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Abstract

Blood oxygen level dependent (BOLD) functional magnetic resonance imaging

is a non-invasive technique used to trace changes in neural dynamics in reaction to

mental activity caused by perceptual, motor or cognitive tasks. The BOLD response

is a complex signal, a consequence of a series of physiological events regulated by

increased neural activity. A method to infer from the BOLD signal onto underlying

neuronal activity (hemodynamic inverse problem) is proposed in Chapter 2 under

the assumption of a previously proposed mathematical model on the transduction

of neural activity to the BOLD signal. Also, in this chapter we clarify the meaning

of the neural activity function used as the input for an intrinsic dynamic system

which can be viewed as an advanced substitute for the impulse response function.

Chapter 3 describes an approach for recovering neural timing information (mental

chronometry) in an object interaction decision task via solving the hemodynamic

inverse problem. In contrast to the hemodynamic level, at the neural level, we were

able to determine statistically significant latencies in activation between functional

units in the model used. In Chapter 4, two approaches for regularization parameter

tuning in a regularized-regression analysis are compared in an attempt to find the op-

timal amount of smoothing to be imposed on fMRI data in determining an empirical

hemodynamic response function. We found that the noise autocorrelation structure

can be improved by tuning the regularization parameter but the whitening-based cri-
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terion provides too much smoothing when compared to cross-validation. Chapter 5

illustrates that the smoothing techniques proposed in Chapter 4 can be useful in the

issue of correlating behavioral and hemodynamic characteristics. Specifically, Chap-

ter 5, based on the smoothing techniques from Chapter 4, seeks to correlate several

parameters characterizing the hemodynamic response in Broca’s area to behavioral

measures in a naming task. In particular, a condition for independence between two

routes of converting print to speech in a dual route cognitive model was verified in

terms of hemodynamic parameters.
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Chapter 1

Introduction

Functional magnetic resonance imaging (fMRI) is a non-invasive technique which

provides a powerful tool for understanding the organization of the human brain at the

systems level by relating behavioral measures (e.g. perceptual, motor or cognitive

stimuli or clinical symptoms) to the microscopic alternations in the magnetic field

associated with neural activity. The functional MRI response is a complex one

depending on intricate physical and physiological phenomena. The advantages of

fMRI include its non-invasive nature and relatively high spatial resolution on the

order of millimeters with access to submillimeter resolution. In addition, a typical

MRI temporal resolution of about 1 s, which can potentially reach the order of 100 ms,

is adequate for tracing many specific sequences of neural dynamics. Its ability to

cover the entire brain in a period of a few seconds allows researchers to map transient

aspects of brain activity. Also, a strength of fMRI is in its flexibility in the design of

experimental paradigms, including the possibility of repeated studies of individual

subjects and patients.
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1.1 Physiological aspects of BOLD contrast

Several distinct parameters can characterize MRI image contrast. First of all, the

MRI signal depends on spin density (number of nuclear signals per unit volume), or

more specifically, taking into account the primary role of 1H, on the proton spin den-

sity (water concentration). Other contrast relevant parameters include spin-lattice

relaxation time T1, which determine the lifetime of the recovery of the net longitu-

dinal (along the main magnetic field) magnetization after the radiofrequency (RF)

pulse, and spin-spin relaxation time T2, which describes the rate of decay of the

net transverse magnetization. Inevitable magnetic field inhomogeneities result in

the decay of the signal at a more rapid rate than that due to T2 relaxation alone.

The resultant relaxation is referred to as T ∗
2 relaxation. It is important to differ-

entiate between coherence loss due to relaxation, which is inherently random and

irreversible, and that caused by magnetic field imperfections, which can be reversed.

The fMRI signal is determined by precession of the transverse magnetization, the

net magnetization in the plane perpendicular to the main magnetic field. The total

transverse magnetization MT is given by

MT (t) = M0(1− exp−TR/T1)exp−TE/T2 (1.1)

where repetition time TR and echo time T are parameters of a pulse sequence used

in an experiment. In almost all of the fMRI pulse sequences protocols, a decrease in

the T1 value of the water 1H signal from a given volume of the brain or an increase

in the T2 value results in a positive MR response.
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Prior to the discovery of nuclear magnetic resonance, Pauling and Coryell (1936)

described the basic chemical and physical properties of the hemoglobin molecule,

the iron-containing oxygen-transport metalloprotein, incorporated in red blood cells,

which provide the principal means of delivering oxygen to tissues via the blood. They

found that oxygenated hemoglobin is diamagnetic, while deoxygenated hemoglobin is

paramagnetic. Presence of paramagnetic hemoglobin affects the local magnetic sus-

ceptibility, creating microscopic distortions in the magnetic field within and around

blood vessels. This microscopic inhomogeneous magnetic field causes spin dephasing,

resulting in a decay of transverse magnetization through T ∗
2 relaxation. A corollary

of this phenomenon is that, theoretically, an MR pulse sequence sensitive to T ∗
2 con-

trast should show differences in the decay of transverse magnetization, depending on

the proportion of oxygenated hemoglobin in blood (the level of blood oxygenation).

This was verified experimentally by Thulborn et al. (1982) with in vitro samples. In

a seminal paper, Ogawa et al. (1990) demonstrated, in vivo, that T ∗
2 -contrast is sen-

sitive enough to reveal blood oxygenation level dependent (BOLD) signal changes. A

similar effect was reported by Turner et al. (1991), who monitored changes in brain

oxygenation during periods of recovery from anoxia (deprivation of oxygen supply)

and demonstrated that blood behaves as an endogenous susceptibility contrast agent.

The BOLD phenomenon was associated not only with macroscopic vessels but was

also extended to the brain tissue. It was known that increased neuronal activity

is accompanied by increases in both regional blood flow and oxygen consumption,

although the stimulus-induced augmentation of cerebral blood flow exceeds the con-

comitant tissue metabolic rate of oxygen consumption (Fox and Raichle, 1986; Fox
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et al., 1988). These observations provided the grounds for the idea that BOLD-based

MRI techniques might potentially be useful for exploring brain activation through

changes induced by tissue oxygenation. A new era for functional neuroimaging be-

gan when three groups (Kwong et al., 1992; Ogawa et al., 1992; Bandettini et al.,

1992) reported the success of BOLD-based magnetic resonance imaging of the human

brain.

What influences the concentration of oxygenated hemoglobin in the blood, and

consequently, the BOLD signal in reaction to neural activity? Studies showed that

the BOLD signal depends on contributions from baseline and changes in cerebral

blood volume (CBV) (Belliveau et al., 1991), from baseline and changes in cerebral

blood flow (CBF) (Kim, 1995), as well as from changes in the cerebral metabolic

rate of oxygen consumption CMRO2 (Bandettini et al., 1992). Many studies demon-

strated the coupling between neural activity and blood flow (for a review see Raichle

(2000)). Increases in glucose utilization, the predominant energy mechanism in the

brain, were observed to be approximately proportional to increases in blow flow (Fox

and Raichle, 1986; Fox et al., 1988). However, changes in the blood flow and glucose

consumption were disproportionately higher than changes in oxygen consumption,

suggesting the existence of other metabolic mechanisms, in addition to glycolysis

(the metabolic process by which a glucose molecule is oxidized to two molecules

of pyruvic acid). Recent experimental measurements have estimated that relative

changes in blood flow are two or three times larger than those in oxygen consump-

tion (Davis et al., 1998; Marrett and Gjedde). As a result of this disproportion, the

oxygen extraction fraction, and consequently, the deoxyhemoglobin concentration in
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blood decreases with activation. Some studies were able to observe an initial dip in

vascular oxygenation lasting 1-2 seconds before the standard BOLD increase (Menon

et al., 1995). This effect, small and not always present, implies a rapid increase of

CMRO2 before the CBF increases to increase the vascular oxygenation.

Despite the basic role of CBF in BOLD imaging, the question regarding the nature

of the exact mechanisms of neurovascular coupling remains unresolved. A number

of studies indicated a growing role for astrocytes, specifically their ability to control

vasodilation via changes in Ca2+ concentration (Zonta et al., 2003; Takano et al.,

2006). From a geometric point of view, astrocytes are ideally positioned to regulate

synaptic transmission and neurovascular coupling, receiving inputs from thousands

of neurons and making contact with the local vasculature. Prostaglandins, EET

(epoxyeicosatrienoic acids), arachidonic acid and potassium ions are all considered

possible candidates for mediating communication between the astrocyte end-feet

and vascular smooth muscle (see reviews Haydon and Carmignoto (2006); Koehler

et al. (2006)). In vivo studies support parallel, independent signaling based on

EETs, adenosine and nitric oxide produced by stimulation from nitric oxide synthase

(Koehler et al., 2006).

Another critical issue, based on unclear mechanisms of neurovascular coupling

and the inherently complex vasculature-dependent nature of the BOLD signal, is

the type of neural activity reflected in the dynamics of BOLD signals. Comparing

responses from single neuron recordings in monkeys and those from human BOLD

studies, two studies (Heeger et al., 2000; Rees et al., 2000) demonstrated a positive

correlation between behavioral measures, action potential and fMRI signals. How-
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ever, the studies differ dramatically in the quantitative assessment of the rate of

change of the spike rate: 0.4 and 9 spikes per second per neuron per 1% change of

the BOLD signal in the study by Heeger et al. (2000) and Rees et al. (2000), re-

spectively. These studies provided evidence supporting the idea that BOLD signals

reflect neuronal firing rate. However the large discrepancy between these two studies

appeared to undermine the indirect approach of those studies. A study by Logothesis

et al. (2001) with the anaesthetized monkey used simultaneously recorded fMRI and

electrophysiological signals to compare multi-unit spiking activity (MUA) and local

field potentials (LFPs) to BOLD responses. This study demonstrated that LFPs,

associated with dendritic currents averaged over a population of neurons, rather than

the spike rate, are a better indicator of BOLD changes. Lauritzen and Gold (2003)

explored the relationship between action potential production, synaptic activity and

changes in CBF. Their results indicated that action production is not a necessary

condition for a concomitant increase in CBF (or the BOLD signal). The authors

emphasized the importance of distinguishing between synaptic inhibition and deac-

tivation when CBF and glucose consumption is increased and decreased, respectively.

Further, in another study, Mukamel et al. (2005) compared BOLD changes in the

auditory cortex of conscious humans to three types of neuronal activity: spiking ac-

tivity, low-frequency (5-15 Hz), and high-frequency (40-130 Hz) LFPs. The authors

were not able to identify the source behind the BOLD response since the spiking

activity was highly correlated with the high-frequency LFPs.
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1.2 Spatiotemporal aspects of BOLD contrast

Changes in deoxyhemoglobin concentration in blood is a key component of changes

in the BOLD signal. The presence of paramagnetic deoxyhemoglobin has several

susceptibility-related effects on the magnitude of the MR signal in general, and on

BOLD signal changes, in particular. The deoxyhemoglobin-caused effects may be

partitioned into intravascular and extravascular BOLD effects. One intravascular

effect is a direct change of the transverse T2 relaxation of blood (Wright et al., 1991;

Thulborn et al., 1982). Another intravascular effect is related to the difference in the

phase of the blood-based spins relative to surrounding tissue, due to an oxygenation-

dependent susceptibility between the two compartments (Boxerman et al., 1995a).

The basis for the extravascular component of BOLD signal is in the main magnetic

field inhomogeneities around blood vessels, which can be differentiated between sin-

gle, straight veins (Yablonskiy and Haacke, 1994) and randomly oriented capillaries

(Yablonskiy and Haacke, 1994; Boxerman et al., 1995b).

The spatial properties of vasculature determines the absolute lower limit for the

spatial scale that can be measured using BOLD. Specifically, the size of vasculature

is about 10 microns in the capillary bed where BOLD changes are well colocalized

with the loci of neural activity. In contrast, signal changes can be detected several

centimeters away from the large draining veins where the size of vasculature is of

the order of a few millimeters (Kim, 1995). Kim et al. (2004) directly compared

changes in BOLD signal to single and multi-unit neuronal activity from a large

area in the cat brain. Their results revealed a linear correlation between BOLD
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changes and neuronal activity at the millimeter scale. However, the correlation

between the two measurements varied significantly at the level of individual electrode,

leading to the conclusion that BOLD contrast is a robust indicator of neuronal

activity only at supra-millimeter scale. Disbrow et al. (2000) used BOLD fMRI

and electrophysiological maps to compare the topographic organization of cortical

fields. The largest mismatch between the two modalities was found in regions close to

larger vessels. In addition, their study indicated that the accuracy or resolution can

be significantly degraded in the dimension perpendicular to major local vasculature.

In addition to the issue of spatial localization of neural activity, the evolution

(shape) of the BOLD response per se may be of separate interest. A typical hemo-

dynamic response might display an initial dip, reaches its maximum within a few

seconds after the beginning of a stimulus, and then decaying after the termination

of the stimulus with an undershoot in the time course (Ogawa et al., 1998). Cere-

bral blood flow and BOLD responses are observed to be delayed by a few seconds

relative to even a short stimulus (Bandettini et al., 1992). According to Mandeville

et al. (1999), the increase of CBF after stimulus onset and decrease after stimulus

offset were described with an exponential time constant of 2.4 ± 0.8 seconds. For a

prolonged stimulus of about 20 seconds, one can usually observe a plateau, possibly

slightly inclined and distorted by an overshoot at the beginning or at the end of the

plateau (Kruger et al., 2001). Recent studies indicate that the BOLD response is

nonlinear with respect to stimulus duration. Specifically, signal response to shorter

duration stimuli were found to be larger than expected from a linear system (Birn

et al., 2001). Another aspect of BOLD nonlinearity is a refractory response in which
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the signal change is lower in the presence of a preceding identical stimulus. It was

reported that the net response to two similar stimuli presented at a run was less

than twice the response of a single stimulus alone (Huettel and McCarthy, 2001).

The sampling rate possible for the BOLD signal is limited by the T1 relaxation.

Usually, depending upon the experiment, a typical sampling rate of images acquired

with a spatial resolution of 3− 4 mm ranges from 500 ms to 3− 4 s. In a number of

studies (Menon et al., 1998; Hernandez et al., 2002) the temporal resolution reached

one hundred milliseconds. Within the limits allowed by BOLD physiology, a higher

temporal sampling rate can be balanced by a decrease in spatial resolution or through

a trade-off with quality of the measured MR signal (Vlaardingerbroek and Den Boer,

1996).

1.3 Structure of fMRI data

Functional MRI data files consist of time series of image volumes. In turn, one im-

age volume is composed of a set of brain slices (images). The images are arrays of

greyscale (brightness) values. Each location in an image array is known as a pixel

(“picture element”) so a pixel represents the spatial location of the MRI signal, rep-

resented by the greyscale value, from that location. When the dataset is considered

as a volume, the pixels in each slice are known as voxels for “volume elements”.

Picking up the greyscale values for the same pixel (in other words, for the same

voxel) in the same slice (in other words, in the same image) from each volume, we

can construct fMRI time series for that voxel. For example, a typical MRI image can
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be described by a 128 × 128 matrix. The number of slices in a typical experiment

might be equal to 12. Image acquisition procedure for each slice can be repeated, let

us say, 100 times , i.e. we have time series with 100 observations. So, the complete

data set from such an experiment contains the 128 × 128 × 12 × 100 values of the

fMRI signal.

1.4 Scope of the thesis

In this chapter we very briefly reviewed the physical and physiological basis for

blood oxygen level dependent (BOLD) functional magnetic resonance imaging and

discussed its intrinsic limits.

A key concern of fMRI-based analysis is that the BOLD signal does not measure

neural activity directly. Recently proposed mathematical forward models describe

the transduction of neural activity into the BOLD response based on principles

and experiments outlined above. In Chapter 2 we transform the expanded “balloon”

model into an optimal control problem with the objective of solving the hemodynamic

inverse problem, i.e. of estimating the dynamics of the neural activity underlying the

BOLD signal. We found that the dynamics of the neural signals and the physiological

variables can be robustly reconstructed from the BOLD responses. Furthermore, we

showed that off/on dynamics of the neural activity is the natural mathematical

solution of the model.

The study described in Chapter 3 is an application of the methods proposed in

Chapter 2. Specifically, by example of a functional network model from cognitive
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neuroscience designed to assess the BOLD and neural activity involvement in a word

object interaction decision task, we illustrated how one can recover chronometric in-

formation from fMRI time series through solving the hemodynamic inverse problem.

In contrast to the hemodynamic level, at the neuronal level, we found statistically

significant delays in activation onset between the visual word/object system and the

interaction-semantics system, as well as between the visual word/object system and

the speech production system.

In general, Chapter 3 considers the problem of smoothing fMRI time courses at

the neural level, accompanied with the idea of signal averaging. The same problem

was considered in Chapter 4, but at the level of BOLD fMRI time series per se. Chap-

ter 4 probes the issue of what amount of smoothing should be considered optimal

for fMRI signals, since strong smoothing washes out temporal characteristics. The

hemodynamic responses, if not smoothed enough, may reflect irrelevant information.

The purpose of the work presented in Chapter 4 was to develop techniques which

can estimate the “true” shape of hemodynamic responses and facilitate calculation

of BOLD temporal characteristics. Therefore, in Chapter 4 we applied functional

data analysis (FDA) techniques based on B-spline smoothing with Tikhonov regu-

larization. In addition, we refined criteria for regularization parameter selection.

Evaluating the temporal parameters of the hemodynamic response implicitly as-

sumes the involvement of smoothing to eliminate variance due to noise. Chapter 5

is an application of the smoothing techniques presented in Chapter 4. The purpose

of this part of the thesis was to verify previously reported correlations between the

hemodynamic response and the behavioral measures, such as accuracy and reaction

11



time, extending the applicability of neuroimaging techniques in the issue of inte-

grating cognitive science with neurophysiology. In Chapter 5, we computed maps of

several temporal characteristics of BOLD responses measured in Broca’s area dur-

ing a word identification task. We found that BOLD response width is uniquely

related to reaction time in the task of naming pseudohomophones. In addition, our

results support, in terms of BOLD parameters, the independence between lexical

and sub-lexical routes for converting speech to print.

The thesis adopts the manuscript-based format. Chapters 2, 3, 4 and 5 are based

on the papers submitted to journals Neuroimage, Statistics in Medicine and Brain

(see Preliminaries to each chapter). The bibliography is given after each chapter.
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Chapter 2

Inferring neural activity from BOLD

signals through nonlinear optimization

2.1 Preliminaries

This chapter is based on the manuscript titled “Inferring neural activity from BOLD

signals through nonlinear optimization” by Vakorin, V.A., Krakovska, O.O, Borowsky,

R. and Sarty, G.E., submitted to Neuroimage. The basis for this work is a quantita-

tive link between blood oxygen level dependent (BOLD) fMRI signals and underlying

neural activity. The problem is that the BOLD fMRI signal does not measure neu-

ronal activity directly. This fact is a key concern for interpreting functional imaging

data based on BOLD. Mathematical models describing the path from neural activity

to the BOLD response allow us to numerically solve the inverse problem of estimating

the timing and amplitude of the neuronal activity underlying the BOLD signal. In

fact, these models can be viewed as an advanced substitute for the impulse response

function.

In this work, the issue of estimating the dynamics of neuronal activity from the

observed BOLD signal is considered within the framework of optimization problems.

The model is based on the extended “balloon” model and describes the conversion of
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neuronal signals into the BOLD response through the transitional dynamics of the

blood flow-inducing signal, cerebral blood flow, cerebral blood volume and deoxyhe-

moglobin concentration. Global optimization techniques are applied to find a control

input (the neuronal activity and/or the biophysical parameters in the model) that

causes the system to follow an admissible solution to minimize discrepancy between

model and experimental data. As an alternative to a local linearization (LL) filtering

scheme, the optimization method escapes the linearization of the transition system

and provides a possibility to search for the global optimum, avoiding spurious local

minima.

We have found that the dynamics of the neural signals and the physiological

variables as well as the biophysical parameters can be robustly reconstructed from

the BOLD responses. Furthermore, it is shown that spiking off/on dynamics of the

neural activity is the natural mathematical solution of the model. Incorporating, in

addition, the expansion of the neural input by smooth basis functions, representing

a low-pass filtering, allows us to model local field potential (LFP) solutions instead

of spiking solutions.

2.2 Introduction

Functional magnetic resonance imaging (fMRI) is a non-invasive technique used to

gain insights into brain function. The most common contrast available for researchers

is blood oxygen level dependent (BOLD) contrast (Ogawa et al., 1990) based on the

dependence of the magnetic properties of hemoglobin on its oxygenation state in

18



reaction to evoked neuronal activity. Unfortunately BOLD fMRI does not directly

measure neuronal electrical activity nor does it straightforwardly reflect the changes

in brain energy metabolism. Geometrically, the BOLD contrast depends both on the

intravascular (Boxerman et al., 1995a,b; Hoogenraad et al., 2001) and extravascular

(Ogawa et al., 1993; Hoogenraad et al., 2001) dephasing effects caused by changes

in deoxyhemoglobin concentration. As indicated in a study addressing the spa-

tial correspondence between BOLD and neuronal activity, separation of the effects

due to intravascular and extravascular components is not observed, which compli-

cates the issue of localizing the neuronal activity underlying BOLD responses (Kim

et al., 2004). Further, many studies have demonstrated the quite complex nature

of the BOLD signal as a function of cerebral blood flow, blood volume and oxygen

metabolism (for reviews see Heeger et al. (2000); Heeger and Ress (2002); Logothesis

et al. (2001); Logothetis (2002); Nair (2005); Sarty (2007)). From a temporal point

of view, the dynamics of BOLD are delayed relative to electrical activity because of

slow vascular transitional effects. These spatiotemporal discrepancies between the

correspondence of the BOLD responses with the underlying neuronal activity may

undermine researchers’ confidence in the validity of results obtained using BOLD

fMRI for many cognitive and perceptual studies.

Being in fact an echo of neuronal activity, the BOLD effect blurs temporally evolv-

ing events when separated episodes of activity are filtered by the temporal buffer of

the hemodynamics. Therefore, the desire to put more meaningful interpretation on

fMRI time courses is a key motive for transferring the stress of the analysis from

the BOLD level down to neuronal level. In other words, there is a need to solve the
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problem of extracting the relevant neuronal information from the measured hemo-

dynamic response, which can be called the inverse hemodynamic problem (Buckner,

2003). Combined neuroimaging studies and electrophysiological recordings (Logoth-

esis et al., 2001; Heeger et al., 2000; Rees et al., 2000; Mukamel et al., 2005) have

demonstrated a coupling between BOLD and neuronal activity, laying the basis to

believe that considering the inverse hemodynamic problem makes good sense.

At first, indirect comparison between responses from single neuron recordings in

monkeys and human fMRI measurements (Heeger et al., 2000; Rees et al., 2000)

demonstrated a positive correlation between behavioral measures, action potential

and fMRI signals. Specifically, the fMRI response in human cortical areas V1 and

V5 was found to be proportional, although not strictly linearly, to the firing rate of

individual neurons in the same areas in monkeys. Assuming that these brain areas

are homologous and that firing rates in two species are similar, the authors were able

to estimate the average firing rate per neuron corresponding to the changes in fMRI

signal.

Further, simultaneously recorded fMRI signals and neuronal potentials were com-

pared in a study with the anaesthetized monkey (Logothesis et al., 2001) to evaluate

the linear model. The neuronal signals observed as spikes superimposed on waves of

lower frequencies were measured with a low impedance microelectrode placed in the

extracellular space in V1. A high-pass filter (300-1500 Hz) was used to obtain multi-

unit activity (MUA) which is believed to reflect spiking activity around the electrode

tip. Applying a low-pass filter (40-130 Hz) resulted in local field potentials (LFP).

The basis for LFPs, the low-frequency component of the extracellular field potentials,
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is thought to be a synchronized dendritic current averaged over a neural population.

The study addressed the issue of predicting the fMRI measurements from the LFP

and MUA. It was estimated that the LFPs accounted for approximately 7.6% more

of the variance in the fMRI signals than did the MUA. The difference was found to

be statistically significant. Nevertheless, the authors did not exclude the possibility

that spikes are a key determinant of the BOLD response despite the slightly better

predictive power of the LFPs (Logothetis and Wandell, 2004).

The same linear convolution model was used to examine the coupling between

fMRI and neuronal activity in the auditory cortex of conscious humans (Mukamel

et al., 2005). Three types of neuronal activity were tested: spiking activity, low-

frequency (5-15 Hz) LFPs, and high-frequency (40-130 Hz) LFPs. All three potential

predictors were shown to be significantly correlated with the fMRI response. The

spiking activity in Heschl’s gyrus of one patient was found to be a statistically sig-

nificant, slightly better predictor of the BOLD signal than the high-frequency LFPs,

while for another patient there was no significant difference in predictive power.

