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Abstract

Bayesian inference is a method of statistical inference in which all forms of uncertainty

are expressed in terms of probability. Classical Bayesian inference has some limitations. One

of these situations is when we have little to no information about the experiment; another

situation is when we have computational or time limitations. Also problematic is a situation

where there are conflicts in choosing a prior distribution where we have experts giving differ-

ent prior information, which results in less precise posterior probabilities. Because of these

limitations, imprecise Bayesian approach takes place in Bayesian inference.

Upper and lower posterior expectations are computed in order to calculate the degree of

imprecision of the log-odds ratio. This is implemented in two-way contingency tables and

then generalized to three-way tables by using different families of prior distributions, is which

the core of this work. Survival data including right-censored observations are generated and

converted to a sequence of 2× 2 tables, three-way contingency tables, each 2× 2 is built at

each observed death time. Here, we assume only one death happens at each time and no ties.

To implement imprecise Bayesian inference, two choices of imprecise priors are chosen. A set

of four Normal priors and a set of four Beta priors are used with a non-central hypergeometric

likelihood to update the posterior families and then the degree of imprecision is calculated for

both cases. An example of real data is applied on Ovarian Cancer Survival data where upper

and lower posterior expectations are estimated in order to calculate the degree of imprecision.

We conduct simulation studies to sample from posterior distribution and estimate the

log-odds ratio by using upper and lower posterior expectations. In the situation of three-way

contingency tables, updating a set of priors to a set of posterior is done sequentially at each

table by running MCMC method through using JAGS from R via rjags and runjags pack-

ages. Also, four factors (sample size, censoring rate, true parameter, and balancing rate) are

studied to see how these four factors affect the degree of imprecision with the two choices

of imprecise priors. A fractional factorial design of 27 runs is constructed to see which one
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of these four factors is more significant. For each one of these 27 combination, upper and

lower posterior expectations and the degree of imprecision of the log-odds ratio are calculated.

The findings show that the smallest value of the degree of imprecision appears at the

combination where the sample size is large (n = 200) and small number of censored times.

In contrast, the largest value of the degree of imprecision is observed at the combination where

the sample size is small (n = 40) and large number of censored times. These conclusions

are supported by the findings of ANOVA that show that main effects of the four factors are

significant. The conclusion that can be summarized from the results of this work is having

more information (more data) leads to less uncertainty about the parameter of interest.
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1. Introduction

Survival data analysis is a collection of statistical procedures where the outcome variable

of interest is time until an event occurs, such as death in biological organisms or failure in

mechanical systems. Usually, we refer to the time variable as survival time and the event

as failure because the event of interest usually is death, disease incidence, or some other

negative individual experience (Cox and Oakes, 1984, chapter 1). The survival time of a

subject may not be observed for the full time to failure; in this case, the survival time is

said to be censored. The comparison between survival times including censored observations

of two treatments, has been done by summarizing the evidence about which treatment has

longer survival time. One of the frequentist methods for solving this is the log-rank test.

In this thesis we are assuming that we have two treatments (control and test) with two

outcomes (alive and dead). This kind of data is survival data where the time of death can

be observed or censored and this can be conveniently displayed in three-way contingency

tables, a sequence of 2 × 2 tables, one at each time of observed death, (i.e., we have set of

stratified 2× 2 tables). This method of combining information over a number of 2× 2 tables

was proposed by Mantel and Haenszel (1959). The comparison between the two treatments

in these contingency tables can be done by estimating the odds ratio of the two treatments

(Mantel-Haenszel statistic). Therefore, the log odds ratio is our parameter of interest. In

the Bayesian approach, our uncertainty about the parameter of interest can be modelled by

a probability (prior) distribution.

Bayesian inference is a method of statistical inference in which all forms of uncertainty

are expressed in terms of probability. Bayesians treat parameters as random variables and
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define the probability as “degree of belief,” which means that the probability of an event is

the degree to which you believe that the event is true. One of most important objectives

in Bayesian statistical inference is making inferences about parameters of interest, where

prior information about these parameters is represented in probability distributions known

as prior distributions. Combining prior distribution and data by multiplying the prior density

by the likelihood (Bayes’ theorem) is called updating the prior. By updating the prior, one

can get the posterior distribution, which contains all the information about the parameters

of interest after the data are examined. However, classical (precise) Bayesian inference has

some limitations. According to Walley (1991, chapter 1), there are situations where it is

difficult to assign a single probability distribution for the prior. One is when we have little to

no information about the experiment; another situation is when we have computational or

time limitations. Also problematic is a situation where there are conflicts in choosing prior

distribution where we have experts giving different prior information, which results in less

precise posterior probabilities. Because of these limitations with a precise Bayesian approach,

this work proposes using imprecise probabilities.

1.1 Contributions

Choosing a prior distribution to represent the prior information about the parameters of

interest is the feature of any precise Bayesian analysis. However, choosing prior distribution

encounters some difficulties as we mentioned early. Because of these limitations of the precise

Bayesian approach, using imprecise probabilities as an alternative approach is the purpose of

this work.

The implementation of an imprecise Bayesian approach is the aim of this dissertation.

The contribution will be introduced in the following steps:

• Determination of upper and lower posterior expectations is investigated for the log

odds ratio in two-way contingency tables to calculate the degree of imprecision in

two scenarios. First, imprecise Dirichlet model where a set of product of beta priors
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is proposed and degree of imprecision of log-odds ratio is computed. Second, a re-

parametrization of the multinomial distribution and logit model is defined in terms of

the canonical parameter since the multinomial is a member of the exponential family,

and redefine log-odds ratio in terms of this canonical parameter. In this approach,

precise and imprecise Bayesian inference are applied to the log-odds ratio in two-way

table and empirical CDFs of posterior samples of two cases are compared.

• To address the generalization from two-way to three-way contingency tables, survival

data with right-censored observations is considered in the case that we have two groups

(test and control ) with two outcomes (alive and dead) represented in a sequence of

2 × 2 tables, one at each death. The main purpose of this aim is getting the upper

and lower posterior expectations of the log-odds ratio in order to compute the degree

of imprecision for each table and how it gets decreased as number of tables (deaths)

increased (more information). To implement this, the log-rank test is constructed;

In fact, under the null hypothesis of independence, the non-central hypergeometric

distribution is the base of constructing the log-rank test. Also, re-parametrization

of the odds ratio is assumed based on the feature that non-central hypergeometric

distribution is a member of the exponential family.

A simulation study for each aim of this work is proposed and results are summarized in

Sections 3.3.1 and 4.4 and Appendix A.

1.2 Thesis Organization

In Chapter 2, background information on probability models and parametrization for two-

way and three way contingency tables is provided in Section 2.1. Section 2.1.2 represents

fundamental knowledge about modelling cell counts in contingency tables and Section 2.1.3

reviews the existing literature on Bayesian inference for log-linear parameters in two-way

tables and the choices of the prior distributions that have been used and how each choice

affects the results of those studies. Section 2.2 provides a reasonably comprehensive overview

of survival data modelling and analysis and this section ends with Bayesian inference in sur-
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vival data. In Section 2.3, an overview of the issue of choices of prior distributions that have

place in the literature on Bayesian inference and also this section provides a theoretical intro-

duction to imprecise probability theory supported by some definitions and examples where

it ends by a section on nonparametric predictive inference as it is considered as an imprecise

approach.

In Chapter 3, in Section 3.2, an imprecise Dirichlet model where a set of product of beta

priors is proposed and degree of imprecision of log-odds ratio is computed. Re-parametrization

and Normal priors for log-odds ratio in two-way contingency tables with a simulation study

are presented in Section 3.3.

In Chapter 4, a generalization from two-way to three-way contingency tables is addressed

by considering survival data with right-censored observations. This kind of data is represented

in a sequence of 2× 2 tables, one at each death. In Section 4.2, non-central hypergeometric

model is imposed log-odds ratio as the parameter of the model. Then, in Section 4.2.1, two

choices of imprecise priors are chosen in this chapter, each as a set of four priors is given

to the parameter of interest. In Section 4.3, an example of real data is applied on Ovarian

Cancer Survival data where upper and lower posterior expectations are estimated in order to

calculate the degree of imprecision. A simulation study using MCMC methods is done, and

discussion of the results is stated in Section 4.4.

Conclusion and future work are included in Chapter 5, and complete results and graphs

of the simulation in Chapter 4 are included in Appendix A, and R codes in Appendix B.
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2. Background

2.1 Contingency Tables

In statistics, a contingency (cross-classification) table is a type of table in a matrix format

that displays the frequency distribution of two (or more) discrete variables. For example,

comparing two medical treatments with two outcomes (success, failure) in 2 × 2 tables, is

very popular used in biomedical and social science applications. Two-way contingency tables

are used where we are interested in quantifying the strength of the association between two

variables.

In two-way tables, particularly a 2× 2 table, let yij denotes the observed count at cell (i, j),

i, j = 0, 1, as follows:

Event

Group 0 1 Total

0 y00 y01 n0.

1 y10 y11 n1.

Total n.0 n.1 n

where ni. = yi0 + yi1 is the marginal row total of the ith row, while n.j = y0j + y1j is the

marginal total of the jth column, and n = n.. = n0. + n1. = n.0 + n.1 is the total number of

the observations.

The odds ratio (cross product ratio) is one of the common measures of association between
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row variable and column variable. The ratio of success probability p vs. failure probability

1− p, known as the odds of success

odds =
p

(1− p)
.

Odds are nonnegative, with odds > 1 means that success is more likely than a failure. If p1

and p2 are the success probabilities of two populations, then the ratio of two odds

Ψ =
p1/(1− p1)

p2/(1− p2)

is called the odds ratio and is more useful for the comparison of p1 and p2 than their difference

(Kateri, 2014).

The odds ratio is also defined in terms of the joint distribution of two binary random

variables (which we here call ”Group” and ”Event”) given by the four cell probabilities

p00, p01, p10, p11 as presented in a 2× 2 table:

Event

Group 0 1

0 p00 p01

1 p10 p11

the pij represents the probability that a subject in Group i = 0, 1 has the Event j = 0, 1.

The cell probabilities p00, p01, p01, and p11 are nonnegative and sum to one. The sampling

models in two-way tables will be discussed in the next section. The odds can be defined in

terms of the conditional probabilities,

Event

Group 0 1

0 p00
p00+p01

p01
p00+p01

1 p10
p11+p10

p11
p11+p10
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Thus the odds ratio is

Ψ =
( p00
p00+p01

)

( p01
p00+p01

)

/
( p10
p11+p10

)

( p11
p11+p10

)

=
p00/p01

p01/p11

=
p00p11

p01p10

, (2.1)

and the sample odds ratio is

Ψ̂ =
p̂00p̂11

p̂01p̂10

=
y00y11

y01y10

. (2.2)

The distribution of the sample odds ratio is highly skewed; therefore, it is preferred to use

the log of odds ratio particularly in two-way tables. The log of the odds ratio in (2.1) is

log Ψ = log p11 − log p10 − log p01 + log p00, (2.3)

and for a random sample, log Ψ̂ is approximately normally distributed with mean log Ψ and

variance
∑

i,j y
−1
ij (Kateri, 2014).

In the presence of more than two variables in contingency tables, multi-way tables are

very common in practice. For a three-way contingency table, let yijk denote the observed cell

count in the cell (i, j, k), where i = 1, ..., I rows, j = 1, ..., J columns, and k = 1, ..., K layer

levels. Consider the case when we have 2× 2× 2 table as follows:

Layer 1:

Event

Group 0 1

0 y001 y011

1 y101 y111

Layer 2:

Event

Group 0 1

0 y002 y012

1 y102 y112
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In the case when survival data with right-censored observations are presented in contin-

gency tables, at each observed death, 2×2 table is constructed. These tables are the layers as

illustrated above, and called strata. The marginal and conditional associations in three-way

contingency tables can be described by the odds ratios. For the case of 2× 2×K table and

conditioning on the third variable, the conditional odds ratio

Ψk =
p00kp11k

p01kp10k

,

describes the conditional association in partial table k. For example, when we have 2× 2× 2

table, the difference between two log odds ratios of two 2× 2 tables is defined as follows:

log Ψ1 − log Ψ2 = {log p001 − log p011 − log p101 + log p111}

− {log p002 − log p012 − log p102 + log p112}. (2.4)

In the case of the marginal odds ratio

Ψij. =
p00.p11.

p01.p10.

,

where probabilities in the above equation pij. =
yij.
n

and yij. =
∑

k yijk. The interest of this

thesis is concerned with the case of stratified 2× 2 tables, more details will be given later in

Chapter 4.

2.1.1 Probability Models and Parametrization for Two-way Con-

tingency Tables

Dobson and Barnett (2008) discuss probability models for contingency tables. There

are four sampling cases: (1) No totals are fixed, the four cell counts are assumed to have

independent Poisson distributions, Yij ∼ Poisson(µij), (2) The row or column totals are

fixed, then the joint probability distribution for each row or column is product of binomials;

for example the row totals are fixed, so y00 ∼ B(n0., p00) and y10 ∼ B(n1., p10), (3) The grand

total n is fixed, the conditional distribution of the cell counts given their total is multinomial

with probabilities pij, (4) The row, column, and thus the grand totals are fixed, then the

conditional distribution of y00 conditionally on y00 + y10 = n.1 is non-central hypergeometric.

8



Beside that, the interesting point of view in this thesis is the odds ratio, therefore, we

are going to consider these four situations in more details regarding the parametrization and

the odds ratio in (2.1), whether we think in terms of probabilities that add to one across

the table or conditional probabilities for rows, or for columns. It is interested to note that

Slavkovic and Fienberg (2010) extend the idea of odds ratio and define other two odds ratios

as follows: Conditioning on columns,

Ψ∗ =
p00p01

p10p11

. (2.5)

and conditioning on rows,

Ψ∗∗ =
p00p10

p01p11

. (2.6)

First, when there are no constraints on yij’s, they can be modelled under the assumption

that the observations are independent. The joint distribution of the four cell counts is the

product of Poisson distribution. Then the log-likelihood can be written as:

` =
∑
i

∑
j

(yij log µij − µij − log yij!)

∝
∑
i

∑
j

yij log µij − µ.., (2.7)

where µ.. =
∑

i,j µij and µij = µ..pij, then p00 = µ00/µ.., p01 = µ01/µ.., p10 = µ10/µ.., and

p11 = 1 − p00 − p01 − p10. Thus, the odds ratio in (2.1) can be written in terms of µij as

follows:

Ψ =
p00p11

p01p10

=
µ00µ11

µ01µ10

(2.8)

Second, when the row or column totals are fixed, the joint distribution is a product of

Binomials. For instance, when the row totals are fixed with the constraints that
∑

i,j pij = 1

and ni. =
∑

j yij, the log-likelihood will be will be proportional to

` ∝
∑
i

∑
j

yij log pij. (2.9)

Now, by considering what is known as conditional logits for columns, suppose that

η1 = log

p00
p00+p10
p10

p00+p10

= log
p00

p10

, η2 = log

p01
p01+p11
p11

p01+p11

= log
p01

p11

. (2.10)
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Then

η1 − η2 = log
p00p11

p01p10

= log Ψ, (2.11)

and

η1 + η2 = log
p00p01

p10p11

= log Ψ∗, (2.12)

where Ψ and Ψ∗ are the odds ratios in (2.1) and (2.5) respectively.

Similarly, by considering the conditional logits for rows, suppose that

ζ1 = log

p00
p00+p01
p01

p01+p00

= log
p00

p01

, ζ2 = log

p10
p10+p11
p11

p10+p11

= log
p10

p11

. (2.13)

Then

ζ1 − ζ2 = log
p00p11

p01p10

= log Ψ, (2.14)

and

ζ1 + ζ2 = log
p00p10

p01p11

= log Ψ∗∗, (2.15)

where Ψ∗∗ is the odds ratio in (2.6).

Third, conditional on the grand total n, the joint distribution of the cell counts yij is

multinomial with constraint
∑

i,j pij = 1 and the log-likelihood will be proportional to

` ∝
∑
i

∑
j

yij log pij, (2.16)

and one can parametrize the multinomial distribution for a 2× 2 table with cell probabilities

p00, p01, p10, p11 with the parameters

θ1 =
1

2
(η1 + η2) = log

√
Ψ∗, (2.17)

θ2 =
1

2
(ζ1 + ζ2) = log

√
Ψ∗∗, (2.18)
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and

θ3 =
1

2
(η1 − η2) =

1

2
(ζ1 − ζ2) = log

√
Ψ, (2.19)

then the odds ratio can be written in terms of θ3 as follows:

Ψ = e2θ3 . (2.20)

Fourth, by looking to the case when row, column, and grand totals are fixed the distri-

bution will be the non-central hypergeometric (which is an exponentially weighted version of

the central hypergeometric distribution (McCullagh and Nelder, 1989)) and parametrized

by the odds ratio.

Now, it might be possible to start with the case of fixing row totals, for example, to get the

fourth case of non-central hypergeometric. Suppose that we have the row totals are fixed,

then the sampling model is product binomial

y00 ∼ B(n0., p00) y10 ∼ B(n1., p10).

Therefore, the conditional distribution of y00 conditionally on y00 + y10 = n.0 is non-central

hypergeometric with parameter Ψ as follows:

f(y; Ψ) =

(
n0.

y00

)(
n1.

y10

)
Ψy00

P0(Ψ)
, (2.21)

where max(0, n.0 − n1.) ≤ u ≤ min(n0., n.0) and P0(Ψ) =
∑

u

(
n0.

u

)(
n1.

n.0 − u

)
Ψu.

In the non-central hypergeometric distribution case, the log-likelihood function will take

the form

` ∝ y00 log Ψ− logP0(Ψ). (2.22)

The non-central hypergeometric distribution in (2.21) and the log likelihood in (2.22) above

can be expressed in terms of (2.20) respectively as follows:

f(y; Ψ) =

(
n0.

y00

)(
n1.

y10

)
e2θ3y00

P0(e2θ3)
, (2.23)
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and

` ∝ 2y00θ3 − logP0(e2θ3), (2.24)

where P0(e2θ3) =
∑

u

(
n0.

u

)(
n1.

n.0 − u

)
e2uθ3 .

In fact, the fourth sampling case where row and column and then grand totals are fixed

and under the null hypothesis of independence, the non-central hypergeometric distribution

is the basis of constructing the log-rank test as discussed in Section 2.2.1 in comparing two

survival functions in survival data analysis.

2.1.2 Log-linear Models for Contingency Tables

Modelling cell counts in contingency tables is based on work that deals fundamentally

with the knowledge of log-linear models. The development of log-linear models grew primarily

through the work of Birch (1963), Goodman (1963), and Bishop (1967). The log linear

model is one of the specialized cases of generalized linear models for Poisson or multinomial-

distributed data (Dobson and Barnett, 2008). The log-linear model is used to analyze the

relationship between two categorical variables (two-way contingency tables) or more than

two categorical variables (multi-way contingency tables). The log-linear model in two-way

I × J contingency tables can take the following form:

E(Yij) = µij = npij

logE(Yij) = log µij = log n+ log pij,

and under independence, pij = pi.p.j

logE(Yij) = log µij = log n+ log pi. + log p.j.

Therefore, the formula for expressing independence is multiplicative, so log µij has the addi-

tive form and can be written as follows:

logE(Yij) = λ+ λ1
i + λ2

j ,
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for a row effect λ1
i , a column effect λ2

j , and λ is overall mean (the 1 and 2 superscripts are

labels, not “power” exponents), and in the case of dependence, the model is called a saturated

(full) model and has the form:

logE(Yij) = λ+ λ1
i + λ2

j + λ12
ij , (2.25)

where λ12
ij is the interaction effect and under the constraints

I∑
i=1

λ1
i = 0,

J∑
j=1

λ2
i = 0,

I∑
i=1

λ12
ij =

J∑
j=1

λ12
ij = 0.

Hence the minimal model will take the form:

logE(Yij) = λ.

The log of the odds ratio in (2.1) can be written in terms of the parametrization that

discussed in the previous section and using (2.20) as follows:

2θ3 = log
p11/p10

p01/p00

(2.26)

θ3 = 1/2(log p11 − log p10)− 1/2(log p01 − log p00), (2.27)

where pij = µij/ni.. Then the log-odds ratio can be also expressed in terms of the expected

frequencies as follows:

θ3 = 1/2(log µ11 − log µ10)− 1/2(log µ01 − log µ00)

= 1/2λ12
11 + 1/2λ12

00 − 1/2λ12
10 − 1/2λ12

01, (2.28)

which means the λij’s determine the association (Agresti, 2002). Also, one can show that

the parameter λij is equal to 1/4 log-odds ratio based on the constraints on log-linear’s

parameters for the 2× 2 tables,
∑

i λij = 0 and
∑

i λij = 0, so:

λ12
00 + λ1

01 = 0,

λ12
00 = −λ1

01,

and

λ12
11 + λ2

10 = 0,
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λ12
11 = −λ2

10,

where λ1
01 = λ2

10, so we can write λ12
00 = λ12

11 = −λ2
10 and substitute this in (2.28), we will have

θ3 = 1/2λ12
11 + 1/2λ12

00 − 1/2λ2
10 − 1/2λ1

01

= 1/2λ12
00 + 1/2λ12

00 + 1/2λ12
00 + 1/2λ12

00

= 2λ12
00.

Now, for a three-way I × J ×K contingency table, the saturated log-linear model is

logE(Yijk) = λ+ λ1
i + λ2

j + λ3
k + λ12

ij + λ13
ik + λ23

jk + λ123
ijk , (2.29)

satisfying the constraints that

I∑
i=1

λ1
i =

J∑
j=1

λ2
i =

K∑
k=1

λ3
k = 0,

I∑
i=1

λ12
ij =

J∑
j=1

λ12
ij = ... =

K∑
k=1

λ23
jk = 0,

I∑
i=1

λ123
ijk =

J∑
j=1

λ123
ijk =

K∑
k=1

λ123
ijk = 0.

