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Abstract

Satellite-based measurements with limb viewing geometry give high-quality informa-

tion about the atmosphere. However, low-altitude measurements are very sensitive

to thin clouds, which act as a semi-reflective layer that can screen out the lower at-

mosphere and the earth’s surface. The work described in this thesis demonstrates the

ability to retrieve the optical properties of these clouds from observations of scattered

sunlight by the OSIRIS instrument.

Retrievals from satellite measurements require a radiative transfer model well-

suited to the measurement geometry. For this reason the SASKTRAN model is used,

which employs full spherical geometry. Since this model was not initially intended to

model cloud-particle scattering, several sources for the light-scattering properties of

ice crystals – from both first-principles algorithms and from in-cloud particle mea-

surements – were incorporated. Also, since these properties violate several simplifying

assumptions of the model, modifications to the model were required. With the work

described in this thesis, SASKTRAN replicates in-cloud radiance measurements with

high accuracy across the measured spectrum.

Cloud property retrievals are demonstrated that use SASKTRAN in an iterative

retrieval technique. Assuming an effective cloud particle size, cloud particle number

densities are retrieved that replicate the spectral measurements with very good ac-

curacy. The effect of cloud properties on ozone and stratospheric aerosol retrievals

is investigated. Systematic biases that result from neglecting cloud-particle scatter-

ing are discussed. Coincident measurements from another satellite instrument shows

very good agreement with OSIRIS cloud properties.
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Chapter 1

Introduction

Satellite-based measurements of the earth provide a wealth of information about its

many systems from a global perspective. The last fifty years has seen an explo-

sion in the number of earth-oriented satellite missions that gather information about

large-scale processes of the oceans, land surface, and atmosphere. A wide range of

techniques have been developed to probe the composition and dynamics of the at-

mosphere using a range of active and passive techniques at wavelengths across the

electromagnetic spectrum. One very commonly-used technique to study the atmo-

sphere is to make spectral measurements of sunlight that has been scattered from the

atmosphere and the surface of the earth.

Several viewing geometries have been applied to measurements of scattered sun-

light. The most mature geometry used in satellites is nadir-viewing, in which the

instrument looks directly below the satellite and scans its field of view perpendicular

to the satellite’s direction of motion and thus measures in a zig-zag pattern as it

progresses in its orbit. This geometry provides high horizontal resolution but is quite

limited in providing details of vertical structure. The other geometry most currently

in use is solar occultation, in which the instrument looks directly at the sun during

a satellite sunrise (or sunset) and measures the increase (decrease) in brightness due

to the varying transmission over the range of altitudes sampled (McCormick , 1987).

Accordingly, solar occultation measurements provide very high vertical resolution

but are limited in their horizontal coverage due to having only two measurements per
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orbit.

Another viewing geometry has been developed over the past twenty-five years

that attempts to capture elements of both techniques. In limb-viewing geometry, the

instrument looks at the edge of the atmosphere, typically forward along its direction

of travel. In this geometry the instrument field of view is typically moved to perform

a vertical scan of the atmospheric limb (from the Latin limbus, literally ‘edge’ or

‘fringe’). This technique is able to capture some of the vertical resolution achieved

by solar occultation instruments, however it has the advantage of being able to take

measurements throughout the daylight segment of the orbit. The OSIRIS instrument

on the Odin satellite (Llewellyn et al., 2004), launched in 2001 and still in operation

at time of writing, measures scattered sunlight from a limb-viewing geometry.

Properties of the atmosphere can be inferred from such measurements by first

using the laboratory-measured absorption properties of gases to model differences in

the spectral characteristics of scattered sunlight from that of the incident sunlight.

Mathematical modeling of the interaction of sunlight with the molecules and partic-

ulate matter in the atmosphere is performed to interpret these spectral differences.

However, the equations that describe these interactions are integro-differential equa-

tions whose solutions must be performed over the entire illuminated atmosphere, and

moreover these equations have no analytic solutions of practical interest. Because of

this, software models are needed to simulate the interactions in order to interpret the

measurements. Since the simplifying assumptions for solving the necessary equations

vary, depending upon the viewing geometry, a range of such model types exist.

The presence of clouds in remote-sensing measurements typically acts as a source

of measurement uncertainty. In addition, since clouds form a partially-reflective

surface that obscures the atmosphere below, the presence of significant cloud amounts

is sufficient to set a lower bound on the altitudes that can be probed by satellites

that use visible and near-IR wavelengths. The amount of numerical work that is

involved in accounting for the interactions of cloud particles with sunlight presents a

significant challenge to many models used in satellite measurements – in particular

those used in limb-viewing geometry.
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While one aspect of clouds’ importance is as a significant source of measurement

uncertainty, clouds can play a significant – though still uncertain – role in a number of

climate systems. The representation of cloud processes in models of global climate is

the single largest source of uncertainty in current predictions of future climate. While

this will continue to be the case for any numerical model that attempts to replicate

global-scale processes without the ability to model cloud microphysics, understanding

the microphysical and optical properties of observed clouds is a necessary component

to improving our ability to represent them in climate models.

In this work, we consider observations of extremely thin clouds made from a

limb-viewing satellite platform. It is demonstrated that it is possible to characterize

the radiative effects of observed clouds in terms of a characteristic thickness and an

effective particle size that are found through an automated retrieval algorithm. This

task is done by extending the capabilities of a radiative transfer software model to

allow simulations of limb-viewing satellite observations when thin cirrus clouds are

present.

In general, retrievals of atmospheric properties from remote-sensing measurements

are described by two processes. First, by assuming a suitable choice of values for the

properties of interest, the model must accurately simulate the measurements. When

this is achieved, the model is used in an iterative sense to move the assumed values

toward a set that, ideally, exactly replicates the actual measurement to within ex-

perimental uncertainty. These two processes are referred to as forward modeling and

retrieval by the remote sensing community. The work in this thesis focuses primarily

on the forward-modeling problem in a cirrus cloud environment, and concludes by

demonstrating the ability to retrieve cloud parameters from satellite measurements

using the tools developed.

Chapter 2 provides background information relevant to the study of subvisual

cirrus clouds. A summary of the geophysical significance of subvisual cirrus clouds

is followed by a brief survey of measurements of their physical and optical properties

from ground-based and remote-sensing instruments. Further, this chapter introduces

the OSIRIS instrument on the Odin satellite and introduces the reader to detections
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of cirrus clouds that have been made with OSIRIS.

Chapters 3 through 6 focus on forward modeling of satellite measurements in the

presence of thin cirrus clouds. In Chapter 3, the necessary discussion of radiative

transfer theory is given for describing simulations of OSIRIS observations of thin

cirrus clouds. Radiometric quantities relevant to this work are first discussed. The

discrete ordinates and successive-orders of scatter model types are summarized. This

chapter concludes with a discussion of the SASKTRAN radiative transfer model, on

which this work is based. Illustrative simulations of OSIRIS clear-sky measurements

are given.

In its previous operational mode, the SASKTRAN model accounted for the light-

scattering properties of key molecular constituents of the atmosphere and of strato-

spheric sulphate aerosols, but did not account for the light-scattering properties of

ice crystals in cirrus clouds. The physical basis for computing these properties is

introduced in Chapter 4. After a brief discussion of the scattering theory pertinent

to modeling the interaction of sunlight with ice crystals, this chapter discusses two

numerical algorithms used in this work. The T -matrix and Discrete Dipole Approxi-

mation methods are described, followed by the introduction of a measurement-based

database of ice crystal light-scattering properties.

The scattering properties of ice crystals in cirrus clouds violate several simplify-

ing assumptions in the previous operational distribution of SASKTRAN. Chapter 5

describes a novel photon conservation technique that is used to diagnose and treat

these numerical inaccuracies. The usefulness of this technique is illustrated in rela-

tion to the simulation of OSIRIS measurements in cloud scenes. Chapter 6 discusses

modifications and configurations that are necessary to use SASKTRAN for simulat-

ing in-cloud measurements made by OSIRIS. It is shown that this work is able to

simulate in-cloud spectra to a high degree of accuracy.

The inverse problem of estimating cloud properties from satellite observations is

initiated in Chapter 7. First, a brief survey is given of retrieval techniques that are

commonly used in related problems. A measurement vector is defined that captures

well the sensitivity of OSIRIS observations to cirrus cloud properties and a retrieval
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algorithm is used to retrieve the height distribution of the cloud particle number

density. The ability to retrieve cloud properties from OSIRIS observations is demon-

strated. The sensitivity of the retrieval to auxiliary model parameters the effects of

this work on trace gas retrievals are discussed. Preliminary comparisons of retrieved

cloud properties with coincident measurements are shown. Chapter 8 summarizes

the main findings of this work and discusses directions that could be taken to further

use and extend this work.
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Chapter 2

Background

Cirrus clouds are familiar from everyday experience as tenuous high-altitude clouds.

They reside in the upper troposphere with typical mid-cloud temperatures between

−40◦C and −70◦C (Sassen and Cho, 1992). While composed of ice crystals with

sizes up to 1 mm, the particle densities of these clouds are quite low, typically on the

order of 25 mg/m3. A typical cirrus cloud is 1.5 km thick and can extend from tens

to hundreds of kilometres horizontally.

2.1 Subvisual Cirrus Clouds

Subvisual cirrus (SVC) are extremely thin clouds (typically 500 m) whose name

derives from the fact that they are not visible from the ground but contain sufficient

ice concentrations to be detected by a range of remote-sensing instruments. They are

typically much colder (below −80◦C) and contain much smaller particles (1-100 µm)

than typical cirrus clouds. As well, SVC can extend over hundreds of kilometres

horizontally, and can persist for up to several days.

2.1.1 Significance of subvisual cirrus clouds

Despite their very low particle numbers, cirrus clouds play a role in several feedback

mechanisms that regulate the earth’s climate. Any process on the surface of earth
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that involves feedbacks with solar radiation and water vapour will also feed back

on cloud processes. For example, decreased surface albedo from melting of pack ice

in the Arctic results in increased solar radiation absorbed by the northern ocean.

This net warming of the seawater leads to increased evaporation of vater vapour,

which reinforces the warming since water vapour is a strong absorber at infrared

wavelengths. Increased water vapour can also lead to increased cloud formation,

which may result in a net atmospheric warming or cooling, depending on the cloud

altitude and thermodynamic state of the cloud particles.

This coupled nature of cloud processes to other earth-system processes is a major

source of uncertainty in current predictions of future climate using global climate

models (GCMs). Equally important is the inherent difficulty of representing sub-

micron cloud particle formation processes in GCMs, whose grid cells currently are

near 100 km horizontally. This gap in scale ensures that the representation of cloud

processes and their feedbacks will remain the single largest source of uncertainty

in GCM predictions. A great amount of work has been done in the development

of Cloud Resolving Models (CRM, Tao and Moncrieff (2009)) to bridge this scale

gap, but many parameterizations are still necessary to represent cloud processes. The

anthropogenic sources of climate change described by the Intergovernmental Panel on

Climate Change (IPCC) Summary for Policymakers (Alley et al., 2007) lists cloud-

related effects, described in terms of the aerosol direct and indirect effects, as the

greatest source of uncertainty in the climate system models.

Subvisual cirrus clouds play three key roles in processes that regulate the earth’s

climate system. SVC have a definite radiative effect on the heat balance of the

atmosphere due to their interactions with incoming solar radiation and outbound

infrared radiation. Also, the efficiency of cloud particle formation processes heavily

impacts the amount of water vapour that reaches the upper atmosphere, which also

affects the radiative balance. Third, cloud-forming particles – a number of which are

due to human activities – may be chemically modified by natural cloud processes.

First, SVC can affect the radiative balance of the atmosphere. An increase in

earth surface temperature in response to increased anthropogenic ‘greenhouse-gas’
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emissions will increase the evaporation of water from the earth’s surface, primarily

through surface evaporation and transpiration through stomata of tree leaves (evap-

otranspiration). Since water vapour is a more efficient greenhouse gas than carbon

dioxide or methane, the initial temperature increase from CO2 can trigger a larger

response in this positive feedback. The changes in water vapour can also change the

cloud amount in the atmosphere. The net effect of any cloud is a balance between the

opposing albedo and greenhouse effects: either clouds will more dominantly scatter

solar radiation back to space and consequently cool the surface, or they will tend to

absorb and re-radiate infrared radiation in all directions, causing a net warming of

the atmosphere. For cirrus clouds, the greenhouse effect tends to dominate due to

the transparency of ice at solar wavelengths and absorptivity at infrared wavelengths.

Subvisual cirrus can then be considered as a positive radiative forcing to the climate

system.

Second, changes to the cloud amounts can affect the amount of stratospheric water

vapour. Increases in stratospheric water vapour (WV) act to cool the stratosphere

but to warm the troposphere, and the reverse is true for stratospheric WV decreases

(Solomon et al., 2010). Water vapour that has been lofted to the tropopause from the

boundary layer by convectively unstable regions preferentially enters the stratosphere

in the tropics by slow upwelling through the extremely cold tropical tropopause. As

a result, air in the tropical tropopause layer (TTL) is very dry, with typical volume

mixing ratios of 3-4 ppmv. It is thought that upper tropospheric air is ‘freeze-dried’,

or dehydrated through this slow ascent to the saturation vapour pressure of ice at the

cold point tropopause temperature, which occurs by removing water by ice crystal

sedimentation.

According to this hypothesis, there should be a ubiquitous thick cirrus layer be-

low the tropical tropopause, which is not observed (Holton et al., 1995). As well, a

number of recent in-situ measurements have shown high in-cloud ice supersaturation,

as high as 200%, which could only be explained on this basis by limited nucleation

on the surface of ice particles (Jensen et al., 2008). In spite of this, there is very

good evidence that the amount of water vapour that enters the stratosphere is sig-
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nificantly modulated by the TTL temperature, causing a well-documented seasonal

change in WV entering the stratosphere, termed the ‘tape-recorder’ effect (Mote et al.,

1996). In northern hemisphere winter the temperature of the tropopause above the

western Pacific warm pool (the Indonesian maritime continent) – which dominates

troposphere-to-stratosphere transport in the tropics – is seasonally colder by 3◦C,

and the water vapour amount entering the stratosphere during this time is 1 ppm

lower, in phase with the low temperature (Fueglistaler et al., 2009). In addition to

the ‘tape recorder’ signal (the temperature-WV correlation), the ‘tape’ speed – the

mean ascent rate across the TTL – varies in phase with the low tropopause temper-

atures, varying from 0.3 mm/s between June and August up to 0.6 mm/s between

December and February. Both of these factors influence, and in turn are influenced

by, persistent cirrus near the tropical tropopause.

Third, atmospheric particulates are processed by ice clouds. All cloud formation

in the atmosphere depends upon the presence of condensation nuclei. In the atmo-

sphere, these take the form of aerosols, a catch-all term to denote any non-molecular

particle in the atmosphere, which typically are sub-micron in size. Aerosols that

act as ice nuclei are dust, sea spray, industrial pollutants, meteoric remnants, and

solution droplets formed from volcanic eruptions. The chemical composition of these

aerosols can be changed by a cloud through the process of vapour deposition on the

aerosol, chemical re-combination during cloud particle formation, and sublimation

after particles sediment through a cloud layer.

Lastly, in addition to their importance to climate processes, thin cirrus clouds have

the effect of significantly contributing to measurement uncertainty in satellite-based

remote-sensing measurements. The presence of a thin cloud layer that efficiently

scatters light can significantly impact the retrieval of trace gas amounts from a satel-

lite platform (Koelemeijer and Stammes , 1999). Obtaining occurrence distributions

and light-scattering properties of these clouds is thus a key element of reducing this

uncertainty.
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2.1.2 Formation of cirrus clouds

In a rough sense, cirrus clouds form when a moist parcel of air that contains a

sufficient number of effective nucleating particles is sufficiently cooled. Any cloud

consists of an ongoing competition between particle formation/growth and sedimen-

tation/sublimation. Cooling of air layers to form ice clouds generally occurs through

several mechanisms: detrainment outflow from deep convection, slow ascent from

adiabatic cooling in the TTL, lifting from synoptic-scale weather systems, and wave-

induced updrafts.

Subvisual cirrus are thought to form predominantly by slow, in-situ lofting. For

this type of formation a three-layer conceptual model works quite well to describe

cirrus formation and persistence, and agrees well with in-cloud measurements of ice

crystal sizes and shapes. As illustrated in Figure 2.1, most ice crystal formation

occurs near the cloud top in the nucleation layer, which has the highest relative hu-

midities and coldest in-cloud temperatures. This layer is typically supersaturated

with respect to ice. In the thicker aggregation or growth layer, particles sediment

Figure 2.1: Height profile of cirrus ice crystal sizes and shapes with respect to relative
humidity and temperature (Liou, 2002).

and grow mainly by vapour diffusion onto solid particle surfaces. Near cloud bottom,
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the sublimation layer is vertically thinner and is composed of more rounded crystals,

where sublimation in the subsaturated region results in gradual decay and eventual

disappearance of the crystals. In the most common situation due to conditions in

which a typical value of the Reynolds number is 10−3, ice crystals throughout a cirrus

cloud are randomly-oriented due to eddy shedding during sedimentation. Clouds that

form in-situ just below the tropopause are typically ‘capped’ from above since the

temperature begins to increase several hundred metres above. Occasional overshoot-

ing of humid layers from extremely strong convection events can inject ice crystals

above the local tropopause, although this is relatively rare (Fueglistaler et al., 2009).

There is a large range of ice crystal shapes and sizes encountered within a typical

cirrus cloud. Figure 2.2 shows in-situ images of cloud ice crystals form an aircraft-

mounted Cloud Particle Imager (CPI) probe, which is described in the next section.

As seen from several images in this figure, crystals with hexagonal symmetries are

Figure 2.2: In-situ Cloud Particle Imager (CPI) images of various cirrus ice crystals
shapes (Lawson et al., 2006).

very common, with hexagonal plates and columns, together with rosettes, comprising

the bulk of cirrus cloud ice. The conditions in which cirrus clouds form significantly

affect the shape (called the crystal ‘habit’) and potential sizes of the ice crystals.
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Within deep convective cores, updraft speeds on the order of metres per second are

not uncommon (Jensen et al., 1994), which results in very fast ice crystal growth by

deposition and aggregation. In slowly ascending and radiatively cooled layers, ascent

rates are on the order of centimetres per second (Starr and Cox , 1985) and crystal

growth rates are much smaller, which tends to produce more pristine crystals. These

aspects, in turn, affect the radiative properties of the cloud. The dependence of nu-

cleation rate on updraft speeds has been studied extensively in microphysical models,

the physical basis of which will be briefly discussed. Recent in situ studies (Lawson

et al., 2008) have shown subvisual cirrus clouds containing unusually large (100 µm)

ice crystals near the tropical tropopause in the absence of convective activity, sug-

gesting additional formation of subvisual cirrus from gravity wave perturbations to

the temperature and updraft speed profiles.

Nucleation processes in ice clouds are classified by the thermodynamic phase in

which crystal growth occurs. In homogeneous nucleation, an ice crystal forms sponta-

neously from a droplet of supercooled liquid water, and the molecules in the droplet

must overcome the activation energy for diffusion across the water-ice boundary. The

energy of formation of a ‘critical embryo’ – typically modeled as a spherical cap, must

first be overcome – which is assumed to occur through sufficient fluctuations in the

mother phase (Pruppacher and Klett , 1997). Homogeneous nucleation requires very

high ice supersaturations and very low temperatures – typically above 140% and be-

low −40◦C. Water droplets at cirrus altitudes can also contain dissolved salts, which

further lower the temperature for homogeneous ice nucleation. The presence of these

and other aerosol particles affect nucleation rates, depending on their solubility in

water. Frequently, homogeneous nucleation results in several preferential growth sites

in the outward direction from a frozen droplet. Ice pillars that grow outward from

these sites form the large ‘rosette’-type crystals seen in Figure 2.2.

Heterogeneous nucleation of ice occurs on the surface of insoluble ice nuclei (IN),

which are typically organic substances, mineral dust, or metals (DeMott et al., 1998).

This mechanism is thought to occur through several possible pathways. In vapour

deposition, molecules in supersaturated conditions are adsorbed onto the IN surface.
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In condensation freezing, the soluble liquid component of a mixed particle causes

condensation, while the insoluble component acts as a catalyst for freezing. In contact

freezing, a solid particle initiates freezing upon collision with a supercooled water

droplet. Lastly, supercooled water droplets can be deposited onto a dry sulphate

particle. Microphysical modeling of heterogeneous nucleation is less mature due in

part to the difficulty involved in determining the surface reaction properties for the

large number of materials that can act as ice nuclei.

The relative importance of homogeneous and heterogeneous nucleation is cur-

rently highly disputed. In strong updrafts with rapid cooling – as in deep convection

in the inter-tropical convergence zone (ITCZ) – homogeneous nucleation is thought to

dominate, whereas heterogeneous nucleation is expected dominant in synoptic-scale

lifting, where cooling rates are much smaller. In the TTL there are a large number of

available ice nuclei, in the range of n ∼ 1−102 cm−3 depending on type and volcanic

activity, but the activation efficiency of many of these is very low, with typically only

1 in 103 particles becoming activated to form an ice crystal. Model studies into the

effects of heterogeneous ice nuclei against a control scheme of homogeneous-only nu-

cleation (Kärcher , 2004) show that the dehydration potential of heterogeneous nuclei

is 0.3 ppmv WV compared to 1.3 ppmv for homogeneous nucleation, but that cloud

occurrence frequency increases significantly with heterogeneous ice nuclei concentra-

tion for IN amounts as low as n = 0.01 L−1.

The classification of ice nuclei aerosol type is a key element in attributing any

changes to cloud properties that result from the addition of anthropogenic aerosols.

Recent in-situ mass spectrometry of ice crystals and interstitial aerosols showed ice

nuclei rich in oxidized organic matter (Froyd et al., 2010). Murray et al. (2010)

showed in a cloud simulation chamber that heterogeneous nucleation onto typical

‘glassy’ aerosols are consistent with high in-cloud humidity and typical ice number

densities. Rather than the formation of smaller, more numerous particles that would

accompany homogeneous nucleation, heterogeneous nucleation was seen on fewer,

larger glassy aerosols that could explain several campaigns that have measured low

numbers of ice crystals and high in-cloud humidity (Jensen et al. (2008), Kärcher
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(2002)).

2.2 Measurements of subvisual cirrus clouds

The first observations of subvisual cirrus clouds were made by World War II fighter

pilots, who reported a thin layer of cirrus several hundred feet above them. As they

ascended, the thin layer of cirrus appeared to still be above them, earning them the

nickname ‘cirrus evadus’. Due to their very low detection thresholds, subvisual cirrus

were not remotely observed until the development of sufficiently sensitive lidar, solar

occultation, and limb-viewing instruments.

The first in-situ samplings of SVC were measured in the mid-1970’s by Heymsfield

(1986), in which high-altitude aircraft were flown through clouds first identified by

ground-based lidar measurements. An extremely cold cloud (-83◦C) at altitudes

above 16.5 km was sampled in the western Pacific warm pool with particle sizes much

smaller than typical cirrus. Modal peaks in the size distribution were near 10 µm

and maximum dimensions were 50 µm based on sizing measurements with a forward

scattering spectrometer probe (FSSP) and a formvar replicator. The replicator probe

measurements showed the cloud to be composed of roughly equal parts trigonal or

hexagonal plates and columnar crystals with some bullet rosettes, without the larger

aggregates typically found in cirrus.

The first space-based observations of subvisual cirrus were made by solar occulta-

tion measurements. In this measurement geometry, in which the satellite instrument

observes the rising and setting of the sun through the atmosphere, the transmission

at a range of wavelengths through the atmosphere is used to infer the composition of

absorbing and scattering atmospheric constituents. Measurements are also typically

made outside any significant amount of atmosphere for ongoing calibration purposes.

In such a geometry the instrument has a long observation path length through the

atmosphere, and as such is sensitive to thin cloud layers with good height resolution.

A global climatology of subvisual cirrus was reported from the SAGE II solar occul-

tation instrument by Wang et al. (1996). This provided a long-term global record of
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the distributions and optical thicknesses of SVC from 1985 to 2005. This climatology

indicated occurrence frequencies near 50% in key areas in the tropics, as well as a neg-

ative correlation between high-altitude cloud occurrence and lower stratospheric WV

mixing ratio. SAGE II observations also suggested that the overall effect of subvisual

cirrus clouds is a net positive radiative forcing of 0.5-1 W/m2 in the tropics.

Active measurements have detected the presence of SVC for the longest period of

time. Lidar measurements, which measure the attenuated backscatter signal from a

gated polarized laser beam, provide high-resolution measurements of cloud backscat-

ter. The current definition of SVC was established by Sassen and Cho (1992), who

operated a ground-based polarized 694 nm lidar together with an all-sky camera to

characterize mid-latitude cirrus clouds (Salt Lake City, 40◦N, 111◦W). The optical

thickness τc of SVC, a dimensionless parameter that will be defined in Chapter 3,

was measured with lidar backscatter to lie below a threshold value of τc = 0.03 us-

ing concurrent all-sky images. Cloud linear depolarization measurements were made

using the incident polarized laser, with typical depolarization values of 0.3-0.4, and

in-cloud temperatures of between −40◦ and −55◦C.

The first space-based lidar cirrus detections were made from the LITE instrument

on space shuttle STS-64 (Winker and Trepte, 1998), and determined the typical

vertical thickness of these clouds to lie between several hundred metres and one

kilometre, and showed horizontal extents from several hundred up to over a thousand

kilometres. This study also showed several occurrences of subvisual cirrus above the

tropical tropopause. Lidar measurements from the CALIPSO satellite (Sassen et al.

(2008), Martins et al. (2011)), launched in 2006, provide global coverage and high

vertical resolution (60 m) with the ability to monitor multilayered clouds. Their

results have confirmed previous measurements that showed the highest occurrences

within and surrounding the ITCZ, where the highest occurrences are concentrated

over the western Pacific warm pool and near the Congo and Amazon basins. Despite

the very good spatial resolution, CALIPSO detections of SVC are limited to clouds

with optical thicknesses τc > 10−3 due to their relatively low signal-to-noise ratio.

Recent in-situ measurements of SVC have given a more clear picture of the micro-
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physical properties of these clouds. Using cloud particle imaging equipment mounted

on high-altitude aircraft, Lawson et al. (2008) and Jensen et al. (2008) indicated

the presence of large ice crystal sizes in SVC, with maximum dimensions of up to

100 µm, compared with 50 µm or less from earlier measurements (Heymsfield , 1986).

Cloud particles of this size are quite unexpected near the TTL since sedimentation

rates for such large particles would preclude cloud lifetimes longer than an hour, even

for strong wave activity and particle aspect ratios above 10:1. These measurements

were made with independent imaging and sizing instruments. The Cloud Particle

Imager (CPI) probe takes stunning images of cloud particles with 2.3 µm pixels with

an imaging laser triggered by a particle-detection beam. The CPI images shown in

Figure 2.3, which were taken inside a subvisual cirrus cloud, show thin plates with

hexagonal and trigonal symmetries. Complementary sizing measurements in this

Figure 2.3: In-situ CPI images of subvisual cirrus ice crystals (Jensen et al., 2008).

campaign were made with a 2D-S stereo probe that forms two separate, diffraction-

corrected images of ice crystals from orthogonally-placed linear pixel arrays that are

both perpendicular to the direction of aircraft motion. The crystal habit distribu-

tions reported in this study also display more tendency toward quasi-spherical and

hexagonal plate geometry, in contrast with the hexagonal columns, plates, and bullet

rosettes reported earlier.

Insight into the composition of ice nuclei from evaporated ice crystals was gained

during the same campaign from in-situ mass spectrometry measurements (Froyd

et al., 2010). These measurements indicated that the dominant nuclei were mixed

sulphate aerosols and organic material. Ice nuclei composed of mineral dust showed

evidence of organic and sulphate coatings, which would lower their effectiveness as

heterogeneous ice nuclei. This study also showed that, in contrast with similar mea-

surements of cumulonimbus anvil cirrus whose nuclei were primarily mineral dust and
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sea salt (Cziczo et al., 2004), SVC predominantly form on sulphate-organic aerosols,

with a small contribution from mineral dust.

Recent work at CERN (Kirkby et al., 2011) that simulated galactic cosmic rays

(GCRs) in the Cosmics Leaving OUtdoor Droplets (CLOUD) experiment has at-

tracted significant interest from their novel studies on the role of GCRs on sulphuric

acid nucleation rates, particularly as a non-anthropogenic climate forcing from solar-

induced changes in natural GCR flux. During periods of low solar activity, it has been

hypothesized that increased GCR flux can increase the rates of cloud condensation

nuclei formation, which could induce a change in the cloud albedo effect. Kirkby et al.

(2011) found that the presence of ammonia vapour inhibits evaporation of very small

(< 1 nm) sulphuric acid droplets, allowing these to grow to sufficient size (500 nm)

to form condensation nuclei for homogeneous freezing. This effect was enhanced in

the presence of the simulated GCR flux. While this experiment has shed significant

light on early particle formation processes, the ammonia concentrations and changes

to GCR flux were much greater than those encountered in the atmosphere (Pierce,

2011).