Since the spiking activity was highly correlated with the high-frequency LFPs, the

authors were not able to identify the source behind the BOLD response. However the

findings support, at least under a natural stimulus condition, the view that BOLD

signals are a measure of the average firing rate of the underlying population.

The invasive nature of electrophysiological methods dramatically limits their ap-

plication for studying brain function. However, convolution techniques, motivated

by the need for modeling interactions at a neural level, were introduced in pure fMRI

analysis before neurovascular coupling was demonstrated. The problem of inferring
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the dynamics of the neuronal activity from BOLD can be identified with the de-

convolution problem which implicitly assumes the existence of the intrinsic dynamic

system for converting underlying neuronal response into observed BOLD signal. In

the simplest case, neuronal activity based on the stimulus paradigm can be convolved

(smoothed) with the impulse response function approximated by a Poisson distri-

bution function (Friston et al., 1994). Later on, manipulations with the stimulus

amplitude and duration showed the nonlinear characteristics of the BOLD response

(Vazquez and Noll, 1998).

To account for non-linear effects, the convolution method was extended using

Volterra series, an expansion of a dynamic, nonlinear functional in analogy to the

Taylor series (Friston et al., 1998). The Volterra series can be considered as time-

invariant high-order convolution kernels applied to a stimulus in order to simulate

the observed BOLD signal. The authors considered the particular case of a known

input sequence that varies from voxel to voxel only in terms of the scaling parame-

ters. As a result, estimations of the neuronal activity function obtained by using this

approach strongly depend on a priori knowledge regarding the experimental design

and parametrization of the Volterra kernels. In this approach, the quantification of

activation patterns that are not under direct experimental control, may be distorted.

Specifically, this can be an issue for the voxels from those brain areas that are indi-

rectly time-locked to the stimulus in an experiment designed for studying dynamic

interactions through the estimation of the effective connectivity.

Within the framework of Volterra kernels, an expectation-maximization algo-

rithm (an iterative procedure) was used to estimate the parameters of the hemo-
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dynamic response (Friston et al., 1998). These search methods converge relatively

quickly but there exists a significant disadvantage in their tendency to converge to a

local optimum depending on starting values. Further, a key concern for convolution,

linear or non-linear, is the variability of the observed hemodynamic responses which

are reported to be different not only across subjects but also from voxel to voxel as

well as from task to task (Handwerker et al., 2004). The implication is that the un-

derlying neuronal activity is not approximated well by the higher order convolution

of fixed functions with stimulus timing waveforms.

Biophysical models of neurovascular coupling (Friston et al., 2000; Zheng et al.,

2002) allow one to model this coupling and use it as new information (essentially,

a priori information) in the effort to infer the transitional dynamics. The models

can be considered as an advanced substitute for the impulse response function ap-

proach. These forward space-state models produce a predicted BOLD response for

a combination of hemodynamic parameters and an input function representing the

neuronal dynamics. The “balloon” model proposed by Buxton et al. (1998) and

the windkessel model of Mandeville et al. (1999) describe the coupled dynamics of

cerebral blood volume (CBV), deoxyhemoglobin concentration and their effect on

the BOLD signal as a function of cerebral blood flow (CBF) into an elastic vascular

system (balloon). The models are based on the idea of mechanical expansion of the

venous compartment, induced by increased CBF. The balloon model was extended

by Friston et al. (2000) by implementing the dynamics of a vasoactive agent concen-

tration, a flow-inducing signal defined in terms of the rate of change of normalized

blood flow. The outcome is a continuous case of a state-space model consisting of
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a set of nonlinear differential equations (process equations) describing the dynam-

ics of CBF, the CBF-inducing signal, CBV, deoxyhemoglobin concentration and an

observation (measurement) equation to define the BOLD signal. The flow-inducing

signal was assumed to be self-diffusive and generated by the underlying neuronal ac-

tivity. However the interpretation of the neuronal activity function remains unclear

as the extended balloon model does not reflect the kinetics of the neuronal signalling

mechanisms controlling the blood flow.

In a previous study, a local linearization (LL) filter was proposed (Riera et al.,

2004) to solve the hemodynamic inverse problem formulated as a space state model.

The LL method belongs to a class of recursive filters reduced to linearized equations

of evolution for the conditional means of the state variables and their covariance

matrix. It can be used to reconstruct the underlying neuronal activity together with

the dynamics of state variables and some of the biophysical parameters. Although

the LL filter is thought to overcome the problem of stability typical for recursive

filters, it may suffer from erroneous estimations of the dynamics of the neuronal

activity underlying the BOLD signal, as may be suggested from the visual analysis

of the results reported (Riera et al., 2004).

As an alternative to the LL method, we propose a new formalism to tackle the is-

sue of extracting the dynamics of the neural activity from the measured BOLD signal

when the mathematical model is considered within the framework of optimization

problems. The space-state model is transformed into an optimal control problem.

Specifically, the problem under consideration is to find an admissible control or input

(the neural activity and/or the biophysical parameters in the model) that causes the
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system to follow an admissible solution that minimizes a performance measure based

on model-experiment discrepancy. We aim to (i) clarify the meaning of the neuronal

activity function used as the input for the intrinsic dynamic system that converts

the neuronal activity into BOLD and (ii) introduce a robust method to solve the

hemodynamic inverse problem.

2.3 Framing the problem and methods of solution.

2.3.1 Optimal control problem. Pontryagin minimum prin-

ciple.

The expanded balloon model (Friston et al., 2000) has been previously introduced to

link the neural activity u(t) to the BOLD signal h(t) on the time interval [0, T ], with

time t measured in seconds. The coupling between the neuronal input and the evoked

BOLD signal is specified with a space-state model as depicted in Fig. 2.1. Specifically,

Input:
neural
activity
function

u(t)

Transitional dynamics:
− the flow−inducing signal x

1
(1)

− cerebral blood flow (CBF) x
2
(t)

− cerebral blood volume (CBV) x
3
(t)

− deoxyhemoglobin concentration x
4
(t)

Observation
eqution

h(t)=g(x,u)

Output:
fMRI

BOLD
response

h(t)

Figure 2.1: A diagram describing the expanded balloon model. The
intrinsic biophysical system that determines the transition of the neu-
ronal signal to the BOLD response is formulated in terms of a state-
space model. The input is the neuronal activity function. It defines
the intermediate dynamics of 4 physiological variables, namely a flow-
inducing signal, CBF, CBV and deoxyhemoglobin concentration. The
functions for CBV and deoxyhemoglobin concentration are, in turn,
used in the observation equation that produces the BOLD response.
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the first part describes the transitional dynamics of the state-space vector x(t) =

(x1(t), x2(t), x3(t), x4(t))
T , where the functions given by x(t) represent

x1(t) = the flow-inducing signal

x2(t) = cerebral blood flow (CBF)

x3(t) = cerebral blood volume (CBV)

x4(t) = deoxyhemoglobin concentration

where all quantities are normalized relative to resting values.

The second part of the model is the observational equation for the BOLD signal

h(t). The system is defined as follows:

dx

dt
= f(x(t), u(t)) (2.1)

h(t) = g(x(t), u(t)) (2.2)

the explicit form of which is

dx1

dt
= f1(x(t), u(t)) = u(t)− x1(t)

τs

− x2(t)− 1

τf

(2.3)

dx2

dt
= f2(x(t), u(t)) = x1(t) (2.4)

dx3

dt
= f3(x(t), u(t)) =

1

τ0

(
x2(t)− x3(t)

1
α

)
(2.5)

dx4

dt
= f4(x(t), u(t)) =

1

τ0

(
x2(t)

E0

[
1− (1− E0)

1
x2(t)

]
− x4(t)x3(t)

1−α
α

)
(2.6)

with initial conditions

x>(0) = (x1(0), x2(0), x3(0), x4(0)) = (0, 1, 1, 1) (2.7)

and

h(t) = g (x(t), u(t)) = V0

(
k1(1− x4(t)) + k2

(
1− x4(t)

x3(t)

)
+ k3(1− x3(t))

)
(2.8)

26



where Θ ≡ {τs, τf , τ0, α, E0, V0, k1, k2, k3} is the set of biophysical parameters.

The changes in blood flow determine the dynamics of the blood volume and

deoxyhemoglobin content. In particular, an increase in deoxyhemoglobin content

x4(t) results in an decreased BOLD signal h(t). The BOLD response depends on

changes in concentration of the deoxyhemoglobin, and therefore relies on a balance

between the delivery and consumption of oxygen, on the one hand, and on the

cerebral blood volume, on the other hand.

According to the model (Buxton et al., 1998), the increased blood flow inflates the

balloon, the venous compartment, which dilutes the deoxygenated blood. Another

assumption is the capacity of the swelled venous balloon to expel deoxygenated

blood at a greater rate (this models the relationship between the blood outflow and

the blood volume). Changes in blood volume and clearance of deoxyhemoglobin

determine the output, the BOLD signal. The BOLD response which is a non-linear

function of deoxyhemoglobin and blood volume, is divided into extravenous and

intravenous components with weights representing relative volumes. The rate of

change of deoxyhemoglobin is defined by the difference between deoxyhemoglobin

entering the venous compartment and that expelled from the compartment. The

rate of change of blood volume is the blood inflow minus the flood outflow. The rate

of changes of the blood flow is defined in terms of the concentration of a vasoactive

agent released by neural activity. In this model, the concentration of the vasoactive

agent is denoted the blood flow-inducing signal. This signal is generated by neuronal

activity. The dynamics of the flow-inducing signal is affected by two mechanisms.

First, the model includes a mechanism for signal decay (elimination). Second, there
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is a autoregulatory feedback on the dynamics of the signal from the blood flow.

The model depends on a set of constant parameters. These include the time con-

stant of the flow-inducing signal decay τs, the time constant of the feedback regula-

tory mechanism τf , the mean transit time of a blood cell in the venous compartment

τ0, Grubb’s exponent α for the flow-volume relation, baseline oxygen extraction rate

E0, and resting blood volume fraction V0. While E0, α, V0, k1, k2 and k3 are dimen-

sionless, the parameters τs, τf and τ0 are measured in units of time. Specifically, τ0

represents the time it takes to traverse the venous compartment. The time constant

τs can be associated with the half-life of vasoactive agents that control vasodilation

(see Parri and Crunelli (2003) on the issue of possible candidate mechanism for neu-

rovascular coupling). The parameter τf reflects the effective influence time of the

autoregulatory feedback on the vasoactive signal from the blood flow. The values

of the constant parameters Θ can be estimated directly or indirectly (Friston et al.,

2000). The parameters k1, k2 and k3 depend on experimental and physiological

parameters and reflect the contribution effects of CBF and deoxyhemoglobin con-

centration to BOLD signal. It has been previously estimated for 1.5 T and TE=40

ms that k1 ' 7E0, k2 ' 2 and k3 ' 2E0− 0.2 (Boxerman et al., 1995a; Ogawa et al.,

1993).

As a note here, the BOLD signal is an echo of neural activity. It implies that there

exists a temporal buffer between the hemodynamic response and neural activity.

Three time constants, namely τ0, τs and τf , reflect the temporal characteristics of this

buffer and model the delay between the neural activity and the evoked hemodynamic

response.
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Assuming that the neuronal activity u(t) determines the dynamics of the physio-

logical variables x and thus the shape of the BOLD response given in (2.8), we may

infer the dynamics of the neural activity function. A criterion for choosing u(t) is

to minimize a discrepancy between the model and experiment, or putting it mathe-

matically, a distance D(·, ·) between two functions, namely the observed BOLD ĥ(t)

and the function g (x(t), u(t)) calculated through the transition dynamics (2.3)-(2.8)

for a given u(t). So the objective is to find

û(t) = arg min
u(t)

D(h(u), ĥ) (2.9)

where the distance between two functions is defined in the L2 sense as follows

D(h, ĥ) ≡ D(u) ≡
T∫

0

(
ĥ(t)− g (x(t), u(t))

)2

dt (2.10)

We assume that the variable to be optimized is the function u(t) with values

normalized to be between 0 and 1, where u(t) = 1 represents a totally activated

voxel and u(t) = 0 represents no activation. We choose for U the control class for

the functions u(t)

U ≡ {u(t) : u is Lebesgue-measurable with values between 0 and 1} (2.11)

The problem of minimizing the objective function given in (2.9) subject to the

system (2.3)-(2.6) which governs the transitional dynamics of the vector x(t) with

the initial conditions given in (2.7) is a typical problem in optimal control theory.

In other words, the problem under consideration is to find an admissible control

u(t) that causes the system (2.3)-(2.6) to follow an admissible trajectory xT (t) =
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(x1(t), x2(t), x3(t), x4(t)) that minimizes the performance measure given by (2.10) on

an interval with fixed final time T .

We invoke the Pontryagin minimum principle (Pontryagin, 1962) to determine the

optimal control law and the necessary properties of the optimal u(t). The principle

states that the Hamiltonian H(x(t), u(t),p(t)), a function describing the state of a

system in terms of state variables x(t) and costate variables p(t), must be minimized

over the set of all the possible control functions u(t). The Hamiltonian of the system

is defined as

H(x(t), u(t),p(t)) = (ĥ(t)− g(x(t)))2 +
4∑

j=1

pj(t)fj(x(t)) (2.12)

where the functions pT = (p1(t), p2(t), p3(t), p4(t)) represent the Lagrange multi-

pliers (the adjoint functions) for the derivatives fT = (f1(x),f2(x), f3(x), f4(x)),

respectively. The first term in (2.12) is a minimum square criterion, while the sec-

ond term constrains x(t) to be an admissible solution of the system (2.3)-(2.6). The

Pontryagin principle states necessary conditions for u∗, x∗ and p∗ to be optimal for

all t ∈ [0, T ] in terms of the Hamiltonian and its partial derivatives. Specifically, if

the pair (u∗(t),x∗(t)) is optimal for the problem (2.9) and (2.3)-(2.6), there must

exist functions p∗(t) such that the following conditions hold:

dx∗

dt
=

∂H
∂p∗

(x∗(t), u∗(t),p∗(t)) (2.13)

dp∗

dt
= − ∂H

∂x∗
(x∗(t), u∗(t),p∗(t)) (2.14)

H(x∗(t), u∗(t),p∗(t)) = min
v
H(x∗(t), v, p∗(t)) (2.15)

The equations in (2.13) are simply the state system (2.3)-(2.6). The other set of

differential equations given in (2.14) describes the behavior of the adjoint system. It
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represents the transitional dynamics of the Lagrange multipliers p(t) through a set of

four non-linear differential equations. This component should be considered together

with a set of transversality conditions, which determines the boundary conditions for

the adjoint variables p(t). In the case with a fixed final time T , the transversality

conditions are reduced to the condition

pT (T ) = (p1(T ), p2(T ), p3(T ), p4(T )) = (0, 0, 0, 0) (2.16)

which is to be used along with (2.7). Finally, condition (2.15) states that the function

u(t) is to be selected such that u(t) minimizes the Hamiltonian.

The function u∗(t) is a control input that causes the Hamiltonian

H(x∗(t), u(t),p∗(t)) to reach its global minimum. However, it should be noted that

the system (2.13)-(2.14) with the boundary conditions (2.7) and (2.16) accounts only

for necessary conditions for optimality. To derive an explicit condition for u∗(t) to

be optimal we note that the Hamiltonian (2.12) is a linear function of u(t) with the

coefficient of proportionality equal to p1(t). So, the Hamiltonian H(x(t), u(t)) can

be sorted in a way that combines like terms with respect to u(t)

H(x(t), u(t),p(t)) = p1(t)u(t) +R(x(t),p(t)) (2.17)

where R(x(t),p(t)) is a function that does not depend on the function u(t). In this

specific case, for u∗(t) to minimize the Hamiltonian, as determined by (2.15), it is

necessary that

u∗(t) =





1 if p∗1(t) < 0

0 if p∗1(t) > 0

any value between 0 and 1 inclusive if p∗1(t) = 0

(2.18)
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Condition (2.18) reflects the fact that if p∗1(t) is negative at some point t, in order to

minimize the term p∗1(t)u
∗(t) and in turn the Hamiltonian, the function u∗(t) must

take on the highest possible positive value, namely the value of 1 as defined by (2.11).

In case of positive p∗1(t), the expression p∗1(t)u
∗(t) will be minimized with u∗(t) = 0.

To sum up, the value of the first Lagrange multiplier at any time point determines

the values of the function u(t) at this point.

It is quite challenging for the problem defined through (2.13)-(2.14),(2.7),(2.16)

and (2.18) to be solved analytically in the terms of simple functions. Numerical

techniques are better applied to find a solution. With a numerical approach, the

exact solution u∗(t) is to be approximated with a vector u = (u1, . . . ui . . . un) =

(u(t1), . . . u(ti) . . . u(tn)) considered at sample points ti with finite resolution 4t =

ti − ti−1 = T
n−1

. According to the theoretical result (2.18) derived from applying

the Pontryagin principle, the optimal u(ti) at any point ti should take on values of

only zero or unity, excluding numerically unfeasible cases of p∗1(t) = 0. Such on/off

dynamics of the neuronal activity function u(t) can be interpreted as a spike train

on the interval [0, T ]. In other words, spiking dynamics is the natural mathematical

solution for the hemodynamic inverse problem based on the expanded balloon model

considered here. Also, it is worth mentioning that the piece-wise step function,

traditionally used to represent a stimulus design, is a specific case of the function

(2.18).
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2.3.2 Multidimensional optimization problem.

As the result of applying the Pontryagin principle, a system of 8 differential equa-

tions, the state and costate equations (2.13)-(2.14), and 1 algebraic relation (2.18)

must be satisfied on the interval [0, T ]. However, there is one factor that prevents one

from simply solving the differential system by numerical integration. The boundary

conditions are split: for the state variables they are defined at the initial point of the

interval while the boundary conditions for the adjoint variables are specified at the

final point. The boundary conditions at the beginning of the interval do not define a

unique solution on their own. Due to the existence of many solutions that satisfy the

starting boundary conditions, a selected solution may not satisfy the boundary con-

ditions at the end. In fact, an iteration procedure is necessary to unite the separated

boundary conditions to form a single global solution.

The shooting method and relaxation methods are examples of the numerical

techniques available to solve the two-point boundary problem (Keller, 1968). Nev-

ertheless, this problem can be avoided, and the optimal u∗(t) can be found without

explicitly solving the system (2.13)-(2.14) and (2.18). The optimal control problem

defined in (2.9) can be considered from the perspective of a multidimensional opti-

mization scheme. From this point of view, the objective is to minimize the functional

D(u) ≡ D(h(u), ĥ) ≡
T∫

0

(
ĥ(t)− g (x(t),u)

)2

dt (2.19)

in the problem

û = arg min
u

D(u) (2.20)
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over an unknown vector u = (u1, . . . , un) in the n-dimensional space. The important

thing to note here is that regardless of the numerical method applied to solve the

minimization problem (2.20), the separate theoretical result obtained in (2.18) from

the Pontryagin minimum principle remains valid, and this information can be used

in implementing algorithms to numerically solve the minimization problem.

The evaluated on/off dynamics of the solution can be associated with the multi-

unit spiking activity (MUA), a high-frequency component of the extracellular field

potentials. The relationship between BOLD fMRI signals and the spike activity as

the neural basis of the BOLD has been addressed in a number of studies (Heeger

et al., 2000; Logothetis, 2002; Mukamel et al., 2005; Rees et al., 2000). In some of

those studies, local field potentials (LFPs) have been implicated as a more prefer-

able index of neural activity for BOLD (Logothetis, 2002). Mathematically, LFPs

represent the low-frequency range of extracellular field potentials.

One way of implementing a low-pass filter in the optimization problem is to model

a smoothed representation of the input u(t) by a linear combination of known basis

functions, φj(t) as follows

u(t) =
K∑

j=1

cj φj (2.21)

where the K-vector c = {cj}K
j=1 represents the coefficients cj. To test the proposed

techniques, we used a B-spline basis (de Boor, 1978). B-splines were chosen because

of their stable numerical properties, continuous derivatives at the joining points and

local support which prevents a single observation from affecting the entire shape of

the hemodynamic response (Carnicer and Pena, 1994; Ramsay and Silverman, 2002).
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Furthermore, estimating the physiological parameters θ in the set Θ which influ-

ence the dynamics of the transitional system may be of some interest. Including those

parameters θ into the optimization scheme, the problem defined in (2.9) becomes

{c,θ} = arg min
c,θ

T∫

0

(
ĥ(t)− g (x(t),θ, c)

)2

dt (2.22)

where both the coefficients of the basis function expansion c and the biophysical

parameters of interest θ are to be selected in order to minimize the discrepancy

between the model and experiment.

We note that the problem defined in (2.3)-(2.6) and (2.22) is a multi-dimensional

minimization problem over the space spanned by the vectors θ and c. The solution

to this problem provides estimates both of the coefficients c = {cj} of the neural

function expansion and the physiological parameters θ under consideration. Con-

sequently, the dynamics of the neuronal activity underlying the observed BOLD

response ĥ(t) can be evaluated in the span of the basis φi(t) through (2.21).

2.4 Implementation

2.4.1 Numerical techniques.

The proposed methods were tested according to the scheme illustrated in Fig. 2.2.

First, we assumed a specific neuronal activity function u(t). Two types of neural

function were designed so as to model both LFP and MUA activity. The stepwise

function considered at discrete points with finite time resolution represented the

MUA activity, while in the case of LFPs, some of the coefficients cj of the approx-
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Figure 2.2: A schematic diagram of the step-by-step procedure used to
test the techniques for solving the hemodynamic inverse model. First,
we solved the forward model based on an assumed neuronal activity
function. Then, the quality of the modeled BOLD signal was degraded.
Finally, the inverse problem was solved to produce the reconstructed
neuronal function which was compared with the original one.

imation (2.21) were set equal to one, with the others equal to zero. Then, given

the assumed (original) neural activity function u(t), the forward problem (2.3)-(2.8)

was solved to produce the corresponding BOLD signal. Next, the resolution of the

BOLD response related to the original neural activity was decreased. In addition,

white noise was added to the modeled BOLD signal in order to make it more re-

alistic. At this step, the noisy discrete BOLD function was assumed to model the

observed fMRI signal evoked by the assumed neural activity. Finally, the discrete

points of the BOLD signal were linked together by splines in order to improve the

resolution of the BOLD signal for the goal to solve the set of the differential equa-

tions. This newly smoothed function containing low-frequency noise was used to

solve the inverse hemodynamic problem.

The core of the scheme designed to implement the proposed methods is in the

numerical techniques used for solving the hemodynamic inverse problem. In the

previous section, we discussed two approaches for numerically estimating the neural
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activity underlying the observed BOLD. The first approach was concerned with solv-

ing the system of optimality conditions (2.13)-(2.14),(2.7),(2.16) and (2.18) obtained

from applying the Pontryagin minimum principle. However it was noted that this is

a two-point boundary value problem wherein boundary conditions (2.7) and (2.16)

are separated at times t = 0 and t = T . It turns out that the system (2.13)-(2.14)

is hard to solve numerically because of the unstable behavior of the adjoint vari-

ables p(t). So, another way of minimizing the discrepancy between the model and

experiment is to consider the problem of minimizing the functional (2.9) from the

perspective of a multi-dimensional optimization problem.

Spline basis expansion of u(t)
( a low−pass filter

modeled with B−splines)

A smoothed function
interpretable as

Local Field Potentials (LFP)

Exact solution for u(t)
as derived from

Pontryagin minimum principle

The on/off dynamics
interpretable as

Multi−unit spiking activity (MUA)

Numerical
techniques

Simulated
annealing

genetic
algorithm

Figure 2.3: Two numeric techniques, genetic algorithm and simu-
lated annealing, were used to solve the multidimensional minimization
problems. In the context of multi-unit activity, a genetic algorithm
was used to reconstruct the natural solution, the on/off neuronal func-
tion as predicted from Pontryagin minimum principle. The smoothed
neuronal function and the parameters of the biophysical model were
reconstructed by simulated annealing in the context of LFPs.

