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Abstract 

This paper deals with the problem of scheduling the no-wait flow shop system with sequence 

dependent setup times and server side constraints. No-wait constraints state that there should be no 

waiting time between consecutive operations of jobs. In addition, sequence dependent setup times are 

considered for each operation. This means that the setup time of an operation on its respective machine 

is dependent on the previous operation on the same machine. Moreover, the problem consists of server 

side constraints, i.e., not all machines have a dedicated server to prepare them for an operation. In other 

words, several machines share a common server. The considered performance measure is makespan. 

This problem is proved to be strongly NP-Hard. To deal with the problem two genetic algorithms (GA) 

are developed. In order to evaluate the performance of the developed frameworks, a large number of 

benchmark problems are selected and solved with different server limitation scenarios. Computational 

results confirm that both of the proposed algorithms are efficient and competitive. The developed 

algorithms are able to improve many of the best-known solutions of the test problems from the literature. 

Moreover, the effect of the server side constraints on the makespan of the test problems is explained 

using the computational results. 

Keywords: Flow Shop Scheduling; No-wait; Sequence Dependent Setup; Makespan; Server Side 

Constraints; Genetic Algorithm 

1. Introduction 

The no-wait flow shop problem is a special case of the classical flow shop problem, in which 

there should be no waiting time between successive operations of jobs. In other words, once processing 

is started, no interruption is permitted between operations of the same jobs. This paper also considers a 
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sequence dependent setup time for each operation. Therefore, setup time of a machine for a specific 

operation depends on the previous operation that is processed on that machine. Allahverdi et al. (1999) 

and Aldowaisan (2001) describe the importance of considering setup times in no-wait scheduling 

problems. In this paper, server side constraints are also considered, meaning that a number of machines 

are assigned a single server that is responsible for performing the setup operations on all of these 

machines. As a result, setup times on the machines with a common server should not overlap. 

Companies always look for ways to reduce waste and improve efficiency; therefore, reducing the 

number of servers can be used in different situations. Whether the server is a robot or a human, reducing 

the number of servers without sacrificing efficiency is desirable.  

The considered performance measure is makespan. Following the three-field notation of the 

scheduling problems, the mentioned problem can be designated as 
max, | , |Q sdF S no wait S C . King 

and Spachis (1980) proved that the no-wait flow shop problem with makespan performance measure  

(
max| |F no wait C ) can be transformed to the Asymmetric Travelling Salesperson Problem (ATSP). 

Röck (1984) proved that (
max| |F no wait C ) is NP-Hard. Aldowaisan (2001) transformed the no-

wait flow shop problem with separable setup times and the makespan criterion  

(
max| , |F no wait setup C ) to ATSP. Since 

max, | , |Q sdF S no wait S C  is a generalization of 

max| |F no wait C  and 
max| , |F no wait setup C , it can be inferred that 

max, | , |Q sdF S no wait S C  

is also strongly NP-Hard.  

Sequence dependent setup times occur in many practical instances. Examples of such 

circumstances include (Samarghandi and ElMekkawy 2014a): 

 Adjusting jigs and fixtures for processing different products. 

 Retooling multi-tool machines. 

 Cleaning machines to make them ready for the next operation. Cleaning is an indispensable 

part of the manufacturing processes in industries such as textile, plastic, chemical, semi-

conductor, pharmaceutical, and food industries.  
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Industrial applications mentioned in the literature for 
max, | , |Q sdF S no wait S C  include 

chemical industries (Rajendran 1994), food industries (Hall and Sriskandarajah 1996), steel production 

(Wismer 1972), pharmaceutical industries (Raaymakers and Hoogeveen 2000), and production of 

concrete products (Grabowski and Pempera 2000). Hall and Sriskandarajah (1996) provide a 

comprehensive review of the applications of the problem. 

In this paper, a Genetic Algorithm (GA) as well as a GA with diversified local search procedure 

are developed to deal with 
max, | , |Q sdF S no wait S C . Moreover, an algorithm is developed to create 

a feasible timetable from a given sequence. The timetabling algorithm is further coupled with the 

developed genetic algorithms to explore the feasible region of the problem. 

Although 
max, | , |Q sdF S no wait S C  has numerous practical applications, it has received no 

attention in the literature. In this paper, different server limitation scenarios are considered, and 

computational results are compared with the results of the 2-Opt algorithm. Moreover, computational 

results are compared with the most competitive methods for 
max| , |sdF no wait S C from the literature. 

In fact, 
max| , |sdF no wait S C  can be considered as a special case of 

max, | , |Q sdF S no wait S C . 

The contribution of this paper is three-fold. First, 
max, | , |Q sdF S no wait S C  is studied in this 

paper for the first time; a mathematical model is developed for this problem and a number of small-

instance test problems are solved to optimality. Second, the effect of adding server side constraints with 

different scenarios on the makespan of 
max| , |sdF no wait S C  is studied by applying the developed 

GAs to a large number of test problems. Finally, although the algorithm is developed to deal with 

sequence dependent setup times and server constraints, it outperforms competitive methods specifically 

designed for 
max| , |sdF no wait S C . Computational results show that the proposed GA methods are 

able to find good-quality solutions for the test problems in a reasonable time. It is hoped that the 

presented results will be used as a benchmark by other researchers interested in solving similar 

scheduling problems in the future. 
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The rest of the paper is outlined as follows. Section 2 performs a literature review. Section 3 is 

devoted to problem description. Section 4 explains the proposed GA methods. Section 5 summarizes 

the computational results. Section 6 discusses the concluding remarks and future research directions.  

2. Literature Review 

The first attempts to deal with the no-wait flow shop problem should be credited to Reddi and 

Ramamoorthy (1972), Wismer (1972), Grabowski and Syslo (1973), Bonney and Gundry (1976), King 

and Spachis (1980), Gangadharan and Rajendran (1993), Rajendran (1994), Glass et al. (1999), Sidney 

et al. (2000), and Sviridenko (2003). The two-machine no-wait flow shop problem with setup and 

removal times was reduced to the famous Travelling Salesperson Problem (TSP) by Gupta et al. (1997). 

Cheng et al. (1999) studied the problem of 
max2, 1| |F S setup c  and proposed some heuristics for the 

problem. Bianco et al. (1999) proposed two heuristics for the no-wait flow shop problem with release 

dates and sequence dependent setup times, and makespan criterion. 

Aldowaisan and Allahverdi (1998) considered 2 | , | iF no wait setup C   and developed a 

heuristic algorithm for the problem. Aldowaisan (2001) performed a research on the same problem and 

developed a new heuristic algorithm. In addition, Aldowaisan and Allahverdi (2004) proposed six 

heuristics for 
max| |F no wait c  and considered the separable setup time in the problem of  

| | iF no wait C  .  

Sidney et al. (2000) considered the two-machine no-wait flow shop problem with anticipatory 

setup times and makespan and proposed a heuristic for this problem. Guirchoun et al. (2005) studied a 

two-stage hybrid flow shop with no-wait constraint between the two stages and proposed a heuristic to 

deal with the problem. Grabowski and Pempera (2005) proposed 6 meta-heuristics for 

max| |F no wait C . Liu et al. (2007) proposed a particle swarm optimization with several local search 

approaches. Su and Lee (2008) considered the problem of two-machine no-wait flow shop with 

separable setup times and single server and developed a heuristic and a branch-and-bound algorithm to 
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solve the problem. Laha and Chakraborty (2009) proposed a constructive algorithm for 

max| |F no wait C .  

The literature on 
max| , |F no wait setup C  and 

max| , |sdF no wait S C  is rather limited. 