2.1.3 Bayesian Inference for Log-linear Model

Bayesian inference is one of two dominant approaches to statistical inference. The word

“Bayesian” refers to the influence of Reverend Thomas Bayes, who introduced what is now

known as Bayes’ theorem where model parameters, θ, are treated as being random vari-

ables and a prior distribution is assigned to these parameters. Bayesian paradigm has three

components: A prior distribution π(θ); the given data Y; the function p(Y|θ) as the like-

lihood function; and posterior distribution π(θ|Y), which is a result of updating your prior
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by multiplying the prior by the likelihood. Combining these components leads us to Bayes’

theorem:

π(θ|Y) =
p(Y|θ)π(θ)

p(Y)
=

p(Y|θ)π(θ)∫
θ
p(Y|θ)π(θ) dθ

(2.30)

In general,

Posterior ∝ Likelihood× Prior.

Bayesian inference for log-linear parameters in two-way tables has been done using a

prior distribution on the parameters and expressing the results in the form of a posterior

distribution.

For a multinomial random variable yij with cell probabilities p = (p00, p01, p10, p11)′, the

Dirichlet distribution, denoted Dir(α), is a conjugate prior (the prior and the posterior dis-

tributions are called conjugate if they are in the same family distribution). It is a continuous

multivariate distribution parametrized by a vector α of positive reals, and has probability

density function

π(p) ∝
∏
i,j

p
αij−1
ij . (2.31)

Lindley (1964) used Dirichlet (αij) prior distributions for the cell probabilities pij. He

showed that the contrasts of log cell probabilities,
∑∑

aij log pij where
∑∑

aij = 0, such as

log-odds ratio in 2× 2 table with cell probabilities pij’s, have an approximate (large sample)

joint normal posterior distribution with mean and variance given respectively by

µ =
∑

i

∑
j aij log yij, v =

∑
i

∑
j a

2
ijy
−1
ij .

Lindley used this approximation to obtain the posterior density of the log-odds ratio and

to develop a Bayesian statistic for testing independence in 2 × 2 table. Also, extensions to

three-way tables; especially 2 × 2 × 2 tables, were introduced. Lindley (1964) derives the

posterior of the difference between the two log odds ratios of two 2× 2 tables in (2.4), which

is approximately normally distributed with mean

µΨ1−Ψ2 = {log y111 − log y211 − log y121 + log y221}

− {log y112 − log y212 − log y122 + log y222},
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and variance

σΨ1−Ψ2 =
∑
i,j,k

y−1
ijk.

In a hierarchical Bayesian approach, for two-way contingency table with cell count yij

and cell probabilities pij, Leonard (1975) considers the multivariate logits

log pij = γij −D(γ), (2.32)

where D(γ) = log(
∑

ij exp(γij)) is chosen to ensure that pij always sum to one. Then he

introduces row effects λ1
i , column effects λ2

j , and interaction effects λ12
ij satisfying

γij = λ1
i + λ2

j + λ12
ij .

To assign a prior distribution, the row effects λ1
i are assumed to be a priori independent of

the column effects λ2
j and also of the interaction effects λ12

ij . To model the belief that the set

of row effects λ1
i is exchangeable, Leonard uses two-stage prior:

Stage I: λ1
1, ..., λ

1
I are independently normally distributed with mean µλi and variance σ2

λi
.

Stage II: The prior parameters µλi and σ2
λi

are independent where µλi have an improper uni-

form over the whole of the real line. Given parameters τλi , νλi both positive, the τλiνλiσ
−2
λi

is

assumed to have inverse chi-squared distribution with νλi degrees of freedom and τλi provides

a prior estimate of σ2
λi

. Similar exchangeable prior distributions are assigned to the sets of

column effects λ2
j and interaction effects λ12

ij .

For computational convenience, Leonard estimated the log-linear parameters by their pos-

terior modes, and those posterior modes were plugged into the log-linear model to get cell

probability estimates.

In three-way contingency tables, Nazaret (1987) extends the work of Leonard (1975) for two-

way tables by using the same Bayesian approach with a multivariate logit transformation for

obtaining the Bayes estimates for the main and interaction effects. Besides that Nazaret

(1987) approximates the posterior means by the posterior modes for moderate sample size.

Also, Nazaret shows that the choice of the value of ν’s (the degree of freedom above) and

the sample size affect the speed of the convergence. For example, Leonard (1975)’s advice is

to choose the values of ν’s to be close to zero where these values affect the convergence to be
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slow and lead to a negative-definite covariance matrix of model parameter estimates. How-

ever, according to Nazaret (1987), choosing values of ν’s to be close to one and large sample

size speeds up the convergence which makes the algorithm rapidly climb to the maximum of

the posterior distribution.

Assuming a multinomial sampling model, Albert and Gupta (1982) assign a Dirichlet

prior for cell probabilities pij with parameters αij = stij, where s is the precision param-

eter and tij’s are the prior means (this is a reparameterization of Dirichlet distribution in

terms of a precision parameter and means, and it is convenient because s will be fixed).

The hyperparameters tij reflect a prior belief that the cell probabilities may be either sym-

metric or independent in two-way contingency tables. In the symmetry case, they gave a

Dirichlet distribution for the parameters of the multinomial model in the first stage, and in

the second, uniform distribution was given to the prior means. In the independence case,

they assumed Dirichlet prior distributions in both stages. Albert and Gupta showed that

large value of s, the precision parameter, indicates strong belief in symmetry or independence.

Incorporating the Dirichlet distribution as a prior for the cell probabilities in contingency

tables with multinomial sampling is a tractable choice because of its computational con-

venience. However, according to Agresti and Hitchcock (2005) and Knuiman and Speed

(1988), a one-stage Dirichlet prior does not always provide a sufficient structure to be given

for cell probabilities, such as corresponding to a log-linear model. As Leonard (1975) dis-

cussed that the exchangeability within each set of log-linear parameters is more reasonable

than the exchangeability of multinomial probabilities that one gets with a Dirichlet prior.

Therefore, the choice of normal prior for the log probabilities is an alternative choice to

Dirichlet prior for cell probabilities. In the same context, Albert and Gupta (1983) argued

that the Dirichlet distribution is appropriate for representing the prior information about cell

probabilities, however, it does not have enough number of parameters to combine separate

prior knowledge about the marginal probabilities and an interaction parameter.

Albert and Gupta (1983) considered 2× 2 tables where the cell counts are assumed to have

a multinomial distribution and in which the prior information was stated in terms of two
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common measures of association. To measure the association in the table, Albert and Gupta

consider the the correlation coefficient, ρ = (p11−p1.p.1)
R

, where R = (p1.p2.p.1p.2)1/2, and the

odds ratio, Ψ = (p11p22)
(p12p21)

. Instead of using a Dirichlet prior on the cell probabilities, they

define the prior density of the form

ψ(p11, p12, p21, p22) = ψ1(p1.)ψ2(p.1)ψ3(p11, p12, p21, p22|p1., p.1),

where ψ3 is the prior density of one independent parameter such as ρ or Ψ, which describes

conditionally on the marginal probabilities, the interaction between the two variables.

Knuiman and Speed (1988), in the essence of Albert and Gupta (1983), used a structured

multivariate normal prior for the parameters in log-linear model collectively instead of giving

a univariate normal prior for each parameter individually as in Leonard (1975). They assumed

the Poission log-linear model

log(m) = Xβ,

where m = E(y), X is the model matrix, and β is the vector of unknown regression coef-

ficients or effects (model parameters). The β was given a multivariate normal distribution,

β ∼ N(β0,S), where β0 and S are assumed known. Knuiman and Speed considered the

posterior summary statistics that are the posterior mode which is the solution of

∂

∂β
log[π(β|y)] = 0,

where π(β|y) is the posterior density for β. And the dispersion matrix

D(β) = −[
∂2 log[π(β|y)]

∂β∂βT
].

For more illustration, Knuiman and Speed (1988) provided two examples of data in two-way

and three way contingency table, and compared the posterior mode and measure of dispersion

estimates with the likelihood estimates where they concluded that the results are very similar.

In the context of using a normal prior with multinomial data, Lindley (1964) remarked

that if cell counts yi are independent Poisson variables with means µi, the conditional distri-

bution of them, given n =
∑
yi, would be multinomial with cell probabilities pi = µi∑

µi
, and
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also since the n =
∑
yi has a Poisson distribution with mean

∑
µi, one can define an alterna-

tive parameterization for Poisson model like µ+ =
∑
µi. Therefore, if the prior distribution

of µi can be factored into one part that depends only on µ+ and another part depends only

on pi, then the posterior would be the same. As a result, the posterior distribution of pi will

only depend on the multinomial part of the likelihood. Thus the posterior may be obtained

by the Poisson device. Based on this, Forster (2010) develops the results of Lindley (1964)

to provide a general framework for the analysis of multinomial data using Poisson log-linear

model. Forster’s focus is particularly on multivariate normal prior distributions for the log-

linear parameters.

2.2 Survival Data Modelling and Analysis

Survival analysis is the term used to describe the analysis of survival time or lifetime

data. In health applications, the survival time could be the time from diagnosis of a disease

till death, or the length of a disease’s remission time. In engineering, survival time could be

the time to failure of a part (in which case survival data may be referred to as reliability

data). The usual questions of interest involve the quantiles (e.g., median) of the survival

time, or the effect of covariates on survival time. We may be interested in characterizing the

distribution of “time to event” for a given population, as well as comparing this “time to

event” among different groups (e.g., treatment vs. control in a clinical trial). Two features

of survival time data are:

• Times are non-negative.

• The survival time might be censored, the survival time of a subject is said to be censored

when the end-point of interest has not been observed for that subject. There are some

general reasons why censoring may occur:

– A subject does not experience the event before the study ends.

– A subject can not be followed-up on during the study period.
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– A subject withdraws from the study because of death from an unrelated cause.

In any survival analysis, survival and hazard functions are two important terms. They are,

in essence, opposing concepts, in which the survival function focuses on surviving, whereas

the hazard focuses on failing given survival up to a certain point in time.

The survival function, S(t), is defined as the probability of a subject surviving longer than

a specific time t; that is, S(t) = P (T > t) = 1− F (t). The survival time here is assumed to

be continuous. The hazard function, h(t), is used to express the risk or hazard of death at a

specific time t, and is obtained from the probability that a subject dies at time t, conditional

on that subject having survived to that time,

h(t) = lim
∆t→0

P (t ≤ T < t+ ∆t|T ≥ t)

∆t
.

Estimates of survival function and hazard function can be obtained by using methods for es-

timating such as an empirical estimate, life-table (LT) estimate, Kaplan-Meier estimate, and

Nelson-Aalen estimate (Collett, 2003). These methods are non-parametric or distribution-

free. Once the estimated survivor function has been found, the median and some other

percentiles of the distribution of survival times can be estimated. For more reading about

the methods of estimating the survival and hazard functions, see Chapter 2 of Collett (2003)

and Chapter 2 of Kleinbaum and Klein (2005).

In clinical studies one is concerned not only with estimating survival or hazard functions,

but, more often, with the comparison of the life experience of two or more groups of patients

who receive different treatments (test and control treatments). In these kinds of studies,

it is difficult to have a priori knowledge to make trustworthy hypotheses on the underlying

survival functions; thus, the non-parametric approach is often adopted to compare survival

curves. There are a number of frequentist methods that can be used for hypothesis testing.

Two of the various most common non-parametric tests are the Generalized Wilcoxon test

(Gehan, 1965) and the log-rank test (Mantel, 1966).
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2.2.1 Frequentist Analysis of Survival Data

In the case of three-way contingency tables, Mantel-Haenzel (MH) statistic (Mantel and

Haenszel, 1959) is used. MH statistic is obtained by examining the odds ratio at each table,

and then combining this information across tables (the common odds ratio). Fixing the third

index of three-way table gives a two-way table. These tables are called strata (as discussed

early in Section 2.1) in the Mantel-Haenzel case. The log-rank test is essentially the Mantel-

Haenzel statistics in which strata are replaced by slices in time and they are computationally

equal. In hypothesis testing, the log-rank test is a procedure for comparing the survival

functions of two groups.

Consider the following situation when we have two treatments (control and test) with two

outcomes (dead and alive), and we are interested in comparing the treatment effects to know

which treatment has a longer survival time. This kind of data can be conveniently displayed

in three-way contingency tables, stratified 2 × 2 tables, one table at each time of observed

death tk, where k = 1, ..., K, I = 2 (i.e. i = 0 for control, and i = 1 for test) and J = 2 ( i.e.

j = 0 for alive (success) and j = 1 for dead (failure). In this data format, we have K 2× 2

tables. The data at time tk can be represented in a two-way contingency table as follows:

Event

Group 0 1 Totals

0 d00k n0k − d00k n0k

1 d10k n1k − d01k n1k

Totals dk nk − dk nk

where n0k and n1k are the number of individuals at risk of death before time tk in the first

and second group respectively, and nk = n0k + n1k is the total number of individuals at risk

of death. Also, dk is deaths in total out of nk. Now, under the null hypothesis that there is

no difference in survival time in two groups, assessing the validity of this hypothesis is done

by the log-rank test. Conditional on the 4 marginal totals in the above table, and under the

null hypothesis, the four entries of this table are determined by the value of d00k, the number

of deaths at tk in group 1. Therefore, d00k is a random variable that takes values from 0
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to the minimum of dk and n0k. Thus, d00k has hypergeometric distribution with mean and

variance

µ00k =
n0kdk
nj

,

so

σ2
00k =

n0kn1kdk(nk − dk)
n2
k(nk − 1)

,

where µ00k under the null hypothesis is the expected number of individuals who die at tk

in group 1. Next, by combining the information from the individual 2 × 2 tables for each

death time, a measure of the deviation of the observed from d00k from their expected values

is defined as follows:

UL =
K∑
k=1

(d00k − µ00k), (2.33)

and the mean value of UL under the null hypothesis is:

E(UL) = 0,

and

VL = V ar(UL) =
∑K

k=1 σ
2
00k.

So, the log-rank test statistic has the form:

WL =
U2
L

VL
, (2.34)

The statistic WL summarizes the extent to which the observed deaths in two groups of

data depart from those expected under the null hypothesis of no differences. Under this null

hypothesis, the distribution of the statistic WL is approximately chi-squared with one degree

of freedom. The log-rank test is preferred when the assumption of proportional hazard is

held. Otherwise, the Wilcoxon test is suitable one for testing the hypothesis that there is no

difference between two groups of survival functions. The assumption of proportional hazards

is that the ratio of hazards for two groups does not depends on time which means that the

ratio of hazards for two group remains constant over time. One way of checking the propor-

tionality is simply by plotting the log-log of the two survival functions against time. If the

curves are parallel, we could assume proportional hazards.
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2.2.2 Modelling Survival Data

Cox Proportional Hazard Model

The Cox proportional hazard model was introduced by Cox (1972) and it explores the rela-

tionship between the survival of a patient and one or more explanatory variables. The model

is based on the assumption of proportional hazards.

In general, let us consider a situation where the hazard of death at a particular time

depends on the values x1, ..., xp of the variables X1, ..., Xp of p explanatory variables. The set

of the values of the explanatory variables can be represented by the vector x = (x1, x2, ..., xp)
′

with h0(t) as the baseline hazard function that corresponds to the probability of dying when

all the explanatory variables are zero. The baseline hazard function has the same role as the

intercept in ordinary regression. The general proportional hazard model for ith individual

can be written as:

hi(t) = h0(t) exp(xiβ), (2.35)

where i = 1, .., n and j = 1, ..., p and β is a vector of the coefficients in the proportional

hazard model. The equation (2.35) can be re-expressed in the form:

log

{
hi(t)

h0(t)

}
= β1x1i + β2x2i + ...+ βpxpi, (2.36)

The parameters of the Cox model can be estimated by the methods of partial maximum

likelihood and measures of discrepancy or goodness of fit may be formed in the logarithm of

a ratio of likelihoods to be called the deviance, which referes to the quantity −2 log L̂, where

L̂ is the maximized value of the likelihood function, and this is known as the log-likelihood

ratio statistic (Collett, 2003).

In the case of comparing two survival functions of two groups, let xi be a binary variable,

where

xi =

 0 if the individual is in group 1 (control);

1 if the individual is in group 2 (test),

so, the hazard model in this case will take the form:

hi(t) = h0(t)eβxi . (2.37)
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The ratio of the hazards of death at time t for an individual on test treatment relative to an

individual on the control treatment is:

ψ = exp{β}.

The log odds ratio in 2 × 2 tables and log hazard ratio in Cox model have the same

interpretation and correspond to each other, that is, the log odds ratio is equal to the log

hazard ratio which equal to the regression coefficient, β. Therefore, any inference conclusions

about log odds ratio is equivalent to conclusions about Cox model’s parameter β.

2.2.3 Bayesian Inference for Survival Data

In Bayesian inference, priors play the important role of representing the uncertainty of

the parameter of interest before the current data are observed. In the context of Bayesian

survival analysis, according to Ibrahim et al. (1999) and Ibrahim et al. (2001), the very

common choice of informative prior for β is the normal prior, and the popular noninformative

one for β is the uniform prior. Considering Cox proportional hazard model of the form

h(t,x) = h0(t) exp(x′β), (2.38)

where h0 is the baseline hazard function at time t, x is a vector of covariates, and β denotes

a vector of regression coefficients. Ibrahim et al. (1999) suggest a discrete gamma process

as a prior for baseline hazard function, h0(t). To define a discrete gamma process, Ibrahim

et al. build a finite partition of the time axis by letting 0 ≤ t0 < t1 < ... < tM be this finite

partition and define the increment in the baseline hazard in the interval (ti−1, ti], i = 1, ...,M ,

where M is the total number of the intervals, as follows

δi = h0(ti)− h0(ti−1).

The δi’s are a priori independent random variables with gamma distributions, δi ∼ G(α(ti)−

α(ti−1), λ). Now, let ∆ = (δ1, ..., δM). The prior density of ∆ will be

π(∆) =
M∏
i=1

f(δi),
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where f(δi) is a G(α(ti)−α(ti−1), λ) density, where α(ti)−α(ti−1) are the shape parameters

and λ is the scale parameter, where α, λ > 0. One of the prior choices that Ibrahim et al.

suggest in the case of having little information about ∆ is α(t) = ti − ti−1 for ti−1 ≤ t ≤ ti

and choose large λ. For a prior distribution for the regression coefficients, Ibrahim et al.

assume that ∆ and β are a priori independent having the joint prior density and then con-

sider a multivariate normal prior for the regression coefficient, β. To compute the posterior

probabilities, they used the computational method Gibbs sampling (Lynch, 2007).

Omurlu et al. (2009) compared Bayesian survival analysis and Cox regression analysis by

using simulated and breast cancer data sets where the comparison was done by comparing

the parameter estimates of both methods. Omurlu considers two situations in choosing a

prior distribution for the parameters, β: informative and noninformative priors. When the

sample size increased, the posterior summaries that have been obtained from the Bayesian

survival analysis with proper informative prior were more unbiased with smaller standard

error than Cox regression analysis. Moreover, Bayesian survival analysis had a better pre-

dictive performance than Cox analysis when the variance of informative prior was decreased,

which led them to conclude that Bayesian survival analysis had better performance than Cox

regression analysis in the case of informative priors.

2.3 Prior distributions and Imprecise Probabilities

The prior distribution is the key to Bayesian inference, and its determination is the most

important step in drawing this inference. The choice of prior distribution is the issue that

is still challenging statisticians and researchers. In practice, rarely is information precise

enough to lead to the exact determination of the prior distribution. At this point, we will

briefly discuss the choice of prior distributions: Subjective, objective, and conjugate priors.

Because of limitations of a precise Bayesian approach as mentioned in the introduction of

this thesis, the imprecise probability approach as a generalization is the main focus and it is

introduced later in this section.
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2.3.1 Choice of Prior Distributions

Subjective Priors

Subjective (informative) priors were developed by De Finetti (1937), Savage (1972), and

Lindley (1956), which is more commonly called an elicited prior, and refers to the elicitation

of knowledge (Kass and Waserman, 1996). Elicitation is defined as a technique of gathering

expert opinion, each expert will give us his probability (belief) about an unknown quantity,

which is known as subjective probability. Since subjective probabilities represent degree of

beliefs, the elicitation is the technique to extract and quantify the individual belief about

uncertain quantities. Savage (1972) presents three methods for elicitation techniques. He

proposes that a direct question about the feeling is one way to elicitation. The second method

infers probabilities from the individual’s actions in an uncertain situation. A third way is

asking the individual what his actions would be in the situation. One general way to do the

elicitation is through specially designed methods of verbal or written communication, which

can be done through individual interviews or interactive groups.

The choice of prior distribution depends on the availability of prior information. There-

fore, there are various reasons that make it difficult to get precise information. First, there

are a number of biases in people’s probability assessments. Second, elicitation itself can be

biased; for example, clinicians may be overly optimistic, or trial investigators may be more

optimistic than clinicians in general. Last, the decision-maker, the client, or the statistician

may not have the time or resources to determine the proper prior based on the information

that they have.

Objective Priors

Objective prior is an alternative to elicitation to find a structural rules that define a prior.

Jeffreys’ prior (Jeffreys, 1946) is the most famous objective prior distribution in one-

dimensional problems, and is considered a weakly informative prior because it, in some ways,

has minimum information (Berger, 2006). Jeffreys formulated his rule by considering a num-

ber of situations. In one of these cases, when the parameter space is finite, he considered the
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principle of insufficient reason and took the prior density to be constant. Also, he showed

that Jeffreys prior is invariant to one-to-one transformation of the parameter. Jeffreys (1946)

suggests his general rule, which is based on Fisher’s information:

I(θ) = −E
[
∂2 log l(x|θ)

∂θ2

]
,

where θ is the parameter of interest, and l(x|θ) is the log-likelihood. Then, the Jeffreys’ prior

density in a one-dimensional case is:

π(θ) ∝ I(θ)
1
2 .

Example 2.3.1 Suppose xi ∼ B(n, θ), i = 1, ..., n,

p(x|θ) =

(
n

x

)
θx(1− θ)n−x,

where 0 ≤ θ ≤ 1 and then the log likelihood function would be:

l(x|θ) = log

(
n

x

)
+ x log(θ + (n− x) log(1− θ)

∂

∂θ
l(x|θ) =

x

θ
− n− x

1− θ
∂2

∂θ2
l(x|θ) = − x

θ2
− n− x

(1− θ)2
,

and

I(θ) = −E
[
∂2l(x|θ)
∂θ2

]
=

n

θ(1− θ)
,

Then the Jeffreys’ prior on θ is:

π(θ) ∝ |I(θ)|
1
2

∝
[

n

θ(1− θ)

] 1
2

∝ θ−1/2(1− θ)−1/2.

which is Beta(1/2, 1/2).

