑎2

⋱
…

⋮
𝑓𝑛𝑎𝑛𝑎]

 
 
 
 

[

𝜔1
𝜔2

⋮
𝜔𝑛𝑎

]                                                                                      (3) 

where 𝑓𝑢𝑣 = 𝑓(‖𝑿𝑢 − 𝑿𝑣‖). In a matrix form, Eq. (3) can be simply rewritten as 𝒀𝑎 = 𝑭𝝎. 

This equation has a unique solution 𝝎 = 𝑭−1𝒀𝑎 if and only if all the sample points are different 
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from each other. Therefore, the fill-in values for remaining 𝑛𝑚 locations, for which the model 

responses are missing due to simulation crashes, can be approximated by 

�̂�(𝑿𝑗) =  𝒇(𝑿𝑗)𝑭
−1𝒀𝑎       (𝑗 = 1,2, … , 𝑛𝑚)                                                                                       (4) 

To reduce the computational cost and avoid overfitting when building RBF, for each failed 

design at 𝑿𝑗 we only chose k non-missing nearest neighbors of that missing value (here we 

arbitrarily set k to 100). Then a function approximation was built using these 100 sample points 

to fill in that missing value, i.e., in Eq. (3), 𝑛𝑎 was set to 100. Moreover, the shape parameter c in 

the Gaussian kernel function, which is an important factor in the accuracy of the RBF, was 

determined using an optimization approach. We used the Nelder-Mead simplex direct search 

optimization algorithm (Lagarias et al., 1998) to find an optimal value for c by minimizing the 

RBF fitting error (for more details see Forrester and Keane (2009) and Kitayama and Yamazaki 

(2011)). 

Note that in general depending on the complexity and dimensionality of a model response 

surface, other types of emulations can be incorporated into our proposed framework. However, 

for the crash handling problem, it is beneficial to utilize the function approximation techniques 

that exactly fit to the all sample points (i.e., the response surface surrogates categorized as “Exact 

Emulators” in Razavi et al. (2012a)) such as kriging and RBF. This is mainly because CESMs 

are deterministic, and therefore generate identical outputs/responses given the same set of input 

factors. In other words, an exact emulator at any successful design point 𝑿𝑘 (not crashed) reflects 

our knowledge about the true value of the model’s output at that point, i.e., it returns �̂�(𝑿𝑘) 

without uncertainty. Thus, exact emulators can be appropriate surrogates to adequately 

characterize the shape of the response surfaces in deterministic CESMs for handling simulation 

crashes. 

5.2.3 The utilized GSA framework 

We illustrate the incorporation of the proposed crash handling methodology into a variogram-

based GSA approach called Variogram Analysis of Response Surfaces (VARS; Razavi and 

Gupta (2016a,b)). The VARS framework has successfully been applied to several real-world 
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problems of varying dimensionality and complexity (see e.g., Sheikholeslami et al., 2017; Yassin 

et al., 2017; Krogh et al., 2017; Leroux and Pomeroy, 2019). VARS is a general GSA framework 

that utilizes directional variograms and covariograms to quantify the full spectrum of sensitivity-

related information, thereby providing a comprehensive set of the sensitivity measures called 

IVARS (Integrated Variogram Across a Range of Scales) at a range of different “perturbation 

scales” (Haghnegahdar and Razavi, 2017). Here, we used IVARS-50, referred to as “total-

variogram effect”, as a comprehensive sensitivity measure since it contains sensitivity analysis 

information across a full range of perturbation scales. 

Here, the STAR-VARS implementation of the VARS framework has been used. STAR-VARS 

is highly efficient and statistically robust algorithm that provides stable results with minimum 

number of model runs compared with other GSA techniques, and thus is suitable for high-

dimensional problems (Razavi and Gupta, 2016b). This algorithm employs a star-based sampling 

scheme, which consists of two steps: (1) randomly selecting star centres in the parameter space, 

and (2) using a structured sampling technique to identify sample points revolved around the star 

centres. Due to the structured nature of the generated samples in STAR-VARS, ignorance-based 

procedures (see section 1.2) cannot be useful in dealing with simulation crashes because deleting 

sample points associated with crashed simulations will demolish the structure of the entire 

sample set. In this study, to achieve a well-designed computer experiment, we used PLHS 

algorithm in the first step of the STAR-VARS to sequentially locate samples in the parameter 

space. It has been shown that PLHS can grasp maximum amount of information from output 

space with minimum sample size, while outperforming traditional sampling algorithms (for more 

details see Sheikholeslami and Razavi, (2017)). 

 

5.3 Case Studies 

5.3.1 A conceptual rainfall-runoff model 

As an illustrative example we employ the HBV-SASK conceptual hydrologic model to assess the 

performance of the proposed crash handling strategies in a real-world problem. HBV-SASK is 
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based on Hydrologiska Byråns Vattenbalansavdelning model (Lindström et al., 1997) and 

developed for educational purposes. We applied HBV-SASK to simulate daily steamflows in the 

Oldman river basin in Western Canada (Fig. 5-1) with watershed area of 1434.73 km2. Historical 

data are available for periods 1979-2008, from which we estimate average annual precipitation to 

be 611 mm, and average annual streamflow to be 11.7 m3/s with a runoff ratio of approximately 

0.42. HBV-SASK has 10 parameters that need to be specified/calibrated by the user (Table 5-1).  

Table 5-1 HBV-SASK model parameters and their feasible ranges. 

Parameter Range Description 

TT [-4,4] Air temperature threshold in °C for melting/freezing and 

separating rain and snow 

C0 [0,10] Base melt factor, in mm/°C per day 

ETF [0,1] Temperature anomaly correction in 1/°C of potential 

evapotranspiration 

LP [0,1] Limit for PET as a multiplier to FC, i.e., soil moisture below 

which evaporation becomes supply limited 

FC [50,500] Field capacity of soil, in mm. The maximum amount of water that 

the soil can retain 

beta [1,3] Shape parameter (exponent) for soil release equation (unitless) 

FRAC [0.1,0.9] Fraction of soil release entering fast reservoir (unitless) 

K1 [0.05,1] Fast reservoir coefficient, which determines what proportion of 

the storage is released per day (unitless) 

alpha [1,3] Shape parameter (exponent) for fast reservoir equation (unitless) 

K2 [0,0.05] Slow reservoir coefficient which determines what proportion of 

the storage is released per day (unitless) 
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Figure 5-1 Oldman river basin located in the Rocky Mountains in Alberta, Canada, flows into the 

Saskatchewan River Basin (adapted from Razavi et al., 2019). 