Problems of 
max2, 1| , |F S no wait setup C  and 

max2, 1| , |J S no wait setup C have been studied by 

Samarghandi and ElMekkawy (2011) and Samarghandi and ElMekkawy (2013a) respectively. 

max, | , |Q sdF S no wait S C  should be considered as a generalization of 

max2, 1| , |F S no wait setup C . Moreover, Samarghandi and ElMekkawy (2014a) studied the problem 

of 
max| , |sdF no wait S C . Computational results of Samarghandi and ElMekkawy (2014a) will be 

used to perform several comparisons with the results of the developed algorithms in this paper. Table 1 

summarizes the available literature on the subject of this paper. 
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Table 1- Literature review 

Research Problem Considered Proposed Method 

Gupta et al. (1997) 
Two-machine flow shop problem with 

setup and removal times 
Reduction to TSP 

Cheng et al. (1999) max2, 1| |F S setup C  Heuristic 

Bianco et al. (1999) max| , |F no wait release C  Heuristic 

Aldowaisan and Allahverdi 

(1998) 
2 | , | iF no wait setup C   Heuristic 

Sidney et al. (2000) 

Two-machine no-wait flow shop 

problem with anticipatory setup times 

and makespan
 

Heuristic 

Aldowaisan (2001) 2 | , | iF no wait setup C   Heuristic 

Aldowaisan and Allahverdi 

(2004) max| |F no wait C  Heuristic 

Guirchoun et al. (2005) 
Two-stage hybrid flow shop with no-

wait constraint between the two stages
 

Heuristic 

Grabowski and Pempera (2005) max| |F no wait C  Various meta-heuristic 

Liu et al. (2007) max| |F no wait C  PSO 

Su and Lee (2008) 2 | , | iF no wait setup C   
Branch and bound 

Qian et al. (2009) max| |F no wait C
 

Hybrid differential evolution 

Pan et al. (2008a) max| |F no wait C
 

Hybrid PSO 

Pan et al. (2008b) max| |F no wait C
 

Greedy algorithms 

Laha and Chakraborty (2009) max| |F no wait C
 

Constructive heuristic 

Araujoa and Naganoa (2011) max| , |sdF no wait S C
 

Heuristic 

Samarghandi and ElMekkawy 

(2011) max2, 1| , |F S no wait setup C
 

Hybrid variable 

neighbourhood search 

Samarghandi and ElMekkawy 

(2012a) max| |F no wait C
 

Hybrid tabu search 

Samarghandi and ElMekkawy 

(2012b) max| , |F no wait setup C
 

PSO and genetic algorithm 

Nagano et al. (Article in Press) | , | iF no wait setup C   
Evolutionary clustering search 

Gao et al. (2012) | , | iF no wait setup C   
Hybrid harmony search 

Jolai et al. (Article in Press) 

No-wait flexible flow shop scheduling 

problem with sequence dependent setup 

times 

Several metaheuristics 

Rabiee et al. (Article in Press) 

No-wait two-machine flow shop 

problem with sequence dependent setup 

times and probable rework 

Several metaheuristics 

Ying et al. (2012) 

No-wait flow shop manufacturing cell 

scheduling problem (FMCSP) with 

sequence dependent family setup times 

Several metaheuristics 
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3. Problem Description 

3.1. Notations and Mathematical Model 

The following notation is used throughout this paper: 

M   Set of machines 

| |m M
 

Number of machines 

N   Set of jobs 

| |n N  Number of jobs 

iJ  Job i  

ijo  j th operation of iJ  

ijp
 

Processing time of the j th operation of 
iJ  on its respective machine 

iS
 

Starting time of 
iJ  

ijoS
 

Starting time of 
ijo  

ijkST  
Setup time of 

ijo  if scheduled after 
kjo  

0ijST
 

Setup time of 
ijo  if iJ  is the first scheduled job  

ijSTS   Starting time of the setup time of 
ijo  

1,2,...,

wSR M

w Q




  A subset of M  which includes the machines with one assigned server 

| |wSR  Number of members of 
wSR   

l  Sequence l  

maxC  Makespan of 
l  

 

Brackets are used to indicate consecutive jobs, i.e., 
[ ]iS  refers to the starting time of the job 

planned to be operated after i th job in a given sequence. Moreover, suppose that ; 1,2,...,wSR w Q  

is a subset of M  and presents the set of machines for which one server is assigned to perform the 

setups. If Q  servers exist in a particular instance of the problem ( 1,2,...,w Q ), then 

;1w eSR SR w e Q     . In other words, it is assumed that each machine is assigned to only one 

server. Based on the above notations, a mathematical model for 
max, | , |Q sdF S no wait S C  is as 

follows: 

maxMin C    (1) 

max ; 1,2,...,
imo imC S p i n     (2) 
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[ ] [ ] ; 1,2,..., 1 1,2,...,
i j ijo o ij i jiS S p ST i n j m       (3) 

[ ]
; 1,2,..., 1,2,..., 1

i j ijo o ijS S p i n j m      (4) 

[ ] [ ] [ ] ; 1,2,..., 1 , ; 1,2,...,
i j i kST ST i ki wS S ST i n j k SR j k w Q          (5) 

1 1 1 0; , ; 1,2,...,
j kST ST k wS S ST j k SR j k w Q        (6) 

0; 1,2,..., 1,2,...,
ijoS i n j m    (7) 

0; 1,2,..., 1,2,...,
ijSTS i n j m     (8) 

In this model, the objective function is to minimize the makespan. (2) guarantees that the 

makespan is equal to the completion time of the last scheduled operation. (3) indicates that the starting 

time of the j th operation of [ ]i  (or the job scheduled after i ) should not be before the starting time of 

the same operation of i  plus its processing time plus the setup time of 
[ ]i jo  when its previous operation 

( i  in this case) is taken into consideration. (4) imposes the no-wait constraints. (5) represents the server 

side constraints for all the jobs except the first job scheduled in the sequence. Server side constraints 

for the first job in the sequence is represented by (6). Finally, (7) and (8) set the non-negativity 

constraints. Figure 1 illustrates the implication of (5). In this figure, it is assumed that one server is 

assigned to machines j  and k . 

 
Figure 1 – Illustration of the Mathematical Model 

 



9 
 

Based on figure 1, one can verify that: 

[ ] [ ] [ ]i j i kST ST i kiS S ST     (9) 

If (9) is violated, then setup times of 
[ ]i ko  and 

[ ]i jo  overlap, which is a violation of server 

constraints. According to (4), once the starting time of 1io  is obtained by the model, it is possible to 

calculate the starting time of ; 2,3,...,ijo j m . In other words, it is possible to reduce the problem to 

finding the best time to start 1; 1,2,...,io i n  without violating server side constraints. Consequently, 

max, | , |Q sdF S no wait S C  can be reduced to the Asymmetric Travelling Salesperson Problem 

(ATSP). 

3.2. Calculating the Makespan 

An algorithm is developed here in order to calculate the objective function of 

max, | , |Q sdF S no wait S C  by generating a feasible timetable from a given sequence of jobs. This 

algorithm is called Makespan Calculation Algorithm with Server constraints or MCAS.  

MCAS utilizes a pointer ( e ) and a dereference operator, denoted as ( )h e . A pointer refers to 

the place of an element in a set. For instance, if {3,6,9,10}wSR  , then 2e   points to the element 

that is located in the second place in 
wSR . The dereference operator shows the element that the pointer 

has referred to. Therefore, if 2e  , then ( ) 6h e  . MCAS calculates the makespan of a given 

permutation l  from 
max, | , |Q sdF S no wait S C . 

To schedule the first job of l : 

1. Set 1w  .  

2. Sort the indices of 
wSR  in the ascending order; suppose that | |wSR b . Define e  as 

the pointer of 
wSR . Set 1e  . Set 

1, ( )
0

h eSTS  . 

3. Set 1e e  . 
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4. Set 
1, ( ) 1,( ( 1)) 1, ( ),0h e h eST ST h eS S ST


  .  

5. If e b , go back to step 3. If e b  and w Q , set 1w w   and go to step 2. If 

e b  and w Q , proceed to step 6.  

6. Set 
11 1,1 1,1,0o STS S ST  . 

7. For 1k   to 1m  , 
1[ ] 1,[ ] 11[ ]0 1max{ , }

k k kO ST k O kS S ST S p   . If 

1,[ ] 11[ ]0 1k kST k O kS ST S p   , set 
1,[ ] 11[ ]0 1( )

k kST k O kd S ST S p    , and for 

1,2,..., 1z k  , set 
1 1z zO OS S d  .  