Moving from the microphysical scale to global scales, the two current global cli-

matologies of SVC currently available do not agree well with each other. Occurrence

frequencies from SAGE II (Wang et al., 1996), which measured from 1985-2005, and

CALIPSO (Fu et al., 2007), which was launched in 2006 and continues operation, are

different by a factor of more than two in the tropics (Fueglistaler et al., 2009). This

is partly due to CALIPSO’s limited SVC detection range, as noted above. The cloud

occurrence frequency, as well as the cloud optical depth and effective particle size,

are essential inputs to GCMs and are required constraints in CRMs. Further study

of the occurrence and optical properties of these clouds is certainly needed. We now

turn to the limb measurement geometry, which is the platform used in this work.

17



2.3 Limb Scatter Measurements

2.3.1 Technique

A number of space-based measurements have used scattered sunlight for retrieving

atmospheric constituents. Long-term monitoring of ozone has been done by the

NASA Total Ozone Mapping Spectrometer (TOMS) and Solar Backscatter Ultravi-

olet instrument (SBUV), which both observed in a nadir direction. By scanning the

instrument field of view across the satellite track and measuring the backscattered

UV brightness, these instruments are able to measure the quantity of absorption by

ozone and provide total (column) amounts of ozone with high horizontal resolution.

As well, some vertical information of the distribution of absorbing species can be

inferred from the use of several wavelengths that have differing absorbtion strengths,

but this method is quite limited at altitudes below the peak ozone number densities

in the stratosphere.

The limb-scattering method is a relatively new remote sensing technique that

measures scattered sunlight from the atmospheric limb, that is, the glowing edge of

the atmosphere. In this measurement geometry, the instrument line of sight is pointed

toward the atmospheric limb and vertically scanned to obtain the spectral brightness

at a set of tangent altitudes. In addition, and array of sensors can be mounted

to make continuous profile measurements. From either measurement, the variation

of the scattered brightness at selected wavelengths can provide height-dependent

absorbing and scattering properties for the measured volume. The basic measurement

geometry for a limb-scanning instrument is shown in Figure 2.4. In this figure, shown

as a vertical cross section in a plane that contains the instrument line of sight, the

sun is far out of plane, and the instrument line of sight – defined by the observer

‘look’ direction, Ω̂ – passes most near to the surface at the tangent height, ht. The

location of the sun in this measurement geometry is typically defined by several angles

specified at the line of sight tangent point. The solar zenith angle, θ0, the angular

distance of the solar direction from the local zenith; the solar scattering angle, Θ0,

defined as the angle through which solar radiation is deflected by scattering directly
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Figure 2.4: Limb scatter geometry, showing the definitions of solar zenith angle (θ0),
solar azimuth angle (φ0), and solar scattering angle (Θ0).

into the instrument line of sight, cos Θ0 = Ω̂0 · Ω̂; and the solar azimuth angle, φ0,

as measured counterclockwise from the instrument line of sight.

The limb-scattering technique provides two advantages. First, since the satellite

instrument is measuring scattered sunlight, it can make continuous measurements

throughout the daylight portion of the orbit, and thus can make many profile mea-

surements per orbit in contrast with solar occultation’s sunrise and sunset. Second,

this technique provides good height resolution, as multiple height measurements are

made as the line of sight scans the height of the atmosphere. These advantages

come at the expense of increased difficulty in modeling and retrieval of parameters

from the measurements. Since the observer line of sight passes through very long

segments of atmosphere near the tangent point, horizontal homogeneity is required

in retrievals from such an instrument, although tomographic retrievals can be done

with fast enough sampling.

The first instrument to use this geometry was the Solar Mesosphere Explorer

(SME, Barth et al. (1983)), which measured limb brightness at solar wavelengths.

Lower-altitude limb-scattering measurements required the use of radiative trans-

fer computations employing a spherical geometry that accounts for multiple scat-

tering and improved instrument pointing. This was investigated with the Shuttle

Ozone Limb Sounding Experiment (SOLSE) and Limb Ozone Retrieval Experiment

(LORE), flown as proofs of concept on space shuttle flight STS-87 in 1997, which
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measured ozone profiles at 3 km vertical resolution for altitudes between 15 and

40 km (McPeters et al., 2000).

Most recently, three instruments have been employed in limb-scattering mea-

surements of ozone, other trace gases, and stratospheric aerosols. The Scanning

Imaging Absorption Spectrometer for Atmospheric ChartographY (SCIAMACHY)

instrument, which was launched on the European Space Agency’s ENVISAT satellite

in March, 2002, and which recently ceased operations, made spectral measurements

from 220 nm to 2380 nm with 3 km vertical resolution (Bovensmann et al., 1999).

The Ozone Mapper and Profile Suite (OMPS) instrument on NASA’s Suomi National

Polar-orbiting Partnership satellite (NPP), which was launched in October of 2011,

measures ozone and stratospheric aerosols in both nadir and limb-viewing geome-

tries. The Canadian Optical Spectrograph and InfraRed Imaging System (OSIRIS),

launched in February, 2001, and in operation at time of writing, is the only other

instrument currently making limb-scatter measurements, and is the subject of this

work.

Several techniques have been developed for retrieval of atmospheric trace gases

from limb-scattered spectra, including spectral analysis methods (Flittner et al. (2000),

Von Savigny et al. (2003)), Differential Optical Absorption Spectroscopy (DOAS, Ha-

ley et al. (2004), Rault (2005)), and a Multiplicative Algebraic Reconstruction Tech-

nique (MART, Degenstein et al. (2009)) for trace gases and stratospheric aerosols.

Some work in retrieval of cloud properties in a limb geometry has been done with

the Microwave Limb Sounder (MLS) radiometer (Wu et al., 2006), which measures

emissions at millimetre and submillimetre wavelengths. Retrieval of cloud optical

properties from a limb-scattering satellite platform, however, has not been done be-

fore, and is of significant interest, in particular considering the previously-mentioned

discrepancy between standard SVC optical property climatologies from SAGE II and

CALIPSO and their importance as GCM inputs.
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2.3.2 OSIRIS on Odin

The Canadian OSIRIS instrument (Llewellyn et al., 2004) is on the Swedish-led satel-

lite Odin (Murtagh et al., 2002), whose designed purpose was to measure molecular

emissions and scattered sunlight in the atmospheric limb. Odin was launched into

a retrograde sun-synchronous orbit, inclined at 97.8◦ to the equatorial plane, on

February 20, 2001. The ascending node of Odin is at 1800 local solar time. Since the

OSIRIS field of view is pointed at the limb in the along-track direction, the latitudinal

coverage is from 82◦S to 82◦N. The 96 minute orbit period gives longitudinal coverage

of the earth over one day, with each successive ascending node track displaced 24◦

to the west. During the equatorial and mid-latitude portions of the ascending and

descending nodes, the local time remains quite constant, and Odin sweeps quickly

through local noon and midnight at high latitudes.

Cloud detections and retrieval of cloud properties with OSIRIS can only be done

during the sunlit portion of the orbit (θ0 < 90◦), which varies in latitude throughout

the year due to orbit precession. The variation of the mean tangent-point solar zenith

angle throughout 2002 is shown for reference in Figure 2.5. In this figure it is seen
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Figure 2.5: Latitudinal variation of OSIRIS tangent point solar zenith angle through-
out the year.
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that solar zenith angle in the tropics (30◦N to 30◦S), which is the region of primary

interest in SVC studies, is always greater than 75◦. As well, during the ascending

and descending node equatorial crossings, the sun is near the horizon, or θ0 ≈ 90◦,

due to the near-terminator orbit. The solar zenith angles remain quite close to 90◦

at all latitudes during the terminator days in late February and early October, where

the orbit plane is oriented directly toward the sun.

Since retrieving cloud properties requires modeling the scattering of sunlight by

cloud ice particles, it is necessary to consider the variation in solar scattering angle,

Θ0, in the dominant SVC region over the course of the year. The variation in the

scattering angle from the sun directly into the instrument line of sight at the tangent

point for low-latitude measurements is shown in Figure 2.6. Due to the changing ori-
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Figure 2.6: Mean solar scattering angle for ascending- and descending-node measure-
ments at latitudes between 15◦ S and 15◦ N.

entation of the orbit plane with respect to the sunward direction from its precession,

the scattering angles at the ascending and descending nodes vary throughout the year

between 60◦ and 120◦. Between March and October in this figure, Odin moves to-

ward the sun on the ascending node, and scattering is in a slightly forward-scattering

direction, 60 ≤ Θ0 < 90◦. On the descending node during these months, Odin
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moves away from the sun, and the geometry is oriented slightly towards backscatter,

90 ≤ Θ0 < 120◦. During the other months of the year this scattering geometry is

reversed due to precession of Odin’s orbit. This variation in scattering angle can be

used to infer information about the scattering properties of a volume sampled first on

the ascending node and later on the descending node, assuming that the constituents

of the volume have not changed significantly during that time.

The OSIRIS instrument itself consists of two subsystems, an Optical Spectrograph

(OS) that measures scattered sunlight between 280 and 810 nm with approximately

1 nm resolution, and an InfraRed Imaging System (IRIS) that measures excited O2

and OH emissions at 1.26, 1.27, and 1.53 µm. The optical axes of the two subsys-

tems are coaligned and point on-track, in the direction of travel, at the atmospheric

limb. The Odin satellite itself nods to scan the horizontally-oriented OS entrance slit

over tangent heights between 10 and 60 km to obtain height profiles of the scattered

brightness across the UV-visible-near IR spectrum. Each OS scan takes approxi-

mately 90 seconds, allowing for roughly 60 scans per orbit. At typical exposure

rates, successive exposures in OS scans are separated by 1.5-2 km in tangent al-

titude. The pointing accuracy from the on-board control system is approximately

±15 arcseconds, or ±200 m vertically at the tangent point.

A typical limb spectrum is shown in Figure 2.7, where the spectral radiance is

shown as a function of tangent altitude and wavelength. The radiance, which is

defined in the following chapter, has units of photons per square centimetre per

second per steradian per nanometre, and is an indication of the power measured per

detector surface area for a given instrument field of view and spectral resolution.

At most wavelengths in Figure 2.7, the measured radiance is seen to increase at a

near-exponential rate together with the molecular number density in the atmosphere.

Several molecular absorption features are visible in this figure, such as the Chappuis

band of ozone between 530 and 700 nm, as well as the molecular oxygen A-band near

762 nm. The data missing between 475 and 535 nm result from the use of a spectral

order sorter with the diffraction grating, where measurements from this area are not

used.
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Figure 2.7: Typical measured limb-scattered radiance from OSIRIS.

Frequently, at the lowest tangent altitudes, significant enhancements to the Rayleigh-

scattered signal are seen that correspond well in location and frequency of occurrence

to cirrus clouds. An example of such an enhancement is shown in Figure 2.8a, where

the measured radiances at tangent altitudes below 30 km are shown at left as a

function of wavelength. In this figure, since the measured signal is brightest at low
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Figure 2.8: Upper-tropospheric enhancement to limb brightness at 750 nm.

altitudes where the molecular number density is the highest, the brightest spectra
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are recorded at the lowest tangent altitudes.

The height profile of the 750 nm radiance, shown with respect to the radiance at

a cloud- and aerosol-free altitude of 37.5 km, is shown in the middle panel of this

figure. In general, the 750 nm radiance profile follows the exponentially-increasing

number density profile, but a clear enhancement above this trend occurs at 16 km

altitude, below which the signal remains very bright. For reference, the dotted line

in this figure indicates the height of the thermal lapse rate tropopause at the scan

location, as determined from NCEP (National Centers for Environmental Prediction)

6-hour reanalysis data.

A concurrent GOES full-disk image of 10.7 µm brightness temperature is shown in

Figure 2.8b, where the approximate scattering volume of the OSIRIS scan is indicated

by the solid red line. It is clear that this OSIRIS scan directly observed the middle of

a widely-distributed deep convective system over the south Pacific Ocean, where the

brightness temperature near the top of the outflow anvil was below −75◦C. The spec-

tral signature of this cloud system shows a distinct increase in the long-wavelength

(500-810 nm) portion of the measured spectrum that is characteristic of in-cloud

multiple scattering.

Many OSIRIS scans indicate a similar enhancement to the limb radiance near the

tropopause, but the radiance profile suggest the presence of a very thin scattering

layer. Figure 2.9a shows a scan in which the radiance profile increases significantly

just below the tropopause but maintains a near-Rayleigh scattering-dominated profile

below. The spectral dependence of the enhanced radiance in this figure also shows

the characteristic increase in long-wavelength radiance that was evident in Figure

2.8a. However, in contrast with the previous scan, there is no visible cloud present

in the concurrent GOES image despite the existence of a significant enhancement to

the measured spectra just below the tropopause. Such measurements are suggestive

of the presence of clouds characterized by geometrically thin and horizontally broad

regions that contain strongly-scattering particles.

A direct comparison of in-cloud and clear-sky radiances at identical tangent alti-

tudes is shown in Figure 2.10. Even for a very thin cloud, such as shown in Figure
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Figure 2.9: OSIRIS observation of subvisual cirrus cloud.
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Figure 2.10: OSIRIS in-cloud radiance and clear-sky radiances at the same altitude.

2.10, the enhancement to the measured spectrum at wavelengths above the spectral

order sorter is significant. As well, it is characteristic that this increase is largely

restricted to wavelengths above 400 nm, and that the in-cloud spectrum exhibits

‘whitening’, that is, increased enhancement at longer wavelengths.

The difference between the radiance profiles seen in Figures 2.9a and 2.8a relate

to the scattering properties of the measured volume, and the characterization of

these enhancements by assuming known ice crystal scattering properties is, in large
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part, the subject of this work. The presence of such enhancements to the radiance

measured at 750 nm is used as a detection criterion for cirrus clouds, which is now

discussed.

2.4 OSIRIS Cirrus Detections

2.4.1 Cloud-top detection algorithm

OSIRIS measurements at the lowest tangent altitudes are made over very long path

lengths through the upper troposphere. As such, the presence of thin cirrus clouds

is clearly indicated as has been suggested. In the limb-viewing geometry used by

OSIRIS, the measured brightness is closely related to the scattering properties near

the tangent point, since the instrument line of sight passes through a long horizontal

region with relatively high number densities. Although the formal presentation of

radiative transfer theory is presented in the next chapter, a simple cloud-top detection

algorithm is formed using a solution to the equation of radiative transfer, namely

equation (3.43).

The purpose of this detection algorithm is to detect the presence of the significant

upper-tropospheric enhancement to the 750 nm radiance profile seen in Figures 2.8a

and 2.9a. If all of the measured signal brightness at a given tangent altitude, I(h), is

assumed to come from the region immediately surrounding the tangent point, then

it can be assumed that the brightness is expressed as

I(h) = [σm nm(h) + σc nc(h)]I0 ∆s. (2.1)

In this expression, it is assumed for present purposes that the scattering behaviours

of molecular constituents and ice crystals do not differ significantly for the scattering

geometry of interest. In this expression, nm(h) and nc(h) are the molecular and cloud

particle concentrations, respectively, and σm and σc are the molecular and cloud

scattering cross sections, which are discussed in detail in Chapter 4. The incident

brightness is denoted by I0 and the path length through the scattering region by ∆s.
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If the ratio of the brightness from two heights is taken, then the brightness ratio,

Ĩ = I(h1)
I(h2)

, relative to the molecular number density ratio, ñ = nm(h1)
nm(h2)

, at these heights

is
Ĩ

ñ
=
σm nm(h1) + σc nc(h1)

σm nm(h2) + σc nc(h2)

nm(h2)

nm(h1)

σm
σm

, (2.2)

If the reference height h2 is taken above any aerosol or cloud particles, typically above

37 km, then nc(h2) = 0 so that

Ĩ

ñ
= 1 +

σc
σm

nc(h1)

nm(h1)
, (2.3)

which is rewritten in terms of the quantity km1 = σm nm(h1) and kc1 = σc nc(h1) as

kc1 =

(
Ĩ

ñ
− 1

)
km1. (2.4)

Within this very simple detection scheme, the quantities kc1 and km1 roughly corre-

spond to cloud and molecular extinctions, which will be defined in Chapter 3. For

the purposes of these detections, the quantity kn1 = n(h)σn and the number den-

sity ratio, ñ, are evaluated using the ECMWF (European Centre for Medium-Range

Weather Forecasts) number density profile n(h) at the measurement location and the

molecular-scattering cross sections, σn, which are be evaluated analytically.

Equation (2.4) forms a threshold condition to detect the presence of large upper-

tropospheric enhancements. By using the criteria applied by Wang et al. (1996) to

solar occultation measurements of subvisual cirrus clouds, we find that when the

quantity kc1 has passed a threshold value of 2×10−4 km−1, it is said that the OS has

observed a cloud. Two such detection vectors are shown in Figure 2.11, where the

effect of cirrus clouds on the detection vector for OSIRIS scan 47626029 is shown as

a function of tangent altitude. The maximum value of the detection vector due to

cirrus clouds typically lies between 4 × 10−4 and 1 × 10−3, and the vector typically

has a sharp peak from the cloud geometry. The smaller-magnitude, more vertically

extended enhancements in the detection vector seen above the tropopause are due to

stratospheric sulphate aerosols, which have a lower optical depth than cirrus cloud
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Figure 2.11: OS cloud detection vector, kc(h) for cloud-free and in-cloud conditions.

particles. Because OSIRIS measures the extinction of these aerosols, this effect can

be accounted for within the cloud detections.

The preliminary detections of cirrus made with this algorithm, discussed below,

capture well the features seen in existing cirrus climatologies (Wang et al., 1996).

Note that the detections shown in this section are for cirrus clouds of all thicknesses,

not strictly for SVC.

2.4.2 OSIRIS Cirrus Distributions

Cirrus detections are shown in this section for the measurement period 2001-2007 due

to the absence of significant volcanic activity during this time. A world map of cirrus

occurrence frequency for all OSIRIS scans is shown in Figure 2.12. In this figure, all

cirrus cloud detections that were made with the criterion (2.4) have been placed in

2.5◦ latitude and longitude bins, and polar stratospheric clouds observed with this

technique have been removed. The features in this map have excellent agreement with

CALIPSO cirrus measurements (Sassen et al., 2008). Cirrus occur most persistently

near areas of intense convection – surrounding the Indonesian maritime continent and

the western Pacific warm pool, the Congo basin of Africa, the Amazon basin of South

America, and throughout the belt of the ITCZ – as expected from detrainment by
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Figure 2.12: World map of cirrus cloud occurrence frequency, 2001-2007.

deep-convective cumulonimbus in these regions. In the sub-tropics, cirrus are rarely

observed within the descending regions of the Hadley circulation, which injects dry

air into the earth’s main desert regions. At midlatitudes, higher cirrus occurrences

are seen in the presence of warm ocean currents, for example near the Gulf Stream

and the Brazil current.

The meridional distribution of cirrus occurrence frequency is shown in Figure

2.13, where the dotted lines indicate the meridional average tropopause height for

each zone. Note the three equatorial convection centres previously mentioned, and

as well the high cirrus occurrences seen in the region of the Indian monsoon (15-

30◦N, 60-120◦E). Here the clouds are 2 km higher than at any other location, which

likely occurs due to intense convection during the summer Asian monsoon season

and orographic lifting caused by the Himalayan mountain range. Though not shown

here, this feature appears most strongly in the northern hemisphere summer. The

zonal occurrence frequency of cirrus is shown in Figure 2.14. The slightly northern

bias of the ITCZ is seen clearly, as are persistent cirrus related to synoptic lifting

in midlatitudes, whose heights largely lie 1-2 km below the mean tropopause height,
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Figure 2.13: OSIRIS meridional occurrence frequencies for cirrus clouds, 2001-2007.
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Figure 2.14: OSIRIS zonal average occurrence frequency for cirrus clouds, 2001-2011.

which is shown as a dashed line in the plot.

The cirrus detections from OSIRIS provide a wealth of information on the loca-

tions and properties of these clouds. A range of potential studies – of the differences
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in clouds between ascending- and descending-node detections that are indicative of

diurnal change, seasonal changes in response to global temperature and water vapour

trends like El Niño-Southern Oscillation (ENSO) – are possible with this data. These

studies require the characterization of these cloud detections in terms of the optical

properties of the cirrus ice crystals. The bulk of this work is concerned with enabling

this characterization.
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Chapter 3

Radiative Transfer Modeling

Radiative transfer theory forms the physical basis for inferences about atmospheric

composition from remote sensing measurements. The equation of radiative transfer

describes the transportation of radiation through a region as a function of the light-

absorbing and scattering properties of the constituents for a given wavelength. The

physical basis of radiative transfer theory was given its most complete expression in

the work of Chandrasekhar (1960), from which most atmospheric and astrophysical

models originate. This chapter presents a sufficient amount of the theory to introduce

a model that is used to simulate OSIRIS measurements for inferring subvisual cirrus

cloud properties.

3.1 Background

The viewing geometry for a satellite instrument that measures limb-scattered sun-

light, such as OSIRIS, is shown in Figure 3.1. In the geometry shown, the sun is

out of the plane of the figure and the satellite instrument is shown at right. Light

is scattered into the instrument’s field of view by a combination of many possible

processes. Light can be singly scattered toward the observer by a molecule or cloud

particle, as shown in path (a). Light can also be scattered into the line of sight

after multiple scatters from atmospheric constituents, as shown for three scatters in

path (c). Alternatively, light can scatter toward the observer after reflection from the
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Figure 3.1: Geometry of several possible processes for scattering of sunlight into the
line of sight for an observer with a limb-viewing geometry.

ground and several atmospheric scatters, as shown in (b) and (d). The goal of any

radiative transfer model is to estimate the amount of light absorbed by the medium,

as well as the amount scattered into the observer line of sight through a combination

of these many scattering processes.

3.2 Radiative Transfer Theory

The fundamental quantity recorded by a light-sensitive instrument on a satellite plat-

form is the electromagnetic power within its range of wavelength sensitivity that en-

ters its field of view. In this work, the source is the wavelength-dependent brightness

of sunlight that has been scattered and attenuated by the atmosphere, as viewed in

the atmospheric limb. Before the radiative transfer equation is developed, we define

several quantities necessary for the discussion.

3.2.1 Radiometric Quantities

To describe the radiation measured in this work, as well as its relation to other

quantities required for radiative transfer modeling, we follow a similar development

to that given by McCartney (1976).

The most fundamental radiometric quantity is the radiant energy, Q, from a

source. This and other spectral radiometric quantities are commonly expressed in

terms of the number of photons instead of energy units. The radiant energy of a
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source, or equivalently, the number of photons emanating from the source, is Q.

Since the energy from most sources is strongly wavelength-dependent, this energy is

typically expressed as the spectral radiant energy,

Qλ =
dQ

dλ
, (3.1)

such that, as the spectral interval is made indefinitely small, this quantity reaches a

definite value. Thus the radiant energy over a spectral interval is found by integration,

Q =

∫ λ2

λ1

Qλ(λ) dλ, (3.2)

which then is the total energy emitted when the limits are extended to zero and

infinity. The spectral radiant power, Φλ(Ω, Ω̂), is the power flowing into a solid angle

Ω about a direction Ω̂, and has units of watts per nanometre, or Φλ,q(Ω̂) in units of

photons per second per nanometre.

The spectral radiant intensity, Rλ(Ω̂), is the radiant power emitted in a given

direction, Ω̂, by a source or an element of the source in the solid angle dΩ about the

direction Ω̂,

Rλ(Ω̂) =
dΦλ(Ω, Ω̂)

dΩ
. (3.3)

As the solid angle about the direction Ω̂ is made indefinitely small, the radiant

intensity takes on a limiting value. The spectral radiant power past a given point in

the direction Ω̂ with infinitesimal solid angle dΩ is then dΦλ(Ω̂) dΩ.

To relate these quantities to remote-sensing measurements, it is necessary to de-

scribe the radiant power in terms of its measurement by a surface. The spectral

irradiance is the amount of radiant power incident from all upward directions on an

element of surface divided by the area of the element,

Fλ =
dΦλ

dA
. (3.4)

An analogous definition applies for the radiant power that leaves a surface either by
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emission or by reflection. The units of irradiance, Fλ, are watts per square metre

per nanometre or photons per square centimetre per second per nanometre. The

irradiance corresponds to the radiant power per unit cross-sectional area of a light

beam. This area may refer either to a virtual surface in space normal to the axis of

the beam, or it may refer to a material surface. In this work, radiant energy from

the sun is described as an irradiance.

The radiant intensity – considered earlier as the radiant power that originates

from a source in a certain direction Ω̂ – can also be applied to an elemental area

of an extended source. In general, the radiant intensity of an elemental area that is

measured in a particular direction will vary upon the angle between the surface normal

and the viewing direction, Ω̂. Quite often, if the emission or reflection characteristics

of a surface are not well known, the surface is assumed to be a Lambertian reflector,

in which case the radiant intensity measured by an observer is the same regardless

of the observer’s angle of view relative to the surface normal. Since the projection of

a finite surface area, A, onto a direction Ω̂ at an angle θ relative to its normal, n̂, is

A cos θ = (A n̂) · Ω̂, the radiant intensity (3.3) at an angle to the normal is expressed

as

Rλ,θ =
dΦλ,n̂ cos θ

dΩ
, (3.5)

where Φλ,n̂ is the intensity in the normal direction.

The spectral radiance can be defined for an extended surface in a fashion similar

to the radiant intensity (3.3). The radiance of a surface, measured at an angle θ, is

defined as the ratio of the radiant power leaving a surface element to the product of

the projected area and solid angle,

Iλ,θ =
d2Φλ

(dA cos θ)dΩ
=

dRλ,θ

dA cos θ
, (3.6)

in the limit that dA and dΩ become very small. The second expression is obtained

through the definition of radiant intensity, (3.3), and indicates that the radiance in

a given direction is the radiant intensity per unit projected area in that direction.

Then, for a Lambertian surface and for any viewing direction, the radiance (3.6) can
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be written as

Iλ,θ =
dRλ,n̂ cos θ

dA cos θ
=

dRλ,n̂

dA
, (3.7)

and so the radiance of a Lambertian surface is independent of the observation direc-

tion. To consider this definition of radiance in the context of measuring scattered

light from the atmosphere, we define the radiance in terms of a reference plane normal

to the observation direction. In this case, assuming for the moment no attenuation

by the medium, the radiance measured by a satellite instrument is then

Iλ =
d2Φλ

dA′ dΩ′
=

dFλ
dΩ′

. (3.8)

In this case, Iλ is the source radiance, Φλ is the radiant power at the normal receiving

surface, dA′ is an area element of this surface, dΩ′ is the solid angle subtended

at the observing surface by an area element of the source, and Fλ is the source

irradiance. The formulations (3.6) and (3.8) define radiance in terms of the receiving

and sending ends, respectively. By comparison of these two equations, we can say that

the radiance measured by a satellite instrument is then the radiant power incident

per unit area of receiving surface per steradian of sky, which is the quantity used in

this work to describe the measured spectral brightness from OSIRIS.

We consider briefly the relation between the irradiance incident on a partially-

reflecting surface and the radiance measured at an angle relative to the surface nor-

mal. This relation is necessary for modeling the radiance due to scattering that

occurs at the surface of the earth. The albedo of a surface, aλ, is the ratio of the

reflected and incident irradiance to a surface,

aλ =
Fλ,reflected

Fλ,incident

, (3.9)

and expresses the wavelength-dependent bulk reflective properties of the surface.

Equation (3.6) can be used to express the differential radiant power emanating from

the surface as

d2Φλ,reflected = Iλ,θ dΩ dA cos θ. (3.10)
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If the incident and reflected radiant power to the area element are expressed as

irradiances and related by the albedo through equation (3.9), then the outbound

radiance is related to the radiant power incident on dA through

d2Φλ,incident = aλ Iλ,θ dΩ dA cos θ. (3.11)

If both sides of (3.11) are integrated over the hemisphere above the surface dA, and

recalling that the radiance from a Lambertian surface is independent of viewing angle,

then we find that

dΦλ,incident = dA

∫
2π

cos θ aλ Iλ,reflected dΩ

= dA 2π aλ Iλ,reflected

∫ π/2

0

cos θ sin θ dθ

dΦλ,incident = dAπ aλ Iλ,reflected.

(3.12)

Then, from the definition of irradiance (3.4), we find that the radiance emanating

from the surface element is related to the incident irradiance as

Fλ,incident = π aλ Iλ,reflected. (3.13)

For subsequent derivations in this chapter, the subscript λ that denotes spectral units

is assumed and will be suppressed for clarity.

3.2.2 Observation Geometry

Modeling the multi-dimensional radiance field measured by an observer requires the

specification of an appropriate set of coordinates. The geometrical specification of an

observer, located at r, with a photosensitive surface oriented with unit normal or look

direction, Ω̂, is shown in Figure 3.2. In this figure, the primed system of coordinates

has its axis z′ parallel to r, with spherical coordinates in this system, (θ, φ), that

define the look direction, Ω̂. The radiation field is then specified as a function of five

spatial coordinates.
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Figure 3.2: Specification of observer, r, and look direction, Ω̂, geometry.