Two numerical techniques, namely a genetic algorithm (GA) and simulated an-

nealing (SA), were used to solve the minimization problems (2.20) and (2.22) as

illustrated in Fig. 2.3. GA was used to minimize (2.20) and to estimate the neural

activity function assumed to represent the MUA activity. The information regarding

the on/off dynamics of the function to be estimated, derived from the Pontryagin
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principle, can be used in the minimization scheme as it determines the general shape

of the neural function. A genetic algorithm (for review, see Glover and Kochenberger

(2003)) is a search technique from the class of numerical methods targeted to look

for global solutions to optimization problems. GAs are a particular class of evo-

lutionary algorithms that mimic the mechanisms of evolutionary biology including

inheritance, mutation, natural selection and crossover. Traditionally, solutions are

represented in binary as strings of 0s and 1s, but different encodings are also pos-

sible (Michalewicz, 1996; Potter et al., 1998). In each generation, the cost function

associated with each string in the whole population is evaluated, the best strings

are selected from the current population, which are then recombined and mutated

to form a new population. The procedure is repeated in the next iteration. In the

case of the minimization problem (2.20), the neural activity u(t) is approximated by

the binary string u = (u1, . . . , un) with a resolution (ti+1− ti) representing the spike

train to be optimized.

In the case of a neural function represented by LFPs, simulated annealing (for

a review, see Glover and Kochenberger (2003)) was used to numerically search for

the optimal solution in the minimization problem over the space spanned by the

vector c and the parameters θ. SA is a local search method capable of escaping from

local minima by using limited hill-climbing steps, moves which increase the objective

function value. It is based on the idea of taking a random walk at successively lower

temperatures, where the probability of taking a step up is given by a Boltzmann

distribution. At each iteration of the algorithm, the objective function generates a

value that falls into one of two possible cases. A step will occur if the new value
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of the functional is lower. If the new value is higher, the transition can still occur,

and its likelihood is proportional to the temperature T and inversely proportional

to the difference between the old and new values of the objective function. In the

case of the minimization problem (2.22), the objective function is minimized over

the space spanned by the coefficients of the linear expansion (2.21) and the set of the

biophysical parameters θ. To test the proposed techniques, the vector θ included

the system parameters τs, τf and τ0, i.e. θT = (τs τf τ0).

A few points are worth mentioning regarding the GA and SA. First, using GA or

SA for minimizing the objective function (2.20) or (2.22) respectively, yields a forward

approach for inverting the problem. In contrast with the Pontryagin principle, which

is used to convert the optimal control problem into a set of differential equations to

provide optimality conditions, the GA and SA do not convert the problem at all,

but simply search for solutions in a heuristic and intelligent way.

Second, both GA and SA are capable of escaping local minima. However, these

techniques are not always guaranteed to find the global minimum. Moreover, SA and

GA will not always converge to a set of solutions associated with the global attractor.

In general, the question of how and why genetic algorithms work remains open

(Reeves and Rowe, 2001). Convergence results and criteria for simulated annealing

applied to continuous global optimization problems are only now being specified

(see, for example, Yang (2000) and Locatelli (2000)). Nevertheless, in many cases

the converging properties of these numerical methods to provide a reasonable and

stable approximation to the global optimum (for a review on GA and SA see Glover

and Kochenberger (2003)).
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A major disadvantage of simulated annealing algorithms is their slow convergence

speed. As indicated in literature on SA (Glover and Kochenberger, 2003), necessary

conditions for convergence tend to require slower cooling schemes which, in turn,

imply a slow rate of convergence. GAs are generally considered to be faster then SA,

however they are still computationally expensive. For the present study, the average

computation time for either algorithm was about 10-15 hours per one fMRI time

course on a AMD Athlon 2400+ computer with 2GHz CPU and 1.5GB of RAM.
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Figure 2.4: A set of B-spline functions. A B-spline is a spline function
which has minimal support with respect to a given degree, smoothness,
and domain partition. Each basis function φj(t) illustrated is a piece-
wise polynomial of the third degree.

An order four B-spline system {φj}K
j=1 (de Boor, 1978) was used for the basis

function expansion (2.21) of the neural activity function u(t) as shown in Fig 2.4.

The knots were placed at the data points ti where the BOLD signal was assumed to

have been observed. A B-spline is a spline function which has minimal support with

respect to a given degree, smoothness, and domain partition. Each basis function

φj(t) is a spline function defined by an order and a knot sequence. Specifically, for

a given (m + 1) knots ti with t0 ≤ t1 ≤ . . . ≤ tm−1 ≤ tm a function u(t) can be

parameterized with basis B-splines φi,n(t) of degree n (or order n + 1) as

u(t) =
m−n−1∑

i=0

ci φi,n(t) for t ∈ [tn, tm−n] (2.23)
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where the parameters ci (coefficients of linear expansion in the one-dimensional case)

are called control points. The basis (m-n) B-splines can be defined using the de Boor

recursion formula

φj,0(t) =





1 if tj ≤ t ≤ tj+1

0 otherwise

(2.24)

φj,n(t) =
t− tj
tj+n−tj

φj,n−1(t) +
tj+n+1 − t

tj+n+1 − tj+1

φj+1,n−1(t) (2.25)

When the knots are equidistant (as in case of fMRI time series with the repetition

time equal to TR), the basis B-splines are just shifted copies of each other.

2.4.2 Numerical results.

Fig. 2.5 shows one of the simulation examples for the MUA problem (2.20) solved

using the genetic algorithm. The original neural spiking activity that might be ini-

tiated by an event-related task (Fig. 2.5(a)) is illustrated in Fig. 2.5(b). The BOLD

response evoked by the specified neural activity was calculated through the transi-

tion system (2.3)-(2.8). Then, the BOLD response evaluated through the forward

approach was mixed with noise. The resulting simulated BOLD signal used to solve

the inverse hemodynamic problem is illustrated in Fig. 2.5(d) as a solid line. Finally,

Fig. 2.5(c) shows the neural activity function reconstructed with a GA through min-

imizing the functional of (2.20). The following values of the biophysical parameters

were used in the simulations: τs = 0.8 s, τf = 0.4 s and τ0 = 1 s (Friston et al., 2000);

α = 0.4 (Grubb et al., 1974; Mandeville et al., 1999); E0 = 0.6 which is within the

range of the values of 0.4 and 0.8 as reported in Buxton et al. (1998) and Friston
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et al. (2000), respectively.

The application of simulated annealing was used to solve the inverse problem

(2.22), in the case of neural activity assumed to be represented by LFPs, as demon-

strated in Fig. 2.6. The goal was to simultaneously estimate the coefficients c of

the neural activity function expansion (2.21) and three biophysical parameters: the

time constant of flow-inducing signal decay τs, the time constant of the feedback

regulatory mechanism τf , and the mean transit time in the venous compartment τ0.

The remaining values of the physiological parameters were kept the same as in the

GA case discussed above. The “observed” BOLD response (solid line, Fig. 2.6(b))

containing white noise was elicited from the specified neural activity, the dynamics

of which is depicted as the solid line in Fig. 2.6(a). The solution to the inverse

problem in the sense of (2.22) is superimposed on the original dynamics of neural

activity in Fig. 2.6(a). As shown in Fig. 2.6(b), the BOLD signal evoked by the

reconstructed neural function closely matches the “observed” BOLD. The estimated

values of the unknown physiological parameters were found to be approximately

τs = 0.76 s, τf = 0.42 s and τ0 = 1.18 s, while the original were τs = 0.8 s, τf = 0.4 s

and τ0 = 1.0 s. Fig. 2.5 and 2.6 show some mismatch between the reconstructed and

the original neural signals. There exist two major reasons for this mismatch. First

of all, it is inherent in the nature of genetic and simulated annealing algorithms to

produce an approximate solution to the optimization problem. The matter is also

complicated by the presence of noise added to the “observed” BOLD signals to make

them more realistic (see the testing scheme in Fig. 2.2).

In addition to simulations, data from a functional imaging experiment, conducted
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(a) the assumed stimulus timing u(t), a piecewise step function with values between
one and zero
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(b) the spiking neural activity function associated with the stimulus function in (a),
considered at discrete points with a finite resolution
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(c) the spike train reconstructed from the “observed” BOLD signal
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(d) the assumed dynamics of the BOLD signal mixed artificially with white noise and
superimposed on the reconstructed BOLD response

Figure 2.5: The dynamics of BOLD signal and the underlying neural
activity in the forward-inverse relationships in the case of the MUA
simulations. The bars in (b) and (c) correspond to the values of unity,
while the absence of a bar at a point stands for the value of zero. The
simulated BOLD signal (solid line, (d)) evoked by the specified neural
activity (b) was used to solve the inverse problem (2.20) using a genetic
algorithm. The solution to the inverse problem is the spiky train (c)
underlying the reconstructed BOLD response (dashed line, (d)).
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(a) the original smoothed function modeling the neural activity superimposed on the recon-
structed dynamics of the neural activity
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(b) the “observed” BOLD signal superimposed on the evaluated BOLD response evoked by
the reconstructed neural activity function

Figure 2.6: The dynamics of BOLD signal and the underlying neu-
ral activity in the forward-inverse relationships in the case of the LFP
simulations: the original smoothed function (solid line) modeling the
neural activity superimposed on the reconstructed dynamics (dashed
line) of the neural activity (a); and the “observed” BOLD signal super-
imposed on the evaluated BOLD response evoked by the reconstructed
neural activity function (b). The original (assumed) BOLD response
(solid line, (b)), which was mixed with white noise, is associated with
the specified neural activity (solid line, (a). The reconstructed neu-
ral activity function (dashed line, (a)) was evaluated using simulated
annealing by minimizing the discrepancy between the model and ex-
periment in the form of the functional (2.22).
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(c) the estimated BOLD dynamics superimposed on the normalized original time course

Figure 2.7: The dynamics of BOLD signal and the underlying neu-
ral activity as the simulated annealing solution to the hemodynamic
inverse problem for an activated voxel in an experiment with event-
related design: the estimated function u(t) as a combination of the
B-splines basis functions (a); the stimulus timing waveform (b); and
the estimated BOLD dynamics superimposed on the normalized origi-
nal time course (c).
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(b) the estimated BOLD dynamics superimposed on the normalized original time course
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Figure 2.8: The dynamics of BOLD signal and the underlying neural
activity as the genetic algorithm solution to the hemodynamic inverse
problem for the same activated voxel used in Fig. 2.7: the estimated
function u(t), an on/off function as derived from the Pontryagin min-
imum principle (a); and the estimated BOLD dynamics superimposed
on the normalized original time course (b); and the estimated BOLD
dynamics superimposed on the normalized original time course (c).
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Figure 2.9: The transitional dynamics of the four physiological vari-
ables x(t) in two cases, LFP(left column) and MUA(right column),
associated with the BOLD signals plotted in Fig 2.7(c) (LFP case) and
Fig 2.8(c) (MUA case), respectively: the dynamics of the blood flow-
inducing signal x1(t) (a,b); the dynamics of the cerebral blood flow
x2(t) (c,d); the dynamics of the cerebral blood volume x3(t) (e,f); and
the dynamics of the deoxyhemoglobin concentration x4(t) (g,h).
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with a 1.5 T Siemens Symphony Magnetom (Erlanger, Germany) scanner, was used

to further test the algorithms. A gradient echo T ∗
2 single-shot EPI sequence (TE =

55ms and TR = 1600ms) was used with fat saturation pulses. The 12 acquired slices

had a square field of view of 250 mm and were 8-mm thick with an interslice gap of

2 mm. The original 64 × 64 data matrices were Fourier reconstructed to 128 × 128

images. The experiment design was a mixture of event-related and altering block

designs. After 3 dummy volumes, 6 blocks of 15 volumes of images were acquired

for a total of 93 volumes per run. Of the 15 data volumes per block, the first 9

were regarded as stimulus. Within the first 9 volumes, two tasks were presented in

a non-regular interchanging order, while the last 6 volumes were acquired with the

subject at rest.

The study we took the fMRI time series from consisted of 6 people (average age

about 26). We randomly selected data from one the subject data sets. Next, we ran-

domly selected a voxel from brain region found activated during task performance

(in the superior parietal gyrus). To delineate the activated regions, 2 task impulse

response waveforms were fitted to the original fMRI data with the AFNI deconvolu-

tion algorithm (Cox, 1996). The task was to identify presentations to the right or left

visual fields. Specifically, the subject was given a 2 alternative forced choice (2AFC)

task in which a colored circle was presented either to the left or right of fixation, and

immediately followed by another colored circle in the same location that was either

the same color or a different color. The participant responded “same” or “different”

by pressing one of two buttons on a mouse that was MRI compatible.

The input stimulus timing (see Fig. 2.7(b)) for each task was periodic with the
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period equal to 2 blocks of volumes acquired. The time series of the 3 resulting

periods were folded over and averaged with the goal of increasing signal-to-noise ratio,

producing the basis for the observed BOLD signal used to solve the hemodynamic

inverse problem (2.22). This averaged signal was normalized with respect to the

intensity value from the last volume in the sequence used to achieve the steady

state of image contrast before the main body of the experiment. To alleviate edge

effects, the time span was extended by adding 2 zero values to the normalized BOLD

time course before and after the main body. To increase the sampling rate of the

BOLD signal for the purpose of numerically integrating the system of differential

equations, the discrete adjacent points of the BOLD time series were linked together

by linear splines. The neural activity function u(t) was expanded in a cubic B-splines

basis (see Fig. 2.4) constructed by using a knot sequence placed at the moments of

volume acquisition. The vector of the physiological parameters θ was exposed to

optimization jointly with the coefficients c included τs, τf and τ0 as in the case of

the LFP simulations discussed above.

Two methods, both simulated annealing and a genetic algorithm were used to

solve the inverse hemodynamic problem and to find the underlying neuronal activity

function in the LFP and MUA sense, respectively. Figs. 2.7 and 2.9 (left column) rep-

resent the LFP example solution demonstrating the relations between the observed

BOLD signal, the dynamics of neuronal activity underlying this signal, stimulus tim-

ing and the transitional dynamics of the physiological variables x(t) in an activated

voxel for the stimulus waveform illustrated in Fig. 2.7(b). The normalized BOLD

signal is illustrated in Fig. 2.7(c), while Fig. 2.7(a) shows the estimated dynamics
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of the underlying neuronal activity. The physiological parameters θ were estimated

as τ̂s = 1.36 TR = 2.2 s, τ̂f = 0.28 TR = 0.45 s and τ̂0 = 0.59 TR = 0.94 s. Two

of these parameters, specifically τs and τf are of the same order of magnitude as

reported in previous studies (Friston et al., 2000; Riera et al., 2004). However, the

value of the last parameter τ̂0 = 0.94 s is the same as that reported in Friston et al.

(2000), but is in contrast to the value found by the local linearization scheme (Riera

et al., 2004) which provides much higher values for this parameter. This should not

be taken as the final word on the value of physiological parameters expected from

this SA technique. The aim here was to demonstrate the applicability of SA, not

to take a comprehensive look at the inferred values. Finally, it can be noted that

the BOLD response visually fails to capture peculiarities of the stimulus paradigm

function, but the estimated neuronal dynamics in both cases, although far from

being perfect, somewhat better reflects the structure of the stimulus timing. To a

greater degree, this statement is valid for second part of the stimulus design function:

clusters of spikes in the MUA case (Figs. 2.8(a)) and neuronal episodes in the LFP

case (Fig. 2.7(a)) can be attributed to the stimulus condition of the stimulus timing

waveform.

Figs. 2.8 and 2.9 (right column) show the MUA example solution and the tran-

sitional dynamics of the physiological variables x(t) for the same voxel which was

used to solve the inverse hemodynamic problem with SA. The parameters used in

the MUA scheme were set as defined in the LFP case. When visually compared to

the performance of simulated annealing (LFP case), the genetic algorithm (MUA

case) leads, roughly speaking, to the same degree of approximation of the observed
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BOLD with the modeled function. A difference in performance between two cases is

the ability of the implemented algorithms to reconstruct the transitional dynamics.

As can be seen, the dynamics of deoxyhemoglobin concentration, blood volume and

blood flow in the LFP case do not differ much from that in the MUA case. The

dynamics of the blood flow-inducing signal is generated by neuronal activity. In the

MUA case, the presence of higher frequencies in the flow-inducing signal is explained

by a spiky input, while the smoothed input in the LFP case produces the smoothed

dynamics of the signal x1(t). If we look at the dynamics of blood flow in the LFP

case, we can see that the high-frequency component of the blood flow is gone. This

is explained by the specificity of the equation (2.4): the rate of change of blood flow

is proportional to the concentration of a vasoactive agent (the flow-inducing signal)

released by neuronal activity. From a mathematical point of view, equation (2.4) is

nothing else but a smoothing filter for the signal x1(t). In fact, this equation is a

key element of the model, which reflects the presence of a temporal buffer between

neuronal activity and hemodynamic responses. Searching for the optimal u(t) in the

basis of B-splines can be considered as an additional component of this buffer. In

this context, the shape of the neural signals underlying BOLD responses is defined

by the assumptions as to what type of neural activity is best associated with the

hemodynamic response.
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2.5 Discussion

We developed a technique which allows one to solve the inverse hemodynamic prob-

lem, i.e. to reconstruct the neuronal dynamics underlying the BOLD responses,

based on a previously proposed mathematical forward model. In addition, this ap-

proach proved to be useful in the issue of interpreting the meaning of the neuronal

function used in the model. To achieve these goals, the space-state model that pro-

duces the dynamics of the BOLD signal through the transitional dynamics of flow-

inducing signal, CBF, CBV and deoxyhemoglobin concentration was transformed

into an optimization problem.

Generally speaking, solving the inverse hemodynamic problem should imply being

able to differentiate between various possible types of neuronal activity in any voxel

at any time: local field potentials, current source density, some measures of excita-

tory/inhibitory postsynaptic activity, sub-threshold membrane potential oscillations,

or firing patterns of a subpopulation of neurons. It should be clarified that solving

the hemodynamic inverse problem in a general sense should not be confused with

the methods proposed in the present study. The basic assumption of our approach

is the validity of the previously proposed mathematical model of the transduction

of neural activity to the BOLD signal. Therefore, if the intrinsic path is specified,

solving the hemodynamic problem makes perfect sense.

There are several advantages in considering the problem of inferring neuronal ac-

tivity from the perspective of optimization. Within the framework of the Pontryagin

minimum principle, necessary conditions for optimality can be defined in terms of
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a Hamiltonian, a function characterizing the total energy of system as a function of

state and costate variables. We can subsequently make general inferences about the

behavior of the neuronal function to be estimated.

The biophysical model considered in this work and other similar models (Zheng

et al., 2002) do not directly specify the meaning of the neuronal activity function.

As found from applying the Pontryagin minimum principle, the natural solution to

the optimization problem is a function which may take only its lowest and highest

values. Specifically, we were working on the assumption that the neuronal function

is normalized to be within the limits of the values of zero and one. The theoretical

result regarding the switching nature of the neuronal dynamics was due to linear

dependence of the Hamiltonian on the neuronal activity function. Several interpre-

tations for this fact are possible. First, the on/off dynamics of the neuronal activity

can be interpreted as a spike train, if it is considered on the microscopic level. In

other words, it models an approach wherein multi-unit spiking activity is considered

as an indicator of changes in BOLD signal. The distance between spikes is defined

by the sampling rate of numerical techniques used to solve the optimization prob-

lem. Theoretically, the underlying neuronal dynamics can be approximated with a

function considered at points with a sampling rate of very high frequency. Practi-

cally, it is limited by the computational power of the numerical algorithms applied.

Increasing the number of dimensions would inexorably also decrease the ability of

the numerical techniques to converge to the global optimum.

Another interpretation of the on/off function is possible from the macroscopic

perspective of design functions. Specifically, a piece wise step paradigm function
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representing block design or event-related design can be considered as a particular

case of the solution predicted a priori from the Pontryagin minimum principle. This

may partly justify the approach adopted in Friston (2002) when an expectation-

maximization (EM) algorithm was applied to estimate the input function expanded

as a linear combination of known functions associated with the stimulus. Further-

more, abstractly decreasing the width of the step function representing a separate

event would correspond to going from the macroscopic to the microscopic level. As

an extreme case, the step function standing for a single event with decreasing du-

ration would be turned into a spike, which in turn may model a quantal release of

neurotransmitters.

In addition, the proposed techniques allow one to categorize the neuronal activity

function on the scale of LFPs rather than in terms of MUA. As simultaneous MRI

and electrophysiological recordings indicate, LFPs are a slightly better indicator of

BOLD changes than MUA (Logothetis, 2002). In the context of LFPs, a positive,

conventional pattern of the hemodynamic response is associated with an increase

of underlying neuronal activity (Logothetis, 2002), while a negative BOLD signal is

related to local decreases in neuronal activity below the on-going level (Shmuel et al.,

2006). Being essentially the low-frequency component of electrophysiological signals,

LFPs can be modeled through an expansion of the neuronal activity function in a

basis of some known functions acting as a low-pass filter.

The Pontryagin minimum principle can be used not only in the issue of inter-

preting the neuronal input to the models but also can serve as a bridge between

two schemes, optimization and integrating a system of equations. Non-linear opti-

54



mization and solving the non-linear system of equations are closely related processes.

However they are not equivalent as some information usually becomes lost during

translation. Spurious stationary point solutions to the optimization problem ex-

pressed as a non-linear system of equations often do not correspond to local optima

of the original problem, and vice versa. Nevertheless, in both cases the task is to

find the absolutely best set of parameters among the spurious solutions, taking into

account the non-linear nature of the problem.

Considering the hemodynamic inverse problem from the optimization point of

view paves the way towards straightforwardly applying numerical techniques known

to find global optima. Genetic algorithms and simulated annealing are examples

of such methods. These techniques are able to escape local optima even when the

structure of the searching space is quite complicated. They do not need linearization

and, in general, do not require information on the derivatives. This means that

no information is lost, which additionally protects the algorithms against spurious

solutions. Also, GA and SA offer a forward approach to solve the inverse problem.

This fact makes them easily applicable to a range of optimization problems. Finally,

although these algorithms are not guaranteed to find the global minimum, they

provide a reasonable and stable approximation to the global optimum.

From the perspective of optimization schemes, the performance of numerical

techniques applied is related to the degree to which the observed BOLD signal is

approximated by the modeled response. A separate question of interest pertains to

a performance measure that allows one to judge the quality of the reconstructed

neural function associated with the modeled BOLD signal. Strictly speaking, there
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is no guarantee that the reconstructed input is the best possible solution. However,

the nature of global optimization techniques allows us to believe that the solution

obtained through optimization is, to some degree, close to the true solution. In the

case of simulations, we can directly evaluate discrepancy, or a distance, between the

reconstructed and specified neuronal functions as the latter is known by construc-

tion of the testing scheme (see Fig. 2.2). What we need is just to define metrics

(distances) in the appropriate function space. Within the framework of LFP simu-

lations, the distance between two continuous functions, original and reconstructed,

can be defined in a similar way as the discrepancy between the modeled and observed

BOLD signals (see 2.9). Metrics can also be defined in a space of event sequences,

allowing us to quantify similarity between spike trains in the case of the MUA sim-

ulations. Some metrics can correspond to Euclidian distances when spike trains are

convolved with a smoothing kernel, by using the scalar product of the resulting func-

tions (van Rossum, 2001). Cost-based metrics are another approach, wherein a cost

is associated to insertions, deletions and shifts of spikes. The comparison of genetic

sequences in Sellers (1974) and of electroencephalography (EEG) analysis in Wu and

Gotman (1998) are examples of such an approach.

When the inverse methods are applied for analyzing real data, the true solution is

unknown, and we can only indirectly judge the quality of the reconstructed neuronal

activity underlying the BOLD signal. The stimulus timing waveform can only give us

a general idea of what the true neuronal function looks like, but cannot claim to be

a gold standard, especially if there are reasons to believe that the dynamics of neural

activity should not be time-locked to the stimulus. Nevertheless, higher correlations
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(smaller distances) between the reconstructed neuronal functions, smoothed or spiky,

and the paradigm function may buttress the validity of the former. This issue is

complicated by the necessity of defining the distance (metric) between continuous

stimulus functions and discrete event sequences. A possible approach, as discussed

above regarding MUA simulations, is to convolve spike trains with a smoothing

kernel.

We do not claim that our methods are superior to previously proposed ones in the

sense that our solution might be correlated with the stimulus waveform function to a

higher degree. However, contrary to other proposed methods, we see an advantage in

the possibility of finding the absolutely best input, provided two things are given: an

observed BOLD response and a biophysical model taken for granted. This is possible

by applying the techniques that are intrinsically designed to look for the global

optimum. This implicitly assumes a secondary role for the stimulus function, with

accent on the solution driven by the given model. A separate issue is the quality of

the modeled physiological link between neural activity and BOLD responses, which

is currently far from being mature. A better match of the reconstructed neural

functions to the stimulus waveforms might be obtained with a better physiological

model. Moreover, the idea of minimizing this discrepancy can guide future work and

investigation of BOLD physiology.

