
1

Studying the effect of server side constraints on the makespan of the no-

wait flow shop problem with sequence dependent setup times

Hamed Samarghandi

Department of Finance and Management Science, Edwards School of Business,

University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5A7

samarghandi@edwards.usask.ca

Abstract

This paper deals with the problem of scheduling the no-wait flow shop system with sequence

dependent setup times and server side constraints. No-wait constraints state that there should be no

waiting time between consecutive operations of jobs. In addition, sequence dependent setup times are

considered for each operation. This means that the setup time of an operation on its respective machine

is dependent on the previous operation on the same machine. Moreover, the problem consists of server

side constraints, i.e., not all machines have a dedicated server to prepare them for an operation. In other

words, several machines share a common server. The considered performance measure is makespan.

This problem is proved to be strongly NP-Hard. To deal with the problem two genetic algorithms (GA)

are developed. In order to evaluate the performance of the developed frameworks, a large number of

benchmark problems are selected and solved with different server limitation scenarios. Computational

results confirm that both of the proposed algorithms are efficient and competitive. The developed

algorithms are able to improve many of the best-known solutions of the test problems from the literature.

Moreover, the effect of the server side constraints on the makespan of the test problems is explained

using the computational results.

Keywords: Flow Shop Scheduling; No-wait; Sequence Dependent Setup; Makespan; Server Side

Constraints; Genetic Algorithm

1. Introduction

The no-wait flow shop problem is a special case of the classical flow shop problem, in which

there should be no waiting time between successive operations of jobs. In other words, once processing

is started, no interruption is permitted between operations of the same jobs. This paper also considers a

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Saskatchewan's Research Archive

https://core.ac.uk/display/226144159?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

sequence dependent setup time for each operation. Therefore, setup time of a machine for a specific

operation depends on the previous operation that is processed on that machine. Allahverdi et al. (1999)

and Aldowaisan (2001) describe the importance of considering setup times in no-wait scheduling

problems. In this paper, server side constraints are also considered, meaning that a number of machines

are assigned a single server that is responsible for performing the setup operations on all of these

machines. As a result, setup times on the machines with a common server should not overlap.

Companies always look for ways to reduce waste and improve efficiency; therefore, reducing the

number of servers can be used in different situations. Whether the server is a robot or a human, reducing

the number of servers without sacrificing efficiency is desirable.

The considered performance measure is makespan. Following the three-field notation of the

scheduling problems, the mentioned problem can be designated as
max, | , |Q sdF S no wait S C . King

and Spachis (1980) proved that the no-wait flow shop problem with makespan performance measure

(
max| |F no wait C) can be transformed to the Asymmetric Travelling Salesperson Problem (ATSP).

Röck (1984) proved that (
max| |F no wait C) is NP-Hard. Aldowaisan (2001) transformed the no-

wait flow shop problem with separable setup times and the makespan criterion

(
max| , |F no wait setup C) to ATSP. Since

max, | , |Q sdF S no wait S C is a generalization of

max| |F no wait C and
max| , |F no wait setup C , it can be inferred that

max, | , |Q sdF S no wait S C

is also strongly NP-Hard.

Sequence dependent setup times occur in many practical instances. Examples of such

circumstances include (Samarghandi and ElMekkawy 2014a):

 Adjusting jigs and fixtures for processing different products.

 Retooling multi-tool machines.

 Cleaning machines to make them ready for the next operation. Cleaning is an indispensable

part of the manufacturing processes in industries such as textile, plastic, chemical, semi-

conductor, pharmaceutical, and food industries.

3

Industrial applications mentioned in the literature for
max, | , |Q sdF S no wait S C include

chemical industries (Rajendran 1994), food industries (Hall and Sriskandarajah 1996), steel production

(Wismer 1972), pharmaceutical industries (Raaymakers and Hoogeveen 2000), and production of

concrete products (Grabowski and Pempera 2000). Hall and Sriskandarajah (1996) provide a

comprehensive review of the applications of the problem.

In this paper, a Genetic Algorithm (GA) as well as a GA with diversified local search procedure

are developed to deal with
max, | , |Q sdF S no wait S C . Moreover, an algorithm is developed to create

a feasible timetable from a given sequence. The timetabling algorithm is further coupled with the

developed genetic algorithms to explore the feasible region of the problem.

Although
max, | , |Q sdF S no wait S C has numerous practical applications, it has received no

attention in the literature. In this paper, different server limitation scenarios are considered, and

computational results are compared with the results of the 2-Opt algorithm. Moreover, computational

results are compared with the most competitive methods for
max| , |sdF no wait S C from the literature.

In fact,
max| , |sdF no wait S C can be considered as a special case of

max, | , |Q sdF S no wait S C .

The contribution of this paper is three-fold. First,
max, | , |Q sdF S no wait S C is studied in this

paper for the first time; a mathematical model is developed for this problem and a number of small-

instance test problems are solved to optimality. Second, the effect of adding server side constraints with

different scenarios on the makespan of
max| , |sdF no wait S C is studied by applying the developed

GAs to a large number of test problems. Finally, although the algorithm is developed to deal with

sequence dependent setup times and server constraints, it outperforms competitive methods specifically

designed for
max| , |sdF no wait S C . Computational results show that the proposed GA methods are

able to find good-quality solutions for the test problems in a reasonable time. It is hoped that the

presented results will be used as a benchmark by other researchers interested in solving similar

scheduling problems in the future.

4

The rest of the paper is outlined as follows. Section 2 performs a literature review. Section 3 is

devoted to problem description. Section 4 explains the proposed GA methods. Section 5 summarizes

the computational results. Section 6 discusses the concluding remarks and future research directions.

2. Literature Review

The first attempts to deal with the no-wait flow shop problem should be credited to Reddi and

Ramamoorthy (1972), Wismer (1972), Grabowski and Syslo (1973), Bonney and Gundry (1976), King

and Spachis (1980), Gangadharan and Rajendran (1993), Rajendran (1994), Glass et al. (1999), Sidney

et al. (2000), and Sviridenko (2003). The two-machine no-wait flow shop problem with setup and

removal times was reduced to the famous Travelling Salesperson Problem (TSP) by Gupta et al. (1997).

Cheng et al. (1999) studied the problem of
max2, 1| |F S setup c and proposed some heuristics for the

problem. Bianco et al. (1999) proposed two heuristics for the no-wait flow shop problem with release

dates and sequence dependent setup times, and makespan criterion.

Aldowaisan and Allahverdi (1998) considered 2 | , | iF no wait setup C and developed a

heuristic algorithm for the problem. Aldowaisan (2001) performed a research on the same problem and

developed a new heuristic algorithm. In addition, Aldowaisan and Allahverdi (2004) proposed six

heuristics for
max| |F no wait c and considered the separable setup time in the problem of

| | iF no wait C .

Sidney et al. (2000) considered the two-machine no-wait flow shop problem with anticipatory

setup times and makespan and proposed a heuristic for this problem. Guirchoun et al. (2005) studied a

two-stage hybrid flow shop with no-wait constraint between the two stages and proposed a heuristic to

deal with the problem. Grabowski and Pempera (2005) proposed 6 meta-heuristics for

max| |F no wait C . Liu et al. (2007) proposed a particle swarm optimization with several local search

approaches. Su and Lee (2008) considered the problem of two-machine no-wait flow shop with

separable setup times and single server and developed a heuristic and a branch-and-bound algorithm to

5

solve the problem. Laha and Chakraborty (2009) proposed a constructive algorithm for

max| |F no wait C .

The literature on
max| , |F no wait setup C and

max| , |sdF no wait S C is rather limited.

Problems of
max2, 1| , |F S no wait setup C and

max2, 1| , |J S no wait setup C have been studied by

Samarghandi and ElMekkawy (2011) and Samarghandi and ElMekkawy (2013a) respectively.

max, | , |Q sdF S no wait S C should be considered as a generalization of

max2, 1| , |F S no wait setup C . Moreover, Samarghandi and ElMekkawy (2014a) studied the problem

of
max| , |sdF no wait S C . Computational results of Samarghandi and ElMekkawy (2014a) will be

used to perform several comparisons with the results of the developed algorithms in this paper. Table 1

summarizes the available literature on the subject of this paper.