To schedule the remaining jobs of l : 

8. Set 1; 1i j  . 

9. Set 1w  .  

10. Sort the indices of 
wSR  in the ascending order; suppose that | |wSR b . Define e  as 

the pointer of 
wSR . Set 1e  . Set 

[ ], ( ) , ( ) , ( )i h e i h eST o i h eS S p  . 

11. Set 1e e  . 

12. Set 
[ ], ( ) [ ],( ( 1)) , ( )[ ], ( 1), , ( )max{ , }
i h e i h e i h eST ST i h e i O i h eS S ST S p

    .  

13. If e b , go back to step 11. If e b  and w Q , set 1w w   and go to step 10. 

If e b  and w Q , proceed to step 14.  

14. Set 
[ ][ ] [ ]i jii j STo i jiS S ST . 

15. 1j j  . 

16. 
[ ] [ ] [ ],( 1)[ ] [ ],( 1)max{ , }
i j i j i jO ST i ji O i jS S ST S p

    . If 
[ ] [ ],( 1)[ ] [ ],( 1)i j i jST i ji O i jS ST S p

    , 

set 
[ ] [ ],( 1)[ ] [ ],( 1)( )
i j i jST i ji O i jd S ST S p

     , and for 1,2,..., 1z j  , set 

[ ] [ ]i z i zO OS S d  .  

17. If j m , go back to step 15. Otherwise, proceed to step 18.  
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18. If i n , stop. 
max nmo nmC S p  . Otherwise, set 1i i   and 1j  . Go back to step 

9. 

MCAS starts with a sequence of jobs ( l ) or equivalently, a permutation. MCAS first schedules 

the sequence dependent setup times of the first job in l  based on the defined server side constraints 

(steps 1 to 5). Then the no-wait constraints are imposed, while modifying the starting time of the rest 

of the operations of that job if necessary (steps 6 and 7). When scheduling the first job of l  is 

completed, using the same method, MCAS first schedules the sequence dependent setup times of the 

next job and imposes the server constraints (steps 8 to 13). Steps 14 to 16 schedule the operations and 

impose the no-wait constraints. Finally, step 17 calculates the makespan and then the algorithm is 

completed. Computational complexity of this algorithm is ( )O mn .  

3.3. Illustrative Example 

Table 2 presents the data for a typical instance of 
max, | , |Q sdF S no wait S C . For this 

example, all setup times are assumed to be equal to 1, except 
2,1,1 3ST   and 

2,2,1 2ST  . Suppose that 

1 {1,2}SR   and 
2 {3}SR  . (1,2,3)   is considered as the desired sequence and MCAS will be 

used to develop a timetable. 

Table 2 – A Typical 
max, | , |Q sdF S no wait S C  Instance 

iJ  ijp  

1 1 2 1 

2 1 1 3 
 

The first 5 steps of MCAS schedule the setup times of the first job in   according to the server 

constraints. According to step 2, MCAS sets 
1,1

0STS  . Since 
1 {1,2}SR  , in step 4 MCAS sets 

1,2 1,1 1,1,0 0 1 1ST STS S ST     . Moreover, since 
2 {3}SR  , which means machine 3 has its dedicated 

server, MCAS sets 
1,3

0STS  . Figure 2 depicts the partial timetable developed so far. 
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Figure 2 – Setup Times of 1J   

At this point MCAS proceeds to steps 6 and 7. In step 6, MCAS sets 

11 1,1 1,1,0 0 1 1o STS S ST     . Step 7 develops the following set for 1k  : 

1[ ] 1,[ ] 1 1,[1] 1,21[ ]0 1max{ , } max{1 1,1 1} 2
k k kO ST k O k O OS S ST S p S S         . The same calculation 

results in 
1,[2] 1,3 1,[2] 1,21,[2],0 1,2max{ , } max{0 1,2 2} 4O O ST OS S S ST S p         for 2k  . Thus, 

so far the Gantt chart of figure 3 is developed. 

 
Figure 3 – Job 1 is Scheduled 

 

Steps 8 to 13 schedule the setup times of the second job in sequence   the same way that setup 

times of job 1 are scheduled. A partial Gantt chart after scheduling the setup times of job 2 is presented 
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in figure 4. Since there is one server assigned to machines 1 and 2, their setup times should not overlap. 

However, machine 3 has its own dedicated server and therefore its setup times can overlap with setup 

times of machines 1 and 2. 

 
Figure 4 – Partial Gantt Chart After Scheduling Setup Times of Job 2 

 

Then, MCAS proceeds to step 14 and since 1; 1i j  , sets 

[ ] [1],1,1[ ] [1],1[ ] [1],1,1 2 3 5
i jii j ST STo oi jiS S ST S S ST       . Step 15 sets 2j   and MCAS 

proceeds to step 16. At this step: 

[ ] [ ] [ ],( 1)

[1],2 2,2 2,2 2,1

[ ] [ ],( 1)

2,2,1 2,1

max{ , }

max{ , }

max{5 2,5 1} 7

i j i j i jO ST i ji O i j

O O ST O

S S ST S p

S S S ST S p

    

    

  

  (10) 

The same calculations for 3j   results in: 

[ ] [ ] [ ],( 1)

[1],3 2,3 2,3 2,2

[ ] [ ],( 1)

2,3,1 2,2

max{ , }

max{ , }

max{5 1,7 1} 8

i j i j i jO ST i ji O i j

O O ST O

S S ST S p

S S S ST S p

    

    

  

  (11) 

 Therefore, the Gantt chart of Figure 5 is developed.  
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Figure 5 – Gantt Chart Before Imposing No-Wait Constraints 

 

Based on step 16, for 2j   one can verify that:  

[ ] [ ],( 1)

[1],2 [1],1

[ ] [ ],( 1)

[1],2,1 [1],1

5 2 5 1

i j i jST i ji O i j

ST O

S ST S p

S ST S P

    

   

  

   (12) 

In other words, MCAS verifies that no-wait constraints are violated. Therefore, step 16 

performs extra steps to impose this constraint: 

[ ] [ ],( 1)

[1],2 [1],1

[ ] [ ],( 1)

[1],2,1 [1],1

( )

( )

5 2 (5 1)

1

i j i jST i ji O i j

ST O

d S ST S p

S ST S p

    

   

   



   (13) 

And 1d   will be added to 
[1],1OS : 

[1],1 [1],1
5 1 6O OS S d        (14) 

This results in the Gantt chart of figure 6. At this point, the algorithm is finished and a complete 

timetable is created; step 18 of MCAS returns 
2,3max 2,3 8 2 10OC S p      as the makespan of  . 

The proposed solution methodology is explained in the next section. 
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Figure 6 – Final Gantt Chart After Imposing No-Wait Constraints 

4. The Proposed Genetic Algorithm 

Genetic Algorithm (GA) is the main search technique in this paper. GAs are a particular class 

of evolutionary algorithms (EA) that use techniques inspired by evolutionary biology such as 

inheritance, mutation, selection, and crossover. GA uses chromosomes to code the feasible solutions of 

the problem. Feasible solutions of 
max, | , |Q sdF S no wait S C  are sequences of jobs, denoted by   in 

section 3. GA is a popular search technique with several successful implementations for the continuous 

and discrete optimization problems in the literature (Samarghandi and Eshghi 2009, Samarghandi et al. 

2010, Samarghandi and Jahantigh 2011, Samarghandi and ElMekkawy 2013b, Samarghandi and 

ElMekkawy 2014b). 

4.1. Chromosome Structure and GA Operations 

Chromosome structure (genotype) is one of the most important aspects of the genetic algorithm. 

In the proposed GA, each permutation or sequence of jobs ( ) is a chromosome. MCAS generates 

complete and feasible timetables for 
max, | , |Q sdF S no wait S C  once a sequence of jobs is given. This 

approach defines the extraction of solutions from chromosomes (phenotype). It is worthwhile to 

mention that the proposed GA uses the operations defined by Shadrokh and Kianfar (2007). 