As demonstrated by using simulations designed to test the forward-inverse rela-

tions between the neuronal dynamics and the evoked BOLD responses, the proposed

methods allow one to correctly reconstruct an artificial underlying neuronal activity

function. Furthermore, in an experiment with event-related design the numerical
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techniques were able to capture the contour of a quite complicated paradigm wave-

form (see Fig 2.7). In addition, estimating some of the biophysical parameters of

the model is possible simultaneously with reconstructing the neuronal input dynam-

ics. However, it is quite challenging to put all the parameters into the optimization

scheme. This is because some parameters are, by nature, scaling factors and some

of these parameters can be balanced off by others. In fact, it is a multicollinearity

problem, and some additional constraints need to be put on the possible values of

the system parameters. Otherwise, clusters of possible solutions are expected. In

general, for the purpose of inferring the underlying neural activity function in ex-

periments with complicated design, it may be reasonable to run, as a preliminary

stage, an experiment with a quite simple stimulus paradigm to estimate the biophys-

ical parameters first. Next, the dynamics of the neural activity of interest can be

reconstructed using the estimated parameters of the biophysical model.

An important issue in estimating the neural function and biophysical parameters

is the question of whether we are dealing with a well-posed or ill-posed problem while

trying to numerically reconstruct the input. In mathematics, all problems can be

divided, roughly speaking, into two categories: well-posed and ill-posed problems.

Let us consider the operator equation: Au = h,u ∈ U , h ∈ H, where U and H

are metric spaces. According to Jacques Hadamard (Hadamard, 1902), the problem

A u = h, u ∈ U is well-posed if (i) a solution u exists for any h; (ii) the solution

is unique and (iii) and the solution u is stable with respect to small changes in h,

i.e. the operator A−1 is defined for all u ∈ U and is continuous. Many optimal

control problems, minimization problems, problems from linear algebra belong to
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the class of ill-posed problem. In our case, the presence of noise in the BOLD signal

can be considered as small perturbations of the function h ∈ H. Riera et al. (2004)

claim that the problem of reconstructing the underlying neural activity function is ill

posed although they do not provide theoretical and numerical arguments in support

of this claim. A possible approach to solve a ill-posed problem is to look for an

approximate solution using regularization. From this perspective, the parametriza-

tion of the function u(t) with B-splines (see (2.21)) can be interpreted as an implicit

regularization for u(t) or, in other words, an approximate criterion of the temporal

variability of the neural function u(t). We note that the possible ill-posedness of

the optimization problem appears to be not a crucial issue when we use simulated

annealing as an algorithm designed to find an approximate, although close to global,

solution in the non-linear space. We were able to obtain approximately the same

solution irrespective of initial guess (within a reasonable range) about the values of

unknown parameters. Furthermore, the simulation tests with the various noise level

in the BOLD signal ĥ(t) reveal that bumps in the function û(t) (see Fig 2.6(a)) can

be robustly discerned. At some point, a low signal-to-noise ratio of BOLD signals will

cause the algorithms to fail to find a correct solution. Nevertheless, the algorithms

tested on real BOLD signals, which contain, in general, serially correlated noise with

long-range correlations rather than white noise, were able to robustly obtain stable

and reasonable solutions.

The possibility of inferring the amplitude and timing of the underlying neural

activity from BOLD dynamics may be beneficial in a number of applications in brain

studies. First, it could be of particular interest in dynamic causal modeling (DCM)
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(Friston et al., 2003), wherein the concept of effective connectivity (Friston, 1994) is

combined with biophysics of the local responses. In particular, this approach may

be of special use for those brain areas which are not directly locked to the stimulus,

and therefore cannot be meaningfully associated with the stimulus waveform. DCM

is an attempt to determine how effective connectivity patterns within networks of

brain regions evolve over time under the influence of experimental manipulations.

Methodologically, DCM is based on the idea to transfer estimation and inference

about the coupling among neuronal populations in different brain regions from the

level of observed data down to the neural level through a supplementary model. So it

is a combination of two things. First, we have to transform the observed signals into

neuronal activity. Second, we need a model of dynamic coupling between neuronal

populations. The first part of the DCM approach could be a direct application of

the techniques developed here to solve the hemodynamic inverse problem.

Theoretically, the methods proposed in this work allow one to reconstruct time

courses of neuronal activity for the whole brain in analogy to reconstructing BOLD

activity for every voxel. Moreover, the techniques developed to compute activation

maps can be based on the inferred neuronal data, putting aside the issue of valid-

ity of the model. However, in practice it is not easy to estimate the dynamics of

the neuronal activity for all the voxels from a data set due to high computational

costs associated with solving the inverse hemodynamic problem. Nevertheless, it is

possible to invert the BOLD responses for particular brain regions of interest.

In addition, the techniques considered for studying the forward-inverse relations

can be applied in integrating schemes for multimodal neuroimaging such as fMRI
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and electroencephalography (EEG) (Lemieux et al., 2001; Riera et al., 2004; Wan

et al., 2006), which may help to overcome the limitations imposed by individual

techniques in their ability to localize neuronal dynamics in time and space. For ex-

ample, in an attempt to fuse EEG and fMRI data (Riera et al., 2004), interrelations

between synaptic activity and hemodynamics were examined within the framework

of an quasi-linear autoregressive model formulated to couple fast and slow subsys-

tems based on the causal relations of the biophysical model (2.3)-(2.8). Considered

separately, the EEG modality suffers from the problem of robustly estimating spatial

distribution the sources of the electromagnetic fields. This inverse problem is known

not to have a unique solution (Riera et al., 1998). Functional MRI provides relatively

good localization of neuronal activity. We can hypothesize that since spatial maps of

the dynamics of neuronal activity computed through solving the hemodynamic in-

verse problem puts additional constraints on the possible solutions of the distribution

of the sources of electric currents, it might help in solving the electrophysiological

inverse problem.

In conclusion, we have demonstrated that the neuronal activity underlying BOLD

responses can be robustly inferred through non-linear optimization schemes. Specifi-

cally, it is possible to reconstruct both the neuronal activity function and the param-

eters of the biophysical model that determines the transitional dynamics of the phys-

iological variables. In addition, the proposed methods allow one to characterize the

neuronal signals from the perspective of what type of neuronal activity is best corre-

lated with the hemodynamic responses: MUA or LFP. We expect that the proposed

approach can refine the quantitative assessment and models of the physiological pro-
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cesses underlying BOLD. In prospect, the techniques for solving the hemodynamic

inverse model can be applied in dynamic causal modeling approach, allowing more

meaningful inferences about effective connectivity. Finally, the proposed methods

may potentially be applied for multimodal integration of neuroimaging techniques.
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Chapter 3

Extracting chronometric information

from fMRI signals through solving the

hemodynamic inverse problem

3.1 Preliminaries

This chapter is based on the manuscript titled “Extracting information on mental

chronometry from fMRI signals through solving the hemodynamic inverse problem”

by Vakorin,V.A., Borowsky, R. and Sarty,G.E., submitted to Neuroimage. This work

continues to probe issues raised in Chapter 2. Specifically, as shown in Chapter 2,

mathematical models describing the transduction of neural activity into the BOLD

response provide a framework for solving the hemodynamic inverse problem, i.e.

reconstructing the dynamics of neural activity underlying the BOLD signal. Solving

the hemodynamic inverse problem may potentially recover information that was

hidden in the chain of events leading from the microscopic level of dynamic neuronal

activity up to changes in hemodynamics.

The proposed techniques for recovering neural timing information (mental chronom-

etry) are illustrated by using a neural model of an object interaction decision task.
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The model assesses the involvement of semantic activation in the process of trans-

ferring information from the visual word/object system to the speech activation

system. The dynamics of neural activity, associated with visual word/object pro-

cessing, interaction semantics and speech were estimated based on the expanded

“balloon” model, which mathematically describes the path from neuronal activity to

the BOLD response through the changes in a vasoactive signal, cerebral blood flow,

blood volume and deoxyhemoglobin concentration. Two aspects of the neural mod-

els were analyzed at both the hemodynamic and neural levels: effective connectivity

and mental chronometry. We found that the causal path pattern was approximately

the same at both levels. With mental chronometry, however, the neural function-

based analysis has revealed that the main delay between visual word recognition and

spoken word production occurs on the pathway leading from visual word activation

to semantics. At the same time, the results of hemodynamic-based chronometric

analysis were not able to reveal any significant latency. The comparative analysis

has demonstrated the usefulness of mathematical modeling in the issue of increasing

the temporal resolution of fMRI studies.

3.2 Introduction

Functional magnetic resonance imaging (fMRI) has emerged as a powerful tool to

explore brain function. An important issue regarding the dynamics of brain activity

is related to the question of how brain areas work together to carry out a specific

task. Addressing this question has been based on two, not mutually exclusive but
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rather complementary, tenets: functional specialization and functional integration

(Sejnowski et al., 1988; Churchland and Sejnowski, 1988). The principle of func-

tional specialization implies that distinct brain areas are specialized in their own

functional roles, while the principle of functional integration rests on the assumption

that different tasks are associated with different functional networks. The network

paradigm of cortical representation encompasses the problem of specifying activated

brain regions, representing processing elements interconnected with each other, and

the strength of the connections between them. Two classes of neural modeling can

be distinguished in the literature of neuroimaging studies: systems-level neural mod-

eling and large-scale neural modeling (Horwitz et al., 1999, 2000; Horwitz, 2004).

Within the framework of systems-level modeling (McIntosh and Gonzalez-Lima,

1994a,b), the entire analysis is carried out at one level, e.g. at the hemodynamic

level as in the case of fMRI data. Neuroanatomical information is exploited to define

the functional networks, each unit of which is associated with the dynamics of the

hemodynamic responses. One way to characterize such a system is to determine

functional connectivity, based on correlating fMRI time-series related to spatially re-

mote brain regions (Friston, 1994; Horwitz, 2003). Another way is to explore causal

relationships between the neural units, and the influence some units exert over oth-

ers. The latter approach incorporates the idea of effective connectivity (Friston,

1994), the concept of evaluating the task/context dependent pattern of the causal

relationships between the neural units through direct and indirect effects, when a

task is mediated by neural circuitry. Statistically, the issue of estimating the causal

connectivity can be formulated as the problem of explaining covariances in interre-
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gional activity through structural equation modeling (SEM), a statistical technique

used for building and testing causal models (Buchel and Friston, 1997, 2000). Com-

putationally, SEM is based on minimizing the discrepancy between the modeled and

observed covariances.

Nevertheless, tracing the topographical structure of activation across brain re-

gions is only one side of the story. SEM discounts temporal information; in partic-

ular, it discounts a possible time delay attributed to information transmission from

one functional unit to another. Mental chronometry 1, originally defined in terms of

reaction times (Posner, 1978), is an attempt to shed more light on neural dynamics

by decomposing a cognitive or perceptual task into a temporal sequence of stages

associated with the processing of information in different regions. Encouraging fur-

ther investigations, the fMRI modality has recently proven to be informative in the

issue of tracking the mental processing stages (Menon et al., 1998; Miezin et al.,

2000; Formisano and Goebel, 2003). FMRI-based mental chronometry works on the

assumption that the relative latency of neuronal events should somehow be expressed

as a temporal shift between fMRI time series. A crucial concern about the suitability

of functional MRI for the temporal analysis of the underlying neural activity is the

limited temporal resolution of fMRI (Menon and Kim, 1999). Even with the ability

to reach one hundred millisecond imaging resolution (Menon et al., 1998; Hernandez

et al., 2002), the typical temporal resolution of fMRI studies remains on the order

of a few seconds.

1Neural chronometry probably would be a better term since our goal is to recover latency in
activation at the neural level. Nevertheless, we will follow the terminology of the paper by Menon
et al. (1998)
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In spite of some progress in analyzing fMRI data, that analysis (especially if it is of

connectivity or chronometry) is compromised by one significant shortcoming: fMRI

does not measure neuronal activity directly. Blood oxygen level dependent (BOLD)

contrast fMRI signals, the most commonly used functional neuroimaging contrast

(Ogawa et al., 1990), is not an exception. This contrast senses microscopic inhomo-

geneities in the magnetic field, caused by the presence of paramagnetic deoxygenated

hemoglobin in red blood cells. BOLD response is a consequence of a chain of effects,

depending on baseline and changes in blood volume, baseline and changes in blood

flow, and changes in oxygenation (for reviews see Heeger et al. (2000); Heeger and

Ress (2002); Logothesis et al. (2001); Logothetis (2002); Nair (2005); Sarty (2007)).

Thus, blood flow regulation is the basis of the intrinsic physiologic limits of BOLD

fMRI. The issue is complicated by the unclear nature of the neurovascular coupling

(for review see Koehler et al. (2006); Haydon and Carmignoto (2006)). For example,

a number of studies have emphasized the signaling role of astrocytes in controlling

vasodilation, but not without controversy (Zonta et al., 2003; Takano et al., 2006).

To overcome the difficulties related to making inferences at the hemodynamic

level, a number of studies applied large-scale neural modeling, an approach for mod-

eling neurobiologically realistic interactions between brain regions, relating changes

in hemodynamic activity to neural dynamics (Horwitz et al., 1999; Horwitz and Taga-

mets, 1999; Horwitz, 2004). This approach assumes that the regions are constructed

of neural units, making a complex functional model, and that the neural units in-

teract with each other through feedback and feed-forward connections. In addition,

the large-scale models are multilevel, unifying modalities of variegated form, e.g.
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extracellular field potentials and BOLD responses (Wan et al., 2006; Husain et al.,

2004; Tagamets and Horwitz, 1998). Mathematical models, which can describe the

physiological link between neural activity, associated with processing information,

and corresponding changes in MR signals, may be considered as an intrinsic and

essential part of the large scale models.

In spite of the absence of exact description of transduction of neural activity into

BOLD signals, combined neuroimaging studies and electrophysiological recordings

have demonstrated a coupling between BOLD and different types of neuronal activity

(Logothesis et al., 2001; Heeger et al., 2000; Rees et al., 2000; Mukamel et al., 2005).

The studies by Heeger et al. (2000) and Rees et al. (2000) have showed a positive

correlation between behavioral measures, action potential and fMRI signals through

indirect comparison between responses from single neuron recordings in monkeys and

fMRI measurements in humans. More specifically, fMRI response in human cortical

areas V1 and V5 was found to be proportional to the firing rate of individual neurons

in the same areas in monkeys. Logothesis et al. (2001) have evaluated a model of lin-

ear coupling between simultaneously recorded fMRI signals and neuronal potentials

in a study with the anaesthetized monkey with the electrode placed in the extracel-

lular space in V1. Local field potentials (LFP), the low-frequency component of the

extracellular field potentials, accounted for approximately 8% more in the variance

of fMRI signals than did multi-unit spiking activity, a high frequency component.

Despite the slightly better predictive power of LFPs, the possibility that spikes are

a key determinant of the BOLD response, was not excluded (Logothetis, 2002). Fur-

ther, through simultaneous fMRI and electrophysiological recordings in monkeys,
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Shmuel et al. (2006) have observed that negative BOLD signal is associated with de-

creases in local-field potentials and multi-unit activity. The linear coupling between

fMRI and neuronal activity in the auditory cortex of conscious humans was tested

in the study by Mukamel et al. (2005). The authors found a high linear correlation

between spiking activity, high-frequency LFPs and BOLD signals.

Although avoiding the issue of what types of neural activity are best correlated to

hemodynamic responses, there have been a few attempts to mathematically model

the chain of events leading from the voxel-aggregated neural activity to BOLD sig-

nals (Friston et al., 2000; Zheng et al., 2002). From the composition point of view,

this link is represented as an input-output model, with the neural activity function

acting as the input, and with the BOLD signal as the output. Mathematically, these

models are described as state-space models consisting of process equations and an

observation equation. The observation (measurement) equation defines the BOLD

responses as a nonlinear function of physiological variables. The process equations

determine the transitional dynamics of the physiological variables, including a va-

sodilation signal, cerebral blood flow, cerebral blood volume and deoxyhemoglobin

content (Friston et al., 2000), and, in addition to these variables, in a more compli-

cated model by Zheng et al. (2002), oxygen extraction fraction, mean capillary O2

concentration and the ratio of average oxygen concentration in tissue over plasma

oxygen concentration at the arterial end of the capillary.

Assuming that neuronal activity determines the dynamics of the physiological

variables, and thus the shape of the BOLD response, we may infer the dynamics

of the underlying neural activity. Friston (2002) has used quasi-analytical methods
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based on Volterra series to reconstruct the neural activity function in terms of scal-

ing coefficients for input paradigm waveforms through the expectation-maximization

(EM) algorithm. Riera et al. (2004) have conducted the analysis within the frame-

work of local linearization (LL) scheme. In the LL approach, the neural activity

function was parameterized in terms of radial basis functions, so the unknown pa-

rameters were coefficients of their linear combination and, possibly, some of the

biophysical parameters of the model. Computationally, the LL method belongs to

a class of recursive filters reduced to linearized equations of evolution for the condi-

tional means of the state variables and their covariance matrix. Both the EM and

LL approaches do not address the issue of whether they can reproduce the global

solution to the hemodynamic inverse problem, avoiding spurious local optima.

Vakorin et al. (2006) have proposed to transform the original forward state-space

model by Friston et al. (2000) into an optimal control problem with the objective

of minimizing the discrepancy between observed and modeled BOLD signals over

all admissible neural activity functions. Adopting this framework turned out to be

fruitful in the issue of interpreting the meaning of the neuronal function used in the

model. Specifically, applying the Pontryagin minimum principle (Pontryagin, 1962),

it was shown that off/on dynamics of neural activity is the natural mathematical so-

lution of the model. In particular, a piece wise step paradigm function, traditionally

representing block design or event-related design, is a specific case of the theoretical

solution. Alternatively, the on/off neural dynamics can be interpreted as a spike

train, which can be associated with multi-unit spiking activity. In addition, global

optimization techniques, such as genetic algorithms and simulated annealing, can be
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applied to find the best control input: the neuronal activity and/or the biophysical

parameters used in the model.

Solving the hemodynamic inverse problem, i.e. reconstructing the timing and

amplitude of the neural signal underlying the BOLD responses, provided that the

intrinsic path is specified, can potentially produce new information. One way to

produce new information is to use a multimodal approach, combining electrophysi-

ological recording and fMRI data, which may allow us to refine the nature of phys-

iological link between the neural and hemodynamic levels when the data are com-

pared to predictions from neural-hemodynamic mathematical model. Another way

to extract new information is the possibility of recovering, not exploiting data from

another modality, extra information from fMRI time series per se, hidden when one

goes from the microscopic level of neuronal activity to the sluggish changes in the

hemodynamic signal.

In the present study, by an example of a functional network model from cognitive

neuroscience, we will illustrate how one can infer information on mental chronome-

try through solving the hemodynamic inverse problem. Specifically, relative timing

differences in information processing between regions of interest will be estimated by

shifting the stress of calculations from original fMRI data to reconstructed neural dy-

namics. The functional model used in the present study is based on a dorsal-ventral

model of visual information processing, whereby the identification of a word or ob-

ject is processed primarily by the ventral stream (i.e., occipital-temporal cortex),

whereas deciding how to interact with an object is processed primarily by a mid-

dorsal stream (i.e., occipital-parietal-frontal cortex; see Milner and Goodale (1995);
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Borowsky et al. (2005)). Using an object interaction decision task with word stimuli

(from Borowsky et al. (2005)), we assume the involvement of visual word/object

processing, interaction semantics and speech systems. From the neuroscience point

of view, one might expect regional latencies that lead to different relative delays in

processing information in different functional regions. Specifically, the models con-

sider the visual word/object module as the starting point in a sequence of activation,

i.e. a word stimulus will likely evoke an image of the object that it refers to given

the task of deciding how one interacts with it. Furthermore, there are two possible

pathways from visual word recognition to spoken word production: a direct pathway

from the visual word/object system to the speech activation system (reflecting highly

familiar noun-verb associations, such as “ball-throw”), and a less direct route, from

the visual word/object system to the interaction semantics, and then, from semantic

system to speech activation (reflecting less familiar associations between objects and

possible interactions with them,e.g., “jeans - wear them”).

For the present study, we will assess the pattern of effective connectivity between

functional areas associated with the visual word/object system, the interaction-

semantics knowledge system and the speech system, testing the strength of causal

influence through two information processing pathways from visual word recognition

to the speech system, direct and indirect. Further, we will attempt to estimate the

relative delays in information processing between the three functional modules. The

rational for this is to trace both topography and the sequence of cortical activation.

Next, based on the observed fMRI time series attributed to the functional modules,

we will solve the hemodynamic inverse problem, and then, at the neural level, we
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will repeat the testing procedures pertaining to effective connectivity and mental

chronometry. Our aim is to explore the possibility of recovering more information

from the dynamics of fMRI signals per se, associated with the neural units of the

network, by going down to the neural level from the hemodynamic level through the

intrinsic pathway defined by a biophysical mathematical model.

3.3 Methods

3.3.1 Hemodynamic inverse problem

The BOLD effect is a complex physiological phenomenon. Mathematical models

(Buxton et al., 1998; Zheng et al., 2002) have been recently proposed to link evoked

fMRI BOLD responses to underlying neural signals. The expanded balloon model

(Buxton et al., 1998) describes the coupling between neural activity and the BOLD

signal in terms of the dynamics of four physiological variables, represented by the

vector x(t)T = (x1(t), x2(t), x3(t), x4(t)), namely

x1(t) = s(t) = the flow-inducing signal

x2(t) = fin(t) = regional cerebral blood flow (rCBF)

x3(t) = v(t) = regional cerebral blood volume(rCBV)

x4(t) = q(t) = deoxyhemoglobin concentration

All quantities are normalized relative to their resting values so that all the variables

represented by the vector x(t) are dimensionless.
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Input:
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2
(t)

− cerebral blood volume (CBV) x
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Figure 3.1: A diagram illustrating the structure of the expanded
balloon model. It is an input-output hierarchal model: the neuronal
activity function is the input at the lower level, and the BOLD response
is the output at the higher level. The intrinsic biophysical system is
formulated as a state-space model. The process equations describe
the transitional dynamics of four physiological variables: a vasoactive
signal, cerebral blood flow (CBF), cerebral blood volume (CBV) and
deoxyhemoglobin content. In the measurement equation, the BOLD
signal is partitioned into extravascular and intravascular components,
defined in terms of deoxyhemoglobin concentration and CBV.

Biophysically, the expanded balloon model is based on a tandem connection of

three successive parts: a model for the BOLD signal, based on the paramagnetic

properties of deoxygenated hemoglobin, affecting local susceptibility; the balloon

component, a model of capillary compartments, which can be mechanically expanded

or constricted under the influence of cerebral blood flow; and the rCBF component,

a dynamic model describing changes in the blood flow in reaction to neural activity

mediated through the release of a vasoactive agent. Mathematically, the model is

expressed as a space-state model with two sets of equations: measurement and pro-

cess equations (see Fig. 3.1). The measurement (observation) equation reflects the

dynamics of the BOLD signal h(t) as a non-linear function of deoxyhemoglobin con-

centration and rCBF, modeling extravenous and intravenous components weighted

by relative volumes:

h(t) = g (x(t), u(t)) = V0

(
k1(1− x4(t)) + k2

(
1− x4(t)

x3(t)

)
+ k3(1− x3(t))

)
(3.1)

The process equations portray the transitional dynamics of the flow-inducing (va-
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soactive) signal, rCBF, rCBF and deoxyhemoglobin concentration through a system

of non-autonomous (with the exogenous input u(t)), first order differential equations

dx1

dt
= f1(x(t), u(t)) = u(t)− x1(t)

τs

− x2(t)− 1

τf

(3.2)

dx2

dt
= f2(x(t), u(t)) = x1(t) (3.3)

dx3

dt
= f3(x(t), u(t)) =

1

τ0

(
x2(t)− x3(t)

1
α

)
(3.4)

dx4

dt
= f4(x(t), u(t)) =

1

τ0

(
x2(t)

E0

[
1− (1− E0)

1
x2(t)

]
− x4(t)x3(t)

1−α
α

)
(3.5)

where Θ ≡ {τs, τf , τ0, α, E0, V0, k1, k2, k3} is the set of biophysical parameters, and the

neural activity function u(t) acts as an input into the model for the rCBF component.

The initial condition for the set of differential equations (3.2)-(3.5) is

x>(0) = (x1(0), x2(0), x3(0), x4(0)) = (0, 1, 1, 1) (3.6)

The biophysical parameters of the model are the time constant of the flow-inducing

signal decay τs, the time constant of the feedback regulatory mechanism τf , the

mean transit time of a blood cell in the venous compartment τ0, Grubb’s exponent

α for the flow-volume relation, baseline oxygen extraction rate E0, and resting blood

volume fraction V0 (for more about these parameters see Friston et al. (2000)). The

dimensionless parameters k1, k2 and k3 depend on experimental and physiological

parameters, and reflect the effects of rCBF and deoxyhemoglobin concentration on

the BOLD signal. The parameters E0, α, V0 are dimensionless as well, contrary to

the parameters τs, τf and τ0 that are measured in units of time.