In the general sense, the radiance measured by an observer is expressed as a Stokes

vector,

I =


I

Q

U

V

 , (3.14)

whose four components have units of radiance and describe the polarization state

and rate of energy transfer of a beam of electromagnetic radiation. Components Q

and U describe the linear polarization with respect to a reference plane that contains

the direction of wave propagation, V describes the state of circular polarization, and

I is the total value.

3.2.3 Heuristic Derivation for Randomly-Polarized Light

Consider the change in radiance of a beam of radiation as it passes through a thin

region containing scattering and absorbing particles, as shown schematically in Figure

3.3. The region, of thickness ds, is characterized by an extinction, k(s). For an

isotropic medium, the extinction expresses the fraction of photons removed per unit

length of the medium traversed, typically expressed in units of cm−1. For a single

chemical species or type of interacting particle, the extinction is proportional to the
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Figure 3.3: Characterization of a region containing absorbing and scattering particles
by diffuse radiance I(s, Ω̂′) and extinction k(s).

particle number density, ni,

ki = ni σi,ext, (3.15)

where the proportionality constant is the extinction cross section, σi,ext. The cross

section, which expresses the probability of interaction of the particles with the ra-

diation as a geometric area, is proportional to the average area A of the particle

projected onto a surface normal to Ω̂,

σi,ext = Qi,extAi. (3.16)

The extinction efficiency, Qext, in this expression is a function of the particle size

relative to the wavelength of radiation and the optical characteristics of the particle.

Note that in these and subsequent equations, the position and wavelength dependence

of all quantities is assumed.

When the medium through which the radiation passes contains several types of

interacting particles for the wavelength of interest, the total extinction is given by

the weighted sum of all extinction cross sections,

k =
∑
i

ki =
∑
i

niσi,ext. (3.17)
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Since the extinction specifies the total amount of radiation removed per unit length,

the extinction (3.17) is the total energy removed in the region through absorption

and scattering processes, and so is expressed as

k = kabs + ksca. (3.18)

For a single type of interacting particle, the extinction cross section is the sum of the

absorption cross section and the scattering cross section,

σi,ext = σi,abs + σi,sca, (3.19)

which are the respective probabilities of absorption and scattering expressed as ge-

ometric areas. Both have associated efficiencies, Qabs and Qsca, related to the inter-

action characteristics of the particles with the incident radiation. For scattering by

the diatomic molecules that are the dominant constituents of the atmosphere, the

Rayleigh-scattering, or dipole-scattering, cross section is used, which has a wavelength

dependence of

σsca,Rayl =
8π3

3

1

λ4
|α|2, (3.20)

where α is the molecular polarizability. The most noteworthy aspect of the Rayleigh-

scattering cross section at this point is its dependence on wavelength, which causes

the cross section to become large for smaller wavelengths. The physical descriptions

of the scattering and extinction cross sections will be discussed in more detail in

Section 4.1.3 of the following chapter.

When computing the radiance in the direction Ω̂, there exists – in addition to

the radiance in this direction – a diffuse radiance field within the region, specified

at point s in all directions, Ω̂′, as I(s, Ω̂′). The change in the radiance, dI(s, Ω̂) =

I(s + ds, Ω̂) − I(s, Ω̂), of a cone of radiation in the direction Ω̂ is considered as it

passes through an infinitesimal thickness, ds, of the absorbing and scattering region.

The reduction in radiance is proportional to both the incident radiance and the
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extinction,

dIabs(s, Ω̂) = − (kabs(s) + ksca(s)) I(s, Ω̂) ds. (3.21)

Since in this work we are concerned with wavelengths between 280 and 810 nm, any

contributions to the radiance from thermal emissions are negligible.

The change in radiance due to scattering within the volume must consider the

contributions of scattering from radiance all directions, and so is

dIsca(s, Ω̂) = ksca(s)

[∫
4π

P̄ (Ω̂, Ω̂′)I(s, Ω̂′)dΩ′
]

ds. (3.22)

The function P̄ (Ω̂, Ω̂′) is the differential scattering cross section,

P̄ (Ω̂, Ω̂′) =
1

σsca

dσsca
dΩ

, (3.23)

which for historical reasons in astronomy and remote sensing is called the phase

function, and expresses the angular dependence of scattering for the particles in

the volume. The overbar in the scattering phase function denotes the scattering

extinction-weighted mean over all scattering particle types. The phase function as

expressed in equation (3.22) is normalized for each type of scattering particle, i, such

that ∫
4π

Pi(Ω̂, Ω̂
′) dΩ′ = 1, (3.24)

where P has units of steradian−1. A related parameter is the asymmetry factor,

g = 〈cos Θ〉 =

∫
4π

P (Θ) cos Θ dΩ, (3.25)

which is a measure of the asymmetry of scattering. The value of g varies between

g = −1 for pure backward scattering, zero for isotropic scattering, and g = +1 for

pure forward scattering. Note that the change in radiance due to scattering, equation

(3.22), can be positive or negative.

We combine the scattering and absorption terms for the total change in radiance
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due to passage through the thin layer,

dI(s, Ω̂) =

[
− [kabs(s) + ksca(s)] I(s, Ω̂) + ksca(s)

∫
4π

P̄ (Ω̂, Ω̂′)I(s, Ω̂′)dΩ′
]

ds.

(3.26)

The unitless optical depth is defined as

dτ = −k(s) ds, (3.27)

and is proportional to the number of interacting particles along a path. We note

that although this definition for optical depth is used presently, one may define the

elemental optical depth as either dτ = ±k(s)ds, depending on the geometry for the

chosen method of solution.

For a single interacting particle type, the single-scattering albedo is defined as the

fraction of removed photons that are removed by scattering,

ω̃i =
ki,sca
ki

=
ki,sca

ki,abs + ki,sca
. (3.28)

The single-scattering albedo can be defined analogously for the composite extinction

due to scattering, ksca, and the composite extinction, k, for all types of interacting

particles in the media. When this composite single-scatter albedo, ω̃ = ksca
kabs+ksca

, is

substituted into (3.26) together with the differential optical depth (3.27), we obtain

the equation of radiative transfer,

dI(s, Ω̂)

dτ
= I(s, Ω̂)− J(s, Ω̂). (3.29)

This equation expresses the change in the randomly-polarized component of the

Stokes vector, I, due to its interaction with a collection of scattering and absorb-

ing particles. The second term on the right-hand side of this equation,

J(s, Ω̂) = ω̃

∫
4π

P̄ (Ω̂, Ω̂′)I(s, Ω̂′)dΩ′, (3.30)
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expresses the contribution to the radiance from scattering at location s to the ra-

diance I, and is typically called the multiple-scattering source term, or simply the

source term. In a more general form of coordinates, the radiative transfer equation

is typically expressed as

Ω̂ · ∇I(r, Ω̂) = −k(r) I(r, Ω̂) + ksca(r)

∫
4π

I(r, Ω̂) P̄ (r, Ω̂, Ω̂′) dΩ′. (3.31)

3.2.4 Vector Radiative Transfer Equation

The preceding derivation was done for the total radiance without reference to its

polarization state. Although this work is primarily concerned with modeling the

randomly-polarized component of radiance measured by OSIRIS, we present briefly

the polarized (vector) radiative transfer equation. If the complete Stokes vector is

considered for the change in polarized radiance as a result of interaction with an

absorbing and scattering medium, an analogous vector integro-differential equation

exists for polarized radiance, I.

The scattering operation when polarization is considered involves the phase ma-

trix, Z(Θ), that transforms the incident field polarization to the scattered field based

on the particle’s size, shape, and orientation,

Isca(Ω̂
sca) ≡ Z(Ω̂sca, Ω̂inc) Iinc(Ω̂

inc). (3.32)

In this expression the Stokes vectors are defined relative to their respective merid-

ional (reference) planes. A related quantity is the scattering matrix, F(Ω̂sca, Ω̂inc),

which expresses the light-scattering properties of a particle in the reference frame of

the particle itself. To perform the scattering operation, the Stokes vector must be

transformed by rotation into the particle reference frame and back into the original

reference frame. This rotation on the surface of the unit sphere is illustrated in Figure

3.4. The relation between the phase matrix Z and the scattering matrix, F, is then

44



x’

sca



y’

z’

inc1
2

Figure 3.4: Rotation of Stokes vector reference plane into and out of the scattering
plane.

through the rotations β1 and β2 as

Z(Ω̂sca, Ω̂inc) = L(β2) F(Ω̂sca, Ω̂inc) L(β1). (3.33)

The rotation matrix L(β) transforms the linear polarization components through an

angle 2β counterclockwise about the direction of propagation. The scattering matrix,

F, relates the Stokes parameters of the incident and scattered beams defined with

respect to the scattering plane, that is, the plane defined by Ω̂inc and Ω̂sca. In this

plane, the scattering angle, Θ, measures the angular distance of the scattered light

direction, Ω̂ = Ω̂sca, from the incident direction, Ω̂′ = Ω̂inc, and so cos Θ = Ω̂inc ·Ω̂sca.

Since the phase matrix relates the Stokes vectors in the ‘observer’ frame of reference,

the radiative transfer equation (3.29) becomes

dI(s, Ω̂)

dτ
= K(s)I(s, Ω̂)− ω̃

∫
4π

Z(s, Ω̂, Ω̂′) I(s, Ω̂′) dΩ′, (3.34)

where the extinction matrix, K, and the phase matrix, Z, are clearly generalizations

of the extinction, k, and the phase function, P (Θ).

Equations (3.29) and (3.34), as integro-differential equations, require the simulta-
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neous solution of the equation at all relevant points in the atmosphere to obtain the

observed radiance in the direction Ω̂. A range of solution types have been applied

to this problem and have reached a high level of sophistication. We now discuss the

two solutions most relevant to the problem of simulating the radiance scattered by a

collection of cirrus cloud particles.

3.3 Methods of Solution

3.3.1 Discrete Ordinates

One of the first solutions proposed to the equation of transfer is the discrete ordinates

method (Chandrasekhar , 1960), which uses a semi-analytical solution to the radiative

transfer equation. This method is frequently used for radiative transfer modeling with

cloudy scenes due to its basic architecture. As well, this model type has significant

heritage in nadir-based measurements (Stamnes et al., 1988).

If a plane-parallel geometry is assumed, as shown in Figure 3.5, the coordinates

in which the radiance field is defined are the optical depth τ , cosine of the zenith

direction µ = cos θ, and azimuth φ with respect to the solar direction, φ0. The

1

2

0

n

1

-1
-2

2

Figure 3.5: Distribution of rays in a discrete-ordinates model.

phase function P (τ, cos θ) is expanded in a series of 2N Legendre polynomials and

the diffuse radiance is expanded in a Fourier cosine series,

I(τ, µ, φ) =
2N−1∑
m=0

Im(τ, µ) cos [m(φ0 − φ)] . (3.35)
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The equation of radiative transfer (3.29) is then to be solved for each cosine compo-

nent of (3.35) as

µ
dIm(τ, µ)

dτ
= Im(τ, µ)−

∫ +1

−1

Dm(τ, µ, µ′)Im(τ, µ′) dµ′ −Qm(τ, µ), (3.36)

for m = 0, 1, . . . , 2N − 1, where the phase function is internally expanded as

Dm(τ, µ, µ′) =
ω̃(τ)

2

2N−1∑
l=m

(2l + 1)gml (τ)Pm
l (µ)Pm

l (µ′), (3.37)

and the direct component of incident radiation is given by

Qm(τ, µ) =
ω̃(τ)I0

4π
(2− δm0)

2N−1∑
l=

(−1)l+m(2l + 1)gml (τ)Pm
l (µ)Pm

l (µ0) exp(−τ/µ0).

(3.38)

Here δml is the Kronecker delta, the coordinates (µ0, φ0) indicate the source direction,

and the weights gml (τ) = gl(τ) (l−m)!
(l+m)!

are found from the Legendre moments of the

phase function, gl(τ) =
∫ +1

−1
P (τ, cos θ)Pl(cos θ) d(cos θ). In this formulation, equation

(3.36) is expressed as a Gaussian quadrature such that the quadrature points, µi, i =

±1, . . . ,±N , define the zeniths at which radiances are computed, called the ‘N -

stream’ approximation, with their corresponding weights wj,

µi
dIm(τ, µi)

dτ
= Im(τ, µi)−

N∑
j=−N
j 6=0

wjD
m(τ, µi, µj)I

m(τ, µj)−Qm(τ, µi). (3.39)

This form allows the RTE to be solved as a set of simultaneous first-order linear

equations that are solved at each discrete optical depth layer, τk, k = 1 . . . L, which

turns (3.36) into a system of (2N × L)× (2N × L) linear equations. The solution is

performed by propagating the radiances at the upper boundary, I(τ0, µ, φ), through

the atmosphere; applying the absorptive or reflective properties of the bottom surface;

and iterating this process towards convergence.

In the typical implementation of the discrete-ordinates method, the computa-

tion time is relatively independent of cloud optical thickness since the solutions are
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closed-form analytic functions of the τ coordinate. Depending on the desired height

resolution, computation time increases linearly with the number of discrete optical

depths, τk, that are required to simulate vertical structure.

The computational load becomes quite heavy, by contrast, when high angular

resolution is desired. The computation time tends roughly as the third power of the

number of ‘streams’, 2N , and so high angular resolution is very costly (Stamnes et al.,

1988). A major drawback of this method – particularly salient for modeling limb-

scattered radiances – is the fundamental plane-parallel assumption. Since the model

atmosphere is assumed to consist of infinite horizontal slabs, the radiance solution

asymptotically becomes undefined at zeniths approaching 90◦ from above and below

with a sharp discontinuity.

3.3.2 Successive Orders of Scatter

In the method of successive orders of scatter, the radiance is computed individually

for photons scattered once, twice, three times, and so on, so that the total radiance

is the sum of each of these terms. The basis of the method is the evaluation of light

that has been scattered N times from light that has been scattered N − 1 times.

The order of scatter denotes the number of times light has been scattered. In this

solution, solar irradiance is propagated through the atmosphere and scattered at a set

of points in the atmosphere and on the ground, which forms the first-order radiance.

The first-order radiance is scattered into a set of discrete directions at each of these

points and propagated to all other points in the model atmosphere, at which point it

is scattered again to form the second-order radiance, and so forth. In principle, this

process is repeated to arbitrarily-high orders of scatter to obtain the total radiance

in the atmosphere.

The successive-orders of scatter solution is most easily represented through a

particular solution to the radiative transfer equation (3.29). Consider an observer at

a location r with an instrument oriented to measure radiance incident in the direction

Ω̂, as shown in Figure 3.6. The relative positions of the observer and the observed

location, r0, can be parameterized as r0 = r + sΩ̂, such that s increases in the
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direction (−Ω̂). In this geometry it is convenient to write the equation of transfer

r

ds

s=0

y

x

z

0r


Ω̂ s

Figure 3.6: Observer geometry for successive-orders solution.

(3.29) as

dI(τ, Ω̂)

dτ
− I(τ, Ω̂) = −J(τ, Ω̂). (3.40)

If the left hand side is expressed as d
dτ

(
I(τ, Ω̂)e−τ

)
, then equation (3.40) can be

integrated from a reference point τ0 to arbitrary optical depth τ ,

∫ τ

τ0

d

dτ ′

(
I(τ ′, Ω̂)e−τ

′
)

dτ ′ = −
∫ τ

τ0

J(τ ′, Ω̂)e−τ
′
dτ ′, (3.41)

and so

I(τ, Ω̂)e−τ − I(τ0, Ω̂)e−τ0 = −
∫ τ

τ0

J(τ, Ω̂)dτ ′. (3.42)

If the reference point, τ0, is taken to be the observation point, r, then by changing

variables to the path coordinate, s, we obtain a solution

I(0, Ω̂) = Ĩ(s1, Ω̂)e−τ(s1,0) +

∫ 0

s1

J(s, Ω̂)e−τ(s,0)k(s) ds. (3.43)

In this expression the first term corresponds to the radiance at the end of the observer

line of sight. For example, if the observer line of sight (LOS) intersects the ground,

there will be an upwelling radiance component Ĩ(s1, Ω̂) that is attenuated back to

49



the observer. If the observer LOS does not intersect any source of radiation, such

as the earth’s surface or the solar direction, then this first term is zero. The second

term in this expression corresponds to the integrated source function J(s, Ω̂), where

the contributions from each point s in the region are attenuated back to the observer.

In the successive-orders of scatter solution, the terms Ĩ(s1, Ω̂) and J(s, Ω̂) in

equation (3.43) are computed iteratively for each order of scatter, such that the

solution is expressed as

I(0, Ω̂) =

∫ 0

s1

[
J1(s, Ω̂) + J2(s, Ω̂) +

∞∑
i=3

Ji(s, Ω̂)

]
e−τ(s,0)k(s) ds

+

[
Ĩ1(s1, Ω̂) + Ĩ2(s1, Ω̂) +

∞∑
i=3

Ĩi(s1, Ω̂)

]
e−τ0 ,

(3.44)

where the subscript i indicates the order of scatter. Here Ĩi(s1, Ω̂) is the radiance of

light that has been scattered exactly i times, with the last scatter being a reflection

from the surface. The terms Ji(s, Ω̂) result from i scattering events, with the last

scatter occurring from a particle in the atmosphere. The fundamental relation for

the successive-orders of scatter solution is the computation of the next-order source

term radiance from the previous-order radiance,

Ji+1(s, Ω̂) = ω̃

∫
4π

[
Ii(s, Ω̂′)

]
P (s, Ω̂, Ω̂′) dΩ′ . (3.45)

This method is initialized by attenuating solar irradiance to all points in the atmo-

sphere and on the ground, scattering into all directions to compute Ĩi(s1, Ω̂) and

Ji+1(s, Ω̂) for as many scattering orders as are desired, and finding the resulting con-

tributions into the observer line of sight through the summation of orders in equation

(3.44).

In limb-viewing geometries, the contribution of multiply-scattered radiance to

the measured signal is significant. This is illustrated in Figure (3.44), as in Bourassa

et al. (2008), where the contributions to the measured radiance at 25 km tangent

altitude from the first six orders of scatter are shown as a function of wavelength for
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a surface albedo of 0.8. In this figure, the contributions from scattering events by the
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Figure 3.7: Fractional contributions to 25 km tangent altitude measurement as in
Bourassa et al. (2008).

atmosphere and ground are included in the source terms, Ji. In UV wavelengths, in

particular at high altitudes, single-scatter contributions are of primary importance

due to strong ozone absorption. This contribution is also seen to be slightly higher

between 525 and 650 nm within the Chappuis band of ozone. Radiance contribu-

tions from second-order scattering becomes quite significant at wavelengths above the

Hartley-Huggins region, and grows at longer wavelengths due to the decreasing value

of the dominant Rayleigh-scattering cross section (3.20) of the molecular atmosphere

at longer wavelengths. It is noteworthy in this figure that the first- and second-order

sources form the most significant contribution to the limb radiance.

The successive-orders of scatter method provides a robust solution that provides

an intuitive solution to the equation of radiative transfer, and is one whose accuracy is

checked easily through using sufficiently high orders of scatter to ensure convergence.

A disadvantage of this method, in contrast with the discrete ordinates method, is the

large amount of resources required to model high in-cloud optical depths.
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3.4 The SASKTRAN Radiative Transfer Model

The SASKTRAN model (Bourassa et al., 2008), which is employed in this work, is

based on the successive-orders of scattering method and traces rays in a fully spherical

model of the atmosphere. It was developed at the University of Saskatchewan to

perform fast and accurate retrievals of atmospheric trace gases from limb-scattered

spectral radiances. SASKTRAN is written in the C++ programming language and

uses the inheritance and polymorphism features of object-oriented programming to

allow flexibility and customization to user needs. As well, SASKTRAN employs

multithreading algorithms to perform retrievals on a standard desktop computer.

3.4.1 Successive-Orders Solution

The fundamental unit of the SASKTRAN model is a traced ray that originates at

location r, has ‘look’ direction Ω̂, and whose radiance at r is gathered according to

equation (3.44). In the terminology of the model, this ray is called a line of sight

(LOS). It is helpful to separate scattering orders within the model into four groups:

light that has scattered once from the atmosphere, light that has scattered once from

the ground, multiply-scattered light that has its last scatter by the atmosphere, and

multiply-scattered light that has its last scatter from the ground. In the expressions

that follow, the radiances are always those measured by an ‘observer’, that is, the

radiance measured at the ray origin.

First, light scattered once by the atmosphere is calculated directly through source

points chosen along the observer line of sight. As shown schematically for an observer

inside the atmosphere in Figure 3.8, solar irradiance is attenuated by a factor e−τ(sun,s)

to the line of sight, scattered into the observer line of sight, and attenuated back to

the observer. This radiance contribution is calculated as

I1,a(0, Ω̂) = ω̃ F0

∫ 0

s1

e−τ(sun,s)P (s, Ω̂, Ω̂0)e−τ(s,0)k(s) ds (3.46)

The source term in this equation results from solar irradiance that has been scattered
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Figure 3.8: Geometry for computing radiance scattered once from points in the at-
mosphere.

from the solar direction, Ω̂0, into the the observer line of sight, Ω̂.

For an observer line of sight that intersects the ground, as illustrated in Figure

3.9, the ground radiance Ĩ in equation (3.43) is computed through attenuating the

solar irradiance to the surface, scattering it at the ground, and attenuating the result

back to the observer at s = 0. Since the surface in SASKTRAN is assumed to be a

Ω̂

r

0F 0s

1s

Figure 3.9: Geometry for computing radiance scattered by the ground at the end of
an observer line of sight.

Lambertian scatterer with an albedo a, the radiance at the observer is

I1,g(0, Ω̂) =
a

π
e−τ(sun,s1)F0 cos θ0 e

−τ(s1,0). (3.47)

The second-order atmospheric source term is computed at source points along the

LOS through gathering the first-order atmosphere (3.46) and ground (3.47) radiances

from all directions Ω̂′ into the scattering integral (3.30),

J2,a(s, Ω̂) = ω̃

∫
4π

P (s, Ω̂, Ω̂0)
[
I1,a(s, Ω̂

′) + I1,g(s, Ω̂
′)
]

dΩ′. (3.48)
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This process is shown schematically in Figure 3.10, where rays (the green lines of

sight) have been distributed from one of the LOS source points into all directions,

Ω̂′. For each of the rays sent out from the source point, the single-scatter source

Ω̂

r

0F

0s

1s

Figure 3.10: Geometry for computing source function, J2,a(s, Ω̂), due to multiply-
scattered light from atmospheric scatterers.

term is evaluated at a large set of secondary source points along each of the lines of

sight. This process is illustrated schematically by the intersections of the three red

rays with the lines of sight, although in the actual implementation there are tens of

thousands of these source points per instrument LOS source point. The second-order

atmosphere-scattered radiance is then the integral of these source terms along the

line of sight,

I2,a(0, Ω̂) =

∫ 0

s1

J2,a(s, Ω̂)e−τ(s)k(s) ds. (3.49)

The radiance scattered twice from the ground is obtained by integrating the

first-order atmosphere-scattered radiance over all directions within the upward-facing

hemisphere,

I2,g(s, Ω̂) =
a

π
e−τ(s1,s)

∫
2π

I1,a(s1, Ω̂
′) cos θ′ dΩ′, (3.50)

which provides this component of the radiance as illustrated in Figure 3.11. As in the

previous figure, only three scattering interactions along the secondary lines of sight

are shown for clarity.

In general, the source functions, J , for each order of scattering, (i+ 1), are com-

puted by scattering the previous-order radiance, as in equation (3.45), through

Ji+1,a(s, Ω̂) = ω̃

∫
4π

P (s, Ω̂, Ω̂0)
[
Ii,a(s, Ω̂

′) + Ii,g(s, Ω̂
′)
]

dΩ′, (3.51)

54



Ω̂

r

0F

s
0s

1s

Figure 3.11: Geometry for computing radiance multiply-scattered from the ground
along a line of sight.

and evaluating the radiance at the observer location by

Ii+1,a(0, Ω̂) =

∫ 0

s1

Ji+1,a(s, Ω̂)e−τ(s)k(s) ds. (3.52)

The same order of scattering from the ground can be generalized as

Ii+1,g(s1, Ω̂) =
a

π
e−τ(s1,s)

∫
2π

Ii,a(s1, Ω̂
′) cos θ′ dΩ′, (3.53)

and the total radiance contribution at the observer is evaluated using the sum of atmo-

sphere and ground scatter terms, (3.52) and (3.53), through the sum-of-orders expres-

sion, equation (3.44). In that expression, the second-order atmosphere and ground

terms are expressed as separate from higher-order terms to signify that these terms

are evaluated without approximation. It was shown in Figure 3.7 that the first- and

second-order terms form the most important contribution to a typical limb-scattering

measurement scenario. For this reason, the source functions in SASKTRAN for the

first- and second-order terms are evaluated explicitly by sending rays out from each

source point along the observer line of sight.

The successive-orders solution is performed in SASKTRAN in a stepwise manner

by scattering solar irradiance into successively higher orders in the manner described.

Since the magnitude of scattered radiance decreases as the order of scattering in-

creases, the solution to the radiative transfer equation in this architecture is carried

out by recursively computing the radiance field until additional contributions to the
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observed radiance (3.52) from higher-order terms become negligible. The details of

the spatial distribution of discrete source function evaluation points and the angular

distributions of rays are now discussed.

3.4.2 Geometry Configuration

The optical properties of scattering and absorbing particles are assumed to be con-

stant within spherical cells for the implementation of SASKTRAN used in this work.

The observer location, r, is defined in SASKTRAN with respect to the centre of an

osculating sphere that best fits the radius of the oblate spheroid of the earth along

the local meridian at a reference point. The location of this reference point is typi-

cally the tangent point of the observer line of sight. In the current implementation

the model ignores ray curvature due to atmospheric refraction and traces rays using

straight-line propagation.

The nomenclature used in discussing the ray-tracing geometry is that the inter-

section points of a ray through concentric spherical shells are used to define the ray

path lengths through homogeneous cells that lie between them.

In a model atmosphere that consists of optical properties specified in homogeneous

spherical cells, the diffuse radiance field is symmetric with respect to solar azimuth

angle, which reduces by one the number of coordinates for which the radiative transfer

equation must be solved. With reference to the specified geometry in Figure 3.2, the

radiance field is then fully specified by two spatial coordinates and two directional

coordinates. To exploit this symmetry, it is convenient to define a spherical coordinate

system with the z axis oriented toward the sun, in which case the solar zenith angle,

θ0, is the colatitude, as illustrated in Figure 3.12. In this figure an observer line of sight

is shown that passes through the atmosphere without intersecting the ground, and

where the segment that passes through the atmosphere is shown in red. Since it has

been shown that the diffuse radiance varies slowly with solar zenith angle (Herman

et al. (1994), McLinden et al. (2002)), well-defined solutions can be constructed using

a set of discretized solar zenith angles in the model atmosphere.
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Figure 3.12: Instrument line of sight in SASKTRAN solar coordinate system.

At each of the set of solar zenith angles, a set of diffuse points is distributed in

altitude to span the region of interest. Each height profile of diffuse points at a given

zenith angle is called a diffuse profile. A set of diffuse points is illustrated in Figure

3.13. As illustrated in this figure, each diffuse point contains a set of incoming rays

Solar 
Direction

1

h1

hn

3

2

Figure 3.13: Distribution of diffuse points in solar zenith angle and altitude.

that are used to evaluate the multiple-scatter source terms Ji+1,a(s, Ω̂) as in equation
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(3.51), which in the figure are shown in red. The incoming ray directions are specified

in the diffuse point’s local zenith and azimuth coordinates, with the azimuth defined

with respect to the direction of the sun. In Figure 3.13, only the rays for the sunward

and anti-sunward azimuth angles are shown.

The angular distribution of incoming rays is configured to capture best the distri-

bution of the diffuse scattered sunlight in the atmosphere. A typical distribution of

the ray locations, in local zenith and azimuth coordinates, is shown in Figure 3.14.

At a given point in the atmosphere, the upwelling radiance from lower altitudes and
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Figure 3.14: Angular distribution of incoming directions, Ω̂′j, in local zenith and
azimuth angle.

from the ground is both greater than, and also varies more than the radiance from

higher altitudes. Thus rays are more densely distributed for downward zeniths. Rays

are most densely-packed at zeniths between the local horizon and 90◦ since both the

brightest radiances and the most sharp change in radiance occur here from scattering

within the same layer. Rays are evenly distributed in azimuth angle.

The set of incoming directions, Ω̂′j, defines the points at which the scattering

integral (3.51) is evaluated at each diffuse point. The incoming radiances are scattered

into a set of outbound directions Ω̂k, for which the source functions Ji+1,a(s, Ω̂k) from

each scattering order are specified. The outbound, or source function, directions

are specified according to a minimum-energy (i.e. Thompson problem) distribution
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of equally-charged points on the surface of the unit sphere (Sloan and Womersley ,

2004).