The proposed GA generates Pop  random permutations for the first generation. Then, MCAS 

calculates the makespan of each of these permutations. Calculated makespans will be used as the fitness 

label of the permutations. Pop  is an even number and a parameter of the algorithm, which remains 

unchanged during all of the iterations of the algorithm. New generations are made from the existing 

generation, using four operations: crossover, mutation, immigration, and local search. 

In the crossover operation, the existing generation is randomly partitioned into 
2

Pop
 pairs of 

parents, and the crossover operation is performed on each pair with probability 
cP . If a pair is not 
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selected for crossover, each individual in this pair is considered for the mutation operation with 

probability 
mP  and then for local search with probability lP .  

The crossover operation on a pair of parents, 1P  and 
2P , produces two children, 1C  and 

2C . 

Let ( )f I  be the makespan of schedule I . If .( ( ) ( )) ( )i i i ir f P f C f P   then iC  will be selected for 

local search with probability lP  and then goes to a new generation and iP  dies out ( 1,2i  ). 
ir  is a 

random number generated from the interval [0,1]  for each i . Otherwise iC  dies out and iP  is 

considered for mutation with probability 
mP  and then for local search with probability lP . It should be 

noted that .( ( ) ( )) ( )i i i ir f P f C f P   determines how much advancement in the quality of genes 

should be expected in consecutive generations. However, since 
ir  is a random number, the amount of 

gene progress differs in each iteration. Afterwards, the immigration operation is also performed before 

finalizing the cycle of producing a new generation. Immigration operation feeds the gene pool with 

randomly generated genes, helps maintain the gene diversity, and helps prevent immature convergence. 

For the immigration operation, a chromosome will be randomly generated and is called NEW

. An individual I  is selected randomly from the current population. Let the probability of leaving I  be 

( )
( , )

( ) ( )
Leave

f I
P I NEW

f I f NEW



. A random number is generated from the interval [0,1] . If this 

random number is less than ( , )LeaveP I NEW , NEW  replaces I ; otherwise NEW  is discarded. The 

immigration operation is able to bring new and desirable characteristics to the next gene pools. The 

chromosome with the best makespan value in the final generation is the result given by the algorithm. 

Pop , 
sP , 

mP , and lP  are adjustable parameters of the algorithm. The number of iterations of the 

proposed GA is another parameter of the algorithm and is denoted as Iter . 

4.2. Crossover 

The proposed GA uses a one-point crossover. Suppose that 
1 1 1

1 1 2( , ,..., )nP J J J  and 

2 2 2

2 1 2( , ,..., )nP J J J  are the two individuals that are selected for crossover. The one-point crossover 

selects an integer number [1, ]r n . Then, the crossover operation is performed and the result is 1C  

and 
2C  whose chromosomes are defined as 1 1 1 1

1 1( ,..., , ,..., )
c c c c

r r nJ J J J
 and 2 2 2 2

1 1( ,..., , ,..., )
c c c c

r r nJ J J J
. 

1 1 1 1

1 1( ,..., ) ( ,..., )
c c

r rJ J J J  and 1 2; 1,...,
c

a bJ J a r n    where b  is the lowest index such that 

 1 12

1 1,...,
c c

b aJ J J  . And 2 2 2 2

1 1( ,..., ) ( ,..., )
c c

r rJ J J J  and 2 1; 1,...,
c

a bJ J a r n    where b  is the 

lowest index such that  2 22

1 1,...,
c c

b aJ J J  . The explained one-point crossover operation when 3r   

is demonstrated by (15). 



17 
 

1 1

2 2

: 2,3,4 | 6,5,1 : 2,3,4,1,6,5

: 3,4,1| 6,2,5 : 3,4,1,2,6,5

P C

P C




   (15) 

4.3. Mutation 

Let 1 2( , ,..., )nP J J J  be the selected chromosome for mutation. Then, the algorithm 

generates two integer numbers 
1 2, [1, 1]r r n   and an integer number [0,1]a . If 0.5a  , then the 

new chromosome will be 
1 2 1 21 1 1( ,..., , ,..., , ,..., )new r r n r rP J J J J J J  , while if 0.5a  , the new 

chromosome will be 
1 2 1 21 1 1( ,..., , ,..., , ,..., )new r r r r nP J J J J J J  . The mutation operation when 

1 29; 3; 7n r r    is demonstrated by (16). 

0.5:1,2,3,4,5,6,7,8,9 1,2,3,7,8,9,4,5,6

0.5:1,2,3,4,5,6,7,8,9 4,5,6,7,1,2,3,8,9

a

a

 

 
  (16) 

4.4. Local Search 

Once an individual is selected for local search, the algorithm randomly selects two genes from 

the chromosome and exchanges the places of these genes in the sequence. If the fitness function of the 

chromosome is improved as a result of this exchange, it will be accepted and the new chromosome will 

be transferred to the new gene pool. Otherwise, the two genes will be moved back to their original 

places and the local search procedure will restart. This process can be repeated several times until a 

solution is ultimately improved. However, in order to maintain the computational efficiency of the 

proposed GA, the number of iterations of the local search algorithm will be limited to 5. In other words, 

if the local search algorithm is unable to improve the fitness function of a particular chromosome after 

5 attempts, this chromosome will not be transferred to the next gene pool. 

4.5. Final Intensification 

Once the best makespan and its corresponding sequence of the jobs are selected as the final 

solution by the GA, a final intensification procedure is performed. This sub-algorithm exchanges the 

location of the first two adjacent jobs in the sequence and evaluates the makespan of the sequence using 

MCAS. If the makespan of the new sequence is improved by the exchange, it will be accepted and the 

exchange sub-procedure will be restarted. If this exchange does not improve the fitness function of the 

sequence, the exchanged jobs will be moved back to their original locations in the sequence and the 

next two adjacent jobs in the sequence will be exchanged.  

4.6. Genetic Algorithm with Diversified Local Search Procedure 

This algorithm follows all of the explained procedures of the developed GA; however, in order 

to make the GA algorithm more effective, the local search procedure of this algorithm employs different 
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operations to facilitate a move from a certain solution to an improved solution. The local search 

algorithm starts with the exchange operation explained in section 4.4. If this operation is not successful 

after 5 attempts, the algorithm tries the exchange-3 operation. Accordingly, the algorithm randomly 

selects 3 genes from the chromosome and performs an exchange-3 operation. Suppose that the selected 

genes are i , j , and k . The exchange-3 operation is described by (17). 

3(1,2,..., ,..., ,..., ,..., ) (1,2,..., ,..., ,..., ,..., )Exchangei j k n k i j n   (17) 

If the exchange-3 operation is successful, the new chromosome will be transferred to the new 

gene pool; otherwise, the 3 genes will be moved back to their original locations. The number of 

exchange-3 attempts before the local search moves to the next operation is 5. The last operation that the 

local search algorithm will apply to a chromosome is called a sectional swap, which will also be applied 

to a chromosome for a maximum of 5 times until either an improved chromosome is found or the 

unimproved chromosome is discarded. For the sectional swap operation, a gene in the chromosome is 

randomly selected. Suppose that the selected gene is i . The sectional swap procedure is defined by  

(18). 

(1,2,..., , 1,..., ) ( 1, 2,..., ,1,2,..., )Sectional Swapi i n i i n i      (18) 

In order to distinguish between the GA algorithm with diversified local search procedure and 

the GA algorithm with simple local search procedure, the former will be called GA+DLS, while the 

latter will simply be called GA throughout the rest of this paper. The pseudo code of the GA+DLS 

method is as follows: 

1. Generate Pop  random permutations to initiate the first gene pool. Calculate the fitness of each 

individual chromosome with the MCAS algorithm. 

2. Partition the chromosomes to 
2

Pop
 pairs. Apply the cross over operation to each pair with 

probability cP . 

3. If a pair is not selected for cross over, apply the mutation operation to each individual in this pair 

with probability 
mP . 
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4. Candidate the remaining chromosomes for the local search procedure with probability lP . 