In a forward approach, the neuronal activity u(t) determines the dynamics of the

physiological variables x(t), and thus the shape of the hemodynamic response h(t).
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This relationship can be used to solve the hemodynamic inverse problem: the issue

of reconstructing the neuronal activity underlying the BOLD signal. In an approach

proposed by Vakorin et al. (2006), the neuronal function u(t) is to be chosen in order

to minimize discrepancy between the model and experiment, a distance D(h, ĥ)

between two functions, namely between the observed BOLD ĥ(t) and the function

h(t) = g (x(t), u(t)) as predicted through the transitional dynamics (3.1)-(3.5) for a

given u(t). Specifically, u(t) is to be found from

û(t) = arg min
u(t)

D(h, ĥ) (3.7)

where the distance D between two functions is defined in L2 sense, as

D(h, ĥ) ≡ D(u) ≡
T∫

0

(
ĥ(t)− g (x(t), u(t))

)2

dt (3.8)

Further, the function u(t) can be parameterized in the terms of a vector θ of param-

eters, assumed to be unknown, and a set Φ of known basis functions:

u = u(t, θ,Φ) (3.9)

Then, the problem defined in (3.7) becomes an optimization problem over θ

θ̂ = arg min
θ

T∫

0

(
ĥ(t)− g (x(t),θ)

)2

dt (3.10)

subject to (3.1)-(3.6).

Further, the problem of reconstructing the neuronal activity underlying the BOLD

signals from repeated block experiments can be fused with the idea of signal aver-

aging, a technique known to increase signal-to-noise ratio of fMRI signals (DeYoe

et al., 1994). Specifically, we assume that the fMRI time series consist of P repeated

80



imaging blocks (periods), with a time period of T0, so the total time of the experi-

ment is T = T0 × P . Let the function u0(t) represent the neuronal activity function

averaged over P blocks. This function u0(t) can be repeated P times, which produces

a function u(t) spanning the entire experiment:

u = AP u0 (3.11)

where AP is a P times repeat operator such that AP : L[0,T0] → L[0,P×T0] (L[a,b]

denotes the space of Lebesgue-integrable functions defined on the interval [a, b])

with u(t + nT ) = u0(t) for n ∈ {0, . . . , P − 1}.

In a number of studies, the local field potential (LFP), a low-frequency component

of the extracellular field potential, is considered a better indicator of changes in

BOLD signal, when compared to multi-unit spiking activity (Logothesis et al., 2001).

Mathematically, a low-pass filter can be implemented through parameterizing the

neural function u0(t) in a basis of known smooth functions,φj(t), as

u0(t) =
K∑

j=1

cj φj (t) (3.12)

where cT = (c1, . . . , cK) represents a vector of unknown coefficients. In addition, to

model the delay between neuronal activity and the evoked hemodynamic response,

the function u0(t) is allowed to move along the time axis, which can be represented

by a shifting parameter d:

u0(t) =
K∑

j=1

cj φj (t− d) (3.13)

So, the vector θ of unknown parameters consists of the coefficients c of the linear

expansion (3.12) and the parameter d: θT = {cT , d}.
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The problem defined in (3.1)-(3.6) and (3.10) is a multi-dimensional minimiza-

tion problem over the space spanned by θ. The non-linearity of the optimization

problem requires applying numerical techniques to estimate θ. Then, provided

that the optimal parameters θ̂ are estimated, the dynamics of the neuronal activity

û(t) = u(t, θ̂,Φ) can be evaluated in the span of the shifted basis functions Φ.

3.3.2 Effective connectivity

Inferences regarding effective connectivity can be studied within the framework of

structural equation modeling, a statistical technique for testing the hypothesis that

some neural units exert causal influences over other units, through minimizing the

discrepancy between the actual covariance matrix and that specified by the fitted

model. Our model of reading a word and deciding how to interact with its referent

object is composed of three functional modules, allowing for visual word/object

processing (V), interaction semantics (I) and speech (S). The path coefficients βV I ,

βV S and βIS represent an estimate of the causal influence. One path of the model is

the direct effect of the visual word/object system on speech production (βV S). The

other causal path is partitioned into the effects of processing in the visual word system

on interaction semantics (βV I) and the subsequent effect of interaction semantics on

speech (βIS). The SEM can be represented as a circuit diagram with three nodes

and three arrows to designate unidirectional connections (see Fig. 3.2)

Let the functions ηV , ηI and ηS represent signals (time series or functions), at

the neural or hemodynamic levels, associated with visual word/object processing,

interaction semantic knowledge system and speech, respectively. As the diagram in
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Fig. 3.2 connotes, there are three equations (describing the relationships between

three covariances) and three unknowns (three path coefficients). The model can

be defined in terms of multivariate regression. It can be shown (Keith, 2006) that

the causal path coefficients βV I , βV S and βIS can be estimated as the standardized

regression coefficients in the following model




ηI

ηS


 =




0 0

βIS 0







ηI

ηS


 +




βV I

βV S




(
ηV

)
+




ε1

ε2


 (3.14)

where ε1 and ε2 are vectors of zero mean, uncorrelated random errors with common

variance σ2
ε1

and σ2
ε2

, ε ∼ N (0, σ2
εIN).

Visual word/object Speech

Interaction Semantics

β
VI

β
VS

β
IS

Figure 3.2: The structural equation model that represents a model
of an object interaction decision task. The model is illustrated as a
circuit diagram with three functional modules, allowing for a visual
word/object system, an interaction semantic knowledge system and a
speech production system. The arrows model the directions of causal
influence between three modules. Specifically, the information can flow
through two pathways: directly from visual word/object processing
to speech along a ventral route, and, in a less direct way, from the vi-
sual word/object system to the interaction semantic knowledge system,
and then, from the interaction semantics system to speech production
along a mid-dorsal route. The coefficients βV I , βV S and βIS reflect the
strength of the causal influence one unit exerts over another.

The solved paths are an estimate of effective connectivity, describing the effects

of the visual word/object system and the interaction-semantics system on speech,

along with the effects of visual word/object processing on interaction semantics.
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Since we are taking the parameters βij to the standardized path coefficients, they

can be interpreted in standard deviation units. For example, a one percent increase

in standard deviation of ηV will result in a βV I standard deviation increase in ηI and

a βV S standard deviation increase in ηS. It should be remembered, however, that

path analysis is a confirmatory technique. The validity of any effective connectivity

found is limited by the validity of the predefined model.

3.3.3 Mental latency

One approach for assessing relative latency in processing information between two

brain areas is to apply cross-correlation analysis. Regarding fMRI-driven studies,

Bandettini et al. (1993) have computed the cross-correlation coefficients of the data

with respect to a reference waveform to create activation maps. Saad et al. (2003)

have used the Hilbert transform algorithm, based on an idea of cross-correlation, to

estimate the delay of the BOLD response to neuronal stimulation.

Let the indices i and j denote regions of interests (ROI). Specifically, define the set

Ω to include the brain areas associated with visual word processing (V), interaction

semantics (I) and speech (S): i, j ∈ Ω, where Ω ≡ {V, I, S}. The cross-correlation

coefficient Rij(τ) between two real-valued functions, ηi(t) and ηj(t), is defined as

Rij(τ) =

∫
ηi(t)ηj(t + τ) dt (3.15)

where the integral is over the appropriate values of the time variable t for a fixed

time constant τ . In other words, the cross-correlation is defined in terms of one

signal, shifted and multiplied by another signal. The time delay ∆ij between two
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signals can be estimated through the optimization problem

∆ij = max
τ

Rij(τ), (3.16)

which defines the relative timing difference between two signals in terms of a shift

between the signals that maximizes their cross-correlation function.

For the present study, we will compute first the cross-correlation functions be-

tween fMRI time series, ĥi(t) and ĥj(t), associated with regions i, j ∈ Ω of interest

that are involved in an object interaction decision task. Further, for the same ROIs,

we will calculate the cross-correlation coefficients between the reconstructed neuronal

activity functions, ûi(t) and ûj(t) where i, j ∈ Ω, which are defined as the solutions

to the hemodynamic inverse problem (3.10) based on the original fMRI time courses

for each i ∈ Ω. Both at the neural and hemodynamic level, the cross-correlation

functions were maximized to produce an estimate of signal delay.

3.3.4 Experiment

Six healthy subjects of age between 23 and 41 with a mean age of approximately 30

years, four female and two male, participated in this study. The study was approved

by the University of Saskatchewan Behavioral Sciences Ethics Committee, and was

conducted according to relevant institutional guidelines.

All participants performed a word object interaction decision task. Specifically,

the stimuli were visually presented words. A word was displayed on a back-projection

screen, and the participants were asked to overtly describe how they would interact

with the word presented on the screen. For example, when they see the word “jeans”,
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they could say something like “wear them”. Image acquisition was synchronized with

the visually presented stimulus and triggered by EPrime software (Psychology Soft-

ware Tools, Inc., Pittsburgh, USA). Stimuli were projected with an LCD projector

interfaced with the computer running the EPrime software. A mirror was attached

to the MRI head coil to make the back-projection screen visible to the participant.

The imaging was performed with a 1.5 T Siemens Symphony (Erlanger, Germany)

scanner. A gradient echo T ∗
2 single-shot EPI sequence (TE = 55ms and TR =

3300ms) was used with fat saturation pulses. A 1650 ms gap of no acquisition in

each repetition (1
2

of TR) was used. The 12 acquired axial slices had a square field

of view of 250 mm and were 8-mm thick with an interslice gap of 2 mm. The 4th or

5th inferior-most slice was centered on the posterior commissure in order to image

the entire cortex with one volume. The original 64× 64 data matrices were Fourier

reconstructed to 128 × 128 images. One presentation block contained 16 volumes,

with the stimulus presented for the first 8 volumes, followed by 8 volumes of rest.

The block pattern was repeated 5 times (P = 5). The first 6 image volumes, collected

before the beginning of the first block to allow the spins to reach a steady state, were

discarded prior to analysis. So the complete data set consisted of 86 image volumes

of which 80 were used in the analysis. Time series with intensities below a cut-off of

200 grey-scale units (the black background) were also excluded from further analysis.

The brain regions associated with processing visual words/objects, semantics,

and phonology/speech were identified based in neuroimaging reviews of object and

language processing (Borowsky et al., 2005). In the review by Demb et al. (1999)

on single word processing with fMRI and positron emission tomography (PET),
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Figure 3.3: Masked here are the medial extratriate cortices associated
consistently with processing visual word/object information (the region
V).

Figure 3.4: The inferior frontal gyri and insular cortices (the region
S). These regions were reported in the literature to be related to speech
processing of visually presented stimuli.
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Figure 3.5: The lateral prefrontal cortex, middle temporal gyri and
fusiform gyri (the region I) masked in an axial view. These regions
have been identified in neuroimaging literature on language processing
as regions associated with semantic processing of visually presented
stimuli

the medial extratriate cortices tended to be related to visual word form. These

regions consistently demonstrated activation to various control stimuli, including

basic visual shape information (see also the review by Kanwisher et al. (2001)). Demb

et al. (1999) have identified the pars opercularis and pars triangularis of the inferior

frontal gyri as regions related to phonology/speech processing of visually presented

words. Tasks requiring phonology/speech analysis relative to various control tasks

have differentially revealed activation in these regions. In addition, Binder and Price

(2001) and Borowsky et al. (2006) have emphasized insular activation associated

with phonology/speech. Regarding the semantic processing of visually presented

words, Demb et al. (1999) have reported activation in a lateral prefrontal region just

superior to the inferior frontal gyrus. The same finding was supported in a review

by Martin (2001) on semantic memory. In addition, the middle temporal gyri and
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fusiform gyri have been identified as regions that are involved in the retrieval of

semantic information (Martin, 2001; Palmer et al., 2004).

The following analysis was carried out for each participant separately. A correlation-

based method, BOLDfold, was used to compute activation maps (Sarty and Borowsky,

2005). Mathematically, the BOLDfold approach is equivalent to an analysis of vari-

ance approach (Clare et al., 1999). In BOLDfold, the activation maps are calculated

voxelwise based on the correlations between the intensity time course and its re-

peated mean time course. The correlation range above a correlation threshold of

0.65 was set to define the activated voxels. After the brain regions associated with

visual word/object, interaction-semantics and speech/phonological processing had

been masked, the average time series of all activated voxels within each ROI was

generated. Thus, there was one averaged time series associated with activation of

the visual word/object processing, interaction semantics and speech/phonology for

each participant.

These averaged fMRI signals were used in two ways. First, they were analyzed to

make inferences about mental chronometry and effective connectivity at the hemo-

dynamic level. Second, these signals were used as the observed functions ĥ(t) in the

functional (3.8) to solve the inverse hemodynamic problem.

As a pre-processing step to solving the hemodynamic inverse problem, the aver-

aged fMRI signals were normalized with respect to the mean intensity value averaged

over the last four dummy volumes acquired to achieve the steady state before the

main body of the experiment. In addition, any linear trend was eliminated from

these signals. To alleviate possible edge effects related to integrating the system
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Solving
the hemo−
dynamic
inverse
problem

         Original fMRI data Reconstructed neural functions

Interaction
Semantics

Speech

Visual
word/object

Interaction
Semantics

Speech

Visual
word/object

Figure 3.6: A scheme that illustrates the idea of going from the
hemodynamic (fMRI) level down to the neural level through solving
the hemodynamic inverse problem. Recently proposed mathematical
models define the intrinsic path from neural activity to hemodynamic
responses. As the neuronal activity determines the transitional dy-
namics of the physiological variables, and thus the shape of the BOLD
response, we may infer the dynamics of the underlying neural activity.
These methods are illustrated by using a cognitive neuroscience model
of reading a word and deciding how to interact with its referent object.
Specifically, the inverse problem was solved for each participant, based
on the fMRI time series averaged with the regions associated with the
visual word/object system, interaction semantic knowledge system and
speech activation system.
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(3.2)-(3.5) of differential equations, the time span of the experiment was extended

by adding six zero values to the normalized BOLD time course before and two zero

values after the main body. To increase the sampling rate of the BOLD signal for the

purpose of numerically integrating the transitional system (3.2)-(3.5), the discrete

adjacent points of the BOLD time series were linked together by linear splines.

The following values of the biophysical parameters were used in the simulations:

τs = 0.8 s, τf = 0.4 s and τ0 = 1 s (Friston et al., 2000); α = 0.4 (Grubb et al.,

1974; Mandeville et al., 1999); E0 = 0.6 which is within the range of the values of

0.4 and 0.8 as used in Buxton et al. (1998) and in Friston et al. (2000), respectively.

As has been previously estimated for 1.5 T and TE=40 ms, k1 ' 7E0, k2 ' 2 and

k3 ' 2E0 − 0.2 (Boxerman et al., 1995; Ogawa et al., 1993).

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

Figure 3.7: The set of B-spline functions used to put constraint on
the smoothness of the reconstructed neural functions.

The hemodynamic inverse problem (3.10) was solved, based on the normalized

averaged fMRI series associated with visual word/object identification, speech pro-

cessing and semantic processing. Separately, for each ROI and for each participant,

the discrepancy (3.10) between the expected and observed BOLD was minimized over

the function u0(t), the averaged aggregated neural activity defined in (3.13). The

function u0(t) was parameterized in terms of B-splines (de Boor, 1978), illustrated
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in Fig. 3.7. B-splines were chosen because of their stable numerical properties, their

continuous derivatives at the joining points and their local support which prevents

one observation from affecting the entire shape of the hemodynamic response. A 4th

order Runge-Kutta algorithm (Kalitkin, 1978) was applied to numerically integrate

the differential system (3.2)-(3.5). Regarding optimization, we used simulated an-

nealing (SA), for review see Glover and Kochenberger (2003). SA is a local search

method capable of escaping from local minima by using limited hill-climbing steps,

moves which increase the objective function value. It is based on the idea of taking

a random walk at successively lower temperatures, where the probability of taking

a step up is given by a Boltzmann distribution.

At this stage, for each subject there were three original fMRI times series and

three reconstructed neural activity functions associated with visual word/object iden-

tification, speech processing and semantic processing. Causal path coefficients, βij,

where i, j ∈ Ω, were estimated through solving the multivariate regression defined

in (3.14). Effective connectivity for the functional network defined in Fig. 3.6 was

determined in terms of path coefficients averaged across six participants.

3.4 Results

Fig. 3.8 illustrates an example of solving the hemodynamic inverse problem based

on the normalized original fMRI time course ĥ(t) attributed to processing seman-

tic information (for one subject). The observed discrete and noisy BOLD sig-

nal(Fig. 3.8(a), crosses) is superimposed on the modeled hemodynamic response
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h(t)(Fig. 3.8(a), solid line) associated with the reconstructed neural activity u(t)

(Fig. 3.8(b)).

0 10 20 30 40 50 60 70 80
−0.01
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0.04
observed BOLD
reconstructed BOLD

(a) BOLD responses, observed and modeled

0 10 20 30 40 50 60 70 80

0

0.5

1

(b) Reconstructed neural activity function

Figure 3.8: The dynamics of normalized and trend-eliminated BOLD
signal and the reconstructed neural activity function averaged over 5
blocks, for the region associated with semantic processing for one of 6
participants: the expected, related to the reconstructed neural function
(Fig. 3.8(b)), BOLD dynamics superimposed on the original time course
(a); the estimated function u(t) as a combination of the B-splines basis
functions (b). The neural function u(t) is constructed through unfold-
ing the neural function that represents neural activity averaged over 5
periods.

Fig. 3.9(a) represents an estimate of causal influences at the hemodynamic level,

when the variables ηV , ηI and ηS in (3.14) were represented by the original fMRI

time series. We found that the average values are as follows: βh
V I = 0.86, βh

V S = 0.19

and βh
IS = 0.73. All the coefficients were found significantly different from zero
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with p-values less than 0.01. To determine effective connectivity at the neural level,

the reconstructed neural functions u(t) were used to estimate the path coefficients:

βu
V I = 0.84 (p-value less than 0.001), βu

V S = 0.32 (p = 0.14) and βu
IS = 0.56 (p =

0.024), which is illustrated in Fig. 3.9(b). The results obtained at the hemodynamic

level supports the idea that information flows from visual word/object system to

speech production via interaction-semantic knowledge system. At the neural level,

the obtained results reveal approximately the same effective connectivity pattern.

Visual word/object Speech

Interaction Semantics

β
VI

=0.86

β
VS

=0.19

β
IS

=0.73

(a) SEM at the hemodynamic level

Visual word/object Speech

Interaction Semantics

β
VI

=0.84

β
VS

=0.32

β
IS

=0.56

(b) SEM at the neural level

Figure 3.9: Structural equation models (SEMs) of an object inter-
action decision task. The effective connectivity pattern was estimated
in two ways: at the hemodynamic level, when the variables used to
estimate the structural equation model in Fig. 3.6 were represented by
the original fMRI time series (a); and at the neural level, when the
variables associated with the visual word/object system, interaction
semantic knowledge system and speech production were represented
by the reconstructed neural activity underlying the observed hemody-
namic responses (b). All the path coefficients, except for βV S at the
neural level, were found to be significantly different from zero ( β > 0).
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(a) Estimate of the onset latency at the hemodynamic level

path mean ± std.error, TR t-statistics p-value

∆h
V I 0.09 ± 0.05 1.83 0.13

∆h
V S 0.16 ± 0.14 1.15 0.30

∆h
IS 0.03 ± 0.05 0.59 0.58

(b) Estimate of the onset latency at the neural level

path mean ± std.error, TR t-statistics p-value

∆u
V I 0.29 ± 0.08 3.433 0.02

∆u
V S 0.26 ± 0.10 2.58 0.05

∆u
IS 0.08 ± 0.08 0.97 0.37

Table 3.1: Relative timing differences ∆ in processing information be-
tween the three functional units of visual word/object recognition (V),
interaction semantics (I) and speech (S), and the T-statistics and p-
values of one-sample T-tests used to test the significance of the delays :
at the hemodynamic level, using the original BOLD responses (a); and
at the neural level, using the reconstructed neural activity functions
(b). The delays are measured in terms of the repetition time TR. The
null hypothesis of the one-sample T test is : there is no statistically sig-
nificant relative latency between regions, e.i. ∆ = 0. The alternative
hypothesis is: the estimates of relative timing differences is different
from zero value, e.i. ∆ > 0. The one-sample T-test revealed that, with
the 95% confidence, processing information both in the units I and S
(marginal case) is significantly delayed relative to V.
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In addition to determining the effective connectivity, the same fMRI time se-

ries and reconstructed neural functions were used to estimate, through the proce-

dure described in (3.15)-(3.16), the relative timing differences ∆V I , ∆V S and ∆IS

in processing information between the visual word/object, interaction-semantics,

and speech/phonology systems. We found the following values of the delay, av-

eraged over six observations (subjects): ∆h
V I = 0.09 ± 0.05, ∆h

V S = 0.16 ± 0.14 and

∆h
IS = 0.03±0.05 at the hemodynamic level (see Table 3.1(a)), and ∆u

V I = 0.29±0.08,

∆u
V S = 0.26± 0.10 and ∆u

IS = 0.08± 0.08 at the neural level (see Table 3.1(b)). Af-

ter having estimated the mental latency, using each of three pairs of functions, both

at the hemodynamic and neural levels, one-sample T-tests were conducted to test

the significance of the delay estimates. A one-sample T-test is a statistical method

of determining whether the difference between the mean parameters ∆V I , ∆V S and

∆IS and a test value (equal to zero, for the purpose of the present study) is real or

merely apparent. Specifically, the null hypothesis to be tested was that there is no

significant delay in information flow between the functional units. The alternative

hypothesis was that the mean scores of relative timing difference are significantly

different from the zero value.

At the hemodynamic level, as supported by the p-values reported in Table 3.1(a),

the latency could not be distinguished from zero at the 95% level. In other words, it

is impossible to dissect the information flow into its component parts. In contrast to

the raw BOLD data, at the neural level, differences in the onset of activation were

found to be statistically significant between visual word activation and interaction

semantics activation with p = 0.02 and a delay of ∆V I = (0.29 ± 0.08) × TR =
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950 ms ± 260 ms, as well as between visual word activation and speech production

activation (with p = 0.05 and a delay of ∆V S = (0.26±0.10)×TR = 860 ms±330 ms

(see Table 3.1(b)). Latency between semantics and speech could not be discerned.

We can put together the results on effective connectivity (Fig. 3.9) with those on the

mental chronometry, obtained at the neural level through solving the hemodynamic

inverse problem (Table 3.1(b)) and can conclude that, during the object interaction

decision task, the sequence of cortical activation leads from the visual word/object

system to speech activation via activation in the semantics-associated brain regions,

as an intermediary stage, and that the main delay occurs on the pathway leading

from the visual word system to interaction semantics. In other words, we found

dominance of the mid-dorsal stream in performing a task of reading a word and

deciding how to interact with its referent object.

3.5 Discussion

The BOLD response is an indirect indicator of neural activity, and the need for

modeling interactions at a neural level motivated the introduction of convolution

techniques in fMRI analysis (Friston et al., 1994). In the simplest case, neuronal

activity is approximated with the stimulus timing waveform, and can be convolved

with an impulse response function parameterized in terms of known basis functions.

The validity of the convolution techniques is undermined by the variability of fMRI

responses, reported to be different across subjects, from voxel to voxel and from task

to task (Handwerker et al., 2004). Another issue is the violation, in many cases, of

97



the assumption that the underlying neural activity is time-locked to the stimulus.

Mathematical models describing the path from neural activity to BOLD is a more

advanced way of dealing with the indirect nature of the BOLD mechanism. Fur-

thermore, if the intrinsic biophysical path is specified, extracting the amplitude and

timing of underlying neural activity from BOLD responses may potentially provide

new information about BOLD dynamics itself.

