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ABSTRACT 

Relatively few research efforts have focused on splice length requirements for reinforced 

masonry, despite the significant impact of these requirements on the safety, economy, and 

constructability of masonry walls.  The Canadian masonry provisions for splice lengths in CSA 

S304.1-04 are taken directly from the Canadian concrete design standard, CSA A23.3-04, and 

thus do not necessarily reflect factors unique to masonry construction.  Provisions in American 

masonry standard TMS 402-13/ACI 530-13/ASCE 5-13 are based on test results of double 

pullout specimens, but may be overly conservative due to shortcomings of the specimen type 

chosen. 

The purpose of this study is to examine the splice lengths needed for flexural masonry elements 

reinforced with bar sizes typically used in Canadian masonry construction.  In this study, 27 wall 

splice specimens and 12 double pullout specimens were constructed.  The wall splice specimens 

were tested horizontally in four point loading, while the double pullout specimens were tested in 

direct tension. 

Results from the double pullout specimen testing suggest that the techniques used at the 

University of Saskatchewan (U of S) are reasonably similar to those of the National Concrete 

Masonry Association (NCMA), and are thus adequate to assess current provisions in the 

American and Canadian standards. 

A predictive equation for the tensile resistance of spliced reinforcement was developed from the 

results of the wall splice specimen testing.  This predictive equation was then adjusted to 

incorporate an adequate margin of safety for calculating splice length requirements for design 

purposes, using a five percent quantile approach.  The adjusted predictive equation was then 

extrapolated to determine the splice lengths corresponding to the nominal yield strength of the 

reinforcement.  These splice lengths were compared to current code provisions.  It was found 

that the current CSA S304.1-04 Class B provisions, used almost exclusively in construction, are 

conservative for No. 15, 20, and 25 bars.  In contrast, the TMS 402-13 provisions were overly 

conservative for all three bar sizes.  Changes to the bar size factors of the current provisions for 

both codes were recommended to bring better consistency to the requirements of the two codes, 

and thus ensure the safety, economy, and constructability of masonry walls.  
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CHAPTER 1 INTRODUCTION 

The use of masonry as a building material has long connoted a sense of permanence, 

excellence, and distinction for the structures built from it.  Masonry structures have a 

unique place-making ability that few other building materials can replicate.  Modern 

masonry construction largely consists of reinforced masonry, as the addition of 

reinforcing bars to masonry elements makes masonry a cost-competitive option as a 

structural material.  Much like reinforced concrete, reinforced masonry takes advantage 

of the high compressive strength of the masonry blocks and grout while using the 

reinforcement to provide tensile resistance appropriate for withstanding flexural loads.  

As such, sufficient bond between the reinforcement – grouted in-place in the cells of 

masonry blocks – and the grout is needed, such that stresses are transferred within the 

assemblage and the full capacity of the reinforcement can be developed. 

In reinforced masonry construction, common features such as connections, openings, or 

construction details, as well as the overall lengths or heights of certain members, 

frequently prevent the use of continuous reinforcement.  In such situations, two 

reinforcing bars are overlapped or spliced; however, the length of these splices must be 

sufficiently long for tensile stresses to be transferred between lapped bars to prevent a 

bond failure (Hatzinikolas & Korany 2005, Drysdale & Hamid 2005, NCMA 1999).  

Consequently, splice and development length requirements significantly impact the 

safety, constructability, and economy of masonry walls. 

Despite the significant impact of splice length requirements on masonry construction, 

relatively few research efforts have focused on these requirements.  The limited research 

regarding bond in reinforced masonry has historically focused on testing pullout-type 

specimens, due to the relative ease of construction and testing of these smaller-scale 

specimens.  In testing these types of specimens, tension is applied directly to the lapped 

bars until the reinforcement ‘pulls out’ of the specimen.  Pullout-type tests typically place 

the cementitious materials surrounding the reinforcing bars in a compressive or neutral 

stress state, whereas the stress state of the cementitious materials surrounding the 

reinforcing bars would be tensile in a flexural element (ACI Committee 408 2012).  As 
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such, these specimens do not accurately capture the behaviour of flexural elements.  

Researchers studying the behaviour of reinforced concrete have identified similar 

shortcomings with pullout specimen testing (ACI Committee 408 2012). 

Consequently, Ahmed & Feldman (2012) conducted a study comparing double pullout 

specimens and wall splice specimens in terms of the load-deflection behaviour and tensile 

resistances of spliced reinforcement.  The double pullout specimens were tested by 

applying tension directly to the reinforcing bars.  The wall splice specimens, which were 

13 courses high and had the same cross-sectional geometry as the double pullout 

specimens, were tested in flexure using four-point loading.  They reported a statistically 

significant increase in the capacity of wall splice specimens as compared to the 

corresponding double pullout specimens, with an average increase in the tensile 

resistance of the reinforcement of 8 percent for contact lap splices.  The wall splice 

specimens reinforced with lap spliced bars in contact exhibited strain hardening of the 

bars while the reinforcement in the corresponding double pullout specimens did not show 

signs of strain hardening.  The results of Ahmed & Feldman’s (2012) work thus 

established the validity of using wall splice specimens for evaluations of splice length 

requirements for reinforced masonry. 

The Canadian masonry provisions for development and lap splice lengths provided in 

CSA S304.1-04: Design of Masonry Structures (CSA 2004a) are taken directly from the 

Canadian concrete design code, CSA A23.3-04: Design of Concrete Structures (CSA 

2004b), since bond has been studied extensively by reinforced concrete researchers, with 

tests for development and lap splice lengths dating as far back as 1876 (Abrams 1913).  

However, the provisions for reinforced concrete design do not account for inherent 

properties unique to masonry construction, including the reduced lever arms, weak bed 

joints, and limiting of flexural cracking to the bed joints (Ahmed 2011, Hammons et al. 

1994).  These properties may have a negative effect on bond strength and thus may 

necessitate longer lap splices than those calculated for reinforced concrete (Kisin 2014).  

Further investigation specific to masonry is thus needed. 
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Provisions for splice lengths in the American masonry code TMS 402-13/ACI 530-

13/ASCE 5-13: Building Code Requirements for Masonry Structures (MSJC 2013a), 

hereafter referred to as TMS 402-13, were developed from the results of an experimental 

program consisting exclusively of masonry pullout specimens.  Based on their 

experimental results, the National Concrete Masonry Association (NCMA) developed 

provisions for splice lengths that were first included in the 2008 edition of the American 

masonry code (NCMA 2009).  In developing these provisions, a tensile resistance of 

spliced reinforcement equal to 125 percent of the reinforcing steel yield strength was 

targeted.  As a result of the specimen type selected and tensile resistance targeted, overly 

conservative provisions may have resulted, since the stress state in the cementitious 

materials surrounding the reinforcing bars is not adequately captured in pullout 

specimens.  The provisions of TMS 402-13 (MSJC 2013a) are significantly more 

conservative than those prescribed by CSA S304.1-04 (CSA 2004a) for bar sizes No. 20 

and greater. 

Significant differences in splice length provisions presented in CSA S304.1-04 (CSA 

2004a) and TMS 402-13 (MSJC 2013a) motivate a further examination of bond in 

masonry construction.  As such, the purpose of this research is to investigate the splice 

lengths required for the reinforcing bar sizes typically used in Canadian reinforced 

masonry construction. 

1.1 Objectives of Study 

The objective of this research is to establish rationalized splice lengths needed for 

flexural masonry elements reinforced with bar sizes within the range typically used in 

Canadian reinforced masonry construction (No. 15, No. 20, and No. 25 reinforcing bars).  

The specific objectives of this study are: 

 To confirm that the construction and testing techniques used at the University of 

Saskatchewan (U of S) are reasonably similar to those used by the NCMA (1999, 

2009) 
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 To develop an empirical equation to predict the tensile resistance of spliced 

reinforcement for No. 15, No. 20, and No. 25 reinforcing bars, 

 To quantify splice lengths needed to develop a tensile resistance corresponding to the 

yield strength of the reinforcement for No. 15, No. 20, and No. 25 reinforcing bars, 

 To compare code-to-test calculated ratios of splice lengths by dividing the splice 

length requirements of CSA S304.1-04 (CSA 2004a) and TMS 402-13 (MSJC 2013a) 

for each bar size by the test-required splice lengths corresponding to the yield 

strength of the reinforcement, and 

 To provide recommendations for changes to the current provisions of CSA S304.1-04 

(CSA 2004a) and TMS 402-13 (MSJC 2013a) to ensure adequate safety for both 

codes, while bringing better consistency to the requirements of the two codes. 

1.2 Scope 

A large scale experimental program was required to address the above-noted objectives, 

and involved the construction of 27 wall splice specimens and 12 double pullout 

specimens.  The specimens were constructed over two phases of construction, due to 

spacing limitations in the Structures laboratory.  All specimens were constructed with 

200 mm lightweight hollow blocks placed in running bond.  Companion specimens of 

block, mortar, grout, and reinforcement were produced and tested to ascertain the 

properties of these materials. 

Wall splice specimens reinforced with No. 20 and No. 25 bars were constructed and 

tested in this study.  All wall splice specimens were constructed with the lapped bars in 

contact but not tied together.  Seven wall splice specimen configurations were evaluated.  

The configurations included walls that were 13 courses tall and 2.5 blocks wide, 13 

courses tall and 3.5 blocks wide, and 15 courses tall and 3.5 blocks wide.  Six replicates 

were constructed for the 2.5 block wide and 3.5 block wide configurations that were 

reinforced with No. 20 bars and 200 mm splices.  The number of replicates for these two 

specific configurations was selected such that the differences in the tensile resistances of 
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the spliced reinforcement of these two configurations could be evaluated statistically.  

Three replicates were constructed for the remaining five configurations, which provided 

an estimate of variability for each of these configurations. 

The database of experimental results of wall splice specimen testing from this program 

was bolstered by the inclusion of experimental results from previous research at the 

U·of·S by Sanchez & Feldman (2013) examining splice lengths for specimens reinforced 

with No. 15 bars.  Further testing of wall splice specimens reinforced with No. 15 bars 

was outside of the scope of this experiment. 

The wall splice specimens were tested under four-point loading, with load and 

displacement data collected during testing.  Three splice lengths were tested for 

specimens reinforced with No. 20 bars, and three splice lengths were tested for specimens 

reinforced with No. 25 bars.  Qualitative observations of flexural cracking during testing 

and internal damage upon the conclusion of testing were noted.  The tensile resistance of 

the spliced reinforcement was determined using a numerical moment-curvature analysis, 

since the tension in the reinforcement could not be measured directly for these specimens 

without compromising the bond between the reinforcement and the surrounding 

cementitious materials. 

In addition, 12 double pullout splice specimens were constructed, each with two splices 

that were 600 mm in length.  These specimens were reinforced with No. 25 bars.  The 

double pullout specimens were constructed with the lapped bars in contact, with six 

specimens having the lapped bars tied together and six specimens having the lapped bars 

not tied together.  These specimens were tested in direct tension, with load and 

displacement data recorded during testing.   

The effects of grout and mortar properties, block strength and density, block size, and 

effective depth to cover were excluded from the scope of this experiment.  As such, these 

parameters were held as constant as practically possible for all specimens constructed 

during this study. 
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1.3 Layout of Thesis 

This thesis contains five chapters, each described herein: 

 Chapter 1 presents an introduction to this thesis, including the background 

regarding bond research and splice length requirements for reinforced masonry, 

the objectives of this study, and the scope of this study. 

 Chapter 2 provides a review of relevant literature on splice length research and 

current requirements of the Canadian and American masonry standards.  This 

chapter includes a description of the basic mechanics of bond in reinforced 

masonry, past works regarding bond in masonry, and selected findings from 

reinforced concrete research.  The differences between the Canadian and 

American masonry standard splice length requirements are discussed.  Finally, the 

rationale for the work in this study is presented. 

 Chapter 3 describes the experimental program of this study in detail, including 

the construction process employed and the test methods used to test all wall 

splice, double pullout, and companion specimens. 

 Chapter 4 discusses the results and analysis for the specimens constructed and 

tested in this study.  The results of companion specimen testing of blocks, mortar, 

grout, masonry prisms, and reinforcing bar samples are discussed.  The load 

histories and failure loads of the double pullout specimens are presented and then 

compared to the results of NCMA (1999, 2009) studies.  The load deflection 

behaviour, qualitative damage observations during testing, and internal damage 

observations for the wall splice specimens are detailed.  The numerical model 

used to determine the tensile resistance of the spliced reinforcement for the wall 

splice specimens is discussed.  The regression analysis of the tensile resistances 

and the subsequent comparison to current code provisions are presented.  Changes 

to current code provisions are then recommended. 

 Chapter 5 presents the conclusions in relation to the stated objectives and 

recommendations for further research derived from this study. 
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CHAPTER 2 LITERATURE REVIEW 

The safety, constructability, and economy of masonry walls depend on splice and 

development length requirements, as aforementioned in Chapter 1.  The assumption of 

perfect bond between the reinforcing steel and surrounding cementitious material requires 

a transfer of tensile stresses between the materials.  Development and lap splice lengths 

must be sufficiently long to ensure the transfer of stresses.  Researchers studying the 

behaviour of reinforced concrete structures have extensively examined bond and 

development and splice length requirements.  However, relatively few research efforts 

have focused on development and splice length requirements for masonry, despite their 

importance. 

Presented herein is a discussion of relevant literature related to splice length research and 

code requirements.  A description of the basic mechanics of bond in reinforced masonry 

is first provided.  Past works regarding bond in masonry are discussed, and selected 

findings related to reinforced concrete research are also presented based on their 

relevance in guiding future work on bond in reinforced masonry.  The current provisions 

in the Canadian and American masonry standards are compared.  Differences in research 

philosophies used in masonry and reinforced concrete are also discussed.  The rationale 

for further work to refine and calibrate lap splice length provisions for reinforced 

masonry is presented. 

2.1 Mechanics of Bond 

In reinforced masonry construction, adequate bond between the reinforcement and the 

surrounding cementitious material is required for the tensile stresses to be transferred 

between them (Hatzinikolas & Korany 2005).  Bond stresses acting along the length of 

the reinforcement provide the mechanism for force transfer.  However, these bond 

stresses tend to cause movement of the reinforcing bar and the surrounding cementitious 

material relative to one another (ACI Committee 408 2012).  Adequate bond between the 

reinforcement and the surrounding cementitious material is thus needed to prevent slip 

between them (Hatzinikolas & Korany 2005). 
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Figure 2.1(a) shows the end of a masonry wall where development of forces is required 

between the reinforcement of diameter db (a plain bar is shown for the purpose of 

illustration) and the surrounding cementitious material (MacGregor & Bartlett 2000).  

Tensile and compressive stresses result in the reinforcement and cementitious material, 

respectively (MacGregor & Bartlett 2000).  The stresses developed must increase over 

the length of the reinforcement between the support and the midspan of the wall such that 

the yield strength of the reinforcement can be achieved and the wall can develop its full 

flexural capacity at the location of the maximum internal moment.  Figure 2.1(b) shows a 

segment of the reinforcement in the development region of length   , where the stresses 

at sections 1 and 2 are fs1 and fs2, respectively, where fs1 is less than fs2.  Bond stresses are 

present to maintain equilibrium, and these stresses act on the surface area of the 

reinforcement as shown.  The average bond stress, uavg, can be computed based on a 

summation of horizontal forces as follows: 

                         {2.1} 

 

where    is the cross-sectional area of the reinforcement.  Rearranging Equation 2.1 and 

substituting    
 

 
  

 , it then follows that the average bond stress, uavg, is: 

     
           

   
 

{2.2} 

 

Equation 2.2 provides an oversimplification of the bond stress for two reasons 

(MacGregor & Bartlett 2000, Pillai et al. 2008, ACI Committee 408 2012).  First, the 

actual distribution of bond stresses is highly non-uniform, varying between flexural 

cracks where the cementitious material surrounding the reinforcement carries a portion of 

the tensile stress.  The calculation of actual bond stresses is not possible since the flexural 

crack locations and exact tensile strength contributions of the cementitious material 

between these cracks are unknown.  Second, deformed reinforcement provides a further 

mechanism for force transfer between the reinforcement and surrounding cementitious 

material through the mobilization of bearing forces of the lugs of the reinforcement on 

the surrounding cementitious material. 
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Figure 2.1.  Distribution of forces and stresses along reinforcing bar segment: a) 

development region of a masonry element, b) bar forces (after MacGregor & 

Bartlett 2000) 

Figure 2.2(a) shows the bearing forces exerted on a deformed reinforcing bar, which are 

at an angle with respect to the longitudinal axis of the bar due to the bar deformations 

(MacGregor & Bartlett 2000).  Figure 2.2(b) shows the equal and opposite forces that are 

then exerted on the surrounding cementitious material.  Figure 2.2(c) then shows the 

resolution of the forces on the concrete into longitudinal and radial components.  Tensile 

stresses acting circumferentially on the cementitious material are caused by the radial 

component.  These stresses will, when sufficiently large, cause the cementitious material 

to split and crack. 
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Figure 2.2.  Bearing forces on deformed reinforcement: a) bar forces, b) concrete 

forces, and c) longitudinal and radial components of concrete forces (from 

MacGregor & Bartlett 2000, p. 306) 

Additionally, force transfer from one reinforcing bar through the adjacent cementitious 

materials to a second reinforcing bar is necessary when two bars are spliced together 

(MacGregor & Bartlett 2000).  Figure 2.3 shows the splitting cracks along the bars that 

occur as a result of the force transfer mechanism (MacGregor & Bartlett 2000).  Splitting 

cracking is typically initiated at the splice ends, resulting from the change in stiffness at 

these locations (MacGregor & Bartlett 2000).  Consequently, large transverse cracks can 

develop at each end of the splice. 

 

Figure 2.3.  Cracking initiation in lap splices (from ACI Committee 408 2012, p.14) 

Bearing force

T

Bearing force
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2.2 Factors Affecting Bond in Cementitious Materials 

There are a variety of factors that influence bond (ACI Committee 408 2012).  The 

diameter of the reinforcing bars significantly influences bond, as larger bar sizes require 

longer development or splice lengths to achieve sufficient resistance to bond failure.  The 

tensile strength of the cementitious material is also significant, and is typically reflected 

by the square root of the compressive strength of the cementitious material.  Finally, the 

transverse spacing between spliced bars, if any, cementitious cover and bar spacing, bar 

casting position, and the presence of transverse reinforcement affect the required splice 

length. 

Design expressions for required development and splice lengths, as included in the 

current Canadian and American masonry standards, have typically been empirically 

derived from experimental studies with an incorporation of a safety margin (discussed 

further in Section 2.7.2), due to the complex nature of bond in cementitious materials 

such as reinforced concrete and masonry (MacGregor & Bartlett 2000).  Researchers 

conducting the experimental work from which design expressions are derived typically 

evaluate the tensile resistance of spliced reinforcement with variations in the structural, 

cementitious material, and reinforcement properties that influence bond, as described 

above.  The resulting design expressions specify minimum required development or 

splice lengths as opposed to maximum bond stresses because of the highly non-uniform 

distribution of bond stresses, as described in Section 2.1. 

2.3 Past Research Related to the Bond of Reinforcement in Masonry Construction 

Most past work examining bond in reinforced masonry is based on pullout-type 

specimens where direct tension is applied to reinforcing bars.  These specimens have 

historically been favoured because they are relatively easy and inexpensive to construct 

and relatively simple to analyze since the force applied to the spliced reinforcement is 

measured directly.  A thorough review of all past experimental work and specimen types 

for bond research in masonry is provided by Ahmed (2011). 
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Figure 2.4 shows a double pullout specimen, which was used by the NCMA (1999, 2009) 

and Ahmed & Feldman (2012).  Results for those specimens tested by the NCMA (1999, 

2009) formed the basis of the development and lap splice length provisions in the 

American masonry standard, TMS 402-13 (MSJC 2013a), as discussed further in Section 

2.5.  These specimens minimize the effects of eccentric loads, and hence in-plane 

moments, by including two reinforcement splices in the panel.  Double pullout specimens 

have shown good repeatability for contact splice specimens.  Ahmed & Feldman (2012) 

tested eight replicates of double pullout specimens to establish the statistical significance 

of the results.  A coefficient of variation of 2.37 percent was observed, and failure 

resulted due to bar pullout.  Despite the aforementioned advantages, double pullout 

specimens still do not offer an accurate replication of the stress state experienced in the 

cementitious materials surrounding the reinforcement and so do not accurately capture 

the behaviour of walls subjected to out-of-plane flexure. 

 

Figure 2.4.  Double pullout specimen, developed by NCMA (1999, 2009) (after 

NCMA 1999, Ahmed 2011) 

In their study, Ahmed and Feldman (2012) directly compared the capacities of wall splice 

and double pullout specimens.  Eight replicates of each specimen type were constructed, 

and the wall splice and double pullout specimens were tested in four-point flexural 

loading and direct tension, respectively.  The tensile resistance of the spliced 

reinforcement was determined for each specimen.  They reported a statistically 

P P

P P
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significant increase in the tensile resistance of the lap-spliced bars as tested in wall splice 

specimens as compared to the tensile resistances of the lap-spliced bars in corresponding 

double pullout specimens, with increased capacities of 8.47 percent and 41.2 percent for 

contact and non-contact splices, respectively.  The wall splice specimens reinforced with 

lap spliced bars in contact exhibited strain hardening of the bars while the corresponding 

reinforcement in the double pullout specimens failed by bar pullout at loads greater than 

the theoretical yield load.  The higher tensile resistance of the spliced reinforcement and 

higher strains in the reinforcement result from the improved ductility of the wall splice 

specimens that cannot be evaluated using double pullout specimens. 

2.4 CSA S304.1-04 Splice Provisions 

The development and splice length provisions in CSA S304.1-04 (CSA 2004a) are taken 

directly from CSA A23.3 (CSA 2004b) with slight modifications, as discussed later in 

this section.  Despite these modifications, many parameters unique to masonry 

construction, including weak bed joints, the limiting of flexural cracks to these bed joints, 

and reduced lever arms in members subject to flexure, are not accounted for in the 

masonry provisions.  The aforementioned parameters likely have an effect on bond 

strength, thus requiring further investigation specific to masonry (Kisin 2014, Ahmed 

2011, Hammons et al. 1994). 

The minimum development length requirement in Clause 12.4.2.3 of CSA S304.1-04 

(CSA 2004a) is: 

       
      

         

  

√   
 

   {2.3a} 

 

where k1, k2, and k3 are factors for bar location, epoxy coating, and bar size, respectively 

(dimensionless); dcs is the lesser of the distance between the reinforcing bar and the 

closest masonry surface and two-thirds of the distance between bars being developed in 

mm; Ktr is the transverse reinforcement index in mm; fy is the nominal yield strength of 

the reinforcement in MPa;      is the in-situ compressive strength of the grout in MPa; 

and Ab is the cross-sectional area of the reinforcement in mm
2
.  The term           in 
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Equation 2.3a is limited to a maximum value of      .  Equation 2.3b shows the 

resulting equation if this maximum value is substituted into Equation 2.3a and the cross-

sectional area of the reinforcement is expressed in terms of bar diameter. 

             

  

√   
 

   {2.3b} 

 

Clause 12.4.2.4 of CSA S304.1-04 (CSA 2004a), presents a simplified equation 

applicable when the clear spacing between the lap spliced reinforcing bars exceeds two 

times the bar diameter: 

             

  

√   
 

   {2.4} 

It should be noted that Equation 2.4 provides more conservative development length 

requirements than Equation 2.3b. 

The only modifications made to these equations relative to those presented in CSA A23.3 

(CSA 2004b) are the substitution of the compressive strength of the grout, f’gr, for that of 

the concrete, f’c, and the exclusion of an additional k factor used in CSA A23.3 (CSA 

2004b) that accounts for the concrete density. 

Splice length requirements in CSA S304.1-04 (CSA 2004a) depend on the calculated 

development length and the class of the lap splice.  The required length of a Class A lap 

splice in CSA S304.1-04 (CSA 2004a) is equal to ld, where a Class A lap splice is defined 

as one in which at least twice the required area of reinforcement is provided and no more 

than 50 percent of the reinforcement is spliced at a given location.  A lap splice is 

otherwise considered a Class B splice, where the splice length must be at least 1.3 times 

ld as calculated from Equation 2.3 or 2.4.  In masonry wall construction, Class B splices 

are used almost exclusively as staggering the location of lap splices in a wall or other 

element is not feasible given the construction staging. 
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2.5 Development of TMS 402 Masonry Splice Provisions from NCMA (1999) Study 

TMS 402-13 provisions (MSJC 2013a) for development and lap splice lengths were 

developed from the research studies conducted by the NCMA (1999, 2009).  In these 

studies, NCMA (1999) conducted an experimental program consisting of double pullout 

specimens exclusively to examine splice length capacities in reinforced masonry as a 

function of several parameters.  These parameters included bar size, splice length, cover 

depth, and grout compressive strength.  A total of 81 double pullout splice specimens 

were constructed with standard 8 inch (approximately 200 mm) concrete masonry blocks.  