6

Table 1- Literature review

Research Problem Considered Proposed Method

Gupta et al. (1997)
Two-machine flow shop problem with

setup and removal times
Reduction to TSP

Cheng et al. (1999) max2, 1| |F S setup C Heuristic

Bianco et al. (1999) max| , |F no wait release C Heuristic

Aldowaisan and Allahverdi

(1998)
2 | , | iF no wait setup C Heuristic

Sidney et al. (2000)

Two-machine no-wait flow shop

problem with anticipatory setup times

and makespan

Heuristic

Aldowaisan (2001) 2 | , | iF no wait setup C Heuristic

Aldowaisan and Allahverdi

(2004) max| |F no wait C Heuristic

Guirchoun et al. (2005)
Two-stage hybrid flow shop with no-

wait constraint between the two stages

Heuristic

Grabowski and Pempera (2005) max| |F no wait C Various meta-heuristic

Liu et al. (2007) max| |F no wait C PSO

Su and Lee (2008) 2 | , | iF no wait setup C
Branch and bound

Qian et al. (2009) max| |F no wait C

Hybrid differential evolution

Pan et al. (2008a) max| |F no wait C

Hybrid PSO

Pan et al. (2008b) max| |F no wait C

Greedy algorithms

Laha and Chakraborty (2009) max| |F no wait C

Constructive heuristic

Araujoa and Naganoa (2011) max| , |sdF no wait S C

Heuristic

Samarghandi and ElMekkawy

(2011) max2, 1| , |F S no wait setup C

Hybrid variable

neighbourhood search

Samarghandi and ElMekkawy

(2012a) max| |F no wait C

Hybrid tabu search

Samarghandi and ElMekkawy

(2012b) max| , |F no wait setup C

PSO and genetic algorithm

Nagano et al. (Article in Press) | , | iF no wait setup C
Evolutionary clustering search

Gao et al. (2012) | , | iF no wait setup C
Hybrid harmony search

Jolai et al. (Article in Press)

No-wait flexible flow shop scheduling

problem with sequence dependent setup

times

Several metaheuristics

Rabiee et al. (Article in Press)

No-wait two-machine flow shop

problem with sequence dependent setup

times and probable rework

Several metaheuristics

Ying et al. (2012)

No-wait flow shop manufacturing cell

scheduling problem (FMCSP) with

sequence dependent family setup times

Several metaheuristics

7

3. Problem Description

3.1. Notations and Mathematical Model

The following notation is used throughout this paper:

M Set of machines

| |m M

Number of machines

N Set of jobs

| |n N Number of jobs

iJ Job i

ijo j th operation of iJ

ijp

Processing time of the j th operation of
iJ on its respective machine

iS

Starting time of
iJ

ijoS

Starting time of
ijo

ijkST
Setup time of

ijo if scheduled after
kjo

0ijST

Setup time of
ijo if iJ is the first scheduled job

ijSTS Starting time of the setup time of
ijo

1,2,...,

wSR M

w Q

 A subset of M which includes the machines with one assigned server

| |wSR Number of members of
wSR

l Sequence l

maxC Makespan of
l

Brackets are used to indicate consecutive jobs, i.e.,
[]iS refers to the starting time of the job

planned to be operated after i th job in a given sequence. Moreover, suppose that ; 1,2,...,wSR w Q

is a subset of M and presents the set of machines for which one server is assigned to perform the

setups. If Q servers exist in a particular instance of the problem (1,2,...,w Q), then

;1w eSR SR w e Q . In other words, it is assumed that each machine is assigned to only one

server. Based on the above notations, a mathematical model for
max, | , |Q sdF S no wait S C is as

follows:

maxMin C (1)

max ; 1,2,...,
imo imC S p i n (2)

8

[] [] ; 1,2,..., 1 1,2,...,
i j ijo o ij i jiS S p ST i n j m (3)

[]
; 1,2,..., 1,2,..., 1

i j ijo o ijS S p i n j m (4)

[] [] [] ; 1,2,..., 1 , ; 1,2,...,
i j i kST ST i ki wS S ST i n j k SR j k w Q (5)

1 1 1 0; , ; 1,2,...,
j kST ST k wS S ST j k SR j k w Q (6)

0; 1,2,..., 1,2,...,
ijoS i n j m (7)

0; 1,2,..., 1,2,...,
ijSTS i n j m (8)

In this model, the objective function is to minimize the makespan. (2) guarantees that the

makespan is equal to the completion time of the last scheduled operation. (3) indicates that the starting

time of the j th operation of []i (or the job scheduled after i) should not be before the starting time of

the same operation of i plus its processing time plus the setup time of
[]i jo when its previous operation

(i in this case) is taken into consideration. (4) imposes the no-wait constraints. (5) represents the server

side constraints for all the jobs except the first job scheduled in the sequence. Server side constraints

for the first job in the sequence is represented by (6). Finally, (7) and (8) set the non-negativity

constraints. Figure 1 illustrates the implication of (5). In this figure, it is assumed that one server is

assigned to machines j and k .

Figure 1 – Illustration of the Mathematical Model

9

Based on figure 1, one can verify that:

[] [] []i j i kST ST i kiS S ST (9)

If (9) is violated, then setup times of
[]i ko and

[]i jo overlap, which is a violation of server

constraints. According to (4), once the starting time of 1io is obtained by the model, it is possible to

calculate the starting time of ; 2,3,...,ijo j m . In other words, it is possible to reduce the problem to

finding the best time to start 1; 1,2,...,io i n without violating server side constraints. Consequently,

max, | , |Q sdF S no wait S C can be reduced to the Asymmetric Travelling Salesperson Problem

(ATSP).

3.2. Calculating the Makespan

An algorithm is developed here in order to calculate the objective function of

max, | , |Q sdF S no wait S C by generating a feasible timetable from a given sequence of jobs. This

algorithm is called Makespan Calculation Algorithm with Server constraints or MCAS.

MCAS utilizes a pointer (e) and a dereference operator, denoted as ()h e . A pointer refers to

the place of an element in a set. For instance, if {3,6,9,10}wSR , then 2e points to the element

that is located in the second place in
wSR . The dereference operator shows the element that the pointer

has referred to. Therefore, if 2e , then () 6h e . MCAS calculates the makespan of a given

permutation l from
max, | , |Q sdF S no wait S C .

To schedule the first job of l :

1. Set 1w .

2. Sort the indices of
wSR in the ascending order; suppose that | |wSR b . Define e as

the pointer of
wSR . Set 1e . Set

1, ()
0

h eSTS .

3. Set 1e e .

10

4. Set
1, () 1,((1)) 1, (),0h e h eST ST h eS S ST

 .

5. If e b , go back to step 3. If e b and w Q , set 1w w and go to step 2. If

e b and w Q , proceed to step 6.

6. Set
11 1,1 1,1,0o STS S ST .

7. For 1k to 1m ,
1[] 1,[] 11[]0 1max{ , }

k k kO ST k O kS S ST S p . If

1,[] 11[]0 1k kST k O kS ST S p , set
1,[] 11[]0 1()

k kST k O kd S ST S p , and for

1,2,..., 1z k , set
1 1z zO OS S d .

To schedule the remaining jobs of l :

8. Set 1; 1i j .

9. Set 1w .

10. Sort the indices of
wSR in the ascending order; suppose that | |wSR b . Define e as

the pointer of
wSR . Set 1e . Set

[], () , () , ()i h e i h eST o i h eS S p .

11. Set 1e e .

12. Set
[], () [],((1)) , ()[], (1), , ()max{ , }
i h e i h e i h eST ST i h e i O i h eS S ST S p

 .

13. If e b , go back to step 11. If e b and w Q , set 1w w and go to step 10.

If e b and w Q , proceed to step 14.

14. Set
[][] []i jii j STo i jiS S ST .

15. 1j j .

16.
[] [] [],(1)[] [],(1)max{ , }
i j i j i jO ST i ji O i jS S ST S p

 . If
[] [],(1)[] [],(1)i j i jST i ji O i jS ST S p

 ,

set
[] [],(1)[] [],(1)()
i j i jST i ji O i jd S ST S p

 , and for 1,2,..., 1z j , set

[] []i z i zO OS S d .

17. If j m , go back to step 15. Otherwise, proceed to step 18.

11

18. If i n , stop.
max nmo nmC S p . Otherwise, set 1i i and 1j . Go back to step

9.

MCAS starts with a sequence of jobs (l) or equivalently, a permutation. MCAS first schedules

the sequence dependent setup times of the first job in l based on the defined server side constraints

(steps 1 to 5). Then the no-wait constraints are imposed, while modifying the starting time of the rest

of the operations of that job if necessary (steps 6 and 7). When scheduling the first job of l is

completed, using the same method, MCAS first schedules the sequence dependent setup times of the

next job and imposes the server constraints (steps 8 to 13). Steps 14 to 16 schedule the operations and

impose the no-wait constraints. Finally, step 17 calculates the makespan and then the algorithm is

completed. Computational complexity of this algorithm is ()O mn .

3.3. Illustrative Example

Table 2 presents the data for a typical instance of
max, | , |Q sdF S no wait S C . For this

example, all setup times are assumed to be equal to 1, except
2,1,1 3ST and

2,2,1 2ST . Suppose that

1 {1,2}SR and
2 {3}SR . (1,2,3) is considered as the desired sequence and MCAS will be

used to develop a timetable.