The first-order incoming and second-order outbound radiances are shown on the

surface of the unit sphere, along with the incoming and outbound ray distributions,

for a diffuse point at 38.5 km altitude and solar zenith angle 72◦ in Figure 3.15. In

this figure all radiances are normalized to unity. Incoming radiances are specified on

a grid of 24 azimuths and 28 zeniths, and outbound radiances at 324 directions. The
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Figure 3.15: Distributions of incoming and outbound directions and radiances for a
diffuse point at altitude 38.5 km.

first-order radiance, I1,a(s, Ω̂
′
j) + I1,g(s, Ω̂

′
j), includes contributions from atmospheric
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single scatter and ground scatter with a surface albedo of 0.3. As expected, the

upwelling radiance (90◦ < θ ≤ 180◦) exceeds the down-welling (0 ≤ θ ≤ 90) radiance.

The highest incoming radiances occur between the horizontal direction (θ = 90◦) and

the limb ray – at those zeniths that have the longest path length through the greatest

number of scattering particles (θ ' 94◦). For the incoming radiances in Figures

3.15a and 3.15c, as one moves from zenith angles θ > 90◦ through the horizon to

θ < 90◦, the incoming radiances move from contributions from the bright ground and

very bright lower atmosphere to those from the very thin atmosphere above. In the

outbound radiances in Figures 3.15b and 3.15d, the smooth forward and backward-

scattering peaks from Rayleigh scattering are evident. For computing the radiances

reflected from the ground, the integral of the upward hemisphere in equation (3.53)

is performed using similar distributions of rays over its domain.

As mentioned in the previous section, the first- and second-order source terms are

evaluated exactly through tracing of rays from a set of source term points along the

observer line of sight. For higher-order scattering, the source terms Ji,a(s, Ω̂), i ≥ 3

are evaluated at each point along the line of sight by identifying those diffuse points

with the nearest altitudes and solar zenith angles. These surrounding diffuse points

are translated in solar azimuth angle to the observer LOS and are linearly interpolated

in altitude, solar zenith angle, and outbound direction to obtain the source radiance

in the direction Ω̂. The nearest three vertices of the outbound directions, Ω̂k, are

used for interpolation on the surface of each unit sphere. Diffuse points are typically

distributed in altitude such that they lie directly between successive shell boundaries,

that is, in the middle of the spherical ‘cells’. Optical properties are typically specified

at and exactly between the shell boundary heights.

The integral (3.52) of the source functions J(s, Ω̂) along the observer LOS is made

discrete by considering individually the integral along path length segments through

the homogeneous cells. The integral along each path length segment is computed

using Gaussian quadrature with a user-configurable number of points within the

interval. For cells in which a LOS is tangent and has a very long path length, ∆s,

the number of evaluation points can be made quite large. The source functions at
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each of these points are interpolated in height from the surrounding diffuse points.

The properties of limb-scattered radiances are predominantly related to the solar

conditions at the tangent point, but the varying illumination conditions at other

locations along the line of sight must be accounted for when computing the diffuse

field. This is done in SASKTRAN by using a range of diffuse profiles that span the

solar zenith angles encountered throughout the instrument line of sight. These are

typically spaced by ∆θ0 = 1◦. Depending on the choice needed between accuracy

and computational speed, diffuse profiles can be placed as closely or as sparsely as

needed.

With the use of these discretizations, the integrals to compute the source terms

(3.51) and radiances, (3.52) and (3.53), become summations. These summations

are rewritten as sparse matrices such that the order-(i + 1) source functions are a

linear combination of the previous-order radiances. The matrix elements are simply

functions of the optical properties of the atmosphere and the scattering geometry,

which are independent of scattering order. These matrix elements are then computed

in an initialization step and can be applied repeatedly to perform the successive-

scattering operation.

3.4.3 Clear-Sky Modeled Radiances

The use of SASKTRAN to compute clear-sky radiances for an OSIRIS scan is briefly

illustrated here, where the importance of multiple scattering contributions to the

measured limb-scattered radiance is highlighted.

In SASKTRAN, the observer geometry is easily configured to model the radiance

observed for a given OSIRIS scan. In addition, the optical properties of the model at-

mosphere can be configured with the retrieved trace gas amounts from OSIRIS, which

have been described elsewhere: O3 (Degenstein et al. (2009) and Roth et al. (2007)),

NO2 (Bourassa et al., 2011), and stratospheric aerosol (Bourassa et al., 2007). The

surface albedo is also estimated from OSIRIS measurements. The modeled radiances

for a cloud-free scan configured in this way are compared with the OSIRIS measured

radiances, following Bourassa et al. (2008), in Figure 3.16. In this figure, the limb
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Figure 3.16: Modeled spectral radiance (in units of 1013 phot/s/cm2/nm/sr) at se-
lected tangent altitudes for OSIRIS scan 6432019 as in Bourassa et al. (2008).
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radiances modeled by SASKTRAN are shown at selected tangent altitudes. The

contributions from single and multiple scattering are shown separately. Further, the

multiple-scattering contributions are subdivided according to the original scattering

source: atmosphere or ground. For this scan, a retrieved (wavelength-independent)

surface albedo of 0.84 was used. This scan was made at 82◦N, 38◦E, with a solar

zenith angle of 68◦.

As illustrated by this figure, the successive-orders of scatter solution applied to a

cloud-free atmosphere yields a highly accurate solution. The numerical evaluation of

the integral (3.45) for cloud-free scans is very accurate since the phase functions are

smooth and since the incoming ray distribution captures well the incoming radiance

field. When the phase functions are sufficiently smooth, it is a good approximation

to use the value of the phase function at the mean scattering angle, namely Θ̄ =

〈arccos(Ω̂ · Ω̂′)〉.
However, when computations are to be performed in the presence of ice crystals

or large aerosol or dust particles, using the value of the phase function at the mean

scattering angle Θ̄ is clearly insufficient. A necessary approach must incorporate the

mean value of the phase function over the scattering angles defined by the incoming

direction’s associated solid angle, P̄ (Ω̂, Ω̂′) = P̄ (Θ). This work is investigated in

Chapter 5, with diagnostics performed using a novel photon-conserving technique.

First, we investigate several source of scattering properties for ice crystals in cirrus

clouds.
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Chapter 4

Light-Scattering Properties of

Cirrus Cloud Particles

Retrievals of cloud particle number density and effective size require efficient compu-

tations of the light-scattering properties of cloud particles. The range of ice crystal

sizes encountered in a typical subvisual cirrus cloud, between 1 and 100 µm, obviates

the use of geometric optics for visible and near-IR wavelengths at all but the largest

ice crystal sizes. It is useful to define the size parameter x = kr = 2πr
λ

, the ratio of

the circumference of an equivalent-volume sphere to the wavelength of light scattered.

The majority of computations must be done in the resonance region where the wave-

length is on the order of the particle size. This chapter describes the fundamental

aspects of light scattering from ice crystals and describes the sources of scattering

properties used in this work.

4.1 Light Scattering by Ice Crystals

Computing the scattering properties of ice crystals requires solving the Maxwell equa-

tions for the boundary conditions determined by the particle shapes, which can take a

wide range of hexagonal-based crystal habits within a given cloud, the most common

of which in subvisual cirrus are hexagonal plates and columns. Long columns tend

to fall with their long axes horizontal, and plate crystals tend to fall with their major
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axes parallel to the ground. Near terminal velocity, the axes of these crystals show

a spread about these orientations and are frequently randomly oriented. However, a

cloud with relatively pristine shapes and with certain dynamical conditions – such as

a persistent horizontal wind – can create alignments, forming the halos and arcs more

commonly seen at high latitudes. Although specific and random particle orientations

must in general be considered, the case of scattering from randomly-oriented crystals,

treated through ensemble orientation averaging, is assumed in this work.

4.1.1 Light Scattering by Spherical Particles

Lorenz-Mie theory provides an exact solution for the scattering and absorption of

light from dielectric spheres. In this method an incident monochromatic plane wave

is expanded in vector spherical wave functions, and boundary conditions match the

incident and scattered waves according to the material properties of the scattering

sphere. The scattering and extinction cross sections and phase matrix elements are

expressed as power series expansions in cos Θ, with the associated Legendre functions

as basis functions. Typically the series expansions converge when the number of

terms N ∼ x, necessitating efficient codes for large size parameters. Such codes have

been developed (Wiscombe, 1980) to efficiently compute the series expansions of the

associated Legendre and spherical Bessel functions to great accuracy. We now turn

to a generalization of the Lorenz-Mie theory’s mathematical framework applied to

light scattering from nonspherical particles.

4.1.2 Light Scattering by Arbitrary-Shaped Particles

The geometry involved in the scattering of a plane wave by an arbitrarily-shaped

particle is shown schematically in Figure 4.1. The plane wave is incident in the

direction Ω̂inc, with incident electric field Einc. Light scattered by the particle is

represented here by outbound spherical waves, specified here in the direction Ω̂sca

with scattered electric field vector Esca. In this geometry, k2 = k1m = k1(mr + imi)

is the wavenumber within the scattering object, having a generally complex index of
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Figure 4.1: Scattering of a plane wave from an arbitrarily-shaped particle.

refraction m, and k1 is the wavenumber in the surrounding medium. In this section,

the development of light-scattering properties is similar to the treatments given by

Bohren and Huffman (1983) and Mishchenko et al. (2002).

To compute the scattered electric field Esca from a finite nonspherical scattering

object, consider the monochromatic Maxwell equations for the electric field inside

and outside of the scattering object,

∇×∇× E(r)− k2
1E(r) = 0, r ∈ Vext (4.1)

∇×∇× E(r)− k2
2E(r) = 0, r ∈ Vint, . (4.2)

The regions employed in the following discussion are shown in Figure 4.2, where

r> defines the smallest circumscribing sphere of the scattering object centred at

the origin and r< defines the largest concentric inscribed sphere. By considering

the refractive index of the finite scattering region relative to the exterior, the two

equations are combined into a single vector equation for the total electric field. If the
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S

r>

Vext

Vint

Figure 4.2: Cross section of arbitrarily shaped scattering object bounded by a surface
S.

piecewise discontinuous refractive index

m(r) =

1, r ∈ Vext

k2(r)
k1
, r ∈ Vint

(4.3)

and the electric field inside the scattering object are made to constitute a forcing

function,

j(r) = k2
1[m2(r)− 1]E(r) =

0, r ∈ Vext

[k2
2(r)− k2

1] E(r), r ∈ Vint,

(4.4)

then equations (4.2) and (4.1) are combined in a single inhomogeneous equation. The

source function thus creates the equation for the total field,

∇×∇× E(r)− k2
1E(r) = j(r), r ∈ Vint ∪ Vext. (4.5)

The total field must consist of a combination of a solution of the homogeneous prob-

lem and a particular solution of the inhomogeneous problem. The first solution
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satisfies

∇×∇× Einc(r)− k2
1E

inc(r) = 0, r ∈ Vint ∪ Vext, (4.6)

and describes the field that would exist in the absence of the scattering object, namely

the incident field. The particular solution chosen for equation (4.5) must give the

scattered field generated by j(r) and must vanish at large distances from the scattering

object to ensure energy conservation.

The dyadic Green’s function, a solution to the singular vector Helmholtz equation

for the electric field

∇×∇× G(r, r′)− k2
1G(r, r′) = Iδ(r− r′), (4.7)

provides the framework for solving the boundary-value problem. The dyadic Green’s

function G(r, r′) is found through applying a Lorentz gauge to the vector potential

in the solution of the free-space Maxwell’s equations, and is expressed (Tai , 1971) as

G(r, r′) =

(
I +

1

k2
1

∇∇
)
g(r, r′), g(r, r′) =

eik1|r−r′|

4π|r− r′| , (4.8)

where g(r, r′) is the Green’s function for the scalar Helmholtz equation. From the

dyadic property

∇× [G(r, r′) · j(r′)] = [∇× G(r, r′)] · j(r′), (4.9)

it follows that

∇×∇× [G(r, r′) · j(r′)]− k2
1[G(r, r′) · j(r′)] = I · j(r′)δ(r− r′). (4.10)

Integrating both sides of equation (4.10) over the entire space, we obtain

(
∇×∇× I− k2

1I
)
·
∫

Vint∪Vext

G(r, r′) · j(r′) dV ′ = j(r). (4.11)
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Comparison of (4.11) with (4.5) shows that

Esca(r) =

∫
Vint

G(r, r′) · j(r′) dV ′, for r ∈ Vint ∪ Vext, (4.12)

having taken into account that j(r) vanishes everywhere outside Vint. This particular

solution satisfies the necessary conditions, and the complete solution to (4.5) is

E(r) = Einc(r) +

∫
Vint

G(r, r′) · j(r′) dV ′, for r ∈ Vint ∪ Vext. (4.13)

The total field is then expressed as

E(r) = Einc(r) + k2
1

∫
Vint

G(r, r′) · E(r′)[m2(r′)− 1]dV ′

= Einc(r) + k2
1

(
I +

1

k2
1

∇∇
)
·
∫

Vint

[m2(r′)− 1]E(r′)
eik1|r−r′|

4π|r− r′|dV
′,

for r ∈ Vint ∪ Vext.

(4.14)

Here the total field at all locations of interest is expressed in terms of the incident field

and the total field inside the scattering object. Equation (4.14) is typically solved

numerically by first assuming the internal field is equal to the incident field, then

computing the resulting total field. The resulting field is then substituted into the

integral, and the process is repeated to convergence. The dyadic transition operator,

T, for the process of obtaining the internal field, gives the total field as

E(r) = Einc(r) +

∫
Vint

G(r, r′) ·
(∫

Vint

T(r, r′) · Einc(r′′)dV ′′
)

dV ′, (4.15)

where T is defined in the integral equation

T(r, r′) = k2
1[m2(r)− 1]δ(r− r′)I + k2

1[m2(r)− 1]

∫
Vint

G(r, r′′) · T(r′′, r′) dV ′′. (4.16)

In the far-field zone, |r− r′| ≈ r − r′ · r̂, and

g(r− r′) =
eik1r

r
e−ik1r′·r̂. (4.17)
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Expressing ∇ in the spherical coordinate system,

∇ = r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ φ̂

1

r sin θ

∂

∂φ
. (4.18)

The dyad product ∇∇ is taken directly in the spherical coordinate system, according

to the definition of a tensor, T ′ij = ∂x′i

∂xk
∂x′j

∂xl
T kl. All terms in the operation of the dyad

product ∇∇ on the far-field Green’s function (4.17) contain terms r−n. If all terms

with n > 1 are neglected, the remaining dyad is

∇∇ = r̂r̂
∂2

∂r2
, (4.19)

which gives the dyadic Green’s function as

G(r, r′) =
(
I− r̂r̂

) e−ik1r

r
e−ik1r′·r̂, (4.20)

where the term ∝ r−3 has been neglected. Then from equation (4.15), the scattered

electric field is expressed as

Esca(r) =
eik1r

r

k2
1

4π

(
I− r̂r̂

)
·
∫

Vint

[m2(r′)− 1]E(r′)e−ik1r′·r̂dV ′. (4.21)

The scattered field will be directly related to the incident field from this formulation.

Assuming the incident field is a plane wave,

Einc(r) = Einc
0 exp

(
ik1Ω̂

inc · r
)
, (4.22)

which is substituted into equation (4.15), and assuming that the field inside the

scattering object is Einc to a first approximation, we have

Esca(r) =
eik1r

r

1

4π

(
I− Ω̂sca Ω̂sca

)
·
∫

Vint

exp(−ik1Ω̂
sca · r′)

[∫
Vint

T(r′, r′′) exp(ik1Ω̂
inc · r) · Einc

0 dV ′′
]

dV ′,

(4.23)
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with the observer point r = rΩ̂sca. The scattering dyad, A, is expressed as

A =
1

4π

(
I− Ω̂sca Ω̂sca

)
·
∫

Vint

e−ik1Ω̂sca·r′
[∫

Vint

T(r′, r′′)eik1Ω̂inc·r′′ dV ′′
]

dV ′, (4.24)

such that the incident and scattered fields are linearly related,

Esca(rΩ̂sca) =
eik1r

k1r
A(Ω̂sca, Ω̂inc) · Einc

0 . (4.25)

Although this expression was derived for an incident plane wave, scattering of any

plane-wave composed incident field can be computed by superposition from this ex-

pression. By ensuring that the scattered and incident fields are transverse,

Ω̂sca·A(Ω̂sca, Ω̂inc) = 0

A(Ω̂sca, Ω̂inc) · Ω̂inc = 0,
(4.26)

the number of independent components of A are reduced from nine to four. The

amplitude scattering matrix, S, which relates the orthogonal components of the fields

as Escaθ(rΩ̂sca)

Escaφ(rΩ̂sca)

 =
eik1r

k1r
S(Ω̂sca, Ω̂inc)

Eincθ(rΩ̂inc)

Eincφ(rΩ̂inc)

 , (4.27)

is dimensionless and relates the transverse components of the incident and scattered

electric fields. In terms of the scattering dyad, its components are

S(Ω̂sca, Ω̂inc) =

S2 S3

S4 S1

 =

θ̂sca · A · θ̂inc θ̂sca · A · φ̂inc

φ̂sca · A · θ̂inc φ̂sca · A · φ̂inc

 . (4.28)

When known, the amplitude matrix provides a complete description of the scattering

pattern in the far-field zone. A key property of the amplitude matrix is the reciprocity

relation for reversal of incident and scattered directions,

S(−Ω̂inc,−Ω̂sca) =

 S2(Ω̂sca, Ω̂inc) −S3(Ω̂sca, Ω̂inc)

−S4(Ω̂sca, Ω̂inc) S1(Ω̂sca, Ω̂inc).

 (4.29)
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By substituting the scattered field expressions into the defining equation for the

amplitude matrix, equation (4.27), the sixteen elements of the phase matrix, (3.32),

are given as combinations of the amplitude matrix elements. The amplitude matrix

consists of seven independent values: the magnitudes Sj, j = 1 . . . 4, and the three

phases between them.

4.1.3 Optical Properties of Scattering Particles

The definitions invoked in equations (3.16) and (3.19) for the scattering and ab-

sorption cross sections are made more specific by describing the power measured by

photosensitive detectors in the presence and absence of a scattering particle. Through

a hypothetical extinction experiment, as illustrated in Figure 4.3, we can relate the

optical cross sections to the change in the electromagnetic fields from interactions

with the scattering particle.

Scattered 

Incident 

Detector 2

Detector 1

A 

Figure 4.3: Extinction-measuring experiment.

The time-averaged Poynting vector of the total electromagnetic field at any point

in the far-field region, which can be expressed as an irradiance, is

〈S(r)〉 = 〈Sinc(r)〉+ 〈Ssca(r)〉+ 〈Sext(r)〉

=
1

2
Re
{
Einc ×Hinc∗ + Esca ×Hsca∗ + Einc ×Hsca∗ + Esca ×Hinc∗} , (4.30)
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where the terms on the right-hand side are, respectively, the incident and scattered

irradiances, and two interaction terms between the incident and scattered fields. For

an incident plane wave, the fields can be expressed in the far-field region as the sum

of an outgoing and incoming spherical wave using the far-field form of the spherical

Bessel functions, which gives

Einc(r) = Einc
0 exp

(
ik1Ω̂

inc · r
)

≈ 2πi

k1

[
δ(Ω̂inc + r̂)

e−ik1r

r
− δ(Ω̂inc − r̂)

eik1r

r

]
Einc

0 , Einc
0 · Ω̂inc = 0,

Hinc(r) =

√
ε1
µ0

exp
(
ik1Ω̂

inc · r
)

Ω̂inc × Einc
0

≈ 2πi

k1

[
δ(Ω̂inc + r̂)

e−ik1r

r
− δ(Ω̂inc − r̂)

eik1r

r

]√
ε1
µ0

Ω̂inc × Einc
0 .

(4.31)

In these expressions r = rr̂ is the position vector of the observation point. Using

the expressions for the scattered electric field derived in the previous section, the

scattered fields in the far-field limit are expressed as

Esca(r) =
e−ik1r

k1r
Esca

1 (r̂), Esca
1 (r̂) · r̂ = 0

Hsca(r) =

√
ε1
µ0

e−ik1r

k1r
Ω̂sca × Esca

1 (r̂).

(4.32)

Consider detector 2 in Figure 4.3, which lies at a distance r from the particle in

the far-field zone and has its surface aligned normal to r̂. The detector surface is

assumed to be sufficiently large that the scattered fields do not change significantly

over the detector area. The time-averaged power measured by this detector is found

by substituting the expressions for the incident and scattered fields into equation

(4.30). The measured power at this location is simply

Wsca,∆A(r̂ 6= Ω̂inc) =

∫
∆A

〈S(r)〉 · r̂ dA =
1

2

√
ε1
µ0

|Esca
1 (r̂)|2
k2

1

∆Ω, (4.33)

where ∆Ω = ∆A
r2 is the solid angle subtended by the detector area as seen by the

particle.
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In a similar manner, the power measured by detector 1, which lies at a distance

z from the particle in the forward-scattering direction, r̂ = Ω̂inc, is

W (r̂ = Ω̂inc) =

∫
∆A

〈S(r)〉 · r̂ dA

=
1

2

√
ε1
µ0

[
|Einc

0 |2∆A+
|Esca

1 |2
k2

1

∆Ω− 4π

k2
1

Im
{

Esca
1 (Ω̂inc) · Einc∗

0

}]
= F0

[
∆A+

|Esca
1 |2

k2
1|Einc

0 |2
∆Ω− 4π

k2
1|Einc

0 |2
Im
{

Esca
1 (Ω̂inc) · Einc∗

0

}]
.

(4.34)

The incident irradiance,

F0 =
1

2

√
ε1
µ0

|Einc
0 |2, (4.35)

has been substituted for simplicity. The first term on the right-hand side of (4.34)

corresponds to the incident field power captured by the detector, and is independent

of the distance of the detector from the scattering particle. This component of the

power also remains unchanged if the scattering particle is removed.

The second term in equation (4.34) corresponds to the power scattered into a solid

angle ∆Ω centred about the forward direction. If this solid angle is made sufficiently

small, consistent with the requirement that k1R
2/z � 4π, where R is the maximum

linear dimension of the detector surface, then the measured power is

W (r̂ = Ω̂inc) = F0 (∆A− σext) . (4.36)

In this expression the term that expresses the maximum reduction in measured power

due to the presence of the scattering particle is the extinction cross section, σext,

defined as the ratio of the power removed from the beam to the incident irradiance,

σext =
Wext

F0

=
4π

k2
1

Im
{

Esca
1 (Ω̂inc) · Einc∗

0

}
|Einc

0 |2

=
4π

k2
1

Im
{
S(Ω̂inc, Ω̂inc) · e∗

}
,

(4.37)

which has dimensions of area. In this expression, e is the complex polarization vector

74



of the incident electric field. Note that in this expression the extinction cross section

depends on the value of the scattering amplitude, S, in the forward direction only.

From equation (4.36), the extinction cross section is then a directly observable

physical quantity. When the measurement of the scattered-field power is made suf-

ficiently small, then the reduction in measured power due to the presence of the

intervening particle yields the value σext.

In analogy with the measurement from detector 2 in Figure 4.3, the scattering

cross section is defined by the integral of the scattered field over the surface of a

far-field sphere that encloses the scattering particle, again as a power removed from

the beam relative to the incident radiance,

σsca =
Wsca

F0

=

∫
4π

|Esca
1 |2

k2
1|Einc

0 |2
dΩ. (4.38)

Similarly, the absorption cross section is evaluated as a ratio of power to the

incident irradiance. In this case, the power is that absorbed by a particle as computed

by integrating the total Poynting vector over the surface of a sphere,

σabs =
Wabs

F0

=
1

F0

∫
4π

〈S(r)〉 · r̂ dA. (4.39)

When equations (4.30), (4.37), and (4.38) are evaluated for a non-absorbing medium,

we obtain the relation

σext = σsca + σabs. (4.40)

We note that the definition of the extinction cross section in equation (4.37) is

a statement of the optical theorem (?, Newton (1976)). This theorem states that

for a process in which the scattering amplitude is S, such that the total field is

ψ(r) = eikz + eikr

kr
S(θ), the extinction cross section is

σext =
4π

k2
1

Im {S(0)} . (4.41)

This is a fundamental result that states that the extinction depends only on the
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scattering amplitude in the forward direction and that describes scattering properties

for a wide range of physical processes from acoustic and electromagnetic waves to

operations involving elementary particles.

4.1.4 Particle Size Distributions

The optical properties described thus far have been those for a single particle. In any

measurements of the optical properties of real particles there is always an underlying

distribution in particle size due to ongoing particle formation, growth, and removal

processes.

Various particle size distributions (PSDs) are used to parameterize the microphys-

ical distribution of the scattering or absorbing particles, where optical properties are

calculated as expectation values from the distribution. For a given PSD, the number

of particles of size between L and L+ dL is n(L)dL. The gamma distribution,

n(L) = N0ΓL
µ e−λΓ L, (4.42)

where both λΓ and L > 0, and −1 ≥ µ ≥ +1, is typically used to describe the size

distribution of cirrus cloud ice crystals and has also been used to model blowing snow

particles (Pomeroy and Male, 1988). This distribution is used at several points within

this work. The lognormal distribution, which describes a quantity whose natural

logarithm is distributed according to the normal distribution, is expressed as

n(L) =
1

ln sg
√

2π

1

L
e
− (lnL−lnL0)2

2(ln sg)2 . (4.43)

The lognormal distribution is typically used to describe the size distribution of strato-

spheric sulphate aerosols, where L and L0 ≥ 0 and sg > 1. Ice cloud size distributions

are typically expressed as a function of the maximum dimension of detected parti-

cles, denoted by L, since this is the most readily measurable linear dimension of

irregularly-shaped particles.

The effective size, De, is a characteristic dimension used to describe the scattering
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properties of a cirrus cloud in a way that is representative of the bulk behaviour of

constituent ice crystals. There is some variety in the definitions of an effective size

of cirrus ice crystals due to the varying crystal shapes encountered (McFarquhar and

Heymsfield , 1998).

A common definition comes from Hansen (1971), who found that the optical prop-

erties of liquid water clouds composed of spherical droplets with large size parameter

depended mainly on the effective radius for scattering, defined as

re =
1

〈G〉

∫ ∞
0

πr2 n(r) r dr. (4.44)

In this expression, 〈G〉 is the average geometric cross-sectional area of water drops per

unit volume, and the size parameter for the particles studied were sufficiently large

that Qext was taken to have a value of two. An alternate definition of the effective

size is in terms of the ratio of the total volume to the total projected area normal to

an imaging beam,

De =
3

2

∫ Lmax
Lmin

V (L)n(L) dL∫ Lmax
Lmin

A(L)n(L) dL
. (4.45)

In this definition, Lmin and Lmax are the sizing instrumentation detection limits.

These definitions are made explicit since later chapters will describe the effective

size that best describes scattering by a detected cloud. The width of a size distribution

is typically expressed in cloud microphysics in terms of the effective width,

we =
1

〈G〉

∫ ∞
0

πr2 n(r) (r − re)2 dr. (4.46)

The terminology used in this work describes cloud particles in terms of their effec-

tive size expressed as a diameter, De = 2re, to correspond to the maximum particle

dimension, L. It is worth noting at this point that many cirrus clouds parameter-

izations within climate models use as inputs the properties τc, De, and cloudiness

fraction in a geographical area to represent clouds within a given grid cell.
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4.2 Sources for Optical Properties of Ice Crystals

The development of numerical techniques for computing the optical properties σext,

σscat, and P (Θ) of non-spherical particles is a large and complex field, and in this

work we only briefly summarize the approaches used to obtain these properties. The

T -matrix technique (Mishchenko et al., 1996) expands the incident, internal, and

scattered fields in vector spherical wave function representations, and enforces con-

tinuity at the particle surface. The Discrete Dipole Approximation (DDA, Yurkin

and Hoekstra (2007)) models the scattering body as a collection of interacting point

dipoles. For larger particles, a database of optical properties generated by a geometric

ray-tracing technique is used in this work. A summary of these sources follows.

4.2.1 T -Matrix Technique

The T -matrix method is based on expanding the incident and scattered electromag-

netic fields in vector spherical basis functions Mmn and Nmn similar to those used in

Mie theory,

Einc(r) =
∞∑
n=1

n∑
m=−n

[amn Rg Mmn(k1r) + bmn Rg Nmn(k1r)]

Esca(r) =
∞∑
n=1

n∑
m=−n

[pmn Mmn(k1r) + qmn Nmn(k1r)],

(4.47)

where Mmn is purely transverse. The functions Rg Mmn and Rg Nmn are regular

(finite) at the origin, with radial components given by spherical Bessel functions, while

Mmn and Nmn contain spherical Hankel functions to ensure the radiation condition

at infinity is satisfied. From the linearity of Maxwell’s equations, the scattered- and

incident-field coefficients are related in matrix form asp

q

 =

T11 T12

T21 T22

a

b

 = T

a

b

 , (4.48)
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and the T-matrix relates the incident and scattered field coefficients. The extended

boundary condition method (EBCM, Waterman (1971)) on which the T -matrix

method is based, uses the vector Green’s theorem to solve for the electric and mag-

netic fields in the scattering volume in terms of their behavior on the particle surface.