An additional 27 specimens were constructed with standard 12 inch (approximately 

300¯mm) concrete masonry blocks.  The double pullout splice specimens were 2.5 blocks 

wide, with specimen heights chosen as a function of selected lap splice length such that 

the specimen was sufficiently long to accommodate the lap splice length.  Lap splice 

lengths were chosen as multiples of the bar diameter, db, and ranged from 36db to 113db.  

This selection of splice lengths paralleled American code provisions at that time, TMS 

402-95 (MSJC 1995), which specified a development length requirement in inches as: 

             {2.5} 

where Fs is the allowable stress in the reinforcement in psi, specified as 24,000 psi (165 

MPa) for Grade 60 (413 MPa) reinforcement (MSJC 1995). 

NCMA (1999) established a database of 177 individual double pullout specimens by 

including the results of specimens as reported by other researchers available at that time 

in addition to the specimens constructed and tested in their program.  A regression 

analysis was then performed to predict the capacity of the lap splice,    (lb), based on the 

lap splice length    (inches), bar diameter    (inches), masonry compressive strength     

(psi), and clear cover     (inches): 

                       
     √            

{2.6} 

The predicted capacity of the splice,   , was taken as 1.25 times the force in the 

reinforcing bar at yield based on the nominal yield strength of the reinforcement (Asfy) 

and the equation was solved for the required splice length.  The equation was then 
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simplified such that it took on the same form as that used in the Uniform Building Code 

(NCMA 1999).  Requirements for splice lengths were set equal to the requirements for 

development length,   .  The expression recommended by NCMA for development and 

splice length requirements, therefore became: 

     
      

    

 √   
           {2.7} 

where   is a bar size factor (unitless); K is the smallest of the minimum cover, clear 

spacing between adjacent reinforcement, and 9db (mm); and     is the specified 

compressive strength of the masonry assembly (MPa).  Clauses 8.1.6.7.1 and 9.3.3.4 of 

TMS 402-13 (MSJC 2013a) states that the requirements for splice lengths are equal to the 

development length requirements calculated in accordance with Equation 2.7. 

Equation 2.7 was first adopted in the 2008 edition of the Masonry Standards Joint 

Committee (MSJC 2008) Building Code Requirements for Masonry Structures (TMS 

402/ACI 530/ASCE 5) and included in all subsequent editions of this standard (MSJC 

2011, MSJC 2013).  Figure 2.5 shows a comparison of the requirements in TMS 402-95 

(MSJC 1995) and TMS 402-13 (MSJC 2013a) graphically, for walls constructed with 

200 mm blocks and Grade 400 reinforcement placed at the mid-depth of the block, 

without the use of transverse reinforcement.  Significantly longer lap splices are required 

based on these new provisions for larger bar sizes.  The required splice lengths for No. 6 

(M#19), No. 7 (M#22), and No. 8 (M#25) bars increased by 20, 42, and 91 percent, 

respectively, with the adoption of Equation 2.7, as calculated for an assumed masonry 

compressive strength,    , of 10 MPa. 
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Figure 2.5.  Comparison of required splice lengths in TMS 402-95 and TMS 402-13 

2.6 Comparison of Provisions Presented in CSA S304.1-04 and TMS 402-13 

Information presented in the previous two sections show that, in spite of the similarities 

in form and parameters, the splice length requirements presented in CSA S304.1-04 

(CSA 2004a) and TMS 402-13 (MSJC 2013a) are substantially different.  Figure 2.6 

highlights these differences in a quantifiable manner and shows the required splice 

lengths as calculated using provisions in the two codes, presented in Equations 2.3b and 

2.7, versus nominal bar diameter.  The values shown in Figure 2.6 were calculated 

assuming that no transverse reinforcement was provided.  Splice lengths were calculated 

for specimens with 200 mm wide blocks and Grade 400 reinforcement.  Calculations 

were made assuming that the reinforcement was placed at the centre of the block, thus 

providing an effective depth of 95 mm.  Therefore, the term           in the CSA 

S304.1-04 provisions presented in Equation 2.3a was set equal to its maximum value of 

     , and Equation 2.3b was thus used.  The in-situ compressive strength of grout was 

assumed to be 20 MPa, based on the typical in-situ grout strengths noted by Drysdale & 

Hamid (2005) and Hatzinikolas & Korany (2005).  A corresponding specified 

compressive strength of the masonry assembly equal to 10 MPa was assumed based on 

the assumed     value provided in TMS 602-13 (TMS 2013b).  Both k1 and k2 were set 

equal to 1.0, and the bar size factors were used as prescribed in CSA S304.1-04 (CSA 

2004a) and TMS 402-13 (MSJC 2013a). 
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Figure 2.6:  Splice requirements calculated from CSA S304.1-04 and TMS 402-13 

provisions 

Figure 2.6 shows that the splice length requirements of TMS 402-13 are greater than the 

requirements of CSA S304.1-04, particularly for large bar sizes.  CSA S304.1-04 (CSA 

2004a) requires 672 mm and 1049 mm splice lengths for No. 20 and 25 bars in Class B 

splices, which are used most often in masonry construction.  TMS 402-13 (MSJC 2013a) 

requires splice lengths of 1093 mm and 2329 mm for No. 6 (M#19) and No. 8 (M#25) 

bars, respectively.  Splice lengths shorter than 300 mm (12 inches) are not permitted for 

any bar size using either standard. 

There are three key differences between the Canadian and American masonry standard 

provisions that each contribute to the differences seen in the splice length requirements of 

the two standards for larger bar sizes.  These three differences are discussed herein. 

The first noteworthy difference between the Canadian and American masonry standard 

provisions is the property used to reflect the compressive strength of the masonry 

assembly.  The compressive strength of the grout,     , is used in CSA S304.1-04 (CSA 

2004a).  Suter and Fenton (1985) observed that minimum lap splice lengths calculated 

from CSA provisions at the time using      agreed more closely with their experimental 

results than splice lengths calculated using    .  TMS 402-13 (MSJC 2013a) instead uses 

the compressive strength of the masonry assembly,    .  NCMA (2009) chose the 

masonry assembly compressive strength for inclusion in their prediction and design 
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equations because they asserted that it better reflects of the composite action between the 

masonry block and grout. 

Recent experimental results underscore the effect of poor bond between the masonry 

blocks and grout on splice performance and the relevance of using     to represent the 

strength of the masonry assemblage, especially for the case when non-contact lap splices 

have been provided with the lap spliced bars located in adjacent cells (Ahmed & Feldman 

2012).  The poor bond between the masonry block and the grout due to grout shrinkage 

prevented the development of diagonal compressive struts.  These compressive struts are 

required to develop an internal moment resistance sufficient to carry the applied external 

in-plane moment created by the lapped reinforcing bars.  Failure of these specimens by 

masonry splitting, prior to the yielding of the reinforcement, therefore resulted. 

The second noteworthy difference between the Canadian and American masonry code 

provisions is their respective dimensional coefficients for the equations used to calculate 

lap splice length requirements.  The TMS 402-13 (MSJC 2013a) equation for 

development length in Metric units, as presented in Equation 2.7, simplifies as follows if 

the minimum cover is at least 2 db, as required in CSA S304.1-04 (CSA 2004a): 

   
         

√  
 

                 
{2.8} 

The dimensional coefficient in Equation 2.8 of 0.79 is then adjusted to reflect the 

differences between the compressive strength of the masonry assemblage and the 

compressive strength of the grout.  The ratio of     to      was calculated based on 

experimental data of the relationship between grout compressive strengths and resulting 

masonry compressive strengths for grout strengths ranging from 10 MPa to 40 MPa 

(Drysdale & Hamid 2004, Ahmed 2011).  The resulting ratios of     to      ranged from 

0.9 to 0.4, and applying these ratios to Equation 2.8 results in the dimensional coefficient 

ranging from 0.85 to 1.23 in place of the 0.79 shown.  The resulting range for the 

coefficient is noticeably greater than the coefficients of 0.36 and 0.47 for Class A and B 

splices, respectively, used in the CSA S304.1-04 (CSA 2004a) provisions presented in 
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Equation 2.3b.  The difference in these coefficients contributes to the differences between 

the splice length requirements calculated for each standard. 

The third significant difference between CSA S304.1-04 (CSA 2004a) and TMS 402-13 

(MSJC 2013a) provisions is their respective bar size factors.  The bar size factor k3 in 

CSA S304.1-04 (CSA 2004a), set equal to 0.8 for No. 20 bars and smaller and 1.0 for 

bars larger than No. 20, is taken directly from CSA A23.3-04 (CSA 2004b).  The CSA 

A23.3-04 provisions (CSA 2004b) for bond are nearly identical to those presented in ACI 

318-11 (ACI 2011).  Further work has identified concerns with the use of these bar size 

factors. 

In their review of ACI 318 bond provisions, ACI Committee 408 (2012) noted the 

reduced bar size factor of 0.8 for No. 20 and smaller bars is potentially unconservative.  

ACI Committee 408 (2012) reports that ACI Committee 318 justified the reduced bar 

size factor for smaller bar sizes included in current provisions based on past code 

provisions and experimental results.  However, this factor was derived based on the 

results of testing specimens with development or splice lengths less than 300 mm, shorter 

than permitted by Canadian and American concrete and masonry standards.  Darwin 

(2005) reported that the inclusion of the 0.8 bar size factor results in a greater probability 

of failure in bond than in flexure.  Furthermore, Scollard and Bartlett (2004) conducted a 

Monte Carlo simulation of model-simulated reinforced concrete beams to establish the 

resulting target reliability indices in flexure and bond based on provisions in the 1999 and 

2002 editions of ACI 318.  It was determined that the target reliability indices calculated 

for bond had more scatter than those obtained for flexure, and showed that bond failures 

were more likely to occur than flexural failures for beams reinforced with the smaller 

diameter bars that are subject to the 0.8 bar size factor (i.e. No. 20 bars and smaller).  The 

simulation was repeated using a bar size factor of 0.85, and showed that the change in the 

resulting development lengths would increase the resulting target reliability index in bond 

sufficiently to ensure that a flexural failure would then govern.  ACI Committee 408 

(2012) recommended changes to current ACI 318-11 provisions, but no changes have 

been incorporated to date.  These findings regarding the impact of the bar size factors on 
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target reliability indices in bond for reinforced concrete are relevant for the CSA S304.1-

04 (CSA 2004a) provisions since these bar size factors were copied directly. 

In contrast, the bar size factor γ in TMS 402-13 (MSJC 2013a) is set equal to 1.0 for No. 

3 (M#10) to No. 5 (M#16) bars, 1.3 for No. 6 (M#19) to No. 7 (M#22) bars, and 1.5 for 

No. 8 (M#25) to No. 11 (M#36) bars.  Instead of reducing required splice lengths for 

smaller bars, the required splice lengths for larger bars are increased to prevent the 

longitudinal splitting failure modes observed by NCMA (1999) for specimens with larger 

bar sizes.  The bar size factors contribute to the longer splice requirements in TMS 402-

13 (MSJC 2013a) as compared to CSA S304.1-04 (CSA 2004a). 

The class factor for lap splices used in CSA S304.1-04 (CSA 2004a) provisions increases 

splice lengths by 30 percent for Class B splices.  ACI Committee 408 (2012) stated this 

factor increases the target reliability index in bond for the resulting designs such that a 

flexural failure would then govern.  However, the purpose of including the Class B splice 

factor was not primarily based on probabilities of bond failure.  Rather, Darwin (2005) 

stated that the factor was incorporated into design provisions to encourage designers to 

stagger lap splices.  A specific basis for the magnitude of the increase was not identified 

in the literature reviewed.  As aforementioned, the staggering of lap splices is not 

practical or economical for masonry construction. 

2.7 Comparison of Philosophies Used by Masonry and Concrete Researchers 

A resolution of the differences between the approaches taken by researchers studying the 

behaviour of reinforced masonry and concrete, in terms of the specimen type used and 

the desired failure loads of test specimens, is needed.  Resolving these differences will 

lead to a rationalization of the differences between the Canadian masonry code provisions 

(CSA 2004a), taken directly from the Canadian concrete code (CSA 2004b), and 

American masonry code provisions (MSJC 2013a), derived from experimental pullout 

specimen results, as presented in Section 2.6. 

Recent reinforced concrete research has been based on the testing of beam end and splice 

specimens that better capture the stress state in the concrete surrounding the 
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reinforcement, as compared to pullout-type specimens (ACI Committee 408 2012, Pillai 

et al. 2008, MacGregor & Bartlett 2000).  The ACI 10-2001 database, formally 

established in 1997, contains these test results exclusively, and has been used for the 

calibration of ACI 318 code provisions for development and lap splices (ACI Committee 

408 2012).  In contrast, a standard specimen type for masonry bond research has not yet 

been established.  Only a select number of studies (Kisin & Feldman 2013, Sanchez & 

Feldman 2013, Ahmed & Feldman 2012, Ahmadi 2001, Uniat 1983) have included 

flexural masonry elements, so there is currently insufficient reliable data resulting from 

those specimen types from which splice length provisions can be established. 

In addition, the research used to establish and calibrate TMS 402-13 (MSJC 2013a) 

provisions is based on double pullout specimens with tensile resistances of the spliced 

reinforcement well in excess of the yield strength of the reinforcement.  NCMA’s 

regression analysis (1999) included tests of double pullout specimens with lap splice 

lengths that were generally 48   at minimum.  Consequently, the specimens that 

remained in the test database for the regression analysis used to establish the TMS 402-13 

(MSJC 2013a) provisions generally achieved tensile resistances exceeding the yield 

strength of the reinforcement. 

The approach taken by researchers studying the behaviour of reinforced concrete 

contrasts the approach taken by NCMA (1999, 2009) in that they have typically tested 

specimens with shorter lap splice lengths such that a bond failure occurred prior to 

yielding of the reinforcement (Darwin et al. 1996, Canbay & Frosch 2006, Orangun et al. 

1977).  Since the purpose of their study was to evaluate bond strength rather than 

ductility, Orangun et al. (1977) excluded specimens from their analysis in which the 

reinforcement reached its yield strength prior to failure.  This study is significant because 

it forms the basis of provisions in ACI 318-11 (ACI 2011) and CSA A23.3 (CSA 2004b).  

Testing specimens that fail in bond allows for a determination of the relationship between 

splice length and the tensile resistance of spliced reinforcement, since these parameters 

are known to vary in a linear but non-proportional manner when the forces in the 

reinforcement are below those corresponding to yield (ACI Committee 408 2012).  

Further increases in splice length beyond those sufficiently long for the development of 
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the reinforcement yield strength will not result in proportional increases in tensile 

resistances due to the strain hardening behaviour of the reinforcement. 

2.7.1 Resolution of Specimen Type and Failure Modes for Bond Research 

Hammons et al. (1994) identified four primary failure modes that have been observed 

during investigations of lap splices in reinforced masonry:  

1. Reinforcement yielding, 

2. Reinforcement pullout, 

3. Reinforcement rupture, and 

4. Masonry longitudinal splitting. 

Hammons et al. (1994) noted that splitting failures are most probable when limited cover, 

large bar sizes, or inadequate splice lengths are used.  Hammons et al. (1994) also stated 

that reinforcement yielding is the preferred failure mode for design since it provides both 

the most efficient use of the reinforcement and sufficient ductility.  A flexural failure will 

occur in masonry elements provided that the lap splice is sufficiently long. 

NCMA (1999, 2009) observed the latter three failure modes in their experimental work.  

NCMA (1999) observed a handful of specimens that failed by rupture of the 

reinforcement with a stress ranging from 1.56 to 1.69 times its nominal yield strength.  

Achieving stresses well in excess of the yield strength of the reinforcement can only be 

expected to occur in double splice pullout tests.  In elements such as concrete beams or 

masonry walls, a flexural failure is dependent on both the compressive strength and 

limited tensile strength of the concrete or masonry.  Specimen failure would therefore 

occur in flexure prior to rupture of the reinforcement.  As such, this failure mode would 

not be observed in the testing of flexural specimens such as wall splice specimens. 

NCMA stated in their subsequent 2009 study that the new bond provisions first 

incorporated in TMS 402-08 (MSJC 2008) specifically consider the longitudinal splitting 

failure mode for lap splices and the potential for reinforcement pullout failure.  Data from 

specimens that failed by longitudinal splitting was used exclusively for the calibration of 

these design provisions.  However, the majority of these specimens achieved capacities 
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exceeding the yield strength of the reinforcement, with the target splice capacity set equal 

to 1.25 times the yield strength of the reinforcement.  Regardless of the failure mode, the 

splice capacity observed in the testing of these double pullout specimens is likely 

conservative if compared to the splice capacity that would be observed in comparable 

wall splice specimens, given the results of Ahmed & Feldman’s work (2012).  The choice 

of using double pullout test specimens is the most probable reason for the increased 

splice length requirements first presented in TMS 402-08 (MSJC 2008). 

Failure in bond occurs without warning, making bond failure an undesirable limit state.  

The probability of a bond failure should therefore be less than the probability of a 

flexural failure (ACI Committee 408 2012).  However, for the purpose of designing an 

effective experimental investigation with the aim of rationalizing design provisions for 

the development and lap splice length of reinforcement, specimens must be designed to 

fail in bond prior to the yielding of the reinforcement. 

2.7.2 Development of Design Expressions for Splice Length Requirements 

As discussed in Section 2.7, researchers studying the behaviour of reinforced concrete 

have typically tested specimens with shorter lap splice lengths designed to fail in bond 

prior to yielding of the reinforcement such that the relationship between splice length and 

splice capacity could be determined.  Consequently, various methods have been used to 

determine predictive equations for splice capacity, from which design expressions were 

then developed.  Design expressions for splice length requirements must ensure that the 

full yield strength of the reinforcement can be achieved along the splice length with a 

certain level of reliability.  Empirical equations derived from experimental data are the 

basis for predictive and design equations since the complexity of bond behaviour 

prevents the use of first principles to develop such expressions. 

Regression analysis is typically used to derive a predictive equation for the tensile 

resistance of spliced reinforcement as a function of the parameters of interest in each 

study, including lap splice length, bar diameter, clear cover, or other parameters 

considered by the researchers.  The predictive equations for splice capacity are typically 

then solved for the splice length by setting a target splice capacity corresponding to the 
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nominal yield strength of the reinforcement, equal to     , such that required splice 

lengths can be calculated for given parameters (e.g. Darwin et al. 1996). 

Predictive equations developed from regression analyses cannot be used directly for 

design expressions, however, as they reflect average best-fit values (Darwin et al. 1996).  

Approximately half of all structural elements with spliced reinforcement would have 

capacities that are less than the best-fit value if the predictive equations were used 

directly. 

Researchers studying reinforced concrete have used various methods to provide a margin 

of safety.  Canbay & Frosch (2006) applied a factor of safety of 1.2 to shift their 

experimental curves derived from tests of concrete beams, such that only 10 percent of 

their specimens (with no transverse reinforcement) would contain spliced reinforcement 

without sufficient tensile resistance to achieve the yield strength of the reinforcement.  

However, the use of a nominal value of the factor of safety does not consider any 

statistical measures associated with experimental data.  Darwin et al. (1996) applied a 

strength reduction factor of 0.9 to their predictive equation relating the tensile resistance 

of a splice to the splice length, bar diameter, and other factors.  The tensile resistance in 

this expression was divided by the strength reduction factor.  The factor of 0.9 was 

chosen such that the resulting reliability index in bond was equal to 3.5 and thus a bond 

failure was approximately one-fifth as probable as a flexural failure.  Hosney et al. (2012) 

reduced the constant of their equation by one standard deviation to provide a greater 

factor of safety.  Chun et al. (2011) used a five percent fractile approach in determining 

design expressions for compression lap splices in concrete.  The five percent fractile 

value was calculated based on the coefficient of variation and number of observations in 

the data set, and was then used to provide a margin of safety.  Chun et al. (2011) 

calculated a five percent fractile value of 0.82 for their data.  The tensile resistance term 

in their predictive equation was divided by the five percent fractile to incorporate a 

margin of safety.  These methods all adjust predictive equations to incorporate a level of 

safety such that they can be used for design purposes.  The splice lengths corresponding 

to the yield strength of the reinforcement can then be calculated using the adjusted 

predictive equation, extrapolating beyond the range of the data set. 
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In contrast, the NCMA (1999, 2009) targeted a splice capacity stress equal to 1.25 times 

the yield strength of the reinforcement, as discussed in Section 2.4.  Orangun et al. (1977) 

noted in their seminal work on bond in reinforced concrete that such an increase in the 

target capacity proportionately increased the required splice lengths.  This increase does 

not directly consider the stress-strain behaviour of the steel reinforcement, as the strain 

hardening in the reinforcement when loaded beyond the yield point results in a non-

proportional increase of stress with strain.  Instead, Orangun et al. (1977) recommended a 

capacity reduction factor be applied to the calculated development length, as this factor 

would account for variances in material and geometric properties of concrete members.  

Further, a change to the splice length provisions in ACI 318-11 (ACI 2011) has been 

recommended by ACI Committee 408 (2012), which would incorporate a strength 

reduction factor to provide a reliability index of 3.5 and thus ensure a bond failure is 

approximately one fifth as probable as a flexural failure. 

A strength reduction factor applied to a splice length calculated using the nominal yield 

strength of the reinforcement would be a more logical approach for bond provisions in 

reinforced masonry as it would be consistent with the limit states design methodology 

already used in CSA S304.1-04 (CSA 2004a).  A probability-based approach could be 

used to reliably establish this strength reduction factor for masonry, if a database of test 

results with a standardized and representative specimen type is created. 

2.8 Lap Splice Length Selection 

As discussed in Section 2.7, the choice of lap splice lengths shorter than those resulting in 

the yielding of the reinforcement in experimental specimens tested in flexure is important 

to determine the relationship between splice lengths and splice capacity.  As such, a 

discussion of the findings of previous researchers in terms of splice lengths selected, 

predictive equations derived, and design recommendations provided is presented herein. 

Masonry researchers have provided recommendations in terms of development length.  

Baynit (1980) provided expressions for splice length based on the bar diameter.  Without 

a strength reduction factor, Baynit’s expression results in splice lengths of 720 mm and 

1100 mm for No. 20 and No. 25 bars respectively.  Uniat (1984) recommended a 425 mm 
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design splice length for No. 20 bars, citing code provisions at the time as overly 

conservative.  Based on Uniat’s results (1984), Suter & Fenton (1985) recommended a 

slightly more conservative splice length value of 500 mm for No. 20 bars.  Watanabe 

(1985) reported that for No. 6 (M#19) bars, a splice length of 14db (266 mm) was 

sufficient to develop the yield strength in the reinforcement. 

Table 2.1 presents selected results of double pullout splice specimens from NCMA’s 

1999 and 2009 studies.  Shown are results for specimens reinforced with imperial bar 

sizes No. 6 (M#19) and No. 8 (M#25), as they provide the closest comparison for metric 

No. 20 and No. 25 bars experimentally evaluated in this study.  The values shown in 

Table 2.1 are the averages of three replicates of each specimen configuration listed.  The 

samples constructed with No. 8 bars with 813 mm lap splices had an average splice 

capacity equal to 1.06 times the yield strength of the reinforcement, while the specimens 

constructed with No. 8 bars with 610 mm lap splices had an average splice capacity equal 

to 0.69 times the yield strength of the bars, given masonry prism compressive strengths 

and grout compressive strengths of 22.0 MPa and 20.1 MPa, respectively.  The tensile 

resistance of the spliced reinforcement in the specimen constructed with 610 mm splice 

length is less than that corresponding to the yield strength of the reinforcement, indicating 

that a bond failure occurred prior to yielding of the reinforcement. 