Table 2 – A Typical
max, | , |Q sdF S no wait S C Instance

iJ ijp

1 1 2 1

2 1 1 3

The first 5 steps of MCAS schedule the setup times of the first job in according to the server

constraints. According to step 2, MCAS sets
1,1

0STS . Since
1 {1,2}SR , in step 4 MCAS sets

1,2 1,1 1,1,0 0 1 1ST STS S ST . Moreover, since
2 {3}SR , which means machine 3 has its dedicated

server, MCAS sets
1,3

0STS . Figure 2 depicts the partial timetable developed so far.

12

Figure 2 – Setup Times of 1J

At this point MCAS proceeds to steps 6 and 7. In step 6, MCAS sets

11 1,1 1,1,0 0 1 1o STS S ST . Step 7 develops the following set for 1k :

1[] 1,[] 1 1,[1] 1,21[]0 1max{ , } max{1 1,1 1} 2
k k kO ST k O k O OS S ST S p S S . The same calculation

results in
1,[2] 1,3 1,[2] 1,21,[2],0 1,2max{ , } max{0 1,2 2} 4O O ST OS S S ST S p for 2k . Thus,

so far the Gantt chart of figure 3 is developed.

Figure 3 – Job 1 is Scheduled

Steps 8 to 13 schedule the setup times of the second job in sequence the same way that setup

times of job 1 are scheduled. A partial Gantt chart after scheduling the setup times of job 2 is presented

13

in figure 4. Since there is one server assigned to machines 1 and 2, their setup times should not overlap.

However, machine 3 has its own dedicated server and therefore its setup times can overlap with setup

times of machines 1 and 2.

Figure 4 – Partial Gantt Chart After Scheduling Setup Times of Job 2

Then, MCAS proceeds to step 14 and since 1; 1i j , sets

[] [1],1,1[] [1],1[] [1],1,1 2 3 5
i jii j ST STo oi jiS S ST S S ST . Step 15 sets 2j and MCAS

proceeds to step 16. At this step:

[] [] [],(1)

[1],2 2,2 2,2 2,1

[] [],(1)

2,2,1 2,1

max{ , }

max{ , }

max{5 2,5 1} 7

i j i j i jO ST i ji O i j

O O ST O

S S ST S p

S S S ST S p

 (10)

The same calculations for 3j results in:

[] [] [],(1)

[1],3 2,3 2,3 2,2

[] [],(1)

2,3,1 2,2

max{ , }

max{ , }

max{5 1,7 1} 8

i j i j i jO ST i ji O i j

O O ST O

S S ST S p

S S S ST S p

 (11)

 Therefore, the Gantt chart of Figure 5 is developed.

14

Figure 5 – Gantt Chart Before Imposing No-Wait Constraints

Based on step 16, for 2j one can verify that:

[] [],(1)

[1],2 [1],1

[] [],(1)

[1],2,1 [1],1

5 2 5 1

i j i jST i ji O i j

ST O

S ST S p

S ST S P

 (12)

In other words, MCAS verifies that no-wait constraints are violated. Therefore, step 16

performs extra steps to impose this constraint:

[] [],(1)

[1],2 [1],1

[] [],(1)

[1],2,1 [1],1

()

()

5 2 (5 1)

1

i j i jST i ji O i j

ST O

d S ST S p

S ST S p

 (13)

And 1d will be added to
[1],1OS :

[1],1 [1],1
5 1 6O OS S d (14)

This results in the Gantt chart of figure 6. At this point, the algorithm is finished and a complete

timetable is created; step 18 of MCAS returns
2,3max 2,3 8 2 10OC S p as the makespan of .

The proposed solution methodology is explained in the next section.

15

Figure 6 – Final Gantt Chart After Imposing No-Wait Constraints

4. The Proposed Genetic Algorithm

Genetic Algorithm (GA) is the main search technique in this paper. GAs are a particular class

of evolutionary algorithms (EA) that use techniques inspired by evolutionary biology such as

inheritance, mutation, selection, and crossover. GA uses chromosomes to code the feasible solutions of

the problem. Feasible solutions of
max, | , |Q sdF S no wait S C are sequences of jobs, denoted by in

section 3. GA is a popular search technique with several successful implementations for the continuous

and discrete optimization problems in the literature (Samarghandi and Eshghi 2009, Samarghandi et al.

2010, Samarghandi and Jahantigh 2011, Samarghandi and ElMekkawy 2013b, Samarghandi and

ElMekkawy 2014b).

4.1. Chromosome Structure and GA Operations

Chromosome structure (genotype) is one of the most important aspects of the genetic algorithm.

In the proposed GA, each permutation or sequence of jobs () is a chromosome. MCAS generates

complete and feasible timetables for
max, | , |Q sdF S no wait S C once a sequence of jobs is given. This

approach defines the extraction of solutions from chromosomes (phenotype). It is worthwhile to

mention that the proposed GA uses the operations defined by Shadrokh and Kianfar (2007).

The proposed GA generates Pop random permutations for the first generation. Then, MCAS

calculates the makespan of each of these permutations. Calculated makespans will be used as the fitness

label of the permutations. Pop is an even number and a parameter of the algorithm, which remains

unchanged during all of the iterations of the algorithm. New generations are made from the existing

generation, using four operations: crossover, mutation, immigration, and local search.

In the crossover operation, the existing generation is randomly partitioned into
2

Pop
 pairs of

parents, and the crossover operation is performed on each pair with probability
cP . If a pair is not

16

selected for crossover, each individual in this pair is considered for the mutation operation with

probability
mP and then for local search with probability lP .

The crossover operation on a pair of parents, 1P and
2P , produces two children, 1C and

2C .

Let ()f I be the makespan of schedule I . If .(() ()) ()i i i ir f P f C f P then iC will be selected for

local search with probability lP and then goes to a new generation and iP dies out (1,2i).
ir is a

random number generated from the interval [0,1] for each i . Otherwise iC dies out and iP is

considered for mutation with probability
mP and then for local search with probability lP . It should be

noted that .(() ()) ()i i i ir f P f C f P determines how much advancement in the quality of genes

should be expected in consecutive generations. However, since
ir is a random number, the amount of

gene progress differs in each iteration. Afterwards, the immigration operation is also performed before

finalizing the cycle of producing a new generation. Immigration operation feeds the gene pool with

randomly generated genes, helps maintain the gene diversity, and helps prevent immature convergence.

For the immigration operation, a chromosome will be randomly generated and is called NEW

. An individual I is selected randomly from the current population. Let the probability of leaving I be

()
(,)

() ()
Leave

f I
P I NEW

f I f NEW

. A random number is generated from the interval [0,1] . If this

random number is less than (,)LeaveP I NEW , NEW replaces I ; otherwise NEW is discarded. The

immigration operation is able to bring new and desirable characteristics to the next gene pools. The

chromosome with the best makespan value in the final generation is the result given by the algorithm.

Pop ,
sP ,

mP , and lP are adjustable parameters of the algorithm. The number of iterations of the

proposed GA is another parameter of the algorithm and is denoted as Iter .

4.2. Crossover

The proposed GA uses a one-point crossover. Suppose that
1 1 1

1 1 2(, ,...,)nP J J J and

2 2 2

2 1 2(, ,...,)nP J J J are the two individuals that are selected for crossover. The one-point crossover

selects an integer number [1,]r n . Then, the crossover operation is performed and the result is 1C

and
2C whose chromosomes are defined as 1 1 1 1

1 1(,..., , ,...,)
c c c c

r r nJ J J J
 and 2 2 2 2

1 1(,..., , ,...,)
c c c c

r r nJ J J J
.

1 1 1 1

1 1(,...,) (,...,)
c c

r rJ J J J and 1 2; 1,...,
c

a bJ J a r n where b is the lowest index such that

 1 12

1 1,...,
c c

b aJ J J . And 2 2 2 2

1 1(,...,) (,...,)
c c

r rJ J J J and 2 1; 1,...,
c

a bJ J a r n where b is the

lowest index such that 2 22

1 1,...,
c c

b aJ J J . The explained one-point crossover operation when 3r

is demonstrated by (15).

17

1 1

2 2

: 2,3,4 | 6,5,1 : 2,3,4,1,6,5

: 3,4,1| 6,2,5 : 3,4,1,2,6,5

P C

P C

 (15)

4.3. Mutation

Let 1 2(, ,...,)nP J J J be the selected chromosome for mutation. Then, the algorithm

generates two integer numbers
1 2, [1, 1]r r n and an integer number [0,1]a . If 0.5a , then the

new chromosome will be
1 2 1 21 1 1(,..., , ,..., , ,...,)new r r n r rP J J J J J J , while if 0.5a , the new

chromosome will be
1 2 1 21 1 1(,..., , ,..., , ,...,)new r r r r nP J J J J J J . The mutation operation when

1 29; 3; 7n r r is demonstrated by (16).