Jeffreys’ prior satisfies the property of being invariant to one-to-one transformation. If

φ = h(θ), then

π(φ) = π(θ)

∣∣∣∣dθdφ
∣∣∣∣ = π(θ)

∣∣∣∣dh(θ)

dθ

∣∣∣∣−1

.
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In fact, Jeffreys’ prior has been criticized by some Bayesians. One of these disadvantages

is that in a multidimensional case, Jeffreys prior may lead to incoherences. According to

Robert (2007), Jeffreys himself was mainly emphasizing the use of these kind of prior distri-

butions in a one-dimensional case, Jeffreys’ prior turns out to be the same as the so-called

reference prior in the one-dimensional case.

Reference priors were proposed by Jose Bernardo in a 1979 paper (Bernardo, 1979),

and further developed by Jim Berger and others from the 1980’s through to the present.

The idea behind reference priors is to formalize what exactly we mean by an uninformative

prior: it is a function that maximizes some measure of distance or divergence between the

posterior and prior as observations are made. The commonly used definition of a reference

prior is a prior that maximizes the missing information in the experiment. Any of several

possible divergence measures can be chosen; for example, the Kullback-Leibler divergence or

the Hellinger distance. One might ask how can we choose a prior to maximize the divergence

between the posterior and prior, without having seen the data first? Reference priors handle

this by taking the expectation of the divergence given a model distribution for the data.

Following Bernardo (1979), consider we have a model M = {p(x|θ), x ∈ X, θ ∈ Θ}

parametrized by Θ, and we want a strictly positive prior function π(θ) that maximizes its

K-L divergence; from the posterior this K-L divergence is;∫
π(θ|x) log

π(θ|x)

π(θ)
dθ.

Its expected information about θ to be delivered by the model M can be written as;

I{M, π(θ)} =

∫
p(x)

∫
π(θ|x) log

π(θ|x)

π(θ)
dθdx,

where p(x) is the marginal distribution. The expected information, I{M, π(θ)}, measures

the amount of missing information about θ when the prior is π(θ). Therefore, choosing a

reference prior involves finding π∗(θ) that maximizes the expected information:

π∗(θ) = arg max
π(θ)

I{M, π(θ)}. (2.39)
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We note that defining reference priors in terms of mutual information implies that they are

invariant under reparameterization, since the mutual information itself is invariant. However,

reference prior has some drawbacks as discussed in Berger and Bernardo (1992). To discuss

these drawbacks, the following definitions are considered,

Definition 2.3.1 A strictly positive continuous prior π(θ) is a permissible prior for model

M = {p(x|θ), x ∈ X, θ ∈ Θ} if:

1. for all x ∈ X, π(θ|x) is proper, such that
∫
p(x|θ)π(θ)dθ <∞;

2. for some approximating compact sequence, the corresponding posterior sequence is ex-

pected logarithmically convergent to π(θ|x) ∝ p(x|θ)π(θ).

Definition 2.3.2 (Maximizing Missing Information (MMI) Property)

Let M ≡ p(x|θ), x ∈ X, θ ∈ Θ ∈ R}, be a model with one continuous parameter, and let P

be a class of prior function for θ for which
∫
p(x|θ)π(θ)dθ < ∞. The function π(θ) is said

to have the MMI property for model M given P if, for compact set Θ0 ∈ Θ and any p ∈ P,

lim
k→∞
{I{π0|Mk} − I{p0|Mk}} ≥ 0, (2.40)

where π0 and p0 are the renormalized restrictions of π(θ) and p(θ) to Θ0, respectively.

The first weakness that they have discussed is with the continuous parameter space where

the problem of maximizing the mutual information may not be analytically tractable, and the

second is when there is a case of infinite amount of information, the expected information

is typically not defined on an unbounded set. To overcome these two difficulties, Berger

et al. (2009) suggested and defined that a reference prior must be permissible and have a

Maximizing Missing Information (MMI) property, where the latter is considered to be more

essential.

Conjugate Priors

Conjugate priors are commonly used in Bayesian inference for computational convenience.

In a Bayesian framework, if the posterior distribution is in the same family as the prior
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distribution, then the prior and posterior are called conjugate distributions, and the prior

is called a conjugate for the likelihood function. Where the likelihood functions happen to

be an exponential family, there exists a conjugate prior, and this is one of the exponential

family’s properties. A conjugate family for a natural exponential family

f(y|θ) = h(y) exp(θy − φ(θ)), (2.41)

where φ(θ) = log
∫
h(y) exp(θy)dy is the cumulant function, is given by:

π(θ|µ, λ) = K(µ, λ) exp(θµ− λφ(θ)). (2.42)

Here, the underlying measure defined by (2.42) is the Lebesgue measure, µ and λ are hyperpa-

rameters, and K(µ, λ) is the normalizing constant of the density (Robert, 2007). According

to Diaconis and Ylvisaker (1979), it is possible to show that this distribution is normalizable

if λ > 0 and µ/λ lies in the interior of the convex hull of the support of the parameter θ,

θ ∈ Θ, where Θ is called the natural parameter space and it is assumed to be a nonempty

open set on Rd. The conjugate prior exponential family has further attraction since the

posterior expectation of the parameter θ,

E(θ|y1, ..., yn) =
y0 + nȳ

λ+ n
(2.43)

is a linear function in y, as shown by Diaconis and Ylvisaker, where y0 is the prior information.

They also have shown, additionally, under certain regularity conditions, if the dominating

measure of f is continuous with respect to the Lebesgue measure, the linearity of the posterior

expectation allows for the prior distribution is of the form of the natural exponential family

with such standard examples as normal prior for normal location, the gamma prior for the

Poisson, and beta prior for the binomial.

Each prior discussed in the previous two subsections might be a conjugate prior. As

shown in Example 2.3.1, Jeffreys’ prior form a beta family, which is a conjugate prior to the

binomial likelihood function.

Choosing prior distribution to represent the uncertainty about the parameter of interest is

a feature of Bayesian analysis. Because of limitations of a precise Bayesian approach as men-
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tioned in the introduction of this thesis, the imprecise probability approach as a generalization

is the main focus of my thesis and is introduced in the next subsection.

2.3.2 Basic concepts of Imprecise Probability Theory

The prior distribution represents the uncertainty about the parameter of interest before

data is observed. The traditional (precise) probability theory has limitations, the most cru-

cial one is when we have little or no information for assessing a single probability of an event;

say A, Pr(A) = p. Instead of a precise (single) value of the probability of an event, a pair of

lower and upper probabilities Pr(A), [p1, p2] are used to include a set of probabilities, and this

leads to the concept of imprecise probability. Imprecise probability theory is a generalization

of classical probability theory in terms of lower and upper probabilities and lower and upper

expectations.

The idea of using imprecise probability has a long history. The first work to build the

theory of imprecise probability was made by Keynes (1921) when he discussed the math-

ematical models of upper and lower probabilities. This was followed by a large amount of

literature where the imprecision of personal probabilities and utilities was stressed, in partic-

ularly by Good (Good, 1952), who also proposed axioms for upper and lower probabilities.

The upper and lower probabilities were inferred as personal betting rates by Smith (1961)

when he suggested some essential basics of avoiding sure loss and coherence concepts (defi-

nitions of these two concepts are provided in Subsection 2.3.2). Later on, Williams (1975,

2007) generalized Smith’s results that coherent lower probabilities are lower envelopes of pre-

cise probability measures. Both Williams and Smith’s work were inspired from de Finetti

’s exposition (De Finetti, 1937) where de Finetti’s approach is based on the idea that the

price P (X), where X is a random quantity, should be fair. For example, de Finetti assumes

that the individual is willing to take either side of the bet, so that the bet is “fair” from the

individual’s point of view. After Smith and Williams’ work, a large contribution was made

by Shafer (1976) with his historical statement ‘Dempster-Shafer theory’ of belief function.

Stemming from these efforts, Fine (1988) explored and developed the theory of undominated
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lower probabilities to be applied to model for understanding nondeterminstic phenomena. A

comprehensive collection of the foundations of all previous work in imprecise probabilities

theory is provided in Walley’s book (Walley, 1991) where the name of “imprecise probability”

was proposed. In the preface to this book, Walley said:

My view of probabilistic reasoning has been especially influenced by the writings of
Terrence Fine, Bruno de Finetti, Jack Good, J.M. Keynes, Glenn Shafer, Cedric
Smith, and Peter Williams.

For tracking the development of imprecise probabilities work, the “Society for Imprecise

Probability: Theory and Applications” (SIPTA) (http://www.sipta.org) aims at promoting

research on imprecise probabilities through a series of activities, including ISIPTA conferences

every odd year since 1999 and SIPTA schools every even year since 2004.

Coherent Lower and Upper Previsions

Imprecise probability can be seen as a generalization of the traditional (precise) probabil-

ity theory. Imprecise probabiliy is applicable when information is scarce, vague, or conflicting,

in which case a unique probability distribution may be hard to identify. Imprecise proba-

bility theory is based on lower and upper previsions (expectations), denoted by P (X) and

P (X), where the lower prevision, P (X), can be regarded as supremum buying price, and the

upper prevision, P (X), as infimum selling price, where X is a gamble, what is the gamble?

A gamble X is a bounded real-valued function (a random variable) on Ω

X : Ω→ R : A 7→ X(A),

where Ω is the set of possible outcomes A. Walley defined the coherent lower and upper

previsions as follows:

Definition 2.3.3 (Coherent Lower Prevision)

Suppose that X is a linear space of bounded random variables (gambles) on the sample space Ω,

and the lower prevision, P , is a real-valued function that maps to real numbers, P : X → R.

Then P is said to be coherent when it satisfies the following three axioms, for all X, Y ∈ X ,

and the positive scalar λ:
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A-1 P (X) ≥ inf X

A-2 P (λX) = λP (X)

A-3 P (X + Y ) ≥ P (X) + P (Y ).

The coherent lower prevision P is a concave function by A-2 − A-3, i.e., P (λX+(1−λ)Y ) ≥

λP (X) + (1− λ)P (Y ) when 0 ≤ λ ≤ 1.

Definition 2.3.4 (Coherent Upper Prevision)

An upper prevision P is said to be coherent when its conjugate lower prevision, defined by

P (X) = −P (−X), is coherent. Coherence of upper previsions is distinguished by conjugate

versions of axioms A-1−A-3:

B-1 P (X) ≤ supX

B-2 P (λX) = λP (X)

B-3 P (X + Y ) ≤ P (X) + P (Y ).

Axioms B-2 and B-3 imply that the coherent upper prevision, P , is a convex function on X .

Upper and lower previsions do seem to be sufficiently general to model all common types of

uncertainty. Upper and lower probabilities are special cases of upper and lower previsions,

defined only for indicator functions of events.

Let A denote an arbitrary class of events, which is considered a class of 0-1 random

variables. If the lower prevision is defined on a such class A, P is called a lower probability

on A, and P (A)is called the lower probability of event A. Similarly, the conjugate upper

prevision P is now called the upper probability, so P is defined on Ac = {Ac : A ∈

A} = {1 − A : A ∈ A} rather than on −A = {−A : A ∈ A}. P is defined on Ac by

P (A) = 1 − P (Ac). As before, P (A) and P (A) are still interpreted as supremum buying

price and infimum selling price, respectively.
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Linear Previsions

Any coherent lower prevision defined in a linear space, which is a self-conjugate, is called

a linear prevision. Self-conjugate means that P (X) = −P (−X) for all X ∈ X . When the

lower and upper previsions coincide and are coherent, they will be called linear previsions

and denoted by P (X). The prevision P (X) is called your fair price because you are both

willing to buy X for any price less than P (X) and to sell X for any price greater than P (X).

Before giving the formal definition of linear previsions, definitions of coherence and avoiding

sure loss should be stated. According to Walley (1991, Chapter 2), coherence can be defined

in general as following:

Definition 2.3.5 (Coherence)

Let X be a linear space of gambles on the sample space Ω, and Let G(X) denote the marginal

gamble X − P (X). The lower prevision P is coherent if sup
[∑n

j=1G(Xj)−mG(X0)
]
≥ 0

whenever m and n are non-negative integers and X0, X1, ..., Xn are in X .

Definition 2.3.6 (Avoiding sure loss)

The lower prevision P avoids sure loss if sup
∑n

j=1 G(Xj) = sup
∑n

j=1[Xj(a) − P (Xj)] ≥ 0

whenever n ≥ 1 and X1, X2, ..., Xn are in X .

The following is a Toy example to illustrate the coherence and avoiding sure loss properties

of the lower prevision.

Example 2.3.2 Assume that you want to buy a house sometime soon, and you have looked to

some online websites. Assume that there are three houses for sale, and the only information

that you know about these three houses are provided through these websites. You know the

asking price of the house, but because you have not seen the houses, you are uncertain about

their true value. Let us say there are three possible (unknown) situations, Ω = {h1, h2, h3},

that might affect the value of the houses as follows:

• h1: House 2 and house 3 do need repairs, but house 1 does not need repairs.

• h2: House 1 and house 3 do need repairs, but house 2 does not need repairs.
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• h3: Only house 2 does need repairs, but house 1 and 3 do not need repairs.

The uncertainty here is that you do not know if the house needs repairs or not, you have

to take a decision or an action in the face of uncertainty (accepting a gamble). Now, consider

the following three gambles,

• X1 means you are willing to accept buying house 1.

• X2 means you are willing to accept buying house 2.

• X3 means you are willing to accept buying house 3.

Now, let us consider that the rewards are an extra value of the house (in thousands of dollars).

For any gamble, you will receive a reward that depends on which of the situations h1, h2, h3,

actually obtains. You know what the possible rewards are, but you do not know the actual

situations. The rewards according to situations h1, h2, and h3 are

X1(h1) = 100, X1(h2) = 70, X1(h3) = 100,

X2(h1) = 70, X2(h2) = 100, X2(h3) = 70,

and

X3(h1) = 70, X3(h2) = 70, X3(h3) = 100.

Assuming that you accept X1, for example, accepting buying house 1 under h1 will give you

a reward of $100, accepting buying house 1 under h2 will give you a reward of $70 (the house

does need repairs), and accepting buying house 1 under h3 will give you a reward of $100 (the

house does not need repairs). Similarly for accepting gambles X2 and X3.

Assume that you are willing to pay up to $70 for the gamble X1, up to $70 to get X2,

and up to $100 to get X3. Then P (X1) = 70, P (X2) = 70, and P (X3) = 100 are your lower

previsions for the gamble X1, X2 and X3 respectively.

Now, to demonstrate the avoiding sure loss property of the lower prevision, we need to

look to Definition 2.3.6. In this definition, the sum, that has to hold for any n ≥ 1, can
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alternatively be written as a linear combination with non-negative integer coefficients aj, such

that
∑3

j=1 ajG(Xj) =
∑3

j=1 aj[Xj(h) − P (Xj)] and regarding the scenario in this example,

the supremum of this linear combination can be written as

sup{a1[X1 − P (X1)] + a2[X2 − P (X2)] + a3[X3 − P (X3)]} ≥ 0, (2.44)

and under h1, h2, and h3, the inequality (2.44) can be expressed in 30a1 − 30a3, 30a2 −

30a3, and 30a1. To discuss the supremum over h1, h2, and h3 , we need to look at which

values of aj’s, as non-negative integers, this supremum will be achieved. Since aj are non-

negative, then a1 − a3 ≤ a1 which means that the supremum is not achieved at h1 (it could

occur at h1 and h3 if a2 and a3 are zero). Thus the supremum will be achieved either at h2

or h3. In the case where a2 − a3 > a1, the supremum is 30a2 − 30a3, which is non-negative,

and will be achieved at h2. If a2−a3 > a1 does not hold then the supremum is 30a1, which is

non-negative, and will be achieved at h3. Therefore, the assessments of lower previsions on

three gambles X1, X2, and X3 avoid a sure loss.

To illustrate the coherence property, we need to show that if lower previsions satisfy the

three axioms A-1, A-2, and A-3 in the Definition 2.3.3, or not. The axiom A-1 is satisfied

for the three gambles since P (X) ≥ inf X (accepting sure gain). To satisfy A-2 and A-3 and

ensure the coherence, we need to assign the lower prevision to multiples of X1, X2, and X3,

assuming λ = 2, for example, P (λX1) = 140. Also, we need to assign the lower prevision on

the sum of the three gambles such as P (X1 +X2 +X3) = 250.

Now, P (2X1) = 2P (X1) = 140, and P (X1 +X2 +X3) > P (X1) +P (X2) +P (X3). Thus,

axioms A-2 and A-3 are satisfied and the lower previsions are coherent according to Definition

2.3.3.

Now, the definitions of coherence and avoiding sure loss allow to define the linear prevision

as follows:
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Definition 2.3.7 (Linear Prevision)

Suppose that P is a real-valued function defined on X (a class of gambles). Let G(X) denote

the marginal gamble X − P (X). P is then called a linear prevision on X if

sup

[
n∑
j=1

G(Xj)−
m∑
j=1

G(Yj)

]
≥ 0,

whenever m and n are non-negative integers and X1, .., Xn, Y1, ..., Ym are in X .

Walley (1991) discussed de Finetti’s terminology for defining the linear prevision, which is

equivalent to the two axioms of de Finetti:

1. P (X + Y ) = P (X) + P (Y ) when X ∈ X and Y ∈ Y (additivity).

2. inf X ≤ P (X) ≤ supX when X ∈ X (convexity).

Lower Envelopes of Linear Previsions

Every coherent lower prevision is a lower envelope of some class of linear previsions (Wal-

ley, 1991, Chapter 2). The next theorem shows that if there is a linear prevision, P dominates

P on X ; that is, P (X) ≥ P (X) for all X ∈ X , then the lower prevision P avoids sure loss.

Moreover, for P to be coherent it is sufficient that P is a lower envelope of a class M of

linear previsions such that P (X) = inf{P (X) : P ∈M} for all X ∈ X .

Theorem 2.3.1 (Lower envelope theorem)

Suppose P is a lower prevision on domain X , where X is an arbitrary subset of L, where L

is the set of all gambles on Ω.

1. P avoids sure loss if and only if M(P ) is non-empty (i.e., if and only if P is domi-

nated by some linear previsions), where M(P ) is the class of all linear previsions that

dominate P on X .

2. P is coherent if and only if it is the lower envelope of M(P ) (i.e., if and only if it is

the lower envelope of some class of linear previsions),

where M(P ) is a set of lower previsions on domain X .
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The basic idea that can be taken from this theorem is if we can define a class of linear

previsions, and considering the infimum of the expectations over this class, then these will

correspond to coherent lower previsions. For a clear illustration about concepts of avoiding

sure loss and coherence, Augustin et al. (2014, Chapter 2) have given some examples in their

recent book “Introduction to Imprecise Probabilities.”

Degrees of Imprecision

The degree of imprecision is a measure of the imprecision regarding a gamble X, and it

is defined as the difference between the upper and lower previsions,

∆(X) = P (X)− P (X), (2.45)

The degree of imprecision is decreased as the number of observation is increased (amount of

information is increased). The lack of information is the main source of imprecision (Walley,

1991, Chapter 5). In this work, the censored observations in survival data is the source of

imprecision.

Credal Sets

In the theory of imprecise probabilities, upper and lower previsions (expectations) are

playing the main role. A set, M, of linear previsions is called credal set if it is closed

and convex, then this set will be completely specified by its upper and lower previsions

(Walley, 1991). To model the uncertainty about the parameter of interest, a set M of prior

distributions is used in imprecise Bayesian approach. According to Benavoli and Zaffalon

(2012), the set M of prior distributions should have a minimal property when there is no

prior information about the parameter of interest. Such this property is that the set M

should be large enough to model the uncertainty, and to avoid getting incoherent posterior

in case of improper prior, but not too much to not allow making inference from the data.

Bickis (2017) shows a number of examples of sets of priors that have Benavoli-Zaffalon (BZ)

property.
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2.3.3 Imprecise Bayesian Inference

In drawing imprecise Bayesian inferences from multinomial data, Walley (1996) intro-

duced the imprecise Dirichlet model. The Dirichlet prior distribution in Section 2.1.3 is

parameterized by a vector α with probability density function

π(p) =
1

B(α)

k∏
i=1

pαi−1
i ,

where αi > 0 are parameters of the Dirichlet distribution, and
∑
pi = 1, pi ≥ 0. The

parameters αi = sti, where s is the concentration parameter and it is a positive constant,

s > 0, and ti is the mean of pi such that 0 < ti < 1 and
∑
ti = 1. Walley (1996) suggests to

choose s sufficiently large, s = 1 or 2. Walley (1996) defined the imprecise Dirichlet model

as the set of all Dirichlet distributions. This set is used to model the prior ignorance about

the parameter of interest.

Suppose that y ∼ Multinomial(p, n), y = (y1, ..., yk), p = (p1, ...., pk), and the probability

mass function of the multinomial is;

f(y|p) =
n!∏
i yi!

∏
i

pyii ,

where i = 1, 2, ..., k,
∑
yi = n and

∑
pi = 1, pi ≥ 0. Then, the prior model is the set

of all Dirichlet distributions that are parametrized with (s, t), where s and t = (t1, ..., tk)

are hyperparameters. This parameterization is convenient because s is fixed and t′s are the

expectations of the parameters p′s. The Dirichlet conjugate prior can be written as follows:

π(p) ∝
∏
i

psti−1
i ,

Then the posterior Dirichlet distribution is derived as:

π(p|y) ∝
∏
i

pyi+sti−1
i .

This form is obtained by multiplying the prior function by the multinomial likelihood func-

tion. Therefore, the Dirichlet posterior expectation is:

t∗i = E(p|y) =
yi + sti
n+ s

.
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By maximizing and minimizing t∗i as ti → 1 and ti → 0, we will get the posterior upper and

lower expectations:

P (p|y) =
yi + s

n+ s

and

P (p|y) =
yi

n+ s
.

Walley (1996) and Walley et al. (1996) used the imprecise beta(s) model (a special

case of the imprecise Dirichlet(s) model with k = 2 categories) to analyze data in the form

of a contingency table. He illustrated this approach with an example of data from medical

trials in which a comparison is made of two treatments for resistant pulmonary hypertension

in newborn babies. The treatments are conventional therapy (CT) using ventilation with

oxygen at high pressure, and extracorporeal membrane oxygenation (ECMO), a technique

which uses heart-lung bypass technology to oxygenate blood outside the body. The babies

were assigned to treatments randomly and the stage of the trial was terminated as soon as

four deaths had occurred in one of the treatment groups. The outcome was that 6 of the 10

babies who received CT survived, and all 9 babies received ECMO survived. This data are

displayed in a 2× 2 contingency table as shown in Table 2.1.