4.1. Start with exchange procedure and if unsuccessful, repeat this approach for 5 times. If the 

exchange sub-algorithm results in an improved solution, proceed to step 5; otherwise, go to 

step 4.2. 

4.2. Apply the exchange-3 algorithm to the permutation and repeat for 5 times if unsuccessful. If 

the exchange-3 method results in an improved solution, proceed to step 5; otherwise, go to step 

4.3. 

4.3. Apply the sectional swap approach to the chromosome and repeat for 5 times if unsuccessful. 

Proceed to step 5. 

5. Calculate the fitness of all of the newly generated solutions with MCAS algorithm and create the 

next gene pool. 

6. Repeat steps 2 to 5 for Iter  iterations. 

7. Perform the final intensification procedure to the best solution found and return the resulting 

chromosome as the final solution of the algorithm. 

The next section presents the computational results. 

5. Computational Results 

5.1. Tuning Parameters 

As seen in section 4, the developed GA has 5 parameters that must be tuned before the search 

can be started. Sensitivity analysis has been performed to determine the effect of the different values of 

these parameters on the performance of the algorithm. Accordingly, 3 different problems from the 

literature were chosen: rec01+SD ( 5, 20m n  ), rec25+SD ( 30, 15m n  ), and rec35+SD (

50, 10m n  ); each problem was considered with two different server constraints as described by 

(19) and (20).  
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  (20) 

It should be noted that, according to (19), the algorithm assigns a dedicated server to the last 

machine if the number of machines are odd. For instance, if the test problem has 5 machines, then 

1 1{1,2};| | 2SR SR   and 
2 2{3,4};| | 2SR SR  . However, machine 5 will be assigned one 

dedicated server; in other words 
3 3{5};| | 1SR SR  . With the same logic, depending on the number 

of machines, it is possible to have one or two machines instead of three machines assigned to one server, 

when equation set (20) is in effect. For simplicity, the described conditions of (19) and (20) will be 

denoted as 
2SR  and 

3SR  throughout the rest of this paper. The proposed GA algorithm was applied to 

each problem 3 times with 4 different combinations of the parameter values as follows: 

Table 3 – Different Parameter Combinations 
Parameter Combination 1 Combination 2 Combination 3 Combination 4 

Pop   
6

n
  

5

n
  

2

n
  n   

mP   0.2 0.3 0.4 0.5 

cP   0.2 0.3 0.4 0.5 

lP   0.05 0.1 0.15 0.2 

Iter   10n   50n   100n   200n   

 

Table 4 presents the resulting makespans for the different combinations of the parameters 

considered. 
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Table 4 – Results of the Sensitivity Analyses  
  2SR   

3SR   

Problem Replication 
Parameter Combination Parameter Combination 

1 2 3 4 1 2 3 4 

rec01+SD 

1 2183 2159 2131 2126 2180 2171 2132 2120 

2 2159 2151 2124 2124 2178 2164 2120 2132 

3 2156 2131 2126 2126 2178 2157 2132 2120 

rec25+SD 

1 4742 4724 4670 4662 4672 4676 4666 4666 

2 4741 4726 4669 4662 4676 4680 4666 4669 

3 4741 4729 4662 4695 4673 4680 4669 4666 

rec35+SD 

1 6395 6317 6139 6139 6350 6239 6148 6148 

2 6247 6325 6162 6139 6341 6229 6148 6148 

3 6307 6206 6139 6182 6349 6254 6169 6188 

 

Analysis of variance (ANOVA) can be utilized to select the best combination from the 

considered parameter combinations. Considered factors in the ANOVA include parameter combination 

as defined by table 3, problem set, server constraints, and the interactions between the mentioned 

factors. In the mentioned ANOVA, each factor has 3 replications. Table 5 summarizes the results of the 

ANOVA ( 0.05  ). 

Table 5 - Analysis of Variance for Makespan  

Source 
Degree 

of 

Freedom 

Sequential 

Sums of 

Squares 

Adjusted 

Sums of 

Squares 

Adjusted 

Mean 

Square 

Value 

F-Value P-Value 

Problem 2 203814815 203814815 101907407 193904.16 0 

Parameter 3 102481 102481 34160 65 0 

SR 1 953 953 953 1.81 0.184 

Problem*Parameter 6 51672 51672 8612 16.39 0 

Problem*SR 2 4898 4898 2449 4.66 0.014 

Parameter*SR 3 2035 2035 678 1.29 0.288 

Problem*Parameter*SR 6 7349 7349 1225 2.33 0.047 

Error 48 25227 25227 526   

Total 71 204009429     

 

According to the p values  of table 5, server side constraints are not an important factor in 

the analysis. Therefore, a re-specification of ANOVA is necessary. Table 6 presents the results of the 

re-specified model. The importance of the server constraints will be discussed with more details in the 

following sections. 
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Table 6 – Results of the Re-Specified ANOVA Model 

Source 
Degree of 

Freedom 

Sequential Sums 

of Squares 

Adjusted 

Sums of 

Squares 

Adjusted 

Mean 

Square 

Value 

F-Value P-Value 

Problem 2 203814815 203814815 101907407 151116.97 0 

Parameter 3 102481 102481 34160 50.66 0 

Problem*Parameter 6 51672 51672 8612 12.77 0 

Error 60 40462 40462 674   

Total 71 204009429     

 2 99.98%R    
2 99.98%adjR        

 

In order to confirm that the analysis of variance presented in table 6 is valid, residuals should 

follow a normal distribution. Figure 7 illustrates the normal probability plot of the residuals. To 

conclude that the residuals follow a normal distribution, they should be close to the normal probability 

line. Figure 7 confirms that the residuals are very close to the normal line.  
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Figure 7 - Normal Probability Plot of the Residuals 

 

As table 6 indicates, the combinations of table 3 have an actual effect on the makespan of the 

studied test problems. In order to find the best combination among the 4 combinations, the main effects 

plot proves to be useful. Figure 8 illustrates the main effects plot. 
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Figure 8 - Main Effects Plot 

 

Figure 8 demonstrates that combinations 3 and 4 of table 3 are more desirable than 

combinations 1 and 2. Since the difference between combinations 3 and 4 is negligible, and combination 

3 requires less computational effort, which leads to less CPU time, this combination is chosen for tuning 

the parameters of both GA and GA+DLS to perform the computational analysis.  

The developed algorithms were coded using Microsoft Visual C++ 2008; all the computational 

experiments were performed on a PC equipped with a 2.66GHz Intel Pentium IV CPU and 4 GB of 

RAM.  

To test the efficiency of the proposed algorithms, a set of 29 problems were chosen from the 

literature: car01 through car08 introduced by Carlier (1978) and rec01 through rec41 introduced by 

Reeves (1995). Reeves (1995) found this specific set of problems difficult to solve. Moreover, optimal 

solutions for the no-wait version of these problems are unknown. All of these test problems are available 

at OR-Library (Beasley). Samarghandi and ElMekkawy (2014a) generated sequence dependent setups 

for the problems of Carlier (1978) and Reeves (1995). These problems were named as car+SD and 

rec+SD, and solved by a PSO algorithm that was designed for 
max| , |sdF no wait S C . Since 

max, | , |Q sdF S no wait S C  is a generalization of 
max| , |sdF no wait S C , car+SD and rec+SD 

problems along with server constraints of equations (19) and (20) will be used as test problems in this 
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research. To remain consistent with the literature, each problem is solved 20 times, and the best obtained 

objective function value as well as the average and worst objective function values are reported. In 

addition, the average CPU time to obtain the makespans in seconds and standard deviation of the 

obtained makespans are stated. Section 5.2 reports the computational results of car01 through car08; 

computational results for rec01 through rec41 appear in section 5.3 and 5.4. 