Table 2.1.  Selected Results from NCMA (1999, 2009) Studies 

Study 
Reinforcement 

Size 

Lap Splice 

Length 

(mm) 

Masonry 

Compressive 

Strength 

(MPa) 

Ratio of Splice 

Tensile 

Resistance to 

Reinforcement 

Yield Strength
1
 

NCMA 1999 

No. 6 (M#19) 915 mm 11.7 1.15 

No. 8 (M#25) 
1219 mm 11.7 0.81 

1626 mm 11.7 1.09 

NCMA 2009 

No. 6 (M#19) 915 mm 15.0 1.45 

No. 8 (M#25) 

610 mm 22.0 0.69 

813 mm 22.0 1.06 

1016 mm 22.0 1.25 

1219 mm 22.0 1.35 
1
Values reported are the average of three replicate specimens of each configuration. 
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Results from previous and ongoing research at the U of S using specimens reinforced 

with No. 15 reinforcement were also reviewed in determining the splice lengths to select 

for this investigation.  Ahmed & Feldman (2012) used 300 mm lap splices for wall splice 

and double pullout splice specimens and observed all specimens of both types with lap 

spliced bars in contact developed the yield strength of the reinforcement.  Sanchez & 

Feldman (2013) tested contact lap splices with 150 mm, 200 mm, and 250 mm lengths in 

wall splice specimens.  The specimens with 150 mm and 200 mm contact lap splices 

consistently failed in bond without yielding of the reinforcement, while the specimens 

with 250 mm splice lengths did not consistently fail in bond. 

The predictive equation developed by NCMA (1999), as presented previously in 

Equation 2.6, indicates that splice lengths of 505 mm and 1450 mm for No. 20 and No. 

25 bars, respectively, will result in the development of the yield strength for the 

specimens to be used in this research.  As such, all specimens in this study have been 

designed with lesser values of lap splice length, as discussed in detail in Section 3.2. 

2.9 Summary 

This chapter presented a review of literature related to development and splice length 

research in masonry.  Splice length requirements in CSA S304.1-04 (CSA 2004a) do not 

account for parameters unique to masonry construction since these provisions are taken 

directly from CSA A23.3 (CSA 2004b).  Double pullout specimens, as were used to 

calibrate TMS 402-13 (MSJC 2013a), do not replicate the stress state in the cementitious 

material surrounding the reinforcement as would occur in masonry walls subject to out-

of-plane loads.  As such, a re-evaluation of current Canadian and American development 

and splice length based on experimental testing of wall splice specimens in flexure is 

needed. 

Flexural wall splice specimens are recommended as the specimen type for all future 

research, including the experimental work of this study, since these specimens are able to 

capture the stress state in the cementitious materials surrounding the reinforcement.  

Tests to establish and calibrate code provisions for masonry should be conducted with 

specimens designed to fail in bond (as indicated by bar pullout or longitudinal masonry 
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splitting) prior to reinforcement yielding.  The relationship between splice length and 

splice capacity should be examined using the empirical methods employed by researchers 

studying the behaviour of reinforced concrete.  Researchers studying reinforced concrete 

have typically developed prediction equations for splice capacity and then established 

design expressions by incorporating a margin of safety.  These methods have been 

applied in the experimental design for this study, as is discussed further in Chapter 3. 
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CHAPTER 3 EXPERIMENTAL DESIGN, CONSTRUCTION, AND TESTING 

A large scale experimental program was conducted to address the deficiencies in 

reinforced masonry bond and development length research as identified in Chapter 2.  

Achieving the objective of evaluating lap splice length requirements involved the 

construction of multiple wall splice specimens, tested horizontally under four-point 

loading, along with selected double pullout specimens for comparison, tested in direct 

tension. 

Table 3.1 details the experimental design, including the bar sizes, specimen dimensions, 

splice lengths, and number of replicates selected.  No. 20 and 25 reinforcing bars were 

tested in this study, with the database for this research bolstered by the inclusion of data 

for No. 15 bars from previous research at the University of Saskatchewan (U of S) 

(Sanchez & Feldman 2013).  Three splice lengths for each bar size were tested.  The 

effect of an increase in specimen width was explored with the samples constructed with 

No. 20 bars and 200 mm splice lengths, since the specimens reinforced with No. 25 bars 

were constructed with an increased width, as discussed further in Section 3.1.1.  The 

construction and testing of these specimens occurred over two phases, due to space 

constraints in the laboratory. 

Table 3.1.  Experimental Design 

Specimen 

Type 

Bar Size 

[mm] 

Specimen 

Width 

[blocks] 

Specimen 

Height 

[Courses] 

Lap Splice 

Length 

[mm] 

Number 

of 

Replicates 

Wall 

Splice 

No. 20 

2.5 13 200
 b
 6 

3.5 13 200
 b
 6 

2.5 13 250
 b
 3 

2.5 13 350
 b
 3 

No. 25 

3.5 15 400
 b
 3 

3.5 15 600
 b
 3 

3.5 15 800
 b
 3 

Double 

Pullout 
No. 25 

2.5 4 600
a
 6 

2.5 4 600
b
 6 

a
With lapped bars tied together, as discussed in Section 3.1.2. 

b
With lapped bars remaining untied, as discussed in Section 3.1.1 and 3.1.2. 
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Double pullout specimens reinforced with No. 25 bars and 600 mm tied and untied lap 

splices were tested as a point of comparison with the results obtained by the NCMA 

(1999, 2009).  Three replicates of all but two specimen configurations were constructed 

to provide a reasonable estimate of variability.  Six replicates for all double pullout 

specimens and the two widths of wall splice specimens reinforced with No. 20 bars 

spliced with 200 mm lap splices were constructed to allow for a statistical analysis of 

these test results. 

3.1 Specimen Descriptions 

Both wall splice and double pullout specimens were constructed in running bond by an 

experienced mason, with two spliced reinforcing bars placed symmetrically to minimize 

in-plane eccentricities.  All cells in all specimens were fully grouted, to simplify all 

subsequent analysis.  Wall splice specimens were constructed with widths of 2.5 and 3.5 

blocks and were either 13 or 15 courses tall.  Double pullout specimens were 2.5 blocks 

wide and 4 courses tall.  Provided herein is a description of both specimen types and their 

geometries. 

3.1.1 Wall Splice Specimens 

Figure 3.1 shows the elevations of the 13 course high by 3.5 block (Figure 3.1 (a)) and 

2.5 block (Figure 3.1 (b)) wide walls specimens reinforced with No. 20 bars.  Similarly, 

Figure 3.2 shows the elevations of the 15 course high and 3.5 block wide walls reinforced 

with No. 25 bars.  The 13 course height was adequate for the specimens reinforced with 

No. 20 bars since the required development length calculated in accordance with CSA 

S304.1-04 (CSA 2004a) was provided for the reinforcement between the end anchorage 

and the splice region.  Also, this specimen height was consistent with previous masonry 

bond research conducted at the U of S (Ahmed & Feldman 2012, Sanchez & Feldman 

2013, Kisin & Feldman 2013).  The height was increased to 15 courses for the specimens 

reinforced with No. 25 bars to provide a longer development length for the reinforcement 

between the end anchorage and the splice region.  This specimen height was the longest 

length for which the moment created by the self-weight of the wall would not exceed the 

theoretical cracking moment, as calculated in accordance with Clause 10.14 of CSA 
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S304.1-04 (CSA 2004a).  This ensured cracking in the specimen did not occur when the 

specimen was rotated from its vertical construction position to its horizontal testing 

position. 

 

Figure 3.1.  Wall splice specimens with spliced No. 20 reinforcement: a) 3.5 blocks 

wide, and b) 2.5 blocks wide 
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Figure 3.2.  Wall splice specimens with spliced No. 25 reinforcement 
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The 2.5 block wide specimens with No. 20 bars were under-reinforced in flexure when 

checked in accordance with the provisions of CSA S304.1-04 (CSA 2004a).  However, 

the same specimen width reinforced with No. 25 bars resulted in an over-reinforced 

section, with grout and masonry crushing anticipated prior to yielding of the 

reinforcement.  This flexural failure mode was undesirable due to the difficulty of 

differentiating it from a bond failure as both result in crushing in the cementitious 

materials surrounding the reinforcement.  Consequently, the width for specimens 

reinforced with No. 25 bars was increased to 3.5 blocks.  It was expected that this 

increase in width would not significantly impact comparisons of results for the two bar 

sizes.  Nonetheless, a comparison of two specimen widths with the same splice 

configuration was included to ascertain the validity of this assumption.  Specimens 

reinforced with No. 20 bars and 200 mm splice lengths that were 3.5 blocks wide were 

built and tested as the means to make this comparison. 

The shear resistance of all wall splice specimens was calculated in accordance with 

Clause 10.10 of CSA S304.1-04 (CSA 2004a), and was determined to be adequate 

assuming yielding of the reinforcement is attained.  Therefore, no transverse 

reinforcement was provided. 

Figures 3.1 and 3.2 also show the placement of the spliced reinforcement.  All wall splice 

specimens were constructed with the lapped reinforcing bars placed in contact but not 

tied together, as is typical of local construction practices.  Reinforcing bars were placed 

one cell in from the side faces for all specimens.  Within the cell, the reinforcement was 

placed in the centre of the common 84 mm grout width between two vertically adjacent 

blocks.  The reinforcement was placed mid-depth within the block such that the effective 

depth of the reinforcement was 95 mm for all specimens.  The reinforcement extended 

beyond each end of the specimens by 190 mm to accommodate mechanical couplers 

applied prior to testing.  These mechanical couplers provided additional anchorage for the 

reinforcement at the ends of the specimen and so ensured that failure occurred within the 

lap splice length during testing. 
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3.1.2 Double Pullout Specimens 

Figure 3.3 shows the elevation of the 2.5 block wide double pullout specimens.  The 

cross-sectional geometry of these specimens is consistent with specimens tested by the 

NCMA (1999, 2009) and Ahmed & Feldman (2012).  The motivation for constructing 

and testing double pullout specimens in this program was to compare these results to 

those obtained by the NCMA (1999, 2009).  Double pullout specimens were constructed 

with No. 25 bars only, as this bar size is the best point of comparison to the Imperial bar 

sizes used in the NCMA studies (1999, 2009).  Specimens were four courses high, thus 

accommodating the 600¯mm lap splice length.  Six double pullout specimens were 

constructed with the lapped reinforcing bars tied together, such that true contact lap 

splices resulted.  The other six double pullout specimens were constructed with the 

lapped reinforcing bars placed in contact but not tied together, as is typical of local 

construction practices.  Plastic sheaths were used to debond the excess length of 

reinforcement beyond the splice region within the specimen.  The reinforcement extended 

beyond each end of the specimen for anchoring to the test frame, as described in Section 

3.6.2. 

 

Figure 3.3.  Double pullout specimen with 600 mm splice length  
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3.1.3 Abbreviated Specimen Designations 

All wall splice specimens and double pullout specimens were assigned abbreviations to 

indicate the specimen type, splice length, bar size, specimen width, and replicate number.  

Wall splice specimen designations, which begin with W to indicate their specimen type, 

are of the form Wxxx(No.yy)-z.z-n, where xxx denotes the lap splice length in mm, yy 

denotes the nominal bar size in mm, z.z denotes the specimen width in blocks (2.5 or 3.5), 

and n denotes the replicate number.  Double pullout specimen designations begin with 

DP to indicate their specimen type.  Designations for the double pullout specimens with 

the lap spliced bars tied together are of the form DP-T-n and double pullout specimens 

for which the lap spliced bars were not tied together have designations of the form DP-

NT-n, where n denotes the replicate number.   

3.2 Splice Length Selection 

The various splice lengths used in the specimens were selected after careful consideration 

of previous studies, as presented in Section 2.8.  The splice lengths for this research were 

chosen such that bond failures would be achieved in all specimens. 

Three splice lengths per bar size were selected for the wall splice specimens to provide a 

sufficient range from which to develop expressions through regression analysis relating 

splice length and bar size to tensile resistance.  Splice lengths of 200 mm, 250 mm, and 

350 mm were selected for specimens constructed with No. 20 bars.  These splice lengths 

were selected based on the results of previous work by Sanchez & Feldman (2013), as 

presented in Section 2.8.  Splice lengths of 400 mm, 600 mm, and 800 mm were selected 

for specimens constructed with No. 25 bars.  The largest splice length was selected based 

on the results of NCMA’s studies (1999, 2009), as presented in Table 2.1. 

One splice length was selected for all double pullout specimens, since the main purpose 

of the double pullout specimens was to offer a point of comparison to the results of the 

NCMA (1999, 2009); producing six replicates of an individual configuration was 

important to allow for statistical analysis of the resulting splice capacities.  A splice 

length of 600 mm was chosen for the double pullout specimens, as it offers a close 

comparison to the 24 inch (610 mm) lap splices tested by the NCMA in their 2009 study, 
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which failed in bond prior to the forces on the bars reaching forces corresponding to the 

yielding of the reinforcement. 

3.3 Selection of Number of Replicate Specimens 

Three replicates of all specimen configurations were constructed, with the exception of 

the two double pullout specimen configurations and W200(No.20)-2.5 and 

W200(No.20)-3.5 configurations.  The construction and testing of three replicate 

specimens matched that used in the NCMA testing programs (1999, 2009) and provided 

an indication of variability. 

A statistical analysis of results was desired for specific specimen configurations, which 

necessitated the construction and testing of more replicates of these specimen 

configurations.  As such, six replicates of the W200(No.20)-2.5 and W200(No.20)-3.5 

configurations and each double pullout specimen configuration were constructed and 

tested to determine whether the resulting mean tensile resistance of the reinforcement was 

statistically different between the two specimen widths and two double pullout specimen 

configurations.  Using six replicate specimens also allowed for the identification of 

statistical outliers, as outlined in ASTM E178 (ASTM 2012a). 

3.4 Materials 

Materials for this investigation were obtained from local suppliers and producers to 

match those used in typical local construction.  The materials were ordered separately for 

the two construction phases, on account of limitations in storage room in the laboratory.  

Relevant material properties were obtained by tests of companion specimens, as 

described herein. 

3.4.1 Masonry Units 

Figure 3.4 shows the standard 200 mm wide two-cell lightweight concrete blocks with 

actual dimensions of 190 mm x 190 mm x 390 mm and nominal compressive strength of 

15 MPa that were used.  Interior blocks had frogged ends (Figure 3.4(a)), while exterior 
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blocks had flat ends (Figure 3.4(b)).  Half blocks were cut from full blocks in the 

laboratory to ensure all blocks used in each specimen had consistent material properties. 

 

Figure 3.4.  Plan view of masonry block units used, including minimum web and 

face shell thicknesses: a) frogged-ended full blocks, and b) flat-ended full blocks 

Blocks used in the construction of specimens in Phase 1 were received in two shipments, 

and each shipment contained blocks from a single, but separate, production batch.  

Blocks from the second batch were used to construct the three replicates of the 

W200(No.20)-3.5 specimens.  All other wall splice specimens in Phase 1 were 

constructed from blocks received in the first batch.  Blocks for the second phase of 

construction were received in a single shipment. 

Blocks were set aside throughout construction for testing of block properties in 

accordance with CSA A165-04 (CSA 2004c).  Block dimensions, compressive strength, 

and absorption were tested using the procedures in ASTM C140 (ASTM 2012b), as 

prescribed by CSA A165-04 (CSA 2004c). 

3.4.2 Mortar 

Type S mortar was used as per the CSA S304.1-04 (CSA 2004a) requirements for 

structural masonry.  The Type S mortar cement was supplied by Lafarge in 20 kg bags 

and stored in the laboratory prior to construction.  Sand aggregate meeting the gradation 

requirements of CSA A179-04 (CSA 2004d) was procured from a local supplier.  The 

aggregate was stored in bins in the laboratory.  The gradation of the supplied mortar 

390

190

26 26 26

32

390

190

26

a) b)



39 

aggregate was tested using the procedures outlined in CSA Test Method A23.2-2A (CSA 

2009). 

The mix design used in this experimental program matched that used by Ahmed (2011), 

Sanchez (2014), and Kisin (2014), to provide comparisons with specimens included in 

these past works.  The water-to-cement ratio of the mix design was 0.7, and the cement-

to-aggregate ratio was 1:3 by weight.  Test trials performed and reported by Ahmed 

(2011) showed initial flow rates of 100 to 115 percent and 28-day compressive strengths 

in excess of 12.5 MPa, as required by CSA A179-04 (CSA 2004d). 

The consistency of each batch of mortar was approved by an experienced mason prior to 

block placement.  Retempering of mortar to compensate for evaporative moisture loss 

was done to maintain the mortar’s workability during construction.  Such retempering 

was done in accordance with CSA A179-04 (CSA 2004d). 

3.4.3 Grout 

All cells in the masonry blocks were filled with high slump grout.  Lafarge Type GU 

cement was used to prepare the grout, which was supplied in 20 kg bags and stored in the 

laboratory until construction.  A pre-blended aggregate meeting the 2:3 fine to coarse 

aggregate ratio recommendation of CSA A179-04 (CSA 2004d) was provided by a local 

supplier.  Aggregate was stored on the laboratory floor or in aggregate bins.  The 

aggregate for the first phase was provided in one batch, while aggregate for the second 

phase of construction was received in two batches.  The gradation of the supplied grout 

aggregate for each phase of construction was established using the procedures outlined in 

CSA Test Method A23.2-2A (CSA 2009). 

The mix design employed in this experimental program matched that used by Ahmed 

(2011), Sanchez (2014), and Kisin (2014).  The water-to-cement ratio of the mix design 

was 1.0, and the cement-to-aggregate ratio was 1:5 by weight.  A 250 mm slump was 

targeted as was a minimum compressive strength of 12.5 MPa. 
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3.4.4 Reinforcing Steel 

Grade 400 deformed steel bars were used in this experimental program.  No. 20 and 25 

reinforcing bars were ordered in 6 m lengths from a local manufacturer and cut into the 

lengths required for each specimen using a band saw in the laboratory.  All reinforcement 

of a given bar size and construction phase were obtained from the same heat batch. 

3.5 Specimen Construction 

The specimens were constructed in two phases due to space limitations in the laboratory.  

An experienced mason from Gracom Construction, provided courtesy of the 

Saskatchewan Masonry Institute (SMI), constructed all specimens.  Specimens in the first 

and second construction phases were built between February 13 and 27, 2013, and 

September 4 and 19, 2013, respectively.  Wall splice specimen construction was divided 

between the two construction phases, while the double pullout specimens were all 

constructed in the second construction phase. 

3.5.1 Specimen Bases 

Figures 3.5 and 3.6 show the plywood bases used for the construction of the wall splice 

and double pullout specimens, respectively.  The bases were cut from sheets of 12.7 mm 

(½ inch) thick plywood.  Bases for the 2.5 block wide specimens consisted of one layer 

of plywood, while those used for the 3.5 block wide specimens were two layers thick, 

with the plywood glued together and then fastened with wood screws to accommodate 

the increased weight of these specimens. 

Holes were drilled in the plywood bases to allow the reinforcement to extend beyond the 

specimens as needed for testing.  One block tall and five block tall staying platforms were 

used for the wall splice and double pullout specimens, respectively, to allow for these 

reinforcing bar extensions.  The reasoning for the longer extensions for the double pullout 

specimens is provided in detail in Section 3.6.2, and was needed for the testing of the 

double pullout specimens. 
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a) b) 

Figure 3.5.  Wall splice specimen bases: a) illustration, and b) as-built photo 

(Note: Base for 2.5 block wide specimen shown) 

 

 

 

a) b) 

Figure 3.6.  Double pullout specimen bases: a) illustration, and b) as-built photo 
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3.5.2 Reinforcement Preparation 

Figure 3.7 shows the band saw used to cut the reinforcement into the appropriate lengths 

needed for the construction of each specimen, as described in Section 3.4.4.  The lengths 

needed for each specimen were measured to the nearest millimeter, and the band saw was 

used for its accuracy in cutting the reinforcement and its ability to safely cut the larger 

bar sizes used.  Excess lengths of each size of bar were saved and later tested to 

determine the stress versus strain characteristics of the reinforcement, as discussed further 

in Section 3.6.1. 

 

Figure 3.7.  Cutting of reinforcing bars with band saw 

3.5.3 Block Preparation 

Blocks were received from a local supplier in standard mixed pallets, each with 60 

frogged end blocks and 30 flat ended blocks, at least one week in advance of 

construction.  Once received, the shrink-wrapping on each pallet was removed and the 

blocks were stored for a minimum of one week so that they could equilibrate with the 

temperature and humidity conditions of the laboratory prior to construction.  During this 

time, some pallets were sorted into flat- and frogged-ended blocks, since flat-ended 

blocks were used exclusively for half blocks.  Flat-ended blocks were cut to create the 

half blocks since the half blocks were all placed on the exterior ends of specimens.  
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Figure 3.8 shows the masonry table saw used to wet-cut half blocks from the supplied 

flat-ended blocks in the laboratory. 

 

Figure 3.8.  Masonry table saw used to cut half blocks 

3.5.4 Mortar Preparation 

Multiple batches of mortar were prepared using Type S mortar cement and fine 

aggregate, as described in Section 3.4.2.  Figure 3.9 shows the mixer used to prepare the 

mortar batches.  The mixer featured three mixing heads and a rotating drum.  The mortar 

was mixed by first placing half of the water and one third of the aggregate in the mixing 

drum.  The mortar cement was then added, followed by another third of the aggregate, 

while the mixer was still stationary.  The mixer was then started, and the last third of the 

aggregate was added while the drum rotated.  The remaining water was also added, until 

the mortar reached the desired consistency.  The mason confirmed that the consistency of 

each mortar batch was sufficient prior to placement, and retempered the mortar when 

needed.  The mortar was transported by wheelbarrow from the mixer to the construction 

staging area. 

Figure 3.10 shows the mortar cubes that were prepared during construction.  One set of 

six 50 mm mortar cubes, cast in brass moulds, were prepared for each batch of mortar 

produced, following the procedures outlined in CSA A179-04 (CSA 2004d).  The mortar 

cubes were then covered with plastic sheets and allowed to cure for 24 to 48 hours in the 
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mold, after which time they were removed from the mold and stored in the laboratory to 

cure. 

 

Figure 3.9.  Mixer used for mortar preparation 

 

Figure 3.10.  Mortar cube preparation  
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3.5.5 Grout Preparation and Placement 

Grout was prepared in multiple batches over the course of construction.  Type GU 

cement and pre-blended grout aggregate obtained from a local supplier were used, as 

detailed in Section 3.4.3.  Figure 3.11 shows the concrete mixer used to prepare the grout.  

For each batch of grout, the first third of the aggregate was added to the mixer while it 

was in motion, followed by half of the water.  Then, another third of the aggregate was 

added to the mixer.  Next, the cement was added, followed by the remaining third of the 

aggregate.  The remaining water was finally added, with slight adjustments made based 

on the moisture content of the aggregate such that the desired consistency was reached.  

The slump of each batch of grout was determined, and typically ranged from 245 mm to 

255 mm.  The grout was transported from the mixer to the construction staging area using 

wheelbarrows.  The same batch of grout that was used to fill the reinforced cells in the 

splice region was also used to fill the masonry prism associated with every specimen. 

 

Figure 3.11.  Grout mixing 

Figure 3.12 shows the grout prisms and cylinders that were prepared during construction.  

Three non-absorbent grout specimens, cast as per CSA A179-04 (CSA 2004d), and one 

absorbent grout prism, cast as per ASTM C1019 (ASTM 2012c), were prepared for each 

batch of grout.  The companion specimens were allowed to cure in their respective 
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moulds for 24 to 48 hours with a plastic cover placed over their exposed surface to 

prevent moisture loss, after which point they were removed from their moulds. 

 

Figure 3.12.  Preparation of grout companion specimens 

3.5.6 Companion Masonry Prisms Construction 

Masonry prisms were constructed in conjunction with each wall splice and double pullout 

specimen in order to obtain the compressive strength of the masonry assembly.  These 

prisms were constructed with frogged-end block units only.  The gross cross-sectional 

area of the frogged-ended blocks is slightly less than that of the flat-ended blocks, thus 

the compressive strength of the frogged-ended blocks is most likely slightly less, and so 

will yield more conservative results.   

Figure 3.13 shows the masonry prisms.  Three course tall, fully grouted prisms were 

used, as per previous studies at the University of Saskatchewan (Ahmed & Feldman 

2012, Sanchez & Feldman 2013, Kisin & Feldman 2013). 
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Figure 3.13.  Masonry prisms 

3.5.7 Construction Staging for Wall Splice Specimens 

Construction of the wall splice specimens was staged in multiple lifts to allow for the 

placement of the spliced reinforcement with a continuous layer of grout encapsulating the 

lap splice region.  Low lift grouting procedures, as described in CSA A371-04 (CSA 

2004e), were followed such that clean-out holes were not required.  Figure 3.14 shows 

the pencil vibrating of grout in the specimens after placement to ensure adequate 

compaction and consolidation. 