5.3.2 A land surface-hydrology model 

In the second case study, we demonstrate the utility of the imputation-based methods in crash 

handling via their application to the GSA of a high-dimensional problem. The model used is 

Modélisation Environmentale– Surface et Hydrologie (MESH; Pietroniro et al., (2007)), which is 

a semi-distributed, highly-parameterized land surface-hydrology modelling framework 

developed by Environment and Climate Change Canada (ECCC) mainly for large-scale 

watershed modelling with consideration of cold region processes in Canada. MESH combines 

the vertical energy and water balance of the Canadian Land Surface Scheme (CLASS, Verseghy, 

1991; Verseghy et al., 1993) with the horizontal routing scheme of the WATFLOOD (Kouwen et 

al., 1993). We encountered a series of simulation failures while assessing the impact of 

uncertainties in 111 model parameters (see Appendix) on simulated daily streamflows in 

Nottawasaga river basin in Ontario, Canada (Fig. 3).  
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Figure 5-2 Nottawasaga river basin in in Southern Ontario, Canada (adapted from 

Sheikholeslami et al., 2018). 

5.3.3 Experimental setup 

For the first case study, we ran the HBV-SASK model with 9,100 randomly selected parameter 

sets from the feasible ranges of Table 1 generated by the STAR-VARS (100 star centers with a 

resolution of 0.1). The Nash-Sutcliffe metric on streamflows (NS) has been used as the model 

output for sensitivity analysis. After calculating the NS values, we ran a series of experiments 

each with a different assumed “ratio of failure” (from 1% to 20%), defined as the percentage of 

failed parameter sets to the total number of parameter sets. In each experiment, we randomly 

chose a number of sampled points based the associated ratio of failure and assume them as 

simulation failures (hypothetical failures). Then, we evaluated the performance of the crash 

handling strategies to replace simulation failures during GSA of the HBV-SASK model and 

compared the results with the case when there are no failures. Also, we accounted for the 

randomness in the comparisons by carrying out 50 replicates of each experiment with different 

random seeds. This allowed us to see a range of possible performances for each strategy and to 

assess their robustness when crashes occurred at different locations in the parameter space. 

In the second case study with 111 parameters, 100 star centers were randomly generated using 

STAR-VARS algorithm with a resolution of 0.1, resulting in a total of 100,000 MESH runs. The 
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NS performance metric was used to measure daily model streamflow performance, calculated for 

a period of three years (October 2003-September 2007) following a one-year model warmup 

period. Due to various physical and/or numerical constraints inside MESH (or more precisely in 

CLASS), some combinations of the 111 parameters caused model crashes. Here, approximately 

3% of our simulations failed (3,084 out of 100,000 runs). We applied the proposed crash 

handling strategies to infill the missing model outcomes in GSA of the MESH model. 

 

5.4 Numerical Results  

5.4.1 Results for the HBV-SASK model 

According to the IVARS-50 sensitivity index, the VARS algorithm ranks (after 9,100 function 

evaluations) the parameters of the HBV-SASK in order of importance as follows FRAC, FC, C0, 

TT, alpha, K1, LP, ETF, beta, and K2, when there are no crashes (we consider the corresponding 

assessments to be “true”). Based on the dendrogram (Fig. 5-3) generated by the factor grouping 

algorithm introduced by Sheikholeslami et al., (2019), we categorized these parameters into three 

groups with respect to their importance, i.e., {FRAC, FC, C0} are the strongly influential 

parameters, {TT, alpha, K1} are moderately influential parameters, and {LP, ETF, beta, K2} are 

weakly influential parameters. 

 

Figure 5-3 Grouping of the 10 parameters of the HBV-SASK model when applied on the 

Oldman River Basin. The parameters are sorted from the most influential (to the left) to the least 

influential (to the right). 
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Fig. 5-4 and 5-5 show cumulative distribution functions (CDFs) for the 50 independent 

estimates of IVARS-50, obtained when 1%, 3%, 5%, 8%, 10%, 12%, 15%, and 20% of model 

runs were deemed to be simulation failures. Overall, the RBF and single NN techniques 

outperformed the median substitution in terms of closeness to the true GSA results and 

robustness when crashes happened at different locations of parameter space. As can be seen, by 

increasing the rations of failure, the performance of the crash handling strategies, particularly the 

median substitution became progressively worse. Note that the median substitution technique 

resulted in a significant bias manifested through over-estimation of the sensitivity indices for all 

the parameters. From the results, we see that using the RBF technique the sensitivity indices of 

the most important parameters {FRAC, FC} (Fig. 5-4(a)) and less important parameters {LP, 

ETF, beta, K2} (Fig. 5-5) were estimated with a high degree of accuracy and robustness. 

However, for moderately influential parameters (Fig. 5-4(b)) its performance was reduced (i.e., 

the CDFs are wider in Fig. 5-4(b)). 
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Figure 5-4 Comparison of the proposed crash handling strategies in sensitivity analysis of the 

HBV-SASK model using the STAR-VARS algorithm for different ratios of failures. The CDFs of 

the sensitivity indices for (a) strongly influential parameters {FRAC, FC, C0} (upper panel) and 

(b) moderately influential parameters {C0, TT, alpha, K1} (lower panel) are compared in this 

plot. The vertical line (solid black) on each subplot represents the corresponding ‘‘true’’ 

sensitivity index obtained when there were no failures. 