0.5:1,2,3,4,5,6,7,8,9 1,2,3,7,8,9,4,5,6

0.5:1,2,3,4,5,6,7,8,9 4,5,6,7,1,2,3,8,9

a

a

 (16)

4.4. Local Search

Once an individual is selected for local search, the algorithm randomly selects two genes from

the chromosome and exchanges the places of these genes in the sequence. If the fitness function of the

chromosome is improved as a result of this exchange, it will be accepted and the new chromosome will

be transferred to the new gene pool. Otherwise, the two genes will be moved back to their original

places and the local search procedure will restart. This process can be repeated several times until a

solution is ultimately improved. However, in order to maintain the computational efficiency of the

proposed GA, the number of iterations of the local search algorithm will be limited to 5. In other words,

if the local search algorithm is unable to improve the fitness function of a particular chromosome after

5 attempts, this chromosome will not be transferred to the next gene pool.

4.5. Final Intensification

Once the best makespan and its corresponding sequence of the jobs are selected as the final

solution by the GA, a final intensification procedure is performed. This sub-algorithm exchanges the

location of the first two adjacent jobs in the sequence and evaluates the makespan of the sequence using

MCAS. If the makespan of the new sequence is improved by the exchange, it will be accepted and the

exchange sub-procedure will be restarted. If this exchange does not improve the fitness function of the

sequence, the exchanged jobs will be moved back to their original locations in the sequence and the

next two adjacent jobs in the sequence will be exchanged.

4.6. Genetic Algorithm with Diversified Local Search Procedure

This algorithm follows all of the explained procedures of the developed GA; however, in order

to make the GA algorithm more effective, the local search procedure of this algorithm employs different

18

operations to facilitate a move from a certain solution to an improved solution. The local search

algorithm starts with the exchange operation explained in section 4.4. If this operation is not successful

after 5 attempts, the algorithm tries the exchange-3 operation. Accordingly, the algorithm randomly

selects 3 genes from the chromosome and performs an exchange-3 operation. Suppose that the selected

genes are i , j , and k . The exchange-3 operation is described by (17).

3(1,2,..., ,..., ,..., ,...,) (1,2,..., ,..., ,..., ,...,)Exchangei j k n k i j n (17)

If the exchange-3 operation is successful, the new chromosome will be transferred to the new

gene pool; otherwise, the 3 genes will be moved back to their original locations. The number of

exchange-3 attempts before the local search moves to the next operation is 5. The last operation that the

local search algorithm will apply to a chromosome is called a sectional swap, which will also be applied

to a chromosome for a maximum of 5 times until either an improved chromosome is found or the

unimproved chromosome is discarded. For the sectional swap operation, a gene in the chromosome is

randomly selected. Suppose that the selected gene is i . The sectional swap procedure is defined by

(18).

(1,2,..., , 1,...,) (1, 2,..., ,1,2,...,)Sectional Swapi i n i i n i (18)

In order to distinguish between the GA algorithm with diversified local search procedure and

the GA algorithm with simple local search procedure, the former will be called GA+DLS, while the

latter will simply be called GA throughout the rest of this paper. The pseudo code of the GA+DLS

method is as follows:

1. Generate Pop random permutations to initiate the first gene pool. Calculate the fitness of each

individual chromosome with the MCAS algorithm.

2. Partition the chromosomes to
2

Pop
 pairs. Apply the cross over operation to each pair with

probability cP .

3. If a pair is not selected for cross over, apply the mutation operation to each individual in this pair

with probability
mP .

19

4. Candidate the remaining chromosomes for the local search procedure with probability lP .

4.1. Start with exchange procedure and if unsuccessful, repeat this approach for 5 times. If the

exchange sub-algorithm results in an improved solution, proceed to step 5; otherwise, go to

step 4.2.

4.2. Apply the exchange-3 algorithm to the permutation and repeat for 5 times if unsuccessful. If

the exchange-3 method results in an improved solution, proceed to step 5; otherwise, go to step

4.3.

4.3. Apply the sectional swap approach to the chromosome and repeat for 5 times if unsuccessful.

Proceed to step 5.

5. Calculate the fitness of all of the newly generated solutions with MCAS algorithm and create the

next gene pool.

6. Repeat steps 2 to 5 for Iter iterations.

7. Perform the final intensification procedure to the best solution found and return the resulting

chromosome as the final solution of the algorithm.

The next section presents the computational results.

5. Computational Results

5.1. Tuning Parameters

As seen in section 4, the developed GA has 5 parameters that must be tuned before the search

can be started. Sensitivity analysis has been performed to determine the effect of the different values of

these parameters on the performance of the algorithm. Accordingly, 3 different problems from the

literature were chosen: rec01+SD (5, 20m n), rec25+SD (30, 15m n), and rec35+SD (

50, 10m n); each problem was considered with two different server constraints as described by

(19) and (20).

20

1
2

| | 2; 1,2,..., ; 2 ;
2

| | 2; 1,2,..., ; 1; 2 1;
2

i

i n

n
SR i n b b N

n
SR i SR n b b N

 (19)

1
3

1
3

| | 3; 1,2,..., ; 3 ;
3

| | 3; 1,2,..., ; 1; 3 1;
3

| | 3; 1,2,..., ; 2; 3 2;
3

i

i n

i n

n
SR i n b b N

n
SR i SR n b b N

n
SR i SR n b b N

 (20)

It should be noted that, according to (19), the algorithm assigns a dedicated server to the last

machine if the number of machines are odd. For instance, if the test problem has 5 machines, then

1 1{1,2};| | 2SR SR and
2 2{3,4};| | 2SR SR . However, machine 5 will be assigned one

dedicated server; in other words
3 3{5};| | 1SR SR . With the same logic, depending on the number

of machines, it is possible to have one or two machines instead of three machines assigned to one server,

when equation set (20) is in effect. For simplicity, the described conditions of (19) and (20) will be

denoted as
2SR and

3SR throughout the rest of this paper. The proposed GA algorithm was applied to

each problem 3 times with 4 different combinations of the parameter values as follows:

Table 3 – Different Parameter Combinations
Parameter Combination 1 Combination 2 Combination 3 Combination 4

Pop
6

n

5

n

2

n
 n

mP 0.2 0.3 0.4 0.5

cP 0.2 0.3 0.4 0.5

lP 0.05 0.1 0.15 0.2

Iter 10n 50n 100n 200n

Table 4 presents the resulting makespans for the different combinations of the parameters

considered.

21

Table 4 – Results of the Sensitivity Analyses
 2SR

3SR

Problem Replication
Parameter Combination Parameter Combination

1 2 3 4 1 2 3 4

rec01+SD

1 2183 2159 2131 2126 2180 2171 2132 2120

2 2159 2151 2124 2124 2178 2164 2120 2132

3 2156 2131 2126 2126 2178 2157 2132 2120

rec25+SD

1 4742 4724 4670 4662 4672 4676 4666 4666

2 4741 4726 4669 4662 4676 4680 4666 4669

3 4741 4729 4662 4695 4673 4680 4669 4666

rec35+SD

1 6395 6317 6139 6139 6350 6239 6148 6148

2 6247 6325 6162 6139 6341 6229 6148 6148

3 6307 6206 6139 6182 6349 6254 6169 6188

Analysis of variance (ANOVA) can be utilized to select the best combination from the

considered parameter combinations. Considered factors in the ANOVA include parameter combination

as defined by table 3, problem set, server constraints, and the interactions between the mentioned

factors. In the mentioned ANOVA, each factor has 3 replications. Table 5 summarizes the results of the

ANOVA (0.05).

Table 5 - Analysis of Variance for Makespan

Source
Degree

of

Freedom

Sequential

Sums of

Squares

Adjusted

Sums of

Squares

Adjusted

Mean

Square

Value

F-Value P-Value

Problem 2 203814815 203814815 101907407 193904.16 0

Parameter 3 102481 102481 34160 65 0

SR 1 953 953 953 1.81 0.184

Problem*Parameter 6 51672 51672 8612 16.39 0

Problem*SR 2 4898 4898 2449 4.66 0.014

Parameter*SR 3 2035 2035 678 1.29 0.288

Problem*Parameter*SR 6 7349 7349 1225 2.33 0.047

Error 48 25227 25227 526

Total 71 204009429

According to the p values of table 5, server side constraints are not an important factor in

the analysis. Therefore, a re-specification of ANOVA is necessary. Table 6 presents the results of the

re-specified model. The importance of the server constraints will be discussed with more details in the

following sections.