 

Figure 3.14.  Pencil vibration of grout 
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Figure 3.15 (a) and (b) shows the staging of construction and grout placement for the 13 

course and 15 course high wall splice specimens, respectively.  The lift heights were 

selected to ensure that the lap splices were encapsulated by a continuous layer of grout.  

All 13 course high specimens were grouted in two lifts, with the lower lift consisting of 

eight courses and the upper lift consisting of five courses.  The 15 course high specimens 

were grouted in three lifts consisting of five courses each. 

The reinforcement for all wall splice specimens was placed with the lapped bars in 

contact but not tied together, in order to replicate common construction practices used in 

Western Canada.  The actual transverse spacing between the lap-spliced bars was 

expected to be within the ±13 mm tolerance specified in CSA A371-04 (CSA 2004e), and 

was measured after testing. 

The bottom bars were placed after block construction and prior to grouting of the first lift, 

with the holes drilled in the plywood base acting as a guide.  The top bars were placed 

during the grout placement of the first lift for the 13 course high specimens and during 

the grout placement of the second lift for the 15 course high specimens.  The top bars 

were placed after filling the reinforcing cells with grout but before compacting the grout, 

since this represents typical construction practice.  Placement of the bars in the centre of 

the common 84 mm grout width between two vertically adjacent blocks and at an 

effective depth of 95 mm was ensured by visual inspection.  A hand level was used to 

ensure the bars were vertical after grout placement.  The bars were adjusted after 

vibrating to best achieve their intended placement. 

Figure 3.16 (a) shows the placement of the top bars.  Plywood pieces that were 50 mm by 

200 mm were used as a template to ensure correct placement of the top bars.  Wire 

templates created from 1 inch (25.4 mm) grid stucco wire were used to aid in the 

placement of top and bottom reinforcing bars for the wall splice specimens reinforced 

with No. 20 bars.  These wire templates were built into mortar joints above the sixth and 

seventh courses.  Wire templates were not used for specimens reinforced with No. 25 

bars because guide wires with an adequate grid size for the larger bar diameter were not 

available.  Figure 3.16 (b) shows the placement of the wire templates. 
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Figure 3.15.  Grouting lifts: a) 13 course, and b) 15 course high specimens 

  

a) b) 

Figure 3.16.  Placement of top bars: a) use of plywood and tie wires, and b) guide 

wire used to place No. 20 reinforcing bars in specimens 
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3.5.8 Construction Staging of Double Pullout Specimens 

All double pullout specimens were constructed in a single lift.  Figure 3.17 shows the 

plastic sheaths placed below (Figure 3.17(a)) and above (Figure 3.17(b)) the lap splice 

length to debond the remaining portions of these bars from the surrounding grout.  These 

sheaths were made from 1½ inch (38.1 mm) diameter, 1/16 inch (1.6 mm) thick polyvinyl 

chloride (PVC) pipe, cut to the required length using a chop saw.  The plastic sheaths for 

the bottom bars were glued onto the plywood bases, and those for the top bars were 

attached to the plywood support used to position the top bars on the top block of the 

specimen. 

Figure 3.18 shows the lap spliced reinforcement used in the DP-T specimens, where the 

bars were held together using tie wire.  The bars were placed through the hole in the 

plywood base once the blocks were erected.  The reinforcement for the double pullout 

specimens with untied spliced reinforcement was placed in the same manner as for the 

wall splice specimens, as described in Section 3.5.7. 

 

  

a) b) 

Figure 3.17.  Plastic sheaths used to debond the reinforcement in the double pullout 

specimens: a) sheaths for bottom bars attached to plywood base, and b) sheaths for 

tops bars attached to plywood 
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Figure 3.18.  Lap spliced reinforcement connected using tie wire 

3.6 Specimen Testing 

Specimens were allowed to cure for a minimum of 28 days in the laboratory prior to 

testing.  Testing for each phase commenced shortly after the conclusion of the 28-day 

curing period.  Phase 1 testing took place between April 5 and June 21, 2013, while 

Phase 2 specimens were tested between October 21, 2013 and February 4, 2014.  

Detailed herein are the procedures followed for the testing of all specimens. 

3.6.1 Companion Specimen Testing 

The mortar, grout, masonry block, and masonry prism companion specimens were tested 

to determine their compressive strengths and stress-strain characteristics.  The details of 

the testing for each of these specimen types are discussed herein. 

Masonry Blocks 

Masonry blocks were tested using the Amsler beam bending machine in the Structures 

Laboratory to determine their compressive strengths.  A load cell was used to measure 

the applied loads during testing, and a National Instruments data acquisition system was 

used to record load data throughout testing on a laptop computer.  The dimensions of the 

masonry blocks were determined using calipers.  The web and face shell thicknesses, 

height, width, and length were measured for each block, in accordance with ASTM C140 
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(ASTM 2012b).  The absorption properties of the masonry blocks were also tested, using 

the procedure outlined in ASTM C140 (ASTM 2012b).  Three samples from each batch 

of blocks and phase of construction were tested for absorption and dimension properties, 

while six samples from each batch were tested for compressive strength, in accordance 

with ASTM C140 (ASTM 2012b). 

Mortar Cube Testing 

Mortar cubes were tested in accordance with CSA A179-04 (CSA 2004d).  Figure 3.19(a) 

shows the testing of a mortar cube.  Prior to testing, the width, length, and height of each 

mortar cube were measured using calipers to determine the exact dimensions of each 

specimen.  Mortar cubes were tested in the Instron 600DX Universal Testing Machine 

(UTM) in load control mode with the load applied at a constant rate of 1 kN/min.  The 

mortar cube was placed in the UTM such that the bearing surfaces were those cast against 

the brass molds and, hence, smooth.  The applied load and corresponding displacement of 

the machine’s crosshead were monitored and recorded by the data acquisition system 

attached to the UTM. 

Grout Cylinders 

Grout cylinders were tested in accordance with CSA A179-04 (CSA 2004d).  Figure 

3.19(b) shows the testing of a grout cylinder.  Prior to testing, the diameter of the cylinder 

was measured at the top, middle, and bottom of the specimen.  The average value was 

used to calculate the cross-sectional area of the cylinder.  A sulphur compound was used 

to cap the tops and bottoms of all cylinders, thus creating uniform loading surfaces for 

testing.  The cylinders were then tested in a stress-control mode, where the stress was 

applied at a rate of 15 MPa/min.  The applied load and corresponding displacement were 

recorded by the data acquisition system attached to the Instron 600DX UTM.  The stress 

versus strain profiles were then calculated from the acquired data. 

Grout Prisms 

Grout prisms were tested in accordance with ASTM C1019 (ASTM 2012c).  Figure 

3.19(c) shows the testing of a grout prism.  The actual grout prism dimensions were 
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measured and recorded prior to testing.  Square pieces of fibre board were placed at the 

top and bottom of the grout prism to provide an even bearing surface for the application 

of the load when testing in the UTM.  The grout prisms were tested in a stress-controlled 

mode, with the stress applied at a constant rate of 15 MPa/min.  The applied load and 

displacement were monitored and recorded by the data acquisition system attached to the 

UTM.  The stress versus strain profiles were then calculated from the acquired data. 

   

a) b) c) 

Figure 3.19.  Companion specimen testing: a) mortar cube, b) grout cylinder, and c) 

grout prism 

Masonry Prisms 

Masonry prisms were tested in accordance with CSA S304.1-04 Annex D (CSA 2004a).  

The top surface of each masonry prism was prepared prior to testing to create a level 

surface.  To do so, excess grout on the bedding surface of the blocks was filed away and 

mortar was used to fill the tops of the cells of the prism to compensate for the grout 

shrinkage that occurred during specimen curing.  Two steel angles were then attached to 

each masonry prism at a distance of 95 mm from the top and bottom of the prism using 

fast-setting, clear epoxy.  These angles were used to seat the LVDTs used to measure the 

deflection of the prism during testing, as described herein. 

Figure 3.20 shows the test set-up for the masonry prisms.  The Amsler beam bending 

machine was used to test the masonry prisms.  Each masonry prism was lifted onto the 
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beam bender using the overhead crane in the laboratory.  Fibre board was placed below 

and above the masonry prism during testing to ensure an even loading surface.  A steel 

beam and steel plate were used to distribute the load from the beam bender’s crosshead 

uniformly across the surface of the masonry prism.  A load cell was used to record the 

applied load during testing.  Two LVDTs, each with a 50 mm stroke, were attached to a 

magnetic LVDT stand using LVDT holders.  The magnetic stand was then attached to the 

base of the beam bender, and the LVDTs were positioned such that they were seated on 

the steel angles attached to the masonry prism. 

 

Figure 3.20.  Masonry prism testing 

Load was applied to the masonry prisms in accordance with CSA S304.1-04 Annex D 

(CSA 2004a).  The loading rate was adjusted during the first half of the test until a load 

rate meeting the aforementioned criteria was achieved.  The load during the second half 

of the test was applied at a constant rate until failure, such that the prism failed within the 

next 60 to 90 seconds. 
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A National Instruments data acquisition system was used to collect load and deflection 

data simultaneously throughout testing using a laptop computer.  The deflection of the 

masonry prism was obtained by determining the difference in the displacements between 

the two LVDTs.  The stress versus strain profile for each masonry prism was then 

calculated. 

Reinforcing Steel Testing 

Reinforcing steel samples were tested in accordance with ASTM A370 (ASTM 2012d) 

using the Instron 600DX UTM to determine their stress-strain characteristics.  A 

minimum of three samples were tested for each bar size from each phase of construction. 

Figure 3.21 shows the test set-up used for the reinforcing bar specimen tests.  The test 

was conducted in a load controlled mode, with the load applied at a rate of 0.2 kN/s.  The 

applied load and deflection of the crosshead of the Instron 600DX UTM were measured 

during testing.  However, the deflection of the machine’s crosshead included slippage of 

the grips of the machine because, in accordance with ASTM A370 (ASTM 2012d), the 

bar specimens could not be machined to provide better anchorage.  To compensate, an 

LVDT with a 20 mm stroke was attached to the reinforcing bar specimen in order to 

obtain deformation measurements, particularly in the linear elastic and yield plateau 

regions.  A 203 mm (8 in) gauge length, in accordance with ASTM A370 (ASTM 

2012d), was marked on the bar prior to testing, and the LVDT holder was attached to the 

lower end of the gauge length.  An aluminum rod and holder were attached to the upper 

end of the gauge length, thus measuring the bar’s elongation over the gauge length.  The 

LVDT set-up often fell off prior to the initiation of strain hardening, because necking 

could occur at any point within the 203 mm gauge length and often occurred close to the 

top or bottom of the gauge length.  As such, data following this were not recorded.  The 

stress versus strain profile for each reinforcing bar sample was calculated using the load 

and displacement data from the LVDT and the data acquisition system attached to the 

Instron 600DX UTM. 
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Figure 3.21.  Test set-up for reinforcing bar tests 

3.6.2 Double Pullout Specimen Testing 

Figure 3.22 shows the frame used to test the double pullout specimens.  Two beams 

formed from built-up C250x23 channel sections and two W310x74 columns were 

connected using high strength bolts.  The two beams were originally designed by Ahmed 

(2011) and also used by Sanchez (2014).  These beams were created from two C250x23 

sections, 2400 mm in length, welded together back-to-back by 12 mm plates at five 

locations.  The 65 mm gap between the backs of the channels allowed sufficient room for 

the reinforcing bars protruding from the double pullout specimens to extend beyond the 

frame.  Steel plates that were 8 mm thick (shown in Figure 3.22) were welded to each 

channel web to stiffen them for the magnitudes of loads expected.  Steel plates that were 

12 mm thick (not shown in Figure 3.22) were also welded in the 65 mm gap between the 

back of the channels to stiffen them.  These additional stiffeners were added to prevent 

buckling of the beams in the frame during testing. 
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Figure 3.22.  Double pullout specimen test frame 

Each double pullout specimens was translated from its constructed position and rotated to 

the testing area on the floor of the Structures Lab using the overhead crane.  The 

specimen was placed on two steel rollers to reduce friction during testing.  The beam on 

the unloaded side of the test frame (shown in Figure 3.22) was attached to the columns of 

the test frame after the specimen was positioned.  Three steel plates and one coupler were 

applied to each protruding bar on the unloaded side to anchor the specimen in the test 

frame. 

Figure 3.23 shows a detailed view of the loaded side of the test frame.  One hydraulic 

cylinder, one 12 mm steel plate, one Interface load cell with a 250 kN capacity, and one 

coupler were applied to each protruding bar on the loaded side of the frame.  The first 

specimen tested, DP-T-1, was tested using Enerpac RCH 606 hydraulic cylinders, each 

with a 576 kN capacity.  These cylinders were also used in Ahmed’s (2011) work.  

However, it was found after testing the first specimen that larger hydraulic cylinders were 

needed due to constraints of the safe operating pressures for the pump in the Structures 

Lab.  As such, Enerpac RH10010 hydraulic cylinders, each with a 1027 kN capacity, 

were used for the remaining 11 specimens.  The load cell on each bar measured the 

applied load throughout testing.  One LVDT with a 300 mm stroke was attached to a steel 

angle, which was then clamped to each coupler.  This LVDT was used to measure the 

displacement of the bars on the loaded side of the frame.  The hydraulic cylinder on each 

Beam of built-up 

C250x23 channels

(2 places)
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Columns, 
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bar applied a tensile force to the bar during testing by pushing against the test frame.  The 

rate of extension of each hydraulic cylinder was controlled by a National Instruments 

data acquisition system.  The valve to one cylinder was opened to apply an incremental 

displacement to that bar and then closed, after which the valve to the other cylinder was 

opened to apply a similar incremental displacement.  The loading then proceeded in this 

fashion with alternating incremental displacements to each bar.  The displacement of the 

LVDT attached to the couplers was used to control the load application rate and thus 

achieve an average loading rate of 0.025 mm/s. 

Two modules programmed using LabVIEW software and a National Instruments data 

acquisition system on a laptop computer were used during testing, as was done in 

Ahmed’s (2011) work.  The first module controlled the load application rate, as described 

above.  The second module recorded the applied loads as measured by the two load cells 

throughout testing at a rate of 2 Hz.  The loading was thus computer-controlled. 

 

Figure 3.23.  Setup of loaded side of test frame 

3.6.3 Wall Splice Specimen Testing 

The procedures for specimen transportation, testing, and instrumentation described herein 

are similar to those from past works at the University of Saskatchewan by Ahmed (2011), 

Sanchez (2014), and Kisin (2014).  Wall splice specimens required transportation and 

rotation from the location where they were constructed to the testing bed.  A steel moving 
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frame consisting of built-up steel beams and threaded high strength steel rods was used 

for this purpose, to prevent damage to the specimens.  The frame was originally designed 

by Ahmed (2011), and was modified by Kisin (2014) to accommodate specimens that 

were 2.5 and 3.5 blocks wide.  The frame consisted of two beams made from built-up 

structural steel channel sections and four threaded high strength rods, used to connect the 

two beams together. 

Figure 3.24 shows the steel moving frame, including the two beams (at the top and 

bottom of the specimen, as shown in the illustration) and the 4 high strength rods.  Each 

beam of the frame consisted of two C250x300 structural steel channels, connected at each 

end by two 12 mm steel plates welded to either side of the channels.  The transverse 

spacing between the channels was 250 mm, to accommodate the 190 mm width of the 

wall.  The channels themselves were stiffened with 6 mm plates welded to the channels at 

12 locations along their length.  Both beams had pivot bars that were used for lifting the 

frame and rotating the wall to the horizontal testing position.  The lower horizontal beam 

had 25 mm diameter holes located on the flange to accommodate end plates that bolted 

onto the beam to secure the wall while it was in the vertical position.  Inserts, built from 

the same steel channel sections used to construct the original frame, were added at the 

midspan of the frame using bolts.  These inserts could be added for transporting the 3.5 

block wide specimens or removed for transporting the 2.5 block wide specimens.  

Additional 25¯mm holes were drilled to accommodate the placement of the 

reinforcement for the 3.5 block wide specimens.  No additional adjustments of the frame 

were needed to accommodate the 15 course high specimens. 

Securing a wall splice specimen in the moving frame entailed positioning the top and 

bottom beams over the specimen and then attaching the top and bottom beams to each 

other using the high strength steel rods.  First, the lower beam of the moving frame was 

placed over the wall using the overhead crane such that the beam sat at the base of the 

wall.  The end plates were then positioned underneath the wall and bolted to the lower 

beam.  The upper beam, with the four steel rods attached, was then lowered over the wall 

to a position where it was centred over the twelfth mortar joint of the wall, which was the 

top mortar joint for 13 course high walls and the third mortar joint from the top for 15 
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course high walls.  The threaded steel rods were then attached to the lower beam of the 

moving frame, to connect the upper and lower beams and thus secure the specimen. 

 

Figure 3.24.  Built-up horizontal beams for steel moving frame 

Figure 3.25 shows the transportation and rotation of a wall splice specimen.  Figure 

3.25(a) shows the lifting of the secured wall splice specimen, using the pivot bars at 

either end of the upper beam of the moving frame as a loading point for the lifting straps.  

The pivot bars on the lower beam were positioned on four spare concrete blocks (two at 

each side) in an open area of the laboratory, allowing the wall to slowly rotate on the 

pivot bars.  Figure 3.25(b) shows the rotation of the wall.  Spare blocks were placed 

underneath the wall to allow the wall to rest in its horizontal position while the moving 

frame was removed and the lifting straps were placed on the wall.  Finally, the wall was 

moved into the test frame in its horizontal position using the overhead crane and lifting 

straps.  Figure 3.25(c) shows the horizontal transport of the wall into the test frame. 
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a) b) c) 

Figure 3.25.  Transportation of wall splice specimens: a) specimen translation, b) 

rotating of specimen, and c) positioning of specimen in test frame 

Figures 3.26 and 3.27 show the setup used for the testing of wall splice specimens.  Two 

MTS actuators simultaneously applied the load to the specimen at a rate of 0.5 mm/min, 

to match the procedure used by Ahmed (2011), Sanchez (2014), and Kisin (2014).  The 

load from the actuators was transferred to the upper transverse spreader beam to reduce 

the effect of any differences in applied load between them.  A load cell placed between 

the upper transverse spreader beam, oriented perpendicular to the wall, and the lower 

spreader beam, oriented parallel to the wall and thus perpendicular to the upper transverse 

spreader beam, was used to measure the applied load on the specimen.  The lower 

spreader beam was used to create the four-point loading on the specimen, with load 

points for the distributed loads located at the third points of the simply supported 

specimen. 

Supports were located at the midpoint of the end courses.  Each support featured a roller 

that was the same width as the wall.  The rotation of one roller was prevented by screws 

in the support, creating a pinned support.  The other support was free to rotate and so was 

effectively a roller support.  ZAP Screwlok Type 2 mechanical couplers and steel plates 

were affixed to the bars protruding at both ends of the wall to provide end anchorage and 

so ensure that failure occurred in the splice region. 
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Figure 3.26.  Test setup for wall splice specimens 

Figure 3.27 shows the location of the LVDTs used to instrument the 13 course tall and 15 

course tall specimens.  Linear variable differential transducers (LVDTs), each with a 

range of 50 mm, were used to measure deflections during testing.  Midspan deflections 

were measured on each side (East and West) of the wall.  Deflections at four other 

locations along the length of the specimens were measured by four LVDTs placed along 

one side (the East side) of the wall. 

Cracks were marked as the testing progressed on the non-instrumented side face (i.e. 

West side face).  A National Instruments LabVIEW data acquisition system was used to 

collect load and deflection data simultaneously throughout the test on a laptop computer 

at a rate of 2 Hz. 

Wall splice specimens were tested in displacement-control.  As such, failure for each wall 

splice specimen was defined as the point when the applied load, which decreased 

continuously after the attainment of the maximum load, was equal to 40 percent of the 

maximum applied load.  The test was then stopped. 
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a) 

 

b) 

Figure 3.27.  LVDT locations for wall splice specimen testing: a) 13 course high 

walls, and b) 15 course high walls 

3.7 Summary 

This chapter detailed the experimental design, construction, and testing for this research.  

The rationale behind the selection of the types of specimens included in the experimental 

program, as well as the dimensions of these specimens and the lap splice lengths selected, 

was discussed.  The many facets of preparation and construction in the laboratory were 

detailed.  Finally, the procedures used to test the wall splice specimens, double pullout 

specimens, and the accompanying companion specimens were discussed.  The results 

from the testing of companion specimens, wall splice specimens, and double pullout 

specimens are presented in Chapter 4.  
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CHAPTER 4 RESULTS AND ANALYSIS 

Presented in this chapter are the test results and analysis of the specimens included in the 

experimental program.  The findings from the testing of the companion, wall splice, and 

double pullout specimens are discussed.  The material properties determined from the 

testing of companion block, mortar, grout, masonry prism, and reinforcement specimens 

are presented.  Qualitative observations of the failure modes and quantitative 

observations of the failure loads from the testing of the double pullout specimens are 

provided.  Observations of load-deflection behaviour, deflection profiles, external 

cracking, and internal damage for the wall splice specimens are detailed.  The numerical 

model used to calculate the tensile resistance of the lap spliced bars in the wall splice 

specimens is described.  A relationship describing the tensile resistance of the spliced 

reinforcement as a function of splice length and bar size for the wall splice specimens is 

also provided.  Finally, comparisons to current Canadian and American code provisions 

are offered. 

4.1 Companion Specimen Testing and Material Properties 

The properties of the materials used to construct the wall splice and double pullout 

specimens were determined by testing various types of companion specimens.  Masonry 

blocks, mortar, grout, masonry prisms, and reinforcement specimens were tested in 

accordance with standards relevant to each, as are described in Section 3.6.1. 

Table 4.1 shows the summarized results of block, mortar, and grout compressive strength 

testing, with further discussion of these tests presented in Sections 4.1.1 through 4.1.5.  

The results of the masonry prism compressive strength testing are presented in Section 

4.1.6.  The results of reinforcement testing are discussed in Section 4.1.7. 

Full results of all material testing are presented in Appendices 4A through 4E, as noted in 

the following subsections.  Statistical outliers were identified using the procedures 

outlined in ASTM E178 (ASTM 2012a), based on a selected 95 percent confidence 

interval.  The test criterion,   , used for identifying outliers is: 
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|    ̅|

  

 
{4.1} 

 

where    is the observation or data point of interest,  ̅ is the average value for all 

specimens in the sample set, and    is the standard deviation of the sample set.  This test 

criterion was compared to critical t-values for a two-sided test at the 5 percent confidence 

level.  If the calculated value of    for a specimen was greater than the critical t value, it 

was considered an outlier.  This statistical test assumes the data is normally distributed. 

Table 4.1.  Summary of Results for Block, Mortar, Grout, and Masonry Prism 

Companion Specimen Testing 

Companion 

Specimen 
Phase 

Number of 

Specimens 

Tested 

Mean 

Compressive 

Strength (MPa) 

COV 

(%) 

Blocks 

1 (Batch1) 12 19.7 10.6 

1 (Batch 2) 12 23.6 11.0 

2 12 27.4 5.12 

Mortar cubes 
1 107

1
 20.7

1
 21.6

1
 

2 96 22.8 14.7 

Grout cylinders 

(non-absorbent) 

1 93
2
 11.7

2
 12.3

2
 

2 93
3
 16.9

3
 22.0

3
 

Grout prisms 

(absorbent) 

1 33
4
 12.3

4
 13.5

4
 

2 32 19.0 17.6 
1
Data for one mortar cube was not recorded, and was thus excluded. 

2
Five cylinders identified as physical outliers and three cylinders identified as statistical outliers 

were excluded.  Data for one cylinder was not recorded, and was thus also excluded. 
3
Three cylinders were not tested due to damage to specimen prior to testing, and were excluded. 