Table 2.1: A 2× 2 contingency table for CT and ECMO data.

Event

Group Death Survivor Total

CT 4 6 10

ECMO 0 9 9

Total 4 15 19

Considering this data, two statistical problems are discussed. The first one is making

inference about which treatment is more effective, and the second is taking a decision about

which treatment should be preferred to another for the next patient or whether it is ethical

to select the treatment by randomization.
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Walley et al. assumed that babies have a constant chance of survival under each treatment,

denoted by θc for CT and θe for ECMO and defined the difference between the probability of

survival under each treatment, ψ = θe−θc. In the inference part for imprecise beta model, to

know which treatment is more effective, a test of null hypothesis H0 : θe ≤ θc can be formu-

lated against Ha : θe > θc. The conclusion for this test can be derived from calculating the

posterior upper and lower probabilities, for example, when s = 2, P (H0|n) = 0.185, equiv-

alently, P (Ha|n) = 0.815. This indicates evidence to support that ECMO is more effective

than CT. Also the data support this conclusion since all babies treated with ECMO survived.

Considering the decision problem to figure out the preferred treatment. Walley et al.

used the upper and lower posterior expectations of ψ = θe − θc as follows:

E(ψ, y) = E(θe|y)− E(θc|y) = 0.152

E(ψ, y) = E(θe|y)− E(θc|y) = 0.5

Thus, the ECMO should be preferred over CT if E(ψ, y) is greater than 0. Similarly, CT

should be preferred if E(ψ, y) is less than 0. Walley’s conclusion was that ECMO is more

effective than CT and is the preferred treatment.

Bayesian inference for survival data including right-censored observations has been done

imprecisely. Early in this subsection, we discuss the work by Walley (1996) about using

the imprecise Dirichlet model related to multinomial data in a Bayesian workframe; how-

ever, he does not consider survival data with right-censored observations. Coolen (1997)

presents an update of Walley’s imprecise Dirichlet model for Bayesian analysis of failure

data including right-censored observations to introduce nonparametric estimates of survivor

functions. Coolen considers multinomial distribution with Dirichlet priors, making the ap-

proach basically nonparametric, and the model uses a finite partition of the time-axis such

that makes it becomes related to life-tables. In contrast, Coolen’s work does not show a

description of the upper and lower hazard functions. Bickis (2009) introduces the imprecise

logit-normal model as a family of prior distributions for a binomial success probability. The
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model is constructed by giving the logit of the probability a normal distribution. This leads

to a three-dimensional exponential family. Bickis generalizes this model to the multivariate

case where some restrictions has been made on the hyperparameters to be a suitable chosen

subset. Then, the extremes of the posterior expectations are computed to give imprecise pre-

dictive probabilities. Bickis and Bickis (2007) have sought to understand phenomena such as

Influenza pandemic, in their study of predicting the next pandemic: An exercise in imprecise

hazards, they found that there is an increasing hazard after 25 years. In that work, Dirichlet

and product Beta models are imposed and both models shows the same results. Upper and

lower survivor functions are plotted comparing with Kaplam-Meier estimate where the last

lies between the upper and lower survivor curves, as indicated by Coolen (1997) and Coolen

and Yan (2003) and has shown later in Figure 2.1.

Also, Coolen’s approach is closely related to the method of Berliner and Hill (1988),

where their work concentrates more on predictive inference for a future observation, which

is the focus in the next section.

2.3.4 Nonparametric Predictive Inference

Predictive inference is an approach of statistical inference that stresses the prediction of

a future observation based on past observations. A simple and famous example in predictive

inference is the sunrise problem. Given information about the observed weather for n days

ago, the question of interest is “what is the probability that the sun will rise tomorrow (n+1

day)?” This emphasis has changed due to the idea of exchangeability by De Finetti (1974)

that future observations should behave like past observations, and since being presented by

Geisser (1993, chapter 2,3), this type of predictive inference has been called low structure

inference. Considering a parametric framework, the prediction of future values of a ran-

dom variable based on past observed data is obtained by calibrated prediction intervals and

frequentist predictive distributions (Lawless and Fredette, 2005).

Nonparametric predictive inference (NPI) is an imprecise approach based on few assump-

tions and quantifies uncertainty in terms of lower and upper probabilities. This kind of

inference is based on Hill’s assumption A(n) that was introduced to make predictions about
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the occurrence of a future observation given a number of observed quantities. Hill (1968)

defines A(n) as asserting that, conditional upon the observations X1, ..., Xn, the next obser-

vation Xn+1 is equally likely to lie in the open intervals between successive order statistics of

a given sample. Moreover, the definition can be given in three points:(1) exchangeability; (2)

ties that have a probability of 0; (3) given data xi, i = 1, ..., n, the probability that the next

observation lies in the open interval Ij = (xj, xj+1) is 1/(n + 1), for all j = 0, ..., n, where

x0 = −∞ and xn+1 =∞.

Coolen (1996) compares two populations based on related low structure assumption

where such comparison is expressed in terms of comparison of future observations from two

different groups using both imprecise probabilities and imprecise previsions. For example,

Table 2.2 shows birth weights (in grams) for n = 12 male and m = 12 female babies.

Table 2.2: Ordered birthweights

Male (X) 2625 2628 2795 2847 2925 2968 2975 3163 3176 3292 3421 3473

Female (Y) 2412 2539 2729 2754 2817 2875 2935 2991 3126 3210 3231 3317

In classical statistics, the comparison of this kind of data has been done by testing a

hypothesis; for example, that both data sets are randomly drawn from the same population.

In NPI, the predictive comparison has been done by comparing the random birthweight of a

future male (Xn+1) and a future female (Ym+1), with the assumption of exchangeability with

the 12 observed birth weights in two groups, and assuming A(12) for each group.

The NPI lower and upper probabilities are

P (Xn+1 > Ym+1) =
1

(n+ 1)(m+ 1)

n−1∑
j=0

(n− j)sj

= P (X13 > Y13) =
86

169
= 0.509

and

P (Xn+1 > Ym+1) =
1

(n+ 1)(m+ 1)
{n+m+ 1 +

n−1∑
j=0

(n− j)sj}
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= P (X13 > Y13) =
111

169
= 0.657,

where si is the number of observed y values per intervals bounded by sequential x values,

then

si = #{yj|xi < yj < xi+1, j = 1, ...,m}, i = 0, ..., n− 1,

such that s0 = #{yj| −∞ < yj < x1} and sn = #{yj|xn < yj <∞}.

In the conclusion of this example, Coolen indicates some sign that X13 > Y13, but it is

not very strong evidence.

Nonparametric Predictive Inference with Right-censored Data

The NPI approach is introduced for a prediction about future observations in the form of

lower and upper probabilities and has been used in data including right-censored observations

(Berliner and Hill, 1988); (Coolen and Yan, 2003), and some applications in reliability and

operational research as summarized by Coolen (2010).

The assumption A(n) proposed by Hill in 1968, as discussed in Subsection 2.3.4 provides a

partially specified predictive distribution for a future observation, Xn+1, given past observa-

tions. However, it does not allow right-censoring of data among the observations. Berliner

and Hill (1988) and Coolen and Yan (2003) presented related nonparametric methods for

dealing with survival data, including right-censoring. Berliner and Hill replaced the exact

observed right-censoring times by “partial censoring information,” shifting each exact right

censoring time back to the nearest smaller observed time, allowing for inference on the basis

of A(n) alone. Coolen and Yan developed this work by using exact censoring information and

adding more assumption, which is called a right-censoring A(n) (rc-A(n)) assumptions. The

assumption rc-A(n) gives a partially specified predictive probability distribution for future

observation when data have right-censoring observations, and the assumption is expressed

via a so-called the M -function value. M -function is an approach introduced by Coolen and

Yan to give probabilities for the future observation on intervals, including right-censoring

times. Based on these probabilities, Coolen and Yan introduce upper and lower survival

functions.
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Definition (M -function): A partial specification of a probability distribution for a real

valued random quantity T can be provided via probability masses assigned to intervals with-

out any further restriction on the spread of the probability mass within each interval. A

probability mass assigned in such a way to an interval (a, b) is denoted by MT (a, b) and re-

ferred to as M -function value for T on (a, b). The interval in the definition of the M -function

is an open interval because it assumes no ties in the data, and the M -function values on

nonspecified intervals are assumed to be zero. All M -function values for T on all intervals

should sum to one, so each M -function value should be in [0,1].

The concept of M -function takes our minds to talk a little bit about the belief function.

Dempster-Shafer theory (Shafer, 1976) is a generalization of the Bayesian theory of subjective

probability; belief functions base degrees of belief (or confidence, or trust). The degree of

belief is represented by the belief function which can be defined as following:

A function Bel : 2Ω → [0, 1] is a belief function on Ω if and only if it satisfies the following

conditions:

1. Bel(∅) = 0

2. Bel(Ω) = 1

3. For every integer n and every collection A1, ..., An of subset of Ω,

Bel(A1 ∪ ... ∪ An) ≥
∑

I⊂1,...,n
I 6=∅

(−1)|I|+1Bel(
⋂
i∈I

Ai) (2.46)

Where Ω is a finite set of all possible answers about any uncertainty of events of interest,

and 2Ω is the power set.

The definition of M -function and belief function are same where the values of both func-

tions should be in the interval [0, 1]. Also, later in this section, we will see that upper and

lower survival functions are introduced in terms of imprecise probabilities where these prob-

abilities are defined in terms of M -function.

Before we start talk about Coolen and Yan’s rc-A(n) assumption, we should look at the

definition of M -function on an open interval without any restrictions (Coolen and Yan,
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2003). According to A(n) assumption, predictive probabilities are represented by:

MXn+1(t(j), t(j+1)) =
1

n+ 1
, (2.47)

and all j = 0, ..., n, which is the probability distribution of a future observation Xn+1 lies

on the open interval (t(j), t(j+1)). Since a partial specification of a probability distribution

for a random quantity is available in terms of M -function values, then minimum upper and

maximum lower bounds can be specified by that probability (M -function) of the bounds of

this interval.

Let u be the number of the observed death, 0 ≤ u ≤ n, and these times are observed

at ordered times, 0 < t(1) < ... < t(u), and v = u − n be the number of non-observed times

(the ordered right-censored times). Let I(i) = (t(i), t(i+1)), for i = 0, ..., u, where t(0) = 0 and

t(u+1) =∞, and let ñt = nt + 1, nt be the number of individuals in the risk set . The ordered

right-censored times within I(i) is denoted by ci1 < ci2 < ... < cili , where li is the number of

right-censored times in I(i). While the M -function is defined based on the assumption A(n),

Coolen and Yan introduce their new assumption “right-censoring A(n)”, (rc-A(n)), to pro-

vide a partially specified probability distribution for the observable random quantity X(n+1),

via the M -function values on the intervals (t(i), t(i+1)) and (cik, t(i+1)). These M -function val-

ues can be used to derive lower and upper probabilities for events of interest in terms of Xn+1.

Definition (rc-A(n)): The assumption “right-censoring A(n),” (rc-A(n)), is a probability

distribution for a nonnegative random quantity Xn+1, on the basis of data including u event

times and v right-censoring times, and is partially specified by the following M -function

values:

MXn+1(t(i), t(i+1)) =
1

n+ 1

∏
{r:c(r)<t(i)}

ñc(r) + 1

ñc(r)
, (2.48)

MXn+1(c
i
k, t(i+1)) =

1

(n+ 1)ñcik

∏
{r:c(r)<cik}

ñc(r) + 1

ñc(r)
, (2.49)

the product over an empty set is defined as 1. Coolen and Yan introduced the probabilities

of Xn+1 ∈ (t(i), t(i+1)) in terms of the M -function values and considering the case of existing
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of right-censoring observation, so these probabilities lead to the ability to write the following

relation:

P (Xn+1 ∈ (t(i), t(i+1))) =
1

n+ 1

∏
{r:c(r)<t(i+1)}

ñc(r) + 1

ñc(r)
= MX(n+1)

(t(i+1), t(i+2)), (2.50)

for i = 0, ..., u− 1. Based on these probabilities, Coolen and Yan mentioned that lower and

upper survival functions are equal at observed event time t(i), and their value can be derived

as follows:

SXn+1
(t(i)) = SXn+1(t(i)) =

u∑
j=i

P (Xn+1 ∈ (t(j), t(j+1))). (2.51)

Coolen and Yan introduced the upper survival function based on the fact that the M -function

values in rc-A(n) are all defined on intervals with an observed event time (or infinity),(t,∞),

and so the upper survival function is defined as the sum of all the rc-A(n)-based M -function

values defined on intervals starting at t(i) or greater values. For the intervals starting at right-

censoring times cik ∈ (t(i), t(i+1))), k = 0, ..., Li, they are all defined on intervals (cik, t(i+1))),

which can be represented by a subinterval (t, t(i+1)) of (t(i), t(i+1))) where t > 0. Thus that

leads to:

S̄Xn+1(t) = S̄Xn+1(t(i)), (2.52)

for i = 0, ..., u and all t ∈ [t(i), t(i+1)).

The lower survival function for Xn+1 at t > 0 is derived by summing the rc-A(n)-based

M -function values for intervals that completely lie in (t,∞), which leads to, for i = 0, ..., u

S
¯Xn+1

(t) =
u∑

j=i+1

P (Xn+1 ∈ (t(j), t(j+1))) +
∑
{k:cik≥t}

MXn+1(c
i
k, t(i+1)) (2.53)

for t ∈ [t(i), t(i+1)). The lower and upper survival function are defined in terms of the M -

function which is a belief function. According to Walley (1991, chapter 5), a belief function is

a special type of coherent lower probability that satisfies (2.46), the extra property of complete

monotonicity. A lower probability P , defined on all subsets of Ω, is a belief function if and

only if it can be written in the form

P (A) =
∑
B⊂A

m(B)

47



for all sets A, where m is a probability mass function defined on all subsets of Ω such that

• m(∅) = 0,

• m(B) ≥ 0 for all subsets B, and

•
∑

B⊂Ω m(B) = 1.

The function m is called probability assignment (Shafer, 1976). Then, one can say that the

function m is just the lower survival function.

Coolen and Yan (2003) make a comparison between upper and lower survival functions

and a Kaplan-Meier estimate. Figure 2.1 is a graphed example to show that the Kaplan-Meier

estimate lies between the upper and lower survival functions. Coolen and Yan’s lower survival

function for the next observation Xn+1 is going to the zero after the largest observation, which

is also the case for the Kaplan-Meier estimator if this observation is an event time. The data

that used to produce the following plot are from Collett (2003), prognosis for women with

breast cancer. The survival times are as follows:

23 47 69 70∗ 71∗ 100∗ 101∗ 148 181 198∗ 208∗ 212∗ 224∗.

The (∗) indicates censored survival times.
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Figure 2.1: Comparison between upper and lower survival functions and Kaplan-Meier

estimate
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2.4 Numerical Techniques

In Bayesian inference, computing the posterior, π(θ|Y ), requires evaluating the integral

in the dominator of Eq.(2.30) analytically. Computing this integral might be intractable.

For this reason, the literature on the computational methods has grown recently. One way

has become a popular way of sampling from posterior distributions is the Markov Chain

Monte Carlo (MCMC) methods. Markov Chain is the process of sampling a new value from

the posterior distribution, given the previous value, this iterative process produce a Markov

Chain of values that establish a sample of draws from the posterior. Markov Chain can be

described as follows: Suppose we have a set of states, S = {s1, ..., sr}. The process start

in one state and moves to another, and each move is called a step. The chain moves from

state to the next one with a probability called transition probability and distribution called

a stationary distribution. MCMC works by constructing a chain whose stationary distribu-

tion is the desired posterior distribution. MCMC methods produce an approximation of the

posterior distribution, π(θ|Y ), by sampling a large number of θ values from that distribution

after running the algorithm long enough, and then these θ values can be used to estimate the

central tendency of the posterior, its highest density interval (HDI), etc. The two common

MCMC methods are Metropolis-Hastings (M-H) algorithm and the Gibbs sampling (Lynch,

2007).

In this work, in Section 3.2, an optimization technique is used to calculate the upper and

lower posterior expectations (Eq.(3.3)) of log-odds ratio in 2× 2 table. This optimization is

done by considering the constrain on the values of the prior means tij, where 0 < tij < 1 and

using the function optim in R.

The implementation of MCMC method is done through using the programming language

JAGS (Just Another Gibbs Sampler) from R via rjags and runjags packages. In general,

the main goals in generating an MCMC sample from the posterior distribution is the conver-

gence of the chain and how much information about the posterior does the chain contain?
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Visual examinations of the chain’s convergence are a trace plot, which is a graph of the

sampled parameter values as a function of step in the chain. Trace, density, and empir-

ical CDF plots are visualized in this thesis. A good background about MCMC methods

and JAGS can be found in Kruschke (2015). In Sections 3.3 and 4.4, the posterior sample

is sampled by running MCMC by considering the extreme points of a set of prior distribution.

In this work, normal and Beta priors are considered. The upper and lower posterior

expectations are estimated as maximum and minimum of the posterior expectation and then

the degree of imprecision, as defined in Section 2.3.2, is calculated. To get a 95 % imprecise

Bayesian credible intervals, the .025 and .975 quantiles of the posterior sample are calculated

by using the quantile function. Then the set of priors will give a set of intervals, the

supremum of the upper limits and the infimum of the lower limits will give an imprecise

credible interval. The R codes for this work are provided in Appendix B.
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3. Bayesian Imprecise Inference for Log-odds

Ratio in 2× 2 Tables

3.1 Motivation

The prior distribution represents the uncertainty about the parameter of interest before

data are observed. As discussed in the previous subsection, the traditional (precise) proba-

bility theory has limitations, the most crucial one is when we have little or no information

for assessing a single probability of an event; say A. In Section 2.3.3 a discussion about

drawing imprecise Bayesian inferences from multinomial data and imprecise Dirichlet model

have taken a place. Whereas Walley (1996) and Walley et al. (1996) has focused on the pa-

rameter ψ = θe− θc, the difference between the probability of survival under each treatment

in 2 × 2 table (Table 2.1), this thesis is mostly concerned with the odds ratio (Section 2.1)

since the odds ratio is more informative for the comparison of two probabilities than their

difference (Kateri, 2014), in two-way and three way contingency tables.

The contribution in this chapter will be introduced in two approaches. The first approach

is in the essence of Walley (1996) and in the case we have two treatments with two outcomes

and the data are displayed in a 2 × 2 table. The second approach is a re-parametrization

and alternative priors for 2 × 2 table considering the four sampling schemes in two-way

contingency tables. Lower and upper posterior expectations of log-odds ratio will be derived

in both approaches.
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3.2 Imprecise Dirichlet Approach

In Section 2.3.3, imprecise Dirichlet model by Walley (1996) is discussed with an example

about comparing two treatments in the case of 2 × 2 table (Table 2.1 ). Now, consider the

situation where the row totals in the table are assumed to be fixed and the joint probability

distribution of the cell counts yij’s will be product of two binomials with parameters pij’s.

Therefore, the appropriate prior is a product of Beta distributions as conjugate priors for the

cell probabilities, ppp, where ppp = (p00, p01, p10, p11)′. The beta distribution here is reparameter-

ized in terms of the concentration parameter s, and the means of cell probabilities ti, where

s > 0, 0 < ti < 1, and
∑

i ti = 1,

π(ppp) ∝
∏
i

pst−1
i (1− pi)s(1−ti)−1.

Thus, the imprecise prior model can defined as a set of conjugate prior distributions that

takes the following form,

M0 = {Beta(sti, (1− ti)) : ti ∈ Ω},

where Ω = {(0, 1)×(0, 1)} is the parameter space. The prior knowledge will then be updated

via Bayes rule, which means updating each element in the set M0 in light of the observed

sample. Thus, the posterior product of beta distribution is defined as follows:

π(ppp|y, sti) ∝
∏
i

p
yij+sti−1
i (1− pi)n−yij+s(1−ti)−1.

The set M|y of posterior distributions can take the following form:

M|y = {Beta(yij + sti, n− yij + s(1− ti)) : ti ∈ Ω}.

From here, one can start with defining the expectation of the log-odds ratio in (2.3) as follows:

E(log Ψ) = E(log p11 − log p10)− E(log p01 − log p00)

= E(log p11)− E(log p10)− E(log p01) + E(log p00). (3.1)

Then the lower and upper expectations can be written in the forms:

P (log Ψ) ≥ P (log p11 − log p10)− P (log p01 − log p00),
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≥ P (log p11)− P (log p10)− P (log p01) + P (log p00),

and

P (log Ψ) ≤ P (log p11 − log p10)− P (log p01 − log p00),

≤ P (log p11)− P (log p10)− P (log p01) + P (log p00).

The prior of each pij can be modelled by an imprecise beta model, pij ∼ Beta(stij, s(1− tij)).

In order to get the lower and upper posterior expectations of the log-odds ratio, we need first

to find the posterior expectations for each log pij. For example:

E(log p11) =

∫ 1

0

log p11
Γ(n+ st11 + s(1− t11))

Γ(y11 + st11)Γ(n− y11 + s(1− t11))

py11+st11−1
11 (1− p11)n−y11+s(1−t11)−1 dp11

= ψ(y11 + st11)− ψ(n+ s), (3.2)

where ψ(.) is called the digamma function, the logarithmic derivative of the gamma function.

Similarly, we can get E(log p00), E(log p01), and E(log p10) with the same way in equation

3.2. Then we can write the E(log Ψ) by substituting each E(log pij) in equation 3.1, and

therefore the posterior expectation of the log-odds ratio can take the following form:

E(log Ψ) = ψ(y11 + st11)− ψ(y10 + st10)− ψ(y01 + st01) + ψ(y00 + st00). (3.3)

The lower and upper bounds of the expectation in (3.3) over a posterior set can be obtained

numerically by doing a constrained optimization problem. This optimization is done by

considering the constraint on the values of the prior means tij, where 0 < tij < 1 and s = 1.