22

Table 6 – Results of the Re-Specified ANOVA Model

Source
Degree of

Freedom

Sequential Sums

of Squares

Adjusted

Sums of

Squares

Adjusted

Mean

Square

Value

F-Value P-Value

Problem 2 203814815 203814815 101907407 151116.97 0

Parameter 3 102481 102481 34160 50.66 0

Problem*Parameter 6 51672 51672 8612 12.77 0

Error 60 40462 40462 674

Total 71 204009429

 2 99.98%R
2 99.98%adjR

In order to confirm that the analysis of variance presented in table 6 is valid, residuals should

follow a normal distribution. Figure 7 illustrates the normal probability plot of the residuals. To

conclude that the residuals follow a normal distribution, they should be close to the normal probability

line. Figure 7 confirms that the residuals are very close to the normal line.

Residual

P
e

rc
e

n
t

500-50-100

99.9

99

95

90

80

70

60
50
40

30

20

10

5

1

0.1

Figure 7 - Normal Probability Plot of the Residuals

As table 6 indicates, the combinations of table 3 have an actual effect on the makespan of the

studied test problems. In order to find the best combination among the 4 combinations, the main effects

plot proves to be useful. Figure 8 illustrates the main effects plot.

23

Parameter

M
e

a
n

 o
f

M
a

k
e

s
p

a
n

4321

4400

4390

4380

4370

4360

4350

4340

4330

4320

4310

Figure 8 - Main Effects Plot

Figure 8 demonstrates that combinations 3 and 4 of table 3 are more desirable than

combinations 1 and 2. Since the difference between combinations 3 and 4 is negligible, and combination

3 requires less computational effort, which leads to less CPU time, this combination is chosen for tuning

the parameters of both GA and GA+DLS to perform the computational analysis.

The developed algorithms were coded using Microsoft Visual C++ 2008; all the computational

experiments were performed on a PC equipped with a 2.66GHz Intel Pentium IV CPU and 4 GB of

RAM.

To test the efficiency of the proposed algorithms, a set of 29 problems were chosen from the

literature: car01 through car08 introduced by Carlier (1978) and rec01 through rec41 introduced by

Reeves (1995). Reeves (1995) found this specific set of problems difficult to solve. Moreover, optimal

solutions for the no-wait version of these problems are unknown. All of these test problems are available

at OR-Library (Beasley). Samarghandi and ElMekkawy (2014a) generated sequence dependent setups

for the problems of Carlier (1978) and Reeves (1995). These problems were named as car+SD and

rec+SD, and solved by a PSO algorithm that was designed for
max| , |sdF no wait S C . Since

max, | , |Q sdF S no wait S C is a generalization of
max| , |sdF no wait S C , car+SD and rec+SD

problems along with server constraints of equations (19) and (20) will be used as test problems in this

24

research. To remain consistent with the literature, each problem is solved 20 times, and the best obtained

objective function value as well as the average and worst objective function values are reported. In

addition, the average CPU time to obtain the makespans in seconds and standard deviation of the

obtained makespans are stated. Section 5.2 reports the computational results of car01 through car08;

computational results for rec01 through rec41 appear in section 5.3 and 5.4.

5.2. Computational Results Obtained for car01 through car08

Table 7 presents the computational results of car01+SD through car08+SD. These problems

generally have a lower number of jobs compared to the set of rec+SD problems. As a result, it is possible

to solve many of them to optimality by means of the mathematical model of section 3. One can verify

that the proposed algorithms are in most cases able to produce the optimal solutions. Tables 8 and 9

report more details about the obtained makespans. Table 8 belongs to
2SR and Table 9 demonstrates

the results for
3SR .

5.3. Computational Results of rec01+SD through rec41+SD

Table 10 compares the computational results of the developed algorithms with the makespans

generated by the 2-Opt algorithm for problems rec01+SD through rec41+SD. This table considers the

case of
2SR . It can be verified that both of the developed algorithms are very efficient, with GA+DLS

being slightly better than GA. Small values of the STD column is another indicator of the consistency

of the proposed PSO. Table 11 performs the same comparison for the case of
3SR . Section 5.4 compares

the results of the developed algorithms for
max, | , |Q sdF S no wait S C with the results of Samarghandi

and ElMekkawy (2014a) for
max| , |sdF no wait S C .

5.4. Comparison of the Solutions of
max, | , |Q sdF S no wait S C with

max| , |sdF no wait S C

Table 12 performs a comparison between the results of Samarghandi and ElMekkawy (2014a)

for
max| , |sdF no wait S C and the results of the developed frameworks of this paper.

25

Table 7 – Computational Results for Problems with Optimal Solution

Problem ,n m

No Server

Constraint

Optimal

Solution

for
2SR

Optimal

Solution

for
3SR

GA -
2SR GA+DLS -

2SR GA -
3SR GA+DLS -

3SR

OFV* OFV OFV
Best

Solution
Gap**

Best

Solution
Gap

Best

Solution
Gap

Best

Solution
Gap

Car01+SD 11,5 10,379.00 10,379.00 10,402.00 10,379.00 100.000 10,379.00 100.000 10,402.00 100.000 10,402.00 100.000

Car02+SD 13,4 N/A N/A N/A 11,486.00 N/A 11,486.00 N/A 11,488.00 N/A 11,488.00 N/A

Car03+SD 12,5 11,877.00 11,877.00 11,919.00 11,877.00 100.000 11,877.00 100.000 11,919.00 100.000 11,919.00 100.000

Car04+SD 14,4 N/A N/A N/A 12,384.00 N/A 12,384.00 N/A 12,398.00 N/A 12,398.00 N/A

Car05+SD 10,6 11,945.00 12,068.00 12,266.00 12,068.00 100.000 12,068.00 100.000 12,270.00 100.033 12,266.00 100.000

Car06+SD 8,9 12,015.00 12,131.00 12,131.00 12,131.00 100.000 12,131.00 100.000 12,131.00 100.000 12,131.00 100.000

Car07+SD 7,7 9,795.00 9,815.00 9,795.00 9,815.00 100.000 9,815.00 100.000 9,795.00 100.000 9,795.00 100.000

Car08+SD 8,8 11,525.00 11,525.00 11,684.00 11,525.00 100.000 11,525.00 100.000 11,684.00 100.000 11,684.00 100.000

* Objective Function Value

**
Algorithm

Optimal

100
OFV

OFV
 , smaller gaps are more desirable

26

Table 8 – Detailed Computational Results for the Case of
2SR

Problem ,n m 2-Opt

OFV*

GA GA+DLS

Best

OFV

Average

OFV

Worst

OFV
STD**

CPU

Time
Gap***

Best

OFV

Average

OFV

Worst

OFV
STD

CPU

Time
Gap

car01+SD 11,5 14,830.00 10,379.00 10,401.10 10,647.00 58.76 8.14 69.99% 10,379.00 10,437.33 10,909.00 60.14 10.58 69.99%

car02+SD 13,4 15,290.00 11,486.00 11,584.65 11,674.00 62.51 8.44 75.12% 11,486.00 11,654.55 11,936.00 61.78 10.97 75.12%

car03+SD 12,5 15,898.00 11,877.00 11,984.55 12,174.00 92.76 8.41 74.71% 11,877.00 11,985.88 12,346.00 65.39 10.93 74.71%

car04+SD 14,4 16,571.00 12,384.00 12,616.05 12,865.00 146.48 8.33 74.73% 12,384.00 12,561.98 12,930.00 82.89 10.66 74.73%

car05+SD 10,6 15,383.00 12,068.00 12,109.55 12,546.00 129.49 8.44 78.45% 12,068.00 12,138.15 12,552.00 69.60 10.80 78.45%

car06+SD 8,9 15,623.00 12,131.00 12,255.60 12,590.00 179.07 9.93 77.65% 12,131.00 12,281.18 12,590.00 103.29 12.71 77.65%

car07+SD 7,7 12,579.00 9,815.00 9,834.80 9,944.00 42.90 7.42 78.03% 9,815.00 9,837.20 9,944.00 35.55 9.50 78.03%

car08+SD 8,8 14,099.00 11,525.00 11,545.70 11,606.00 26.78 8.53 81.74% 11,525.00 11,543.23 11,597.00 20.19 10.91 81.74%