4
One grout prism identified as a statistical outlier was excluded. 

 

4.1.1 Masonry Blocks 

Masonry block companion specimens were tested in accordance with ASTM C140 

(ASTM 2012b), with specimens tested for dimensional, absorption, and compressive 

strength properties.  The results for dimensional and absorption testing are presented in 
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Appendix 4A.  The dimensional properties met the minimum requirements as described 

by the Canadian Concrete Masonry Producers’ Association (CCMPA 2012).  The 

compressive strength of blocks from the two batches in Phase 1 and one batch in Phase 2 

were 19.7 MPa, 23.6 MPa, and 27.4 MPa, respectively.  The compressive strength of all 

units tested exceeded the nominal compressive strength of the blocks of 15 MPa.  A 

summary of the compressive strength results are presented in Table 4.1, while individual 

results are presented in Appendix 4A.  No physical or statistical outliers were identified 

for any of the masonry blocks tested.  The differences between the two batches from 

Phase 1, and each Phase 1 batch and the Phase 2 blocks, were statistically significant at a 

95 percent confidence interval.  The higher block strength for the Phase 2 blocks likely 

contributed to the higher masonry prism strengths that resulted for the second 

construction phase. 

4.1.2 Aggregate for Mortar and Grout 

The gradation of sand aggregate for mortar and pre-blended aggregate for grout was 

tested in accordance with CSA Test Method A23.2-2A (CSA 2009).   Figure 4.1 

shows the gradation of the sand aggregate used in both phases of construction relative to 

the fine aggregate specifications provided in CSA A179-04 (CSA 2004d).  Mortar 

aggregate used in both phases met these specifications since the percent finer than values 

for each sieve size were between the limits specified in CSA A179-04 (CSA 2004d). 

 

 Figure 4.1.  Mortar aggregate gradations  
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Figure 4.2 shows the gradation of the grout aggregate used in both phases of construction 

and the gradation of a 2:3 fine-to-coarse aggregate blend as is recommended by CSA 

A179-04 (CSA 2004d).  The aggregate for the second phase of construction was received 

in two batches, as discussed in Section 3.4.3, and the gradation of both batches is shown.  

Grout aggregate used in Phase 1 was finer (i.e. had more material passing) than the CSA 

A179-04 (CSA 2004d) recommended 2:3 fine to coarse aggregate blend for grain sizes 

between 630 μm and 5 mm.  This aggregate had some large particles, most of which had 

only one to two fracture faces, but was otherwise quite sandy.  The first batch of 

aggregate used in the second phase of construction was very similar.  However, the 

second batch of aggregate procured for the second construction phase was closer to the 

CSA A179 (CSA 2004d) recommended 2:3 fine to coarse aggregate blend, as seen in 

Figure 4.2.  This batch of aggregate had more medium-sized particles with multiple 

fracture faces, which would likely contribute to higher grout strengths as compared to 

grout produced from the first batch used in the second phase of construction.  Neither 

batch was rejected since the 2:3 fine to coarse aggregate blend is a recommendation, and 

since Clause 5.6 of CSA A179-04 (CSA 2004d) permits the use of any aggregate meeting 

the relevant property specifications for grout.  CSA A179-04 (CSA 2004d) specifies a 

minimum grout compressive strength of 10 MPa when fine aggregate is used, and the 

results of grout cylinder and prism testing, presented in Table 4.1, show that the grout 

produced in both phases met this requirement.  Additionally, this aggregate was also 

accepted because it represents that typically used in local construction in the area. 

 

Figure 4.2.  Grout aggregate gradations 
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4.1.3 Mortar Cubes 

Table 4.1 presents the summarized results of the mortar cube testing, conducted in 

accordance with CSA A179-04 (CSA 2004d).  Six mortar cubes were tested for each 

batch of mortar produced in the first and second phases of construction.  Results for all 

individual specimens are provided in Appendix 4B.  No physical or statistical outliers 

were identified amongst the specimens from either phase of construction.  Data for one 

mortar cube from Phase 1 was not recorded, and thus it was excluded from the 

calculation of the average compressive strength.  The difference in the compressive 

strengths of the mortar cubes between Phases 1 and 2 was not statistically significant.  

CSA A179-04 (CSA 2004d) specifies a minimum compressive strength of 12.5 MPa for 

mortar, and the results of mortar cube testing, presented in Table 4.1, show that the 

mortar produced in both phases met this requirement.   

4.1.4 Non-Absorbent Grout Cylinders 

Table 4.1 presents the results of the non-absorbent grout cylinder testing, conducted in 

accordance with CSA A179-04 (CSA 2004d).  Three cylinders were tested for each batch 

of grout produced in the first and second phases of construction.  Results for all 

individual specimens are provided in Appendix 4C.  The average compressive strengths 

of grout cylinders from Phase 1 and 2 were 11.7 MPa and 16.9 MPa, respectively.  These 

values met the minimum grout compressive strength requirement of 10 MPa for fine 

aggregate specified in CSA A179-04 (CSA 2004d). 

Five cylinders from Phase 1 were identified as physical outliers due to sulphur caps that 

were either slanted or not fully bonded to the cylinder.  Three additional cylinders from 

Phase 1 were identified as statistical outliers using the procedures outlined in ASTM 

E178 (ASTM 2012a).  Data was not saved for one cylinder in Phase 1, and thus it was 

excluded from the calculation of the average compressive strength.  Three cylinders (each 

from different batches) from Phase 2 were not tested because they were damaged prior to 

testing.  These cylinders were thus excluded from the calculation of the mean 

compressive strength values reported in Table 4.1.  No statistical outliers were identified 

for cylinders tested during the second construction phase. 
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One batch of grout from Phase 2 had a higher cement content due to a batching error on 

this particular grout batch.  This batch of grout was placed in a shear span (i.e. outside of 

the splice region) in specimen W600(No. 25)-3.5-2, and so was expected to have a 

minimal effect on the tensile resistance of the spliced reinforcement for this specimen.  

The compressive strengths of the three cylinders from this batch were included in the 

calculation of the mean compressive strength value for Phase 2 grout cylinders since this 

batch of grout was placed in a test specimen. 

The difference in mean values of compressive strengths between the two construction 

phases was found to be statistically significant at a 95 percent confidence interval, based 

on a student t-test.  The main reason for this difference was likely the different aggregate 

sources used in each phase, as reported in Section 4.1.2.  The higher grout strengths 

obtained for the grout cylinders constructed and tested in Phase 2, in combination with 

the higher block strengths that were also observed, likely contributed to the slightly 

higher masonry prism compressive strengths reported for this phase of construction. 

4.1.5 Absorbent Grout Prisms 

Table 4.1 presents the results of the absorbent grout prism testing, conducted in 

accordance with ASTM C1019 (ASTM 2012c).  One prism was tested for each batch of 

grout produced in the first and second phases of construction.  Results for all individual 

specimens are provided in Appendix 4D.  The average compressive strengths for the 

grout prisms were greater than those for the grout cylinders.  This result was expected, 

since the molds used in casting the grout prisms absorb excess water from the grout, thus 

increasing its strength.  The average compressive strengths for the grout prisms also met 

the compressive strength requirements of CSA A179-04 (CSA 2004d). 

No physical outliers were identified for the specimens tested during the first construction 

phase.  One Phase 1 grout prism was identified as a statistical outlier using the procedures 

detailed in ASTM E178 (ASTM 2012a).  No statistical outliers were identified for the 

grout prisms tested during the second construction phase.  The identified statistical outlier 

was excluded from the calculation of the average compressive strength for Phase 1 as 

presented in Table 4.1. 
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The difference in mean values of compressive strength between the two phases was 

found to be statistically significant at a 95 percent confidence interval, as was the case for 

the grout cylinders, and was likely caused by the different aggregate sources used in each 

phase.  As aforementioned in Section 4.1.4, the higher grout strengths reported in Phase 

2, in combination with the higher block strengths in this phase, likely contributed to the 

slightly higher masonry prism compressive strength observed. 

4.1.6 Masonry Prisms 

Tables 4.2 and 4.3 present the results of the masonry prism testing for the masonry 

prisms associated with the wall splice specimens and double pullout specimens, 

respectively, conducted in accordance with CSA S304.1-04 Appendix D (CSA 2004a).  

Each masonry prism was tested on the same day as the wall splice or double pullout 

specimen with which it was associated.  Section 3.1.3 includes a description of the 

abbreviated specimen designations, as used in these tables.  No physical outliers were 

identified for specimens in either construction phase, and no statistical outliers were 

identified at the 95 percent confidence interval for either phase, using the procedures 

outlined in ASTM E178 (ASTM 2012a).  The difference in mean values of the 

compressive strengths for masonry prisms associated with wall splice specimens between 

the two construction phases was found to be statistically significant at a 95 percent 

confidence interval, based on a student t-test, and likely resulted from the significant 

difference in the resulting grout strengths between the two phases, as described in Section 

4.1.4 and 4.1.5. 

The mean compressive strengths of the masonry prisms from both phases exceed the 

compressive strength value of 7.5 MPa provided in Table 4 of CSA S304.1-04 (CSA 

2004a) for a specified compressive unit (block) strength of 15 MPa, Type S mortar, and 

grouted construction, as used in this study. 

The compressive strength properties for the masonry prism associated with each wall 

were used in the numerical model, as will be described in Section 4.3.4.  However, the 

differences in compressive strengths were not likely to have a significant impact on the 

calculated tensile resistances of the wall splice specimens.  For instance, the tensile 
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resistance for a given curvature of 0.038 m
-1

 (the largest curvature observed among the 

wall splice specimens tested) calculated using the numerical model described in Section 

4.3.4 for prism strengths of 12.5 MPa and 13.9 MPa (the average values from each 

construction phase) were 210 kN and 217 kN, respectively.  The percent difference is 

thus 3 percent, indicating that the differences in the compressive strength of the masonry 

assembly are not substantial. 

Table 4.2.  Masonry Prism Compressive Strength Testing Results – Prisms 

Associated with Wall Splice Specimens 

Phase Associated Specimen Compressive Strength (MPa) 

1 

W200(No. 20)-2.5-1 11.1 

W200(No. 20)-2.5-2 10.9 

W200(No. 20)-2.5-3 11.9 

W200(No. 20)-3.5-1 12.9 

W200(No. 20)-3.5-2 11.4 

W200(No. 20)-3.5-3 13.1 

W250(No. 20)-2.5-1 13.3 

W250(No. 20)-2.5-2 13.3 

W250(No. 20)-2.5-3 14.3 

W400(No. 25)-3.5-1 11.3 

W400(No. 25)-3.5-2 10.4 

W400(No. 25)-3.5-3 12.7 

W800(No. 25)-3.5-1 13.5 

W800(No. 25)-3.5-2 13.6 

W800(No. 25)-3.5-3 13.6 

Average (MPa)  12.5 

COV (%)  9.75% 

2 

W200(No. 20)-2.5-4 16.3 

W200(No. 20)-2.5-5 13.5 

W200(No. 20)-2.5-6 13.1 

W200(No. 20)-3.5-4 13.4 

W200(No. 20)-3.5-5 12.8 

W200(No. 20)-3.5-6 12.9 

W350(No. 20)-2.5-1 14.1 

W350(No. 20)-2.5-2 15.3 

W350(No. 20)-2.5-3 15.3 

W600(No.25)-3.5-1 13.3 

W600(No.25)-3.5-2 12.6 

W600(No.25)-3.5-3 14.0 

Average (MPa)  13.9 

COV (%)  8.40% 
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Table 4.3.  Masonry Prism Compressive Strength Testing Results – Prisms 

Associated with Double Pullout Specimens 

Phase Associated Specimen Compressive Strength (MPa) 

2 

DP-T-1 13.6 

DP-T-2 16.2 

DP-T-3 14.6 

DP-T-4 14.8 

DP-T-5 12.1 

DP-T-6 15.6 

DP-NT-1 13.9 

DP-NT-2 15.1 

DP-NT-3 16.1 

DP-NT-4 14.5 

DP-NT-5 16.0 

DP-NT-6 15.3 

Average (MPa)  14.8 

COV (%)  8.21% 

 

Figure 4.3 shows the experimental stress versus strain curve for a representative masonry 

prism.  Movement of LVDTs during testing, due to rubbing or bumping of LVDTs with 

the beam bender or due to slip of the LVDTs on the metal clips fastened to the masonry 

prism, impeded the recording of accurate displacement measurements.  For instance, the 

vertical offset seen in Figure 4.3 was the result of LVDT movement at the start of the 

test.  The theoretical stress versus strain curve is also shown, with the derivation of the 

theoretical curve described in detail in Section 4.3.4. 

 

Figure 4.3.  Stress versus strain curve for representative masonry prism 
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4.1.7 Reinforcing Bar Test Results 

Table 4.4 presents the results of reinforcement bar testing, which was conducted in 

accordance with ASTM A370 (ASTM 2012d).  Results for all individual specimens are 

provided in Appendix 4E.  A minimum of six specimens were tested for each bar size and 

heat batch.  The strain at the initiation of strain-hardening (εsh) and the instantaneous 

slope at the initiation of strain-hardening strain (Esh) were only calculated for specimens 

where LVDT displacement data was available through the strain hardening region of the 

test.  Consequently, three additional specimens were tested for the No. 20 and 25 bar 

samples for Phase 1 to obtain LVDT displacement data.  Displacement data as measured 

by the Instron testing machine was not considered due to grip slippage, as detailed in 

Section 3.6.1. 

The values for strain-hardening strain as reported in Table 4.4 are comparable to those 

reported by Mirza & Skrabek (1991).  The coefficient of variation is not reported for εsh 

and Esh since this data was only obtained for two specimens for each of the No. 20 and 

No. 25 bars tested in Phase 1, and four and five specimens of the No. 20 and 25 bars, 

respectively, tested in Phase 2. 

Table 4.4.  Summary of Results for Reinforcement Companion Specimen Testing 

Bar 

Size 

(mm) 

Phase  

Yield 

Strength, 

fy (MPa) 

Elastic 

Modulus, 

Es (GPa) 

Strain at 

Initiation 

of Strain-

hardening, 

εsh 

Slope 

at εsh, 

Esh 
(MPa) 

Ultimate 

Strength, 

fult (MPa) 

No. 20 

1
1
 

Average 442 202 0.0135
3
 7080 602 

COV (%) 0.961 0.759 n/a n/a 0.811 

2
1
 

Average 429 204 0.0120
3
 4890 583 

COV (%) 0.406 2.50 n/a n/a 0.412 

No. 25 

1
2
 

Average 478 207 0.0168
4
 5620 640 

COV (%) 0.631 0.079 n/a n/a 0.625 

2
2
 

Average 468 201 0.0126
5
 4420 624 

COV (%) 0.320 5.36 n/a n/a 0.357 
1
Nine replicate specimens were tested. 

2
Six replicate specimens were tested. 

3
Based on test results of 2 specimens for which LVDT displacement data was available. 

4
Based on test results of 4 specimens for which LVDT displacement data was available. 

5
Based on test results of 5 specimens for which LVDT displacement data was available. 
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Figure 4.4 shows the experimental stress versus strain curve for a representative 

reinforcement companion specimen.  The theoretical stress versus strain curve is also 

shown, with the derivation of the theoretical curve described in detail in Section 4.3.4.  

The experimental and theoretical curves showed good agreement. 

 

Figure 4.4.  Stress versus strain curve for representative reinforcing bar sample 

4.2 Double Pullout Specimens 

Double pullout specimens were tested in this study to show that the construction and 

testing techniques used at both the University of Saskatchewan (U of S) and NCMA are 

reasonably similar, and thus the results from testing at the U of S can legitimately be used 

to assess the adequacy of current code provisions.  Twelve double pullout specimens, 

each with splice lengths of 600 mm, were constructed and tested in this study.  Six of 

these specimens were constructed with the lapped bars tied together, and six were 

constructed with the lapped bars placed in contact but not tied together.  Problems with 

the application of similar loads between the two larger hydraulic cylinders impacted the 

results of the double pullout specimen testing.  Detailed herein are the load histories and 

failure loads observed and the visual observations of damage made for the double pullout 

specimens. 
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4.2.1 Load Histories and Failure Loads of Double Pullout Specimens 

Figures 4.5(a), (b), and (c) show the load versus time plots for DP-T-1 (tested with the 

small hydraulic cylinders, as described in Section 3.6.2), a representative DP-T specimen 

tested with the large hydraulic cylinders as described in Section 3.6.2 (DP-T-3), and a 

representative DP-NT specimen tested with the large hydraulic cylinders as described in 

Section 3.6.2 (DP-NT-1), respectively.  The small hydraulic cylinders, used for testing 

DP-T-1, provided reasonable control in terms of applying approximately equal loads to 

the two bars throughout the test.  The horizontal line segments seen in Figure 4.5(a) in 

which the applied load did not increase with time correspond to periods when the pump 

pressure had to be increased to apply additional load.  Higher pressures could not safely 

be used for testing further specimens.  The large hydraulic cylinders were thus used for 

all remaining tests because the larger area of these cylinders allowed for the generation of 

forces required to cause bar pullout without an increase to the pump operating pressure. 

In contrast, the loads applied by the two hydraulic cylinders differed significantly 

throughout testing for all tests conducted with the large hydraulic cylinders, which 

created an in-plane bending moment on the specimen.  When testing the DP-T specimens 

(Figure 4.5(b)), one hydraulic cylinder was initially not loading, but did then reach and 

surpass the load applied by the other hydraulic cylinder.  The difference between the two 

cylinders was 34 kN on average.  When testing the DP-NT specimens (Figure 4.5(c)), 

one hydraulic cylinder initially did not load, and then did not catch up to the other 

hydraulic cylinder once it started loading.  The differences in applied loads in both cases 

were likely the result of differences between the two hydraulic cylinders in terms of their 

sensitivities to the voltages applied. 
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a) 

 

b) 

 

c) 

Figure 4.5.  Load-time histories of double pullout specimens: a) DP-T-1, tested with 

small hydraulic cylinders, b) representative DP-T specimen tested with large 

hydraulic cylinders (DP-T-3), and c) representative DP-NT specimen tested with 

large hydraulic cylinders (DP-NT-1) 
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Table 4.5 shows the loads on each splice at failure for the double pullout specimens, and 

identifies the splice whose splitting caused failure, as discussed further in Section 4.2.2.  

The failure loads on the two splices were substantially different for the DP-NT 

specimens, and were on average 15 percent lower than the failure loads for the DP-T 

specimens.  This was expected, since the DP-T specimens contained splices with the 

lapped bars tied together with lugs in contact, thus requiring larger forces to cause the 

lugs to ride over each other.  However, it should be noted that the greater disparity 

between the loads applied to each cylinder for the DP-NT specimens, caused by the 

differences in the sensitivities of each cylinder, created an in-plane bending moment 

acting simultaneously with the action of the applied loads.  The magnitude of that in-

plane bending moment was, on average, 22.3 kN·m, as calculated from basic principles 

of statics.  It is likely that this in-plane moment created additional stresses in the 

cementitious materials, partially contributing to the lower failure loads recorded. 

 

Table 4.5.  Failure Loads for Double Pullout Specimens 

Test Specimen 
Max applied load on 

Splice 1 (kN) 

Max applied load on 

Splice 2 (kN) 

Failing 

Splice 

DP-T-1 187 181 2 

DP-T-2 155 100 1 

DP-T-3 190 229 1 

DP-T-4 208 248 1 

DP-T-5 196 231 2 

DP-T-6 223 222 2 

Average (kN) 193 202 - 

COV (%) 11.9 27.0 - 

DP-NT-1 196 62.0 2 

DP-NT-2 197 63.4 2 

DP-NT-3 216 65.2 2 

DP-NT-4 205 64.0 2 

DP-NT-5 123 76.6 2 

DP-NT-6 126 66.3 2 

Average (kN) 178 66.2 - 

COV (%) 23.4 7.97 - 
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Out-of-plane buckling of the test frame as evinced by the lifting of one corner of the 

double pullout test frame was noted in all tests, but most significantly in the DP-NT tests.  

The channel sections used to construct the test frame were relatively weak in out-of-plane 

buckling, and could not be restrained in the laboratory.  Additionally, minor slack in the 

test frame set-up that resulted from slight misalignments of the reinforcement contributed 

to buckling since the members of the test frame were not completely flush with one 

another.  This buckling likely influenced the results, causing the failure loads to be 

greater than expected (as described in Section 4.2.3) and, in the case of the DP-NT 

specimens, contributing to the disparity in loads between the two cylinders. 

 

4.2.2 Qualitative External and Internal Damage Observation 

Figures 4.6(a), (b), and (c) show specimen DP-T-1 (tested with small hydraulic 

cylinders), a representative DP-T specimen tested with large hydraulic cylinders (DP-T-

3), and a representative DP-NT specimen (DP-NT-2), respectively.  All specimens 

showed splitting through one of the reinforced cells. 

The DP-T specimens, including DP-T-1, showed similar damage at failure.  The 

cementitious material surrounding the reinforcement of the failing splice split over the 

entire splice length.  The face shell and grout surrounding the reinforcement cracked 

diagonally.  Additionally, the fragments of face shell and grout removed after testing 

showed evidence of the lugs of the reinforcement scraping against the grout.  This 

evidence suggests that bar pullout was the cause of the failure for this specimen series.  

The DP-NT specimens exhibited similar damages at failure, although less scraping of the 

lugs was detected after testing. 



79 

  

a) b) 

 

c) 

Figure 4.6.  Failure of double pullout specimens: a) DP-T-1, tested with small 

cylinders, b) representative DP-T specimen tested with large cylinders (DP-T-3), 

and c) representative DP-NT specimen tested with large cylinders (DP-NT-2) 

4.2.3 Comparison to NCMA (1999, 2009) Results and Prediction Equation 

NCMA (1999) established a regression equation (Equation 2.6) to predict the tensile 

resistance of the spliced reinforcement for a double pullout specimen based on splice 

length, bar diameter, and masonry compressive strength.  All specimens constructed in 

NCMA’s studies (1999, 2009) were built with the lapped bars tied together.  The 

predicted tensile resistance of the reinforcement for the double pullout specimens 

calculated using Equation 2.6 was 176 kN.  This predicted capacity is representative of 

the DP-T specimens, since these were constructed with the lapped bars tied together, but 

not the DP-NT specimens, since they were constructed with the lapped bars not tied. 
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Specimen DP-T-1 failed at a load equal to 181 kN, which is 3 percent greater than the 

NCMA predicted value.  Thus, when the small hydraulic cylinders were used, the 

experimental results agreed closely with the NCMA predicted values.  Similarly, the 

average failure load of the specimens tested by Ahmed (2011) with contact lap splices 

was 89.7 kN.  The failure load predicted by the NCMA regression equation for these 

specimens was 92.0 kN, which results in a 3 percent difference between the predicted and 

observed values.  The close agreement between failure loads as recorded for specimen 

DP-T-1 and for the specimens constructed and tested by Ahmed (2011) and Equation 2.6 

indicate that the construction and testing techniques used by the U of S and NCMA were 

reasonably similar. 

4.3 Wall Splice Specimen Results and Analysis 

Twenty-seven wall splice specimens, 18 of which were reinforced with No. 20 bars and 9 

of which were reinforced with No. 25 bars, were tested in this study.  The database for 

the subsequent analysis was then further bolstered by the inclusion of selected results of 

testing conducted on wall splice specimens reinforced with No. 15 bars by Sanchez & 

Feldman (2013).  Load and deflection data were collected throughout the testing of each 

specimen, and visual observations of crack propagation were also recorded.  Internal 

damage to the wall splice specimens was investigated after testing for select specimens to 

obtain further information on the resulting failure mode.  A numerical moment-curvature 

analysis was used to calculate the tensile resistance of the lap splice for each wall splice 

specimen.  A relationship for the tensile resistance of the lap splice as a function of splice 

length and bar diameter was established using a regression analysis.  The resulting lap 

splice length to achieve yielding of the reinforcement was determined by extrapolating 

beyond the limits of the resulting equation.  These test-based splice lengths were then 

compared to those calculated using current Canadian and American masonry code 

provisions to evaluate the adequacy of these provisions. 

4.3.1 Load-Deflection Behaviour 

Table 4.6 presents the experimentally- and theoretically-determined cracking loads, 

maximum load, and midspan deflection at the maximum load for the wall splice 
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specimens tested in this investigation.  A description of the abbreviated specimen 

designations, as reported in Table 4.6, was presented in Section 3.1.3.  The curvature at 

the maximum load, tensile resistance of the reinforcement in each specimen, and the 

average tensile resistance of the reinforcement for each configuration are also shown.  

The calculation of these parameters is discussed in detail in Sections 4.3.4 and 4.3.5.   

Wall splice specimen W400(No.25)-3.5-2 could not be tested as the specimen was 

damaged prior to testing.  A different loading program was erroneously used to apply the 

load to this specimen, resulting in cracks in all mortar joints surrounding one block in the 

splice region.  As such, no test data was obtained for this wall, and it is not included in 

the results presented herein. 