5.2. Computational Results Obtained for car01 through car08 

Table 7 presents the computational results of car01+SD through car08+SD. These problems 

generally have a lower number of jobs compared to the set of rec+SD problems. As a result, it is possible 

to solve many of them to optimality by means of the mathematical model of section 3. One can verify 

that the proposed algorithms are in most cases able to produce the optimal solutions. Tables 8 and 9 

report more details about the obtained makespans. Table 8 belongs to 
2SR  and Table 9 demonstrates 

the results for 
3SR . 

5.3. Computational Results of rec01+SD through rec41+SD 

Table 10 compares the computational results of the developed algorithms with the makespans 

generated by the 2-Opt algorithm for problems rec01+SD through rec41+SD. This table considers the 

case of 
2SR . It can be verified that both of the developed algorithms are very efficient, with GA+DLS 

being slightly better than GA. Small values of the STD column is another indicator of the consistency 

of the proposed PSO. Table 11 performs the same comparison for the case of 
3SR . Section 5.4 compares 

the results of the developed algorithms for 
max, | , |Q sdF S no wait S C  with the results of Samarghandi 

and ElMekkawy (2014a) for 
max| , |sdF no wait S C . 

5.4. Comparison of the Solutions of 
max, | , |Q sdF S no wait S C  with 

max| , |sdF no wait S C  

Table 12 performs a comparison between the results of Samarghandi and ElMekkawy (2014a) 

for 
max| , |sdF no wait S C  and the results of the developed frameworks of this paper.  
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Table 7 – Computational Results for Problems with Optimal Solution  

Problem ,n m   

No Server 

Constraint 

Optimal 

Solution 

for 
2SR   

Optimal 

Solution 

for 
3SR  

GA - 
2SR  GA+DLS - 

2SR  GA - 
3SR  GA+DLS - 

3SR  

OFV* OFV OFV 
Best 

Solution 
Gap** 

Best 

Solution 
Gap 

Best 

Solution 
Gap 

Best 

Solution 
Gap 

Car01+SD 11,5 10,379.00 10,379.00 10,402.00 10,379.00 100.000 10,379.00 100.000 10,402.00 100.000 10,402.00 100.000 

Car02+SD 13,4 N/A N/A N/A 11,486.00 N/A 11,486.00 N/A 11,488.00 N/A 11,488.00 N/A 

Car03+SD 12,5 11,877.00 11,877.00 11,919.00 11,877.00 100.000 11,877.00 100.000 11,919.00 100.000 11,919.00 100.000 

Car04+SD 14,4 N/A N/A N/A 12,384.00 N/A 12,384.00 N/A 12,398.00 N/A 12,398.00 N/A 

Car05+SD 10,6 11,945.00 12,068.00 12,266.00 12,068.00 100.000 12,068.00 100.000 12,270.00 100.033 12,266.00 100.000 

Car06+SD 8,9 12,015.00 12,131.00 12,131.00 12,131.00 100.000 12,131.00 100.000 12,131.00 100.000 12,131.00 100.000 

Car07+SD 7,7 9,795.00 9,815.00 9,795.00 9,815.00 100.000 9,815.00 100.000 9,795.00 100.000 9,795.00 100.000 

Car08+SD 8,8 11,525.00 11,525.00 11,684.00 11,525.00 100.000 11,525.00 100.000 11,684.00 100.000 11,684.00 100.000 

 

* Objective Function Value 

** 
Algorithm

Optimal

100
OFV

OFV
 , smaller gaps are more desirable 
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Table 8 – Detailed Computational Results for the Case of 
2SR   

Problem ,n m  2-Opt 

OFV* 

GA GA+DLS 

Best 

OFV 

Average 

OFV 

Worst 

OFV 
STD** 

CPU 

Time 
Gap*** 

Best 

OFV 

Average 

OFV 

Worst 

OFV 
STD 

CPU 

Time 
Gap 

car01+SD 11,5 14,830.00 10,379.00 10,401.10 10,647.00 58.76 8.14 69.99% 10,379.00 10,437.33 10,909.00 60.14 10.58 69.99% 

car02+SD 13,4 15,290.00 11,486.00 11,584.65 11,674.00 62.51 8.44 75.12% 11,486.00 11,654.55 11,936.00 61.78 10.97 75.12% 

car03+SD 12,5 15,898.00 11,877.00 11,984.55 12,174.00 92.76 8.41 74.71% 11,877.00 11,985.88 12,346.00 65.39 10.93 74.71% 

car04+SD 14,4 16,571.00 12,384.00 12,616.05 12,865.00 146.48 8.33 74.73% 12,384.00 12,561.98 12,930.00 82.89 10.66 74.73% 

car05+SD 10,6 15,383.00 12,068.00 12,109.55 12,546.00 129.49 8.44 78.45% 12,068.00 12,138.15 12,552.00 69.60 10.80 78.45% 

car06+SD 8,9 15,623.00 12,131.00 12,255.60 12,590.00 179.07 9.93 77.65% 12,131.00 12,281.18 12,590.00 103.29 12.71 77.65% 

car07+SD 7,7 12,579.00 9,815.00 9,834.80 9,944.00 42.90 7.42 78.03% 9,815.00 9,837.20 9,944.00 35.55 9.50 78.03% 

car08+SD 8,8 14,099.00 11,525.00 11,545.70 11,606.00 26.78 8.53 81.74% 11,525.00 11,543.23 11,597.00 20.19 10.91 81.74% 

Average N/A N/A N/A N/A N/A 92.34 8.45 76.30% N/A N/A N/A 62.35 10.88 76.30% 

 

* Objective Function Value 

**Standard Deviation 

*** 
Algorithm

2-Opt

100
BestOFV

OFV
 , smaller gaps are more desirable 
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Table 9 – Detailed Computational Results for the Case of 
3SR  

Problem ,n m  2-Opt 

OFV* 

GA GA+DLS 

Best 

OFV 

Average 

OFV 

Worst 

OFV 
STD** 

CPU 

Time 
Gap*** 

Best 

OFV 

Average 

OFV 

Worst 

OFV 
STD 

CPU 

Time 
Gap 

car01+SD 11,5 13,111.00 10,402.00 10,429.60 10,542.00 40.99 8.34 79.34% 10,402.00 10,417.58 10,623.00 43.57 10.93 79.34% 

car02+SD 13,4 15,212.00 11,488.00 11,558.45 11,695.00 66.93 8.13 75.52% 11,488.00 11,618.53 12,023.00 113.00 10.64 75.52% 

car03+SD 12,5 17,733.00 11,919.00 12,016.90 12,080.00 57.55 8.42 67.21% 11,919.00 12,067.90 12,360.00 103.06 11.19 67.21% 

car04+SD 14,4 15,784.00 12,398.00 12,588.75 12,905.00 156.56 8.50 78.55% 12,398.00 12,596.18 12,846.00 124.55 11.31 78.55% 

car05+SD 10,6 15,550.00 12,270.00 12,395.15 12,559.00 112.06 8.54 78.91% 12,266.00 12,305.65 12,558.00 65.59 11.02 78.88% 

car06+SD 8,9 15,814.00 12,131.00 12,358.95 12,590.00 233.88 9.69 76.71% 12,131.00 12,226.45 12,590.00 162.99 12.49 76.71% 

car07+SD 7,7 12,846.00 9,795.00 9,799.70 9,889.00 21.02 7.49 76.25% 9,795.00 9,811.45 9,889.00 36.17 9.59 76.25% 

car08+SD 8,8 14,607.00 11,684.00 11,703.45 11,857.00 39.83 8.66 79.99% 11,684.00 11,727.78 12,022.00 86.29 11.09 79.99% 

Average N/A N/A N/A N/A N/A 91.10 8.47 76.56% N/A N/A N/A 91.90 11.03 76.56% 

 

* Objective Function Value 

**Standard Deviation 

*** 
Algorithm

2-Opt

100
BestOFV

OFV
 , smaller gaps are more desirable 
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Table 10 – Detailed Computational Results for the Case of 
2SR   