 

 

Figure 5-5 Comparison of the proposed crash handling strategies in sensitivity analysis of the 

HBV-SASK model using the STAR-VARS algorithm for different ratios of failures. The CDFs of 

the sensitivity indices for weakly influential parameters {LP, ETF, beta, K2} are shown in this 

plot. The vertical line (solid black) on each subplot represents the corresponding ‘‘true’’ 

sensitivity index obtained when there were no failures. 
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More importantly, as the number of crashes increases, ranking of the parameters in terms of 

their importance may change. For example, Fig. 5-6 shows the number of times out of 50 

independent runs that the rankings of the parameters were equal to the “true” ranking. In all 50 

runs, regardless of the number of model crashes, the rankings obtained by VARS algorithm using 

the RBF technique were the same as the “true” ranking which is an indication of high degree of 

robustness in terms of parameter ranking. The performance of the single NN slightly reduced 

when the crash percentage were more than 15%, while the VARS algorithm wrongly determined 

the rankings in more than 50% percent of the replicates using median substitution technique (see 

Fig. 5-6c and d). This highlights that the rankings can be estimated much more accurately than 

the sensitivity indices in the presence of simulation crashes. Also, it can be seen that while the 

RBF-based strategy performed perfectly in this example, the performance of the single NN 

technique was comparably well. 

 

Figure 5-6 Comparison of the crash handling strategies in estimating the parameter rankings for 

HBV-SASK model when (a)5%, (b)10%, (c)15%, and (d)20% of model runs were simulation 

crashes. The y-axis in each subplot shows the number of times out of 50 replicates that the 

rankings of the parameters are equal to the true ranking. 
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Finally, Fig. 5-7 presents the performance of the single NN (Fig. 5-7a) and RBF (Fig. 5-7b) 

strategies in approximating the fill-in values for the missing responses when 20% of HBV-SASK 

simulations were deemed to be failures. As shown, the RBF outperformed single NN technique 

in terms of closeness to the true NS values. The linear regression has an R2 value of 0.834 when 

single NN was used, while the RBF strategy achieved a linear regression with an R2 value of 

0.996. Also, the result of the RBF strategy is almost unbiased as the linear regression plotted on 

Fig. 5-7b is very close to the ideal (1:1) line.  

 

Figure 5-7 Scatter plots of the true NS values versus the imputed NS values when 20% of the 

HBV-SASK model simulations were deemed as model crashes. The accuracy of crash handling 

techniques is demonstrated in subplot (a) for the single NN method and in subplot (b) for the 

RBF method. These results belong to one replicate (arbitrarily chosen) out of 50 independent 

runs. 

 

5.4.2 Results for the MESH model 

Here we demonstrate the GSA results by categorizing the 111 MESH model parameters into 

three groups as shown in Fig. 5-8 (for more details on grouping see Sheikholeslami et al. 

(2019)). Fig. 5-9 to 5-11 present the sensitivity analysis results obtained by the VARS algorithm 

for the MESH model, when different crash handling techniques were applied. These groups were 

labeled according to their importance, i.e., Group 1 (Fig. 5-9) contains the strongly influential 

parameters, while parameters in Group 2 (Fig. 5-10) are moderately influential, and Group 3 

(Fig. 5-11) is the group of weakly influential parameters. 
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Figure 5-8 Grouping of the 111 parameters of the MESH model. The parameters are 

sorted from the most influential (to the left) to the least influential (to the right). This 

grouping is based on the results of the RBF method. 

Four most strongly influential parameters in Group 1 are SDEPC and DRNC (“C” stands for 

crops in this case study) controlling water storage and movement in the soil, WFR22 (river 

channel routing), and ZSNL (snow cover fraction). As shown in Fig. 5-9 (upper panel), the 

sensitivity indices associated with these parameters are similar regardless of the employed crash 

handling technique. It is worth mentioning that, as discussed in our failure analysis (see Section 

5.5), we also identified three of these parameters (i.e., SDEPC, DRNC, and ZSNL) responsible 

for at least some of the model crashes. In other words, the parameters which strongly contribute 

to the variability of the MESH model output can also be convicted of model crashes. To enhance 

the future development and application of the MESH model, it is necessary that more efforts 

should be done to better understand the functioning of these parameters and their effects acting 

individually or in combination with other parameters over their entire range of variations. 

For the other 15 influential parameters in Group 1 (Fig. 5-9, bottom panel), there is general 

agreement with three crash handling techniques about the sensitivity indices calculated by VARS 

except for the parameter ROOTC which defines the annual maximum rooting depth of vegetation 

category. The RBF and median substitution methods give more importance to ROOTC compared 
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to the single NN technique. It is noteworthy that the oversaturation of soil layer, which can cause 

many model runs to fail, is subject to the interaction between ROOTC and SDEPC.  

 

Figure 5-9 Sensitivity analysis results of the MESH model using different crash handling 

strategies for the most influential parameters. To better illustrate the results, the highly influential 

parameters in Group 1 are separately shown in two subplots. 

Fig. 5-10 illustrates the sensitivity indices for the moderately influential parameters (i.e., 

Group 2). Note that for all these 78 parameters the sensitivity analysis results were highly 

dependent on the chosen crash handling strategy. As can be seen, the sensitivity indices 

associated with the median substitution and RBF techniques are higher than those obtained by 

the single NN technique (this difference is considerable for the parameters in upper and lower 

subplots than those in middle subplot).  
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Figure 5-10 Sensitivity analysis results of the MESH model using different crash handling 

strategies. To better illustrate the results, the moderately influential parameters in Group 2 are 

separately shown in three subplots.  

Finally, the results of the sensitivity analysis for the weakly/non-influential (Group 3) 

parameters of the MESH model are plotted in Fig. 5-11. As shown, although the VARS 

algorithm identified these parameters as minimally-influential (very low IVARS-50 values) 

using the proposed crash handling techniques, the associated sensitivity indices obtained by the 

RBF imputation method are about two order of magnitude larger for the parameters in the left 

panel (Fig.11 (a, c)) and about four order of magnitude larger for the parameters in the left panel 

(Fig. 11 (b, d)) than compared to those obtained by the single NN and median substitution 

methods.  
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Figure 5-11 Sensitivity analysis results of the MESH model using different crash handling 

strategies for weakly/non- influential parameters in Group 3. The bottom panel (c and d) shows a 

zoom-in of the top subplots for very small values on the vertical axis. 