The cracking loads, as reported in Table 4.6, were determined based on the visual 

observation of first cracking on the non-instrumented side of the wall during testing and a 

review of the numerical load and deflection data.  The cracking load was considered to be 

the load at which cracking was first observed on the non-instrumented side of the wall 

unless the load-deflection curve for the wall showed a distinct point at which the slope of 

the curve changed; this sudden slope change would indicate a change in the flexural 

rigidity of the specimen corresponding to the opening of the first crack on the specimen.  

In such cases, the cracking load was determined to be at the time when a sudden slope 

change was observed; this resulted for six of the 27 wall splice specimens.  Cracking 

loads showed some variability, which is likely due to the complex nature of the initiation 

of cracking in masonry elements subject to out-of-plane bending and potential variability 

in construction.  Cracks generally initiated at a mortar-block interface.  The theoretical 

cracking loads, calculated in accordance with Clause 10.14 of CSA S304.1-04 (CSA 

2004a) and adjusted to exclude the moment caused by the self-weight of the specimen, 

were typically less than the observed experimental cracking loads by 15 percent on 

average.  These differences likely resulted from the additional rigidity in the system 

during testing due to friction inevitably present between the supports and the wall that 

would create a slight axial compression in the wall.  
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Figure 4.7 shows the experimental and theoretical load versus midspan deflection curves 

for representative specimens (W350(No.20)-2.5 configuration).  The calculation of the 

theoretical curve is detailed in Section 4.3.4.  Appendix 4F presents the load-deflection 

curves for all specimens.  A change in slope corresponding to the reduction in rigidity 

due to initiation of flexural cracking was observed for most wall splice specimens.  All 

wall splice specimens failed prior to the yielding of the reinforcement, as evinced by the 

sudden drop in load shown in the experimental curves.  The applied load decreased after 

the attainment of the maximum applied load with increasing deflection, since the test was 

conducted in displacement-control.  One of the two splices in the wall failed first, at 

which point the wall did not have sufficient resistance to support the applied load.  Thus, 

the decrease in load with increasing deflection to the point of failure occurred shortly 

after the failure of the first splice. 

 

Figure 4.7.  Load versus midspan deflection curve for representative wall splice 

specimens (shown for W350(No.20)-2.5 configuration) 

4.3.2 External Damage Observations 

Cracks were marked on the non-instrumented side of each wall splice specimen as testing 

progressed.  Figure 4.8 shows the noted flexural cracking following the completion of 
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testing for a typical specimen.  Cracking occurred at mortar bed joints exclusively, as 

expected for reinforced masonry.  The crack patterns were consistent with those found by 

Sanchez & Feldman (2013) for their specimens reinforced with No. 15 bars and were 

consistent with those expected for masonry wall elements loaded in flexure. 

 

Figure 4.8.  Flexural cracking of representative specimen (W350(No.20)-2.5-1) 

Flexural cracking of the specimens reinforced with No. 20 bars occurred throughout the 

test until the maximum load of the wall was reached.  Similar crack depths were observed 

at any given location for different specimens.  The most prominent cracking occurred in 

the bed joints on either side of the central block for each specimen. 

Flexural cracking of the W400(No.25)-3.5 specimens continued until the failure of the 

specimen at an average maximum load of 48.0 kN.  Most of the crack initiation, 

lengthening, and widening for the W800(No.25)-3.5 specimens, which failed at an 

average maximum load of 71.3 kN, occurred prior to the application of approximately 

half to two-thirds of the maximum load.  Similarly, most of the cracking for the 

W600(No.25)-3.5 specimens occurred prior to the application of approximately two-
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thirds of the maximum load, thus at similar load levels at which the cracking ceased for 

the W800(No.25)-3.5 specimens. 

The W600(No. 25)-3.5 and W800(No.25)-3.5 specimens displayed further top face 

cracking of the wall in addition to the flexural cracking noted above, which was not 

observed for any other specimens.  Figure 4.9 shows the crack patterns on the top face of 

a representative W800(No.25)-3.5 specimen.  Most notably, cracking occurred in the 

reinforced cells starting at the end of the specimen, and continued into the constant 

moment region between the two load points where the splice was located.  The cracking 

propagated into the splice region as the specimen neared its maximum load.  Figure 4.10 

shows the additional splitting cracks observed at one end of a W800(No.25)-3.5 specimen 

once the mechanical couplers were removed after testing.  The W600(No.25)-3.5 

specimens exhibited cracking on the top face of the wall as well, but to a lesser extent 

than the W800(No.25)-3.5 specimens since the maximum loads were lower. 

 

Figure 4.9.  Cracking on top face of specimen W800(No.25)-3.5-3 

First crack 

observed Second crack 

observed

Final crack 

observed
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Figure 4.10.  Splitting of grout surrounding reinforcement on W800(No. 25)-3 

The cracking observed in the W600(No. 25)-3.5 and W800(No.25)-3.5 specimens was 

likely the result of the reduced cover of the masonry given the larger bar size.  Cracking 

on the top face was not observed on the specimens reinforced with No. 25 bars and 

400¯mm lap splices because the ultimate loads for these specimens were just below the 

load levels at which the cracking on the top face initiated for the W600(No. 25)-3.5 and 

W800(No.25)-3.5 specimens. 

4.3.3 Observations of Internal Damage 

Selected specimens of each configuration were saw-cut through the splice region to 

remove the face shell and grout to the depth of the reinforcement such that internal 

cracking and possible indicators of bond failure could be assessed.  Observations of 

diagonal cracking and bar pullout in the splice region indicated that bond failures 

occurred in all specimen configurations.  Figure 4.11(a) shows the observed diagonal 

cracking in the grout surrounding the spliced reinforcement in a representative wall splice 

specimen.  ACI Committee 408 (2012) reports that the presence of such diagonal cracks 

indicates the failure of a lap splice in bond in reinforced concrete.  Figure 4.11(b) shows 

the pullout of one of the bars in a representative wall splice specimen, as evinced by a 

gap between the bar end and the grout, in one of the lap splice bars in a representative 

wall splice specimen. 
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The face shell and grout were also removed to the depth of the reinforcement within one 

of the shear spans for the W800(No.25)-3.5 specimens, due to the additional cracking 

observed in these specimens.  Figure 4.12 shows the diagonal cracking observed at the 

end of one W800(No.25)-3.5 specimen.  This cracking propagated through the grout in 

the cell.  The direction of this cracking, pointing downward and away from the splice 

region, is consistent with a bond failure in the splice region, since the direction indicates 

bar slip occurred in the splice region and this bar movement caused the cracking seen at 

the end of the specimen.  The bars would have slipped in the opposite direction had a 

development failure in the anchorage region occurred.  This indicates that the provided 

end anchorages worked as intended. 

  

a) b) 

Figure 4.11.  Evidence of bond failures in wall splice specimens:  a) diagonal 

cracking in grout surrounding splice reinforcement, and b) bar pullout in lap splice 

 

Figure 4.12.  Diagonal cracking at end of W800(No.25)-3.5 representative sample 
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One half of specimen W800(No.25)-3.5-3 cracked significantly during testing, such that 

pieces of the face shell and grout surrounding the reinforcement could be easily removed 

by hand after testing.  Figure 4.13 shows one such piece of the grout surrounding the 

reinforcement in this specimen.  The pieces of grout surrounding the reinforcement from 

the splice region showed clear evidence of scraping of the lugs of the reinforcement on 

the grout that surrounded them, again indicating that the reinforcement slipped. 

 

Figure 4.13.  Scraping of reinforcement lugs on surrounding grout in splice region, 

specimen W800(No.25)-3.5-3 

A jackhammer was used to remove the face shell and grout to the depth of the 

reinforcement for the remaining wall splice specimens to verify the actual splice length 

and transverse bar spacing within each lap splice.  Appendix 4G presents this data.  CSA 

A371-04 (CSA 2004e) specifies a tolerance of 13 mm when placing reinforcement in 

walls and flexural elements where the distance from the farthest masonry face to the 

reinforcement centreline is less than 200 mm, as was the case for these walls.  The actual 

splice lengths all met this criteria, with the exception of W350(No.20)-2.5-3, where one 

lap splice was 15 mm shorter than designed, and W600(No.25)-3.5-1, where the two lap 

splices were 15 mm and 20 mm shorter than designed, respectively.  The transverse 
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spacings of the bars met this criteria as well, with the exception of one splice in five wall 

splice specimens, where the transverse spacing was 15 mm (W200(No.20)-2.5-1, 

W200(No.20)-2.5-4, W350(No.20)-2.5-2, W400(No.25)-3.5-1, and W800(No.25)-3.5-3).  

However, it is also worth noting that CSA S304.1-04 (CSA 2004a) permits non-contact 

lap splices with spacings not more than one-fifth of the required lap splice length or 

150¯mm without further penalty, and this requirement was met for all wall splice 

specimens. 

A comparison between actual splice length and transverse spacing and tensile resistance 

is presented in Appendix 4G.  There was no consistent trend between the actual splice 

lengths and the tensile resistances of the spliced reinforcement, which was likely due to 

the effects of the variability in the actual transverse spacing in combination with the 

variability in the actual splice lengths.  Thus, the nominal values of splice lengths were 

used in all further analysis. 

4.3.4 Numerical Analysis Methods 

The tensile resistances of the spliced reinforcement could not be determined through 

direct means.  Strain gauges were not placed on the reinforcing bars, since doing so 

would have impacted the bond between the grout and the reinforcement.  As such, a 

numerical model was needed to calculate the tensile resistances of splices in the wall 

splice specimens. 

Furthermore, the equivalent rectangular stress block approach presented in CSA S304.1-

04 (CSA 2004a) could not be used to calculate stresses, strains, moments, and curvatures 

of the wall splice specimens since this simplified approach is only valid when the strain 

in the masonry reaches its ultimate (crushing) value of 0.003.  The numerical model used 

in this research instead considered the stress-strain relationship for the masonry and the 

reinforcement specifically, calculating the tensile resistance of the spliced reinforcement 

based on the curvature at the maximum load for each wall splice specimen.  The 

numerical model used herein is similar to that used by Ahmed (2011), Sanchez (2014), 

and Kisin (2014).  A detailed description of the equations used and a copy of the 

MathCAD code are provided in Appendix 4H. 
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First, the deflection profile of each wall splice specimen was used to determine the 

experimental curvature of the specimen at the maximum load.  Figure 4.14 shows the 

deflection profile of a representative sample at various load levels, and the parabolic 

curve fit to this data at each load level determined using a regression analysis.  The 

parabolic curve provided a good fit to the measured deflections, and the root-mean-

square error (RMSE) values for the deflections were typically less than 5 percent of the 

midspan deflection at maximum load for each specimen.  The experimental curvature 

was then calculated as the second derivative of the deflection profile at the ultimate load. 

The tension in the reinforcement at maximum load, hereafter referred to as the tensile 

resistance of the spliced reinforcement, and theoretical moment-curvature curves for each 

wall splice specimen were determined using an iterative process whereby the distance to 

the neutral axis from the compression (top) face of the wall was calculated such that 

horizontal force equilibrium was achieved.  The components and processes of the 

numerical model are detailed herein. 

The stress-strain relationship for the masonry was modelled using a modified Kent-Park 

curve (Priestly & Elder 1983).  This theoretical curve has been used successfully by 

Ahmed (2011), Sanchez (2014), and Kisin (2014), and has shown good agreement with 

experimental results when reliable LVDT data were obtained.  The compressive strength 

of the masonry assembly, f’m, as determined from the masonry prism tests associated with 

each wall splice specimen, was used in this model.  The modified Kent-Park curve 

assumes a parabolic stress-strain relationship to the point when the maximum prism 

strength is reached, followed by a linear decreasing relationship between stress and strain.  

The expression is presented in detail in Appendix 4H. 

The strain corresponding to the maximum stress was set equal to 0.0020 as originally 

proposed by Kent & Park (Priestly & Elder 1983), as Ahmed (2011) found good 

agreement between this value and his experimental results.  Problems encountered during 

masonry prism testing in this study, as discussed in Section 4.1.6, prevented further 

assessment of the strain at maximum load from experimental data. 
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Figure 4.14.  Experimental deflection profile at maximum load for representative 

wall splice specimen (W200(No.20)-3.5-3): a) P = ½ Pmax, b) P = ¾ Pmax, and c) P = 

Pmax 
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The stress-strain relationship for the reinforcement was modelled assuming a linear rising 

segment to represent its elastic region, a straight line corresponding to the yield plateau, 

and a cubic equation  corresponding to the strain hardening region for the reinforcement.  

The equation used is presented in detail in Appendix 4H.  The tensile properties as 

measured during testing of companion specimens, as detailed in Section 4.1.7, were used 

as boundary conditions to establish the theoretical stress-strain curve.  The elastic 

modulus, Es, and actual yield strength, fy, of the reinforcement were used to create the 

linear elastic portion of the curve.  The strain at the initiation of strain hardening, εsh, was 

used to determine the point at which strain hardening and the parabolic curve started.  

The instantaneous slope at the initiation of strain hardening, Esh, and the actual ultimate 

stress, fult, were used as boundary conditions for the cubic equation.  It was assumed that 

the slope of the curve was equal to zero at the point of the ultimate stress.  Figure 4.4 

shows the theoretical stress-strain curve for a representative sample of reinforcement, 

which showed good agreement with the experimental data obtained. 

Three further assumptions were used in the development of this model.  First, it was 

assumed in the development of this model that plane sections remained plane.  Second, 

contributions of the masonry block or grout to the tensile strength of the wall were 

neglected.  Finally, any axial loads induced by friction at the supports were ignored, as 

they were assumed to be negligible. 

Figure 4.15 shows the strain, stress, and force distributions on the cross-section of the 

wall splice specimens.  The effective depth of the reinforcement, deff, width, b, and 

height, h, are shown in Figure 4.15(a).  The depth to the neutral axis of the section, kd, 

was determined using an iterative analysis.  A depth to the neutral axis was assumed, and 

the corresponding tensile force in the reinforcement and resultant compressive force in 

the masonry could be calculated.  This calculation was conducted iteratively until the 

tensile force in the reinforcement and the compressive force in the masonry were within 

0.5 percent of each other, for the given experimental curvature at the maximum applied 

load level.  The strains in the reinforcement and masonry were calculated assuming a 

linear strain distribution, as shown in Figure 4.15(b).  The compression area of the 

masonry was divided into 100 segments for the calculation of the strains, stresses, and 
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forces in the masonry.  The strain was calculated at the mid-depth of each segment of the 

compression area based on the linear strain distribution, and the stress was then 

calculated for each segment based on the modified Kent-Park curve.  The resultant 

compressive force for each segment was calculated by multiplying the stress by the area 

of the segment, and the total compressive force was then calculated by summating the 

compressive forces in each segment.  The strain in the reinforcement was calculated 

using the linear strain distribution, and the stress was then calculated using the nominal 

bar area and the theoretical stress-strain curve described previously.  Calculations in 

Appendix 4H show that the error associated with the choice of 100 segments of the 

compression area was 0.08 percent, based on the percent difference between the moment 

at a fixed curvature of 0.025 m
-1

 calculated for 100 segments and the approximate 

asymptotic value of the moment at a fixed curvature of 0.025 m
-1

. 

 

Figure 4.15.  Illustration of the numerical moment-curvature model:  a) specimen 

dimensions, b) strain distribution, c) stress distribution, and d) force distribution 
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The tensile force in the reinforcement at the curvature corresponding to the maximum 

applied load was calculated to find the tensile resistance of the spliced reinforcement for 

each wall splice specimen.  The numerical model was also used to calculate the 

theoretical relationship between moment and curvature for each wall splice specimen.  

The moment was calculated as the summation of the force in each segment of the 

masonry above the neutral axis location multiplied by the distance between the centroid 

of each individual segment and the centroid of the reinforcement.  The moment-curvature 

relationship for the uncracked section was calculated as the ratio of the applied moment, 

Ma, to the flexural rigidity of the gross cross section, EmIg, where Em is the elastic 

modulus of the masonry and Ig is the moment of inertia of the gross section.  Em was 

calculated in accordance with CSA S304.1-04 (CSA 2004a) Clause 6.5.2, and so was 

equal to 850·f’m.  Uncracked section properties were assumed until the cracking moment, 

Mcr, was reached, at which point the numerical model was used to calculate the moment-

curvature relationship for the cracked section. 

Figure 4.16 shows a comparison of the theoretical and experimental moment-curvature 

relationships for a representative wall splice specimen.  The theoretical and experimental 

curves show good agreement, and were typical for all specimens.  The experimental 

moment-curvature relationship showed a slightly greater moment at a given curvature, 

2.41 percent on average, as compared to the theoretical curve.  This difference may have 

resulted from frictional resistance at the supports or rigidity at the supports, which would 

have resulted in a small axial load in the wall splice specimen that would increase its 

moment capacity and hence increase the actual curve.  The effects of axial loads were not 

considered in the numerical model. 
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Figure 4.16.  Theoretical and experimental moment-curvature relationship for a 

representative wall splice specimen (W200(No.20)-2.5-3) 

The theoretical load-deflection curves were then developed based on the theoretical 
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splice specimen for these calculations was discretized into 10 mm segments (240 

segments in total for the 13 course high walls, 290 segments for the 15 course high 

walls), as described in Appendix 4H.  The error associated with the selection of 240 

segments for the 13 course high walls was 0.002 percent, while the error associated with 

the selection of 280 segments for the 15 course high walls was 0.000 percent.  As such, 
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calculation of the effective moment of inertia of masonry elements, to which Bischoff 

(2005) proposed modifications.  The reinforcement ratios of the wall splice specimens in 

this study ranged from 0.45 percent to 0.76 percent, and so Bischoff’s equation (2005) 

was most appropriate for the determination of their effective stiffness. 

The midspan deflection of the wall splice specimens was calculated using the conjugate 

beam method.  It was assumed that the deflection of the real wall at both supports was 

equal to zero, hence the moment on the corresponding conjugate beam at both supports 

was equal to zero.  It was also assumed that the maximum deflection of the real wall 

occurred at the midspan of the wall, thus the slope at the midspan of the real wall was 

equal to zero and consequently the shear on the corresponding conjugate beam at 

midspan was equal to zero.  The sum of the curvature of each segment of the conjugate 

beam multiplied by the distance of that segment from one support results in the 

calculation of the midspan deflection. 

The theoretical load-deflection curves were generated at 1 kN increments using the 

numerical model.  Figure 4.7 shows the theoretical and experimental load-deflection 

curves for a representative specimen configuration, and the curves for all specimens are 

presented in Appendix 4F.  The theoretical and experimental curves for all specimens 

showed good agreement. 

4.3.5 Tensile Resistances of Wall Splice Specimens 

Table 4.6 presents the calculated curvature at the maximum load level and the calculated 

tensile resistance of the spliced reinforcement of the wall splice specimens tested in this 

study, as well as the average tensile resistance of the spliced reinforcement for each wall 

splice specimen configuration as calculated using the moment-curvature analysis detailed 

in Section 4.3.4.  The tensile resistances of the spliced reinforcement are reported for a 

single splice in each wall splice specimen, assuming both will have equal magnitudes.  

Reported coefficient of variation (COV) values of the tensile resistance of the spliced 

reinforcement were less than 10 percent for all but the W200(No.20)-3.5 configuration.   

For each bar size, greater tensile resistances of the spliced reinforcement were observed 

for specimens with longer lap splice lengths, as was expected.  Furthermore, the tensile 
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resistances of the spliced reinforcement for all specimens were less than that 

corresponding to the yield strength of the reinforcement, further suggesting that all 

specimens failed in bond. 

4.3.6 Effect of Specimen Width 

As discussed in Section 3.1.1, it was expected that the two specimen widths as used in 

this study would not significantly impact the tensile resistances of the spliced 

reinforcement observed for the wall splice specimens.  The validity of this assumption 

was ascertained by comparing the tensile resistances of the spliced reinforcement 

reported for the W200(No.20)-2.5 and W200(No.20)-3.5 specimens; these specimens 

were reinforced with No. 20 bars with 200 mm lap splices in 2.5 and 3.5 block widths, 

respectively.  A two-tailed student t-test was used to assess whether the difference in 

tensile resistances of the spliced reinforcement observed for these two specimen 

configurations was statistically significant using a 95 percent confidence interval.  It was 

found that the difference was not significant.  Therefore, it may be concluded that the 

increased specimen width used for the specimens reinforced with No. 25 bars did not 

significantly impact the tensile resistance values observed. 

4.3.7 Comparison Between Wall Splice and Double Pullout Specimens 

A comparison between the results of double pullout specimen and wall splice specimen 

testing in this study was originally desired.  However, a comparison is not meaningful 

due to the problems encountered during double pullout specimen testing, including the 

application of non-equal loads by the two hydraulic cylinders and the out-of-plane 

bending of the test frame.  Specifically, the one double pullout specimen tested with the 

small hydraulic cylinders for which the load application was well controlled contained 

tied lap splices, whereas all wall splice specimens constructed in this study had lap 

splices in which the bars were not tied together.  Thus, the results of DP-T-1 cannot be 

compared to the results of the W600(No.25)-3.5 specimens. 

A comparison of the test setups used for the double pullout specimens and the wall splice 

specimens can be made.  The difficulties encountered in the double pullout specimen 

testing as related to the application of approximately equal loads by the two hydraulic 
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cylinders and the out-of-plane bending of the frame appear specific to the test frame 

itself.  Results of double pullout tests are thus highly dependent on the design of the test 

frame.  The testing of wall splice specimens does not involve a similar test frame for 

loading the specimens, and is thus less susceptible to such dependencies.  Additionally, 

the results reported by Ahmed & Feldman (2012) indicate shortcomings with the use of 

double pullout specimens for the testing of the tensile resistances of spliced 

reinforcement.  Ahmed & Feldman (2012) reported a statistically significant increase in 

the tensile resistance of the spliced reinforcement in the wall splice specimens as 

compared to the double pullout specimens, and the evidence of strain hardening of the 

reinforcing bars in the wall splice specimens, as discussed in Section 2.3.  As such, wall 

splice specimens are recommended as the preferred test specimen type for masonry bond 

research. 

4.4 Comparison to Current Code Provisions 

A comparison between the resulting test data and current code provisions was desired to 

evaluate the adequacy of current splice length requirements.  For this comparison, a 

regression analysis of the wall splice specimens was conducted to determine a predictive 

equation for tensile resistance as a function of splice length and bar size.  A five percent 

quantile approach was then applied to this predictive equation to provide an adequate 

margin of safety such that splice lengths calculated using the adjusted predictive 

equations are appropriate for design purposes.  An estimate of the splice length 

corresponding to the yield strength of the reinforcement for each bar size was 

extrapolated from the adjusted predictive equation.  These splice lengths were then 

compared to the current Canadian and American code provisions, as presented in 

Equations 2.3 and 2.7, respectively.  This comparison is used herein to provide 

recommendations for future research and code refinement. 

For this comparison, specimens reinforced with No. 15 bars that were constructed and 

tested previously by Sanchez & Feldman (2013) were included to bolster the overall 

database and thus reflect the range of bar sizes typically used in Canadian masonry 

construction.  Table 4.7 presents the results from the testing of specimens by Sanchez & 
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Feldman (2013).  The specimen designations provided in Table 4.7 follow the format 

used for all specimens in this program, which is described in Section 3.1.3.  These 

specimens included a 25 mm transverse spacing between the spliced bars and are the 

closest point of comparison to the wall splice specimens with bars in contact but not tied 

together as constructed in this study.  Sanchez & Feldman (2013) found that the tensile 

resistances of spliced reinforcement was greater for bars tied together in contact than for 

bars with some transverse spacing provided between the spliced bars.  Furthermore, 

Sanchez & Feldman (2013) report that the transverse spacing between spliced bars placed 

in the same cell did not significantly affect the tensile resistance of the reinforcement, 

based on the results from testing specimens including 25 mm and 50 mm transverse 

spacings between spliced bars.   As such, the specimens constructed with a 25 mm 

transverse spacing are most comparable to the specimens constructed in this study where 

the bars were placed nominally in contact but not tied together. 