Average N/A N/A N/A N/A N/A 92.34 8.45 76.30% N/A N/A N/A 62.35 10.88 76.30%

* Objective Function Value

**Standard Deviation

Algorithm

2-Opt

100
BestOFV

OFV
 , smaller gaps are more desirable

27

Table 9 – Detailed Computational Results for the Case of
3SR

Problem ,n m 2-Opt

OFV*

GA GA+DLS

Best

OFV

Average

OFV

Worst

OFV
STD**

CPU

Time
Gap***

Best

OFV

Average

OFV

Worst

OFV
STD

CPU

Time
Gap

car01+SD 11,5 13,111.00 10,402.00 10,429.60 10,542.00 40.99 8.34 79.34% 10,402.00 10,417.58 10,623.00 43.57 10.93 79.34%

car02+SD 13,4 15,212.00 11,488.00 11,558.45 11,695.00 66.93 8.13 75.52% 11,488.00 11,618.53 12,023.00 113.00 10.64 75.52%

car03+SD 12,5 17,733.00 11,919.00 12,016.90 12,080.00 57.55 8.42 67.21% 11,919.00 12,067.90 12,360.00 103.06 11.19 67.21%

car04+SD 14,4 15,784.00 12,398.00 12,588.75 12,905.00 156.56 8.50 78.55% 12,398.00 12,596.18 12,846.00 124.55 11.31 78.55%

car05+SD 10,6 15,550.00 12,270.00 12,395.15 12,559.00 112.06 8.54 78.91% 12,266.00 12,305.65 12,558.00 65.59 11.02 78.88%

car06+SD 8,9 15,814.00 12,131.00 12,358.95 12,590.00 233.88 9.69 76.71% 12,131.00 12,226.45 12,590.00 162.99 12.49 76.71%

car07+SD 7,7 12,846.00 9,795.00 9,799.70 9,889.00 21.02 7.49 76.25% 9,795.00 9,811.45 9,889.00 36.17 9.59 76.25%

car08+SD 8,8 14,607.00 11,684.00 11,703.45 11,857.00 39.83 8.66 79.99% 11,684.00 11,727.78 12,022.00 86.29 11.09 79.99%

Average N/A N/A N/A N/A N/A 91.10 8.47 76.56% N/A N/A N/A 91.90 11.03 76.56%

* Objective Function Value

**Standard Deviation

Algorithm

2-Opt

100
BestOFV

OFV
 , smaller gaps are more desirable

28

Table 10 – Detailed Computational Results for the Case of
2SR

Problem ,n m 2-Opt

OFV*

GA GA+DLS

Best

OFV

Average

OFV

Worst

OFV
STD**

CPU

Time
Gap***

Best

OFV

Average

OFV

Worst

OFV
STD

CPU

Time
Gap

rec01+SD 20,5 2,822.00 2,124.00 2,144.15 2,183.00 14.28 11.82 75.27% 2,118.00 2,145.58 2,183.00 16.51 15.12 75.05%

rec03+SD 20,5 2,824.00 1,911.00 1,929.30 1,973.00 14.53 11.99 67.67% 1,884.00 1,930.15 1,987.00 27.14 15.35 66.71%

rec05+SD 20,5 2,902.00 2,007.00 2,046.80 2,090.00 22.71 11.72 69.16% 2,010.00 2,041.70 2,090.00 18.25 15.00 69.26%

rec07+SD 20,10 3,764.00 2,649.00 2,682.85 2,764.00 32.68 19.25 70.38% 2,637.00 2,682.33 2,741.00 30.36 24.63 70.06%

rec09+SD 20,10 3,655.00 2,660.00 2,695.80 2,757.00 21.44 19.22 72.78% 2,675.00 2,695.03 2,741.00 15.49 24.60 73.19%

rec11+SD 20,10 3,205.00 2,571.00 2,586.50 2,632.00 16.59 19.41 80.22% 2,565.00 2,588.55 2,617.00 13.32 23.48 80.03%

rec13+SD 20,15 4,387.00 3,315.00 3,352.15 3,437.00 26.68 25.43 75.56% 3,324.00 3,355.25 3,401.00 15.43 30.76 75.77%

rec15+SD 20,15 4,330.00 3,253.00 3,277.85 3,322.00 22.75 25.87 75.13% 3,237.00 3,272.80 3,328.00 26.12 31.30 74.76%

rec17+SD 20,15 4,219.00 3,274.00 3,309.15 3,361.00 28.24 25.10 77.60% 3,271.00 3,291.43 3,337.00 17.61 30.36 77.53%

rec19+SD 30,10 5,401.00 3,867.00 3,887.25 3,917.00 15.97 32.64 71.60% 3,851.00 3,901.63 3,971.00 29.04 39.49 71.30%

rec21+SD 30,10 4,980.00 3,743.00 3,776.95 3,824.00 23.54 32.77 75.16% 3,714.00 3,748.75 3,832.00 29.48 43.26 74.58%

rec23+SD 30,10 5,507.00 3,623.00 3,652.30 3,730.00 32.36 31.37 65.79% 3,587.00 3,664.15 3,725.00 26.15 41.40 65.14%

rec25+SD 30,15 6,094.00 4,662.00 4,708.85 4,768.00 32.03 43.47 76.50% 4,644.00 4,695.03 4,763.00 33.08 57.38 76.21%

rec27+SD 30,15 6,348.00 4,562.00 4,611.65 4,673.00 27.17 42.99 71.87% 4,550.00 4,589.60 4,620.00 16.33 56.75 71.68%

rec29+SD 30,15 6,172.00 4,443.00 4,483.90 4,524.00 24.38 42.47 71.99% 4,424.00 4,475.20 4,544.00 32.69 56.05 71.68%

rec31+SD 50,10 8,919.00 5,936.00 6,029.60 6,129.00 51.98 100.63 66.55% 5,911.00 6,021.28 6,176.00 64.09 127.90 66.27%

rec33+SD 50,10 8,917.00 6,159.00 6,211.90 6,352.00 45.00 99.48 69.07% 6,155.00 6,225.10 6,294.00 30.13 126.44 69.03%

rec35+SD 50,10 9,329.00 6,139.00 6,251.05 6,395.00 73.33 100.31 65.81% 6,143.00 6,196.53 6,314.00 39.41 127.49 65.85%

rec37+SD 75,20 15,841.00 10,985.00 11,076.60 11,177.00 45.60 604.32 69.35% 10,957.00 11,059.95 11,191.00 61.88 742.70 69.17%

rec39+SD 75,20 16,783.00 11,299.00 11,401.05 11,503.00 68.17 597.69 67.32% 11,303.00 11,450.05 11,701.00 93.80 734.55 67.35%

rec41+SD 75,20 16,428.00 11,494.00 11,579.60 11,692.00 65.39 605.11 69.97% 11,461.00 11,528.53 11,623.00 42.58 743.67 69.77%

Average NA NA NA NA NA 33.56 119.19 71.65% NA NA NA 32.33 147.99 71.45%

* Objective Function Value

**Standard Deviation

Algorithm

2-Opt

100
BestOFV

OFV
 , smaller gaps are more desirable

29

Table 11 – Detailed Computational Results for the Case of
3SR

Problem ,n m 2-Opt

OFV*

GA GA+DLS

Best

OFV

Average

OFV

Worst

OFV
STD**

CPU

Time
Gap***

Best

OFV

Average

OFV

Worst

OFV
STD

CPU

Time
Gap

rec01+SD 20,5 2,880.00 2,120.00 2,144.35 2,180.00 18.75 11.88 73.61% 2,125.00 2,148.60 2,188.00 17.08 15.22 73.78%

rec03+SD 20,5 2,826.00 1,890.00 1,916.30 1,950.00 17.02 12.64 66.88% 1,880.00 1,922.05 1,965.00 21.59 16.19 66.53%

rec05+SD 20,5 2,663.00 2,032.00 2,057.60 2,110.00 23.92 13.03 76.30% 2,010.00 2,048.20 2,129.00 24.09 16.69 75.48%

rec07+SD 20,10 3,609.00 2,671.00 2,711.75 2,752.00 20.04 19.99 74.01% 2,671.00 2,698.95 2,772.00 22.48 26.18 74.01%

rec09+SD 20,10 3,392.00 2,644.00 2,674.35 2,714.00 16.70 19.34 77.95% 2,669.00 2,691.08 2,739.00 17.77 25.34 78.69%

rec11+SD 20,10 3,538.00 2,600.00 2,628.65 2,665.00 20.52 19.02 73.49% 2,599.00 2,619.25 2,659.00 14.56 24.91 73.46%

rec13+SD 20,15 4,337.00 3,343.00 3,374.10 3,422.00 21.40 26.77 77.08% 3,319.00 3,359.63 3,411.00 27.24 35.07 76.53%

rec15+SD 20,15 4,602.00 3,257.00 3,307.45 3,326.00 15.95 27.00 70.77% 3,242.00 3,279.03 3,316.00 22.96 35.90 70.45%

rec17+SD 20,15 4,390.00 3,267.00 3,296.75 3,320.00 18.78 27.34 74.42% 3,268.00 3,287.08 3,326.00 16.33 36.36 74.44%

rec19+SD 30,10 5,546.00 3,871.00 3,927.30 3,984.00 31.29 34.27 69.80% 3,812.00 3,886.10 3,987.00 34.57 45.57 68.73%

rec21+SD 30,10 5,033.00 3,781.00 3,804.90 3,851.00 19.96 33.05 75.12% 3,729.00 3,786.53 3,835.00 25.35 43.96 74.09%

rec23+SD 30,10 5,645.00 3,658.00 3,702.75 3,739.00 23.21 33.59 64.80% 3,634.00 3,682.30 3,730.00 24.93 44.67 64.38%