Consider the following 2× 2 Table:

Event

Group 0 1 Total

0 1 2 3

1 3 1 4

Total 4 3 7

Optimization for the posterior expectation of log- odds ratio in eq.(3.3) is done and upper

and lower posterior expectations and the degree of imprecision are displayed in Table 3.1,
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where ∆log Ψ is 0.018. Figures 3.1 and 3.2 are contour and perspective plots of the posterior

expectation of log-odds ratio in eq.(3.3). Equation (3.3) is in terms of digamma function

where y’s are given in Table ??, s = 1, and tij’s. Here, t00 is fixed, t11 = 1 − (t00 + t01 +

t10), where0 < t01, t10 < 1. The interpretation of Figures 3.1 and 3.2 is that the posterior

expectation function of log-odds ratio in eq.(3.3) is (almost) linear.

Figure 3.1: The contour plot of the posterior expectation of log odd-ratio
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Figure 3.2: The perspective plot of the posterior expectation of log odd-ratio

The

Table 3.1: Lower and upper posterior expectations and the degree of imprecision of

log-odds ratio.

Prior sample size E(log Ψ) E(log Ψ) ∆log Ψ

product of betas 7 -1.492 -1.511 0.018

3.3 Re-parametrization and Alternative Priors for 2×2

Table

The tractable choice of the prior distribution in Bayesian statistical inference for contin-

gency tables is the Dirichlet prior for its computational convenience, as it is discussed in the
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previous Section (3.2). However, according to Agresti and Hitchcock (2005) and Knuiman

and Speed (1988), a one-stage Dirichlet prior does not always provide a sufficient structure

to be given for cell probabilities. The choice of normal prior for the log probabilities as we see

in Leonard (1975) is an alternative choice to Dirichlet prior for cell probabilities. Knuiman

and Speed (1988) used a structured multivariate normal prior for the parameters in log-linear

model collectively instead of giving a univariate normal prior for each parameter individually

as in Leonard (1975). More recently, Forster (2010) develops the results of Lindley (1964)

to provide a general framework for the analysis of multinomial data using Poisson log-linear

model. Forster’s focus is particularly on multivariate normal prior distributions for the log-

linear parameters.

In the Subsection 2.1.1, four sampling schemes for contingency table are discussed. The

nice property that all four sampling models have is that their log likelihood functions can be

written in the exponential family form as follows:

l(θ; y) = θy − φ(θ), (3.4)

where θ is a vector of canonical parameters and φ(θ) is the cumulant function. Considering

the multinomial distribution with being a member of the exponential family will take the

following form:

f(y|p) =
n!∏
k yk!

exp{
K∑
k=1

yk log pk},

However, in multinomial distribution we need to consider the restriction
∑

k pk = 1, then

we can express the likelihood as following:

f(y|p) ∝ exp

{
y1 log p1 + y2 log p2 + y3 log p3 + (1−

K−1∑
k=1

yk) log(1−
K−1∑
k=1

pk)

}

∝ exp

{
K−1∑
k

log(
pk

1−
∑K−1

k=1 pk
)yk + log(1−

K−1∑
k=1

pk)

}

From this representation we can define the canonical parameter

θk = log
pk

1−
∑K−1

k=1 pk
= log

pk
pK

,
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where k = 1, ..., K, and pk can be expressed in terms of θk by taking the exponential of the

Eq. above

pk =
eθk∑K−1
k=1 e

θk
.

Now, by taking the logarithm of both sides, we can get what is known as the multinomial

logit as following:

log pk = θk − log(
K∑
k=1

eθk)

= θk − φ(θ), (3.5)

where φ(θ) = log(
∑K

k=1 e
θk) plays the rule of a normalizing constant which guarantees that∑

k pk = 1.

Now, one can parametrize the multinomial distribution of a single observation, let’s say zij

that indicates which of the four cells is observed. The likelihood in this case for n independent

observations would be just the product of the likelihoods of the observations, which would

be of the same form. The observations of the table can be denoted as:

z00 z01

z10 z11

with a single observation which means only one cell entries is one and others are zeros. Let

us consider we have n observations with new variables

l1 = z10 + z11 −
1

2
,

l2 = z01 + z11 −
1

2
,

and

l3 = z00 + z11 −
1

2
,

thus the lk variables quantify the deviation of the observation from the uniform expected

value of 1
4

in the cells. Now we can rewrite the multinomial logit function in (3.5) in terms

of l’s as:

log pij = l1(i, j)θ1 + l2(i, j)θ2 + l3(i, j)θ3 − φ(θ), i, j = 0, 1. (3.6)
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where

φ(θ) = −1

4
log
∏
i,j

pij

= log(1 + e(θ1−θ3) + e(θ2−θ3) + e(θ1+θ2))− 1/2(θ1 + θ2 − θ3). (3.7)

Where θ = (θ1, θ2, θ3). Therefore, we one can define a matrix L as follows:

L =


−1/2 −1/2 1/2

1/2 −1/2 −1/2

−1/2 1/2 −1/2

1/2 1/2 1/2


where the matrix L displays the relationship between zij’s and lk’s. The rows represent cells

in the 2× 2 table where each row’s element represent a cell in a 2× 2 table. The columns in

L represent the lk’s above. Thus, the equation (3.6) can rewritten in matrix form as

logp = Lθ − φ(θ). (3.8)

Now, assume we have n i.i.d. observations of z’s, then yij =
∑

ijk zijk, where k = 1, ..., n,

and n =
∑

ij yij. Therefore, the right hand side of the log-likelihood in equation (2.16) will

be also written in a matrix format as following:

∑
i

∑
j

yij log pij = y′Lθ − nφ(θ). (3.9)

It can be noticed that the distributions of the 2 × 2 tables under multinomial sampling

represent an exponential family, with θ’s being canonical parameters and l’s being minimal

sufficient statistics. The next focus in this work is choosing a prior distributions for the

canonical parameters θ’s and then concentrate in the posterior distribution of the parameter

of interest, log odds ratio, which is in this parametrization equals to 2θ3 as defined in Eq.

(2.20).
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In the essence of Forster (2010) and Knuiman and Speed (1988), suppose that we

put a multivariate normal prior on parameters θ = (θ1, θ2, θ3)′ with a prior mean vector

µ = (µ1, µ2, µ3)′ and variance-covariance matrix σ2I, taking the following form

π(θ) ∝ exp

{
−1

2
(θ − µ)′Σ−1(θ − µ)

}
, (3.10)

Therefore, the posterior density of θ’s will have the expression:

π(θ|l, µ, σ2) =
1

C
exp

{
−1

2
(θ − µ)′Σ−1(θ − µ)

}
exp {y′Lθ − nφ(θ)}

=
1

C
exp

{
y′Lθ − 1

2
(θ − µ)′Σ−1(θ − µ)

}
exp {−nφ(θ)} , (3.11)

where C is the normalizing constant,

C =

∫
θ

exp

{
y′Lθ − 1

2
(θ − µ)′Σ−1(θ − µ)

}
exp {−nφ(θ)} dθ. (3.12)

In this work, estimating the parameter of interest has been done using MCMC methods

through applying Gibbs sampling algorithm using JAGS and R programs.

3.3.1 An Example

Consider the log-likelihood in Eq. (3.9) with data from the following table,

Table 3.2: A 2× 2 contingency table.

Event

Group 0 (Alive) 1 (Dead) Total

0 (control) 3 5 8

1 (test) 7 2 9

Total 10 7 17

A normal prior with parameters µ and σ2 for each one of parameters θ = (θ1, θ2, θ3)′ is

given and updated to the posterior using the log-likelihood in Eq. (3.9). The parameters θ

are estimated by running MCMC using runjags in JAGS from within R.
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Figure 3.3: Trace plots (on the left), density plots (on the middle), and ECDF plots

(on the right) of the posterior samples of the parameters θ1, θ2, θ3 and the log-odds ratio

in the fourth row, using a single normal prior (precise).

Figure 3.3 shows diagnostic plots of simulated posterior samples of parameters θ using

single normal prior where θ ∼ N(0, 400) . Then imprecise case where a set, M0, of four

normal priors are given to the parameters is considered as follows:

M0 = {Normal(µ,σ2) : µ ∈ (−200,−2, 2, 200),σ2 ∈ (400, 4, 4, 400)}.

The four normal priors are N(−200, 400), N(−2, 4), N(2, 4), and N(200, 400). Table 3.3

presents the upper and lower posterior expectations of log-odds ratio and the degree of

imprecision.

Table 3.3: Lower and upper posterior expectations and the degree of imprecision of

log-odds ratio.

Prior sample size E(θ|y) E(θ|y) ∆log Ψ

Normal 17 -0.573 -1.312 0.739
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Figure 3.4: Plots of ECDFs of posterior sample of log-odds ratio in the two cases of

using precise (purple ecdf) and imprecise (set of four normal priors: blue, green, red,

and black).

Figure 3.4 shows the empirical CDF plots of the posterior sample for the two case, precise

and imprecise, when empirical CDF curve of a single normal prior lies between the empirical

CDF’s of the set of normal priors with different means and variances.
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4. Bayesian Imprecise Inference for Log-rank

Test in Stratified 2× 2 Tables

4.1 Motivation

In clinical studies one is concerned not only with estimating survival or hazard functions,

but, more often, with the comparison of the life experience of two or more groups of patients

who receive different treatments (test and control treatments). In these kinds of studies,

it is difficult to have a priori knowledge to make trustworthy hypotheses on the underlying

survival functions; thus, the non-parametric approach is usually adopted to compare survival

curves. There are a number of frequentist methods that can be used for hypothesis testing.

Two of the various most common non-parametric tests are the Generalized Wilcoxon test

(Gehan, 1965) and the log-rank test (Mantel, 1966).

In this chapter survival data with right-censored observations is considered in the case

that we have two groups (test and control ) with two outcomes (alive and dead) which are

represented in a sequence of 2×2 tables, one at each death. The main purpose in this chapter

is getting the upper and lower posterior expectations of the log-odds ratio in order to com-

pute the degree of imprecision for each set of tables and how it gets decreased as number of

tables (deaths) increased. To implement this, the log-rank test is constructed; In fact, under

the null hypothesis of independence, the central hypergeometric distribution is the base of

constructing the log-rank test. Also, re-parametrization of the odds ratio is assumed based
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on the feature that non-central hypergeometric distribution is a member of the exponential

family.

4.2 Non-central Hypergeometric Model

In the Subsection 2.1.1, four sampling schemes for contingency tables are discussed. Con-

sider Table 2.1 at a time of death with group 0 being the group that receives the control

treatment and group 1 that receives the test treatment:

Table 4.1: A 2× 2 contingency table.

Event

Group 0 (Alive) 1 (Dead) Total

0 (control) y00 y01 n0.

1 (test) y10 y11 n1.

Total n.0 n.1 n

Conditioning on the column totals, the sampling model is product binomial as follows:

y11 ∼ B(n1., p11) y01 ∼ B(n.1, p01).

Then conditioning on having column, row ( and hence grand) totals are fixed, the conditional

distribution of y11 conditionally on y01 + y11 = n.1 is non-central hypergeometric distribution

with parameter Ψ. Consider that Ψ0 and Ψ1 are the odds in group 0 and 1 respectively,

f(y11|Ψ) = Pr(y11|y01 + y11 = n.1, n0., n1.,Ψ0,Ψ1)

=
Pr(y11|y01 + y11 = n.1|n0., n1.,Ψ0,Ψ1)

Pr(y01 + y11 = n.1|n0., n1.,Ψ0,Ψ1)

=

(
n1.

y11

)
py1111 (1− p11)(n1.−y11)

(
n0.

n1. − y11

)
pn1.−y11

01 (1− p01)n0.−(n1.−y11)

Pr(y01 + y11 = n.1|n0., n1.,Ψ0,Ψ1)
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=

(
n1.

y11

)
( p11

1−p11 )y11(1− p11)n1.

(
n0.

n1. − y11

)
( p01

1−p01 )y11(1− p01)n0.

Pr(y01 + y11 = n.1|n0., n1.,Ψ0,Ψ1)

=

(
n1.

y11

)(
n0.

n1. − y11

)
Ψy11

1 Ψ
(n1.−y11)
0 (1− p11)n1.(1− p01)n0.

Pr(y01 + y11 = n.1|n0., n1.,Ψ0,Ψ1)

=

(
n1.

y11

)(
n0.

n1. − y11

)
Ψ1

Ψ0

y11
Ψn1.

0 (1− p11)n1.(1− p01)n0.

Pr(y01 + y11 = n.1|n0., n1.,Ψ0,Ψ1)

=

(
n1.

y11

)(
n0.

n1. − y11

)
Ψy11Ψn1.

0 (1− p11)n1.(1− p01)n0.

Ψn1.
0 (1− p11)n1.(1− p01)n0.

∑min(n1.,n.1)
j=max(0,n.1−n0.)

(
n1.

j

)(
n0.

n1. − j

)
Ψj

=

(
n1.

y11

)(
n0.

n1. − y11

)
Ψy11

∑min(n1.,n.1)
j=max(0,n.1−n0.)

(
n1.

j

)(
n0.

n1. − j

)
Ψj

(4.1)

Now, let consider the case where we have only one death at each table and we are assuming

no ties, that is n.1 = 1, and let y11 = y be the indicator of the event that the death is in the

test group. Then Eq. (4.1) can be written as

f(y|Ψ) =

(
n1.

y11

)(
n0.

n1. − y11

)
Ψy

∑min(n1.,n.1)
j=max(0,n.1−n0.)

(
n1.

j

)(
n0.

n1. − j

)
Ψj

(4.2)

=

(
n1.

y

)(
n0.

n1. − y

)
Ψy(

n1.

0

)(
n0.

n.1

)
Ψ0 +

(
n1.

n.1

)(
n0.

n.1 − n.1

)
Ψn1.
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=
n1.Ψ

y

n0. +

(
n1.

1

)(
n0.

0

)
Ψ

=
n1.Ψ

y

n0. + n1.Ψ
=

(rΨ)y

1 + rΨ
, (4.3)

where r = n1./n0. is the balancing rate for the table. Therefore, Eq. (4.2) is the (partial)

likelihood based on the non-central hypergeometric distribution obtained by conditioning on

both margins. Let θ = log Ψ (the log-odds ratio), then Eq. (4.2) can be written as:

f(y|θ) =
(reθ)y

1 + reθ
, (4.4)

where

f(y|θ) =

 reθ

1+reθ
if y = 1 (the death happens in group 1 (test));

1
1+reθ

if y = 0 (the death happens in group 0 (control)).

The likelihood function in Eq. (4.4) can be written in terms of a transformed parameter

p = (1 + e−θ)−1 as follows:
(reθ)y

1 + reθ
=

(rp)y(1− p)1−y

1 + (r − 1)p
. (4.5)

Equation (4.5) is a binomial likelihood if r = 1 (n0. = n1.).

Now, consider we have a sequence of 2×2 tables at each time of death. To implement the

Bayesian imprecise approach, a set of priors on the log-odds ratio, θ, is considered. By the

proportional hazards assumption, the parameter θ is the same for all tables. At each death

time (at each table), the (partial) likelihoods in Eq. (4.4) and (4.5) that follow whether the

death happened in group 0 or group 1 are used.

4.2.1 Choices of Imprecise Priors

A discussion about the choice of prior distributions has taken place in Chapter 2 of this

dissertation. Recalling the literature in Section 2.3.3, Walley (1996) defined the imprecise

Dirichlet model as the set of all Dirichlet (s, t) distributions and Walley (1996) and Walley
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et al. (1996) used the imprecise beta(s) model (a special case of the imprecise Dirichlet(s)

model with k = 2 categories), to analyze data in the form of a contingency table. Bickis

(2009) introduces the imprecise logit-normal model as a family of prior distributions for

a binomial success probability. Different models and different choice of priors have been

proposed by PhD theses work by Bataineh (2012) and Lee (2014).

In this dissertation, two choice of priors are used. The set of priors will be updated to a set

of posteriors by using likelihoods in Eq. (4.4) and (4.5), that is, a sequence of updates to the

posterior for each observed death. Therefore, these likelihoods can be rewritten as,

L(θ|y) =
K∏
i=1

(rie
θ)yi

1 + rieθ
, (4.6)

and

L(p|y) =
K∏
i=1

(rip)
yi(1− p)1−yi

1 + (ri − 1)p
. (4.7)

First, a family of normal priors with different means and variances has been assigned di-

rectly to the log-odds ratio θ. Second, a family of beta priors with different shape parameters

is given to the parameter p and then the parameter θ = log( p
1−p) is estimated.

Imprecise Normal Prior

A family of four normal priors has been assigned to the log-odds ratio, θ, and this set can

be defined as follows:

M0 = {Normal(µ,σ2) : µ ∈ (−200,−2, 2, 200),σ2 ∈ (400, 4, 4, 400)}. (4.8)

The four normal priors are N(−200, 400), N(−2, 4), N(2, 4), and N(200, 400). At each table

(observed death time), each prior in the set will be updated to a posterior by using the

likelihood in Eq. (4.6), that is, a sequence of updates to the posterior for each observed

death.
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Imprecise Beta Prior

The second choice of an imprecise prior in this simulation study is a family of four beta

priors is given to the parameter p, and this set can be defined as follows:

M0 = {Beta(a, b) : a ∈ (0.1, 0.3, 1.2, 1.6), b ∈ (1.9, 1.7, 0.8, 0.4)}. (4.9)

The four beta priors are Beta(0.1, 1.9), Beta(0.3, 0.7), Beta(1.2, 0.8), and Beta(1.6, 0.4). At

each table (observed death time), each prior in the set will be updated to a posterior by using

the likelihood in Eq. (4.7), that is, a sequence of updates to the posterior for each observed

death and the log-odds ratio, θ, is estimated at each update and upper and lower posterior

expectations of θ are calculated.

4.3 An Example with Real Data

Considering the model presented in Section 4.2 and the two choices of priors in Subsection

4.2.1, an application of real data for this work is presented. The data set here is Ovarian

Cancer Survival Data that is included with R in package survival as a data frame. These

data present survival times in days for two groups of patients. The two treatments are

cyclophosphamids alone (CTX) and cyclophosphamids plus adriamycin (CTX+AD). More

information about this data set can be found in Edmunson et al. (1979).

An imprecise Bayesian approach is applied on these data by updating a set of priors

to a set of posteriors of the parameter θ, log-odds ratio, for each observed death using the

likelihood function in Eq. (4.4). This is done by running MCMC using runjags in JAGS

from within R. Upper posterior expectation E(θ|y) and lower posterior expectation E(θ|y)

are estimated in order to calculate the degree of imprecision ∆θ|y of the log-odds ratio. This is

done numerically by finding the maximum and minimum over the set of simulated posterior

means.

In this data set, there are a total of 26 observations, 13 in each group. The number

of observed death times is 12 (12 table, one at each observed death time), and number of

censored times is 14. Figure 4.1 shows the estimated Kaplan-Meier survival functions of two

groups (CTX and CTX+AD).
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Figure 4.1: The estimated Kaplan-Meier survival functions of two groups (CTX and

CTX+AD). “+” represents censored times.

Table 4.2 presents the estimates of upper and lower posterior expectations and the degree

of imprecision of the log-odds ratio. The degree of imprecision ∆log Ψ is 0.411 in the case of

choosing normal prior and 0.475 in beta case, which there is no big difference between the

two cases. The small difference between the estimates is 0.064 which can be explained by

looking to Figures 4.2 and 4.3 where the posterior ecdfs differ for Table 1, but they are quite

similar for Table 12, and how the degree of imprecision becomes less as we have more tables.

Figures 4.2 and 4.3 show the plots of empirical CDFs of the posterior samples for number

of tables. For example, the top-left graph is ecdfs of the posterior samples of the first table

while the top-right and bottom-left are tables 3 and 6, and the bottom-right one represents

ecdfs of posterior sample of the last table which is table 12 (i.e. K = 12, 12 observed death

times). The word “Table” on the top of each graph means the 2 × 2 table that is built at

that observed death time; for example, “Table 12” means the table at the observed death

time number 12. In Figures 4.2, blue, green, red, and black curves represent the posterior

samples when priors are N(−200, 400), N(−2, 4), N(2, 4), and N(200, 400) respectively. In

Figures 4.3, blue, green, red, and black curves represent the posterior samples when priors
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are Beta(0.1, 1.9), Beta(0.3, 0.7), Beta(1.2, 0.8), and Beta(1.6, 0.4) respectively. The same

convention follows for all figure of the ecdfs in rest of this dissertation. The next section

will talk about simulations with different factors are considered. One of these factors is the

sample size where one can see how the sample size affects the degree of imprecision.

Table 4.2: Lower and upper posterior expectations and the degree of imprecision of

log-odds ratio.

Prior E(θ|y) E(θ|y) ∆θ|y Imprecise credible interval

Normal -0.401 -0.811 0.411 (-2.071, 0.720)

Beta -0.348 -0.823 0.475 (-2.004, 0.735)

Figure 4.2: Empirical CDFs of the posterior samples for number of tables considering

a family of normal priors using Ovarian Cancer survival data. The X-axis represents

the log-odds ratio. Blue, green, red, and black curves represent the posterior samples

when priors are N(−200, 400), N(−2, 4), N(2, 4), and N(200, 400) respectively.
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Figure 4.3: Empirical CDFs of the posterior samples for number of tables considering

a family of beta priors using Ovarian Cancer survival data. Blue, green, red, and black

curves represent the posterior samples when priors are Beta(0.1, 1.9), Beta(0.3, 0.7),

Beta(1.2, 0.8), and Beta(1.6, 0.4) respectively.

4.4 Simulation Study and Results

In this section, several sets of survival data with right-censored observations is generated

for two groups. The survival times of Cox proportional hazard model that discussed in Section

2.2.2, in general, can be generated using some distributions like exponential, Weibull, or

Gompertz. The translation of the regression effects from hazard to survival time is easy if the

baseline hazard function is constant, i.e. the survival times are exponentially distributed. For

this reason, the survival times in this work are generated using the exponential distribution,

Exponential(0.5). Similarly, censored times are also generated by using the exponential

distribution with parameter λc. The binary covariate, Xi, is generated using the Bernoulli

distribution.

The generated censored survival data are converted to K 2× 2 contingency tables, where
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K is the total number of observed deaths (tables). Actually, K here is a random variable,

so it could be different for each simulation. An imprecise Bayesian approach is applied on

simulated data by updating a set of priors to a set of posteriors of the parameter θ, log-odds

ratio, for each observed death using the likelihood function in Eq. (4.4). This is done by

running MCMC using runjags in JAGS from within R.