Table 4.7.  Tensile Resistances of Wall Splice Specimens Tested by Sanchez & 

Feldman (2013) 

Test Specimen Splice Length (mm) Tensile Resistance (kN) 

W150(No.15)-2.5-1 150 64.4 

W150(No.15)-2.5-2 150 79.8 

W150(No.15)-2.5-3 150 64.4 

W200(No.15)-2.5-1 200 73.3 

W200(No.15)-2.5-2 200 75.5 

W200(No.15)-2.5-3 200 86.4 

W250(No.15)-2.5-1 250 70.8 

W250(No.15)-2.5-2 250 95.0 

W250(No.15)-2.5-3 250 86.8 

 

4.4.1 Determination of Predictive Equation 

A regression analysis was conducted to derive a predictive equation for the tensile 

resistance of the reinforcement.  The effects of lap splice length,   , and bar diameter,   , 

were found to be statistically significant at a five percent confidence level.  The resulting 

equation for the tensile resistance,   , as a function of    and    was then: 
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                {4.2} 

 

The resulting root-mean-square-error (RMSE) for this equation was equal to 11.3 kN, 

which is equal to 14, 9, and 6 percent of the tensile resistance corresponding to the yield 

strength of the reinforcement for No. 15, 20, and 25 bars, respectively.  The form of the 

equation is similar to that derived by NCMA (1999), as presented in Equation 2.6.  Both 

linear and square terms accounting for the bar diameter,    and   
 
, were included such 

that the effect of bar diameter was significant at a 5 percent confidence level. 

Figure 4.17 shows a plot of tensile resistance versus splice length including both the 

tensile resistance of the spliced reinforcement obtained experimentally and those 

calculated using the predictive equation.  Three parallel lines corresponding to each bar 

size are shown, although the line for the No. 15 bar size coincides with the line for the 

No. 25 bar size.  It was observed that the line for the No. 20 bar size had the lowest 

intercept, and a reason for this lower intercept could not be identified.  It was also 

observed that specimens with splice lengths resulting in the ends of the splice coinciding 

with mortar bed joints of the wall generally demonstrated lower tensile resistances than 

the lines of best fit, particularly for the No. 20 and No. 25 bar sizes.  The difference 

between the experimental tensile resistance and the predicted tensile resistance of the 

spliced reinforcement, hereafter referred to as the residual, for the W600(No.25)-3.5 

specimens ranged from -5.43 kN to -24.2 kN, with an average of -15.1 kN.  The residuals 

for the W200(No.20)-2.5 specimens ranged from 1.91 to -11.6 kN, with an average of 

- .   kN.  The residuals for the W200(No.20)-3.5 specimens ranged from 7.81 to 

-15.0¯kN, with an average of -1.94 kN.  The residuals for the W200(No.15)-2.5 

specimens ranged from 9.02 kN to -4.08 kN, with an average of 1.02 kN.  Kisin (2014) 

noted that the mortar bed joints are naturally a point of weakness for the wall splice 

specimens, since the bond between mortar and masonry block is limited.  Furthermore, 

the ends of a lap splice are naturally the points where cracking will be induced due to the 

change in stiffness at these locations (MacGregor & Bartlett 2000).  Consequently, these 

combined effects likely reduced the capacity of these specimens.  These specimens were 

included in the analysis as the termination of splice ends at mortar joints cannot feasibly 

be avoided in masonry construction. 



101 

 

Figure 4.17.  Relationship between splice length, bar size, and tensile resistance 

It is worth noting that the precision of this equation is limited by the number of 

specimens available in the data set (Bickis 2014).  The use of three parallel lines each 

corresponding to a bar size considered, by the inclusion of the bar diameter terms    and 

  
 
, reduces the certainty with which the intercepts of each line are known.  

Additionally, the inclusion of    and   
 
 in addition to the splice length,   , leaves fewer 

degrees of freedom in the residual for the expression.  Finally, the effects of confounding 

between the splice length and bar size increase the errors of estimates made using the 

predictive equation.  However, bar size and lap splice length are both known to be 

significant factors for the tensile resistance of spliced reinforcement (ACI Committee 408 

2012).  The use of three parallel lines results in a different intercept for each bar size.  

The physical significance of the different intercepts is that each bar size has a different 

resistance based on the bond strength developed from the bearing of one lug on the 

surrounding cementitious material.  For these reasons, the terms accounting for the bar 

size of the reinforcement were included in the model despite the reduced precision 

resulting from their inclusion. 
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4.4.2 Adjusted Predictive Equation for Design Purposes 

An adjustment to the predictive equation presented in Equation 4.2 was then needed to 

provide adequate safety for the calculation of required splice length values for design 

purposes.  Methods used by other researchers were presented in Section 2.7.2.  A five 

percent quantile approach was selected for this study, as the variability of the test results 

and the uncertainty associated with the predictive equation are both incorporated in such 

an approach (Bickis 2014, Ross 2009, Devore 2008).  The five percent quantile value was 

used to reduce the intercept of the predictive equation such that values calculated using 

the resulting design expression represent the lower 95 percent tolerance limit for required 

splice lengths.  Consequently, 95 percent of all future specimens are expected to have 

tensile resistances of the reinforcement that exceed the values predicted by the design 

expression. 

The expression for the lower 95 percent tolerance value of tensile resistance, hereafter 

referred to as the adjusted predictive equation, is then (Bickis 2014): 
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{4.3} 

 

where    is the tensile resistance of the spliced reinforcement calculated as a function of 

splice length,   , and bar diameter,   , from Equation 4.2;   is the number of bar sizes 

considered in the model and is equal to 3;   is the total number of specimens included in 

the data set, equal to 35;           is the value of the F-distribution at the confidence level 

α with   and     degrees of freedom, equal to 2.27;    is the estimated residual 

variance of the predictive equation calculated using an analysis of variance table, equal to 

127·kN
2
;    is the number of specimens of the i

th
 bar size, equal to 9 for No. 15 bars, 18 

for No. 20 bars, and 8 for No. 25 bars;    
̅  is the mean splice length of all specimens of the 

i
th

 bar size, equal to 200 mm, 233 mm, and 625 mm for No. 15, 20, and 25 bars, 

respectively; and     
 is the splice length for the i

th
 bar size and j

th
 splice length. 
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Figure 4.18 shows a plot of tensile resistance versus splice length including both the 

tensile resistance of the spliced reinforcement obtained experimentally and lines showing 

the predicted values for each bar size calculated using Equation 4.3.  The experimental 

data points all fall above the adjusted predictive equation lines for each bar size, as is 

expected since the adjusted predictive equation was calibrated such that the tensile 

resistance of 95 percent of all specimens would exceed that predicted by the equation. 

Equation 4.3 was then used to determine what design lap splice lengths correspond to the 

nominal yield strength of the reinforcement, including the 5 percent quantile to provide a 

margin of safety.  These splice lengths were 390 mm, 740 mm, and 1060 mm for No. 15, 

20, and 25 bars, respectively.  These splice lengths are 44.7, 29.9, and 19.9 percent 

greater, respectively, than those required as calculated from Equation 4.2.  The splice 

lengths corresponding to the nominal yield strength of the reinforcement determined from 

Equation 4.3 were used as the basis for comparison with provisions currently in the 

Canadian and American masonry standards. 

 

 

Figure 4.18.  Adjusted predictive equation for tensile resistance 
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4.4.3 Resulting Code-to-test Ratios for Splice Lengths 

Table 4.8 shows a comparison of the splice lengths calculated using Equation 4.3 

corresponding to the nominal yield strength of the reinforcement, and the lap splice 

lengths requirements of CSA S304.1-04 (CSA 2004a) (Equation 2.3) and TMS 402-13 

(MSJC 2013a) (Equation 2.7).  Code-to-test calculated ratios are also provided, which 

were calculated by dividing the code-required splice length for each code by the splice 

length requirement from the adjusted equation.  A code-to-test calculated ratio greater 

than one indicates that the splice length code requirement is conservative, whereas a 

code-to-test ratio less than one indicates that the splice length code requirement is 

unconservative. 

Table 4.8.  Comparison of Adjusted Prediction Equation to Current Code 

Provisions 

Bar 

Size 

(mm) 

Splice Length 

Calculated 

Using Equation 

4.3 (mm) 

Code Provision Splice 

Length Requirements (mm) 

Code-to-test Calculated 

Ratios of Splice Lengths 

CSA 

S304.1-04 

Class A 

CSA 

S304.1-04 

Class B 

TMS 

402-13 

CSA 

S304.1-04 

Class A 

CSA 

S304.1-04 

Class B 

TMS 

402-13 

No. 15 390 440 575 485 1.13 1.47 1.24 

No. 20 740 590 765 1155 0.793 1.03 1.56 

No. 25 1060 920 1195 2140 0.865 1.12 2.02 

 

The in-situ compressive strength of the grout,     , when calculating splice lengths in 

accordance with CSA S304.1-04 (CSA 2004a) was taken as the average value of all 

absorptive grout prisms tested for both phases, equal to 15.5 MPa.  The specified 

compressive strength of the masonry assembly,    , when calculating splice lengths in 

accordance with TMS 402-13 (MSJC 2013a) was taken as the 75
th

 percent confidence 

level of the 10-percentile value of the average masonry assembly compressive strength 

determined through masonry prism testing.  TMS 602-13: Specification for Masonry 

Structures (MSJC 2013b), states that     can be determined from masonry prism testing, 

and notes the work of Bennett (2010) in regards to calculating specified compressive 
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strength values based on the experimental results from testing masonry prisms.  This 

value was calculated as follows: 

           
 

√ 
   

{4.4} 

where     is the average compressive strength of the masonry assembly of the masonry 

prisms tested;    is the value of the non-central t-distribution at the 75
th

 percent quantile, n 

is the number of masonry prisms tested, and   is the standard deviation of the 

compressive strength of the masonry assembly, as determined through masonry prism 

testing (Bennett 2010).  The resulting specified compressive strength,    , based on the 

compressive strengths of the 27 masonry prisms constructed in association with each wall 

splice specimen in this study, was equal to 11.1 MPa.  This value was used for 

calculating the splice length requirements as provided in TMS 402-13 (MSJC 2013a).  

Bennett (2010) asserts that the use of the 75
th

 percent confidence level of the 10-

percentile value of the masonry assembly compressive strength based on masonry prism 

testing is reasonably consistent with the provisions of other codes, including CSA 

S304.1-04 (CSA 2004a). 

The code-to-test ratios for the CSA S304.1-04 (CSA 2004a) Class A splice length 

requirements for No. 15 bars are greater than one and hence conservative, but are less 

than one and hence unconservative for No. 20 and 25 bars.  The code-to-test ratios for 

Class A and B splices decreased by 29 percent between No. 15 and No. 20 bars, and 23 

percent between No. 15 and No. 25 bars.  The code-to-test ratios were the lowest for the 

No. 20 bars for both Class A and B splice length requirements. 

The code-to-test ratios for the CSA S304.1-04 (CSA 2004a) Class B splice length 

requirements are greater than one and hence conservative for all three bar sizes.  Splices 

in masonry construction in Canada are designed nearly exclusively as Class B splices, 

since staggering of reinforcement is not possible.  Additionally, many designers use the 

simplified equation (provided in Equation 2.4) when calculating splice length 

requirements, which is more conservative than the original equation (Equation 2.3), 

which was used to calculate the splice length requirements presented in Table 4.8.  As 
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such, the splices included in masonry construction to date designed to CSA S304.1-04 

(CSA 2004a) standards are generally sufficient. 

The code-to-test calculated ratios for the TMS 402-13 (MSJC 2013a) splice length 

requirements increase with increasing bar sizes.  The increase in code-to-test ratios 

between the No. 15 and No. 20 bars of 25 percent is slightly less than the increase 

between the No. 20 and No. 25 bars of 30 percent.  The code-to-test ratios for TMS 402-

13 (MSJC 2013a) are all greater than one, and hence are all conservative. 

The code-to-test calculated ratios of splice lengths, as presented in Table 4.8, should 

ideally be equal to one for each bar size in both CSA S304.1-04 (CSA 2004a) and TMS 

402 (MSJC 2013a) to ensure the required splice lengths are sufficiently long that the 

tensile resistance of the splice corresponds to the yield strength of the reinforcement, with 

the included margin of safety, while also ensuring the provisions are not overly 

conservative and thus negatively impacting the ease of construction for masonry 

elements.  As such, adjustments to each code are needed.  Modifications to the current 

provisions of both codes are provided for walls subject to out of plane flexural loadings. 

4.4.4 Recommended Changes to CSA S304.1-04 

Two key changes are recommended for the CSA S304.1-04 (CSA 2004a) provisions, as 

discussed herein.  These two changes pertain to the current distinction between classes of 

splices and the current bar size factor. 

First, the CSA S304.1-04 (CSA 2004a) provisions should not include separate classes of 

splices.  As discussed in Section 2.6, the rationale for the inclusion of Class A and Class 

B splices was not based on probabilities of bond failure, but to encourage designers to 

stagger lap splices (Darwin 2005).  Since staggering lap splices is generally not feasible 

in masonry construction due to construction staging, no distinction should be made 

between classes of splices in revisions to the current provisions.  As such, all further 

recommendations presented herein are based on the Class A requirements, such that the 

1.3 factor for Class B splices can be removed and the provisions of CSA S304.1-04 (CSA 

2004a) can be reworded to avoid making distinctions for different classes of lap splices. 
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Second, the bar size factor,   , then needs to be adjusted to increase the code-to-test 

calculated ratios for each bar size to unity.  The current bar size factor of 0.8 for No. 15 

bars is adequate, since the code-to-test ratio for No. 15 bars is 1.13.  The current bar size 

factors for the No. 20 and 25 bars of 0.8 and 1.0, respectively, need to be increased since 

the code-to-test ratios for these bar sizes are less than one.  An increase in the bar size 

factor to a value of 1.1 for the No. 20 bars results in an increase of the code-to-test ratio 

to 1.09.  Setting the bar size factor for No. 25 bars to a value of 1.2 increases the code-to-

test ratio to 1.04. 

Based on these changes, the recommended expression for splice length requirements in 

CSA S304.1-04 (CSA 2004a) is: 

       
      

         

  

√   
 

   

   {
     for No. 15 bars
     for No. 20 bars
     for No. 25 bars

 

{4.5} 

 

CSA S304.1-04 (CSA 2004a) provisions should be revised to include the specified 

compressive strength of the masonry assembly,    , instead of the in-situ compressive 

strength of the grout,     , for the reasons stated in Section 2.6.  However, further 

investigation is needed to establish the relationship between masonry assembly and grout 

compressive strengths for wall splice specimens.  It is recommended that future research 

consider grout and masonry compressive strengths as factors for the tensile resistance of 

spliced reinforcement, similar to the approach taken by the NCMA (1999, 2009). 

4.4.5 Recommended Changes to TMS 402-13 

The code-to-test calculated ratios based on TMS 402-13 provisions (MSJC 2013a) for all 

three bar sizes are greater than unity, and hence are overly conservative.  As such, an 

adjustment to the bar size factors was applied to set the code-to-test calculated ratios for 

all bar sizes equal to unity. 

The current bar size factor,  , in TMS 402-13 (MSJC 2013a) for the No. 15, 20, and 25 

bar sizes are 1.0, 1.3, and 1.5, respectively.  If these bar size factors are instead set equal 
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to 0.9 for No. 15 and 20 bars and 0.8 for No. 25 bars, the resulting code-to-test ratios for 

the No. 15, 20, and 25 bar sizes are then 1.12, 1.08, and 1.08, respectively.  

Consequently, the recommended expression for splice length requirements in TMS 402-

13 (MSJC 2013a) is: 

     
      

    

 √   
           

  {
     for No. 15 bars
     for No. 20 bars
     for No. 25 bars

 

{4.6} 

 

4.4.6 Summary of Recommended Changes to Canadian and American Code Provisions 

Figure 4.19 shows a comparison of the proposed revisions to CSA S304.1-04 (CSA 

2004a) and TMS 402-13 (MSJC 2013a) and the current provisions of both of these codes.  

Notably, current CSA S304.1-04 (CSA 2004a) provisions require adjustments to the bar 

size factors for the No. 20 and 25 bar sizes based on the removal of splice classes, 

whereas the current TMS 402-13 (MSJC 2013a) provisions are too conservative for No. 

20 and 25 bar sizes.  The proposed revisions to TMS 402-13 (MSJC 2013a) result in 

shorter splice length requirements in comparison to the current requirements of this code.  

Decreases of 11.1, 44.4, and 87.5 percent for No. 15, 20, and 25 bars, respectively, result 

based on the proposed changes to TMS 402-13 (MSJC 2013a).  The incorporation of the 

proposed changes to TMS 402-13 (MSJC 2013a) will greatly facilitate the construction of 

masonry walls with No. 20 and 25 reinforcement in particular.  The proposed changes to 

CSA S304.1-04 (CSA 2004a) result in splice length requirements that are slightly less 

than the current Class B requirements, which are used almost exclusively for masonry 

construction.   

The proposed revisions to both codes result in splice length requirements that are nearly 

identical, with percent differences of 0.981, 1.16, and 3.72 percent for No. 15, 20, and 25 

bars, respectively.  The slight percent differences between the proposed provisions are the 

result of rounding the proposed bar size factors for each bar size in each code, since all 

bar size factors were reported to one decimal place as is currently provided in each code.  
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It is expected that these provisions will provide splice lengths having tensile resistances 

of the reinforcement exceeding that corresponding to the nominal yield strength of the 

reinforcement for 95 percent of all splice lengths, on account of the five percent quantile 

approach used in the development of these revised code provisions. 

 

Figure 4.19:  Splice requirements for recommended revisions to CSA S304.1-04 and 

TMS 402-13 provisions 

4.5 Summary 

This chapter described the test results and analysis of the companion specimens, wall 

splice specimens, and double pullout specimens constructed and tested in this study.  

Results from the testing of one DP-T specimen where approximately equal loads were 

applied by the hydraulic cylinders closely matched the failure load predicted by NCMA’s 

(2009) equation, with a percent difference of 3 percent.  The close agreement of the 

predicted and actual tensile resistance of the spliced reinforcement for this specimen 

suggests that the construction and testing techniques used at the U of S and NCMA are 

reasonably similar.  Therefore, the test results from specimens constructed and tested at 

the U of S are valid for the assessment of code provisions, as presented in this chapter.  It 

is also noted that the dependency of the test results for double pullout specimens on the 
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hydraulic cylinders and the test frame indicate that double pullout specimen testing is not 

easily repeatable, and is not recommended for future work for this reason. 

The results from the testing of the wall splice specimens were presented in detail.  The 

load-deflection behaviour, the visual assessment of crack propagation during testing, and 

the investigation of internal damage to the specimens after testing indicated that bond 

failures occurred for all wall splice specimens.  The numerical model used to calculate 

the tensile resistance of the spliced reinforcement in the wall splice specimens was 

described.  A regression analysis was then used to determine the tensile resistance of the 

spliced reinforcement as a function of splice length and bar size.  This predictive equation 

was then adjusted to provide an adequate margin of safety using a five percent quantile 

approach, such that the resulting splice lengths calculated using this equation represent 

the lower 95 percent tolerance limit.  This adjusted equation was then used to calculate 

the splice lengths that correspond to the yield strength of the reinforcement for each bar 

size.  These splice lengths were then compared to those calculated using the relevant 

provisions included in current Canadian and American codes, and revisions to the splice 

length requirement equations in both codes were recommended. 
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CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 

In this study, 27 wall splice specimens and 12 double pullout specimens were constructed 

and tested.  All specimens were constructed by a journeyman mason in the Structures 

Laboratory.  Companion specimens of block, mortar, grout, masonry prisms, and 

reinforcing bar samples were tested in accordance with the standards relevant to each to 

determine the properties of these materials. 

The double pullout specimens were tested in direct tension.  The one double pullout 

specimen tested with approximately equal loads applied to both bars had a tensile 

resistance that was within 3 percent of the tensile resistance predicted by the NCMA 

equation (1999).  Problems were encountered during the testing of the remaining double 

pullout specimens, however, as the loads applied by the two hydraulic cylinders differed 

substantially and out-of-plane buckling of the frame occurred. 

Eighteen of the wall splice specimens were reinforced with No. 20 bars, and nine of the 

wall splice specimens were reinforced with No. 25 bars.  The database for this research 

was bolstered by the inclusion of selected results of testing conducted by Sanchez & 

Feldman (2013) on wall splice specimens reinforced with No. 15 bars.  The wall splice 

specimens were tested in four-point loading, with load and deflection data collected 

throughout the testing of each specimen.  A numerical moment-curvature analysis was 

used to calculate the tensile resistance of the spliced reinforcement for each wall splice 

specimen.  A predictive equation for the tensile resistance of the spliced reinforcement 

based on splice length and bar size was developed through regression analysis.  This 

predictive equation was then adjusted using a five percent quantile approach to provide 

an adequate margin of safety for calculating design values of splice length requirements.  

This adjusted equation was extrapolated to find the design splice lengths corresponding to 

the nominal yield strength of the reinforcement.  These splice lengths were then 

compared to current CSA S304.1-04 (CSA 2004a) and TMS 402-13 (MSJC 2013a) 

provisions for splice length requirements.  Recommended changes to these current 

provisions were then presented. 

Presented herein is a summary of the findings of this research. 
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5.1 Summary of Findings 

The major findings of this study are presented herein, in response to each of the five 

specific objectives stated in Section 1.1. 

5.1.1 Confirming U of S Construction and Testing Techniques are Reasonably Similar to 

Those of the NCMA 

Double pullout specimens were tested in this study for the purpose of confirming that the 

construction and testing techniques at the University of Saskatchewan (U of S) and the 

NCMA are reasonably similar.  The rationale for this comparison was to establish that 

results from testing at the U of S can legitimately be used to assess the adequacy of 

current code provisions that were based on NCMA (1999, 2009) results.  The double 

pullout specimens constructed with lapped bars in contact and tied together are 

comparable to the specimens constructed by NCMA (1999, 2009), and thus the capacity 

for these specimens was compared to the predicted tensile capacity calculated based on 

NCMA’s regression equation.  The double pullout specimen constructed with bars tied 

together and tested with the small hydraulic cylinders that applied approximately equal 

loads to each bar had an experimental failure load of 181·kN.  The predicted capacity was 

176 kN, resulting in a 3 percent difference between the predicted and experimental 

capacities.  Additionally, the average experimental failure load as reported for Ahmed’s 

(2011) specimens constructed with contact lap splices was 89.7 kN while the predicted 

failure capacity was 92.0 kN.  Similarly, a 3 percent difference resulted.  The close 

agreement between these values indicates that construction and testing techniques used 

by the U of S and NCMA are reasonably similar. 

5.1.2 Development of Empirical Predictive Equation for Tensile Resistance 

A predictive equation for the tensile resistance of the spliced reinforcement was 

developed though a regression analysis of the results of wall splice specimen testing.  It 

was determined that splice length and bar size were significant factors at the five percent 

confidence level.  The form of the predictive equation is similar to that developed by the 

NCMA (2009).  The inclusion of terms for the bar size resulted in a model with three 

parallel lines, one for each of the three bar sizes considered in this study.  It was found 
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that the specimens with splice lengths resulting in the end of the splice coinciding with 

mortar bed joints of the wall demonstrated lower tensile resistances than the lines of best 

fit. 

5.1.3 Quantifying Splice Lengths Needed to Develop Tensile Resistances Equal to the 

Yield Strength of the Reinforcement 

The predictive equation discussed in Section 5.1.2 was then adjusted to provide an 

adequate margin of safety for determining design splice lengths.  The adjustment was 

based on a five percent quantile approach, and considered both the variability of the test 

results themselves and the uncertainty associated with the predictive equation.  The 

adjusted equation was then extrapolated to determine the splice lengths corresponding to 

the nominal yield strength of the reinforcement (with the inclusion of the aforementioned 

margin of safety).  It was found that the splice lengths corresponding to the nominal yield 

strength of the reinforcement for No. 15, 20, and 25 bars were 390 mm, 740 mm, and 

1060 mm, respectively. 

5.1.4 Code-to-test Calculated Ratios of Splice Length 

Code-to-test calculated ratios of splice lengths were calculated for CSA S304.1-04 (CSA 

2004a) and TMS 402-13 (MSJC 2013a) by dividing the splice length requirements of 

each respective code by the required splice lengths calculated using the adjusted 

predictive equation.  Code-to-test ratios less than one indicated code required splice 

lengths that are unconservative.  It was found that the code-to-test calculated ratios for 

the CSA S304.1-04 (CSA 2004a) Class A provisions were 1.13, 0.793, and 0.865 for No. 

15, 20, and 25 bars, respectively.  The code-to-test ratio is greater than one and thus 

conservative for the No. 15 bars, but less than one and thus unconservative for No. 20 

and 25 bars.  The code-to-test calculated ratios for the CSA S304.1-04 (CSA 2004a) 

Class B provisions were 1.47, 1.03, and 1.12 for No. 15, 20, and 25 bars, respectively.  