However, it is important to note that in high-dimensional CESMs, when the number of 

parameters is very large, the estimation of sensitivity indices is likely to not be robust to 

sampling variability. On the other hand, parameter ranking (order of relative sensitivity) is often 

more robust to sampling variability and converges more quickly than factor sensitivity indices 

(see e.g., Vanrolleghem et al., 7 2015; Razavi and Gupta, 2016b; Sheikholeslami et al., 2018). To 

investigate how different crash handling strategies can affect the ranking of the model 

parameters in terms of their importance, Fig. 5-12 compares the rankings obtained by the RBF, 

single NN, and median substitution techniques.  
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Figure 5-12 Plots comparing rankings of the MESH model parameters obtained by different crash 

handling strategies. Subplots (d), (e), and (f) (right column) show a zoom-in of the subplots (a), (b), and 

(c) (left column), respectively. The red line is the ideal (1:1) line. Note that a ranking of 1 represents the 

least sensitive and a ranking of 111 represents the most sensitive parameter. 

As shown in Fig. 5-12a, the single NN and median substitution techniques resulted in almost 

similar parameter rankings for the (strongly) influential (Group 1) and minimally-influential 

(Group 3) parameters, while for moderately influential parameters (Group 2) the rankings are 
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significantly different. Meanwhile, the RBF and median substitution techniques yielded very 

distinctive rankings except for the (strongly) influential parameters (Fig. 5-12b). Furthermore, 

Fig. 5-12c indicates that the single NN and RBF method give similar rankings for most sensitive 

parameters.  

A closer examination, however, reveals that rankings can be very contradictory for some of the 

parameters, when using different crash handling strategies (see Fig. 5-12(d-f)). For example, 

consider the soil moisture suction coefficient for crops (PSGAC) which is used in calculation of 

the stomatal resistance in the evapotranspiration process of the MESH (for more details see 

Fisher et al., 1981; Choudhury and Idso 1985; Verseghy, 2012). As can be seen, according to the 

RBF method, PSGAC is one of the low-sensitivity parameters (ranked 5th), while using the 

single NN it is determined to be one of the medium-sensitivity parameters (ranked 43rd). In 

contrast, it is one of the high-sensitivity parameters based on the median substitution (ranked 

83rd). However, in a comprehensive study of the MESH model using various model 

configurations and different hydroclimatic regions in Eastern and Western Canada, 

Haghnegahdar et al. (2017) found that PSGAC is one of the least sensitive parameters 

considering three model performance criteria with respect to high flows, low flows, and total 

flow volume of the daily hydrograph. As another example, consider ZPLS7 (maximum water 

ponding depth for snow-covered areas) and ZPLG7 (maximum water ponding depth for snow-

free areas) which are used in surface runoff algorithm of the MESH (i.e., PDMROF). The single 

NN and median substitution methods both ranked ZPLS7 as 2nd and ZPLG7 as 3rd least 

sensitive parameters, whereas the RBF ranked them as 61 and 45 (i.e., medium-sensitivity) 

which is in accordance with results reported by Haghnegahdar et al. (2017). 

 

5.5 Discussion 

5.5.1 Potential causes of failure in MESH 

Considering the existing difficulties in failure analysis, however, our further investigations of the 

MESH model revealed at least two possible causes responsible for many of the simulation 
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failures. First, we observed that the threshold behavior of a parameter called ZSNL, which 

represents the snow depth threshold below which snow coverage is considered less than 100%, 

can cause many model crashes. When ZSNL was relatively large, it resulted in calculation of 

overly thick snow columns inside the model violating the snow energy balance constraints there 

and triggering a simulation abort. This situation became more severe when the calculated snow 

depth was invariantly larger than the maximum vegetation height(s) depending on their assigned 

values via parameter perturbations. Fig. 5-13 (left column) shows the scatterplots of ZSNL values 

sampled from the feasible ranges for all model simulations used for GSA of MESH, with failed 

designs marked by red dots. To alleviate this issue, a strategy may be to reduce the upper bound 

of the ZSNL parameter to lower values as used by Haghnegahdar et al. (2017) or to fix ZSNL at a 

lower value of, for example, 0.1 m as suggested by CLASS manual (Verseghy, 2012). 

We also found that the second reason responsible for the MESH failure was oversaturation of 

the soil layers. Our investigations revealed that this oversaturation can happen especially at lower 

values of the soil permeable depth (SDEP) and when it becomes less than the maximum 

vegetation rooting depth (ROOT). The situation is more severe when the soil drainage index 

(DRN) is also reduced (all these three parameters are part of the 111 perturbed parameters in 

here). These interactions can collectively cause a thinner soil column for water storage and 

movement that now has a lower chance for transpiration and drainage. This will result in over 

accumulation of the water beyond the physical limits set for the soil in the model, thus leading to 

simulation failures (this is evidently a numerical scheme problem associated with crossing 

boundary values). Fig. 5-13 (right column) displays the scatterplots of these three parameters for 

the crop vegetation type. To avoid model crashes, it is necessary to ensure that SDEP and ROOT 

values are not unrealistically low and that their values and/or their ranges are assigned as 

accurately as possible using available data as discussed in Haghnegahdar et al. (2017). Also, 

fixing DRN to 1, may allow for the maximum physically-meaningful drainage from the soil 

column and reduces the risk of oversaturation. 
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Figure 5-13 A 2-D projections of the MESH parameters for successful (blue dots) and crashed 

(red dots) simulations. Left column shows the threshold snow depth parameters ZSNL  and right 

columns shows soil permeable depth (SDEP), maximum rooting depth (ROOT), and drainage 

index (DRN) for crop vegetation type. 

As can be seen from Fig. 5-13, very high values of parameters DRNC and SDEPC can also 

cause simulation crashes, while these crashes were happened at lower values of ZSNL7. Note 

that from these 2-dimensional projections of the 111-dimensional parameter space of the 

MESH no general conclusions can be drawn. This even becomes more complicated when 
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noticing some isolated crashes in regions where most of the simulations were successful. 