The main goal in this simulation is computing the upper posterior expectation E(θ|y) and

lower posterior expectation E(θ|y) in order to calculate the degree of imprecision ∆θ|y of the

log-odds ratio and compare the cases where ∆θ|y is reduced. Four factors in this simulation

study are considered. Table 4.3 describe the factors where n is the sample size with 3 different

number of subjects, 40, 100, 200. Three different values of the parameter λc are 0.001, 0.1,

and 0.5, that is, 0.1 %, 10 %, and 50 % of the total number of subjects is censored. True

values of the model parameter θ are considered as 0, -0.6, -1.2 , where the balancing rate

r = n1./n0., the allocation ratio, is imposed for the purpose of looking at different scenarios

of allocating the number of subjects in each group. The three levels of r are r = 1 when

n0. = n1., r < 1 when n1. < n0., and r > 1 when n1. > n0.. To get these three cases of

the balancing rate, r, the binary covariate, Xi that represents the two group who received

two treatment are generated by using Bernoulli distribution as mentioned above, that is,

when XControl ∼ Bernoulli(0.5) and XTest ∼ Bernoulli(0.5), r = 1, and when XControl ∼

Bernoulli(0.3) and XTest ∼ Bernoulli(0.1), r < 1, and when XControl ∼ Bernoulli(0.1) and

XTest ∼ Bernoulli(0.3), r > 1.

Table 4.3: A description of the four factors, each factor with 3 levels.

Factors Description of Factors Levels

n Sample size 40, 100, 200

λc Censoring rate 0.001, 0.1, 0.5

θ True value 0, -0.6, -1.2

r Balancing rate r = 1, r < 1, r > 1

The purpose of considering the four factors is to examine how the degree of imprecision
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will be affected at different levels of these factors and to investigate which of these are more

significant. To do that, a fractional factorial design on the the degree of imprecision for each

level of the four factors is performed as in Table 4.3. In a factorial design, as the number of

factors increases, the number of runs needed for a complete replicate of the design speedily

enlarges the resources of most experimenters. For example, in this work, a complete replicate

of the design 34 requires 81 runs. For this reason, a fractional factorial design 34−1 = 27 runs

(combinations) are constructed in Table 4.4 and this design is a resolution IV design, 34−1
IV ,

which means no main effects are aliased with any other main effects or with any two-factor

interaction, but two-factor interactions are aliased with each other (Montgomery, 2009,

Chapter 8).

For each one of these 27 combination, there are K tables and MCMC has been run and

upper and lower posterior expectations and the degree of imprecision of the log-odds ratio

are calculated. This process has been done for two choices of imprecise priors, 27 runs for

each case which means the total number of runs is 54 runs. A discussion of complete results

of the simulation study beside ANOVA tables and Boxplots are provided in the following

sections and Appendix A.

4.4.1 The Results in Imprecise Normal Case

Table 4.5 presents the results of running the MCMC for the 27 combinations by consid-

ering the set of normal prior defined above. The general picture emerging from results in the

table is that the lowest value of ∆θ|y, which is 0.026, is observed at combination number 20

when the sample size is 200, the censoring rate is 0.1 %, the true value of θ is -0.6, and r = 1.

In contrast, The largest value of ∆θ|y, which is 0.562 appears at combination number 9 where

n = 40, λc = 0.5, θ = −1.2, and r < 1. The empirical CDF plots of the posterior samples

of four chosen tables each with four priors are shown in Figures 4.4 and 4.5; for instance, in

Figures 4.4, the top-left graph is ecdfs of the posterior samples of the first table while the

top-right and bottom-left are tables 10 and 14, and the bottom-right one represents ecdfs

of posterior sample of the last table which is table 17 (i.e. K = 17 at combination number
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9). The same way follows for all figure of the ecdfs in rest of this dissertation. The degree

of imprecision in these figures is represented by the gap between the ecdfs curves and it can

be seen that the ecdf plots confirm the values of ∆θ|y’s. Imprecise highest posterior density

credible intervals of θ for the 27 combinations considering the set of normal priors are shown

in Table 4.6.
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Table 4.4: The 34−1
IV Design.

Factors

Run A B C D Sample size Censoring rate True parameter Balancing rate

1 0 0 0 0 40 0.001 0 r = 1

2 0 0 1 1 40 0.001 -0.6 r < 1

3 0 0 2 2 40 0.001 -1.2 r > 1

4 0 1 0 1 40 0.1 0 r < 1

5 0 1 1 2 40 0.1 -0.6 r > 1

6 0 1 2 0 40 0.1 -1.2 r = 1

7 0 2 0 2 40 0.5 0 r > 1

8 0 2 1 0 40 0.5 -0.6 r = 1

9 0 2 2 1 40 0.5 -1.2 r < 1

10 1 0 0 1 100 0.001 0 r < 1

11 1 0 1 2 100 0.001 -0.6 r > 1

12 1 0 2 0 100 0.001 -1.2 r = 1

13 1 1 0 2 100 0.1 0 r > 1

14 1 1 1 0 100 0.1 -0.6 r = 1

15 1 1 2 1 100 0.1 -1.2 r < 1

16 1 2 0 0 100 0.5 0 r = 1

17 1 2 1 1 100 0.5 -0.6 r < 1

18 1 2 2 2 100 0.5 -1.2 r > 1

19 2 0 0 2 200 0.001 0 r < 1

20 2 0 1 0 200 0.001 -0.6 r = 1

21 2 0 2 1 200 0.001 -1.2 r < 1

22 2 1 0 0 200 0.1 0 r = 1

23 2 1 1 1 200 0.1 -0.6 r < 1

24 2 1 2 2 200 0.1 -1.2 r > 1

25 2 2 0 1 200 0.5 0 r < 1

26 2 2 1 2 200 0.5 -0.6 r > 1

27 2 2 2 0 200 0.5 -1.2 r = 1
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Table 4.5: Lower and upper posterior expectations and the degree of imprecision of

log-odds ratio in the case of imprecise normal priors.

Combination Sample size Censoring rate True parameter Balancing rate (r) E(θ|y) E(θ|y) ∆θ|y

1 40 0.001 0 r = 1 -0.012 -0.124 0.111

2 -0.6 r < 1 -0.306 -0.434 0.128

3 -1.2 r > 1 -0.650 -0.831 0.229

4 0.1 0 r < 1 0.072 -0.079 0.219

5 -0.6 r > 1 -0.562 -0.763 0.200

6 -1.2 r = 1 -1.202 -1.455 0.253

7 0.5 0 r > 1 0.172 -0.185 0.357

8 -0.6 r = 1 -0.551 -0.827 0.323

9 -1.2 r < 1 -1.158 -1.754 0.562

10 100 0.001 0 r < 1 0.184 0.121 0.062

11 -0.6 r > 1 -0.698 -0.769 0.070

12 -1.2 r = 1 -1.336 -1.419 0.082

13 0.1 0 r > 1 -0.284 -0.369 0.085

14 -0.6 r = 1 -0.608 -0.670 0.062

15 -1.2 r < 1 -1.203 -1.364 0.161

16 0.5 0 r = 1 0.018 -0.058 0.076

17 -0.6 r < 1 -0.841 -1.099 0.257

18 -1.2 r > 1 -1.123 -1.328 0.204

19 200 0.001 0 r < 1 -0.030 -0.057 0.027

20 -0.6 r = 1 -0.665 -0.692 0.026

21 -1.2 r < 1 -1.212 -1.260 0.047

22 0.1 0 r = 1 -0.003 -0.031 0.028

23 -0.6 r < 1 -0.645 -0.693 0.047

24 -1.2 r > 1 -1.074 -1.128 0.053

25 0.5 0 r < 1 -0.160 -0.217 0.057

26 -0.6 r > 1 -0.354 -0.436 0.081

27 -1.2 r = 1 -1.074 -1.162 0.088
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Figure 4.4: Empirical CDFs of the posterior samples for number of tables considering

a family of normal priors, combination 9.

Figure 4.5: Empirical CDFs of the posterior samples for number of tables considering

a family of normal priors, combination 20.
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Table 4.6: Imprecise credible intervals in the case of using imprecise normal priors.

Combination Sample size Censoring rate True parameter Balancing rate (r) Imprecise credible interval

1 40 0.001 0 r = 1 (-0.348 , 0.208)

2 -0.6 r < 1 (-0.669 , -0.072)

3 -1.2 r > 1 (-2.106 , -1.129)

4 0.1 0 r < 1 (-0.339 , 0.332)

5 -0.6 r > 1 (-1.054 , -0.280)

6 -1.2 r = 1 (-1.752 , -0.916)

7 0.5 0 r > 1 (-0.581 , 0.578)

8 -0.6 r = 1 (-1.158 , -0.240)

9 -1.2 r < 1 (-2.200 , -0.756)

10 100 0.001 0 r < 1 (-0.039 , 0.344)

11 -0.6 r > 1 (-0.942 , -0.532)

12 -1.2 r = 1 (-1.580 , -1.173)

13 0.1 0 r > 1 (-0.556 , -0.098)

14 -0.6 r = 1 (-0.826 , -0.456)

15 -1.2 r < 1 ( -1.601 , -0.976)

16 0.5 0 r = 1 (-0.241 , 0.205)

17 -0.6 r < 1 (-1.410 , -0.556)

18 -1.2 r > 1 (-1.603 , -0.857)

19 200 0.001 0 r < 1 (-0.167 , 0.080 )

20 -0.6 r = 1 (-0.793 , -0.564)

21 -1.2 r < 1 (-1.391 , -1.084)

22 0.1 0 r = 1 (-0.138 , 0.104 )

23 -0.6 r < 1 (-0.826 , -0.510)

24 -1.2 r > 1 ( -1.266 , -0.938 )

25 0.5 0 r < 1 (-0.377 , 0.003)

26 -0.6 r > 1 (-0.614 , -0.179)

27 -1.2 r = 1 ( -0.895 , -1.337)

It can be inferred from results in Table 4.5 that the less censoring and large sample size is

the more information and less imprecision we get and vice versa. To confirm that, ANOVA

for different model of the factorial deign in Table 4.3 on the degree of imprecision ∆θ|y are

considered to see how much these factors affect the degree of imprecision. Starting with

fitting the linear regression model (say Model 1), ANOVA table is displayed in Table 4.7.
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Next, ANOVA of a model includes only the main effects (say Model 2) is summerized in

Table 4.8 which is followed by table of the results of the model (say Model 3) that includes

main effects plus some of two-factor interactions (Table 4.9). Model assumptions are checked

for the three models by looking to the graphical analysis of residuals (residuals plots) where

a heteroscedascity is indicated as in Figure 4.6.

Figure 4.6: The residuals plot of Model 2.

Therefore, log transformation is applied for the three models on the response variable

(degree of imprecision) and the residuals plots of Model 2 are displayed in the following fig-

ure which indicates that the spread of residuals around zero is fairly homogenous (Figure 4.7).
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Figure 4.7: The residuals plot of Model 2 after applying log transformation.

Table 4.7: ANOVA table for factorial design in Table 4.3 in the case of using imprecise
normal prior.

Df Sum of Square Mean Square F value P -value

n 1 11.755 11.755 166.704 7.07e-10
λc 1 3.468 3.468 49.185 2.93e-06
θ 1 1.309 1.309 18.568 0.0005
r 1 0.301 0.301 4.265 0.055

n× λc 1 0.008 0.008 0.110 0.744
n× θ 1 0.004 0.004 0.063 0.805
n× r 1 0.001 0.001 0.009 0.925
λc × θ 1 0.014 0.014 0.203 0.658
λc × r 1 0.014 0.014 0.195 0.664
θ × r 1 0.072 0.072 1.027 0.325

Residuals 16 1.128 0.071

AICc = 37.179

The three models that considered above are compared by looking to corrected version of

their AIC (AICc) values (Burnham and Anderson, 2002). These values are provided under

each table where Model 2 has the lowest AICc (AICc= 3.639) compared to Model 1 and 3.

The three models that considered above show that all the main effects are significant
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Table 4.8: ANOVA table for the main effects of factorial design in Table4.2 in the
case of using imprecise normal prior.

Df Sum of Square Mean Square F value P -value

n 2 12.059 6.030 209.41 3.43e-13
λc 2 3.575 1.788 62.08 8.36e-09
θ 2 1.338 0.669 23.23 1.03e-05
r 2 0.585 0.292 10.15 0.00112

Residuals 18 0.518 0.029

AICc = 3.639

Table 4.9: ANOVA table for factorial design in Table 4.3 in the case of using imprecise
normal prior.

Df Sum of Square Mean Square F value P -value

n 2 12.059 6.030 198.358 3.31e-06
λc 2 3.575 1.788 58.807 0.000114
θ 2 1.338 0.669 22.005 0.001727
r 2 0.585 0.292 9.615 0.013448

n× λc 4 0.038 0.010 0.315 0.858051
n× θ 4 0.113 0.028 0.929 0.505625
n× r 4 0.185 0.046 1.518 0.308097

Residuals 6 0.182 0.030

AICc =238.692

at 5% and 10% confidence levels and none of the two-factor interactions. Graphically, by

looking to Boxplots, Figure 4.8 shows the four boxplots of the four factors where it can be

noticed that the degree of imprecision is decreased when we have more data (n = 200), less

censoring (λc = 0.001), true value is -1.2, and when r = 1, the number of subjects in two

groups are equal.

The boxplots of two-factor interactions give more support to the results in Table 4.5. For

example, Figure 4.9 clearly indicates that the degree of imprecision in the case of considering

a set of normal priors happens when n = 200 and λc = 0.001, more data and less censored

observations. However, The degree of imprecision is increased when n = 40 and λc = 0.5,

less data and more censored observations.
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Figure 4.8: Boxplots of significant factors in Table 4.8.

Figure 4.9: Boxplots of the interaction between the sample size factor and the cen-
soring rate factor. The number, for example, 40.0.001 on horizontal axis means the
interaction when n = 40 and λc = 0.001.
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Figure 4.10: Boxplots of of the interaction between the sample size factor and the true
value factor. The number, for example, 40.-1.2 on horizontal axis means the interaction
when n = 40 and θ = −1.2.

Figure 4.11: Boxplots of of the interaction between the sample size factor and the
balancing rate factor. The number, for example, 40.0 on horizontal axis means the
interaction when n = 40 and r = 0. The levels of balancing rate factors are r = 0 when
r = 1, r = 1 when r < 1, and r = 2 when r > 1.
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4.4.2 The Results in Imprecise Beta Case

The findings of the case of using beta priors support conclusions in the case of using

normal priors. The results of running the MCMC for the 27 combinations by considering the

set of beta prior defined above are reported in Table 4.10. The results in the table yielded

some interesting finding that the reduced value of ∆θ|y is 0.031 and observed at combination

number 20. However, The largest value of ∆θ|y is 0.562 appears at combination number 9.

The empirical CDF plots of the posterior samples of four chosen tables each with four priors

are shown in Figures 4.12 and 4.13. To clarify, for example, in Figures 4.12, the top-left

graph is ecdfs of the posterior samples of the first table while the top-right and bottom-left

are tables 50 and 100, and the bottom-right one represents ecdfs of posterior samples of

the last table which is table 192 (i.e. K = 192 at combination number 20). The degree of

imprecision in these figures is representing by the gap between the ecdfs curves and it can

be seen that the ecdf plots confirm the values of ∆θ|y’s. Imprecise highest posterior density

credible intervals of θ for the 27 combinations considering the set of normal priors are shown

in Table 4.11.
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Table 4.10: Lower and upper posterior expectations and the degree of imprecision of

log-odds ratio in the case of imprecise Beta priors

Combination Sample size Censoring rate True parameter Balancing rate (r) E(θ|y) E(θ|y) ∆θ|y

1 40 0.001 0 r = 1 -0.007 -0.162 0.155

2 -0.6 r < 1 -0.285 -0.460 0.174

3 -1.2 r > 1 -0.613 -0.843 0.229

4 0.1 0 r < 1 0.082 -0.136 0.219

5 -0.6 r > 1 -0.517 -0.782 0.265

6 -1.2 r = 1 -1.150 -1.416 0.266

7 0.5 0 r > 1 -0.605 -0.939 0.334

8 -0.6 r = 1 -0.501 -0.824 0.323

9 -1.2 r < 1 -1.057 -1.619 0.562

10 100 0.001 0 r < 1 0.215 0.141 0.074

11 -0.6 r > 1 -0.494 -0.575 0.080

12 -1.2 r = 1 -1.308 -1.404 0.096

13 0.1 0 r > 1 -0.026 -0.135 0.108

14 -0.6 r = 1 -0.616 -0.696 0.080

15 -1.2 r < 1 -1.100 -1.249 0.149

16 0.5 0 r = 1 0.346 0.204 0.142

17 -0.6 r < 1 -0.655 -0.876 0.220

18 -1.2 r > 1 -1.418 -1.66 0.245

19 200 0.001 0 r < 1 -0.028 -0.067 0.038

20 -0.6 r = 1 -0.595 -0.627 0.031

21 -1.2 r < 1 -1.250 -1.309 0.058

22 0.1 0 r = 1 -0.097 -0.136 0.038

23 -0.6 r < 1 -0.443 -0.496 0.053

24 -1.2 r > 1 -1.253 -1.309 0.055

25 0.5 0 r < 1 0.110 0.032 0.077

26 -0.6 r > 1 -0.603 -0.685 0.081

27 -1.2 r = 1 -1.120 -1.210 0.089
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Figure 4.12: Empirical CDFs of the posterior samples for number of tables considering

a family of beta priors, combination 9.
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Figure 4.13: Empirical CDFs of the posterior samples for number of tables considering

a family of beta priors, combination 20.
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Table 4.11: Imprecise credible intervals in the case of using imprecise beta priors.

Combination Sample size Censoring rate True parameter Balancing rate (r) Imprecise credible interval

1 40 0.001 0 r = 1 (-0.377 , 0.207)

2 -0.6 r < 1 (-0.679 , -0.054)

3 -1.2 r > 1 ( -1.570 , -0.749)

4 0.1 0 r < 1 (-0.384 , 0.333)

5 -0.6 r > 1 (-1.057 , -0.238)

6 -1.2 r = 1 (-1.696 , -0.866)

7 0.5 0 r > 1 ( -0.471 , 0.560)

8 -0.6 r = 1 (-1.133 , -0.192)

9 -1.2 r < 1 (-2.041 , -0.666)

10 100 0.001 0 r < 1 ( -0.008 , 0.368)

11 -0.6 r > 1 ( -0.734 , -0.334)

12 -1.2 r = 1 ( -1.573 , -1.144)

13 0.1 0 r > 1 ( -0.313 , 0.155)

14 -0.6 r = 1 ( -0.852 , -0.465)

15 -1.2 r < 1 ( -1.456 , -0.893 )

16 0.5 0 r = 1 ( -0.004, 0.552)

17 -0.6 r < 1 ( -1.131 , -0.394)

18 -1.2 r > 1 ( -1.941 , -1.147)

19 200 0.001 0 r < 1 ( -0.177, 0.081)

20 -0.6 r = 1 ( -0.726 , -0.495)

21 -1.2 r < 1 (-1.441 , -1.117)

22 0.1 0 r = 1 ( -0.245 , 0.013)

23 -0.6 r < 1 ( -0.620 , -0.316)

24 -1.2 r > 1 (-1.438 , -1.127)

25 0.5 0 r < 1 (-0.120 , 0.264)

26 -0.6 r > 1 ( -0.837 , -0.454)

27 -1.2 r = 1 (-1.373 , -0.953)

Similarly, ANOVA of the factorial design in Table 4.3 on the degree of imprecision ∆θ|y in

the case of using imprecise beta priors is evaluated. The three models considered in the case

of normal prior are also considered here. Also, log transformation on these model is applied

to avoid heteroscedascity. The results of analysis of variance of the degree of imprecision of

Model 1, Model 2, and Model 3 are demonstrated in Tables 4.12, 4.13, and 4.14, respectively.

87



The main effects of the factors are effective, and none of the two-factor interactions are.

Besides that, three models also are compared with each other by using their AICc where

Model 2 (with only main effects) is still preferred with AICc= - 30.793. Figure 4.14 is a

graphic summary of the Boxplots of the significant factors and their levels. However, Figures

4.15, 4.16, and 4.17 show that the combinations of different levels of the four factors affect

the value of the degree of imprecision. For instance, In Figure 4.15 clearly shows that the

smallest value of ∆θ|y appears at the interaction of n = 200 and λc = 0.001. This conclusion

gives a clear message that survival data with less number of censored observations is more

informative with less imprecision.

Table 4.12: ANOVA table for factorial design in Table 4.3 in the case of using imprecise
beta prior.

Df Sum of Square Mean Square F value P -value

n 1 10.906 10.906 309.809 6.79e-12
λc 1 2.780 2.780 78.983 1.38e-07
θ 1 0.558 0.558 15.860 0.00107
r 1 0.136 0.136 3.853 0.06730

n× λc 1 0.001 0.001 0.034 0.85682
n× θ 1 0.003 0.003 0.080 0.78135
n× r 1 0.000 0.000 0.001 0.97185
λc × θ 1 0.004 0.004 0.121 0.73221
λc × r 1 0.000 0.000 0.000 0.98847
θ × r 1 0.003 0.003 0.082 0.77894

Resdiuals 16 0.563 0.035

AICc = 18.403

Table 4.13: ANOVA table for the main effects of factorial design in Table4.2 in the
case of using imprecise beta prior.

Df Sum of Square Mean Square F value P -value

n 2 11.101 5.550 690.04 < 2e-16
λc 2 2.826 1.413 175.68 1.55e-12
θ 2 0.621 0.310 38.58 3.10e-07
r 2 0.262 0.131 16.30 9.11e-05

Residuals 18 0.145 0.008

AICc = - 30.793
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Table 4.14: ANOVA table for factorial design in Table 4.3 in the case of using imprecise
beta prior.