The vector Huygens’ principle, based on applying Green’s theorem to the electric field

in the region Vext outside the scattering particle, relates the incident, scattered, and

total fields (Mishchenko et al., 2002) as

Einc(r′) +

∫
S

n̂ ·
(

[∇× E(r)]× G(r, r′) + E(r)× [∇× G(r, r′)]
)

dS =E(r′), r′ ∈ Vext

0, r′ ∈ Vint,

(4.49)

where n̂ is a unit vector normal to surface element dS. The scattered field outside

the particle is expressed in terms of the components of the fields on the exterior of

the particle surface (denoted by the ‘+’ superscript) as

Esca(r′) =

∫
S

(
iωµ0[n̂×H+(r)] · G(r, r′) + [n̂× E+(r)] · [∇× G(r, r′)]

)
dS. (4.50)

The boundary condition separating the regions in equation (4.49) is ‘extended’ by

moving r′ inside the particle. In this scheme, the incident field is then also expressed

as a function of the surface fields,

Einc(r′) = −
∫
S

(
iωµ0

[
n̂×H+(r)

]
· G(r, r′) +

[
n̂× E+(r)

]
· [∇× G(r, r′)]

)
dS.

(4.51)

Numerically, the incident field series coefficients a and b are precalculated with refer-

ence to the incident field orientation. Equation (4.51) thus reinterprets the incident

field Einc as equivalent electric and magnetic currents J = n̂×H+ and M = E+ × n̂

on the particle surface according to Schelkunoff’s equivalence theorem (Barber and

Yeh, 1975). By expressing the free space dyadic Green’s function in vector spherical
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wave functions (Morse and Feshbach, 1953),

G(r, r′) = ik1

∞∑
n=1

n∑
m=−n

(−1)m



M−mn(k1 r, θ, φ)Rg Mmn(k1 r
′, θ′, φ′)

+N−mn(k1 r, θ, φ)Rg Nmn(k1 r
′, θ′, φ′) r > r′

Rg M−mn(k1 r, θ, φ)Mmn(k1 r
′, θ′, φ′)

+Rg N−mn(k1 r, θ, φ)Nmn(k1 r
′, θ′, φ′) r′ > r,

(4.52)

and substituting this form into equations (4.50) and (4.51), the scattered field series

coefficients p and q are given in terms of the surface currents n̂×H+(r) and n̂×E+(r).

The fundamental series expansions in equation (4.47) are found in this way, where

the series coefficients a, b, p, and q are the terms leading the desired basis functions.

Then the coefficients are found as

amn = (−1)mk1

∫
S

ωµ0

[
n̂×H+(r) ·M−mn(k1 r, θ, φ)

− ik1n̂× E+(r) ·N−mn(k1 r, θ, φ)
]
dS

bmn = (−1)mk1

∫
S

[ωµ0

[
n̂×H+(r)] ·N−mn(k1 r, θ, φ)

− ik1[n̂× E+(r)] ·M−mn(k1 r, θ, φ)
]
dS

(4.53)

and

pmn = −(−1)mk1

∫
S

[
µ0ω[n̂×H+(r)] · Rg M−mn(k1 r, θ, φ)

− ik1[n̂× E+(r)] · Rg N−mn(k1 r, θ, φ)
]
dS

qmn = −(−1)mk1

∫
S

[
µ0ω[n̂×H+(r)] · Rg N−mn(k1 r, θ, φ)

− ik1[n̂× E+(r)] · Rg M−mn(k1 r, θ, φ)
]
dS.

(4.54)

These relations express the scattered fields in terms of surface currents generated by

the incident and induced fields. To obtain the total surface current, surface fields due

to the internal fields must be determined. The fields everywhere inside the scattering

object are expanded in regular vector spherical wave functions of the interior wave
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equation (4.2)

E(r) =
∞∑
n′=1

n′∑
m′=−n′

[cm′n′ Rg Mm′n′(k2r) + dmn Rg Nm′n′(k2r)]

H(r) =
k2

iωµ0

∞∑
n′=1

n′∑
m′=−n′

[dm′n′ Rg Mm′n′(k2r) + cmn Rg Nm′n′(k2r)]

(4.55)

for r ∈ Vint. The boundary conditions for the solution of Maxwell’s equations requires

the continuity of the tangential electric and magnetic fields at all points on the surface,

n̂× E+(r) = n̂× E−(r)

n̂×H+(r) = n̂×H−(r).
(4.56)

Substituting (4.55) through (4.56) into (4.53) and rearranging, the matrix equation

a

b

 = Q

c

d

 =

Q11 Q12

Q21 Q22

c

d

 (4.57)

is obtained, where elements of Q are integrals of the vector spherical wave functions

over the particle surface. Effectively, incident field coefficients a and b have been re-

cast in terms of the resulting field inside the scattering object. Similarly, substituting

(4.55) through (4.56) into (4.54) gives the scattered field coefficients p and q,

p

q

 = −Rg Q

c

d

 = −

Rg Q11 Rg Q12

Rg Q21 Rg Q22

c

d

 . (4.58)

So the T -matrix – which relates the scattered field expansion coefficients to the

incident field coefficients as in (4.48) – is given in the particle’s reference frame, P ,

as

T(P ) = −(RgQ)Q−1. (4.59)

Because the T -matrix depends only on the scattering particle size, shape, and refrac-

tive index, averaging may be performed over the particle orientation, and the results
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of a computation are extensively cached. All scattering properties for the particle are

expressed in terms of the T -matrix, for example

σext = − 1

k2
1|Einc

0 |2
Re

∞∑
n=1

n∑
m=−n

[amn(pmn)∗ + bmn(qmn)∗]

σsca =
1

k2
1|Einc

0 |2
∞∑
n=1

n∑
m=−n

[
|pmn|2 + |qmn|2

]
,

(4.60)

and the amplitude matrix (4.27) and scattering matrix (3.33) elements are formed by

linear combinations of angular eigenfunctions with T -matrix elements as coefficients.

For the case of a spherical scattering problem, this method exactly recovers the results

obtained from Lorenz-Mie computations.

A sample computation of the scattering phase function P (Θ) for prolate circular

cylinders with axis ratio 2:1 is shown in Figure 4.4 for a range of effective sizes, x, on

a logarithmic scale. For size parameters near zero, it is clear that the scattering phase
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Figure 4.4: T -matrix phase functions for scattering of 750 nm light by varying particle
sizes.

function appears quite close to the near-isotropic behaviour of Rayleigh scattering.

As the size parameter increases, the scattering behaviour becomes increasingly dom-
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inated by forward scattering. A number of ‘halo’ features are present as well in this

figure for size parameters above x = 4 and for scattering angles 30 < Θ < 150.

The T -matrix code of Mishchenko et al. (1996), which is written in the FOR-

TRAN programming language, has been incorporated into the SASKTRAN model

as a dynamically-linked library (DLL) through the use of wrapper classes to calculate

ice-scattering properties.

4.2.2 Discrete Dipole Approximation

The discrete dipole approximation begins by discretizing the integration volume Vint

of equation (4.14) into N spherical subvolumes, each of which is modeled as a dipole.

The total scattered field is computed from the bulk effect of the interaction of the

dipoles with the incident field and with each other. From equation (4.14), the electric

field at a point inside subvolume Vi that results from the incident field is

E(r) = Einc(r) + k2
1

N∑
j 6= i

∫
Vj

G(r, r′) · E(r′)χ(r′)dV ′ + M(Vi, r)− L(∆Vi, r) · E(r)χ(r),

(4.61)

where χ(r) = [m2(r)− 1] is the material susceptibility. The vector

M(Vi, r) =

∫
Vi

(
G(r, r′) · E(r′)χ(r′)− G

s
(r, r′) · E(r)χ(r)

)
dV ′ (4.62)

accounts for the finiteness of volume Vi, and approaches zero as Vi decreases. Here

G
s
(r, r′) is the static limit (k → 0) of the higher-order Green’s dyadic

G
s
(r, r′) = ∇∇ 1

R
= − 1

R3

(
I− 3

R̂R̂

R2

)
, (4.63)

where R = r−r′. The effect of subvolume Vi on itself is accounted for by the self-term

dyadic

L(∆Vi, r) = −
∮

∆Vi

n̂′R̂

R3
dS ′. (4.64)
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where surface ∆Vi has unit normal n̂′ at r′. Assuming the dielectric properties are

constant within each subvolume and that the representation of interacting dipoles

captures well the effects of material polarization, a matrix formulation of the scat-

tering problem follows (Yurkin and Hoekstra, 2007), which solves for the exciting

electric fields at each dipole location

Eexc
i =

[
I + (Li −Mi)χi

]
· Ei = Ei − Eself

i (4.65)

Eself
i = (Mi − Li)χi · Ei. (4.66)

Here χi = χ(ri) is the susceptibility of the ith dipole and Eself
i is the field induced

by the sub-volume on itself. In this expression the values of Li and Mi are evaluated

using their equivalents at the ‘dipole’ sphere centres. With these assumptions, the

total field in equation (4.14) through equation (4.61) is

Einc
i = Eexc

i −
∑
j 6=i

GijαjE
exc
j , (4.67)

where αi is the polarizability tensor,

αi = Viχi

[
I + (Li −Mi)χi

]−1

, (4.68)

and the scattered-field solution requires solving only 3N linear equations. This

method has received considerable attention due to its numerical simplicity and quite

good accuracy.

The DDSCAT code of Draine and Flatau (1994), which is written in the FOR-

TRAN programming language, has also been incorporated into the SASKTRAN

model as a dynamically-linked library (DLL) through the use of wrapper classes to

calculate ice-scattering properties.

Either of the T -matrix or DDA algorithm may be used in SASKTRAN to compute

scattering of sunlight by small ice crystals, depending on the type of ice-scattering

computations needed. The T -matrix approach has slightly faster computational times
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that come at the expense of assuming axially-symmetric scattering particles. The

DDA algorithm, by contrast, allows the user to specify arbitrary particle shape. For

currently available computational resources, these algorithms work for particle sizes

up to approximately 1 µm for the wavelengths of interest in this work.

4.3 Database of Cirrus Optical Properties

The characteristic sizes of ice crystals frequently encountered in cirrus clouds can

vary over a very large range, depending on the thermodynamic conditions in the

cloud region as well as on the available water vapour amount. Typical effective radii

for cirrus range from 10 µm to 200 µm, with effective size parameter x between 1

and 1500. For any but the smallest of these size parameters, analytical computations

become impractical. For this purpose, Baum et al. (2005a) and Baum et al. (2005b)

have compiled a database of ice crystal scattering properties for a large variety of ice

crystal habits based on in-situ collection of cloud particles.

From a series of experiments in which high-altitude aircraft with particle size spec-

trometer probes were taken through Lagrangian descents through clouds (Heymsfield

et al., 2002), 1117 measured particle size spectra from tropical and sub-tropical cloud

observations were fit to gamma distributions (4.42). The measured size distributions,

characterized by a median mass diameter Dm and cloud ice-water content (IWC),

were supplemented by cloud-particle imager (CPI) and video ice particle sampler

(VIPS) probe data taken concurrently, which also measured L, the maximum dimen-

sion of detected particles.

By using IWC and median mass diameter Dm as orthogonal fit parameters, ice op-

tical property modeling was performed using combined DDA-geometric optics meth-

ods – for a range of assumed particle habits – for the measured PSDs to obtain

habit-specific ‘calculated’ values IWC and Dm.

Relative amounts of each habit mixture were adjusted to obtain best-fit compar-

isons between the measured and ‘calculated’ Dm and IWC. Size-specific ice crystal

habits were used: droxtals (Yang et al., 2003) and plates for particles smaller than
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L = 60 µm; plates, columns, and needles for crystals 60 µm ≤ L ≤ 2000 µm; and

aggregates for the largest crystals. The selected habit mixtures were consistent with

CPI and VIPS images. The range of measured sizes is characterized by the effective

size, De, using the definition of equation (4.45). The computed optical properties in

the database are binned into 18 effective sizes: from De = 10 µm to 180 µm in 10 µm

increments. The mean and standard deviation of computed properties from the 1117

measured PSDs are tabulated in the database for wavelengths between 400 nm and

2.2 µm.

A typical plot of the scattering phase function from this database, as a function of

effective size parameter and scattering angle for scattering of 750 nm light, is shown

in the left-hand panel of Figure 4.5. Note that the phase function values are shown

on a logarithmic scale. The phase function for De = 180 µm from this figure is
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Figure 4.5: Phase function from in situ database optical properties (a) for all effective
sizes, 10 to 180 µm. (b) Rayleigh- and Mie-scattering phase functions compared with
T -matrix and De = 180 µm database phase functions.

shown at right along with phase functions for 750 nm light scattering by particles

whose effective size span several orders of magnitude. Rayleigh scattered light from

atmospheric molecules is nearly isotropic with preferential forward and backward

scattering. Mie scattering from typical stratospheric aerosol particles in a lognormal
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distribution from the code of Wiscombe (1980) has a clear forward peak. This peak

increases by an order of magnitude for T -matrix computations of scattering by ice

crystals with size De = 2.0 µm and effective width we = 0.113. This diffraction

peak becomes extremely large for scattering by large particles, as also seen in the

left-hand figure, where for most particle sizes at this wavelength, the value of the

phase function in the near-forward direction is on the order of 106. As well, there are

several haloes present for all effective sizes in the left-hand plot. There is a distinct

halo near 22◦ due to a single refraction between the opposing faces of a hexagonal

crystal at 240◦ to one another; and a halo near 46◦ from refraction between the basal

and prismatic faces.

The ice crystal optical properties from this database have been incorporated into

the SASKTRAN model. However, the inclusion of such extremely sharply peaked

phase functions requires several modifications to a standard successive-orders model,

whose scattering integral evaluation was designed for Rayleigh- and Mie-scattering

particles. These modifications, and the techniques developed to study their effective-

ness, are discussed in the next chapter.
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Chapter 5

Unit Sphere Integration

The scattering behaviour of ice crystals encountered in a typical subvisible cirrus

cloud is preferentially peaked in the forward direction. For a typical ice crystal

50 µm in length, half of the incoming radiance at visible wavelengths is scattered

into a small cone of angle 0.05◦ about the forward direction. This behaviour presents

a challenge to the numerical evaluation of the source term in ray-tracing radiative

transfer models. This chapter describes solutions that we have implemented for this

problem and closely follows work published in Wiensz et al. (2012).

5.1 Multiple-Scattering Integral

The fundamental relation of the scattering of ‘incoming’ rays with radiance I to

produce an ‘outbound’ source function J , is given by equation (3.30), shown here for

reference,

Ji+1(s, Ω̂) =
kscat(s)

k(s)

∫
4π

Ii(s, Ω̂
′) P̄ (s, Ω̂, Ω̂′) dΩ′. (3.31)

In a typical successive-orders of scattering model concerned with molecular scattering,

the incoming directions Ω̂′ are distributed in a zenith-azimuth grid such that the

general variation of the diffuse radiance is captured by the rays, as was shown in
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Figure 3.13. With this assumption, equation (3.30) becomes

Ji+1(s, Ω̂) ≈ kscat(s)

k(s)

∑
∆Ω′j

∫
∆Ω′j

Ii(s, Ω̂′) P̄ (s, Ω̂, Ω̂′) dΩ′, (5.1)

with incoming radiances specified at directions Ω̂′j with associated solid angles ∆Ω′j.

Because the incoming radiances are assumed to be constant over their respective solid

angles,

Ji+1(s, Ω̂) ≈ kscat(s)

k(s)

∑
∆Ω′j

Ii(s, Ω̂
′
j)

∫
∆Ω′j

P̄ (s, Ω̂, Ω̂′′) dΩ′′, (5.2)

and if Rayleigh and Mie scattering with x . 1 are primarily of interest, then it is

quite sufficient to assume that the required mean value of the phase function over

solid angle ∆Ωj is well approximated by

P̄ (s, Ω̂k, Ω̂
′
j) ≈ P̄ (s, Ω̂k · Ω̂′j), (5.3)

where the scattering angle is Θj = arccos(Ω̂ · Ω̂′j), so that

Ji+1(s, Ω̂) ≈ kscat(s)

k(s)

Ninc∑
j=1

Ii(s, Ω̂
′
j) P̄ (s,Θj) ∆Ω′j, (5.4)

It will be shown that this approximation holds well for the molecular and Mie scat-

tering, but fails quickly as the forward-scattering peak P (Θ = 0◦) increases with size

parameter x.

The numerical techniques developed in this work to handle highly asymmetric

phase functions will be presented in Section 5.2. First, a brief survey of the treatment

of this problem in other radiative transfer model families is presented.

5.1.1 Photon Conservation in Discrete Ordinates Models

Within discrete-ordinates or 2N -stream models (Stamnes et al., 1988), the integration

over incoming radiances – which depends only on zenith angle due to the Fourier

expansion in solar azimuth – is expressed as a Gaussian quadrature over 2N radiation
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‘streams’, as in equation (3.36). The integral in (3.30) is a summation over the

combined phase function and incoming radiance at discrete incoming streams.

The majority of models that incorporate highly asymmetric phase functions be-

long to the discrete-ordinates family of models, which employ plane-parallel geometry.

In such models, photon conservation is analytically guaranteed through the Gaussian

quadrature through which the multiple-scattering source term J(τ, Ω̂) is computed.

In the standard formulation, this term reduces to a quadrature for the zenith angle

integration

Jm(τ, µi) =
N∑

j=−N
j 6=0

wjD
m(τ, µi, µj) I

m(τ, µj),

that is used to solve for the Fourier cosine component Im(τ, µi) of the total radiance

along the ‘stream’ µi, for i = ±1, . . . ,±N . The quadrature locations and weights for

the radiances conform to the normalization condition from the Gaussian quadrature

rule (Stamnes et al., 1988),

N∑
j=−N
j 6=0

wjD
0(τ, µi, µj) =

N∑
i=−N
i 6=0

wiD
0(τ, µi, µj) = ω(τ), (5.5)

where the phase functions are internally expanded in terms of the modified Legendre

functions as in equation (3.37). In this formulation, since the stream positions µi are

distributed according to the zeros of the Legendre polynomials, equation (5.5) ensures

photon conservation through the location of zeros in the Lagrangian interpolating

polynomials.

Since the handling of very strongly-peaked phase functions within discrete-ordinates

models requires the expansion of the phase function in increasingly high-order Legen-

dre polynomials, the delta-Eddington (Joseph et al., 1976) and delta-M (Wiscombe,

1977) methods were introduced, which approximated the forward-scattering peak by

a Dirac delta function, and thereby reduced the number of expansion terms required

for solution. The approximation of the forward-scattering peak by a delta function

and truncation of the phase function was also done within a doubling-method model
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by Potter (1970). The oscillation errors introduced by the delta-M method were

quantified by Nakajima and Tanaka (1988), who also introduced a single-scattering

correction to this method.

Iwabuchi and Suzuki (2009) have implemented a geometric phase function trun-

cation technique within a Monte-Carlo model, where polynomial expansions are not

needed. This work introduced different approximations of the phase function that

are used for each order of scatter.

5.1.2 Photon Conservation Diagnostic

For any radiative transfer model in which the scattering integral is approximated

numerically, photon conservation can be considered by checking the accuracy of the

scattering numerical quadrature. One way this of doing this is through a photon-

accounting technique in which the radiance value of a single incoming direction is

compared before and after it undergoes scattering into all directions. Consider a sin-

gle value of the incoming radiance, I(s, Ω̂′). If this single value is scattered individ-

ually into all outbound directions, Ω̂, then the integral over all resulting ‘outbound’

radiances should be exactly equal to the original incoming radiance. Due to the ap-

proximate nature of the numerical evaluation of the scattering integral, however, this

is not the case. For this reason we develop a diagnostic technique to quantify and

reduce this error.

Consider again the incoming radiance in a single direction, I(s, Ω̂′). If this ra-

diance is scattered into all outbound directions by multiplication with the phase

function and the result is integrated over all outbound directions, then we obtain a

function of incoming direction that we denote as

J(s, Ω̂′) =

∫
4π

J(s, Ω̂, Ω̂′j) dΩ (5.6)

=

∫
4π

[
ω̃ I(s, Ω̂′)P̄ (s,Ω,Ω′)dΩ′

]
dΩ (5.7)

= ω̃ I(s, Ω̂′) dΩ′
∫

4π

P̄ (s,Ω,Ω′)dΩ. (5.8)
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If the numerical evaluation of the scattering integral is performed accurately, then

the value of this function – the Ω̂′-specific integrated outbound radiance – should be

identical to the incoming radiance, I(s, Ω̂′), when divided by ω̃ dΩ′. We can measure

the accuracy of the scattering integral evaluation when discrete incoming directions,

Ω̂′j, are used by introducing a photon conservation scaling factor, κ (Wiensz et al.,

2012), as

κ(s, Ω̂′j) · I(s, Ω̂′j) ω̃∆Ω′j =

∫
4π

J(s, Ω̂, Ω̂′j) dΩ. (5.9)

In this expression, a value κ(s, Ω̂′j) of unity would indicate that the incoming radiance

I(s, Ω̂′j) has been conserved through distribution into the outbound directions, and

thus κ(s, Ω̂′j) = 1 for all j directions indicates ideal conservation of photons upon

scattering. This factor provides a helpful diagnostic measure of the scattering integral

uncertainty in practical numerical computations.

Since in SASKTRAN the set of outbound directions contain spherical cubature

weights, wk (Sloan and Womersley , 2004), the conservation condition of equation

(5.9) can be expressed as

κ(s, Ω̂′j) =

N∑
k=1

wk J(s, Ω̂k, Ω̂
′
j)

I(s, Ω̂′j) ω̃ ·∆Ω′j
. (5.10)

Since the incoming radiance is assumed constant over the solid angle ∆Ω′j, equation

(5.10) can be expressed using equation (5.4) in terms of the mean value of the phase

function over the range of scattering angles defined by Ω̂k and the incoming solid

angle dΩ′j,

κ(s, Ω̂′j) =
N∑
k=1

wk P̄ (s, Ω̂k, Ω̂
′
j). (5.11)

If the phase function is smoothly-varying, the scaling factors evaluate to

κ(Ω̂′j) =
N∑
k=1

wk P̄ (s, Ω̂k · Ω̂′j). (5.12)

Within the SASKTRAN model, for each scattering event, the quantities κ(s, Ω̂′j)
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are computed for each incoming direction using equation (5.12), and each outbound

radiance is divided by the scaling factor κ(s, Ω̂′j) appropriate to each incoming di-

rection. For scattering by particles with highly asymmetric phase functions, these

factors depart significantly from unity, and the scaling of outbound radiances intro-

duces a false re-distribution of radiance. This problem is addressed in Section 5.3.

In the following discussion, the spatial coordinate s is assumed and will be removed

from all quantities.

The scaling factors, κ, constitute a set of values defined as a function of incoming

direction Ω̂′j that evaluate to unity when the integral (3.30) is well approximated

by the summation (5.4). The departure of these factors from unity is illustrated in

Figure 5.1 by modeling the scattering of 750 nm light by successively larger particles

for a diffuse point at an altitude of 24.5 km. The phase functions that are combined

for various atmospheric scattering operations in this figure are those that were shown

on a logarithmic scale in Figure 4.5.

The set of scaling factors for a Rayleigh-scattering atmosphere is shown as a

function of incoming radiance direction in Figure 5.1a. For molecular-only scattering,

the scaling factors evaluate to unity to within eight decimal places of accuracy. The

scaling factors for the same altitude, but when a sulphate aerosol layer is added to

the molecular background, are shown in Figure 5.1b. The aerosol scattering used

in this computation assumes lognormally distributed particles of background size

(rg = 0.08 µm, sg = 1.6) and number density n = 1 cm−3. From this figure, it is seen

that the phase function quadrature for scattering by stratospheric aerosol is accurate

to four decimal places.

When slightly larger particles with a lesser degree of symmetry, such as subvi-

sual cirrus ice crystals, are added to the molecular background atmosphere, a more

significant departure from unity is seen. The scaling factors computed for T -matrix

(Mishchenko et al., 1996) simulated ice cylinders (aspect ratio of unity) in a gamma

distribution with volume-effective radius re = 1.0 µm, shape parameter 0.113, and

number density n = 1 cm−3 are shown in Figure 5.1c. At this particle size, the inac-

curacy in the phase function integration has become more significant, with accuracy
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Figure 5.1: Scaling factors κ(Ω̂′j) as a function of incoming direction for increasing
size of scattering particles.

now at two decimal places.

If particles with larger size parameters are involved in scattering, the scaling

factors become very widely distributed, and the redistribution or ‘smearing’ effect in-

volved in the scaling of radiances becomes very significant. The scattering properties

from the in-situ database of Baum et al. (2005a) are used in SASKTRAN to simulate

scattering by large ice crystals. As a worst-case example, the values κ for scattering

of 750 nm light by ice crystals with an effective size of De = 180 µm and number
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density of 10−4 cm−3 are shown in Figure 5.1d. The inadequacy of the assumptions

underlying the sum in equation (5.4) is clear from this figure. Radiance computations

involving such scattering parameters are quickly divergent. The majority of incoming

directions in this case have κ < 1 since the combinations of scattering angles specified

by Ω̂′j · Ω̂k do not sample the very narrow forward-scatter peak, and a few incom-

ing directions have scattering angles sufficiently close to zero that their κ values are

between 102 and 105.

5.2 Highly Asymmetric Phase Function Techniques

5.2.1 Mean Scattering Phase Function

A small improvement to this situation results if the mean value of the phase function

over the incoming solid angle, ∆Ω′j, is used instead of the value at Ω̂k · Ω̂′j. If a

set of points is distributed on the incoming unit sphere at very high resolution in

both zenith and azimuth, then the mean value of the phase function can be taken

for all scattering angles between Ω̂k and each high-resolution point in ∆Ω′j. This

higher-resolution sampling of the phase function improves the quality of the numerical

integration. Figure 5.2 shows the scaling factors that result if a set of points separated

by 0.05◦ in zenith and azimuth are used.

At this resolution, the technique typically brings the values of κ to within an order

of magnitude of unity for incoming directions except a narrow band about θ = 180◦

that samples the strong forward peak of an outbound direction positioned at θ = 0◦.

If the diffuse incoming radiance is well-represented by the incoming point dis-

tribution, this method presents a reasonable approach to reduce slightly the error

introduced by the assumption in equation (5.11). This technique may be necessary

for some conditions, but its usefulness is limited due to its computationally intensive

nature. The evaluation of the mean phase function at angular separation of 0.05◦

requires distributing 26 million points on the surface of the unit sphere, and the

required phase function interpolations slow the scattering computation by several
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Figure 5.2: Scaling factors κ(Ω̂′j) for ice crystal scattering with mean phase function
computation over incoming solid angle, ∆Ωj.

orders of magnitude.

5.2.2 δ-Function Approximation and Truncation

The scattering phase functions from the database of Baum et al. (2005a) display

an extremely sharp forward-scattering peak, with half of the incident radiation being

scattered into a cone of width less than approximately 1◦. If these highly-asymmetric

phase functions are expressed as a function of cos Θ, as shown in Figure 5.3a, the

sharp forward-scattering peak increasingly resembles a Dirac delta function as the size

parameter increases. In this plot, at scattering angles less than 5◦ (when cos Θ ≈ 1),

the value of the phase function can change by more than six orders of magnitude.

When the same phase functions are shown with scattering angle on a logarithmic

scale, as in Figure 5.3b, the large fraction of energy that increasingly scatters into

the near-forward direction as x increases is more clearly seen. The very sharply-

peaked nature of the phase function can be used as a simplifying assumption by

expressing P as the sum of a sharply-peaked component and a smoothly-varying

component, P (cos Θ) = Pδ(cos Θ) + Ps(cos Θ).

In an unpolarized model, light scattered according to Pδ(cos Θ) = 2δ(1 − cos Θ)

is effectively the same as light that is not scattered. The fraction f of incident light
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Figure 5.3: Phase functions for 750 nm light scattering by cirrus ice crystals shown
on two abscissae.

that scatters directly forward is expressed through the normalization condition for

phase functions
∫

4π
P
4π

dΩ = 1 as

f =

∫ 1

cos Θc

Pδ(cos Θ)

2
d(cos Θ). (5.13)

In this expression Θc is a cutoff angle that defines the support for the numerical rep-

resentation of δ(1− cos Θ). Given that the normalization criterion for the smoothly-

varying component Ps(cos Θ) is

∫
4π

Ps(Ω̂, Ω̂
′)

4π(1− f)
dΩ′ = 1, (5.14)

the combined phase function is substituted into the radiative transfer equation to

give

dI(s, Ω̂) = −I(s, Ω̂)k̃(s) ds+ ω̃

∫
4π

I(s, Ω̂′)P̃s(Ω̂, Ω̂
′) dΩ′ ds.