Problem ,n m  2-Opt 

OFV* 

GA GA+DLS 

Best 

OFV 

Average 

OFV 

Worst 

OFV 
STD** 

CPU 

Time 
Gap*** 

Best 

OFV 

Average 

OFV 

Worst 

OFV 
STD 

CPU 

Time 
Gap 

rec01+SD 20,5 2,822.00 2,124.00 2,144.15 2,183.00 14.28 11.82 75.27% 2,118.00 2,145.58 2,183.00 16.51 15.12 75.05% 

rec03+SD 20,5 2,824.00 1,911.00 1,929.30 1,973.00 14.53 11.99 67.67% 1,884.00 1,930.15 1,987.00 27.14 15.35 66.71% 

rec05+SD 20,5 2,902.00 2,007.00 2,046.80 2,090.00 22.71 11.72 69.16% 2,010.00 2,041.70 2,090.00 18.25 15.00 69.26% 

rec07+SD 20,10 3,764.00 2,649.00 2,682.85 2,764.00 32.68 19.25 70.38% 2,637.00 2,682.33 2,741.00 30.36 24.63 70.06% 

rec09+SD 20,10 3,655.00 2,660.00 2,695.80 2,757.00 21.44 19.22 72.78% 2,675.00 2,695.03 2,741.00 15.49 24.60 73.19% 

rec11+SD 20,10 3,205.00 2,571.00 2,586.50 2,632.00 16.59 19.41 80.22% 2,565.00 2,588.55 2,617.00 13.32 23.48 80.03% 

rec13+SD 20,15 4,387.00 3,315.00 3,352.15 3,437.00 26.68 25.43 75.56% 3,324.00 3,355.25 3,401.00 15.43 30.76 75.77% 

rec15+SD 20,15 4,330.00 3,253.00 3,277.85 3,322.00 22.75 25.87 75.13% 3,237.00 3,272.80 3,328.00 26.12 31.30 74.76% 

rec17+SD 20,15 4,219.00 3,274.00 3,309.15 3,361.00 28.24 25.10 77.60% 3,271.00 3,291.43 3,337.00 17.61 30.36 77.53% 

rec19+SD 30,10 5,401.00 3,867.00 3,887.25 3,917.00 15.97 32.64 71.60% 3,851.00 3,901.63 3,971.00 29.04 39.49 71.30% 

rec21+SD 30,10 4,980.00 3,743.00 3,776.95 3,824.00 23.54 32.77 75.16% 3,714.00 3,748.75 3,832.00 29.48 43.26 74.58% 

rec23+SD 30,10 5,507.00 3,623.00 3,652.30 3,730.00 32.36 31.37 65.79% 3,587.00 3,664.15 3,725.00 26.15 41.40 65.14% 

rec25+SD 30,15 6,094.00 4,662.00 4,708.85 4,768.00 32.03 43.47 76.50% 4,644.00 4,695.03 4,763.00 33.08 57.38 76.21% 

rec27+SD 30,15 6,348.00 4,562.00 4,611.65 4,673.00 27.17 42.99 71.87% 4,550.00 4,589.60 4,620.00 16.33 56.75 71.68% 

rec29+SD 30,15 6,172.00 4,443.00 4,483.90 4,524.00 24.38 42.47 71.99% 4,424.00 4,475.20 4,544.00 32.69 56.05 71.68% 

rec31+SD 50,10 8,919.00 5,936.00 6,029.60 6,129.00 51.98 100.63 66.55% 5,911.00 6,021.28 6,176.00 64.09 127.90 66.27% 

rec33+SD 50,10 8,917.00 6,159.00 6,211.90 6,352.00 45.00 99.48 69.07% 6,155.00 6,225.10 6,294.00 30.13 126.44 69.03% 

rec35+SD 50,10 9,329.00 6,139.00 6,251.05 6,395.00 73.33 100.31 65.81% 6,143.00 6,196.53 6,314.00 39.41 127.49 65.85% 

rec37+SD 75,20 15,841.00 10,985.00 11,076.60 11,177.00 45.60 604.32 69.35% 10,957.00 11,059.95 11,191.00 61.88 742.70 69.17% 

rec39+SD 75,20 16,783.00 11,299.00 11,401.05 11,503.00 68.17 597.69 67.32% 11,303.00 11,450.05 11,701.00 93.80 734.55 67.35% 

rec41+SD 75,20 16,428.00 11,494.00 11,579.60 11,692.00 65.39 605.11 69.97% 11,461.00 11,528.53 11,623.00 42.58 743.67 69.77% 

Average NA NA NA NA NA 33.56 119.19 71.65% NA NA NA 32.33 147.99 71.45% 

* Objective Function Value 

**Standard Deviation 

*** 
Algorithm

2-Opt

100
BestOFV

OFV
 , smaller gaps are more desirable 
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Table 11 – Detailed Computational Results for the Case of 
3SR   

Problem ,n m  2-Opt 

OFV* 

GA GA+DLS 

Best 

OFV 

Average 

OFV 

Worst 

OFV 
STD** 

CPU 

Time 
Gap*** 

Best 

OFV 

Average 

OFV 

Worst 

OFV 
STD 

CPU 

Time 
Gap 

rec01+SD 20,5 2,880.00 2,120.00 2,144.35 2,180.00 18.75 11.88 73.61% 2,125.00 2,148.60 2,188.00 17.08 15.22 73.78% 

rec03+SD 20,5 2,826.00 1,890.00 1,916.30 1,950.00 17.02 12.64 66.88% 1,880.00 1,922.05 1,965.00 21.59 16.19 66.53% 

rec05+SD 20,5 2,663.00 2,032.00 2,057.60 2,110.00 23.92 13.03 76.30% 2,010.00 2,048.20 2,129.00 24.09 16.69 75.48% 

rec07+SD 20,10 3,609.00 2,671.00 2,711.75 2,752.00 20.04 19.99 74.01% 2,671.00 2,698.95 2,772.00 22.48 26.18 74.01% 

rec09+SD 20,10 3,392.00 2,644.00 2,674.35 2,714.00 16.70 19.34 77.95% 2,669.00 2,691.08 2,739.00 17.77 25.34 78.69% 

rec11+SD 20,10 3,538.00 2,600.00 2,628.65 2,665.00 20.52 19.02 73.49% 2,599.00 2,619.25 2,659.00 14.56 24.91 73.46% 

rec13+SD 20,15 4,337.00 3,343.00 3,374.10 3,422.00 21.40 26.77 77.08% 3,319.00 3,359.63 3,411.00 27.24 35.07 76.53% 

rec15+SD 20,15 4,602.00 3,257.00 3,307.45 3,326.00 15.95 27.00 70.77% 3,242.00 3,279.03 3,316.00 22.96 35.90 70.45% 

rec17+SD 20,15 4,390.00 3,267.00 3,296.75 3,320.00 18.78 27.34 74.42% 3,268.00 3,287.08 3,326.00 16.33 36.36 74.44% 

rec19+SD 30,10 5,546.00 3,871.00 3,927.30 3,984.00 31.29 34.27 69.80% 3,812.00 3,886.10 3,987.00 34.57 45.57 68.73% 

rec21+SD 30,10 5,033.00 3,781.00 3,804.90 3,851.00 19.96 33.05 75.12% 3,729.00 3,786.53 3,835.00 25.35 43.96 74.09% 

rec23+SD 30,10 5,645.00 3,658.00 3,702.75 3,739.00 23.21 33.59 64.80% 3,634.00 3,682.30 3,730.00 24.93 44.67 64.38% 

rec25+SD 30,15 6,456.00 4,666.00 4,676.40 4,689.00 6.28 45.83 72.27% 4,659.00 4,687.15 4,752.00 22.18 59.17 72.17% 

rec27+SD 30,15 6,615.00 4,622.00 4,646.65 4,689.00 17.25 46.53 69.87% 4,559.00 4,608.18 4,650.00 25.65 60.06 68.92% 

rec29+SD 30,15 6,339.00 4,458.00 4,493.25 4,538.00 20.73 46.38 70.33% 4,452.00 4,514.23 4,623.00 37.35 59.87 70.23% 

rec31+SD 50,10 8,785.00 5,957.00 6,005.10 6,185.00 69.57 101.90 67.81% 5,931.00 6,029.98 6,096.00 42.44 131.55 67.51% 

rec33+SD 50,10 8,970.00 6,183.00 6,231.20 6,310.00 33.65 101.70 68.93% 6,178.00 6,237.03 6,286.00 24.18 131.29 68.87% 

rec35+SD 50,10 9,812.00 6,148.00 6,306.10 6,389.00 83.23 100.41 62.66% 6,169.00 6,242.55 6,351.00 44.46 129.63 62.87% 

rec37+SD 75,20 15,066.00 10,861.00 10,954.20 11,011.00 37.50 633.81 72.09% 10,881.00 11,000.13 11,093.00 63.28 842.96 72.22% 

rec39+SD 75,20 16,402.00 11,328.00 11,387.05 11,463.00 40.98 921.74 69.06% 11,296.00 11,415.30 11,510.00 53.37 1,015.75 68.87% 

rec41+SD 75,20 16,952.00 11,450.00 11,536.85 11,598.00 35.91 634.87 67.54% 11,441.00 11,565.83 11,789.00 99.29 768.19 67.49% 