Df Sum of Square Mean Square F value P -value

n 2 11.101 5.550 375.726 4.97e-07
λc 2 2.826 1.413 95.655 2.81e-05
θ 2 10.621 0.310 21.004 0.00195
r 2 0.262 0.131 8.877 0.01611

n× λc 4 0.036 0.009 0.602 0.67553
n× θ 4 0.004 0.001 0.071 0.98840
n× r 4 0.016 0.004 0.277 0.88282

Residuals 6 0.089 0.015

AICc = 218.207

Figure 4.14: Boxplots of significant main effects of the four factors
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Figure 4.15: Boxplots of the interaction between the sample size factor and the

censoring rate factor. The number, for example, 40.0.001 on horizontal axis means the

interaction when n = 40 and λc = 0.001.

Figure 4.16: Boxplots of of the interaction between the sample size factor and the true

value factor. The number, for example, 40.-1.2 on horizontal axis means the interaction

when n = 40 and θ = −1.2.
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Figure 4.17: Boxplots of of the interaction between the sample size factor and the

balancing rate factor. The number, for example, 40.0 on horizontal axis means the

interaction when n = 40 and r = 0. The levels of balancing rate factors are r = 0 when

r = 1, r = 1 when r < 1, and r = 2 when r > 1.

4.4.3 ANOVA of combining the degree of imprecision of Normal

and Beta

Since two choices of imprecise priors are considered in this work, the ANOVA results

in the two case of imprecise normal and beta have the same conclusion. To support this,

ANOVA is applied by combining the degree of imprecision of the two cases (Normal and

Beta) and add a factor that represents the prior type (“0” means normal, “1” means beta).

The results of ANOVA are summarized in Table 4.15 and supported by Figures 4.18 and 4.19.

The conclusion here is still the same as in the two cases. Additional conclusion is inferred by

the factor of prior type which is significant as shown in Table 4.15.
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Table 4.15: ANOVA table for the factorial design in Table 4.3.

Df Sum of Square Mean Square F value P -value

n 2 23.146 11.573 628.338 < 2e-16
λc 2 6.376 3.188 173.086 < 2e-16
θ 2 1.876 0.938 50.934 3.19e-11
r 2 0.815 0.407 22.124 5.42e-07

prior 1 0.288 0.288 15.657 0.000342
n× prior 2 0.014 0.007 0.380 0.686313
λc × prior 2 0.025 0.013 0.689 0.508518
θ × prior 2 0.082 0.041 2.229 0.122315
r × prior 2 0.032 0.016 0.865 0.429582
Resdiuals 36 0.663 0.018

Figure 4.18: Boxplots of main effects of the sample size, censoring rate, true value of

the parameter, and balancing rate.
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Figure 4.19: Boxplots of prior type factor where “0” means the case of imprecise

normal prior and “1” means the case of imprecise beta prior

The boxplots above provide a clear picture of how the four factors plus prior type factor

affect the degree of imprecision. Figure 4.19 highlights that the value of degree of imprecision

in the normal case is less than its value in beta case. This provides strong support to results

in Tables 4.5 and 4.10.
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5. Conclusion and Future Work

This chapter represents a conclusion of the implementation of imprecise Bayesian inference

on the log-odds ratio in two-way and three-way contingency tables using survival data with

right-censored observations. The conclusion is presented in Section 5.1 and future plan is

proposed in Section 5.2.

5.1 Conclusion

Two approaches have been applied where in both cases the degree of imprecision is calcu-

lated in Chapter 3. In Section 3.2, a family of product of Beta is given to the cell probabilities

in the table as an imprecise prior and then posterior expectation of the log-odds ratio is com-

puted and upper and lower posterior expectation are obtained to calculate the degree of

imprecision. In Section 3.3, the approach of a re-parametrization of multinomial distribution

and logit model is defined in terms of the canonical parameter θ and 2θ3 being the log odds

ratio. Under this approach, the log-odds ratio of 2×2 table is estimated by considering using

both a single and a set of prior distributions. In the situation of using an imprecise prior, the

degree of imprecision is 0.739 as shown in Table 3.3. By comparing the degree of imprecision

in Table 3.1 and 3.3, it is clear that the value of ∆log Ψ which is 0.018 in imprecise Dirichlet

approach is less than its value in the case of re-parametrization of multinomial distribution

and using normal priors.

A generalization to three-ways contingency tables is the main focus in Chapter 4. An
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example of real data is applied on Ovarian Cancer Survival data where there are 12 observed

death times ( 2×2×12 tables). The estimates of upper and lower posterior expectations and

the degrees of imprecision of log-odds ratio are presented in Table 4.2 where the degree of

Imprecision ∆log Ψ is 0.411 in the case of choosing normal prior and 0.475 in beta prior case,

which there are no big difference between the two cases. In the simulation study, survival

time data with right-censored observations are generated and displayed in stratified 2 × 2

tables, one table at each death with no ties. Imprecise Bayesian approach is applied by

updating a set of priors to a set of posteriors by using non-central hypergeometric model

with the parameter log-odds ratio as our parameter of interest. Two prior families, normal

and beta, are given. Four factors with 3 levels in the simulation study are considered and

represented in Table 4.3. Comparing the degree of imprecision in the situations of imposing

these two kinds of prior is done. The results show that in the case of using a set of normal

priors with different means and variances, the degree of imprecision is reduced in the case

that the sample size is 200 and censoring rate is 0.1 %. However, when we have a small sample

size and high censoring rate, the degree of imprecision is increased. The same findings are

observed when a set of beta priors is used. ANOVA for three different model in the case of

imprecise normal and beta priors provide the same conclusion that main effects of the four

factors are significant. In the case of combining the degree of imprecision of normal and beta

cases, ANOVA gives support to the conclusion when the two cases are considered separately.

A prior type factor is added and provides a support to results that the degree of imprecision

value is reduced slightly in imprecise normal case than in beta case. In short, the uncertainty

about the parameter of interest is reduced by having more information, more data, and less

censored observations as the results of this work displayed, which is intuitively what one

would expect.

5.2 Future Work

While this thesis has demonstrated an implementation of drawing an imprecise Bayesian

inference for log-odds ratio in contingency tables using survival data, many opportunities for

extending the scope of this thesis remain. This section presents some of these directions.
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• The considered survival data in this work is assumed to have no ties and only one

observed death at each time, future work will have to address the case of having ties,

more one death at each survival time.

• Cox regression model with several covariates would be a future investigation to see how

these covariates will affect the degree of imprecision.

• In Section 2.3.4, Nonparametric predictive inference as an approach of imprecise prob-

ability theory is presented. A comparison between the methodology of this thesis and

NPI would be another future work to be assessed. Also, NPI for next table conditioning

on the previous tables is another point to be investigated.

• In the work of Wang’s Ph.d dissertation (Wang, 1995) which followed by (Wang and

Bickis, 2003) and (Yanqing and Yuan, 2013), the problem of allocating of the treatment

to present patient in adaptive design clinical trials study is considered. Wang proposed

a classical Bayesian approach in which the prior information is the prior knowledge

on the effectiveness of the treatment. Future work could be added to this thesis is

implementing imprecise probabilities to decide which treatment is more effective, that

is, if the lower posterior expectation of new treatment is greater than the upper posterior

expectation of the other treatment.
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Appendix A

Complete Results of Chapter 4

The following are the 27 combinations (runs) in two cases of normal and beta priors. The
results are presented in Tables and ECDF plots.

Combination 1:

n = 40, λc = 0.001, θ = 0, and r = 1.

Table A.1: Lower and upper posterior expectations and the degree of imprecision of
log-odds ratio of combination 1.

Prior Table E(θ|y) E(θ|y) ∆θ|y
Normal 1 199.966 0.024 199.941

10 1.402 0.767 0.635
20 -0.240 -0.478 0.238
39 -0.012 -0.124 0.111

Beta 1 3.358 -0.759 4.118
10 1.163 0.553 0.609
20 -0.215 -0.510 0.295
39 -0.007 -0.162 0.155
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Figure A.1: Empirical CDFs of the posterior samples for number of tables considering
a family of normal priors, combination 1.
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Figure A.2: Empirical CDFs of the posterior samples for number of tables considering
a family of beta priors, combination 1.

Combination 2:

n = 40, λc = 0.001, θ = −0.6, and r < 1.

Table A.2: Lower and upper posterior expectations and the degree of imprecision of
log-odds ratio of combination 2.

Prior Table E(θ|y) E(θ|y) ∆θ|y
Normal 1 0.672 -200.090 200.762

10 -1.124 -3.506 2.381
20 -0.507 -0.838 0.330
39 -0.306 -0.434 0.128

Beta 1 0.407 -11.408 11.815
10 -0.945 -2.263 1.318
20 -0.454 -0.827 0.372
39 -0.285 -0.460 0.174
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Figure A.3: Empirical CDFs of the posterior samples for number of tables considering
a family of normal priors, combination 2.

105



Figure A.4: Empirical CDFs of the posterior samples for number of tables considering
a family of beta priors, combination 2.

Combination 3:

n = 40, λc = 0.001, θ = −1.2, and r > 1.

Table A.3: Lower and upper posterior expectations and the degree of imprecision of
log-odds ratio of combination 3.

Prior Table E(θ|y) E(θ|y) ∆θ|y
Normal 1 -0.488 -199.948 199.459

10 -0.760 -1.317 0.557
15 -1.414 -1.817 0.402
20 -0.650 -0.831 0.180

Beta 1 2.947 -1.213 4.161
10 -1.382 -1.989 0.607
20 -1.227 -1.557 0.330
38 -0.613 -0.843 0.229
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Figure A.5: Empirical CDFs of the posterior samples for number of tables considering
a family of normal priors, combination 3.
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Figure A.6: Empirical CDFs of the posterior samples for number of tables considering
a family of beta priors, combination 3.

Combination 4:

n = 40, λc = 0.1, θ = 0, and r < 1.

Table A.4: Lower and upper posterior expectations and the degree of imprecision of
log-odds ratio of combination 4.

Prior Table E(θ|y) E(θ|y) ∆θ|y
Normal 1 0.724 -199.907 200.631

10 -0.515 -1.397 0.881
20 -0.020 -0.263 0.243
30 0.072 -0.079 0.152

Beta 1 0.413 -12.366 12.779
10 -0.407 -1.246 0.839
20 0.003 -0.316 0.319
30 0.082 -0.136 0.219
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Figure A.7: Empirical CDFs of the posterior samples for number of tables considering
a family of normal priors, combination 4.
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Figure A.8: Empirical CDFs of the posterior samples for number of tables considering
a family of beta priors, combination 4.
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Combination 5:

n = 40, λc = 0.1, θ = −0.6, and r > 1.

Table A.5: Lower and upper posterior expectations and the degree of imprecision of
log-odds ratio of combination 5.

Prior Table E(θ|y) E(θ|y) ∆θ|y
Normal 1 200.008 -1.221 201.229

10 -0.564 -1.107 0.543
20 -1.128 -1.420 0.291
33 -0.562 -0.763 0.200

Beta 1 2.984 -1.256 4.240
10 -0.471 -1.085 0.613
20 -1.053 -1.381 0.328
33 -0.517 -0.782 0.265
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Figure A.9: Empirical CDFs of the posterior samples for number of tables considering
a family of normal priors, combination 5.
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Figure A.10: Empirical CDFs of the posterior samples for number of tables consid-
ering a family of beta priors, combination 5.

Combination 6:

n = 40, λc = 0.1, θ = −1.2, and r = 1.

Table A.6: Lower and upper posterior expectations and the degree of imprecision of
log-odds ratio of combination 6.

Prior Table E(θ|y) E(θ|y) ∆θ|y
Normal 1 200.163 -0.041 200.205

10 -0.666 -1.298 0.632
20 -1.118 -1.441 0.323
26 -1.202 -1.455 0.253

Beta 1 3.304 -0.816 4.121
10 -0.563 -1.207 0.643
20 -1.048 -1.396 0.347
26 -1.150 -1.416 0.266
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Figure A.11: Empirical CDFs of the posterior samples for number of tables consid-
ering a family of normal priors, combination 6.
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Figure A.12: Empirical CDFs of the posterior samples for number of tables consid-
ering a family of beta priors, combination 6.

Combination 7:

n = 40, λc = 0.5, θ = 0, and r > 1.

Table A.7: Lower and upper posterior expectations and the degree of imprecision of
log-odds ratio of combination 7.

Prior Table E(θ|y) E(θ|y) ∆θ|y
Normal 1 199.833 -1.394 201.227

10 2.605 0.382 2.223
15 0.431 -0.048 0.480
17 0.172 -0.185 0.357

Beta 1 2.979 -1.233 4.212
10 0.038 -0.598 0.637
15 -0.322 -0.751 0.429
19 -0.605 -0.939 0.334
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Figure A.13: Empirical CDFs of the posterior samples for number of tables consid-
ering a family of normal priors, combination 7.
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Figure A.14: Empirical CDFs of the posterior samples for number of tables consid-
ering a family of beta priors, combination 7.

Combination 8:

n = 40, λc = 0.5, θ = −0.6, and r = 1.

Table A.8: Lower and upper posterior expectations and the degree of imprecision of
log-odds ratio of combination 8.

Prior Table E(θ|y) E(θ|y) ∆θ|y
Normal 1 200.129 -0.012 200.142

10 -0.184 -0.671 0.486
15 -0.566 -0.927 0.361
19 -0.551 -0.827 0.276

Beta 1 3.336 -0.782 4.118
10 -0.122 -0.695 0.572
15 -0.503 -0.929 0.425
19 -0.501 -0.824 0.323
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Figure A.15: Empirical CDFs of the posterior samples for number of tables consid-
ering a family of normal priors, combination 8.
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Figure A.16: Empirical CDFs of the posterior samples for number of tables consid-
ering a family of beta priors, combination 8.

Combination 9:

n = 40, λc = 0.5, θ = −1.2, and r < 1.

Table A.9: Lower and upper posterior expectations and the degree of imprecision of
log-odds ratio of combination 9.

Prior Table E(θ|y) E(θ|y) ∆θ|y
Normal 1 0.686 -199.649 200.335

10 -1.300 -3.753 2.453
14 -1.165 -2.104 0.939
17 -1.158 -1.754 0.595

Beta 1 0.403 -10.299 10.702
10 -1.130 -2.470 1.339
14 -1.045 -1.820 0.774
17 -1.057 -1.619 0.562
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Figure A.17: Empirical CDFs of the posterior samples for number of tables consid-
ering a family of normal priors, combination 9.
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Figure A.18: Empirical CDFs of the posterior samples for number of tables consid-
ering a family of beta priors, combination 9.

Combination 10:

n = 100, λc = 0.001, θ = 0, and r < 1.
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Table A.10: Empirical CDFs of the posterior samples for number of tables considering
a family of normal priors, combination 10.

Prior Table E(θ|y) E(θ|y) ∆θ|y
Normal 1 1.146 -199.891 201.037

50 0.001 -0.115 0.117
80 0.065 -0.003 0.069
93 0.184 0.121 0.062

Beta 1 0.492 -12.106 12.598
30 0.101 -0.136 0.237
60 0.250 0.138 0.112
97 0.215 0.141 0.074

Table A.11: Lower and upper posterior expectations and the degree of imprecision of
log-odds ratio of combination 10.
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Figure A.19: Empirical CDFs of the posterior samples for number of tables consid-
ering a family of beta priors, combination 10.
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Combination 11:

n = 100, λc = 0.001, θ = −0.6, and r > 1.

Table A.12: Lower and upper posterior expectations and the degree of imprecision of
log-odds ratio of combination 11.

Prior Table E(θ|y) E(θ|y) ∆θ|y
Normal 1 199.840 -1.112 200.953

30 -0.347 -0.518 0.171
60 -0.957 -0.768 0.093
81 -0.698 -0.769 0.070

Beta Beta 1 2.974 -1.215 4.190
30 -0.711 -0.907 0.196
60 -0.510 -0.623 0.112
95 -0.494 -0.575 0.080
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Figure A.20: Empirical CDFs of the posterior samples for number of tables consid-
ering a family of normal priors, combination 11.
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Figure A.21: Empirical CDFs of the posterior samples for number of tables consid-
ering a family of beta priors, combination 11.
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Combination 12:

n = 100, λc = 0.001, θ = −1.2, and r = 1.

Table A.13: Lower and upper posterior expectations and the degree of imprecision of
log-odds ratio of combination 12.

Prior Table E(θ|y) E(θ|y) ∆θ|y
Normal 1 200.001 -0.021 200.023

30 -1.332 -1.604 0.271
50 -1.299 -1.434 0.135
81 -1.336 -1.419 0.082

Beta 1 3.285 -0.776 4.061
30 -0.900 -1.131 0.230
60 -1.122 -1.240 0.118
84 -1.308 -1.404 0.096
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Figure A.22: Empirical CDFs of the posterior samples for number of tables consid-
ering a family of normal priors, combination 12.
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Figure A.23: Empirical CDFs of the posterior samples for number of tables consid-
ering a family of beta priors, combination 12.
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Combination 13:

n = 100, λc = 0.1, θ = 0, and r > 1.

Table A.14: Lower and upper posterior expectations and the degree of imprecision of
log-odds ratio of combination 13.

Prior Table E(θ|y) E(θ|y) ∆θ|y
Normal 1 199.986 -1.189 201.175

30 0.404 0.161 0.242
60 -0.395 -0.488 0.092
77 -0.284 -0.369 0.085

Beta 1 -0.189 -16.312 16.123
30 -0.226 -0.458 0.231
60 0.047 -0.090 0.138
75 -0.026 -0.135 0.108
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Figure A.24: Empirical CDFs of the posterior samples for number of tables consid-
ering a family of normal priors, combination 13.
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Figure A.25: Empirical CDFs of the posterior samples for number of tables consid-
ering a family of beta priors, combination 13.
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Combination 14:

n = 40, λc = 0.1, θ = −0.6, and r = 1.

Table A.15: Lower and upper posterior expectations and the degree of imprecision of
log-odds ratio of combination 14.

Prior Table E(θ|y) E(θ|y) ∆θ|y
Normal 1 199.903 -0.015 199.919

30 -0.950 -1.142 0.192
60 -0.650 -0.740 0.089
80 -0.608 -0.670 0.062

Beta 1 3.371 -0.782 4.153
30 -0.380 -0.582 0.201
60 -0.751 -0.862 0.111
82 -0.616 -0.696 0.080
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Figure A.26: Empirical CDFs of the posterior samples for number of tables consid-
ering a family of normal priors, combination 14.
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Figure A.27: Empirical CDFs of the posterior samples for number of tables consid-
ering a family of beta priors, combination 14.
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Combination 15:

n = 100, λc = 0.1, θ = −1.2, and r < 1.

Table A.16: Lower and upper posterior expectations and the degree of imprecision of
log-odds ratio of combination 15.

Prior Table E(θ|y) E(θ|y) ∆θ|y
Normal 1 1.202 -199.972 201.175

30 -1.400 -2.302 0.901
60 -1.271 -1.538 0.266
75 -1.203 -1.364 0.161

Beta 1 0.550 -10.350 10.900
30 -0.992 -1.508 0.516
50 -1.100 -1.369 0.268
75 -1.100 -1.249 0.149
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Figure A.28: Empirical CDFs of the posterior samples for number of tables consid-
ering a family of normal priors, combination 15.
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Figure A.29: Empirical CDFs of the posterior samples for number of tables consid-
ering a family of beta priors, combination 15.
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Combination 16:

n = 100, λc = 0.5, θ = 0, and r = 1.

Table A.17: Lower and upper posterior expectations and the degree of imprecision of
log-odds ratio of combination 16.

Prior Table E(θ|y) E(θ|y) ∆θ|y
Normal 1 200.136 -0.019 200.156

30 -0.409 -0.570 0.160
50 0.010 -0.071 0.081
54 0.018 -0.058 0.076

Beta 1 3.350 -0.779 4.130
20 0.934 0.606 0.328
40 0.497 0.344 0.152
42 0.346 0.204 0.142
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Figure A.30: Empirical CDFs of the posterior samples for number of tables consid-
ering a family of normal priors, combination 16.
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Figure A.31: Empirical CDFs of the posterior samples for number of tables consid-
ering a family of beta priors, combination 16.
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Combination 17:

n = 40, λc = 0.5, θ = −0.6, and r < 1.

Table A.18: Lower and upper posterior expectations and the degree of imprecision of
log-odds ratio of combination 17.

Prior Table E(θ|y) E(θ|y) ∆θ|y
Normal 1 1.187 -200.075 201.262

30 -1.276 -2.141 0.864
40 -0.860 -1.163 0.302
44 -0.841 -1.099 0.257

Beta 1 0.633 -9.234 9.867
20 -0.864 -1.611 0.746
30 -0.783 -1.196 0.412
44 -0.655 -0.876 0.220
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Figure A.32: Empirical CDFs of the posterior samples for number of tables consid-
ering a family of normal priors, combination 17.
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Figure A.33: Empirical CDFs of the posterior samples for number of tables consid-
ering a family of beta priors, combination 17.
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Combination 18:

n = 100, λc = 0.5, θ = −1.2, and r > 1.

Table A.19: Lower and upper posterior expectations and the degree of imprecision of
log-odds ratio of combination 18.

Prior Table E(θ|y) E(θ|y) ∆θ|y
Normal 1 199.638 -1.186 200.824

15 -0.392 -0.746 0.354
20 -0.818 -1.091 0.273
26 -1.123 -1.328 0.204

Beta 1 -0.195 -12.889 12.694
15 -1.281 -1.656 0.374
20 -1.299 -1.601 0.301
25 -1.418 -1.66 0.245
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Figure A.34: Empirical CDFs of the posterior samples for number of tables consid-
ering a family of normal priors, combination 18.
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Figure A.35: Empirical CDFs of the posterior samples for number of tables consid-
ering a family of beta priors, combination 18.
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Combination 19:

n = 200, λc = 0.001, θ = 0, and r > 1.

Table A.20: Lower and upper posterior expectations and the degree of imprecision of
log-odds ratio of combination 19.

Prior Table E(θ|y) E(θ|y) ∆θ|y
Normal 1 199.757 -0.933 200.691

50 0.222 0.104 0.118
100 0.126 0.067 0.058
193 -0.030 -0.057 0.027

Beta 1 3.053 -1.167 4.220
50 0.221 0.060 0.161
100 0.128 0.051 0.076
193 -0.028 -0.067 0.038
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Figure A.36: Empirical CDFs of the posterior samples for number of tables consid-
ering a family of normal priors, combination 19.
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Figure A.37: Empirical CDFs of the posterior samples for number of tables consid-
ering a family of beta priors, combination 19.
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Combination 20:

n = 200, λc = 0.001, θ = −0.6, and r = 1.