The radiative transfer equation is now expressed with scaled parameters, as shown
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by McKellar and Box (1981),

k̃(s) = (1− ωf) k(s) ˜̃ω =

(
1− f

1− ω f

)
ω̃.

These substitutions, together with the truncated and renormalized phase function

Ps(Θ), now constitute a scaled RTE,

dI(s, Ω̂)

dτ̃(s)
= −I(s, Ω̂) + J(s, Ω̂), (5.15)

where the source term is computed from the renormalized ‘smooth’ scattering com-

ponent,

Ji+1(Ω̂) = ˜̃ω

∫
4π

Ii(Ω̂′) P̄s(Ω̂, Ω̂
′) dΩ′. (5.16)

This technique has been implemented in SASKTRAN by truncating the phase

function at a cutoff angle Θc and using a constant-valued extrapolant for angles

Θ ∈ [0,Θc]. Illustrations of phase function truncation for several ice crystal effective

sizes are given in the following section. When this truncation and renormalization

technique is applied to the diffuse point whose scaling factors κ were shown in Figure

5.1d, the resulting scaling factors are seen in Figure 5.4a to be significantly closer to

unity. The phase function in this case has been truncated to a value of 102 for all

angles less than 1.2◦. Note that the scaling factors are displayed on a linear scale in

this figure. The P̄ averaging technique described above can further be applied to the

scaling factors that result after truncation. This results in a small improvement in

the range of scaling factors, as shown in Figure 5.4b.

5.3 Analysis

Key factors in the error analysis of the application of these techniques are the selection

of an appropriate truncation method and a definition for what is a ‘good’ value for

κ, that is, one that sets an upper limit on the acceptable amount of ‘smearing’ of

source radiances when divided by κ. Since we are concerned in this work with very
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Figure 5.4: Effect of truncation and surface-mean value on scaling factors, κ(Ω̂′j), for
scattering by 180 µm ice crystals.

large size parameters, the following analysis will focus exclusively on phase functions

from the database of Baum et al. (2005a) for optical wavelengths.

5.3.1 Phase Function Truncation Method

The phase function truncation scheme used in this analysis uses a ‘smooth’ phase

function Ps(Θ) defined by

Ps(Θ) =

P (Θc), Θ ≤ Θc

P (Θ), Θ > Θc.

The selection of an appropriate truncation criterion thus amounts to finding the

‘cutoff’ angle Θc that minimizes the defined error criterion.

Other functional forms for Ps(Θ) in the peak region have been have been used in

both others’ previous work and in the current work on this problem. Potter (1970)

used a power-law extrapolation in the narrow forward peak, which approximates

well the functional form seen in Figure 5.3b for scattering angles just above 1◦.

Iwabuchi and Suzuki (2009) used a constant value P0 out to an angle Θc that together
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conserve the first and second Legendre moments of the phase function. Since neither

of these approaches is qualitatively different to the one presented, but only modifies

the resulting fraction f , and since the phase function derivative dP
d cos Θ

does not appear

in radiative transfer calculations, it is quite sufficient to use the piecewise-continuous

truncated phase functions Ps described above.

Analysis of the truncation methods used in a successive-orders model should con-

sider the angular resolution of scattering used within the model. An angular width

of 3◦ gives a reasonable upper bound on the width of the forward peak that can be

truncated without distorting scattering into neighbouring directions.

It should be noted that although one could näıvely increase the numerical accu-

racy of the summation in equation (5.4) by using a finer-resolution grid of incoming

zeniths and azimuths, this would quickly become prohibitive since memory usage and

computational time in SASKTRAN increases rapidly with the number of incoming

directions, Ninc. Geometries needed for ray-tracing and scattering computations are

linked to the incoming rays, while outbound rays have little overhead to allow fast

computations of many orders of scatter. Accordingly, the number of outbound direc-

tions Nout can be increased without a significant increase in computational time or

memory usage. It is shown that this gives a slight improvement in the resolution of

phase function sampling.

When investigating the effectiveness of phase function truncation, useful indica-

tors for the distribution of κ values are

κ = exp〈|log κi|〉 (5.17)

and

σκ =

√
〈(| log κ| − log κ)2〉, (5.18)

the absolute geometric mean and deviation of κ. The values of these two parameters

for the scaling factors shown in Figures 5.1 and 5.4 are listed in Table 5.1.

If the phase function for scattering of 750 nm light by 180 µm particles is trun-

cated below Θc = 2.0◦, then the scaling factors that were shown in Figure 5.1d are
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Dominant Scattering Particles κ σκ

Rayleigh 1.000000037 1.25× 10−9

Mie sulphate (0.08 µm) 1.00049 3.61× 10−4

T -matrix ice (1 µm) 1.0213 0.0162
Database ice (180 µm) (do-nothing) 2.7385 0.2875

(P̄ ) 2.7829 0.3313
(truncated) 1.0654 0.0473
(truncated+P̄ ) 1.0452 0.0266

Table 5.1: Comparison of scaling factors for scattering of 750 nm light from several
sources.

distributed much more favorably, as shown in Figure 5.5. The values of the statistical
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Figure 5.5: Truncated portion of phase function, with range of scaling factors shown
as a function of incoming direction. The inset figure shows the phase function over
the full range of scattering angles.

descriptors, κ̄ and σκ, as well as the number of outbound directions (referred to by

‘o/b’) are indicated in the title of the right-hand plot. From this figure it is quite

clear that a truncation angle near 2◦ will result in quite acceptable values of κ. It is

noteworthy that the fraction f of incident light that is considered to have scattered

directly forward in this configuration is significant – over two-thirds. The worst-case

values of κ have been reduced from over 105 to 1.4, and the spread about κ = 1 is
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very small: σκ = 0.0594. These values were computed for outbound rays distributed

in 169 directions. The effect of changing the number of outbound directions can now

be studied.

The values of κ̄ and σκ that result from truncation at varying cutoff angles between

0.13◦ and 3◦, and for varying numbers of outbound directions, are shown in Figure 5.6.

Both κ̄ and σκ drop significantly for cutoff angles Θc ≥ 1◦, and larger cutoff angles
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Figure 5.6: Change of (a) κ and (b) σκ with truncation angle Θc for varying numbers
of outbound rays (from 169 to 400) for 180 µm particles.

will produce values of κ that are quite close to unity, since κ̄ ≤ 1.1 and σκ ≤ 0.15.

While this selection of cutoff criteria ensures that the overall behaviour of the

scaling factors is favorable, it is necessary to consider also the exceptionally large and

small scaling factors that remain after truncation has been applied. For treatment of

these values, we consider the number of incoming directions that have large absolute

values of the score

zκ =
log κ− log κ̄

σκ
. (5.19)

The number of incoming directions that have values |zκ| > 3 are shown, again as a

function of cutoff angle and number of outbound directions, in Figure 5.7.

All outbound ray distributions show a significant drop in the number of directions

with |zκ| > 3 at angles between 1.5◦ and 2.0◦. When outbound ray distributions with

either 324 or 400 points are used, there are no directions that have scores |zκ| > 3.
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Figure 5.7: Number of scaling factors κ that have a score |zκ| > 3. Total number of
incoming directions for configuration shown is 1346.

This result is a significant improvement in the distribution of scaling factors, κ. From

these considerations, it appears that using a distribution of 324 outbound points with

a cutoff angle of 2◦ gives the best distribution of scaling factors. The distribution

is shown in Figure 5.8a. The chosen selection of truncation angle and outbound ray

distribution also works well for smaller particle sizes, as shown by the scaling factors

for 60 µm scattering particles in Figure 5.8b.

5.3.2 Uniformity of Outbound Radiances

The scaling factors κ introduced in equation (5.11) assist successive-order models

by numerically ensuring energy conservation to within the accuracy of the cubature

weights of the outbound unit sphere. However, as with any normalization technique,

this will introduce an amount of false scattering when the outbound radiances are

divided by the scaling factors, κ(Ω̂′j). As a measure of the effect of truncation and

renormalization on computed radiances, it is instructive to consider an isotropic dif-

fuse intensity field, which gives outbound radiances as

Jk =

Ninc∑
j=1

P (Ω̂k · Ω̂′j) ∆Ω′j
κj

.
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Figure 5.8: Truncated phase function, with scaling factors for several ice crystal
effective sizes.

The degree of nonuniformity of the outbound radiance for isotropic incoming radiance

indicates the amount of false redistribution, or ‘scaling’ of radiance by scaling factors

significantly far from unity.

To illustrate, consider again the non-truncated phase function for scattering of

104



750 nm light by 180 µm ice crystals, whose scaling factors were shown in Figure 5.1d.

If an isotropic incoming radiance field is scattered into every outbound direction, the

sets of outbound radiance that result – in the absence of scaling or phase function

truncation – for 180 µm and 10 µm particles are shown in Figure 5.9. Note that
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Figure 5.9: Outbound radiances for isotropic incoming radiance without scaling ap-
plied.

values in this figure are shown on a logarithmic scale. Clearly, when no phase func-

tion truncation is done, there are ‘hot spots’ where extremely large false outbound

radiances result when the forward-scatter peak is sampled. This effect is somewhat

reduced for smaller particles, as seen in the right-hand panel for 10 µm particles.

Outbound radiances that have been obtained by scaling without truncation are

shown in Figure 5.10 for the same particle sizes. Here, there are regions that have

large false radiances from contributing values with κ < 1, and some regions of too-low

outbound radiance from directions with κ > 1.

The effect of truncation and renormalization, when combined with the scaling of

outbound radiances, are shown in the outbound radiances in Figure 5.11. Here, the

outbound radiances J are significantly more evenly distributed about unity. This is

particularly true for smaller particles, as seen in the outbound radiances for 10 µm

particles shown in the right-hand panel. If distribution parameters J̄ , σJ , and zJ are
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Figure 5.10: Outbound radiances for isotropic incoming radiance with scaling factors
applied.
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Figure 5.11: Outbound radiances for isotropic incoming radiance for ice crystals with
varying effective size.

defined analogously to the parameters (5.17) and (5.18) for κ, the outbound radiance

fields have characteristic values of J̄ (σJ) from 1.0221 (0.0152) for 180 µm, to 1.0008

(0.0005) for 10 µm.

In terms of the distribution parameters, truncation best shifts J̄ toward unity,

while photon conservation best reduces the number of directions with a large |zJ |
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score while at the same time keeping the width, σJ , small. The photon conservation

operation eliminates spurious production or loss of photons, but will do so at the

cost of re-distributing the radiance into other directions. Truncation alone effectively

removes the sharp forward peaks, but does so with a loss of information on scattering

behavior. A combination of photon conservation and phase function truncation is

seen to produce the best approximation to the scattering integral.

The accuracy in modeled radiances for scattering by large ice crystals is signif-

icantly improved, with the errors being reduced by several orders of magnitude to

now several percent. Treatment of this inaccuracy in the scattering integral allows

for computations to be done for radiative transfer in subvisual cirrus clouds. This

work continues in the next chapter, where changes to the line of sight integration in

SASKTRAN necessary for computing in-cloud limb radiances are discussed.
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Chapter 6

Modeling Cirrus Cloud Radiances

Retrieval of cloud optical properties requires modeling the in-cloud spectral radiance

for a given set of bulk cloud parameters. In a spherical successive-orders model of limb

measurements in clouds, two factors – the long path lengths near the tangent point

and the high particle extinction – together act to violate a simplifying assumption

of the technique. This chapter describes the methods that are used to solve this

problem, and illustrates the variation of simulated in-cloud radiance with bulk cloud

parameters.

6.1 Introduction

The optical thicknesses, τc, of typical opaque cirrus clouds range between 0.3 and

3.0 (Lynch et al., 2002). For these larger optical depths, it often is necessary to use

discrete-ordinates models for which the solution time is relatively independent of op-

tical thickness. In addition, modeling of the radiation field within cirrus clouds must

typically take into account the vertical and horizontal extents and inhomogeneities

through the prescribed cloud property distributions and through appropriate selec-

tion of boundary conditions.

The limb-viewing geometry of OSIRIS is very well-suited to the detection of

stratospheric aerosols and subvisual cirrus clouds but can only give limited infor-

mation on cloud particle size from spectral measurements. The vertical field of view

108



of OSIRIS is 1 km at the tangent point and successive exposures are typically sepa-

rated by 1.5-2 km. If a cloud thickness of 1 km is assumed, then for a typical OSIRIS

exposure through a cirrus cloud when the cloud-top altitude is 14 km, the instru-

ment line of sight will pass through the cloud region for a distance of approximately

∆s = 225 km. An implication of limb-viewing geometry through clouds is that the

microphysical properties of the cloud, which can vary significantly throughout the

vertical extent of the cloud, will be obscured.

6.2 Radiative Transfer in Thin Cirrus

Since the size parameter, x, of the scattering particles for the wavelengths of interest

is a key factor in selecting an appropriate source of scattering properties, the size

range of ice crystals is a key consideration in cirrus cloud radiative transfer. The T -

matrix (Mishchenko et al., 1996) and Discrete Dipole Approximation (DDA) (Yurkin

and Hoekstra, 2007) algorithms have been used in this work for scattering by small ice

crystals, but as mentioned above are very limited by computational times for larger

scattering particles.

We focus on scattering of solar irradiance by medium-large ice crystals, here

defined as those with effective size greater than 5 µm. For these sizes, we use optical

scattering properties from the in-situ cirrus database of Baum et al. (2005a) that

uses measured size distributions of typical ice clouds to infer cirrus cloud scattering

properties.

A ray-tracing model with spherical geometry such as SASKTRAN is well-suited

to modeling limb-scattering observations, but requires a number of extensions to its

configuration to model successfully the measured radiances in thin cirrus clouds.

6.2.1 Source Function Quadrature

The path integral in equation (3.43) is performed by taking the sum of individual

integrals along each of the line of sight’s path segments, ∆s, through the homogeneous

layers of the model atmosphere. The source functions, J(s), that are integrated along
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the path have been evaluated at the solar conditions particular to that path segment’s

location. Each individual path integral is evaluated using Gaussian quadrature.

Since path segments through spherical shells near the tangent point become quite

long, each such path integral is subdivided into sub-integrals of maximum length

5 km over which Gaussian quadrature is done. The source function J(s) is assumed

to be constant within each such segment.

6.2.2 Optical Properties Specification

Since we assume constant atmospheric optical properties within spherical shells, scat-

tering and extinction quantities along the observer line of sight are linearly interpo-

lated as a function of height for computing the multiple scattering source term (3.30)

and for attenuating radiances to the ground and to the observer, as in each of the

attenuation terms in equation (3.43).

Simulated cloud layers in this work assume the optical properties from a single

effective particle size De throughout the vertical extent of the cloud. The use of a

single effective size is not a restrictive assumption since, for the thin clouds considered

in this work, the true particle size distributions are typically well-described by a

unimodal gamma distribution. The spatial distribution of cloud particle number

density is characterized in this work by a Gaussian height profile, n(h). The altitude

of the cloud top, hct, as obtained from OS radiances, is assigned to the upper half-

maximum point, and the cloud thickness is defined to be the full width at half-

maximum of the distribution, as illustrated in Figure 6.1. The number density profile,

n(h), is scaled to produce a prescribed optical depth, τc. This formulation provides

a simple characterization of a modeled cloud in terms of the parameters hct, ∆hcld,

De, and τc.

6.2.3 Ray-Tracing Shell Specification

As discussed in Section 3.4.1, the fundamental unit of the SASKTRAN model is a

ray that originates at a location r and which extends in the direction Ω̂ with path
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Figure 6.1: Cloud number density profile for hctop=15.1 km, ∆hcld=350 m, and De =
50 µm scaled to give τc = 0.04.

coordinate s. An observer line of sight is one example of such a ray with the special

condition that its origin is the instrument position. As mentioned in Chapter 3, the

nomenclature used in discussing the model atmosphere is that concentric spherical

shells define homogeneous cells that lie between them.

Each ray in SASKTRAN is traced from its origin through homogeneous spher-

ical shells in the model atmosphere to its endpoint, which is either the top of the

atmosphere or the surface of the earth. The ray-tracing operation is performed by

finding all points of intersection of the ray with the set of spherical shells as it pro-

ceeds outward from the point r in the direction Ω̂. The difference between successive

intersection points is then the segment path length through that cell.

For satellite instruments that employ a limb-viewing geometry, the line of sight

(LOS) along which the observation is made passes through a long segment of the

atmosphere, up to thousands of kilometres for measurements at low tangent altitudes.

When such a ray is traced through the equally-spaced spherical shells of the model

atmosphere, the length of the path segments, ∆s, between successive spherical shell

intersections increases significantly at lower altitudes, and becomes very large when

passing between spherical shells near the tangent point. This is illustrated in Figure

6.2. In this figure, it is clear that the longest path lengths, ∆s, occur in those cells

nearest the tangent point.
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s

Figure 6.2: Varying length of path segments for a ray traced in a model atmosphere
consisting of equally-spaced spherical shells.

The effect of long segment path lengths is further illustrated in Figure 6.3a, where

a simulated OSIRIS line of sight that is tangent at exactly 13 km has been traced

through the shells of the model atmosphere. For this line of sight, the mid-cell
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Figure 6.3: Observer geometry and cloud optical properties in the model coordinate
system, shown as a function of distance s along observer line of sight (km).

altitude above the model earth, z(s), and the path length per cell, ∆s(s), are shown

as a function of distance from the observer along the line of sight. The ray-tracing

path lengths in this plot are those obtained using the nominal 1 km spherical shell

spacing. At the lowest altitudes along this line of sight, the path lengths become quite

large and exceed 100 km per cell near the tangent point. A typical profile of total

extinction, k(s), as a function of distance along the observer line of sight is shown

in Figure 6.3b for the case when a cloud surrounds the line of sight tangent point.

The extinction within the cloud region – at the lowest altitudes – exceeds that of its

surroundings by nearly two orders of magnitude. When the long path lengths coincide
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with typical values of in-cloud extinction, the values of segment optical depth, ∆τs –

the optical depth along a path segment through a homogeneous layer – become quite

large.

These high optical depths are illustrated in Figure 6.4a, in which the segment

optical depths are shown as a function of distance along the observer LOS for the

geometry and extinctions shown in Figure 6.3. It is clear that the segment optical
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Figure 6.4: Cell optical depths, ∆τs, shown as a function of distance s along observer
line of sight.

depths become extremely high within the cloud region. To avoid these high segment

optical depths, we configure the ray-tracing shell spacings to the extinction profile

for a given wavelength such that the segment optical depths, ∆τs, do not exceed an

empirically-determined threshold of ∆τs = 0.3 due to scattering. The optical depths

per cell, ∆τs, that result from this configuration are shown in Figure 6.4b.

The effect of these high optical depths on source function evaluations is best

illustrated by considering the example of a thin cirrus cloud observed by OSIRIS

that is 1 km-thick with optical thickness τc = 0.3. If the cloud is assumed for the

moment to be vertically homogeneous, the vertical extinction profile within the cloud

has a value of k(h) = 0.3 km−1, and the along-path optical depth, denoted by ∆τs,

is near 70. Accordingly, there will be a very large number of scattering events along

the observer line of sight in the cloud region, and the model must ensure that along-

path optical depths remain sufficiently small to resolve these scattering events in its
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solution.

Because the segment optical depth is necessarily a strong function of the cloud

particle size, ray-tracing shell heights are configured according to the extinction value

of the dominant scattering particles. The minimum height separation of ray-tracing

shells, ∆hrt, is 10 m at the altitude of the maximum number density and is scaled

to maintain a constant cell optical depth, ∆τz = ksca(h) ∆hrt, along the vertical

direction inside the cloud region.

The maximum cloud optical thickness that can be modeled for a specified vertical

thickness with this configuration is shown in Figure 6.5. When the ray-tracing shells
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Figure 6.5: Maximum allowed cloud optical thickness for specified geometric thick-
ness.

are configured in this way, individual scattering events within each layer are resolved

and the linear interpolation of source functions can successfully capture the variation

of the diffuse field within the ray-tracing geometry. Unless otherwise specified, the

nominal ray-tracing shell separation outside the cloud region is 1000 m.

6.2.4 Diffuse Point Configuration

To compute the observed radiance I(s, Ω̂) in equation (3.43), SASKTRAN solves the

radiation field at discrete locations in altitude and solar zenith angle, then traces
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the ray using linear interpolations of the radiance field in height, solar zenith angle,

and discrete outbound direction coordinates. Put differently, the source functions

J(s, Ω̂) are evaluated at a set of discrete points distributed in altitude and in solar

zenith angle. The discretizations used in each of these dimensions must be chosen in

accordance with the desired accuracy of computations.

Outside cloud regions, diffuse points are separated in altitude by 1 km and are

located midway between the spherical ray-tracing shells. In cloud regions, diffuse

points are densely concentrated to capture the abrupt changes in the optical depth

and the radiance field that results from the presence of cloud particles.

Since an appropriate discretization must exercise a tradeoff between numerical

accuracy and computational effort, we monitor the percent change of the simulated

in-cloud radiance with respect to a very high-resolution base case. For a base case we

consider diffuse points separated by 10 m in altitude within the cloud region. Figure

6.6 shows the fractional change in the 750 nm in-cloud radiance as the diffuse point

spacing is increased. A thin cirrus cloud layer with De = 30 µm and two vertical and
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Figure 6.6: Normalized modeled 750 nm limb radiance at 12.8 km tangent altitude
as a function of diffuse point altitude spacing. The inset figures show the percent
differences for diffuse point spacings between 10 and 100 m.
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optical thicknesses were used for these computations. The ray-tracing shell locations

were held fixed in the configuration described in the previous section. It is seen in

these plots that the modeled radiance converges to a well-defined value for diffuse

point spacings below 50 m. At wider spacings – from 100 m to spacings just narrower

than the cloud thickness – the modeled radiance overshoots the converged value.

Within the thin cirrus cloud environments that are studied in this work, diffuse

point spacing of 40 m in altitude is sufficient to ensure convergent solutions for cloud-

sensitive wavelengths. To capture the change in radiance above and below the cloud

layer, several bracketing diffuse points are placed above and below any region that

contains cloud particles.

In a similar way, the discretization in solar zenith angle is studied by varying

the spacing of diffuse profiles in solar zenith angle, ∆θ0. Since the effect of this

discretization on modeled radiances is most evident when the solar zenith angle, θ0,

is large, we model the in-cloud radiances for two OSIRIS scans in which the mean

solar zenith angle is quite large, and for which the solar zenith angle varies over the

line of sight by more than 5◦. A cloud is placed in this study between altitudes of

16.2 km and 16.5 km with τc = 0.03 and De = 50 µm. For the high-resolution base

cases, the limb radiance is computed with diffuse profiles separated by ∆θ0 = 0.5◦,

where each profile contains diffuse points separated by 40 m in the cloud region. The

solar zenith angles at which the diffuse profiles are placed for the two scans are listed

in Table 6.1.

The percent difference in modeled radiance is shown as a function of height in

Figure 6.7 for a varying number of diffuse profile spacings for two extreme solar zenith

angle cases. The percent difference in radiance from the base case are shown for

diffuse profile spacings of approximately ∆θ = 1◦, 3.16◦, and 10◦. For the radiances

from scan 49644019 in Figure 6.7a, in which the mean solar zenith angle is 80.5◦,

the base case was computed with nine diffuse profiles, and it is clear that a single

diffuse profile is sufficient to compute the radiance to a precision of better than 1%.

For scan 53441016 in Figure 6.7b, in which mean solar zenith angle is θ0 = 86.2◦,

the percent difference from the benchmark case remains below 1.6% for all altitudes
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Diffuse Profile Solar Zenith Angles

Scan θ0 ∆θ0 Profile Locations, θ0 (◦)

49644019 80.5◦
1◦ 77.3, 78.4, 79.5, 80.6, 81.7

3.2◦ 77.2, 81.7

10◦ 80.5

53441016 86.2◦
1◦ 82.0, 83.2, 84.3, 85.4, 86.6, 87.7

3.2◦ 82.0, 87.7

10◦ 86.2

Table 6.1: Diffuse profile locations for varying diffuse profile spacing.

above 10 km.

From these results, we find that one diffuse profile provides sufficient accuracy in

modeled radiance since all clouds studied in this work have illumination conditions

where the sun is, on average, higher in the sky than θ0 = 73◦ at the measurement

point.

6.2.5 OSIRIS Vertical Sampling Resolution

Before we investigate the effects of the various cloud optical properties on the sim-

ulated measurements, we briefly discuss the vertical sampling resolution of OSIRIS

in relation to measurements of thin cirrus clouds. At typical OSIRIS exposure rates,

successive exposures in a scan are separated by 1.5-2 km in tangent altitude. In this

section we illustrate the effect of this somewhat coarse vertical sampling of thin cloud

layers.

The simulated 750 nm radiance profiles for limb-scattering observations of a thin

cloud layer, which are normalized to the radiance at 37.5 km, are shown in Figure 6.8

at several wavelengths and for several observation configurations. For all modeling

computations shown in this chapter, the number densities of O3, NO2, and strato-

spheric aerosol from OSIRIS operational retrievals are used. In the top two figures,

the altitude of the Gaussian-profile cloud layer 200 m thick (FWHM) that contains ice

crystals with an effective size of De = 160 µm and optical depth τc = 0.02 is shifted
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Figure 6.7: Percent difference of modeled radiance for increasing coarseness of diffuse
profile spacing.

upwards from 17 km to 19 km in 100 m steps to illustrate the simulated radiance

profile for several viewing geometries. In a geophysical sense, this corresponds to

limb measurement of a geometrically and optically thin cirrus cloud located slightly

above the tropical tropopause. In the first two plots, the location and thickness of

the cloud layer for its uppermost placement is shown as a shaded region for reference.

In Figure 6.8a, the limb radiance profiles for varying cloud height are shown
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Figure 6.8: Simulated shift in cloud-top altitude
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for an observer with tangent altitudes separated by only ∆htan = 100 m. This

artificially-high resolution is used to capture accurately the limb radiance profile

through a thin cloud layer. Due to its long path lengths through the highly-scattering

region surrounding the tangent point, the modeled radiance reaches its peak value

at a tangent height slightly below the cloud bottom. For tangent altitudes further

below the cloud bottom, the enhancement to the radiance profile from a thin layer

asymptotically approaches the radiance profile of the background signal.

This same shift in modeled cloud top altitude is shown in Figure 6.8b for a sim-

ulated OSIRIS scan that uses high-resolution sampling of at most ∆htan = 400 m

between successive exposures. The observer look directions to generate the radiances

in this figure were found by using the measurement geometry for an actual OSIRIS

scan, but the tangent altitudes of the OSIRIS exposures were interpolated to pro-

vide high-tangent altitude resolution. In addition, for this and subsequent modeling

of OSIRIS cloud scans, 7 individual observer lines of sight were distributed within

the OS vertical field of view, weighted binomially, and summed for each exposure in

order to simulate more accurately the location of the cloud boundaries within the

instrument field of view. For the figures in the middle row, there is no longer a clear

relationship between the indicated cloud region and the radiance profile, but the

radiance profile is dominated by the lower sampling resolution of the simulated ge-

ometry. The presence of a cloud is indicated primarily by an enhancement at several

successive tangent altitudes below the cloud-top altitude.

A still more realistic view of the measured radiance profiles for the same 200 m-

thick cloud is shown in Figure 6.8c. In these plots, the simulated radiance profile is

shown when observed with the actual OSIRIS vertical sampling resolution. In this

figure the cloud is moved upwards by 1 km for each model run, as indicated by the

altitudes in the legend and by the shaded areas in the plots. From this figure one

can see that there is limited information that can be gained about the cloud top

and vertical thickness from consideration of the radiance profiles only for the OSIRIS

vertical sampling resolution.

In Figure 6.8, it is noteworthy that the simulated radiance enhancements due
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to the cloud are larger at longer wavelengths due to the decreasing value of the

Rayleigh scattering cross section. As well, the measured enhancement is smaller at

lower altitudes due to the reduction in solar irradiance for the current solar zenith

angle, which is approximately 70◦.

6.3 Modeled Limb Radiances

In this section, the dependence of the modeled limb radiances for a simulated OSIRIS

scan are shown as functions of the four cloud parameters hct, ∆hcld, De, and τc. The

OSIRIS measurement considered for this study, scan 47118030, is located over the

western Pacific warm pool region.

Since the relative humidity, temperature, and vertical wind profiles are key pa-

rameters of interest in the formation of subvisual cirrus clouds, the height profiles

of these parameters are shown in Figure 6.9 for this scan. In these profiles, the
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Figure 6.9: ECMWF temperature, relative humidity, and vertical wind profiles for
OSIRIS scan 47118030.
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cloud-top altitude of 16.2 km for this scan, as determined from the criteria defined in

Chapter 2, is shown with an estimated cloud thickness of 300 m as the shaded cloud

region. At this altitude, which lies just below the cold point tropopause, the relative

humidity is above 100% and the vertical wind is slightly upwards and decreasing with

altitude, which microphysical modeling (Luo et al., 2003) has shown to be an ideal

stabilization condition for thin cirrus clouds.