rec25+SD 30,15 6,456.00 4,666.00 4,676.40 4,689.00 6.28 45.83 72.27% 4,659.00 4,687.15 4,752.00 22.18 59.17 72.17%

rec27+SD 30,15 6,615.00 4,622.00 4,646.65 4,689.00 17.25 46.53 69.87% 4,559.00 4,608.18 4,650.00 25.65 60.06 68.92%

rec29+SD 30,15 6,339.00 4,458.00 4,493.25 4,538.00 20.73 46.38 70.33% 4,452.00 4,514.23 4,623.00 37.35 59.87 70.23%

rec31+SD 50,10 8,785.00 5,957.00 6,005.10 6,185.00 69.57 101.90 67.81% 5,931.00 6,029.98 6,096.00 42.44 131.55 67.51%

rec33+SD 50,10 8,970.00 6,183.00 6,231.20 6,310.00 33.65 101.70 68.93% 6,178.00 6,237.03 6,286.00 24.18 131.29 68.87%

rec35+SD 50,10 9,812.00 6,148.00 6,306.10 6,389.00 83.23 100.41 62.66% 6,169.00 6,242.55 6,351.00 44.46 129.63 62.87%

rec37+SD 75,20 15,066.00 10,861.00 10,954.20 11,011.00 37.50 633.81 72.09% 10,881.00 11,000.13 11,093.00 63.28 842.96 72.22%

rec39+SD 75,20 16,402.00 11,328.00 11,387.05 11,463.00 40.98 921.74 69.06% 11,296.00 11,415.30 11,510.00 53.37 1,015.75 68.87%

rec41+SD 75,20 16,952.00 11,450.00 11,536.85 11,598.00 35.91 634.87 67.54% 11,441.00 11,565.83 11,789.00 99.29 768.19 67.49%

Average NA NA NA NA NA 28.22 138.62 71.18% NA NA NA 32.44 169.74 70.94%

* Objective Function Value

**Standard Deviation

Algorithm

2-Opt

100
BestOFV

OFV
 , smaller gaps are more desirable

30

Table 12 – Comparison of the Results of Samarghandi and ElMekkawy (2014a) for
max| , |sdF no wait S C with the Results of the Developed

Algorithms for
max, | , |Q sdF S no wait S C

Problem ,n m
No Server

Constraint

OFV*

GA -
2SR GA -

3SR GA+DLS -
2SR GA+DLS -

3SR

OFV Gap** OFV Gap OFV Gap OFV Gap

rec01+SD 20,5 2,139.00 2,124.00 99.29874 2,120.00 99.11173 2,118.00 99.01823 2,125.00 99.34549

rec03+SD 20,5 1,902.00 1,911.00 100.47319 1,890.00 99.36909 1,884.00 99.05363 1,880.00 98.84332

rec05+SD 20,5 2,028.00 2,007.00 98.96450 2,032.00 100.19724 2,010.00 99.11243 2,010.00 99.11243

rec07+SD 20,10 2,652.00 2,649.00 99.88688 2,671.00 100.71644 2,637.00 99.43439 2,671.00 100.71644

rec09+SD 20,10 2,657.00 2,660.00 100.11291 2,644.00 99.51073 2,675.00 100.67746 2,669.00 100.45164

rec11+SD 20,10 2,558.00 2,571.00 100.50821 2,600.00 101.64191 2,565.00 100.27365 2,599.00 101.60281

rec13+SD 20,15 3,309.00 3,315.00 100.18132 3,343.00 101.02750 3,324.00 100.45331 3,319.00 100.30221

rec15+SD 20,15 3,222.00 3,253.00 100.96214 3,257.00 101.08628 3,237.00 100.46555 3,242.00 100.62073

rec17+SD 20,15 3,271.00 3,274.00 100.09172 3,267.00 99.87771 3,271.00 100.00000 3,268.00 99.90828

rec19+SD 30,10 3,848.00 3,867.00 100.49376 3,871.00 100.59771 3,851.00 100.07796 3,812.00 99.06445

rec21+SD 30,10 3,756.00 3,743.00 99.65389 3,781.00 100.66560 3,714.00 98.88179 3,729.00 99.28115

rec23+SD 30,10 3,628.00 3,623.00 99.86218 3,658.00 100.82690 3,587.00 98.86990 3,634.00 100.16538

rec25+SD 30,15 4,654.00 4,662.00 100.17190 4,666.00 100.25784 4,644.00 99.78513 4,659.00 100.10743

rec27+SD 30,15 4,565.00 4,562.00 99.93428 4,622.00 101.24863 4,550.00 99.67141 4,559.00 99.86857

rec29+SD 30,15 4,422.00 4,443.00 100.47490 4,458.00 100.81411 4,424.00 100.04523 4,452.00 100.67843

rec31+SD 50,10 5,966.00 5,936.00 99.49715 5,957.00 99.84915 5,911.00 99.07811 5,931.00 99.41334

rec33+SD 50,10 6,186.00 6,159.00 99.56353 6,183.00 99.95150 6,155.00 99.49887 6,178.00 99.87068

rec35+SD 50,10 6,169.00 6,139.00 99.51370 6,148.00 99.65959 6,143.00 99.57854 6,169.00 100.00000

rec37+SD 75,20 10,782.00 10,985.00 101.88277 10,861.00 100.73270 10,957.00 101.62308 10,881.00 100.91820

rec39+SD 75,20 11,189.00 11,299.00 100.98311 11,328.00 101.24229 11,303.00 101.01886 11,296.00 100.95630

rec41+SD 75,20 11,324.00 11,494.00 101.50124 11,450.00 101.11268 11,461.00 101.20982 11,441.00 101.03320

Average NA NA NA 100.28248 NA 100.59481 NA 100.06922 NA 100.34411

* Objective Function Value

**
Algorithm

no server constraint

100
OFV

OFV
 , smaller gaps are more desirable

31

Results of table 12 are particularly remarkable for the following reasons:

 The difference between makespan of the problems with
2SR constraints and problems with

3SR constraints is infinitesimal.

 The difference between makespan of the problems with server constraints and makespan

of the problems with no server constraints is very small.

 Solutions found for the problems with server constraints under
2SR and

3SR scenarios are

in some cases better than the solutions of the same problem without server constraints.

 For the problems with optimal solutions, table 7 indicates that although the optimal

solutions of some of the problems with server constraints are slightly larger than for the

problems without server constraints, in many cases the optimal solutions are equal.

In other words, the server side constraints for the case of
2SR and even

3SR have either no

effect or a negligible effect on the makespan of the problems studied in this research. This makes the

results of this research very practical for companies that have adopted a lean approach as it may be

possible to reduce the number of servers to
1

2
 (according to

2SR scenario) or even
1

3
 (based on

3SR

scenario) with minimal impact on the makespan. Computational results of Samarghandi and

ElMekkawy (2011) and Samarghandi and ElMekkawy (2013a) are in line with the computational results

presented in section 5.

6. Conclusion

This paper considered the scheduling problem of
max, | , |Q sdF S no wait S C . The problem is

strongly NP-Hard. A mathematical model of the problem was developed, and the problem was reduced

to a permutation problem. The MCAS algorithm was developed to produce a feasible timetable for

max, | , |Q sdF S no wait S C when a permutation of jobs is given. A genetic algorithm was developed

to deal with the problem. A diversified local search sub-procedure was developed to further improve

the computational results of the proposed GA and to increase the consistency of the solutions. A

sensitivity analysis using ANOVA was performed to tune the parameters of the developed algorithms.

32

A thorough computational analysis was performed on the small- and large-instance test

problems available in the literature. Computational analysis consisted of different server assignment

scenarios. The developed algorithms proved to be very competitive; the algorithms were able to

generate good-quality solutions for the test problems in a reasonable time. Computational results

revealed that the impact of the server constraints on the makespan of the test problems were negligible.

In fact, although the proposed methods were applied to test problems with server side constraints, they

improved many of the best-known solutions proposed in the literature for problems without such

constraints. These results are of importance for different settings where lean manufacturing techniques

are practised.

A possibility for the future research is finding lower bounds for

max, | , |Q sdF S no wait S C . Moreover, consideration of due dates for jobs and setting other objectives

such as total or mean tardiness minimization is another future research direction. Also, considering

sequence dependent setup times for the no-wait job shop problem is promising. Another important

direction is to analytically define conditions for setup times that minimize the impact of the

server constraints.

7. References

Aldowaisan, T. (2001). "A new heuristic and dominance relations for no-wait flowshops with

setups." Computers & Operations Research 28: 563-584.

Aldowaisan, T. and A. Allahverdi (1998). "Total flowtime in no-wait flowshops with separated

setup times." Computers & Operations Research 25: 757-765.

Aldowaisan, T. and A. Allahverdi (2004). "New heuristics for m-machine no-wait flowshop to

minimize total completion time." Omega: 345-352.