Average NA NA NA NA NA 28.22 138.62 71.18% NA NA NA 32.44 169.74 70.94% 

* Objective Function Value 

**Standard Deviation 

*** 
Algorithm

2-Opt

100
BestOFV

OFV
 , smaller gaps are more desirable 
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Table 12 – Comparison of the Results of Samarghandi and ElMekkawy (2014a) for 
max| , |sdF no wait S C  with the Results of the Developed 

Algorithms for 
max, | , |Q sdF S no wait S C  

Problem ,n m  
No Server 

Constraint 

OFV* 

GA - 
2SR   GA - 

3SR   GA+DLS - 
2SR  GA+DLS - 

3SR  

OFV Gap** OFV Gap OFV Gap OFV Gap 

rec01+SD 20,5 2,139.00 2,124.00 99.29874 2,120.00 99.11173 2,118.00 99.01823 2,125.00 99.34549 

rec03+SD 20,5 1,902.00 1,911.00 100.47319 1,890.00 99.36909 1,884.00 99.05363 1,880.00 98.84332 

rec05+SD 20,5 2,028.00 2,007.00 98.96450 2,032.00 100.19724 2,010.00 99.11243 2,010.00 99.11243 

rec07+SD 20,10 2,652.00 2,649.00 99.88688 2,671.00 100.71644 2,637.00 99.43439 2,671.00 100.71644 

rec09+SD 20,10 2,657.00 2,660.00 100.11291 2,644.00 99.51073 2,675.00 100.67746 2,669.00 100.45164 

rec11+SD 20,10 2,558.00 2,571.00 100.50821 2,600.00 101.64191 2,565.00 100.27365 2,599.00 101.60281 

rec13+SD 20,15 3,309.00 3,315.00 100.18132 3,343.00 101.02750 3,324.00 100.45331 3,319.00 100.30221 

rec15+SD 20,15 3,222.00 3,253.00 100.96214 3,257.00 101.08628 3,237.00 100.46555 3,242.00 100.62073 

rec17+SD 20,15 3,271.00 3,274.00 100.09172 3,267.00 99.87771 3,271.00 100.00000 3,268.00 99.90828 

rec19+SD 30,10 3,848.00 3,867.00 100.49376 3,871.00 100.59771 3,851.00 100.07796 3,812.00 99.06445 

rec21+SD 30,10 3,756.00 3,743.00 99.65389 3,781.00 100.66560 3,714.00 98.88179 3,729.00 99.28115 

rec23+SD 30,10 3,628.00 3,623.00 99.86218 3,658.00 100.82690 3,587.00 98.86990 3,634.00 100.16538 

rec25+SD 30,15 4,654.00 4,662.00 100.17190 4,666.00 100.25784 4,644.00 99.78513 4,659.00 100.10743 

rec27+SD 30,15 4,565.00 4,562.00 99.93428 4,622.00 101.24863 4,550.00 99.67141 4,559.00 99.86857 

rec29+SD 30,15 4,422.00 4,443.00 100.47490 4,458.00 100.81411 4,424.00 100.04523 4,452.00 100.67843 

rec31+SD 50,10 5,966.00 5,936.00 99.49715 5,957.00 99.84915 5,911.00 99.07811 5,931.00 99.41334 

rec33+SD 50,10 6,186.00 6,159.00 99.56353 6,183.00 99.95150 6,155.00 99.49887 6,178.00 99.87068 

rec35+SD 50,10 6,169.00 6,139.00 99.51370 6,148.00 99.65959 6,143.00 99.57854 6,169.00 100.00000 

rec37+SD 75,20 10,782.00 10,985.00 101.88277 10,861.00 100.73270 10,957.00 101.62308 10,881.00 100.91820 

rec39+SD 75,20 11,189.00 11,299.00 100.98311 11,328.00 101.24229 11,303.00 101.01886 11,296.00 100.95630 

rec41+SD 75,20 11,324.00 11,494.00 101.50124 11,450.00 101.11268 11,461.00 101.20982 11,441.00 101.03320 

Average NA NA NA 100.28248 NA 100.59481 NA 100.06922 NA 100.34411 

* Objective Function Value 

** 
Algorithm

no server constraint

100
OFV

OFV
 , smaller gaps are more desirable 
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Results of table 12 are particularly remarkable for the following reasons: 

 The difference between makespan of the problems with 
2SR constraints and problems with 

3SR  constraints is infinitesimal. 

 The difference between makespan of the problems with server constraints and makespan 

of the problems with no server constraints is very small. 

 Solutions found for the problems with server constraints under 
2SR  and 

3SR  scenarios are 

in some cases better than the solutions of the same problem without server constraints. 

 For the problems with optimal solutions, table 7 indicates that although the optimal 

solutions of some of the problems with server constraints are slightly larger than for the 

problems without server constraints, in many cases the optimal solutions are equal. 

In other words, the server side constraints for the case of 
2SR  and even 

3SR  have either no 

effect or a negligible effect on the makespan of the problems studied in this research. This makes the 

results of this research very practical for companies that have adopted a lean approach as it may be 

possible to reduce the number of servers to 
1

2
 (according to 

2SR  scenario) or even 
1

3
 (based on 

3SR  

scenario) with minimal impact on the makespan. Computational results of Samarghandi and 

ElMekkawy (2011) and Samarghandi and ElMekkawy (2013a) are in line with the computational results 

presented in section 5. 

6. Conclusion 

This paper considered the scheduling problem of 
max, | , |Q sdF S no wait S C . The problem is 

strongly NP-Hard. A mathematical model of the problem was developed, and the problem was reduced 

to a permutation problem. The MCAS algorithm was developed to produce a feasible timetable for 

max, | , |Q sdF S no wait S C  when a permutation of jobs is given. A genetic algorithm was developed 

to deal with the problem. A diversified local search sub-procedure was developed to further improve 

the computational results of the proposed GA and to increase the consistency of the solutions. A 

sensitivity analysis using ANOVA was performed to tune the parameters of the developed algorithms.  
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A thorough computational analysis was performed on the small- and large-instance test 

problems available in the literature. Computational analysis consisted of different server assignment 

scenarios. The developed algorithms proved to be very competitive; the algorithms were able to 

generate good-quality solutions for the test problems in a reasonable time. Computational results 

revealed that the impact of the server constraints on the makespan of the test problems were negligible. 

In fact, although the proposed methods were applied to test problems with server side constraints, they 

improved many of the best-known solutions proposed in the literature for problems without such 

constraints. These results are of importance for different settings where lean manufacturing techniques 

are practised. 

A possibility for the future research is finding lower bounds for  

max, | , |Q sdF S no wait S C . Moreover, consideration of due dates for jobs and setting other objectives 

such as total or mean tardiness minimization is another future research direction. Also, considering 

sequence dependent setup times for the no-wait job shop problem is promising. Another important 

direction is to analytically define conditions for setup times that minimize the impact of the 

server constraints. 
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