Furthermore, as shown in Fig. 5-13, there are considerable overlaps between successful 

simulations and crashed ones in the feasible ranges of parameters. For example, there are 

many crashed simulations when DRNC was sampled from [3.5-4], at the same time a high 

density of successful simulations can also be observed in the same range. This indicates that 

locating regions of parameter space responsible for crashes is difficult, if not impossible, and 

necessitates analyzing the MESH’s response surface throughout a high-dimensional 

parameter space. 

5.5.2 The role of sampling strategies in handling model crashes 

Due to the extremely large parameter space (𝑿) of high-dimensional CESMs, it may require 

many properly distributed sample points (𝑿𝑠) to generate/explore a full spectrum of model 

behaviors such as simulation crashes, discontinuities, stable regions, optima, etc. Together with 

the computationally intensive nature of CESMs, this issue can make both non-substitution 

procedures and imputation-based methods (those proposed in the present study) very costly in 

dealing with crashes, if not impractical.  

Because the non-substitution procedures rely on constructing a statistical model based on 

observed crashes to predict and avoid them in the follow-up experiments, they need a good 

coverage of the domain to attain a reliable statistical model. This issue also challenges the use of 

imputation-based methods. For example, in the NN techniques one major concern is that the 

sparseness of sample points may affect the quality of the results. In regions of the parameter 

space where sample points are sparsely distributed, distances to nearest neighbors can be 

relatively large, leading to choosing physically incompatible neighbors. Also, in response surface 

modelling-based techniques, building an accurate and robust function approximation is directly 

depends on the utilized sampling strategy and how dense mappings between parameter and 

output spaces are (see, e.g., Jin et al., 2001; Mullur and Messac, 2006; Zhaou and Xue, 2010).  

A crucial consideration in the use of any sampling strategy is the exploration ability of that 

strategy (i.e., space-fillingness), which significantly influences the effectiveness of the utilized 
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crash handling approach. When having this feature enabled, the non-substitution procedures can 

reliably identify implausible regions in the entire parameter space, meaning that the sample set is 

not confined to only a limited number of regions. Furthermore, it can notably improve the 

predictive accuracy of the response surface modelling-based methods (Crombecq et al., 2011). 

Exploration requires sample points to be evenly spread across the entire parameter space to 

ensure that all regions of the domain are equally explored, and thus sample points should be 

located almost equally apart. This feature rectifies the problem relating to the distances between 

sample points when using NN techniques since in space-filling designs these distances are as 

even as possible.  

Given this, regardless of the chosen method for solving simulation crash problem in GSA, 

it is advisable to spend some time up front to find an optimal sample set before submitting it 

for evaluation to the computationally expensive CESMs. It is, therefore, necessary to 

prudently use improved sampling algorithms such as Progressive Latin Hypercube Sampling 

(PLHS; Sheikholeslami and Razavi (2017)), Sequential Exploratory Experimental Design 

(SEED; Li (2004)), or Symmetric Latin Hypercube Design (SLHD; Ye et al. (2000)). 

Generally, these sampling techniques optimize some characteristics of the sample points such 

as sample size, space-fillingness, projective properties, and so on. 

 

5.6 Conclusions 

Understanding complex physical processes in Earth and environmental systems, prediction and 

scenario analysis regarding the Earth’s future resources rely routinely on high-dimensional, 

computationally expensive models, typically comprising model calibration, and/or uncertainty 

and sensitivity analysis. If a simulation failure/crash occurs at any of these stages, these models 

will stop functioning, and thus need user intervention. Generally, there are many reasons for 

failure of a simulation in models, including those that come from an inconsistent integration time 

step or grid resolution, lack of convergence, and existing of model thresholds. Determining 

whether these “defects” exist in the utilized numerical schemes or they are programming bugs 
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can only be done through analysing a high-dimensional parameter space and characterizing 

implausible regions responsible for crashes. This imposes a heavier computational burden on 

analysts. More importantly, every “crashed” simulation can be very demanding in terms of 

computational cost for global sensitivity analysis (GSA) algorithms because they can prevent 

completion of the analysis and introduce ambiguity into the GSA results.  

These challenges motivated us to implement three missing data imputation-based strategies for 

handling simulation crashes, which involves substituting plausible values for failed simulations 

without a priori knowledge regarding the nature of the failures. Here, our focus was to find 

simple yet computationally frugal techniques to palliate the effect of model crashes on the GSA 

of dynamical Earth systems models (DESMs). Thus, we utilized three techniques, including 

median substitution, single nearest neighbor, and emulation-based substitution (here we used 

radial basis functions as a surrogate model) to fill in a value for a failed simulation using 

available information and other non-missing model responses. Compared to other crash handling 

strategies (ignorance-based and non-substitution procedures), the efficiency of our proposed 

substitution-based strategy was shown to be remarkable, particularly when dealing with GSA of 

the computationally expensive models since this strategy does not need repeating the entire 

experiment again. We compared the performance of the proposed strategy in GSA of the two 

modelling case studies in Canada, including a 10-parameter HBV-SASK conceptual hydrologic 

model and a 111-parameter MESH land surface-hydrology model. Our analyses revealed that: 

• Overall, the emulation-based substitution can effectively handle the simulation 

crashes and produce promising sensitivity analysis results compared to the single nearest 

neighbor and median substitution techniques.  

• As expected, the performance of the proposed methods degrades as the ratio of 

failures increases. The rate of degradation is dependent on the number of model 

parameters (dimensionality of parameter space). 

• We observed in our experiments that the rankings of strongly and weakly influential 

parameters identified by the utilized GSA algorithm (i.e., VARS) are not affected by the 
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chosen crash handling technique, whereas for the moderately influential parameters, 

different techniques yielded different rankings. 

Furthermore, we conducted a failure analysis of the MESH model and identified the 

parameters that seem to be frequently casing model failures. Such analyses are helpful and much 

needed to improve the fidelity and numerical stability of DESMs and may constitute a promising 

avenue of research. In doing so, applying other advanced methods (see e.g., Lucas et al. (2013)) 

can be beneficial to diagnose existing defects of the complex models.  

Future work should include extending the proposed crash handling strategy to time-varying 

sensitivity analysis of the DESMs because a comprehensive GSA requires a full consideration of 

the dynamical nature of the DESMs. Our proposed approach for handling simulation crashes can 

be integrated with any time-varying sensitivity analysis algorithm, for example, with the recently 

developed Generalized Global Sensitivity Matrix (GGSM) method (Gupta and Razavi, 2018). 