The purpose of this work was to explore the possibility that solving the hemody-

namic inverse problem may allow one to recover some information that was hidden

in the translation from the neural level to the relatively sluggish changes in hemody-

namics. The proposed techniques were illustrated in a functional model designed to

assess the BOLD and neuronal activity involvement in an object interaction decision

task. The neuronal activity underlying the BOLD signals were estimated based on

the expanded “balloon” model which describes the path from neuronal activity to

the BOLD response through the non-linear transitional dynamics of the blood flow-

inducing signal, cerebral blood flow, cerebral blood volume and deoxyhemoglobin

concentration. The original forward model was transformed into an optimal con-

trol problem with the objective of reconstructing the input, the underlying neuronal

activity function. Further, effective connectivity between regions associated with vi-

sual word/object recognition, interaction semantics, and speech/phonology, and the

associated temporal sequencing of information were explored and compared at the

hemodynamic and neural levels. Specifically, structural equation modeling was used

to estimate causal relationships between the regions, while cross-correlation analy-

sis was applied to determine the relative timing differences between the functional
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units involved in performing the task. The causal path pattern at the hemodynamic

level was found to be roughly the same as that at the neuronal level. Regarding

mental chronometry, using the original fMRI time series failed to reveal significant

differences in the relative onset of activation associated with visual word/object, in-

teraction semantics, and speech. Contrary to what was found at the hemodynamic

level, at the neuronal level we found a statistically significant delay in activation

onset between the visual word system and the semantic system, whereas the delay

between the visual word system and speech production system approached signifi-

cance. Given the strong relationship that exists between nouns (i.e., a word and its

referent object) and their associated verbs (i.e., actions associated with the object),

it is not surprising that there was only a marginal delay between visual word/object

recognition and speech production and there was no significant delay found between

interaction semantics and speech/phonology system activation in the present study.

The relative timing differences were found to be measured on the scale of frac-

tions of TR. In other words, the temporal resolution of the new information obtained

at the neural level is higher than the sampling resolution of the original fMRI series.

What is the general idea behind the attainment of an increase in temporal resolu-

tion? There are a few points worth noting here. First is the inherently approximate

nature of the reconstructed neural activity function. The exact solution u(t) is pa-

rameterized (see Eq.3.12) with basis functions defined at any time point. Next, from

the computational point of view, simulated annealing produces an approximate, al-

though stable, solution from the cluster of admissible solutions associated, in the best

scenario, with the global optimum. Finally, the biophysical model itself is a strong
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constraint imposed on the definitional domain of the neural input function. It is anal-

ogous to the problem to drawing a line through a point, parallel, say, to the ordinate

axis (constraint). The matter may be complicated by the intrinsic non-linearity of

the biophysical model, but, in fact, there are more relevant issues with the problem

of optimal smoothing. There exists a function, called the Hamiltonian, associated

with the optimal control problem (Pontryagin, 1962). This function, which describes

the state of the system in terms of state variables x(t) = (x1(t), x2(t), x3(t), x4(t))
T

and costate ones p(t) = (p1(t), p2(t), p3(t), p4(t))
T (Lagrange multipliers), must be

minimized over the set of all the possible control functions u(t) (see Vakorin et al.

(2006), Chapter 2 of this thesis for details):

H(x(t), u(t),p(t)) = (ĥ(t)− g(x(t)))2 +
4∑

j=1

pj(t)fj(x(t)) (3.17)

The first term of the Hamiltonian, which reflects the discrepancy between the ob-

served and predicted BOLD responses, can be viewed as a minimum square criterion,

while the second term puts a constraint on the admissible solution through the tran-

sitional dynamics of the physiological variables and their Lagrange multipliers. From

this perspective, the hemodynamic inverse problem should be solved through optimal

smoothing at the neural level with regularization defined in terms of the biophysical

model for transforming the neural activity into BOLD signals.

Another issue is the estimated value per se of the activation delay between ac-

tivation of the visual word/object system and interaction semantics: about 900 ms.

From the event-related potential (ERP) literature, a negative-going shift in EEG

signal, peaking approximately 400 ms after stimulus onset (N400) is known to be
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sensitive to semantic processing (Bentin et al., 1985; Rugg, 1985). Thus, the la-

tency estimated with fMRI data, via solving the inverse problem, is twice as high

as that predicted based on EEG data. A factor of 2 is not too bad for a model of

the physiology that is as rough as the expanded balloon model. Another reason for

the mismatch is the values of the time constants: the flow-inducing signal decay τs,

the feedback regulatory mechanism τf , and the mean transit time of a blood cell in

the venous compartment τ0. These parameters affect the delay of the hemodynamic

response, relative to the underlying neural activity, which potentially makes the rel-

ative latency parameters more volatile. A better match to known N400 results might

be obtained with a better physiological model. For future work, the idea of using

tasks that can be decomposed into a sequence of processing stages, together with

EEG recordings can guide the investigation of BOLD physiology.

In conclusion, we have demonstrated that solving the hemodynamics inverse prob-

lem based on mathematical biophysical models can allow one to extract more infor-

mation from fMRI signals. In particular, going from the hemodynamic level down

to the neural level helped us to explicate more details on mental chronometry. Sta-

tistically significant relative timing differences in information processing were found

to be smaller than the sampling rate of the raw fMRI data. Mathematical modeling

was able to reveal additional neural information from sluggish and indirect fMRI

signals, clarifying the neural interpretations of fMRI recordings.
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Chapter 4

Characterizing the functional MRI re-

sponse using Tikhonov regularization

4.1 Preliminaries

This chapter is based on the manuscript titled “Characterizing the fMRI response us-

ing Tikhonov regularization” (2006) by Vakorin,V.A., Borowsky,R. and Sarty,G.E.,

submitted to Statistics in Medicine. As it was shown in Chapter 3, solving the hemo-

dynamic inverse problem, i.e. the problem of extracting neural dynamics, can reveal

information that was not available at the level of fMRI BOLD data. Specifically,

at the neural level, we were able to determine statistically significant latencies in

activation between functional units in a model of an object interaction decision task.

Mathematically, solving the hemodynamic inverse problem in Chapter 3 was equiva-

lent to smoothing at the neural level, accompanied with the idea of signal averaging.

In this chapter, a similar problem is considered at the level of BOLD fMRI time

series per se. This work is an attempt to probe the issue of what amount of smooth-

ing should be considered optimal for fMRI signals when assessing activation. This

is motivated by reasoning that strong smoothing can eliminate relevant temporal

characteristics while insufficient smoothing may leave much noise in hemodynamic
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responses.

Specifically, the problem of evaluating an averaged functional magnetic reso-

nance (fMRI) response for repeated block design experiments was considered within

a semiparametric regression model with autocorrelated residuals. We applied func-

tional data analysis (FDA) techniques that use a least squares fitting of B-spline

expansions with Tikhonov regularization. To deal with the noise autocorrelation, we

proposed a regularization parameter selection method based on the idea of combin-

ing temporal smoothing with residual whitening. A criterion based on a generalized

χ2 test of the residuals for white noise was compared to a generalized cross vali-

dation scheme. We evaluated and compared the performance of the two criteria,

based on their effect on the quality of the fMRI response. We found that the reg-

ularization parameter can be tuned to improve the noise autocorrelation structure

but the whitening criterion provides too much smoothing when compared to the

cross-validation criterion.

The ultimate goal of the proposed smoothing techniques is to facilitate the ex-

traction of temporal features in the hemodynamic response for further analysis. In

particular, these FDA methods allow us to compute derivatives and integrals of the

fMRI signal so that fMRI data may be correlated with behavioral and physiological

models. For example, positive and negative hemodynamic responses may be easily

and robustly identified on the basis of the first derivative at an early time point

in the response. Ultimately these methods allowed us to verify previously reported

correlations between the hemodynamic response and the behavioral measures of ac-

curacy and reaction time, showing the potential to recover new information from
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fMRI data (see Chapter 5).

4.2 Introduction

Functional magnetic resonance imaging (fMRI) is a non-invasive technique used along

with specific cognitive tasks to measure the dynamics of the hemodynamic response

of the brain in reaction to that task. The two primary objectives for fMRI analy-

sis are the segmentation of activated brain regions and the characterization of the

temporal response. A variety of techniques have been proposed to detect activation

patterns from fMRI time series. Traditionally, these techniques are based on calcu-

lating correlations of intensity time series with an a priori given reference function

representing a convolution of the stimulus with an assumed hemodynamic impulse

response function. Here we concentrate on the problem of characterizing the tempo-

ral response.

The simplest fMRI experimental design is the block design consisting of periodi-

cally repeated blocks which in turn, are composed of image volumes scanned during

a rest condition, followed by volumes scanned during a stimulus condition. More ad-

vanced experimental designs involve the event-related design (Friston et al., 1998).

Event-related data can be analyzed by calculating two-condition t-tests that com-

pare a rest baseline condition with an experimental one. This t-test is equivalent to

a correlation between the observed time-series and a stepwise function that crudely

approximates the expected hemodynamic response. More refined model-oriented

methods calculate correlations with more realistic hemodynamic response functions,
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such as gamma functions (Frackowiak et al., 1997), but the reference function re-

mains the same for every voxel.

A correlation-based method, termed the BOLDfold (Sarty and Borowsky, 2005),

was proposed for repeated block design experiments in which the comparison function

is assumed to be different for every voxel and can be defined empirically through

periodic data folding. Mathematically, the BOLDfold approach can be shown to be

equivalent to an analysis of variance approach (Clare et al., 1999). In BOLDfold,

the activation maps are calculated voxelwise based on the correlations between the

intensity time course and its repeated mean time course. Furthermore, the time

series themselves for the voxels found to be activated are of special interest since

the temporal characteristics of the fMRI response are thought to be informative

with regard to mental activity (Menon et al., 1998). Specifically, the fMRI onset

latency, defined as the time at which the hemodynamic response intensity reaches

its maximum value, has been shown to correlate with reaction time and stimulus

presentation time (Menon et al., 1998). Other studies suggest that the full-width-

at-half-maximum (FWHM) parameter is better correlated to the reaction time (Liu

et al., 2004).

Because of the discrete and noisy nature of the fMRI response, evaluating tem-

poral parameters of the hemodynamic response inexorably requires some kind of

smoothing. In this paper we focus on functional data analysis (FDA) methods (Ram-

say and Silverman, 2002) for an optimal smoothing of the averaged fMRI response.

Mathematically the selection criterion was chosen to minimize the energy of approx-

imation F by the parameters β that characterize the fMRI response according to
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the scheme

F(β) = F1(β) + λF2(β)

where the term F1(β) is the quadratic error, and the regularization term F2(β) repre-

sents a roughness of the approximation, a property quantified by the integrated sum

of the local variations of the derived fMRI response. The regularization parameter λ

controls the amount of applied smoothing, and consequently the temporal properties

of the fMRI response. Furthermore, the autocorrelation structure of residuals can

be improved through tuning the parameter λ.

Violation of the assumption of independent residuals in fMRI analysis has been a

problem for obtaining correct estimations of and inferences about the evoked hemo-

dynamic response. Functional MRI noise has many components, both physiological

and instrumental, which is exhibited in autocorrelated residuals in the general linear

models (GLM) used to analyze the response (Friston et al., 1995a). To deal with the

noise autocorrelation, temporal filtering (Friston et al., 1995b; Worsley and Friston,

1995) and residual whitening (Bullmore et al., 1996a) have been proposed in the lit-

erature. Whitening is the most efficient approach to parameter estimation provided

that there is no discrepancy between the assumed and actual autocorrelations. Since

in practice it is quite challenging to obtain an accurate estimation of the true auto-

correlations, whitening makes the analysis sensitive to bias, which affects statistical

inferences. It has been argued in Friston et al. (2000), therefore, that it is preferable

to smooth in order to minimize the bias rather than whiten the residuals.

Spline smoothing which is asymptotically equivalent to a kernel smoothing in
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the kernel density estimation setting (Eubank, 1988) provides a powerful tool for

obtaining insights into the data. However, the effective use of these techniques in-

volves selecting the smoothing parameter. In attempting to find an optimal amount

of smoothing as governed by the regularization parameter λ, Clare et al. (1999) ap-

plied a generalized cross-validation (GCV) scheme in a spline smoothing of the fMRI

time series. GCV can be viewed as a criterion to avoid the overfitting of data in the

bias/variance dilemma representing a trade-off between a gain in bias reduction and

an increase in variance. Many examples of applying GCV for automatic smoothing

can be found in a number of monographs (Ramsay and Silverman, 2002; Eubank,

1988; Wahba, 1990). In addition, the issue of using GCV as a possible candidate

for the best criterion for automatic regularization has been recently addressed in

a number of medical applications: ultrasonic pulse-echo imaging (Lavarello et al.,

2006), electrical impedance tomography (Graham and Adler, 2006), perfusion MRI

(Sourbron et al., 2004) and positron emission tomography (Lu et al., 1998).

As an alternative to the GCV scheme for functional MRI data analysis, we pro-

posed and examined a criterion which combines a smoothing scheme with the idea of

minimizing noise autocorrelation. Specifically, a generalized χ2 test of residuals for

white noise was employed to find the optimal value of the regularization parameter

λ. The cross-validation and whitening criteria were compared with each other based

on the amount of smoothing they provide for the time course of activated voxels.

In summary, we present here a smoothing scheme for evaluating the mean fMRI

response using the FDA techniques. We aimed to (i) propose and justify techniques

that facilitate calculations of temporal characteristics of the fMRI response and (ii)
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refine criteria for selecting the optimal degree of smoothing. With the smoothed

hemodynamic response, maps of certain temporal features such as the FWHM and

the onset time, can be easily constructed and used for further analysis of mental

operations in perceptual and cognitive tasks.

4.3 Methods

4.3.1 Smoothing averaged responses

Signal averaging is widely known as a technique that can be used to increase signal-

to-noise ratio of fMRI signals (DeYoe et al., 1994). It is employed in the BOLDfold

approach to produce a reference function individual for every voxel. Mathematically,

the fMRI data from repeated block experiments are folded over and averaged to

yield the hemodynamic response function. Specifically, let j index the P repeated

imaging blocks (periods), and let i index the T time point samples {ti}T
i=1 for each

block. An example fMRI time series obtained in an experiment with 5 blocks is

provided in Fig. 4.1(a), while Fig. 4.1(b) illustrates the corresponding paradigm

function, showing the periods of stimulus and rest. Also, let y = {ys}N
s=1 denote the

observed time series where N = P T , and let h = {hi}T
i=1 denote the averaged, folded

data. For every ti we can find hi by picking up the values of the fMRI response y

corresponding to the ith element in each block, namely {y(i+j T )}P

j=1
, and computing

the mean vector h with components

hi =
1

P

P∑
j=1

y(i+j T ) (4.1)
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Figure 4.1: An example of fMRI time series obtained in an experiment
with 5 blocks and the corresponding paradigm function.

In the BOLDfold method, the time series for every voxel is correlated with its

own averaged repeated time series. Specifically, the averaged, folded signal h can be

repeated P times producing the time series defined by the vector

h̃T = 1T
⊗

hT =
[

hT · · · hT
]

︸ ︷︷ ︸

P times

where 1 is the vector of the length P , and the symbol
⊗

denotes the Kronecker

product. Then, this newly built, unfolded signal h̃ spanning the whole experiment

can be correlated with the original time series y. The correlation coefficients r

contains only empirically obtained data terms. High correlations between y and h̃
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reflect the activation of a specific brain area in reaction to the given stimulus. As

mentioned in the introduction, it has been shown that the BOLDfold method for

computing activation maps is mathematically equivalent to an analysis of variance

(ANOVA) method that produces F statistic maps (Clare et al., 1999).

A more general way to compute the averaged fMRI signal is to apply the general

linear model (GLM) for the time series data as follows. Let

y = Bh + Lζ (4.2)

where B is the design matrix associated with modeling the averaged response h, L

is an unknown convolution matrix which describes noise autocorrelation, and ζ =

{ζi}N
i=1 is a vector of zero mean, uncorrelated random errors with common variance

σ2
ζ , ζ ∼ N (0, σ2

ζIN). Let the (N × T ) design matrix B be defined as the Kronecker

product of the P -dimensional vector 1 of ones and the (T × T ) identity matrix IT ,

namely

BT = 1T
⊗

IT =
[
IT · · · IT

]

︸ ︷︷ ︸

P times

This block-based form of the design matrix B is designed to parameterize the shape of

the average hemodynamic response over blocks in a blocked design. Other variations

may be possible for event-related experimental designs, for example, those aimed

at characterizing the impulse response function. However, we will not pursue those

variations here.

If we assume the simplification L = IN , then the ordinary least squared (OLS)

estimate ĥ = (BTB)−1BTy gives exactly the averaged repeated hemodynamic re-

115



sponse calculated in (4.1). The model (4.2) can be expanded by implementing a

(N × M) nuisance matrix D that accounts for effects of no interest, such as non-

specific signal drift, which are modeled in general by a vector µ of length M ; so the

expanded model is

y = Bh + Dµ + Lζ = [ B D ]



h

µ


 + Lζ. (4.3)

Our objective is to fit the discrete averaged observations hi, i = 1, . . . , T to a

function h(t) with the smoothing model hi = h(ti) + ηi, where the elements ηi are

uncorrelated random errors η ∼ N (0, σ2
η IN). We will use a basis function expansion

for h(t) of the form

h(t) =
K∑

j=1

cj φj (t) (4.4)

where {φj}K
j=1 is a set of known basis functions. To test the proposed techniques

we will use B-splines (de Boor, 1978) for spline smoothing. B-splines were chosen

because of their stable numerical properties, their continuous derivatives at the join-

ing points and their local support which prevents an observation from affecting the

entire shape of the hemodynamic response. Now let the K-dimensional vector c

contain the coefficients {cj}K
j=1, while the (T × K) matrix Φ = {φj i} contains the

values φj(ti). Then

h = Φc + η (4.5)

and the model (4.3) becomes

y = [B D ]



Φc + η

µ


 + Lζ = [BΦ D ]




c

µ


 + Bη + Lζ (4.6)
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or

y = Xβ + Kε (4.7)

where BΦ and D are partitions of the design matrix X = [BΦ D], and β = [cT µT ]
T

is a column vector of parameters for the effects modeled by each column of the design

matrix. The matrix K represents the effective convolution matrix which describes

the new autocorrelation, and ε ∼ N (0, σ2
εIN), such that Kε = Bη + Lζ.

Let S be the matrix of a temporal filtering transformation applied to the model

(4.7) to give

Sy = SXβ + SKε (4.8)

In order to whiten the data, we need to know the intrinsic autocorrelation structure

K. If K is known, choosing S = K−1 provides minimum variance, unbiased OLS

estimates β̂ = (XT ST SX)
−1

XT Sy. Practically, K is never known, which means

that the true intrinsic correlations K need to be estimated. In this case S 6= K−1,

and the assumed autocorrelation Va = KT
a Ka differs from the true autocorrelation

V = KTK. That leads to a bias between the true contrast variance Var(aT β̂) and

the expectation of its estimator E
[
Var(aT β̂)

]
(here a is a vector of contrast weights).

Friston et al. (2000) found that a modified 1/f model (Zarahn et al., 1997) and an

autoregressive AR(1) model (Bullmore et al., 1996b) fail to capture long-range cor-

relations, leading to unacceptably reduced efficiency and inflated contrast variance.

An alternative solution involves conditioning the correlations by smoothing. In that

case, even if Va is not known, smoothing provides an acceptable level of bias (Worsley

and Friston, 1995). This justifies the implementation of the basic function expansion
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of h(t) in (5.2), which serves to temporally filter the noisy h.

Now we will show how including the smoothing matrix S corresponds to an

objective functional F based on the least squares criterion including a regularization

term. In the context of this paper, Tikhonov regularization can be used to impose

constraints on derivatives of the smoothed averaged fMRI response h(t) via the

functional

F = ‖y −Xβ ‖2 + λ

tT∫

t1

|L h(t)|2dt (4.9)

where L is a linear differential operator and λ is the regularization parameter. An

estimator of β can be obtained from

β̂ = arg min
β
F . (4.10)

The parameter λ ≥ 0 can be used to control the trade-off between smoothness

and closeness of fit. Strong smoothing but minimal bending is obtained when λ →

∞. Bending becomes more significant with λ → 0. To choose λ is a fundamental

problem, known as the bias/variance dilemma (see, for example, Chanmond (2003)).

In the context of Bayesian framework modeling and the autocorrelation structure of

the residuals, λ can be interpreted in terms of a noise level (Goutte et al., 2000).
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With (5.2), the second term of the cost functional (4.10) becomes

λ

tT∫

t1

|L h(t)|2dt = λ

tT∫

t1

|L
K∑

j=1

cj φj (t)|2dt

= λ

tT∫

t1

(
K∑

i,j=1

ci L φi (t) L φj (t) cj

)
dt

= λ

K∑
i,j=1

ci




tT∫

t1

L φi (t) L φj (t) dt


 cj

= λ c>R c (4.11)

where R = {rij}K
i,j=1 is the (K × K) matrix such that rij =

tT∫
t1

L φi (t) L φj (t) dt .

Thus the functional (4.9) may be expressed in matrix terms as

F = (y −Xβ)T (y −Xβ) + λ cTR c. (4.12)

Let J be defined as the (K × (K + M)) matrix J = [ IK O ] where O is the

(K×M) matrix with all the elements equal to zero. It is easy to show that cT R c =

βTJTRJβ.

Defining the (K + M) × (K + M) matrix Σ as Σ = JT RJ, the regularization

term in (4.12) becomes λβTΣβ. It can be shown that the solution to the problem

(4.10) is

β̂λ =
(
X>X + λΣ

)−1
XT y (4.13)

where we use the subindex λ to underline the dependence of the estimated param-

eters β̂ =
[
ĉT µ̂T

]T
on the regularization parameter λ. We note that for λ 6= 0

the matrix (XT X + λΣ) is invertible by construction. In the case of λ = 0, multi-

collinearity is present only when the number of basis functions used to approximate

h exceeds the number of points wherein h is considered, i.e. if K > T . Then, with
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ĉ evaluated through (4.13), (5.2) provides a smoothed representation of the aver-

aged fMRI response h(t). Furthermore, the smoothing matrix S used in (4.8) for

the Tikhonov regularization is Sλ = X
(
XTX + λΣ

)−1
XT . The matrix Sλ deter-

mines dffit, the degrees of freedom of the fit corresponding to the spline smoothing,

namely dffit(λ) = trSλ (Ramsay and Silverman, 2002) with an interpretation as the

equivalent number of parameters. We report monotonically decreasing relationships

between dffit(λ) and λ. The residuals can be calculated as

ε̂λ = y − ŷ = (I − Sλ)y. (4.14)

4.3.2 Criteria for choosing the regularization parameter

The variational problem (4.10) has so far been considered without mention of how

to choose the parameter λ automatically. A variety of criteria for choosing λ have

been proposed in the literature (Eubank, 1988; Wahba, 1990). A classical criterion

is “cross-validation” which relies on splitting the data into estimation and validation

parts. The simplified leave-one-out case is based on the idea of deleting an observa-

tion and approximating the data with the rest of the observations. Repeating the

procedure of deleting and fitting for all observations makes it possible to measure

the quality of approximation through the cumulative quadratic error. The quadratic

error criterion can be refined (Craven and Wahba, 1979) to produce the generalized

cross validation (GCV) measure as

GCV (λ) =
1

N

ε̂T
λ ε̂λ(

1− 1
N

trSλ

)2 . (4.15)
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Since we are interested in optimizing the correlation structure of the residuals, we

will also consider a criterion for choosing λ through optimizing the value of a white

noise test for the residuals. The generalized χ2-test is based on the idea that a

stationary process is white noise if and only if its autocorrelation function ρ(k)λ is

zero for lag one and above. This leads to the test statistic N
∑m

k=1 ρ̂λ(k)2 where ρ̂λ is

an estimated autocorrelation function for the process defined by the time series ε̂λ in

(4.14). However, possible high deviations of this statistic from the corresponding χ2

distribution (Davies et al., 1977) together with suspiciously low values reported in

Ljung and Box (1978) for this statistic led to a corrected test. A better approximation

was shown to be achieved (Ljung and Box, 1978) by using

T (λ) = N(N + 2)
m∑

k=1

ρ̂λ(k)2

N − k
(4.16)

for a given number of parameters m.

So, in order to choose an optimal λ we have to solve optimization (minimization)

problems with the objective functions defined using either (4.15) or (4.16). The opti-

mal value of the parameter λ determines the optimal amount of smoothing provided

by the smoothing matrix S in (4.8). At the same time, the parameter λ conditions

the estimates for β, and consequently, the estimates for the parameters c of the

smoothed representation (5.2) of h.
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4.4 Application

4.4.1 fMRI experiment

A functional imaging experiment involving a finger-touching motor task was per-

formed with a 1.5 T Siemens Symphony scanner. The experiment was similar to

one used in a study of the role of the left hemisphere in motor control of touch

(Borowsky et al., 2002). A gradient echo T ∗
2 single-shot EPI sequence (TE = 55ms

and TR = 1600ms) was used with fat saturation pulses. The 12 slices acquired had

a square field of view of 250 mm and were 8-mm thick with an interslice gap of 2

mm. The original 64 × 64 data matrices were Fourier reconstructed to 128 × 128

images. The stimulus was presented for 8 volumes followed by 8 volumes of rest (see

Fig. 4.1(b)), leading to a block consisting of 16 volumes (T = 16). The block pat-

tern was repeated 5 times (P = 5). The first 6 image volumes, collected before the

beginning of the first block to allow the spins to reach a steady state, were discarded

prior to analysis. So the complete dataset consisted of 86 image volumes of which

80 were used in the analysis.