Table A.21: Lower and upper posterior expectations and the degree of imprecision of
log-odds ratio of combination 20.

Prior Table E(θ|y) E(θ|y) ∆θ|y
Normal 1 0.020 -199.983 200.003

50 -0.528 -0.627 0.099
100 -0.504 -0.551 0.047
194 -0.665 -0.692 0.026

Beta 1 0.166 -10.688 10.854
50 -0.782 -0.917 0.134
100 -0.561 -0.617 0.056
192 -0.595 -0.627 0.031
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Figure A.38: Empirical CDFs of the posterior samples for number of tables consid-
ering a family of normal priors, combination 20.
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Figure A.39: Empirical CDFs of the posterior samples for number of tables consid-
ering a family of beta priors, combination 20.
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Combination 21:

n = 200, λc = 0.001, θ = −1.2, and r < 1.

Table A.22: Lower and upper posterior expectations and the degree of imprecision of
log-odds ratio of combination 21.

Prior Table E(θ|y) E(θ|y) ∆θ|y
Normal 1 1.011 -200.004 201.015

50 -1.426 -1.828 0.401
100 -1.419 -1.568 0.149
190 -1.212 -1.260 0.047

Beta 1 0.646 -12.525 13.171
50 -1.310 -1.814 0.504
100 -1.461 -1.685 0.224
193 -1.250 -1.309 0.058
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Figure A.40: Empirical CDFs of the posterior samples for number of tables consid-
ering a family of normal priors, combination 21.
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Figure A.41: Empirical CDFs of the posterior samples for number of tables consid-
ering a family of beta priors, combination 21.
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Combination 22:

n = 200, λc = 0.1, θ = 0, and r = 1.

Table A.23: Lower and upper posterior expectations and the degree of imprecision of
log-odds ratio of combination 22.

Prior Table E(θ|y) E(θ|y) ∆θ|y
Normal 1 -0.002 -200.277 200.275

50 0.121 0.035 0.086
100 0.191 0.148 0.043
158 -0.003 -0.031 0.028

Beta 1 0.193 -11.714 11.907
50 0.148 0.031 0.117
100 0.029 -0.029 0.058
153 -0.097 -0.136 0.038
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Figure A.42: Empirical CDFs of the posterior samples for number of tables consid-
ering a family of normal priors, combination 22.
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Figure A.43: Empirical CDFs of the posterior samples for number of tables consid-
ering a family of beta priors, combination 22.
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Combination 23:

n = 200, λc = 0.1, θ = −0.6, and r < 1.

Table A.24: Lower and upper posterior expectations and the degree of imprecision of
log-odds ratio of combination 23.

Prior Table E(θ|y) E(θ|y) ∆θ|y
Normal 1 1.014 -199.730 200.744

50 -0.798 -1.017 0.219
100 -0.631 -0.708 0.076
158 -0.645 -0.693 0.047

Beta 1 0.467 -11.399 11.867
50 -0.440 -0.623 0.182
100 -0.328 -0.408 0.080
155 -0.443 -0.496 0.053
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Figure A.44: Empirical CDFs of the posterior samples for number of tables consid-
ering a family of normal priors, combination 23.
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Figure A.45: Empirical CDFs of the posterior samples for number of tables consid-
ering a family of beta priors, combination 23.
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Combination 24:

n = 200, λc = 0.1, θ = −1.2, and r > 1.

Table A.25: Lower and upper posterior expectations and the degree of imprecision of
log-odds ratio of combination 24.

Prior Table E(θ|y) E(θ|y) ∆θ|y
Normal 1 200.238 -1.075 201.314

50 -0.877 -0.974 0.097
100 -1.010 -1.065 0.055
111 -1.074 -1.128 0.053

Beta 1 3.062 -1.239 4.301
50 -1.625 -1.745 0.119
100 -1.299 -1.368 0.069
123 -1.253 -1.309 0.055

163



Figure A.46: Empirical CDFs of the posterior samples for number of tables consid-
ering a family of normal priors, combination 24.
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Figure A.47: Empirical CDFs of the posterior samples for number of tables consid-
ering a family of beta priors, combination 24.

165



Combination 25:

n = 200, λc = 0.5, θ = 0, and r < 1.

Table A.26: Lower and upper posterior expectations and the degree of imprecision of
log-odds ratio of combination 25.

Prior Table E(θ|y) E(θ|y) ∆θ|y
Normal 1 1.037 -200.147 201.185

50 -0.568 -0.749 0.180
80 -0.103 -0.174 0.071
102 -0.160 -0.217 0.057

Beta 1 0.467 -14.458 14.925
50 0.344 0.210 0.133
80 0.191 0.106 0.085
92 0.110 0.032 0.077

166



Figure A.48: Empirical CDFs of the posterior samples for number of tables consid-
ering a family of normal priors, combination 25.
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Figure A.49: Empirical CDFs of the posterior samples for number of tables consid-
ering a family of beta priors, combination 25.
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Combination 26:

n = 200, λc = 0.5, θ = −0.6, and r > 1.

Table A.27: Lower and upper posterior expectations and the degree of imprecision of
log-odds ratio of combination 26.

Prior Table E(θ|y) E(θ|y) ∆θ|y
Normal 1 200.003 -1.128 201.131

30 0.053 -0.119 0.173
60 -0.399 -0.489 0.089
71 -0.354 -0.436 0.081

Beta 1 -0.184 -9.824 9.639
30 -0.311 -0.531 0.219
50 -0.531 -0.659 0.128
88 -0.603 -0.685 0.081
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Figure A.50: Empirical CDFs of the posterior samples for number of tables consid-
ering a family of normal priors, combination 26.
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Figure A.51: Empirical CDFs of the posterior samples for number of tables consid-
ering a family of beta priors, combination 26.
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Combination 27:

n = 200, λc = 0.5, θ = −1.2, and r = 1.

Table A.28: Lower and upper posterior expectations and the degree of imprecision of
log-odds ratio of combination 27.

Prior Table E(θ|y) E(θ|y) ∆θ|y
Normal 1 0.008 -200.148 200.156

20 -1.412 -1.861 0.449
40 -1.077 -1.229 0.152
66 -1.074 -1.162 0.088

Beta 1 0.183 -13.281 13.464
30 -0.929 -1.182 0.253
50 -0.879 -1.017 0.137
78 -1.120 -1.210 0.089
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Figure A.52: Empirical CDFs of the posterior samples for number of tables consid-
ering a family of normal priors, combination 27.
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Figure A.53: Empirical CDFs of the posterior samples for number of tables consid-
ering a family of beta priors, combination 27.
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Appendix B

R Codes

########################################
# MCMC s imu la t i on s
# Normal Pr io r f o r Theta with mu and sigma=1/tau , tau =0.001
################################################

## sim . surv i s a func t i on f o r gene ra t ing Right−censored Surv iva l Data
# n i s the t o t a l number o f ob s e rva t i on s
# lambdaC i s the ra t e parameter o f exp . d i s t to gen . c en so r ing obs .
###############################################

sim . surv<−f unc t i on (n=40, lambda =0.5 , lambdaC=0.001 , beta =0){

# two groups 0 = contro l , 1=t e s t ( t r ea t ed )
s e t . seed (466)
x1<−sample ( c ( rep (0 , 0 . 3∗n ) , rep (1 , 0 . 1∗n ) ) , s i z e=n , r e p l a c e=TRUE)

# s u r v i v a l t imes o f CPH model with a s i n g l e binary c o v a r i a t e x1
# us ing exponent i a l d i s t r i b u t i o n
s e t . seed (477)
u<−r u n i f (n)
Time<−(−l og (u) / ( lambda∗exp ( x1∗beta ) ) )

# generate c enso r ing
s e t . seed (488)
cen1 <− rexp (n , r a t e = lambdaC)

# fo l l ow−up times and event i n d i c a t o r s
st ime <− pmin (Time , cen1 )
s tatus<−rep (0 , l ength ( st ime ) )
s t a t u s [ st ime==Time]<−1
re turn ( l i s t ( st ime=stime , s t a t u s=status , x1=x1 ) )

}
sim . survdata<−sim . surv ( )

##########################################

l i b r a r y ( s u r v i v a l )
km <−s u r v f i t ( Surv ( sim . survdata$st ime , sim . survdata$s ta tus )˜ sim . survdata$x1 )
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p lo t (km, c o l =3:4 , mark . time=TRUE, xlab=”Surv iva l Time” ,
ylab=”Estimated Surv ivor Function ” ,
main=”Kaplan−Meier Curves ”)
legend (” top r i gh t ” , l egend = c (” Control ” ,” Test ”) , c o l = c (” green3 ” ,” blue ”)
, l t y =1)

##########################################################
# sdata i s l i s t o f observed times , non−censored ind i ca to r ,
# and treatment ( assumed 0 or 1)
sdata<−data . frame (Time=sim . survdata$st ime , s t a t u s=sim . survdata$status ,
t r e a t=sim . survdata$x1 )

# con . t ab l e i s a func t i on to convert r i ght−censored s u r v i v a l data
# to k 2x2 t a b l e s
#Constructs 2x2 t a b l e s from s u r v i v a l data
con . tab le<−f unc t i on ( st ime=stime , s t a tu s=status , x1=x1 ){
# Extract observed deaths
tobs<−sdata [ as . l o g i c a l ( sdata [ , 2 ] ) , 1 ]
t a l l<−sdata [ , 1 ] # Extract a l l t imes
#s u r v i v o r s at each observed time
obs . su rv ivo r s<−outer ( tobs , t a l l , match . fun (”<”))
#deaths at each time
obs . deaths<−outer ( tobs , t a l l , match . fun (”==”))
# Create data frame f o r data

s t r a t i f i e d <−data . frame ( time=tobs , t r e a t=rep ( sdata [ , 3 ] , each=length ( tobs ) ) ,
a l i v e=as . vec to r ( obs . s u r v i v o r s ) , dead=as . vec to r ( obs . deaths ) )

#F i l t e r out who are not at r i s k
s t r a t i f i e d <−s t r a t i f i e d [ s t r a t i f i e d $ a l i v e | s t r a t i f i e d $ d e a d , ]

#Create t a b l e s
tw<−t ab l e ( s t r a t i f i e d $ t r e a t , s t r a t i f i e d $ a l i v e , s t r a t i f i e d $ t i m e ,
dnn=c (” Treatment ” ,” Al ive ” ,”Time ”) )
# Remove t a b l e s with empty rows
tw [ , , apply ( apply ( tw , c ( 1 , 3 ) , sum ) , 2 , min)>0]

}
con . tab le1<−con . t ab l e ( sdata )

############################################
l i b r a r y ( coda )
l i b r a r y ( r j a g s )
l i b r a r y ( run jags )

###########################################

# The model in JAGS language ( Normal p r i o r on paramete Theta )
model<−”
model{
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c <− 10000 # t h i s j u s t has to be l a r g e enough to ensure a l l phi [ i ] ’ s > 0
z e ro s ˜ dpo i s ( phi )
phi <− −L+c
L<−l og ( prod ( ( ( r∗exp ( theta ) )ˆ y)/(1+ r∗exp ( theta ) ) ) )
theta ˜dnorm(mu, tau )
}
”

########### The Function to run MCMC from R with JAGS

LogOddsSurv<−f unc t i on (N=10000 ,C=2,con . tab l e1=con . tab l e1 ){

y<−con . tab l e1 [ 2 , 1 , ]
# y i s a binary varab le (1 i f death and 0 i f c en so r ing ) and
#we have only one death in each tab l e .

# the row t o t a l s in a 2x2 tab l e
n0<−con . tab l e1 [ 1 , 1 , ]+ con . tab l e1 [ 1 , 2 , ]
n1<−con . tab l e1 [ 2 , 1 , ]+ con . tab l e1 [ 2 , 2 , ]
r<−n1/n0
k<−l ength ( r )

# To ex t r a c t p o s t e r i o r sample in an array k∗10000∗2
post . sample<−array (dim=c (k , 4 , 10 000 , 2 ) )

##run RJAGS us ing runjags package

f o r ( i in 1 : k){# t h i s loop f o r k t a b l e s

# Hyperparameters mu and tau f o r a s e t o f Normal p r i o r s
mu<−c (−200 ,−2 ,2 ,200)
#var<−c (400 ,4 ,4 , 400)
tau<−c ( 0 . 0 0 2 5 , 0 . 2 5 , 0 . 2 5 , 0 . 0 0 2 5 )

f o r ( j in 1 : l ength (mu)){# t h i s loop f o r a s e t o f normal p r i o r s
#as a vecot r o f mu’ s and vec to r o f tau ’ s

dat<− l i s t ( y=y [ 1 : i ] , r=r [ 1 : i ] ,mu=mu[ j ] , tau=tau [ j ] , z e r o s =0)
i n i t f u n c t i o n <− f unc t i on ( chain )

re turn ( switch ( chain ,
”1”= l i s t ( theta =3) , ”2”= l i s t ( theta =−3)))

monitor<−c (” theta ”)
n . chain<−C
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i t e r<−N
burn<−20000
#thin<−10000

r e s u l t s <− run . j a g s ( model=model , monitor=monitor ,
data=dat , n . cha ins=n . chain , sample=i t e r ,
burnin=burn , method=”r j a g s ” , i n i t s=i n i t f u n c t i o n )

post . sample [ i , j , ,]<− as . matrix ( results$mcmc )

}
}
r e turn ( l i s t ( r e s u l t s=r e s u l t s , post . sample=post . sample ) )

}

output<−LogOddsSurv (N=10000 ,C=2,con . tab l e1=con . tab l e1 )
r e s u l t s<−o u t p u t $ r e s u l t s
p l o t ( o u t p u t $ r e s u l t s )

############################################
# p o s t e r i o r sample and means
post . sample<−output$post . sample # p o s t e r i o r sample obs e rva t i on s

###
post . mean<−apply ( post . sample , 1 : 2 , mean) # p o s t e r i o r means

##### Upper and Lower p o s t e r i o r Expectat ions o f some chosen t a b l e s
UE1<−max( post . mean [ 1 , ] , na . rm = FALSE) #(upper expec ta t i on )
LE1<−min( post . mean [ 1 , ] , na . rm = FALSE) # ( lower expec ta t i on )
imp1<−UE1−LE1# degree o f impre c i s i on
UE1
LE1
imp1
##
UE2<−max( post . mean [ 5 0 , ] , na . rm = FALSE)
LE2<−min( post . mean [ 5 0 , ] , na . rm = FALSE)
imp2<−UE2−LE2
UE2
LE2
imp2
##
UE3<−max( post . mean [ 8 0 , ] , na . rm = FALSE)
LE3<−min( post . mean [ 8 0 , ] , na . rm = FALSE)
imp3<−UE3−LE3
UE3
LE3
imp3
##
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UE4<−max( post . mean [ 9 3 , ] , na . rm = FALSE)
LE4<−min( post . mean [ 9 3 , ] , na . rm = FALSE)
imp4<−UE4−LE4
UE4
LE4
imp4
########################################################

#imprec i s e c r d i b l e i n t e r v a l s
l1<−q u a n t i l e ( post . sample [ 3 7 , 1 , , ] , 0 . 0 2 5 )
l2<−q u a n t i l e ( post . sample [ 3 7 , 2 , , ] , 0 . 0 2 5 )
l3<−q u a n t i l e ( post . sample [ 3 3 , 3 , , ] , 0 . 0 2 5 )
l4<−q u a n t i l e ( post . sample [ 3 7 , 4 , , ] , 0 . 0 2 5 )
L<−min( l1 , l2 , l3 , l 4 )
L

u1<−q u a n t i l e ( post . sample [ 3 7 , 1 , , ] , 0 . 9 7 5 )
u2<−q u a n t i l e ( post . sample [ 3 7 , 2 , , ] , 0 . 9 7 5 )
u3<−q u a n t i l e ( post . sample [ 3 7 , 3 , , ] , 0 . 9 7 5 )
u4<−q u a n t i l e ( post . sample [ 3 7 , 4 , , ] , 0 . 9 7 5 )
U<−max( u1 , u2 , u3 , u4 )
U
#########################################################
#########################################################
##### ECDF p l o t s ##########################################

plot1<−f unc t i on ( ){ # f o r t ab l e number 1
p l o t ( ecd f ( post . sample [ 1 , 4 , , ] ) , xl im=c (−300 ,50) ,
c o l=”black ” , xlab=”p o s t e r i o r sample ” , ylab=”ecd f ” , main=”Table 1”)

l i n e s ( ecd f ( post . sample [ 1 , 3 , , ] ) , c o l=”red ”)
l i n e s ( ecd f ( post . sample [ 1 , 2 , , ] ) , c o l=”green ”)
l i n e s ( ecd f ( post . sample [ 1 , 1 , , ] ) , c o l=”blue ”)
}
plot2<−f unc t i on (){# f o r t ab l e number 50

p lo t ( ecd f ( post . sample [ 5 0 , 4 , , ] ) ,
c o l=”black ” , xlab=”p o s t e r i o r sample ” , ylab=”ecd f ” , main=”Table 50”)
l i n e s ( ecd f ( post . sample [ 5 0 , 3 , , ] ) , c o l=”red ”)
l i n e s ( ecd f ( post . sample [ 5 0 , 2 , , ] ) , c o l=”green ”)
l i n e s ( ecd f ( post . sample [ 5 0 , 1 , , ] ) , c o l=”blue ”)

}
plot3<−f unc t i on (){# f o r t ab l e number 80

p lo t ( ecd f ( post . sample [ 8 0 , 4 , , ] ) ,
c o l=”black ” , xlab=”p o s t e r i o r sample ” , ylab=”ecd f ” , main=”Table 80”)
l i n e s ( ecd f ( post . sample [ 8 0 , 3 , , ] ) , c o l=”red ”)
l i n e s ( ecd f ( post . sample [ 8 0 , 2 , , ] ) , c o l=”green ”)
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l i n e s ( ecd f ( post . sample [ 8 0 , 1 , , ] ) , c o l=”blue ”)
}
plot4<−f unc t i on (){# f o r t ab l e number 93

p lo t ( ecd f ( post . sample [ 9 3 , 4 , , ] ) ,
c o l=”black ” , xlab=”p o s t e r i o r sample ” , ylab=”ecd f ” , main=”Table 93”)
l i n e s ( ecd f ( post . sample [ 9 3 , 3 , , ] ) , c o l=”red ”)
l i n e s ( ecd f ( post . sample [ 9 3 , 2 , , ] ) , c o l=”green ”)
l i n e s ( ecd f ( post . sample [ 9 3 , 1 , , ] ) , c o l=”blue ”)

}
##########

par ( mfrow=c ( 2 , 2 ) )
p lo t1 ( )
p lo t2 ( )
p lo t3 ( )
p lo t4 ( )

###########################################

# MCMC s imu la t i on s
# Using Imprec i s e Beta p r i o r on p with parameters a and b .
# theta = log (p/(1−p ) )
############################################
l i b r a r y ( coda )
l i b r a r y ( r j a g s )
l i b r a r y ( run jags )

###########################################

# The model in JAGS language
model2<−”
model{
c <− 10000 # t h i s j u s t has to be l a r g e enough to ensure a l l phi [ i ] ’ s > 0
z e ro s ˜ dpo i s ( phi )
phi <− −L+c
L<−l og ( prod ( ( ( r∗p)ˆ y)∗((1−p)ˆ(1−y ))/(1+( r−1)∗p ) ) )
p˜ dbeta (a , b)
theta<−l og (p/(1−p ) )
}
”

########################## The Function

LogOddsSurv2<−f unc t i on (n . i t r =10000 ,C=2,con . tab l e1=con . tab l e1 ){

y<−con . tab l e1 [ 2 , 1 , ]
# y i s a binary varab le (1 i f death and 0 i f c en so r ing ) and
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#we have only one death in each tab l e .

# the row t o t a l s in a 2x2 tab l e
n0<−con . tab l e1 [ 1 , 1 , ]+ con . tab l e1 [ 1 , 2 , ]
n1<−con . tab l e1 [ 2 , 1 , ]+ con . tab l e1 [ 2 , 2 , ]
r<−n1/n0
k<−l ength ( r )

# To ex t r a c t p o s t e r i o r sample in an array k∗10000∗2
post . sample2<−array (dim=c (k , 4 , 10 000 , 2 ) )

##run RJAGS us ing runjags package

f o r ( i in 1 : k){# t h i s loop f o r k t a b l e s

# Hyperparameters alpha=a and beta f o r beta=b p r i o r s
a<−c ( 0 . 1 , 0 . 3 , 1 . 2 , 1 . 6 )
b<−c ( 1 . 9 , 1 . 7 , 0 . 8 , 0 . 4 )

f o r ( j in 1 : l ength ( a)){# t h i s loop f o r a s e t o f beta p r i o r s

dat<− l i s t ( y=y [ 1 : i ] , r=r [ 1 : i ] , a=a [ j ] , b=b [ j ] , z e r o s =0)
i n i t f u n c t i o n <− f unc t i on ( chain )

re turn ( switch ( chain ,
”1”= l i s t (p=0.2) , ”2”= l i s t (p =0.8)) )

# .RNG. seed <− f unc t i on ( chain )
# return ( switch ( chain , ”1” = 1 , ”2” = 2) )
# .RNG. name <− f unc t i on ( chain )
# return ( switch ( chain , ”1” = ” base : : Super−Duper ” ,
# ”2” = ” base : : Wichmann−H i l l ” ) )
#
monitor<−c (” theta ”)
n . chain<−C
i t e r<−n . i t r
burn<−20000
#thin<−10000

r e s u l t s 2 <− run . j a g s ( model=model2 , monitor=monitor ,
data=dat , n . cha ins=n . chain , sample=i t e r , burnin=burn ,
method=”r j a g s ” , i n i t s=i n i t f u n c t i o n )

post . sample2 [ i , j , ,]<− as . matrix ( results2$mcmc )
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}
}
r e turn ( l i s t ( r e s u l t s 2=r e s u l t s 2 , post . sample2=post . sample2 ) )

}

output2<−LogOddsSurv2 (n . i t r =10000 ,C=2,con . tab l e1=con . tab l e1 )
s e t . seed (20)
r e s u l t s 2<−output2$ r e su l t s 2
p l o t ( ou tput2$ r e su l t s 2 )

###########################
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