This further helps understand the temporal variation of the parameter importance and model 

behavior. 

 

Author contributions 

RS and SR designed the method and experiments. RS developed the MATLAB codes for the 

proposed crash handling strategy, conducted all the experiments, and analyzed the results. The 

simulations for the first case study were carried out by RS. AH performed the MESH 

simulations. RS wrote the manuscript with contributions from SR and AH. All authors 

contributed to structuring and editing of the paper. 

 

 

  



 

 136 

 

 

 

 

Chapter 6 

Conclusions and Future Directions 

6.1 Summary of Dissertation Outcomes 

This dissertation proposed three advanced efficiency-increasing strategies for Global Sensitivity 

Analysis (GSA) of Complex Environmental Systems Models (CESMs), including (1) a new 

sampling algorithm called PLHS; (2) an automated factor grouping method; and (3) efficient 

techniques for handling simulation failures occurred during GSA. These novel strategies were 

assessed using both analytical test functions and real-world case studies, and the results revealed 

that they facilitate sensitivity analysis of high-dimensional and computationally intensive 

CESMs by alleviating the computational burden associated with GSA and monitoring the 

performance of the GSA in terms of robustness and convergence. Although their usefulness has 

been demonstrated in the context of watershed modelling, these strategies can be further used to 

resolve a range of decision making-related problems such as (1) characterizing the main causes 

of risk; (2) exploring the CESMs’ sensitivity to a wide range of plausible future changes; and (3) 

assessing the sensitivity of the ranking of alternatives obtained from multi-criteria decision 

analysis. 

The main contributions of this dissertation were explicitly stated in section 1.3. In the 

following, the achievements and outcomes of the research in this dissertation are summarized: 

Chapter 2 reviewed the existing sampling strategies and their shortcomings when applied to 

sampling-based analysis of CESMs. A new sampling strategy called Progressive Latin 

Hypercube Sampling (PLHS) was proposed to overcome these challenges. The numerical results 

showed that PLHS enables improved characterization of the model input spaces and output 

spaces (i.e., response surfaces) with less computational budget (smaller sample size), compared 

to other sampling strategies. Moreover, PLHS provided improved convergence rate and 

increased robustness to sampling variability and randomness when used in uncertainty and 
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sensitivity analysis context, compared to other sampling strategies. PLHS can help avoid over- or 

under-sampling by enabling users to monitor the performance of the associated sampling-based 

analysis as the sample size grows. 

Chapter 3 presented a comparative performance investigation of the two GSA methods: (1) 

the recently proposed Variogram Analysis of Response Surfaces (VARS) and (2) the widely-

used Regional Sensitivity Analysis (RSA) using the PLHS strategy when applied to a 

hydrodynamic river ice model. Results revealed that (1) the water levels simulated by the river 

ice model are most sensitive to the ice cover characteristics (i.e., porosity and thickness at the ice 

cover front) and upstream discharge; (2) the hydraulic roughness parameters and slush ice 

properties (i.e., porosity and thickness of the slush pans) are medium- and low-sensitivity 

parameters, respectively; (3) the VARS and RSA methods provide contradictory assessments 

regarding the sensitivity of the model output to variations in the slush ice porosity and ice 

roughness parameters; and (4) the VARS method appears to be superior to RSA in terms of 

generating robust estimates of the parameter sensitivity rankings. 

Chapter 4 discussed the curse-of-dimensionality challenge associated with GSA of high-

dimensional problems, reviewed existing strategies for factor grouping, and discussed their 

limitations. A new factor grouping algorithm was developed and the details of its implementation 

was explained. In addition, to evaluate performance of the grouping-based GSA, a new measure 

of robustness was introduced, providing a new way to monitor convergence of the GSA results. 

Overall, the results confirmed that the strategy of grouping factors can significantly reduce the 

computational effort required to perform GSA on high-dimensional models (in the case of the 

MESH model by as much as ~50%). This is mainly because factor groupings typically converge 

faster than factor sensitivity indices. A further potential benefit is that the proposed algorithm 

can provide information useful for reducing the complexity of the problem in follow-up 

experiments (e.g., model calibration or model order reduction) by identifying 

dominant/influential groups of factors that significantly contribute to the variability in the model 

outputs.  
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Chapter 5 identified four main approaches to handle simulation crashes in sampling-based 

analysis of CESMs and discussed their drawbacks. To tackle these problems, three practical 

remedies (i.e., median substitution, single nearest neighbor substitution, and response surface 

modelling) were applied to circumvent parameter-induced crash problem in GSA of high-

dimensional CESMs. Overall, the results confirmed that the response surface modelling strategy 

can effectively handle the simulation crashes and produce promising results compared to other 

techniques. However, its performance may degrade as the ratio of failure becomes larger. 

Moreover, the results revealed that a high percentage of failed simulations can lead to wrong 

inferences drawn from the GSA results. By increasing the dimensionality of the model this issue 

becomes more critical where the GSA results can be completely misleading even with a small 

number of model crashes. Furthermore, a failure analysis of the MESH model was conducted, 

and accordingly the parameters that seem to be frequently causing model failures were identified. 

The use of proposed techniques in handling simulation failures when performing GSA can 

provide significant time savings over other methods such as non-substitution procedures.  

 

6.2 Scope for Future Work 

6.2.1 Thoughts and reflections on GSA of CESMs 

In this section, I provide some thoughts, reflections, and guidance on a number of critical issues 

that have to be addressed by researchers and practitioners to conduct a comprehensive sensitivity 

analysis. 