In the sections that follow, we demonstrate the ability of the SASKTRAN model

to simulate accurately the limb radiance observed by OSIRIS in the presence of

thin cirrus clouds. This is demonstrated through comparisons of the modeled and

measured in-cloud spectral radiance for those exposures which are placed directly

through a thin cirrus cloud. In addition, the modeled and measured height profiles

of the radiance at 750 m is shown for the simulated OSIRIS observations.

6.3.1 Albedo Configuration

Limb-scattered radiances are strong functions of surface albedo. As a result, accurate

values for surface albedo values are essential for estimating cloud properties from

OSIRIS limb scans. For the computations used in this study, the surface of the earth

is assumed to be a Lambertian reflector.

The sensitivity of a modeled limb scan to surface albedo is shown in Figure 6.10.

In this and subsequent figures the measured data are shown in the heavy black line.

Note that the gap in the measured data near 500 nm is due to the spectral order

sorter described in Section 2.3.2. The modeled radiance corresponds to the mea-

surement shown in Figure 2.9a, with the measured and modeled spectra at 15.6 km

tangent altitude shown. The modeled radiance is shown for a 500 m thick cloud layer

with effective particle size 40 µm and optical depth 0.05, and where the wavelength-

independent surface albedo is varied as indicated in the figure legend. It is clear

that the modeled radiance across the spectrum is seen to vary approximately linearly

with surface albedo. In addition, for this assumed wavelength-independent surface

albedo, there is a distinct ‘tilt’ of the modeled spectrum relative to the measurement.

Although a surface albedo of 0.2 provides a good spectral fit in our primary area of
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Figure 6.10: Modeled in-cloud spectra and radiance profile: varying surface albedo.
Cloud thickness: 500 m, particle size 40 µm, optical depth 0.05.

interest – between 550 and 800 nm – this also significantly underestimates the mea-

sured signal at wavelengths below 550 nm. This illustrates the need for an accurate

wavelength-dependent albedo.

Parameterized wavelength-dependent surface albedos for land cover (Feister and

Grewe, 1995) and ocean surface (Jin et al., 2004) are used with a land mask as a priori

estimates for in-cloud radiance computations. The spectral variation of the selected

surface albedos is shown in Figure 6.11. The modeled radiance using a parameterized

surface albedo – in this case calculated for ocean surface albedo with typical wind

speed, chlorophyll concentration, and aerosol optical depth – shown in Figure 6.10.

It is seen that this wavelength-dependent albedo provides a better match across the

measured spectrum. Later, the a priori wavelength-dependent albedo is scaled by the

retrieved albedo at a reference wavelength, as described in Section 7.2.4.

6.3.2 Cloud Top and Vertical Thickness

The effect of cloud-top altitude and vertical thickness, as defined in Section 6.2.2, is

not readily apparent from the in-cloud radiance nor from the radiance profile due to

the vertical resolution of OSIRIS tangent altitude exposures. This is shown in Figure

123



300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

Wavelength (nm)

A
lb

ed
o

Albedo of Various Surfaces

Ocean
Sand
Soil
Grass
Snow

Figure 6.11: Wavelength-dependent values of land (Feister and Grewe, 1995) and
ocean surface (Jin et al., 2004) albedo.

6.12, where for a line of sight tangent at 15.6 km, the cloud thickness is increased

successively by 200 m above a fixed cloud bottom altitude of 15.6 km. For this plot,
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Figure 6.12: Modeled in-cloud spectra and radiance profile: varying cloud thickness
and cloud top height.

the effective particle size is 50 µm and the cloud optical thickness is fixed at 0.049.

The primary effect of a vertical thickening of the cloud layer is an increased radiance

at longer wavelengths across the spectrum.
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6.3.3 Cloud Optical Thickness

An increase in cloud optical thickness corresponds to an increase in the peak number

density of the distribution. For a fixed cloud-top altitude of 16.2 km, vertical thick-

ness of 300 m, and fixed effective size of 50 µm, the changing in-cloud radiance and

radiance profile for varying optical depth are shown in Figure 6.13. The cloud optical

thicknesses are indicated in the legend. In this figure, the limb radiance is seen to
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Figure 6.13: Modeled in-cloud spectra and radiance profile: varying cloud optical
thickness.

increase quite uniformly for a uniform logarithmic increase in cloud optical depth.

As well, the modeled spectrum at τc = 0.05 is seen to match the measured spectrum

very well between 550 and 800 nm. The notable decrease in measured radiance above

795 nm is likely due to the uncertainty in the preflight Woods anomaly calibration,

which affects the absolute calibration of the spectrograph (Lloyd , 2011).

It is illustrative to view the change in the radiance profile due to an increase in

cloud optical thickness for fixed cloud geometric size. The limb radiance profile for a

simulated high-resolution scan is shown in Figure 6.14 for logarithmically-increasing

cloud optical depth that spans the subvisual cirrus cloud threshold, τc = 0.03. As the

cloud becomes more optically thick the radiances of lines of sight below the first sub-

cloud tangent altitude become approximately uniform in brightness since the cloud

125



10
1

10
2

10

15

20

25
700 nm

Radiance (norm.)

A
lt
it
ud

e
(k

m
)

10
1

10
2

10

15

20

25
750 nm

Radiance (norm.)
10

1
10

2
10

15

20

25
800 nm

Radiance (norm.)

0.01

0.0126

0.0158

0.02

0.0251

0.0316

0.0398

0.0501

0.0631

0.0794

0.1

Figure 6.14: Modeled limb radiance profiles: varying cloud optical thickness.

top acts as a scattering surface of increasing reflectivity.

6.3.4 Cloud Effective Particle Size

Larger particle sizes tend to more strongly scatter light. This effect can be seen

clearly when the modeled cloud top height and vertical and optical thicknesses are

fixed while the effective size is varied, as shown in Figure 6.15. In this figure, the
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Figure 6.15: Modeled in-cloud spectra and radiance profile: varying cloud effective
particle size.
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in-cloud scattered radiance is seen to increase monotonically with effective size (4.45).

The radiance profiles for changing effective particle size at selected wavelengths are

shown in Figure 6.16. As seen in this figure, it is characteristic of scattering by
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Figure 6.16: Modeled limb radiance profiles: varying cloud effective particle size.

larger particles that they form a more sharply-peaked radiance profile as the effective

particle size increases.

For each effective particle size, the optical depth can be adjusted to best fit the

in-cloud radiance over a given spectral range. Then a family of parameters are chosen

that give a good spectral match to the observed in-cloud radiance, as shown in Figure

6.17. In the radiance profile, it can be seen that the De = 50 µm modeled profile

displays a thicker scattering layer corresponding to its significantly larger assumed

optical depth, despite its good agreement across the long-wavelength region of the in-

cloud radiance. The dependence of the radiance profile on the cloud extinction profile

and the assumed particle size is the primary source of information for retrieving cloud

optical properties, as discussed in the next chapter.

The selection of optical properties shown in this section can be applied to many

OSIRIS measurements in the presence of a strongly-scattering cloud layer. To illus-

trate, the modeled radiance for the scan immediately following the one studied thus

far is shown in Figure 6.18. The measured radiance profile indicates a more optically

thick cloud layer, as seen by comparison with the radiance profiles in Figure 6.14. It
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Figure 6.17: Modeled in-cloud spectra and radiance profile: selected particle sizes
and cloud optical depths. Cloud thickness: 300 m.
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Figure 6.18: Modeled in-cloud spectra and radiance profile: varying particle sizes for
cloud optical depth τc = 0.05. Cloud thickness: 750 m.

is seen through preliminary modeling, as shown in this figure, that an optical depth

of 0.05 matches the in-cloud spectrum very well for effective particle sizes between

50 and 90 µm across the measured spectrum. The effect of the assumed particle size

on estimated cloud optical thickness is also investigated in the next chapter.
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6.4 Summary

It has been shown that with the modifications and configurations discussed in this

chapter and in the previous chapter, the SASKTRAN model is able to model ac-

curately the in-cloud spectral radiance measured by OSIRIS. The in-cloud modeled

spectral radiances for the two cloud scans investigated in this chapter are shown to-

gether with their percent difference from the measured in-cloud spectra in Figures

6.19 and 6.20 together with the modeled radiance if cloud properties are not in-

cluded. For the percent differences, the modeled radiances are shown relative to the
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Figure 6.19: Modeled and measured in-cloud radiances for OSIRIS scan 47118030.

measurements. It is seen that in the highlighted regions – outside of the indicated

absorption bands and at wavelengths λ > 400 nm for which the cloud properties

database is defined – the modeled spectra agree with the measurements to better

than 5% across the spectrum. The only exception is due to the sharp decrease in

the measured signal above 790 nm, which as mentioned previously is likely due to

uncertainty in the preflight Woods anomaly calibration. These simulated in-cloud

radiances demonstrate a significant improvement in the ability of the SASKTRAN

model to simulate OSIRIS measurements in a variety of conditions.
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Figure 6.20: Modeled and measured in-cloud radiances for OSIRIS scan 47118031.

The simulations of in-cloud radiance shown in this chapter have been done as-

suming suitable choices for the cloud top altitude, vertical and optical thickness, and

effective particle size. Modeled spectral results agree very well with measurements

in the wavelength range 550-800 nm, which is the region of primary interest in esti-

mation of cloud optical properties. It is found that using an in-cloud diffuse point

spacing of 40 m is sufficient to obtain a precise solution. Ray-tracing altitudes in

the spherical geometry are configured to the altitude profile of the cloud extinction,

down to a minimum shell spacing of 10 m.

Although a number of the modeled radiance profiles do not match the measure-

ments to within the same accuracy as the in-cloud spectral radiance, determination

of the cloud properties to improve this fit is done in an automated fashion in the next

chapter. Clouds have been selected for this study to have the sun located at zeniths

less than 72◦ at the measurement point, although these methods can easily be used

for more general conditions with the use of additional diffuse profiles.
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Chapter 7

Cloud Optical Property Retrieval

Estimating atmospheric properties from spectral measurements requires an accurate

radiative transfer model that can run efficiently in an iterative way to infer the most

probable parameters from the measurements. The inverse problem, or the process

of inferring parameters from measurements, has devoted to it a significant body of

literature and work. In this chapter we summarize several techniques relevant for

retrievals of cirrus cloud optical properties from OSIRIS measurements. A technique

is implemented to retrieve the optical thickness of cirrus clouds for an assumed parti-

cle size. The effects of the retrieval on retrieved amounts of other trace species from

the same instrument, as well as the sensitivity to auxiliary model parameters, are

investigated.

7.1 The Inverse Problem

Inversion of remote sensing measurements to obtain the most probable set of atmo-

spheric parameters begins with specifying a state vector,

x =


x1

x2

...

xn

 , (7.1)
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that consists of the n parameters that are to be inferred from the measurements. In

general the measurements, y, depend on the state vector through a physical process,

f , and contain noise, ε, such that the relation between the measurement and the

state is expressed mathematically as

y = f(x, b) + ε. (7.2)

The fact that the physical process depends upon the state of many parameters beyond

the one of interest is indicated through the inclusion of the auxiliary parameter, b.

The set of of m measurements that one defines to obtain information about the state

is the measurement vector,

y =


y1

y2

...

ym

 . (7.3)

In general the number of measurements is not the same as the number of state

parameters. Because a model, F(x, b̃), must be used to simulate measurements for a

given state of the system it is assumed that the model approximates well the physical

process, or

F(x, b̃) ≈ f(x, b). (7.4)

The forward model, F(x, b̃), in the case of remote sensing of the atmosphere is a

radiative transfer model that assumes a state vector, x, for the parameters of interest

in addition to the auxiliary parameters, b̃.

A typical method to quantify the suitability of a set of parameters is the least-

squares method, in which the solution to the inverse problem is considered to be the

state that minimizes the cost function

χ2 =
1

m

m∑
i=1

(
yi − Fi(x, b̃)

σi

)2

, (7.5)

where σi is the uncertainty in the measurement yi. With this measure of error,
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parameters are typically found through trial and error.

If changes in the measurements are linearly related to changes in the state vector,

and if the measurements are noise-free, then the state that produced a given mea-

surement can be found from an a priori estimate of the state, xa, by a linearization

of the forward model about the a priori value of the state,

y =
∂F(x, b̃)

∂x
(x− xa) + F(xa, b̃). (7.6)

The m×n Jacobian matrix of forward-model derivatives with respect to the state vec-

tor elements is frequently called the kernel matrix in inversion theory and is expressed

as

K =


∂F1

∂x1
. . . ∂F1

∂xn
...

. . .
...

∂Fm
∂x1

. . . ∂Fm
∂xn

 . (7.7)

If there are the same number of measurements as state vector elements, then the

Jacobian matrix in equation (7.6) can be inverted to solve directly for the desired

state,

x̃ = xa + K−1
(
y − F(xa, b̃)

)
. (7.8)

For nonlinear problems, the solution can be found by trial and error by successive

forward model computations, although this is prohibitive for all practical purposes.

If the forward model is approximately linear for small changes to the state vector,

then a direct solution can be attempted through Gauss-Newton iteration, in which

the state can be moved forward from the a priori by stepwise application of equation

(7.8), with the modification that the Jacobian, K(n), is re-evaluated at each iteration

using the iterated state value, x(n). Inversion of the Jacobian matrix, K, can introduce

significant oscillation into the state solution, x, if the measurement error is significant.

One of the most common algorithms used in nonlinear regression problems is the

Levenberg-Marquardt technique (Press et al., 1986), which uses a combination of

steepest-descent and Gauss-Newton techniques to minimize the residual, χ2. At each

iteration the Jacobian matrix, K(n), is calculated, and the update in the state vector
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is computed as

x(n+1) = x(n) +
(
K(n)(K(n))T + γI

)−1
(K(n))T

[
y − F(x(n))

]
. (7.9)

The selection parameter, γ, determines the choice of minimization technique used:

when χ2 is large, the step-update matrix becomes diagonally dominant, and steepest-

descent is used; when χ2 decreases and the solution approaches the minimum, the

diagonal elements no longer dominate, and a Gauss-Newton iteration performs the

next step in parameter space.

7.1.1 Regularization Methods

The first solutions that were proposed for the inverse problem were based on reg-

ularization. In this method, a side constraint is added to the minimization of χ2

such that the retrieved state is subject to a smoothness criterion. In this way, the

minimization problem is restated as

χ2 =
1

m

m∑
i=1

(
yi − Fi(x, b̃)

σi

)2

+ γ2|Lx|2. (7.10)

The additive term to the cost function seeks to minimize the effect of random noise

in the measurements on the retrieved profile. The smoothest retrieved profile then

will have a minimum value of the second term. The additional term thus sets up a

balance between the fit of the forward model to the measurements and the variation

in the retrieved state. A drawback to this method is that small-scale structure is not

distinguished from noise. The main modifications to regularization methods consist

in defining the smoothness of the state vector through the operator matrix, L, and

by smoothing the profile by using the difference between a retrieved state and the a

priori state.
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7.1.2 Optimal Estimation Technique

One of the most common methods used for retrievals of atmospheric states from

remote sensing measurements is the optimal estimation technique (Rodgers , 1976),

which is a regularization method based on statistical knowledge of the desired state

parameter. This method is based on the Bayesian assumption that the probability

density function (PDF) of a variable, rather than being a frequency distribution of

various measurement trials, actually contains knowledge about the variable. Given a

set of measurements with associated covariances and a linear forward model, Bayesian

statistics are used to update the state PDF from an a priori estimate using informa-

tion from the measurements according to the Bayesian relation between probabilities,

p(x|y) =
p(y|x)p(x)

p(y)
. (7.11)

In this expression, the probability distributions, p, of each of the variables is assumed

to have a Gaussian form with associated covariance matrices, S. The retrieved solu-

tion is then the peak of the Bayesian probability density function, p(x|y).

This method involves the assumption that the measurement error is random and

that the PDF of the a priori state is a Gaussian distribution. The solution is sought by

an iterative step derived by maximizing the value of p(x|y) with respect to x. Since

the PDF of the retrieved state is generally unknown, a climatological estimate is often

used. The covariance of the retrieved state can be interpreted as a measure of the

amount of information added to the PDF of the retrieved state by the measurements.

The optimal estimation algorithm has the benefit of not requiring inversions of K.

7.1.3 Relaxation Methods

Another family of solutions to the inverse problem falls under the category of relax-

ation methods. This general inversion method, as applied to retrievals of atmospheric

parameters, was formalized by Chahine (1972) in which the state parameter is found
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iteratively through

x
(n+1)
i = x

(n)
i

yi

Fi(x(n), b̃)
. (7.12)

Here the update to the state parameter xi is the ratio of the measurement vector to

the forward model prediction as evaluated at the current estimate.

This method requires that the measurement vector be constructed such that, if

yi is larger than the current model evaluation Fi, the change to the state parameter

performed at this step must act to increase the value of Fi. This method requires a

condition in which there is a nearly one-to-one relationship between the elements of

x and y. This often done by interpolation of the atmospheric state profile, which is

assumed to be smooth.

An extension of (7.12) allows for the retrieval of a state vector at points between

the measurement locations by using the Jacobian matrix to weight the ratio of actual

to modeled measurement vectors,

x
(n+1)
i = x

(n)
i

yj

Fj(x(n), b̃)
Kij + x

(n)
i (1−Kij). (7.13)

In any relaxation method, iteration is performed for each element of the state param-

eter and is repeated until convergence, that is, until a residual Ri = yi − Fi(x(n), b̃)

approaches a predetermined threshold that is indicative of the measurement error.

The use of the kernel matrix in equation (7.13) incorporates information from mul-

tiple measurements into the update for the state parameter x
(n)
i .

With the exception of the Chahine relaxation method, the techniques described

thus far rely on computing the kernel matrix for each iteration of the state parameters.

Since computing limb radiance profiles in the presence of a cloud is computationally

expensive, and since computing K involves the greater of m or n forward model

evaluations at each iteration, it is highly advantageous to avoid using any technique

that requires evaluating the Jacobian matrix.
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7.1.4 Multiplicative Algebraic Reconstruction Technique

A maximum-likelihood technique was applied by Lloyd and Llewellyn (1989) to de-

convolve blurred images from a Fabry-Perot interferometer. An extension of this

method was applied by Degenstein et al. (2003) to volume emission rate tomogra-

phy for resolving small-scale horizontal structures of excited-state molecular oxygen

emissions in the mesosphere. This technique was further developed and applied to

retrievals of ozone from OSIRIS using the altitude-dependent absorption depths in

the Hartley-Huggins and Chappuis bands.

In this scheme independent measurement sets, yk, which correspond to radiance

profiles at different wavelengths and that have corresponding forward model com-

putations, Fk(x, b̃), are applied to retrievals of the state parameter, x. By allowing

each independent wavelength to contribute to the update of the state parameter, the

following relaxation iteration is obtained:

x
(n+1)
i = x

(n)
i

∑
k

∑
j

yjk

Fjk(x(n), b̃)
Wijk. (7.14)

In this expression, the ratio of actual and modeled measurement vectors,
yjk
Fjk

, for each

independent measurement, k, is allowed to affect the iteration through its weight,

Wijk, where the weights are normalized such that
∑

jWijk =
∑

kWijk = 1 for each

state element, i. This technique has been integrated with the SASKTRAN model to

retrieve atmospheric profiles of of O3 (Degenstein et al. (2009), Roth et al. (2007));

NO2 (Bourassa et al., 2011); and sulphate aerosols (Bourassa et al., 2007); and is

optimized for fast execution time.

7.2 MART Cloud Property Retrieval from OSIRIS

We apply the MART relaxation algorithm to cloud property retrievals from OSIRIS

measurements. For this purpose the measurement vector, y, is constructed from

OSIRIS spectral radiances at tangent altitudes surrounding the cloud region. The

state to be retrieved, x, in this problem is characteristically the height profile of
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the cloud particle number density for an assumed particle size distribution. The set

of auxiliary parameters in the model that affect the accuracy of solution, b̃, consist

primarily of the surface albedo and the aerosol and ozone number density profiles.

For scattering by cloud particles, the radiance of a single wavelength is used to

estimate the cloud particle number density. In such a scheme, the cloud number

density, x, is updated at each iteration according to

x
(n+1)
i = x

(n)
i

∑
j

yj

Fj(x(n), b̃)
Wij. (7.15)

Since in the cloud property retrieval we suspect a very direct relationship between the

number density at altitudes near tangent point and the measured radiance, we use

Wij = δij. This is equivalent to the Chahine relaxation method, equation (7.12). The

retrieval equation (7.15) is rewritten for diagnostic purposes as a matrix equation of

the ratio between the next- and current-order state variable,

α = Wm, (7.16)

where the vectors α and m are defined as

α =
x(n+1)

x(n)
, m =

y

F(x(n), b̃)
. (7.17)

As iterations proceed, the progression of α values toward unity shows the conver-

gence of the state toward a stable value. Convergence toward a solution is considered

satisfied when the fractional change in the values of α fall within measurement un-

certainty.

7.2.1 Measurement Vector Definition

The measurement vectors that are used to iterate towards a solution in the relax-

ation equation, (7.15), must be specified to increase together with the state param-

eter. Equivalently, the Jacobian matrix, equation 7.7, must be positive so that the
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iterations do not diverge.

We select a measurement vector in a manner similar to that done for retrievals of

stratospheric aerosol from OSIRIS by Bourassa et al. (2007). An element of the mea-

surement vector, yj, is constructed for each tangent altitude by taking the logarithmic

ratio of a long-wavelength radiance and a short-wavelength radiance, then subtract-

ing the same logarithmic ratio of the ‘background’ – that is, cloud- and aerosol-free

– radiances,

rj = log

(
I(hj, λl)

I(hj, λs)

)
− log

(
Ibg(hj, λl)

Ibg(hj, λs)

)
= log

(
I(hj, λl)

Ibg(hj, λl)

)
− log

(
I(hj, λs)

Ibg(hj, λs)

)
.

(7.18)

The wavelength ratio provides sensitivity to the spectral signature of cloud particle

scattering, and the subtraction of the background radiance ratio enhances the non-

Rayleigh scattering contributions to the limb radiance. The short wavelength is

chosen to be 470 nm, which is the longest wavelength on the short-wavelength side

of the spectrograph order sorter that was mentioned in Section 2.3.2, and is also

outside of any significant ozone absorption bands. The long wavelength is chosen

to be 750 nm in order to maximize the wavelength separation while at the same

time avoiding the O2 A-band absorption feature near 762 nm, the diffraction grating

Woods anomalies above 780 nm, and the O3 Chappuis absorption band.

For limb radiance measurements, it is common to normalize the radiance profile

of a given wavelength to a higher reference altitude, which provides a measure of

insensitivity to the instrument absolute calibration and also to the surface albedo.

We employ a modification of this technique, in which instead of normalizing the

profile to the radiance at one tangent altitude, we normalize the vector rj in equation

(7.18) by subtracting from it the average value of rj over a finite reference altitude

range,

yj = rj − 〈rref〉. (7.19)

By using as a reference the average value of r over a more broad reference altitude
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range, the measurement vector is better able to characterize and remove the back-

ground signal. The minimum reference altitude used in this work is chosen to be

37 km, which is above any significant amount of stratospheric aerosol and is below

altitudes where light scattered from the instrument primary mirror becomes signifi-

cant.

Examples of measurement vectors constructed by (7.19) are shown for two OSIRIS

scans in Figure 7.1. The measurement vectors are shown for OSIRIS scan 47626029,
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Figure 7.1: Measurement vector, y, for selected scans.

which has a cloud-top altitude of 14.6 km; and for scan 47939020, with cloud-top

altitude 18.6 km. It is seen in these figures that the measurement vector shows two

distinct regions. First, the sharp peak at lower altitudes indicates a large amount

of scattering in the presence of a cloud. Second, at higher altitudes the profile more

smooth with a consistent value near 0.4 from scattering by stratospheric aerosols in

the Junge layer.

7.2.2 State Vector Specification

Retrieval of cloud optical properties from a limb-scattering geometry is complicated

by the numerous ways that solar radiation can reach the instrument, as illustrated
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in Figure 3.1. To further illustrate by comparison, for occultation measurements

the extinction profile, k(h), of the intervening medium is measured directly through

the decreased transmission as measurements are made through increasing depths of

the atmosphere. Accordingly, for occultation measurements no knowledge of the

scattering behaviour of the particles for non-forward directions is needed, and the

phase function of the assumed particles plays a minor role in the retrieval process.

By contrast, in limb-scattering geometry, the phase function is a key element of

the retrievals since the primary measured signal is the single- or multiply-scattered

radiance from near the tangent point. As such the particle extinction and phase

function are equally important to retrievals of cloud properties from measurements

in limb-viewing geometry.

Both the scattering cross section and the phase function depend on the ice crystal

size distribution, which makes the retrieval of cloud particle number density sensi-

tive to the assumed particle size. Some of the sensitivity to the assumed particle

size distribution can be removed by using the cloud extinction profile, k(h), as the

retrieved state parameter. Although the phase function still depends on the size dis-

tribution, the phase functions used in this work to model cloud particle scattering

vary smoothly with effective size and scattering angle in the OSIRIS solar scattering

range, between 60◦ and 120◦, as shown in Figure 4.5.

Retrievals are performed with the state vector defined as the cloud extinction

profile, xi = kcloud(hi), at heights corresponding to the tangent altitudes within the

troposphere. The sensitivity of the retrievals to the assumed particle size is investi-

gated later in this chapter.

7.2.3 Cloud Scattering Radiance Signature

The sensitivity of the measurement vector to small perturbations to the cloud ex-

tinction profile is illustrated in Figure 7.2, in which the Jacobian matrix, equation

(7.7), is shown for several wavelengths across the OSIRIS spectral range. Each curve

in these figures is constituted by a column of K, and corresponds to the change in

the measurement vector y that results from a small perturbation to the state vector
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Figure 7.2: Kernel matrix for selected wavelengths for scattering by 50 µm particles.

element xi. To produce these Jacobian elements, cirrus cloud properties with effec-

tive size De = 50 µm were distributed at heights between 9 and 19 km at very low

number densities such that the cloud optical thickness was τc = 0.03. The elements

of K were computed by successively perturbing the elements of the state vector

at altitudes corresponding to the measurement tangent heights by 2% and taking
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a forward-difference derivative using the perturbed and unperturbed measurement

vectors.

As expected for limb measurements, each modeled radiance shows the greatest

sensitivity to the cloud particle number density near the tangent point. This results

primarily from the long path lengths through a region that contains highly-scattering

particles near the tangent point. It is evident that the tangent-point sensitivity

decreases at lower altitudes due to increased attenuation of solar irradiance for this

quite horizontally-oriented solar zenith angle, θ0 = 71◦. In addition to the peak

tangent-altitude sensitivity, there is a small contribution of the state element xi to

measurements at higher tangent altitudes. This contribution results from scattering

into the observer line of sight from a path segment through a higher-altitude shell

that is located between the tangent point and the observer.

We see that the measurement vector shows good sensitivity to the specified state

vector. Also, the spectral dependence of the limb radiance cloud sensitivity is consis-

tent with the measured in-cloud and clear-sky spectra that were shown in Figures 2.9

and 2.10, where the in-cloud radiances increase with wavelength across the measured

spectrum.

Due to the sensitivity of simulated limb radiances to the assumed surface albedo,

the retrieved cloud extinction is also closely coupled to this value. As a result, the

surface albedo must be retrieved concurrently to the ice cloud extinction profile. The

technique used to estimate the albedo is now discussed.

7.2.4 Surface Albedo Retrieval

Surface albedo retrievals for OSIRIS scans are performed in a simple manner in

both the presence and absence of cloud light-scattering properties. Since the Wood’s

anomalies in the OS absolute calibration are extremely small near 675 nm, and since

this wavelength is sufficiently far from the centre of the Chappuis O3 absorption

band, radiances at this wavelength give a highly-sensitive measure of surface albedo

from high-altitude exposures.
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The surface albedo is estimated by modeling the 675 nm radiance at a cloud- and

aerosol-free reference altitude of 40 km for several values of surface albedo that span

the range between a = 0 and a = 1. If the measured radiance falls within this range

of values, then the albedo is found by linearly interpolation to the observed radiance.

Once the albedo at 675 nm is calculated, this reference value is used to scale the

wavelength-dependent albedo across the spectrum.

This procedure is used in the following discussion to retrieve the values of effective

surface albedo before and after the retrieval of cloud optical properties.

7.2.5 Cloud extinction retrievals from OSIRIS scans

Since the radiance from OSIRIS at wavelengths near 750 nm is coupled to the surface

albedo, the stratospheric aerosol amount, and to any cloud scattering properties, an

iterative solution that adjusts each of these parameters to changes in the others is

required to retrieve these properties.