4.4.2 Analysis

The differential operator in (4.9) was defined the second derivative L = d2

d2t
. A result

found in de Boor (1978) states that the curve h(t) that minimizes (4.9) should be a

cubic spline with knots at the data points ti. We used an order four B-spline system

{φj}K
j=1 (de Boor, 1978) for the basis function expansion (5.2) of the mean response
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Figure 4.2: A set of 18 B-spline functions defined on the interval
1 ≤ t ≤ 16. A B-spline is a spline function which has minimal support
with respect to a given degree, smoothness, and domain partition. Each
basis function φj(t) illustrated is a piecewise polynomial of the third
degree. Note that

∑18
j=1 φj(t) = 1 for any t ∈ [1, 16].

h(t). Each basis function φj(t) is a spline function defined by an order and a knot

sequence. Taking into account the relation between the order of the spline (R = 4),

number of knots (T = 16) and the number of basis functions, using cubic splines

implies that we have (T + 2) basis functions. Since we fit T points with a linear

combination of (T + 2) basis functions, regularization is necessary, which excludes

the case λ = 0. Fig. 4.2 illustrates the basis consisting of 18 B-spline functions

of order 4 (cubic B-splines) defined on the interval 1 ≤ t ≤ 16. The three basis

functions on both sides of the interval are different. As we move from the center to

the left (or to the right in reverse order), the basis gradually changes in smoothness,

from being twice-differentiable to being discontinuous. As commented in Ramsay and

Silverman (2002), losing differentiability at the boundaries makes some sense because

no information is available beyond the interval. However, taking into account the

normalized nature of the B-splines basis in the form of
∑K

j=1 φj(t) = 1 for any

t ∈ [1, T ] including the edge regions and shape preserving property of B-splines
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(Carnicer and Pena, 1994), the boundary effect appears to be not significant.

We note that dimension of the parameter λ depends on the choice of the differ-

ential operator L. In the case of L = d2

d2t
, the dimension of λ becomes [s−2], or [T−2

R ]

putting it in terms of an image sequence when the frame acquisition rate is defined

by TR. This, in turn, means that the dimension of 1/
√

λ is essentially the bandwidth

in kernel estimating schemes (Eubank, 1988) and is measured in the units of TR.

To compare the two criteria for λ represented by the objective functions GCV (λ)

and T (λ), we considered a time series of voxels as activated if ordinary BOLDfold

analysis showed it as being active. This was determined as follows. First, for every

voxel in the dataset with a minimum observed intensity above a background cut-off

of 200 grey-scale units, the mean hemodynamic responses h were calculated through

the simple averaging procedure (4.1). Then, the response h was repeated 5 times

to produce the repeated BOLDfold function h̃ spanning the entire period of the ex-

periment. The activation maps based on the correlation between the function h̃ and

the original time course y were computed. The correlation range r ≥ 0.7 was used

to define a set A containing all the activated voxels. It should be noted that the

set A contained both a subset A+ ⊂ A of voxels showing a positive, conventional

increase in fMRI signal in response to a stimulus and a subset A− ⊂ A of voxels

with a negative response (Harel et al., 2002; Shmuel et al., 2006). Examples of the

mean fMRI signal from the sets A+ and A− are shown in Fig. 4.3(a) and 4.3(b)

respectively. A+ and A− were separated based on the first derivative maps of the

smoothed hemodynamic response h(t) evaluated at the point t1. To compute the

maps of dh(t)
dt
|t=t1 , h(t) was smoothed with the B-splines for λ = 1. Only those voxels
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demonstrating conventional positive response were considered for further analysis.

The conventional increase in the intensity of the hemodynamic signal evoked by in-

creased neuronal activity is thought to be due to uncoupling between local cerebral

blood flow and the cerebral rate of oxygen consumption (Buxton et al., 1998). We

focused on interpreting the positive BOLD responses because there is some contro-

versy in the literature over the nature of the A− type of responses (Shmuel et al.,

2006).

For every voxel from the set A+, the optimal amount of smoothing was evaluated

using the criteria (4.15) and (4.16). Specifically, the functions GCV (λ) and T (λ)

were minimized over λ on the interval 1 ≤ λ ≤ 104. Fig. 4.4 gives an example of the

functions GCV (λ) and T (λ) for a voxel found activated in the ordinary BOLDfold

analysis. As can be seen from Fig. 4.4(b), the smoothing parameter λ indeed affects

the noise autocorrelation structure in the GLM model.

The distribution of the optimal λGCV for the voxels of the set A+ was calculated

and shown in Fig. 4.5(a) on a logarithmic scale. Similarly, the distribution of the

optimal λT is illustrated in Fig. 4.5(b). As can be seen, λGCV is inclined to be closer

to zero when compared to λT , while λT tends to be arranged more flatly. Also, to

compare the absolute values of two optimal λ for the same voxel, the distribution of

the difference ∆λ = λT − λGCV was calculated. The distribution of the difference

value ∆λ plotted in Fig. 4.6 turned out to be skewed dramatically to the right,

revealing that on average, the optimal value λT is larger than the optimal λGCV .

As temporal patterns of a typical hemodynamic response (Ogawa et al., 1998)

are expected to be obtained, it is of crucial importance to investigate the effect of an
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(a) Conventional, positive averaged hemodynamic re-
sponses.
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(b) Averaged hemodynamic responses with the nega-
tive pattern.

Figure 4.3: Illustrated are two activation patterns of the mean hemo-
dynamic response for four voxels found to be activated in the ordinary
BOLDfold analysis. The means for the fMRI signals were computed
over repeated presentation blocks for each voxel separately. As can
be seen, the responses may vary in shape and intensity. It should be
noted that the two cases were easily discerned based on the value of
the first derivative of the hemodynamic response at the initial point.
The smoothing FDA techniques provide information on derivatives of
the hemodynamic response at any point.
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Figure 4.4: The cross-validation score GCV (λ) and the generalized
χ2 test value T (λ) as functions of the regularization parameter λ for an
activated voxel.
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Figure 4.5: Logarithmic histograms showing the distributions of the
optimal λGCV and λT . The activated voxels of the whole data set,
demonstrating the conventional, positive response were employed to
evaluate the λ distributions.
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Figure 4.6: Logarithmic histogram showing the distribution of the
difference ∆λ = λT − λGCV .

optimal λ on the averaged hemodynamic response. In an attempt to find a common

basis for comparing the cross-validation and whitening criteria, we computed the

smoothed hemodynamic responses for the optimal values λT and λGCV . Fig. 4.7(a)

provides an example of the unsmoothed mean time course h of a voxel with a positive

activation pattern, computed through the simple averaging (4.1) and two smoothed

versions of the function h(t). Similarly, an example of a negative mean fMRI re-

sponse is illustrated in Fig. 4.7(b). The response corresponding to the smaller value

of optimal λGCV in comparison to λT has larger curvature and more pronounced

inflections than the function given by optimal λT .

What can be drawn from a visual analysis of the smoothed fMRI signal is that

the expected shape of the hemodynamic response implicitly puts additional con-

straints on the definitional domain and optimality range of the value of λ. A typical

hemodynamic response might display an initial dip, reach its maximum within a few

seconds after the beginning of the stimulus and then decay after the termination of

the stimulus with an undershoot in the time course (Ogawa et al., 1998). With the
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(a) An example of the positive activation pattern of the hemodynamic response. The functions
GCV (λ) and T (λ) associated with this voxel are illustrated in Fig. 4.4
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(b) An example of the negative activation pattern of the hemodynamic response.

Figure 4.7: The averaged fMRI response for the same voxel, computed
in three different ways. The noisy, discrete time series represents the
mean response h calculated the simple averaging procedure (4.1). The
solid line shows the smoothed function h(t) evaluated through optimiz-
ing the generalized cross-validation value GCV (λ), while the dashed
line stands for the smoothed h(t) obtained through minimizing the χ2

value T (λ).
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(c) The averaged hemodynamic response.

Figure 4.8: Illustrated is the relations between λ found to be opti-
mal based on two criteria, GCV-score and the generalized χ2-test for
white noise, and their effect on the averaged hemodynamic response
for one activated voxel. On average, GCV was found to supply less
amount of smoothing then the χ2-test. However, as can be seen, the
GCV criterion can fail, while the alternative criterion seems to produce
a reasonable amount of smoothing. Moreover, the averaged hemody-
namic signal associated with the optimal λT demonstrates the typical
activation features such as the rise, activation plateau and decay.
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elusive nature of the initial dip (see Buxton (2001) for an excellent discussion), we

did not expect to see the initial dip at a magnetic field of 1.5 T. Although a brief,

weaker signal decrease before the main increase of the hemodynamic response was

observed in some studies (for example, Yacoub et al. (2001)), we were not able to see

an initial dip both in smoothed and original data. Nevertheless, the lower λ solutions

more exactly match the expected response with rise, fall, undershoot and return to

baseline. Functions h(t) that correspond to high values of λ do not provide visually

satisfactory fits because they have less inflection than expected. For this particular

dataset, values of λ above approximately 200 introduce insufficient bending in the

reconstructed hemodynamic response. It is characteristic that a large portion of all

the values of λ optimized both through the cross-validation and whitening criteria

were found to be in this range. It should be noted however that our judgement about

the threshold for optimal λ is subjective. Furthermore, caution regarding expecta-

tions about the hemodynamic response should be taken as the fMRI signals have

been shown to vary not only from subject to subject but also from voxel to voxel

(Handwerker et al., 2004).

Finally, it is significant to note that there is no homogeneity in voxels regarding

the amount of smoothing they experienced for both criteria. On one hand, there were

voxels demonstrating that cross-validation works better than the criterion based on

whitening the residuals from the perspective of the degree of inflection found in

the smoothed hemodynamic response. On the other hand, the whitening criterion

was sometimes able to produce a reasonable amount of smoothing (see Fig. 4.8(b)),

while cross-validation failed because its minimum was found near very high values
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of λ (see Fig. 4.8(a)) where the quadratic error term in (4.9) is ignored. To mitigate

the driving force of cross-validation to increase the parameter λ, the data becomes

oversmoothed up to being turned into a straight line (see Fig. 4.8).

4.5 Discussion

We applied functional data analysis methods to compute the smoothing of an av-

eraged fMRI response h(t) for repeated block design experiments. Smoothing tech-

niques involving Tikhonov regularization were employed with the goal of removing

the serially correlated observational errors in the GLM model. Specifically, the fMRI

response h(t) was expanded in cubic B-spline functions. The roughness of the hemo-

dynamic response was quantified by the regularization term represented by the inte-

grated curvature of the target function h(t) with a proportionality coefficient λ. A

tunable regularization parameter λ was used to regulate the trade-off between fit to

the original time course, as measured by the residual sum of squares, and variability

of the response h(t), as determined by the regularization term. Furthermore, the

parameter λ defined the amount of smoothing through the smoothing matrix Sλ,

which in turn controlled the autocorrelation structure of errors.

Two strategies were previously proposed in the literature to deal with serially

correlated data, namely whitening the residuals and temporal filtering of the time

series. It has been argued that whitening is a more efficient approach to parameter

estimation, given that there is no discrepancy between the assumed and the actual

autocorrelations (Friston et al., 2000). Since, in practice, the true autocorrelation
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structure is never known, temporal filtering with the goal to smooth has been found

to be a preferable technique (Friston et al., 2000).

In this work, we explored the possibility of combining the goals of the two strate-

gies, namely to use the regularization parameter λ for whitening the residuals in a

temporal smoothing scheme. This was possible due to the ability of the parameter λ

to specify an optimal amount of smoothing for the noisy and discrete hemodynamic

response. However, there is an ambiguity in determining what is considered optimal

since the choice of the regularization parameter λ depends on the goal one wants to

reach. We considered two criteria for the automatic selection of an optimal λ. The

first criterion was the generalized cross-validation which compromises approximation

and bending (Carew et al., 2003). It was compared to the approach for whitening

residuals, based on a generalized χ2 test of residuals for white noise. Our empirical

results allow one to arrive at several conclusions. First, the autocorrelation structure

of residuals can be improved with appropriate selection of the regularization parame-

ter. Second, the generalized cross-validation does not guarantee the best correlation

structure of the residuals as determined by the white noise test. Furthermore, cross-

validation, on average, yields lower values of the parameter λ. It should be noted

that both of the two criteria provide a wide range of values for the regularization

parameter. However, high values of the smoothing parameter resulted in a insuf-

ficient bending of the modeled hemodynamic response and give a very smooth fit

that ignores the data’s features. It was previously reported that GCV tends to yield

under-smoothing (Gu, 2002). Nevertheless, from the perspective of the expected

hemodynamic shape, a criterion ensuring lower values of the regularization param-
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eter, namely cross-validation, appears to be preferable. In spite of that, we were

able to observe voxels that can not be forced into the Procrustean bed of any of the

criteria tested. All this may lay a basis to suggest that using any criteria, individu-

ally and blindly, is not enough for constructing an effective automatic procedure for

selecting the regularization parameter, and that additional information or a mixture

of techniques would probably be required.

The shape of the fMRI response has been previously found to be of separate

interest as its temporal characteristics were demonstrated to correlate with the be-

havioral measures of cognitive tasks (Menon et al., 1998; Liu et al., 2004). The

FDA smoothing techniques allow temporal features of the hemodynamic response,

such as the width or the onset time to be easily computed for possible correlation

to task accuracy and reaction time. Also, these methods lay a basis for establishing

a compromise between optimally denoising the discrete time course and improving

the noise autocorrelation structure. In addition, the tested methods allow one to

compute the derivatives of the hemodynamic response for comparing fMRI data to

behavioral and physiological models. In particular and as used here, information on

the derivatives can be used to robustly discern the positive and negative activation

patterns of the fMRI time series.
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Chapter 5

The Relationship between Naming Reac-

tion Time and Functional MRI Parame-

ters in Broca’s Area, and Evidence for

an Independent-Dual-Route Model of

Reading Behavior and Neurophysiology

5.1 Preliminaries

This chapter is based on the manuscript titled “The Relationship between Nam-

ing Reaction Time and Functional MRI Parameters in Broca’s Area, and Evidence

for an Independent-Dual-Route Model of Reading Behavior and Neurophysiology”

by Cummine,J., Borowsky,R., Vakorin,V.A., Bird,J. and Sarty,G.E., submitted to

Brain. For the present study, a complex of Matlab c© procedures was written to ex-

tract temporal characteristics of fMRI time series. From the mathematical point

of view, the implementation the Matlab c© commands designed to compute maps of

temporal characteristics of BOLD signals was based on the smoothing techniques

considered in Chapter 4. The rationale for this work was to demonstrate that the

functional data analysis (FDA) techniques developed in Chapter 4 can reliably and
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stably be used to characterize the BOLD response it terms of a few parameters such

as BOLD width, time-to-peak, initial slope or signal intensity. The objective is to

apply the FDA techniques to an investigation in contemporary cognitive psychol-

ogy in an effort to show that neuroimaging data contain information relevant to

behavior. Specifically, in the context of a dual-route model of reading, we show that

behavioral relationships normally measured with reaction time and accuracy may

also be measured using BOLD characterization parameters extracted using our FDA

technique.

The correlation between behavioral response time and functional parameters of

BOLD responses measured in Broca’s area during a word identification task was an-

alyzed as a function of four stimulus types: regular words (e.g., hint), irregular words

(e.g., pint), non-words (e.g., bint) and pseudohomophones (a type of non-word which

sounds like a real word when pronounced, e.g., pynt). The results revealed that the

BOLD response width is uniquely related to behaviorial reaction time in the task of

pseudohomophone reading. In addition, a condition of independence between lexical

and sub-lexical routes for converting speech to print, previously tested for predicting

regular word accuracy given irregular word and non-word/pseudohomophone naming

accuracy, was found to hold for BOLD width, BOLD time-to-peak and BOLD inten-

sity as well as reaction time. These findings support previously reported behavioral

evidence for the hypothesis of independent dual-route models of reading. Our ability

to extract parameters that characterize the BOLD response and to find statistically

significant correlations with behavioral parameters, including predictive power when

a specific cognitive model (the dual-route reading model) was tested, demonstrates
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the stability and robustness of the FDA characterization method across experimental

subjects.

5.2 Introduction

One of the main applications of blood oxygen level dependent (BOLD) fMRI in

studying brain function is to trace the topography of activation in reaction to per-

forming a cognitive, perceptual or motor task (see, for example, Frackowiak et al.

(1997)). Typically, the mapping of brain activation relies on identifying stimulus-

related changes in MRI signal intensity (Friston et al., 1994, 1995). However, such

an approach implicitly assumes the static nature of the underlying activation pro-

cesses. A next step towards a more advanced analysis is to study peculiarities of the

BOLD dynamics per se. In that context, considered in Chapter 3, there is a growing

interest in exploring the question of how functional interactions between brain re-

gions evolve during task performance (Friston et al., 2003; Lee et al., 2006). Another

possible approach, considered in this chapter, is to relate temporal characteristics of

hemodynamic responses to behaviorial measures (Richter et al., 1997b; Menon and

Kim, 1999). Under this paradigm, the question is how much behavioral information

can be extracted from the amplitude and timing of hemodynamic responses. The

amplitude and the timing of the hemodynamic response in turn can be difficult to

determine because of the noisy nature of the measured signal. Thus we aim to ex-

tract reliable values for the amplitude and timing parameters using our previously

developed FDA approach. A separate problem, not considered in this chapter, is to
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separate the temporal characteristics of BOLD signals, resulting from differences in

hemodynamic response functions from those caused by actual differences in neural

activity (Aguirre et al. (1998); Handwerker et al. (2004)).

Previous reseachers have used a variety of approaches for characterizing the am-

plitude and timing of the BOLD response and correlating the neuroimaging data

to behavioral data. Menon et al. (1998) collected rapid fMRI images in a cued vi-

suomotor reaction time task to trace the sequence of brain activation, leading from

V 1 to the supplementary motor area (SMA) and to the primary motor area (M1).

The activation pathway leading from visual area V1 to SMA was characterized by

a constant delay in activation, irrespective of latency in reacting to visual stimuli.

In contrast, the SMA-to-M1 delay was found to be linearly proportional to reaction

time.

Using time-resolved fMRI, Richter et al. (1997a, 2000) investigated temporal se-

quences of neural events in motor and premotor areas during a mental rotation task.

One of the questions considered in these studies probed the relationship between be-

haviorial response times and several functional parameters (onset latency and width)

of the BOLD response in selected brain regions. The authors found the width of the

fMRI response in the parietal lobe to be proportional to the reaction time (Richter

et al., 1997a). The study by Richter et al. (2000) revealed a positive correlation

between response time and the BOLD width in all the brain regions in question,

except for the left M1.

Following Richter et al. (2000), Liu et al. (2004) sought to relate reaction time and

onset time to the full-width-at-half-maximum (FWHM) of hemodynamic responses
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in a task of more rapid cognitive demands (a lexical decision task to decide if the

target is a word or a non-word). The study employed three type of stimuli: high-

frequency words, low-frequency words and non-words. Liu et al. (2004) reported a

significant positive correlation between the reaction time and the FWHM (but not

for the onset time).

For the test application of our FDA technique for extracting BOLD parameters

to correlate with behaviorial data we examined a dual-route model for reading. We

now give a brief overview of this model. It has been suggested that two different

mechanisms are available for skilled readers to convert speech to sound: via the

lexical and the sub-lexical routes (Coltheart et al., 2001; Coltheart, 2006). Familiar

regular words have lexical representations, as well as obeying typical spelling-sound

rules. Due to such a double nature, both the lexical system and the sub-lexical

system may independently perform the correct naming of regular words. A study by

Castles et al. (2006) demonstrated that these two processes interact in a independent

way. To support the independence of the lexical and sub-lexical systems, the authors

proposed to use a normalized accuracy measure (ranging from 0 to 1) of reading

regular words (REG), irregular words (IRR) and non-words (NW). Specifically, they

showed that the actual REG accuracy Aact
REG can be predicted from the actual IRR

accuracy AIRR and the actual NW accuracy ANW by the relation:

Apred
REG = AIRR + ANW − AIRRANW (5.1)

where Apred
REG is the predicted REG accuracy.

Given the discrete and noisy nature of the fMRI response, extracting temporal pa-
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rameters of the hemodynamic response inexorably requires some kind of smoothing.

As noted in Chapter 4, the ultimate goal of the proposed techniques was to verify and

extend previously proposed correlations between behavioral and functional measures.

This study illustrates the usefulness of the B-splines-based smoothing techniques

considered in Chapter 4, in refining our understanding of the relationships between

word identification and neurophysiological processes in the left inferior frontal gyrus

(namely, Broca’s area).

From the cognitive science point-of-view, it would be of interest to determine

if the independence of the lexical and sub-lexical systems, stated in terms of ac-

curacy, can be extended to temporal and spatial parameters that characterize the

hemodynamic response. The list of possible candidates includes FWHM, time-to-

peak, BOLD signal intensity, volume (expressed in number of activated voxels, see

Halari et al. (2006)), parameters related to the derivatives of BOLD response, such

as initial slope (the first derivative at the initial point) and inflection point (a time

point at which the second derivative is equal to zero, see Menon et al. (1998)). Also,

it would be of interest to refine the findings of Liu et al. (2004) by exploring the

question of whether the nature of correlations between reaction time and FWHM

of the BOLD response in Broca’s area depends on stimulus type, including the pro-

cessing of pseudohomophones (or non-words) and irregular words in a naming task.

Our main results based on using fMRI data smoothed with B-splines as described in

Chapter 4, are reviewed in Section 5.6.
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5.3 Independence of lexical and sub-lexical sys-

tems

We will first define a set of the variables of interest. The hemodynamic response

h(t), where t ∈ [t1, tT ], averaged over blocks in a block designed experiment can be

parameterized in terms of basis functions φj(t) as follows

h(t) =
K∑

j=1

cj φj (t) (5.2)

where {φj}K
j=1 is a set of B-spline basis functions (see Section 4.3.1). Let the BOLD

response h(t) at the initial point t1 be equal to h1. Also, let the hemodynamic signal

h(t) reach its maximum value hmax = max
t

h(t) at the point tmax = arg max
t

h(t).

BOLD Width (BW) or Full-Width-at-Half-Maximum (FWHM) is the distance

between points tL and tR, tL < tR, on the hemodynamic response curve h(t) at

which the intensity of the hemodynamic response reaches half its maximum value.

Specifically, if tL,R = arg min
t
|hmax−h1

2
− h(t)|, then BW = tR − tL. A note here

is that the resolution of BW is not limited by TR. Time-to-Peak, ∆, is the period

from the initial point to the time point where the hemodynamic response reaches its

maximum value, specifically ∆ = tmax − t1. Intensity, I, is defined as the maximum

value of the hemodynamic signal, namely I = hmax. Initial slope, S, is the value of

the first derivative of the hemodynamic response at the initial point t1, specifically

S = dh(t)
dt
|t=t1 =

∑K
j=1 cj φ′j (t1). Finally, volume, V , is defined in terms of the number

of activated voxels. The volume occupied by one voxel is equal to 2 mm × 2 mm ×

8 mm = 32 mm3 (see Section 5.4).
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The condition of independence between the lexical and sub-lexical systems, tested

by Castles et al. (2006), connotes that prior to the main analysis, tested parameters

should be normalized to range from 0 and 1. To convert the values of the BOLD

FWHM (BW) variable to the interval [0, 1], the actual BWs were normalized rela-

tive to the period interval 70.3 s. Let BWREG, BWIRR, BWNW and BWPH denote

the BOLD FWHM for regular words, irregular words, non-words and pseudohomo-

phones, respectively. Also, let the upper indices “act” and “pred” designate ac-

tual and predicted values, respectively. Similar to the accuracy-based independence

model in (5.1), regular word BW can be predicted by

BW pred
REG = BWIRR + BWNW −BWIRRBWNW (5.3)

based on non-words, and

BW pred
REG = BWIRR + BWPH −BWIRRBWPH (5.4)

based on pseudohomophones.

The degree to which BW act
REG can be explained by BW pred

REG, is assessed through a

linear regression without a constant:

BW act
REG = βBW BW pred

REG + εW (5.5)

where the proportionality coefficient βBW represents the slope, and ε is zero mean,

uncorrelated random error with common variance between subjects.

Similar to BOLD FWHM, time-to-peak, intensity, volume and initial slope can be

used to test the model of independence between the lexical and sub-lexical systems.