1) Specification of an objective function for sensitivity analysis 

The existing misuse of GSA methods in hydrologic modelling community, and the subsequent 

misunderstanding and misinterpretation of the sensitivity analysis results are mainly due to the 

fact that typically some error metrics (e.g., MSE, NSE, etc.), which aggregate model 

performance by measuring discrepancy between model outputs and observations, have been 

often used in GSA studies as objective functions. Recently, Gupta and Razavi (2018) analytically 

showed that when using such objective functions, importance of each sensitivity coefficient term 
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can be significantly deteriorated by a residual term, leading to a serious bias in the sensitivity 

analysis results. Of course, the use of an error metric for sensitivity analysis provides useful 

information for model calibration but this is a form of identifiability analysis rather than a 

sensitivity analysis. As argued by Gupta and Razavi (2018), model sensitivity analysis is 

different from model identifiability analysis in a sense that sensitivity analysis is basically a 

“forward” problem, whereas identifiability analysis belongs to the class of “inverse” problems. 

In other words, model factor identification depends on the sensitivity of model outputs to 

perturbations of the factors, but the opposite case is not true. In the forward sense, the goal is to 

understand how model outputs are sensitive to the perturbations in the factors. 

Therefore, much more attention should be directed to the selection of target model response(s) 

(model outputs) or objective functions for GSA in future studies. Considering the modeler’s 

needs, the objective functions should sufficiently reflect the intended physical characteristics of 

the CESMs such as overall water balance (e.g., runoff ratio), behavior of long-term baseflow 

(e.g., total volume of low-flow), discharge seasonality (e.g., timing of snowmelt-induced spring 

runoff), etc. In this manner, GSA will further help model diagnostic analyses (Gupta et al., 2008; 

Yilmaz et al., 2008). Since the strategies developed in this research are independent of the 

objective function, model, or the GSA method used, they can be effectively integrated in 

sensitivity analysis for diagnostic testing of CESMs. 

 

2) Time-varying parameter sensitivity analysis 

CESMs typically generate time-dependent model simulations. For such dynamical model 

outputs, it may not be informative to conduct sensitivity analysis only on a scalar objective 

function, for example, by aggregating into some statistical measures. Temporal sensitivity 

analysis can identify time periods in which a certain parameter (or a set of parameters) has the 

highest influence on the model outputs, thereby providing greater insights into the modeled 

physical processes (Herman et al., 2013; Pfannerstill et al., 2015; Razavi and Gupta, 2019). As 

such, by performing sensitivity analysis on the model output at each time step valuable 

information on time-dependent nature of the sensitivities can be gained. 
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In practice, however, dynamic CESMs usually comprise high-dimensional, multivariate time 

series which will result in a time-consuming GSA. Therefore, when performing time-varying 

GSA, it is profitable to use the efficiency-increasing strategies that have been proposed 

throughout this dissertation. 

 

3) Accounting for multi-output nature of models in sensitivity analysis 

A major drawback of previous sensitivity analysis studies in the context of environmental 

modelling and particularly in hydrological modelling, regardless of the utilized GSA method, 

was their failure to properly consider the multi-output nature of the models (Klepper, 1997; 

Gupta et al., 1998; Rosolem et al., 2012; Haghnegahdar et al., 2017). Unlike the calibration 

procedure where modelers typically tend to use multiple objective functions, the sensitivity 

analysis has often been carried out separately for each objective function. However, to conduct a 

comprehensive GSA, it is necessary to fully consider the multi-output nature of CESMs. Our 

proposed methods can, in principle, be used in conjunction with multi-criteria sensitivity analysis 

to study the properties of parameters while recognizing multivariate aspects of the model 

behavior, thereby better supporting model development and understanding. 

 For example, one possible option for implementing the proposed factor grouping is to use 

multi-criteria GSA techniques which measure the global contribution of parameters to 

multivariate outputs through estimating generalized sensitivity indices. Having generated the 

sensitivity matrix consisting of these generalized indices, the grouping algorithm can use cluster 

analysis to identify distinct groups of parameters. GSA methods such as MOGSA (multi-

objective generalized sensitivity analysis) method (Bastidas et al., 1999; Liu et al., 2004), which 

is an extension of regional sensitivity analysis, and the generalization of the variance-based 

Sobol GSA for multivariate outputs (Lamboni et al., 2011; Gamboa et al., 2014) may be useful in 

this regard. The aforementioned methods apply bootstrapping to ensure statistical robustness of 

the generalized sensitivity indices, and accordingly can yield robust groups of parameters. 
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6.2.2 Further research  

There are some other issues that should be considered but were left out of the present work. 

Future research informed by this dissertation may include: 

• The efficiency-increasing strategies developed in this research have been tested on case 

studies in the context of watershed modelling. Future work may include application and 

testing of these strategies on other CESMs developed for modelling water quality, 

landscape evolution, ecology, and erosion and sediment transport. 

• The efficiency-increasing strategies proposed in this dissertation have been demonstrated to 

be effective for GSA of CESMs by coupling it with the VARS methodology. It would be 

interesting to test their effectiveness by integrating them to other advanced GSA 

frameworks. 

• The sampling strategy developed in this dissertation (PLHS) has great potential to be used 

in solving problems in engineering design optimization and constructing surrogate models. 

In this regard, PLHS can facilitates the fast and effective analysis of high-dimensional 

models and can help achieve satisfying design solutions with very small numbers of 

function evaluations of the computationally intensive models. 

• There are still many aspects of the proposed strategies that can be improved or modified. 

By way of example, work is needed on (1) applying other types of metamodels (e.g., 

kriging, support vector machine, ANN, etc.) to handle simulation failures during GSA; (2) 

incorporating other clustering algorithms into the proposed factor grouping strategy; and 

(3) employing other efficient optimization techniques in the process of building PLHS. 

 

6.3 Software Availability 

To promote best practices in sensitivity analysis, the MATLAB codes for the proposed strategies 

is included in the VARS-TOOL software package, which is a set of programs for next generation 

sensitivity and uncertainty analysis. VARS-TOOL is a multi-approach toolbox designed for 

comprehensive sensitivity analysis of high-dimensional problems (see Razavi et al. (2019) for 
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more details). This software is freely available for noncommercial use upon request from the 

author and can be downloaded from http://vars-tool.com/. 