Allahverdi, A., J. Gupta and T. Aldowaisan (1999). "A review of scheduling research involving

setup considerations." Omega 27: 219-239.

Araujoa, D. C. and M. S. Naganoa (2011). "A new effective heuristic method for the no-wait

flowshop with sequence-dependent setup times problem." International Journal of Industrial

Engineering Computations 2: 155-166.

Beasley, J. E. (July 2009). "OR-Library: distributing test problems by electronic mail."

Retrieved March, 2014, from http://people.brunel.ac.uk/~mastjjb/jeb/info.html.

Bianco, L., P. Dell'Olmo and S. Giordani (1999). "Flow shop no-wait scheduling with sequence

dependent setup times and release dates." INFOR 37(1): 3-20.

Bonney, M. and S. Gundry (1976). "Solutions to the constrained flowshop sequencing

problem." Operational Research Quarterly 24: 869-883.

http://people.brunel.ac.uk/~mastjjb/jeb/info.html

33

Carlier, J. (1978). "Ordonnancements a contraintes disjonctives." RAIRO Recherche

Operationnelle 12: 333-351.

Cheng, T. C. E., G. Wang and C. Sriskandarajah (1999). "One-operator two-machine flowshop

scheduling with setup and dismounting times." Computers and Operations Research 26: 715-730.

Gangadharan, R. and C. Rajendran (1993). "Heuristic algorithms for scheduling in no-wait

flowshop." International Journal of Production Economics 32: 285-290.

Gao, K.-Z., Q.-K. Pan, J.-Q. Li, Y.-T. Wang and J. Liang (2012). "A hybrid harmony search

algorithm for the no-wait flow-shop scheduling problems." Asia-Pacific Journal of Operational

Research 29(2).

Glass, C. A., J. Gupta and C. Potts (1999). "Two-machine no-wait flow shop scheduling with

missing operations." Mathematics of Operations Research 24(4): 911-924.

Grabowski, J. and J. Pempera (2000). "Sequencing of jobs in some production systems."

European Journal of Operational Research 125: 535-550.

Grabowski, J. and J. Pempera (2005). "Some local search algorithms for no-wait flow-shop

problem with makespan criterion." Computers & Operations Research 32: 2197–2212.

Grabowski, J. and M. Syslo (1973). "On some machine Sequencing problems (I)." Applications

of Mathematicae 13: 340-345.

Guirchoun, S., P. Martineau and J. C. Billaut (2005). "Total completion time minimization in a

computer system with a server and two parallel processors." Computers & Operations Research 32:

599-611.

Gupta, J. N. D., V. A. Strusevich and C. M. Zwaneveld (1997). "Two-stage no-wait scheduling

models with setup and removal times separated." Computers & Operations Research 24(1): 1025-1031.

Hall, N. and C. Sriskandarajah (1996). "A survey of machine scheduling problems with

blocking and no-wait in process." Operations Research 44: 510-525.

Jolai, F., M. Rabiee and H. Asefi (Article in Press). "A novel hybrid meta-heuristic algorithm

for a no-wait flexible flow shop scheduling problem with sequence dependent setup times."

International Journal of Production Research.

King, J. and A. Spachis (1980). "Heuristics for flowshop scheduling." International Journal of

Production Research 18: 343-357.

Laha, D. and U. K. Chakraborty (2009). "A constructive heuristic for minimizing makespan in

no-wait flow shop scheduling." International Journal of Advanced Manufacturing Technology 41: 97-

109.

Liu, B., L. Wang and Y.-H. Jin (2007). "An effective hybrid particle swarm optimization for

no-wait flow shop scheduling." International Journal of Advanced Manufacturing Technology 31:

1001-1011.

Nagano, M. S., A. A. d. Silva and L. A. N. Lorena (Article in Press). "A new evolutionary

clustering search for a no-wait flowshop problem with set-up times." Engineering Applications of

Artificial Intelligence.

Pan, Q.-K., L. Wang, M. F. Tasgetiren and B.-H. Zhao (2008a). "A hybrid discrete particle

swarm optimization algorithm for the no-wait flow shop scheduling problem with makespan criterion."

International Journal of Advanced Manufacturing Technology 38: 337 - 347.

Pan, Q.-K., L. Wang and B.-H. Zhao (2008b). "An improved iterated greedy algorithm for the

no-wait flow shop scheduling problem with makespan criterion." International Journal of Advanced

Manufacturing Technology 38(7-8): 778-786.

Qian, B., L. Wang, R. Hu, D. X. Huang and X. Wang (2009). "A DE-based approach to no-

wait flow-shop scheduling." Computers & Industrial Engineering 57: 787-805.

34

Raaymakers, W. and J. Hoogeveen (2000). "Scheduling multipurpose batch process industries

with no-wait restrictions by simulated annealing." European Journal of Operational Research 126: 131-

151.

Rabiee, M., M. Zandieh and A. Jafarian (Article in Press). "Scheduling of a no-wait two-

machine flow shop with sequence-dependent setup times and probable rework using robust meta-

heuristics." International Journal of Production Research.

Rajendran, C. (1994). "A no-wait flowshop scheduling heuristic to minimize makespan."

Journal of the Operational Research Society 45: 472-478.

Reddi, S. and C. Ramamoorthy (1972). "On the flowshop sequencing problem with no-wait in

process." Operational Research Quarterly 23: 323-331.

Reeves, C. (1995). "A genetic algorithm for flowshop sequencing." Computers and Operations

Research 22: 5-13.

Röck, H. (1984). "Some new results in flow shop scheduling." Zeitschrift für Operations

Research 28: 1-16.

Samarghandi, H. and T. Y. ElMekkawy (2011). "An effective hybrid algorithm for the two-

machine no-wait flow shop problem with separable setup times and single server." European Journal of

Industrial Engineering 5(2): 111-131.

Samarghandi, H. and T. Y. ElMekkawy (2012a). "A meta-heuristic approach for solving the

no-wait flow shop problem." International Journal of Production Research 50(24): 7313 - 7326.

Samarghandi, H. and T. Y. ElMekkawy (2012b). "A Metaheuristic approach for the no-wait

flow shop problem with separable setup times and makespan criterion." International Journal of

Production Research 61(9-12): 1101 - 1114.

Samarghandi, H. and T. Y. ElMekkawy (2013a). "Two-machine no-wait job shop problem with

separable setup times and single-server constraints." International Journal of Advanced Manufacturing

Technology 61(1-4): 295 - 308.

Samarghandi, H. and T. Y. ElMekkawy (2013b). "Two-machine, no-wait job shop problem

with separable setup times and single-server constraints." The International Journal of Advanced

Manufacturing Technology 65(1-4): 295-308.

Samarghandi, H. and T. Y. ElMekkawy (2014a). "Solving the no-wait flow-shop problem with

sequence-dependent set-up times." International Journal of Computer Integrated Manufacturing 27(3):

213 - 228.

Samarghandi, H. and T. Y. ElMekkawy (2014b). "Solving the no-wait flow-shop problem with

sequence-dependent set-up times." International Journal of Computer Integrated Manufacturing 27(3):

213-228.

Samarghandi, H. and K. Eshghi (2009). An efficient tabu algorithm for solving the single row

facility layout problem. Computers & Industrial Engineering, 2009. CIE 2009. International Conference

on, IEEE.

Samarghandi, H. and F. F. Jahantigh (2011). "A particle swarm optimisation for fuzzy dynamic

facility layout problem." International Journal of Metaheuristics 1(3): 257-278.

Samarghandi, H., P. Taabayan and F. F. Jahantigh (2010). "A particle swarm optimization for

the single row facility layout problem." Computers & Industrial Engineering 58(4): 529-534.

Shadrokh, S. and F. Kianfar (2007). "A genetic algorithm for resource investment project

scheduling problem, tardiness permitted with penalty." European Journal of Operational Research 181:

86-101.

Sidney, J., C. Potts and C. Sriskandarayah (2000). "Heuristic for scheduling two-machine no-

wait flow shops with anticipatory setups." Operations Research Letters 26(4): 165-173.

35

Su, L. H. and Y. Y. Lee (2008). "The two-machine flowshop no-wait scheduling problem with

a single server to minimize the total completion time." Computers & Operations Research 35: 2952-

2963.

Sviridenko, M. (2003). "Makespan minimization in no-wait flow shops: A polynomial time

approximation scheme." SIAM Journal on Discrete Mathematics 16(2): 313-322.

Wismer, D. (1972). "Solution of the flowshop scheduling with no intermediate queues."

Operations Research 20: 689-697.

Ying, K.-C., Z.-J. Lee, C.-C. Lu and S.-W. Lin (2012). "Metaheuristics for scheduling a no-

wait flowshop manufacturing cell with sequence-dependent family setups " The International Journal

of Advanced Manufacturing Technology 58(5-8): 671-682.