The retrieval process proceeds as follows. First, the surface albedo is estimated

using the technique just described when only the a priori estimates of cloud and

aerosol extinction are in place. Next, the stratospheric aerosol extinction profile is

retrieved. Following this, the cloud extinction profile is retrieved, and further the

surface albedo is again retrieved, with the model having fixed the cloud and aerosol

extinction profiles to their retrieved values.

To retrieve the tropospheric cirrus cloud extinction profile, we retrieve sulphate

aerosol extinction only within the stratosphere. Since the measurements of interest

for SVC predominantly occur in the tropics, we use as a demarcation between the two

regions the potential temperature tropopause, Θ380 K , that is, the altitude at which a

potential temperature of Θ(h) = 380 K occurs. This contour provides a useful division

between the characteristics of stratospheric and tropospheric air (Holton et al., 1995).

Below this altitude the aerosol number density is held fixed to a representative value

of 1 cm−3, and is tapered slightly toward lower altitudes. With the aerosol profile

thus fixed in the tropopause, cirrus cloud scattering properties for a specified effective

size, De, are assumed and retrievals of cloud extinction are performed. The retrieval
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algorithm is applied to the radiances from OSIRIS scans in which clouds were detected

using the criteria defined in equation (2.4). For these retrievals, the a priori cloud

extinction profile is fixed to be a cloud distributed from 10 km up to the potential

temperature tropopause with total optical thickness τ = 0.03.

The profiles of retrieved extinctions and measurement vectors for both the strato-

sphere (sulphate aerosols) and UTLS (cirrus cloud) regions for a very thin cloud are

shown in Figure 7.3. It should be noted that for the figures in this chapter the ex-

tinction, k, is expressed in units of km−1 rather than cm−1 due to the measurement

length scale. As well, the Θ380 K tropopause is shown for reference in subsequent

figures.

In the extinction profiles shown in Figures 7.3a and 7.3c, the a priori estimates

are shown as dashed lines together with the light blue lines that indicate successive

iterations toward the retrieved profile. For the retrieval vectors in Figures 7.3b and

7.3d, it can be seen that the final modeled vectors, F(x(n), b̃), which are shown as

heavy blue lines, match the measured vectors very well. In the cloud measurement

vector, there is a small overestimation of y at 14.5 km for which the cloud extinction

is not sufficiently low that is typical for tangent altitudes below a strongly-scattering

region. The extinction profile gives a layer approximately 2 km thick, which when

integrated yields a cloud optical thickness of τc = 0.0075, which corresponds to a

subvisual cirrus cloud according to the standard definition of τc ≤ 0.03.

The retrieved surface albedo varies according to the state of the model atmosphere

as shown in Table 7.1 for the various stages of the processing chain. With no cloud

Processing State Estimated Surface Albedo, a

Clear-sky (aerosol only) 0.288
With a priori cloud profile 0.292
With retrieved cloud profile 0.278

Table 7.1: Retrieved surface albedo throughout cloud property retrieval processing
chain.

properties in the model, the increased upwelling radiation that is actually due to the
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Figure 7.3: Stratospheric and UTLS profiles of retrieved extinction and measurement
vectors for OSIRIS scan 47939020.

presence of a cloud is falsely attributed to increased surface albedo. Accordingly, the

presence of a cloud layer in the retrieval decreases the retrieved surface albedo.
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7.2.6 Retrieval Performance

In the MART retrieval of the cloud extinction profile, it is found that fifteen itera-

tions of the relaxation step, equation (7.15), are sufficient to obtain convergence and

to obtain a reasonable estimate of the cloud extinction profile. In total, the pro-

cessing chain with six aerosol iterations and fifteen cloud-particle iterations currently

takes approximately 30 minutes for one OSIRIS scan on a desktop computer with a

2.5 GHz processor and 16 GB of RAM. While these retrievals are quite computation-

ally intensive, they are very beneficial in quantifying the cloud properties and their

effect on trace gas retrievals, which we now discuss.

7.3 Trace Gas Retrieval Sensitivity

One motivating factor for cloud optical property retrievals is the need to quantify the

uncertainty in other trace gas retrievals due to thin clouds that affect the measured

radiances. Since a full statistical analysis of this sensitivity is beyond the scope of

this thesis, we investigate the effect on the retrieved aerosol and ozone profiles for an

OSIRIS scan that contains a subvisual cirrus cloud.

7.3.1 Aerosol Extinction Sensitivity

Stratospheric sulphate aerosols are retrieved from OSIRIS measurements using the

same retrieval vector that is used to retrieve cirrus cloud properties. Since the radi-

ances at these wavelengths are coupled to scattering by clouds at low altitudes, the

OSIRIS aerosol extinction profile is sensitive to the presence of cloud properties in

the retrieval algorithm.

We illustrate the difference in retrieved extinctions in Figure 7.4. When cloud

properties are absent from the model, the retrieval attempts to fit the cloud-scattering

region with aerosol properties, which is seen at altitudes below 19 km in Figure 7.4a.

When cloud properties are used in the model, the aerosol profile within the cloud

region is held fixed as described in Section 7.2.5, which is indicated by the dotted
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Figure 7.4: Difference in retrieved aerosol extinction, scan 47939020. Vertical bars
indicate 10% error range.

line in the cloud region in Figure 7.4a. The extinction percent difference in Figure

7.4b, shown with respect to the profile that is retrieved together with cloud properties,

shows that the retrieved stratospheric aerosol profile is typically biased to high values

by several percent throughout its peak concentration. When cloud properties are

absent from the model, the additional radiance signal that is actually due to cloud

scattering at lower altitudes is falsely attributed to stratospheric aerosols, which has

the effect of slightly raising the retrieved number density.

Since the scan that was shown in this example contains a very optically thin cloud,

with retrieved cloud optical thickness τc ∼ 0.01, the aerosol extinction is only biased

by approximately 2%. We expect that this is a typical offset when subvisual cirrus

clouds are present. For more optically thick clouds, we expect that this error will

increase by several percent throughout the peak concentration of the aerosol layer.
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7.3.2 Ozone Retrieval Sensitivity

The presence of cirrus optical properties in the radiative transfer model will affect re-

trievals of ozone in a similar fashion due to enhanced radiance at longer wavelengths.

The enhanced long-wavelength radiances that is attributable to cloud scattering af-

fects the single ozone measurement vector that is most significant to retrievals below

25 km (Degenstein et al., 2009). The effect of upper-tropospheric clouds on the de-

termination of the ozone amount is the primary focus of this section, rather than

retrieval of the in-cloud ozone amount. Thus we focus primarily on the effects of

retrieved ozone at altitudes above the cloud top.

Retrievals of ozone from OSIRIS radiances at altitudes above approximately 27 km

are performed using ultraviolet wavelengths and are not significantly affected by this

work, however the measurement vector for lower-altitude ozone retrievals uses the

amount of absorption within the Chappuis band between 540 nm and 680 nm. A

measurement vector called a Chappuis triplet is used that has the form

yjk = log


√
Ĩ(hj, λref1) Ĩ(hj, λref2)

Ĩ(hj, λabs)

 , (7.20)

where the radiances, Ĩ, are each normalized at an altitude of approximately 40 km.

The reference wavelengths, λref1 = 544 nm and λref2 = 679 nm, are chosen to lie

on the outer limits of the Chappuis absorption band, and λabs = 602 nm lies near

the peak absorption of the band. The construction of the Chappuis triplet from

normalized radiances at several tangent altitudes is illustrated in Figure 7.5a. Since

the measured radiance at the peak absorption wavelength λabs becomes small relative

to the reference wavelengths as the ozone number density increases, the Chappuis

vector is composed such that the value of the vector – which corresponds roughly to

the length of the vertical lines in the figure – increases with ozone number density.

This is shown in Figure 7.5a where the size of yjk is the greatest near 24 km, which

lies near the peak ozone number density. In Figure 7.5b the height variation of the

Chappuis triplet is shown together with the ultraviolet O3 measurement vectors.
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Figure 7.5: Measurement vectors used for retrievals of ozone from OSIRIS measure-
ments.

The effect of very thin cirrus clouds on retrieved ozone concentrations is shown in

Figure 7.6, where the retrieved ozone profile is shown both for the operational OSIRIS

O3 retrieval, for which no cloud properties are included in the forward model, and

when cloud scattering with assumed particle size De = 50 µm is implemented.

In general, lower-altitude clouds increase the limb radiance at higher altitudes

due to their nature as a partially-reflecting surface. Even for thin clouds an increase

in upwelling radiance all wavelengths – including at λabs at the center of the Chap-

puis band – occurs that can affect the retrieved ozone amounts. In the absence of

cloud-scattering properties in the radiative transfer model, this increased radiance is

attributed to a slightly lower amount of ozone, which biases the retrieved ozone to

low values, as seen at the altitudes below the tropopause in Figure 7.6a. The positive

differences between 18 km and 22 km are likely due to differences in the radiative

transfer model configuration between the two retrievals and are likely not significant,

however a small positive bias on the order of 1 % has been seen in previous studies

of thin cloud effects on lower-stratospheric ozone from limb observations (Sonkaew

et al., 2009). The differences in ozone for the measurement shown in Figure 7.6b
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Figure 7.6: Difference in retrieved ozone number density. Vertical bars indicate 5%
error range.

are consistent with the work just cited, in which a much more in-depth study of the

cloud sensitivity of ozone retrieved from a limb-viewing platform is performed.

Thus when ozone profiles are retrieved in the presence of thin cirrus clouds with no

account of cloud scattering properties, the retrieved ozone at low altitudes is biased

to low values. For subvisual cirrus clouds this bias is in the range of several percent

and increases with cloud optical thickness.

7.4 Sensitivity Analysis

We now investigate the sensitivity of the retrieved cirrus cloud extinction profile to

several auxiliary model parameters. For these sensitivity studies, we consider the

variation to the cloud extinction profile that was retrieved in Section 7.2.5. Since

both the surface albedo and the assumed effective particle size have the effect of

shifting the limb radiance at long wavelengths, we study their effect on the accuracy
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of cloud extinction retrievals.

7.4.1 Sensitivity to Surface Albedo

To investigate the sensitivity of retrieved cloud extinction to surface albedo, we con-

sider the change in the retrieved extinction profile for varying values of surface albedo.

For this sensitivity study, we consider a wavelength-independent albedo, which is a

reasonable assumption since the parameterized albedos used in this work vary slowly

with wavelength between 470 nm and 750 nm, as shown in Figure 6.11.

As a base case, the extinction profile is retrieved using the average planetary

albedo of a = 0.3. To test the sensitivity, the assumed surface albedo in the retrieval

is then set alternately to a = 0.2 and to a = 0.4 for separate retrievals. This variability

of surface albedo gives a range of uncertainty in surface albedo that is quite large

for measurements that occur above a well-defined surface type with variable cloud

loading at lower altitudes.

The retrieved extinction profiles and percent differences in the retrieved extinction

are shown in Figure 7.7. When a smaller value of surface albedo is used, the extinction

profile throughout the cloud region is higher by a factor of approximately 15%, as

shown in Figure 7.7b. In this case, because the assumed surface albedo is lower, the

additional radiance is attributed to a slightly increased amount of cloud scattering.

When a larger value of surface albedo is used, the opposite effect occurs, and the

retrieved extinction is lower by a factor of approximately 10%. This sensitivity is

shown in Table 7.2 in terms of the retrieved cloud optical thickness.

Assumed a Retrieved τc,ret

0.2 0.0084
0.3 0.0075
0.4 0.0067

Table 7.2: Change in retrieved cloud optical thickness for varying surface albedo.

From these results, we expect that the retrieved cloud optical thickness varies by at

most 25% depending on the accuracy of the surface albedo, although the uncertainty
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Figure 7.7: Retrieved cirrus extinction for varying surface albedo, scan 47939020.

in the assumed surface albedo used for this study is larger than that obtained from

the retrieval technique described in Section 7.2.4.

7.4.2 Sensitivity to Cloud Effective Particle Size

Since retrievals of the cloud extinction profile done in this work first assume an

effective particle size, the sensitivity to the particle size is investigated similarly to the

albedo sensitivity by studying the change in the retrieved extinction when different

effective particle sizes are assumed.

Since the retrieved extinction depends on the scattering cross section of the as-

sumed effective particle size, we show for reference the variation of scattering cross

section with effective particle size from the database of Baum et al. (2005a) in Fig-

ure 7.8. The scattering cross sections are shown for the two wavelengths used in

the measurement vector. The primary variation in scattering cross section occurs

across effective size, with no significant difference between the two wavelengths. The

153



20 40 60 80 100 120 140 160 180
10

−6

10
−5

10
−4

10
−3

Effective Size, De (μm)

C
ro

ss
S
ec

ti
o
n

(c
m

2
)

Scattering Cross Section

470 nm
750 nm

Figure 7.8: Cirrus database scattering cross section variation with ice crystal effective
size.

structure superposed on the increasing trend in this curve is primarily due to the

change in crystal habit distributions with crystal size as described in Section 4.3.

Since the cross sections change quite rapidly below 40 µm, only effective sizes greater

than De > 30 µm are used for retrievals in order to lower the sensitivity to effective

particle size.

To study the effect of assumed particle size on the retrieved extinction, we retrieve

the extinction profile from the same OSIRIS scan, but we assume effective particle

sizes of 40 µm and 60 µm to perform the retrievals. The relative difference in the

retrieved profile when these sizes are used, when compared to the retrieved profile

obtained when using the De = 50 µm is used, gives an indication of the sensitivity

to the assumed particle size.

The retrieved cloud extinctions and relative differences in extinction are shown

in Figure 7.9. When a smaller effective particle size is assumed, the scattering cross

section is smaller, and a larger number of cloud particles are used within the model

to obtain the same modeled radiance. In this case, the retrieved extinction profile is

higher by a factor of up to 10%. When a larger particle size is assumed, the larger

scattering cross section results in a smaller retrieved cloud particle number density
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Figure 7.9: Retrieved cirrus extinction for varying assumed particle size, scan
47626029.

such that the extinction profile is smaller by at most 5%. The corresponding retrieved

optical thicknesses are listed in Table 7.3.

Assumed De Retrieved τc,ret

40 µm 0.0080
50 µm 0.0075
60 µm 0.0071

Table 7.3: Change in retrieved cloud optical thickness for varying effective cloud
particle size.

Since the extinction retrieval is somewhat sensitive to the assumed effective size,

comparisons between the measured and modeled spectra are done to obtain an esti-

mate of the best-fit effective size. The spectra modeled with the retrieved extinction

profiles for each of the three assumed particle sizes are shown in Figure 7.10 to-

gether with the percent difference in modeled radiance with respect to the measured
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spectrum. In this figure, the retrieved extinction profile with De = 40 µm gives an
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Figure 7.10: In-cloud radiances modeled with retrieved extinction profile for several
assumed particle sizes.

excellent match across the spectrum with percent difference in radiance of less than

3%. It is also seen that the radiances from the retrieved extinction with De = 60 µm

overestimate the measured radiances, and the radiances for De = 50 µm slightly

underestimate the in-cloud radiance.

For each of these effective sizes the computed vector, F(x(n), b̃), agrees very well

with the measured vector, y, throughout the region of interest, as shown in Figure

7.11, where the final computed vectors for each effective size is shown together with

y. It is seen in this figure that the simulated measurement vectors for the three

effective sizes all overlie each other, but that the extinction profiles that generate them

produce significantly different agreement with the measured in-cloud spectrum. Due

to the differing scattering behaviours of the three particle sizes, only the De = 40 µm

extinction profile is able to model accurately the measured spectrum.

From this study, it is clear that re-modeling the measured radiances across the

spectrum is a key element in the optical property retrieval process. For the scan that

we have been studying, it has been shown that modeling the observed cloud with
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Figure 7.11: Measurement vectors for the assumed effective particle sizes.

effective size De = 40 µm and optical thickness τc = 0.008 gives excellent agreement

with the measured in-cloud spectrum. We now perform comparisons of the retrieved

cloud extinction profiles from OSIRIS with coincident measurements from another

remote-sensing instrument.

7.5 SAGE II Comparisons

Coincident measurements of SVC that have been made with the SAGE II solar oc-

cultation instrument are identified through selecting appropriate coincidence criteria

that allow for comparison of the retrieved extinction profiles. For this study, measure-

ments are considered to be coincident if the measurements occurred within a distance

of at most 250 km and 5◦ latitude, and if they were made within 3 hours of each

other. These coincidence criteria are well within the typical lifetime and horizontal

extents of subvisual cirrus clouds.

Thirty OSIRIS scans between 2002 and 2005 have been identified as coincident

with SAGE II measurements by these criteria. The geographic locations and solar
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illumination conditions of two typical coincident measurements are shown in Table

7.4.

Coincident Measurements

Scan Instrument Time Lat, Lon Mean SZA & SSA

10413057
OSIRIS 16:03 Jan 21, 2003 -17.9◦, 33.2◦

85.0◦, 101.1◦
SAGE II 16:30 Jan 21, 2003 -18.7◦, 32.5◦

10424058
OSIRIS 09:46 Jan 22, 2003 -15.0◦, 127.0◦

85.6◦, 101.1◦
SAGE II 09:59 Jan 22, 2003 -15.0◦, 129.0◦

Table 7.4: Location and solar conditions for SAGE II-OSIRIS coincident measure-
ment locations.

SAGE II detections of SVC are derived from the measured extinction profile at

1020 nm (Wang et al., 1996), so extinction comparisons are best done at this wave-

length. Since the measurement vector used in this work uses 750 nm radiances, the

retrieved cloud extinction profile is scaled by assuming a constant number density to

provide an equivalent extinction at 1020 nm. OSIRIS extinctions are compared with

SAGE II extinctions by taking the sum of the retrieved cloud and aerosol extinctions

at 750 nm and converting the sum to 1020 nm extinction.

The total OSIRIS extinction is shown together with the SAGE II extinction for

two coincident scans in Figure 7.12. In this figure the operational OSIRIS aerosol

extinction profiles, which are retrieved by assuming only stratospheric aerosol prop-

erties, are shown for reference. It is clear from the extinction values below 20 km

that including cloud scattering properties in the OSIRIS retrieval gives much better

agreement with the SAGE II extinction product.

The retrieved ozone from these scans is shown in the same comparative way in

Figures 7.13 and 7.14. In these figures, it is seen that the inclusion of cloud properties

in the OSIRIS retrieval improves the comparison of the retrieved ozone profile with

the SAGE II measurement. There is, however, a significant decrease in the SAGE II

profile that occurs near the tropopause in both coincident scans. Although the SAGE

II aerosol retrieval uses a much more direct measurement of the extinction profile
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Figure 7.12: Retrieved cloud and aerosol extinction at 1020 nm for coincident SAGE
II measurements.

than OSIRIS, the optical properties used to derive the particulate extinction assumes

aerosol-like particles and does not account for cloud light-scattering properties. We

suspect that this decrease in the SAGE II profile, consistent with the findings of

Section 7.3.2 and with other studies, is a falsely negative-biased value that results

from the presence of a high-altitude ice cloud.

It should be noted that, in the operational OSIRIS ozone retrievals, the presence

of a tropospheric cloud is automatically flagged by a criterion similar to equation

(2.4). The cloud-top altitude is used to indicate the lower bound beyond which the

retrieved ozone profile is invalid so that the biases in retrieved ozone that have been

shown in this section are not included in the operational data product.

7.6 Conclusion

The purpose of this chapter was to demonstrate the possibility of retrieving the

optical properties of subvisual and thin cirrus clouds from OSIRIS. We have shown
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Figure 7.13: Retrieved ozone number density for OSIRIS scan 10413057 and coinci-
dent SAGE II measurements.

that we are able to estimate cloud optical properties when the MART algorithm uses

the SASKTRAN model with ice crystal scattering properties.

Comparisons of the retrieved extinction profile with coincident measurements by

SAGE II show very good agreement. It is also clear that the retrieved profiles of both

aerosol extinction and ozone concentration from OSIRIS agree much better with the

SAGE II profiles when ice cloud scattering properties are included in the MART

retrieval.
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Figure 7.14: Retrieved ozone number density for OSIRIS scan 10424058 and coinci-
dent SAGE II measurements.

161



Chapter 8

Summary and Outlook

The purpose of this work was to demonstrate the ability to retrieve thin cirrus op-

tical properties from a limb-viewing satellite instrument. This was achieved in part

by extending the capabilities of a radiative transfer model to model accurately the

observations of scattered sunlight made by a limb-viewing instrument in the presence

of thin cirrus clouds.

Since the OSIRIS instrument frequently displays upper-tropospheric radiance en-

hancements that appear to be caused by cirrus clouds, based both on location of

occurrence and on light-scattering characteristics, a database of cloud detections was

compiled. The resulting geographical distributions agree very well with cirrus cloud

frequency distributions from other instruments.

In order to model and estimate the properties of these clouds, it was necessary

to incorporate the scattering properties of ice crystals over visible and near-infrared

wavelengths into a suitable radiative transfer model. For this purpose, dynamically-

linked libraries (DLLs) from two first-principles light-scattering algorithms were built

and incorporated into the SASKTRAN radiative transfer model. Scattering proper-

ties from the T -matrix and discrete dipole approximation techniques were incorpo-

rated into SASKTRAN and are used for computing the light scattering from clouds

containing ice crystals with effective size up to 1 µm. Since it becomes numerically

prohibitive to perform these computations for larger particles, a database of ice-

crystal scattering properties from in-situ measurements was built into SASKTRAN.
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These scattering properties allow for scattering computations over a large range of

particle sizes – from 10 µm to 180 µm – for all OSIRIS wavelengths above 400 nm.

It was found that the scattering properties for ice crystals in the database required

several modifications to the SASKTRAN radiative transfer model. First, since for

scattering particles that are much larger than the wavelength of light there is a very

large diffraction peak, the numerical scattering integral in SASKTRAN required mod-

ification. This was accomplished partly through the development of a novel photon

conservation technique that quantifies the degree of inaccuracy in the scattering in-

tegral. In addition to this, the transport approximation – in which light scattered

through a very small angle about the forward direction is treated as effectively un-

scattered – was implemented in SASKTRAN. It was found that the errors in the

scattering integral evaluation were significantly reduced by using these techniques.

Modifications were also required to the solution space over which the diffuse ra-

diance field is computed in SASKTRAN. In a limb-scattering geometry, the radiance

measurements are dominated by the properties of the atmosphere near the tangent

point due to the very long path lengths of the observer line of sight through this region.

When cirrus clouds exist near the tangent point of the measurement, the tangent-

point effect is compounded by the presence of scattering particles with cross sections

several orders of magnitude larger than the surrounding molecular and aerosol con-

stituents. The result is that the spherical layers of the model atmosphere, which

nominally are spaced by 1 km, are too coarse to capture the large optical depths in

these segments due to scattering. While this would not present a problem with large

absorption optical depths, scattering operations require that the scattering events be

resolved within the solution layers of the model atmosphere.

The necessary tradeoff between numerical accuracy and computational effort was

achieved by configuring the ray-tracing shell spacing according to the extinction pro-

file down to a minimum shell spacing of 10 m. It was found that an in-cloud diffuse

point height spacing of 40 m was sufficient to ensure precision in modeled in-cloud

radiances to better than 0.1%, and that the use of one diffuse profile was sufficient to

compute in-cloud modeled radiances to within 1% precision for solar zenith angles less
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than 80◦. With these modifications, the SASKTRAN model is able to model scatter-

ing by clouds with optical thicknesses up to τc = 0.6. In addition to these configura-

tions, the surface albedo within SASKTRAN was made to vary with wavelength by

incorporating a land-sea mask with automated selection of the wavelength-dependent

albedo for the appropriate surface type. It was demonstrated that SASKTRAN can

now model the observed in-cloud radiance from OSIRIS to better than 3% accuracy

at all wavelengths across the spectrum.

The SASKTRAN model was used with a multiplicative algebraic reconstruction

technique to retrieve the optical properties of cirrus clouds detected with OSIRIS.

When an effective cloud particle size is assumed, this technique retrieves the extinc-

tion profile for the radiances from an OSIRIS limb scan. It was demonstrated that

the retrieval technique is able to obtain an extinction profile that gives agreement

with the measured in-cloud radiance to better than 5% at all wavelengths across the

measured spectrum.

The sensitivity of this retrieval to the cloud particle size and the assumed surface

albedo was briefly investigated. It was found that the retrieved cloud optical thickness

is sensitive by approximately 15% to the assumed particle size, and by at most

25% to uncertainty in the assumed surface albedo. While determination of cloud

effective particle size is beyond the scope of this work, it has been seen that the use

of forward modeling with the retrieved extinctions from several particle sizes is useful

in identifying particle sizes that accurately replicate the measurements.

The effect of including cloud properties in OSIRIS retrievals of ozone and strato-

spheric aerosol were investigated. It was found that, for very thin cirrus clouds,

neglecting cloud optical properties in aerosol retrievals biases the retrieved number

density in the stratosphere to positive values by several percent. Since the values of

aerosol extinction below the tropopause are not of interest to most aerosol studies,

this bias is the dominant effect of cloud properties on the operational OSIRIS aerosol

product. For ozone retrievals, it was found that neglecting cloud properties in the

retrieval biases the number density by several percent to smaller values below 25 km

due to increased upwelling radiance that is falsely attributed to low ozone number
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densities.

Some preliminary comparisons were done between extinction profiles retrieved

from OSIRIS and coincident measurements from the SAGE II solar occultation in-

strument. It was found that both the retrieved extinction and ozone profiles from

OSIRIS agree better with SAGE II when cloud properties are included.

There are several directions that could be taken with this work in the future.

The first would be to apply the extinction retrieval that has been developed in this

work to all cirrus clouds detected by OSIRIS. This would provide an eleven-year

database of SVC detections, which would be of significant use to the remote-sensing

community in quantifying retrieval errors due to these clouds. As well, a database of

subvisual cirrus cloud occurrences and optical properties is of high value for current

cloud parameterizations in GCMs.

With available resources, it would be highly advantageous to incorporate the

cloud property retrieval into operational OSIRIS retrievals of ozone and stratospheric

aerosols. Although a full inclusion of cloud scattering properties at the current stage

is computationally prohibitive, it is possible to improve OSIRIS aerosol extinction and

ozone number density products by accounting for cloud optical properties through

parameterizations of cloud effects on the respective retrieval vectors.

It would be beneficial for OSIRIS retrievals in general, but especially for the

study of cloud effects on OSIRIS measurements, to implement three-dimensional

spatial solutions in SASKTRAN. Not only would this allow for better computation

of the radiance field for near-terminator orbits in which there are sharp gradients in

photochemically-active trace gases, but also the effects of horizontal non-homogeneity

of cloud number densities could be studied with such a capability.

Finally, due to the computational limits involved in a successive-orders model in

which the resource demands depend heavily on the number of layers in the model

atmosphere, it would be highly advantageous to embed an adding-doubling radiative

transfer model into SASKTRAN to simulate the effects of more optically thick cloud

layers. Work of this type has been done by van Diedenhoven et al. (2006) in a plane

parallel radiative transfer model, but to the author’s knowledge this work has not
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been done in a fully-spherical geometry.

It is the author’s opinion that the work presented in this thesis gives a useful

technique for estimating cloud properties from measurements of limb-scattered sun-

light. Further, this work forms a foundation for full cloud property retrievals from

limb-scattering measurements and for accurate estimation of errors in retrieved trace

gas profiles that result from the presence of clouds.
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S. Gagné, L. Ickes, et al. (2011), Role of sulphuric acid, ammonia and galactic
cosmic rays in atmospheric aerosol nucleation, Nature, 476, 429–433, doi:10.1038/
nature10343.

169



Koelemeijer, R., and P. Stammes (1999), Effects of clouds on ozone column retrieval
from GOME UV measurements, J. Geophys. Res., 104, 8281–8294, doi:doi:10.1029/
1999JD900012.

Lawson, R., B. Baker, B. Pilson, and Q. Mo (2006), In situ observations of the
microphysical properties of wave, cirrus, and anvil clouds. Part II: Cirrus clouds,
J. Atmos. Sci., 63, 3186–3203, doi:10.1175/JAS3802.1.

Lawson, R., B. Pilson, B. Baker, Q. Mo, E. Jensen, L. Pfister, P. Bui, et al.
(2008), Aircraft measurements of microphysical properties of subvisible cirrus in
the tropical tropopause layer, Atmos. Chem. Phys., 8, 1609–1620, doi:10.5194/
acp-8-1609-2008.

Liou, K. (2002), An Introduction to Atmospheric Radiation, Academic Press.

Llewellyn, E., N. Lloyd, D. Degenstein, R. Gattinger, S. Petelina, A. Bourassa,
J. Wiensz, E. Ivanov, I. McDade, B. Solheim, J. C. McConnell, C. S. Haley, C. von
Savigny, C. E. Sioris, C. A. McLinden, E. Griffioen, J. Kaminski, W. F. Evans,
E. Puckrin, K. Strong, V. Wehrle, R. H. Hum, D. J. Kendall, J. Matsushita, D. P.
Murtagh, S. Brohede, J. Stegman, G. Witt, G. Barnes, W. F. Payne, L. Piché,
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