  

http://vars-tool.com/
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Appendix 

In this Appendix, the parameters of the MESH model are described in detail. This case study 

was adopted from Haghnegahdar et al. (2015) where the MESH model was calibrated to the 

Nottawasaga river basin in Southern Ontario, Canada (see Fig. 4-5). MESH treats a watershed as 

being discretized into grid cells and accounts for within pixel heterogeneity using the concept of 

Grouped Response Units (GRUs, Kouwen et al., 1993). Here, the drainage basin of nearly 2700 

km2 is discretized into 20 grid cells with a spatial resolution of 0.1667 degrees (~15 km). The 

dominant land cover in the area is cropland followed by deciduous forest and grassland. The 

dominant soil type in the area is sand followed by silt and clay loam. Sixteen GRU types are 

formed by combining land cover and soil types in the region.  

In this case study, many parameters are tied to a GRU type, and the same set of parameters is 

assigned for distinct GRU types delineated in each basin. Moreover, all parameters associated 

with the GRU type that represents the dominant land cover and soil type in the river basin are 

included in GSA. These GRUs are formed by adding the soil spatial data to the land cover 

classes consisting of clay loam, clay, gravelly, impermeable, organic, rock, sandy and silty. 

Then, for both land cover and soil type classes, the ones with less than 10% of area coverage 

were classified as the dominant class.  

Finally, the remaining land cover and soil classes were merged to construct 16 new GRU types 

shown in Table I. As a result, there are a total of 111 parameters in this case study. Table II lists 

the MESH parameters and their feasible ranges. The first 11 parameters are GRU‐dependent. 

The last parameter (channel roughness) is linked to river class types. Note that Nottawasaga 

River basin contains only one river class type, and only a single channel roughness is used. 

Furthermore, the 7 groups of parameters for the MESH model (see Fig. 4-9) are listed in Table 

III. The description of parameters and their feasible ranges can be found in Haghnegahdar et al. 
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(2015, 2017). MESH version 1.3.006 was implemented in this study. This case study (data, 

model setup, etc.) was included in the VARS-TOOL software package (Razavi et al., 2019) and 

can be downloaded from http://vars-tool.com/. 

Table A-1 16 GRU types ranked by coverage area 

GRU 

no. 

GRU type Area covered (%) 

1 Cropland, sandy 36.3 

2 Cropland, silty 18.3 

3 Deciduous forest, sandy 8.7 

4 Grassland, sandy 7.4 

5 Cropland, clay loam 7.3 

6 Mixed Forest, sandy 4.2 

7 Cropland, organic 4.1 

8 Deciduous forest, silty 3.9 

9 Grassland, silty 3.7 

10 Deciduous forest, organic 2.0 

11 Mixed forest, organic 1.3 

12 Mixed forest, silty 1.2 

13 Grassland, clay loam 0.7 

14 Deciduous forest, clay loam 0.5 

15 Grassland, organic 0.3 

16 Mixed forest, clay loam 0.1 

 

Table 0-2 MESH model parameters and their feasible ranges 

Parameter Description (Lower bound, upper bound) 

ROOT Annual maximum rooting depth of 

vegetation category (m) 

(0.2, 1.0), (1, 3.5) for deciduous forest 

RSMN Minimum stomatal resistance of 

vegetation category (s m‐1) 

(60, 110) crop, (75, 125) grass and (100, 150) 

deciduous forest 

VPDA Vapour pressure deficit coefficient 

(used in stomatal resistance 

formula) 

(0.5, 1) 

SDEP Soil permeable (Bedrock) depth (m) (0.35, 4.10) 

DDEN Drainage density (km/km2) (2, 100) 

SAND Percent sand of all soil layers (%) (0, 100), In 16‐GRU scheme: (30, 65) for 

clay loam, (85, 100) for sandy soil and (0, 

20) for silty soil 

CLAY Percent clay of all soil layers (%) (0, 100), In 16‐GRU scheme: (30, 40) for 

clay loam, (0, 10) for sandy soil and (0, 15) 

for silty soil 

RATIO The ratio of horizontal to vertical 

saturated hydraulic conductivity 

(2, 100) 

http://vars-tool.com/
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ZSNL Limiting snow depth below which 

coverage is <100% (m) 

(0.05, 1) 

ZPLS Maximum water ponding depth for 

snow‐covered areas (m) 

(0.02, 0.15) 

ZPLG Maximum water ponding depth for 

snow‐free areas (m) 

(0.02, 0.15) 

WFR2 Channel roughness factor (0.02, 2) 

 

Table 0-3 Grouping of 111 parameters of the MESH 

Group 

number 
Parameters 

1 SDEPC, WFR22, ZSNL3, DRNC 

2 
VPDAC, ZPLS4, SDEPD, ROOTC, SDEPG, XSLPC, RATIOs, ZSNL4, ZSNL1, ZPLG4, 

DDENC, VPDAD, LAMIND, VPDAG, LNZ0D 

3 

CLAYSa3, SANDSa2, LAMAXC, XSLPD, SANDSa1, RSMNC, ROOTG, ZSNL11, ZSNL7, 

XSLPG, ZPLG3, ZPLS3, ZPLS1, ZPLG1, DDEND, CLAYSi3, SANDSi3, LNZ0G, 

SANDSa3, CLAYSa2, CLAYSa1, QA50C, DRNG, VPDBC, DRND, DDENG 

4 

LAMAXG, THLQ3, CLAYSi1, SANDSi2, SANDCL3, QA50D, GRKFC, LNZ0C, ALICC, 

ALVCC, CLAYSi2, ALICG, SANDCL2, SANDCL1, TBAR2, PSGAC, THLQ1, ORGSi3, 

PSGBC, THLQ2, TBAR3, TPOND, TBAR1, CMASC, MANNC, ZPOND, RATIOSi, 

QA50G, RSMNG, RSMND, ORGSi2, ORGSi1 

5 

RATIOCL, CLAYCL3, GRKFD, CMASD, ORGSa3, ORGSa2, ORGSa1, ORGCL1, 

ORGCL2, CLAYCL2, ORGCL3, CLAYCL1, ALICD, LAMAXD, ALVCG, GRKFG, 

ALVCD, VPDBG, CMASG 

6 
ZPLS11, VPDBD, ZPLG11, PSGAG, PSGBG, LAMING, PSGAD, PSGBD, MANNG, 

ROOTD 

7 ZPLG7, ZPLS7, TCANO, MANND 
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