Before further analysis, these variables were normalized to their maximum possible
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values. Specifically, the values of the parameters FWHM and time-to-peak were

divided by the time of one period (19 volumes × TR = 70.3 s) similar to FWHM. In

order to normalize intensity, volume and initial slope, the maximum obtained values

were identified to be 1000 greyscale units for signal intensity, 150 cm3 for volume and

10 grayscale units per s for initial slope. Similar to the model (5.5) explaining the

actual BOLD width from the predicted, regression analyses were conducted for the

variables time-to-peak ∆, intensity I, volume V and initial slope S:

∆act
REG = β∆ ∆pred

REG + ε∆ (5.6)

Iact
REG = βI Ipred

REG + εI (5.7)

V act
REG = βV V pred

REG + εV (5.8)

Sact
REG = βS Spred

REG + εS (5.9)

where ε· is zero mean, uncorrelated random error with common variance between

subjects.

5.4 fMRI experiments

Ten University graduate students (mean age of 25 years) participated in this study.

There were four categories of letter strings presented: 55 for each category (regular
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words, irregular words, non-words and pseudohomophones) for a total of 220 letter

strings. Stimuli were matched, based on onset phoneme, length and word frequency

for REG, IRR, and PH stimuli (for more details see McDougall et al. (2005)). Image

acquisition was synchronized with visually presented stimuli and triggered by EPrime

software (Psychology Software Tools, Inc., Pittsburgh, USA). The stimuli were pro-

jected with an LCD projector interfaced with the computer running the EPrime

software. A mirror was attached to the MRI head coil to make a back-projection

screen visible to the experimental participant. To minimize movement-related ar-

tifacts, responses were collected over the MRI intercom during the gaps in image

acquisition. The experimenter used a button press to identify the moment when the

participant completed the naming response.

A gradient echo T ∗
2 single-shot EPI sequence with fat saturation was used for

BOLD measurement. Depending on distance between the posterior commissure and

the top of the brain for each participant, either the 3rd or 4th inferior-most slice was

centered on the posterior commissure in order to cover the entire cortex with one

volume consisting of 12 slices. The imaging parameters were as follows: a 250 mm

square field of view, 8 mm slice thickness, 2 mm interslice separation, TE = 55ms

and TR = 3700ms with a 1650 ms gap of no acquisition in each repetition (1
2

of TR

during which the overt responses were made). For anatomical detail, T1-weighted

high-resolution spin warp spin-echo anatomical images (TR = 400 ms, TE = 12 ms,

256 x 256 acquisition matrix) were acquired in axial, sagittal, and coronal orientations

for each subject with a slice thickness of 8 mm, interslice distance of 2 mm with the

location, of axial images, being identical to that used in the functional imaging.
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The four naming tasks were conducted under the blocked design paradigm. One

block contained 19 volumes: the first 8 volumes were stimuli, followed by 11 volumes

of rest. The block pattern was repeated 5 times. The first 5 image volumes, collected

at the beginning to allow the spins to reach a steady state, were discarded prior to

analysis. The complete data set consisted of 100 image volumes of which 95 were used

in the analysis. Voxel time series with an intensity below a cut-off of 200 grey-scale

units, being considered background, were excluded from further analysis.

5.5 Analysis

For optimal sensitivity, the experiment used a blocked design, as described above,

and was analyzed using a previously developed and validated regularized BOLDfold

approach (Borowsky et al., 2002, 2005; Sarty and Borowsky, 2005; Vakorin et al.,

2006). The method adopted here is within the framework of signal averaging tech-

niques that increase the signal-to-noise ratio of fMRI signals (DeYoe et al., 1994). In

order to obtain a smoothed fMRI signal for a block, we incorporated spline interpo-

lation in our analysis method. With the spline functions incorporated into a general

linear model (GLM) approach, we effectively computed the hemodynamic response

averaged over all the trials and used that as a reference function for computing the

activation maps (Vakorin et al. (2006), Chapter 4 this thesis). The method is a gen-

eralization of the BOLDfold approach, which is suitable for repeated block design

experiments in which the comparison function, assumed to be different for every

voxel, is defined empirically through periodic data folding.
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In BOLDfold, which was applied as our first analysis step, the voxelwise-calculated

activation maps were based on correlations between the intensity time course and its

repeated mean time course. Specifically, let y denote the observed time series with

the number of sample points equal to P × T where P (equal to 5 here) represents

the number of repeated imaging blocks (periods), and T (equal to 19 here) is the

number of time point samples (equal to number of volumes) for each block. Also,

let h denote the averaged, folded data (T points) over P periods. The averaged

signal h can be repeated P times producing a reference signal h̃ spanned over the

whole experiment. This newly constructed signal h̃ was correlated with the original

time series y. High correlation r between y and h̃ reflects the activation of a specific

brain area in response to the given stimulus. To define activated regions, a threshold

correlation of 0.65 was used, with voxels having r > 0.65 being declared as active.

Next, to extract the relevant BOLD data, regions of interest (ROIs) were de-

lineated for each participant (see Fig. 5.1). The ROIs were in the lateral inferior

frontal gyrus of both the right and left hemisphere. For activated voxels in the de-

lineated ROIs, the hemodynamic responses, h, although averaged now over P blocks

but still discrete and noisy data, were fitted to a continuous function h(t) expanded

as a linear combination of B-spline basis functions (de Boor, 1978), acting as a filter

on the noisy data. The coefficients of the linear expansion of h(t) were estimated

within the framework of a GLM with a criterion to minimize the total quadratic

errors between the original time series y and the modeled function h(t) unfolded P

times. In addition, the GLM model (and the original BOLDfold model) were cor-

rected for non-specific linear signal drift. As shown in Chapter 4, caution should
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Figure 5.1: Inferior frontal gyri (Broca’s Area), superimposed on the
axial anatomical image of one of the participants. The amount of in-
dividual variability are portrayed with different grey-scale gradations.
The regions masked in red represent common activation area for all the
participants.

be taken in choosing blindly the optimal value of the regularization parameter since

there is no guarantee against very large values of the regularization parameter, and

hence, very strong smoothing, which eliminates temporal features of the hemody-

namic response. We can avoid this problem by using λ = 0 and with the number of

basis functions K set to be less than the number of sample points T . A reasonable

default is to choose K to ensure that T/K = 4 . . . 5 with the knots placed uniformly

on the interval (Ruppert et al., 2003). For the present study we used K = 6. The

smoothed hemodynamic responses, h(t), calculated with high temporal resolution,

were used to create the FWHM maps as well as maps for the first derivative at the

initial point (i.e., initial slope of the BOLD response), intensity (maximum response

value), and time-to-peak. Next, these four hemodynamic response parameter values
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were averaged over all the active voxels included in the ROIs. It is these ROI av-

eraged hemodynamic response parameters that were used for further analysis of the

relationships between reaction time and the properties of the hemodynamic response.

A note here is that active regions were defined through regular BOLDfold analysis

rather than using the smoothed BOLDfold method when the smoothed averaged

function h(t) unfolded P times correlates with the original time series y. In fact,

this issue relates to the trade-off between detection power, or knowing what voxel

are activated, and estimation efficiency, or knowing the time course of an activated

voxel (Liu, 2004; Liu and Frank, 2004). As shown in Chapter 4, using either cross-

validation or a white noise test does not protect the hemodynamic responses of

activated voxels against oversmoothing. So oversmoothing may be a problem for

detection. Nevertheless, it is not a significant problem for BOLD characterization.

5.6 Review of the main results

5.6.1 Relationship between Reaction Time and FWHM

Table 5.1 summarizes the mean values of reaction time and several BOLD response

parameters for each stimulus type. Averaging the BOLD parameters across stim-

ulus type, we found a significant correlation between Reaction Time and Volume

(r(39) = 0.32, p = 0.042), Reaction Time and Initial Slope (r(39) = 0.46, p = 0.003).

Although small, the correlation between Reaction Time and FWHM was found to be

statistically significant at the 95% level, namely r(39) = 0.269, p = 0.047 (one-tailed
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Parameters
Regular Irregular

Non-words
Pseudo-

Words Words homophones

FWHM, s 49.32 46.53 52.61 56.50

Intensity, greyscale units 666.70 702.36 716.94 710.92

Time-to-peak, s 41.99 41.63 42.81 43.96

Initial Slope, greyscale units per s 3.07 2.63 4.31 3.84

Volume, cm3 36.00 35.3 70.50 66.80

Reaction time, ms 794.75 938.55 1084.30 1008.40

Table 5.1: Reaction time and the mean parameters of BOLD re-
sponses, as a function of stimulus type.

test), which is consistent with Liu et al. (2004).

In addition, we conducted a correlation analysis to study relationships between

Reaction Time and BOLD parameters separately for each stimulus type: REG, IRR,

NW and PH. Reaction Time for reading aloud pseudohomophones was found to be

correlated with FWHM (r(39) = 0.90, p < 0.001), Intensity (r(39) = 0.74, p < 0.015)

and Initial Slope (r(39) = 0.69, p < 0.027). A correlation analysis revealed no

significant relationship between Reaction Time and the BOLD parameters for REG,

IRR and NW, except for NW Initial Slope (r(39) = −0.66, p < 0.036).

On the whole, the aforementioned results supported the hypothesis that PH reac-

tion time is correlated to FWHM, Intensity, Time-to-Peak, Volume and Initial Slope

of the BOLD responses. The overall multiple regression of PH reaction time on five

considered BOLD parameters was found to be significant; F (4, 9) = 6.95, p = 0.04.
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Figure 5.2: The Full-Width-at-Half-Maximum(FWHM) of BOLD re-
sponses as a function of reaction time for each stimulus type: regular
words (REG), irregular words (IRR), non-words (NW) and pseudoho-
mophones (PH). There is a significant positive correlation between the
BOLD FWHM and reaction time in a task for overtly reading pseudo-
homophones. In contrast to PH, other types of stimuli did not show
such a relationship.
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However, only the FWHM-related coefficient in the overall model accounted for sig-

nificantly unique variance: t(9) = 3.21, p < 0.033. Fig. 5.2 illustrates the significant

correlation between the BOLD FWHM and Reaction Time for reading aloud pseu-

dohomophones. Other types of stimuli failed to demonstrate such a relationship

(Fig. 5.2).

5.6.2 BOLD parameters and the dual route reading model

The linear model was used to assess degree to which predicted Regular Word BOLD

Full-Width-at-Half-Maximum BW pred
REG can explain actual Regular Word BOLD FWHM

BW act
REG. For the independence model with pseudohomophones, it was estimated

that the coefficient of determination R2, which is equal, in this simple model, to the

squared value r2 of the Pearson correlation between BW act
REG and BW pred

REG, is 0.38 (R2

adjusted for the number of explanatory terms in a model, R2
adj, is equal to 0.30). For

the independence model with NWs, R2 = .67 (R2
adj = 0.63). The slope coefficient

was found to be statistically significant: at the 90% confidence level (α = 0.10) for

pseudohomophones with t(9) = 2.20 and p = 0.056, and with the 95% confidence

(α = 0.05) for non-words with t(9) = 4.02 and p = 0.004 (Table 5.2).

Also, a linear regression model was tested to see how well actual Regular Word

BOLD Intensity, Iact
REG, can be accounted for with predicted Word BOLD Intensity

Ipred
REG. We found that using both pseudohomophones and non-words in the indepen-

dence model, the squared valued of the correlation between Ipred
REG and Iact

REG is about

0.50 (with R2
adj = 0.44). Furthermore, not much difference between non-words and

pseudohomophones was found in estimating the slope coefficient. Specifically, the
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Model R2
adj βBW (Slope) t-statistics d.f. p-value

BW act
REG [IRR & PH] 0.30 1.38 2.21 9 0.058

BW act
REG [IRR & NW] 0.63 2.15 4.02 9 0.004

Table 5.2: Regression of Actual Regular Word BOLD Full-Width-
at-Half-Maximum BWREGact on Predicted Regular BOLD Full-Width-
at-Half-Maximum (FWHM) BWREGpred . The model of independence
between lexical and sub-lexical routes was tested using FWHM.

Model Adj. R2 Slope t-statistics d.f. p-value

Iact
REG [IRR & PH] 0.44 0.90 2.83 9 0.022

Iact
REG [IRR & NW] 0.44 1.41 2.85 9 0.021

Table 5.3: Regression of Actual Regular Word BOLD Intensity Iact
REG

on Predicted Regular BOLD Intensity Ipred
REG, which tested the Intensity-

based model of independence between lexical and sub-lexical systems.

slope was significant in both cases: t(9) = 2.83 and p = 0.022 for pseudohomophones,

and t(9) = 2.85 and p = 0.021 for non-words (see Table 5.3).

Further, a linear regression analysis was carried out to test the amount of vari-

ance in actual Regular World BOLD Time-to-Peak ∆act
REG explained by the variable

predicted Regular World BOLD ∆pred
REG. We found that R2

adj = 0.47, t(9) = 2.99

and p = .017 for pseudohomophones, R2
adj = 0.38, t(9) = 2.53 and p = .035 for

non-words (see Table 5.4). In both cases, the slope coefficient was significant at the

95% confidence level.

Finally, we assessed the degree to which actual volume and initial slope can be

accounted for by the predicted volume and initial slope, respectively. We found no

significant correlation between actual volume and predicted volume for both pseudo-
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Model Adj. R2 Slope t-statistics d.f. p-value

∆act
REG [IRR & PH] 0.47 1.65 2.99 9 0.017

∆act
REG [IRR & NW] 0.38 1.14 2.53 9 0.035

Table 5.4: Regression of Actual Regular Word BOLD Time-to-Peak
∆act

REG on Predicted Regular BOLD Time-to-Peak ∆pred
REG, which tested

the Time-to-peak-based model of independence between lexical and
sub-lexical mechanisms of reading words.

homophones (t(9) = 1.57 and p = 0.16) and non-words (t(9) = 0.75 and p = 0.48).

Similar to volume, the independence model based on initial slope did not reveal any

significant relationship for both pseudohomophones (t(9) = 1.65 and p = 0.14) and

non-words (t(9) = 1.18 and p = 0.27).
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Figure 5.3: Observed and smoothed hemodynamic responses in
Broca’s area in reaction to reading regular and irregular words. The
hemodynamic responses are smoothed across participants. Error bars
indicate the range of one standard deviation. The BOLD signal inten-
sity is shown in terms of standardized (as z-scores) grayscale intensity
values.
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Figure 5.4: Observed and smoothed hemodynamic responses in
Broca’s area in reaction to reading non-words and pseudohomophones.
The hemodynamic responses are smoothed across participants. Error
bars indicate the range of one standard deviation. The BOLD sig-
nal intensity is shown in terms of standardized (as z-scores) grayscale
intensity values.
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5.7 Discussion and conclusion

There are two behavioral results from this study that we would like to point out.

First, there exists a linear relationship between reaction time and FWHM of the

hemodynamic response in a naming task, and this relationship depends on stimu-

lus type. Specifically, only reaction time in a task of reading pseudohomophones

was found to be significantly related to the BOLD width. Second, the findings sup-

port previously reported behavioral evidence for an independent dual-route model of

reading. The current study has demonstrated that the condition for mathematical

independence between the two pathways for converting print to speech holds for a set

of temporal characteristics of BOLD signals, namely, the signal width, signal inten-

sity and time-to-peak. Specifically, regular word response time, regular word BOLD

FWHM, regular word time-to-peak and regular word BOLD intensity can be pre-

dicted through the corresponding irregular word and non-word or pseudohomophone

parameters.

The basis for the behavioral findings revealed in this chapter is the smoothing

techniques introduced in Chapter 4. Figures 5.3 and 5.4 represent hemodynamic

responses in reaction to reading regular words, irregular words, non-words and pseu-

dohomophones as found in Broca’s area and averaged across participants. As one

can see, the presence of noise in the averaged BOLD responses necessitates use of

smoothing techniques before computing maps of BOLD parameters in question.

Strictly speaking, the smoothing techniques used in this chapter are a modifica-

tion of the methods used in Chapter 4 with the regularization parameter λ set to
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be equal zero. The main reason for this is an unresolved issue on what criterion

for selecting the optimal regularization parameter is best suited for determining the

“right” amount of smoothing. The set of possible candidate may include a white

noise test, cross-validation (or generalized cross-validation), Akaike information cri-

terion, Mallow’s Cp-based criterion. All these principles do not ensure that the

hemodynamic responses of activated voxels cannot be oversmoothed. To circumvent

this issue, we can artificially set λ = 0, which, in turn, requires that the number of

basis functions K must be less than the number of sample points T in order to avoid

the multicollinearity (see Chapter 4, paragraph 4.3.1). As indicated in Ruppert et al.

(2003), the ratio T/K equal to 4 . . . 5 would be a reasonable default. Having λ = 0

does not guarantee the best residual auto-correlation structure as determined by a

χ2 test of residuals for white noise, which results in a bias between the true and

assumed autocorrelation. Nevertheless, smoothing as an alternative to an autore-

gressive AR(1) model (Bullmore et al., 1996) or a modified 1/f model (Zarahn et al.,

1997), provides an acceptable level of bias (Friston et al., 2000). Having some auto-

correlation in the noise term appears to be a lesser problem than getting a stable

smooth estimate of the BOLD response shape.

The results show that the smoothing techniques for extracting parameters, like

BOLD width, that characterize the BOLD response are stable enough to support

correlations normally seen only in behavioral data. In particular, a mathematical

characterization of a cognitive model of reading which is normally based on reaction

time was shown to hold also for BOLD width, initial slope and time-to-peak. This

work opens the possibility that BOLD-based neuroimaging may be used for cognitive
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science in a more direct way to test hypotheses about cognition than it has been used

in the past.
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Chapter 6

Conclusion

The purpose of this work was to extend the applicability of functional magnetic

resonance imaging for gaining futher insight into human brain function by relat-

ing behavioral measures to underlying brain activation. Specifically, we aimed (i)

to explore the mathematical relationships between fMRI blood oxygen level depen-

dent (BOLD) signals and evoked neural activity, and (ii) to extract more behavioral

information from the dynamics of the hemodynamic responses.

Although the thesis is composed of self-contained chapters, the parts are intrinsi-

cally interconnected with each other. In Chapter 2 we considered the hemodynamic

inverse problem (i.e. the problem of extracting neural activity underlying the hemo-

dynamic response). Our aim was to propose techniques that can reproduce the

global solution of the hemodynamic inverse problem, avoiding spurious local min-

ima. We found that the dynamics of neural activity can be robustly reconstructed

from observed hemodynamic responses when the physiological link is specified by

the so called expanded “balloon” model. In addition, we showed that the theoretical

solution to the hemodynamic inverse problem based on the balloon model is on/off

dynamics of neural activity.

In Chapter 3 we explored the possibility of recovering hidden information from
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fMRI data through solving the hemodynamic inverse problem, switching the focus

of our study to the neural level. We applied the techniques proposed in Chapter 2,

coupled with signal averaging and smoothing at the neural level. This approach

was illustrated by example with a functional network model of an object interaction

decision task, based on a dorsal-ventral model of visual information processing. At

the hemodynamic level, we could not reveal any latency in activation. Going from

the hemodynamic level down to the neural level, we were able to find statistically

significant delays in information processing between some of the functional units of

the model. In addition, the estimates of connectivity and chronometry, obtained at

the neural level, provide support for the hypothesis that it is the dorsal pathway

which is dominant in performing a task of word reading and deciding how to interact

with its referent object.

Chapter 4 probes the issue of estimating the true shape of the discrete and

noisy hemodynamic response. Specifically, we considered the problem of the op-

timal smoothing of averaged fMRI responses for repeated block design experiments.

Simultaneous averaging and smoothing was performed using functional data analysis

with Tikhonov regularization. We found that the autocorrelation structure of resid-

uals can be improved with the appropriate selection of the regularization parameter.

Also, generalized cross-validation does not guarantee the best correlation structure

of the residuals as determined by a white noise test. Finally, we concluded that

caution should be taken with blind smoothing of fMRI data as there is no guarantee

that the fMRI time series would not be oversmoothed.

The ultimate goal of the smoothing techniques considered in Chapter 4 is to
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facilitate computations of temporal characteristics of the BOLD response in order

to verify previously reported correlations between the hemodynamics and behav-

ioral measures. In Chapter 5 we applied the methods developed in Chapter 4 to

compute maps of several parameters of the BOLD responses in Broca’s area dur-

ing a word identification task. The results revealed that behavioral reaction time

was correlated with functional BOLD width for naming pseudohomophones, but

not for regular words, irregular words and non-words. Further, the results provided

additional support for an independent dual-route model of reading, extending the

independent nature of lexical and sub-lexical systems from the behavioral level, re-

ported previously in terms of reading accuracy, to the hemodynamic level in terms

of BOLD width, signal intensity and initial slope.

A strong assumption of the approach considered in Chapter 2 is the validity of

the biophysical model of the transduction of neural activity into the BOLD signal.

However, the model is far from being complete, especially taking into account the

unclear nature of the neurovascular coupling. A more detailed analysis of the phys-

iological link between neural activity and BOLD response in the future would be

required for more accurate predictions. Several modifications of the balloon model,

which can simplify or complicate the original model, have been recently proposed

in the literature. A comparative study of these models, based on multimodal mea-

surements at the neural and hemodynamic level, is a direct way to test and refine

mathematical relationships between hemodynamic responses and underlying neu-

ral activity. This approach may incorporate mathematical analysis with the goal

to obtain more accurate estimates of the biophysical parameters, which control the
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transitional dynamics of the physiological variables in question. Such studies can

potentially include parameter sensitivity analysis, which is crucial for estimating the

delay of BOLD response relative to the onset of neural activity, and consequently for

tracing relative delays in activation between different functional units of a network

model.

Chapter 3 presents an attempt to decompose an object interaction decision task

into a sequence of activation associated with visual word/object recognition, interac-

tion semantics and speech production, by recovering information from fMRI data via

solving the hemodynamic inverse problem. Although we were able to find statistically

significant latencies, which, from the qualitative point of view, are in concordance

with the previously reported results from event-related potential (ERP) language-

related studies, latency in activation was not under direct experimental control. An

avenue for future work would involve an experiment designed to activate distinct

regions (for example, left and right hemifields) with variable delay in stimulus pre-

sentation. A next step would be to determine the degree to which the techniques,

developed to solve the hemodynamic inverse problem and to make inferences at the

neural level, are capable of recovering the onset latency that is controlled experimen-

tally.

In addition, two points are worth mentioning, regarding the methodology we fol-

lowed in Chapter 3 to produce the BOLD responses associated with functional mod-

ules via averaging fMRI times series of the activated voxels within modules. One

concern reflects physiologically determined variability of BOLD responses, which is

not related to underlying neural activity. As delay between BOLD responses and
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their neural substrates can vary within and across regions by up to ±2 seconds,

averaging within functional modules can potentially eliminate relevant temporal in-

formation. Another concern is that activated voxels attributed to one functional

module can belong to separate slices, characterized by different acquisition time. A

possible correction is to consider a more detailed network model, with subunits of the

previously masked functional units, the voxels of which are characterized by smaller

dispersion values of the temporal parameters of the hemodynamic responses.

Chapter 4 considers possible criteria for selecting a regularization parameter

which controls the amount of smoothing imposed on fMRI time series required for

further analysis. The problem is to decide which criterion is best suited for choosing

the “right” amount of smoothing. In an attempt to compare different smoothing

criteria, in Chapter 4 we proposed to use our expectations about the shape of the

hemodynamic response, but such an approach can be compromised by the variability

of the hemodynamic responses, reported to be varying not only across subjects but

also from voxel to voxel and from task to task. Another possible way to address this

issue is by a relative comparison of hemodynamic responses rather than in estimating

the shape of the BOLD response in an absolute way. Specifically, a choice in favor of

one regularization parameter criterion or another can be motivated by the ability of

this criterion to better reproduce timing differences between hemodynamic signals

measured in an experiment with controllable stimulus latencies.

As illustrated in Chapter 5, the problem of estimating temporal and spacial

parameters of the hemodynamic response requires some kind of smoothing. As a

result, the estimated values of the BOLD response parameters depend on some fac-
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tors characterizing the amount of smoothing applied. Specifically, such factors like

the number of basis functions, the knot sequence, the degree of polynomials and the

type of basis functions can affect the estimates of BOLD parameters, which might

be crucial for further correlation analysis. Parameter sensitivity analyses would be

desirable to ensure that methodological aspects do not effect final results regarding

the relationship between behavioral and functional measures.

Finally, we would like to emphasize that the proposed techniques, in general,

are computationally expensive. However, this shortcoming is compensated by the

capacity to extract additional information from hemodynamic responses, extending

applicability of fMRI-based methods for studying brain function.
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