The Class B provisions, which are used almost exclusively in the design of masonry 

elements, are thus conservative for all three bar sizes.  The code-to-test ratios for the 

TMS 402-13 (MSJC 2013a) provisions were 1.24, 1.56, and 2.02 for No. 15, 20, and 25 

bars, respectively.  These provisions increase with increasing bar size, and are 

conservative since all ratios are greater than one. 
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5.1.5 Recommendations for Changes to Current Provisions 

Changes were recommended for both the CSA S304.1-04 (CSA 2004a) and TMS 402-13 

(MSJC 2013a) provisions for cases of masonry walls subject to out-of-plane flexural 

loading such that the resulting code-to-test ratios would be equal to one for all bar sizes.  

The bar size factors used in each code were adjusted for each bar size individually such 

that the code-to-test ratios were then equal to one, while leaving the current form of each 

equation intact.  The recommended bar size factors for the CSA S304.1-04 (CSA 2004a) 

provisions,   , are 0.8, 1.1, and 1.2 for No. 15, 20, and 25 bar sizes, respectively.  These 

recommendations are based on the current Class A provisions, such that the 1.3 factor for 

Class B splices can be eliminated and the provisions of CSA S304.1-04 can be reworded 

to avoid making distinctions for different classes of lap splices.  The recommended bar 

size factors for the TMS 402-13 (MSJC 2013a) provisions,  , are 0.9, 0.9, and 0.8 for No. 

15, 20, and 25 bar sizes, respectively.  These recommendations bring better consistency 

to the requirements of the two codes and thus ensure the safety, economy, and 

constructability of masonry walls. 

Two additional recommendations were offered in regards to the CSA S304.1-04 (CSA 

2004a) provisions.  First, the provisions should not differentiate between Class A and B 

splices, since the staggering of lap splices is not practically feasible for masonry 

construction.  As such, the recommendations made in this study were based on the 

current Class A requirements.  Second, the provisions should be further revised to use the 

specified compressive strength of the masonry assembly,    , instead of the in-situ 

compressive strength of the grout,     , as is currently used.  Further investigation is 

needed to incorporate this modification. 

5.2 Recommendations for Future Research 

This study offered an initial investigation of the splice lengths required for the reinforcing 

bar sizes typically used in Canada.  The following recommendations are offered for 

further research work exploring splice length requirements for reinforced masonry. 
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 All future experimental work examining splice length requirements for reinforced 

masonry should use wall splice specimens and not double pullout specimens.  The 

double pullout specimens do not accurately replicate the stress state of the 

cementitious material surrounding the reinforcement for a wall in flexure.  

Additionally, the dependence of the results of double pullout specimen testing on the 

test frame, as seen in this study, limits the reliability of this test. 

 Further modifications to the test frame and test procedure would be needed to 

conduct any further investigations testing double pullout specimens.  The 

beams that are formed from built-up channel sections should be replaced by 

steel I-beam sections for better resistance to bending and torsion during testing.  

Additionally, the test setup should incorporate a single actuator and spreader 

beam for applying loads to the two reinforcing bars protruding from the 

specimen, as opposed to the two cylinders applying loads independently as 

used in this study. 

 The recommended changes to the current Canadian and American masonry code 

provisions are valid for flexural walls subject to out-of-plane loading.  Further 

research should review the applicability of these recommendations for other masonry 

elements, particularly masonry shear walls.  Tension uplift in shear walls is a concern 

in particular geographic locations where hurricanes and other such severe weather 

events occur.  However, requirements for tension uplift should be considered a 

special case and evaluated separately due to the infrequent occurrence of this detail in 

most areas. 

 Further investigation is needed to better capture the effects of splice ends coinciding 

with mortar bed joints on the tensile resistance of the reinforcement. 

 It was noted in this study that those specimens containing lap splices where the 

ends of the splice coincided with the mortar joints had lower tensile resistances 

than predicted by the best fit, predictive equation.  However, the impact of this 

detail should be determined quantitatively such that recommendations for code 

provisions can be made. 
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 The possibility of testing wall splice specimens vertically should be considered.  

Testing specimens horizontally, as was done in this program, results in the self-

weight of the specimen causing an additional moment on the specimen which would 

not otherwise be encountered by walls, which are built vertically.  Testing wall splice 

specimens vertically would better represent walls constructed for real applications. 

 The effect of transverse reinforcement was considered outside the scope of this study.  

The inclusion of transverse reinforcement, as used commonly in masonry 

construction, would likely improve the tensile resistance of the spliced reinforcement, 

as has been reported by others (NCMA 2009).  As such, further testing investigating 

the effects of transverse reinforcement in wall splice specimens should be 

investigated. 

 Most importantly, a full parametric investigation of splice length requirements is 

needed. 

 A future investigation should include a sufficient number of replicate 

specimens to establish the statistical significance of the reported tensile 

resistances of the spliced reinforcement.  The inclusion of more replicate 

specimens will also improve the precision of the prediction and adjusted 

prediction equations used to compare the test results to current code provisions. 

 This study was limited in scope to one grout strength and one masonry 

assembly strength, one block strength and block density, one cover depth, and 

one block size.  The effects of these three properties should be explored in a 

future investigation.  Future studies should also consider the effects of partial 

grouting of the specimens, as is most common in masonry construction. 

 Testing of specimens with larger block sizes would be of particular 

significance for specimens reinforced with No. 25 bars.  It was observed in this 

study that the specimens reinforced with No. 25 bars showed additional 

cracking patterns most likely resulting from the lower cover for these 

specimens.  The recommended splice lengths provided based on this research 

may thus be conservative. 
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 Future studies should include No. 10 and No. 30 bar sizes, as both of these 

sizes are allowed by current code provisions, even if these bar sizes are used 

infrequently. 
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APPENDIX 4A: BLOCK COMPANION SPECIMENS 

This appendix presents individual test results for all masonry block companion specimens 

tested in this study, as discussed in Section 4.1.1.  The blocks for the first construction 

phase were received in two batches, referred to as batches A and B in all subsequent 

tables.  Table 4A-1 presents the compressive strength testing results for each individual 

block tested.  Six specimens of each block type, flat and frogged, were tested for the two 

batches from Phase 1 and the single batch from Phase 2, in accordance with ASTM C140 

(ASTM 2012b).  These specimens are labelled by the letters A through F in Table 4A-1.  

Table 4A-2 presents the results of absorption testing.  Three specimens of each block 

type, flat and frogged, were tested for the two batches from Phase 1 and the single batch 

from Phase 2, in accordance with ASTM C140 (ASTM 2012b).  Table 4A-3 presents the 

actual as-measured dimensions for blocks.  Figure 4A-1 shows the dimensions of the 

blocks that were measured.  Three specimens of each block type, flat and frogged, were 

tested for the two batches from Phase 1 and the single batch from Phase 2, in accordance 

with ASTM C140 (ASTM 2012b).  Dimensions were measured to the nearest 0.01 mm 

using calipers.  The minimum face shell and web thicknesses of 32 mm and 26 mm, 

respectively, as specified by the Canadian Concrete Masonry Producers’ Association 

(CCMPA 2012) were met for all blocks. 

Table 4A-1.  Block Compressive Strength Testing Results 

Phase 
Block 

Type 

Compressive Strength (MPa) 
Avg. 

Comp. 

Strength 

(MPa) 

COV 

(%) Spec.

A 

Spec. 

B 

Spec. 

C 

Spec. 

D 

Spec. 

E 

Spec. 

F 

1 
Batch A 

Flat 19.9 18.8 22.4 18.2 21.7 18.4 
19.7 10.6% 

Frog. 22.5 21.1 20.5 17.4 19.9 15.7 

1 
Batch B 

Flat 23.9 20.6 27.7 24.3 18.1 24.6 
23.6 11.0% 

Frog. 21.7 24.3 24.9 24.6 21.9 26.2 

2 
Flat 28.6 27.3 26.8 26.3 25.9 26.8 

27.4 5.12% 
Frog. 30.0 29.2 25.1 28.3 26.9 27.3 

  



123 

Table 4A-2.  Block Absorption Testing Results 

Phase Specimen 
Oven-Dry 

Density [kg/m
3
] 

Moisture 

Content [%] 

Net Volume 

[mm
3
] 

1 

Batch A 

Frogged 

Spec. A 1850 11.9% 7300000 

Spec. B 1890 12.9% 7420000 

Spec. C 1870 10.3% 7390000 

Avg. 1870 11.7% 7370000 

Flat 

Spec. A 1890 10.3% 7400000 

Spec. B 1960 21.2% 7440000 

Spec. C 1880 9.43% 7410000 

Avg. 1910 13.6% 7420000 

1 

Batch B 

Frogged 

Spec. A 1870 25.8% 7400000 

Spec. B 1870 35.1% 7340000 

Spec. C 1880 5.00% 7360000 

Avg. 1870 22.0% 7370000 

Flat 

Spec. A 1870 17.9% 7440000 

Spec. B 1890 3.96% 7370000 

Spec. C 1860 33.2% 7370000 

Avg. 1870 18.3% 7400000 

2 

Frogged 

Spec. A 1870 21.8% 7390000 

Spec. B 1920 27.5% 7340000 

Spec. C 1910 25.9% 7330000 

Avg. 1900 25.1% 7350000 

Flat 

Spec. A 1860 20.1% 7450000 

Spec. B 1900 21.1% 7490000 

Spec. C 1900 22.5% 7510000 

Avg. 1890 21.2% 7480000 

 

 

Figure 4A-1.  Dimensions of masonry blocks  

Length

WidthWeb Thickness
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Height
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APPENDIX 4B: MORTAR CUBE COMPANION SPECIMENS 

Presented herein are the individual test results for all mortar cube companion specimens 

tested in this study, as discussed in Section 4.1.3.  Six mortar cubes were cast for each 

batch of mortar produced, and these specimens are designated by the letters A through F 

in the subsequent tables.  Table 4B-1 details the compressive strength results for the 18 

batches of mortar produced in the first construction phase, including the compressive 

strength of each of the six mortar cubes tested and the average compressive strength of 

each batch.  Table 4B-2 similarly details the compressive strength results for the 16 

batches of mortar produced in the second construction phase. 

Table 4B-1.  Phase 1 Mortar Cube Compressive Strength Testing Results 

Batch 

Number 

Compressive Strength (MPa) 
Average 

Compressive 

Strength 

(MPa) 
Spec. 

A 

Spec. 

B 

Spec. 

C 

Spec. 

D 

Spec. 

E 

Spec. 

F 

1 10.6 10.8 10.5 10.7 11.5 10.3 10.7 

2 15.6 16.4 16.2 16.5 15.2 15.5 15.9 

3 28.6 25.2 25.2 25.3 24.7 26.8 26.0 

4 19.8 19.2 18.1 20.4 20.3 25.7 20.6 

5 21.1 21.4 22.9 21.1 20.8 20.3 21.3 

6 16.8 18.3 15.1 17.2 18.7 16.4 17.1 

7 21.6 21.4 20.4 19.6 19.9 18.8 20.3 

8 16.3 20.1 20.8 22.7 23.4 22.6 21.0 

9 16.5 18.4 18.9 21.0 18.4 19.9 18.9 

10 22.4 23.5 23.2 20.6 20.5 21.9 22.0 

11 27.6 25.2 24.8 25.7 24.7 25.3 25.6 

12 21.1 22.7 22.0 22.2 23.0 23.6 22.4 

13 17.6 18.4 17.0 17.9 17.8 18.1 17.8 

14 13.6 13.0 12.4 13.1 15.3 14.3 13.6 

15 24.6 23.9 22.2 25.2 23.4 23.5 23.8 

16 25.4 23.5 26.4 25.6 24.3 n/a
1
 25.0 

17 21.6 22.8 22.8 23.5 24.1 23.9 23.1 

18 23.6 23.9 29.1 30.9 27.7 31.8 27.8 

Average (MPa)       20.7 

COV (%)       21.6% 
1
Data was not saved for this specimen and is thus excluded from the calculated average.  
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Table 4B-2.  Phase 2 Mortar Cube Compressive Strength Testing Results 

Batch 

Number 

Compressive Strength (MPa) Average 

Compressive 

Strength 

(MPa) 

Spec. 

A 

Spec. 

B 

Spec. 

C 

Spec. 

D 

Spec. 

E 

Spec. 

F 

1 26.9 24.8 26.2 25.5 23.3 25.9 25.4 

2 21.9 20.9 21.1 24.2 23.6 22.6 22.4 

3 19.5 20.2 20.3 20.8 21.9 20.2 20.5 

4 19.7 20.5 20.8 19.0 17.9 21.0 19.8 

5 23.2 23.8 22.5 24.5 27.3 24.3 24.3 

6 20.4 21.1 22.9 22.2 24.6 20.6 22.0 

7 17.4 20.7 21.9 18.8 20.6 17.8 19.5 

8 20.4 19.6 21.8 24.2 23.6 21.4 21.8 

9 19.4 20.9 20.4 17.4 18.6 18.3 19.2 

10 21.6 22.8 23.7 22.7 30.3 29.7 25.1 

11 18.4 20.0 20.0 21.0 21.4 19.9 20.1 

12 20.4 22.1 21.4 22.0 25.8 26.8 23.1 

13 22.3 20.4 21.4 19.3 20.9 20.4 20.8 

14 21.7 22.7 22.2 19.3 21.8 22.2 21.7 

15 33.0 28.6 33.3 32.6 32.1 30.3 31.6 

16 27.1 27.6 29.4 27.4 27.0 27.1 27.6 

Average (MPa)       22.8 

COV (%)       14.7% 
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APPENDIX 4C: GROUT CYLINDER COMPANION SPECIMENS 

Presented herein are individual test results for the grout cylinder companion specimens 

tested in both phases of construction, as discussed in Section 4.1.4.  Three grout cylinders 

were cast for each batch of grout produced, and these specimens are designated by the 

letters A through C in the subsequent tables.  Table 4C-1 details the compressive strength 

results for the 34 batches of grout produced in the first construction phase, including the 

compressive strength of each of the three grout cylinders tested and the average 

compressive strength of each batch.  Table 4C-2 similarly presents the Phase 2 grout 

cylinder compressive strength testing results. 
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Table 4C-1.  Phase 1 Grout Cylinder Compressive Strength Testing Results 

Batch 

Number 

Compressive Strength (MPa) Avg. Comp. 

Strength (MPa) Specimen A Specimen B Specimen C 

1 12.6 12.2 12.6 12.5 

2 10.9 11.8 12.1 11.6 

3 11.5 14.2 15.7 13.8 

4 15.4 13.8 17.2 15.5 

5 13.4 9.91 11.1 11.5 

6 13.7 9.01 14.5 12.4 

7 15.7 5.50
1
 8.69 12.2 

8 14.3 16.7 15.9 15.6 

9 3.40
1
 3.40

1
 3.51

1
 3.44 

10 9.2 4.39
1
 12.3 10.7 

11 11.3 10.3 12.0 11.2 

12 10.8 9.46 12.7 11.0 

13 13.0 11.5 11.5 12.0 

14 11.0 10.8 9.32 10.4 

15 12.0 10.9 8.84 10.6 

16 2.45
2
 2.63

2
 2.28

2
 2.45 

17 10.7 8.40 8.93 9.36 

18 n/a
3
 11.8 11.1 11.4 

19 11.3 11.2 9.69 10.7 

20 9.75 7.72 9.73 9.07 

21 9.44 10.5 10.6 10.2 

22 10.1 11.8 11.0 11.0 

23 13.0 8.73 8.74 10.2 

24 11.3 12.7 11.7 11.9 

25 12.3 13.7 13.3 13.1 

26 11.8 11.7 11.2 11.5 

27 8.02 11.1 13.8 11.0 

28 11.6 12.4 13.0 12.4 

29 13.0 8.5 11.1 10.9 

30 11.1 13.0 11.7 12.0 

31 12.4 11.5 13.0 12.3 

32 12.1 13.5 11.8 12.4 

33 11.8 11.4 11.6 11.6 

34 12.7 9.54 12.2 11.5 

Average (MPa)    11.7 

COV (%)    12.3% 
1
Specimen identified as physical outlier due to sulphur cap that was not adequately bonded to the 

grout cylinder or was slanted, and excluded from the calculated averages. 
2
Specimens identified as statistical outlier using ASTM E178 (ASTM 2012a) procedures, thus 

excluded from the calculated averages. 
3
Data was not saved for this specimen, and it was thus excluded from the calculated averages.  
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Table 4C-2.  Phase 2 Grout Cylinder Compressive Strength Testing Results 

Batch 

Number 

Compressive Strength (MPa) Avg. Comp. 

Strength (MPa) Specimen A Specimen B Specimen C 

1 10.0 15.3 13.2 12.8 

2 14.3 14.1 13.4 13.9 

3 15.5 14.3 11.0 13.6 

4 11.5 13.4 12.2 12.4 

5 12.3 15.4 12.3 13.3 

6 17.4 13.5 12.7 14.5 

7 12.2 13.9 15.0 13.7 

8 15.8 n/a
1
 16.2 10.7 

9 14.3 13.5 13.0 13.6 

10 17.0 15.8 10.8 14.6 

11 13.9 16.3 16.3 15.5 

12 13.6 13.9 14.9 14.1 

13 13.6 10.4 12.7 12.3 

14 24.6 27.3 25.2 25.7 

15 17.0 17.9 18.4 17.7 

16 16.4 18.8 17.0 17.4 

17 15.8 15.6 19.2 16.8 

18 16.7 16.1 20.3 17.7 

19 16.8 12.6 18.5 16.0 

20 16.0 18.4 15.6 16.7 

21 14.2 17.5 n/a
1
 15.8 

22 19.2 n/a
1
 15.4 17.3 

23 16.3 17.0 15.2 16.2 

24 18.2 18.9 18.8 18.6 

25 17.0 15.4 16.8 16.4 

26 16.6 16.2 16.5 16.4 

27 20.2 20.1 20.8 20.4 

28 17.1 16.8 20.4 18.1 

29
2
 31.7

2
 31.5

2
 26.1

2
 29.8 

30 16.5 18.5 16.8 17.2 

31 22.5 20.8 21.0 21.4 

32 23.0 23.2 20.9 22.3 

33 18.1 17.8 15.6 17.2 

Average (MPa)    16.9 

COV (%)    22.0% 
1
Specimen was not tested on account of damage to specimen prior to testing, and was 

thus excluded from the calculated averages. 
2
Batch identified as physical outlier due to higher cement content included in this 

mixture. 
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APPENDIX 4D: GROUT PRISM COMPANION SPECIMENS 

Presented herein are individual test results for all grout prism companion specimens 

tested in this study, as discussed in Section 4.1.5.  Table 4D-1 presents the compressive 

strength results for the grout prisms cast and tested in Phase 1.  Table 4D-2 presents the 

results for the grout prisms cast and tested in Phase 2. 
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Table 4D-1.  Phase 1 Grout Prism Compressive Strength Testing Results 

Batch Number Compressive Strength (MPa) 

1 12.0 

2 9.84 

3 12.1 

4 15.6 

5 11.6 

6 11.0 

7 12.2 

8 13.5 

9 7.11 

10 11.9 

11 12.8 

12 12.2 

13 11.7 

14 12.0 

15 12.9 

16
1
 5.16

1
 

17 11.8 

18 14.5 

19 12.0 

20 10.7 

21 14.5 

22 12.1 

23 11.6 

24 12.3 

25 11.4 

26 11.7 

27 14.4 

28 12.2 

29 12.0 

30 10.6 

31 13.1 

32 14.4 

33 15.9 

34 12.7 

Average (MPa) 12.3 

COV (%) 13.5% 
1
Specimen was identified as a statistical outlier using ASTM E178 (ASTM 2012a) 

procedures and was thus excluded from the calculated average. 
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Table 4D-2.  Phase 2 Grout Prism Compressive Strength Testing Results 

Batch Number Compressive Strength (MPa) 

1 17.4 

2 17.1 

3 16.8 

4 17.1 

5 16.7 

6 18.0 

7 19.6 

8 16.1 

9 13.2 

10 19.4 

11 18.2 

12 16.8 

13 15.5 

14 27.0 

15 17.9 

16 19.4 

17 16.5 

18 20.4 

19 15.8 

20 21.9 

21 20.1 

22 15.6 

23 14.1 

24 18.2 

25 19.1 

26 17.9 

27 21.4 

28 21.8 

29 29.0
1
 

30 21.3 

31 23.0 

32 23.0 

33 22.0 

Average (MPa) 19.0 

COV (%) 17.6% 
1
Specimen was identified as physical outlier due to higher cement content included in this 

mixture. 
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APPENDIX 4E: REINFORCEMENT COMPANION SPECIMENS 

Presented herein are the test results for all reinforcing bar companion specimens, as 

discussed in Section 4.1.7.  Table 4E-1 presents the results of individual bar tests from 

Phase 1.  Nine specimens of each bar size from Phase 1 were tested, although reliable 

LVDT data through the strain-hardening region was only obtained for two specimens of 

each bar size.  Table 4E-2 presents the results of individual bar tests from Phase 2.  Six 

specimens of each bar size from Phase 2 were tested, and reliable LVDT data was 

obtained for four and five of the No. 20 and 25 bar sizes, respectively.  No physical or 

statistical outliers were identified for either phase. 

Table 4E-1.  Phase 1 Reinforcement Testing Results 

Bar 

Size 

Spec. 

No. 

Yield 

Strength, 

fy (MPa) 

Modulus 

of 

Elasticity, 

Es (GPa) 

Strain at 

Initiation of 

Strain 

Hardening, εsh 

Modulus at 

Init. of Strain 

Hardening, 

Esh (MPa) 

Ultimate 

Tensile 

Strength, 

fult (MPa) 

No. 

20 

1 437 200 n/a
1
 n/a

1
 601 

2 439 n/a
1
 n/a

1
 n/a

1
 595 

3 439 203 n/a
1
 n/a

1
 606 

4 445 201 n/a
1
 n/a

1
 598 

5 443 n/a
1
 n/a

1
 n/a

1
 605 

6 451 n/a
1
 n/a

1
 n/a

1
 611 

7 443 203 n/a
1
 n/a

1
 601 

8 441 205 0.0125 10000 600 

9 440 202 0.0145 4170 598 

Avg. 442 202 0.0135 7080 602 

COV 0.961% 0.759% 10.5% 58.2% 0.811% 

No. 

25 

1 476 207 0.0185 5360 633 

2 482 207 n/a
1
 n/a

1
 640 

3 480 n/a
1
 n/a

1
 n/a

1
 643 

4 476 n/a
1
 n/a

1
 n/a

1
 637 

5 474 n/a
1
 n/a

1
 n/a

1
 636 

6 483 n/a
1
 n/a

1
 n/a

1
 647 

7 481 n/a
1
 n/a

1
 n/a

1
 639 

8 476 207 0.0150 5880 641 

9 477 n/a
1
 n/a

1
 n/a

1
 641 

Avg. 478 207 0.0168 5620 640 

COV 0.631% 0.0789% 14.8% 6.61% 0.625% 
1
LVDT data not available  
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Table 4E-2.  Phase 2 Reinforcement Testing Results 

Bar 

Size 

Spec. 

No. 

Yield 

Strength, 

fy (MPa) 

Modulus 

of 

Elasticity, 

Es (GPa) 

Strain at 

Initiation of 

Strain 

Hardening, εsh 

Modulus at 

Init. of Strain 

Hardening, 

Esh (MPa) 

Ultimate 

Tensile 

Strength, 

fult (MPa) 

No. 

20 

1 428 n/a
1
 n/a

1
 n/a

1
 586 

2 428 206 0.0110 3750 582 

3 428 211 n/a
1
 n/a

1
 586 

4 430 200 0.0117 6100 582 

5 432 200 0.0133 4810 583 

6 428 n/a
1
 n/a

1
 n/a

1
 580 

Avg. 429 204 0.0120 4890 583 

COV 0.406% 2.50% 9.82% 24.1% 0.412% 

No. 

25 

1 466 208 0.0115 n/a
1
 622 

2 468 211 0.0128 4690 625 

3 469 200 0.0120 4060 625 

4 467 208 0.0130 4560 620 

5 467 182 n/a
1
 n/a

1
 625 

6 470 197 0.0135 4350 626 

Avg. 468 201 0.0126 4420 624 

COV 0.320% 5.36% 6.38% 6.20% 0.357% 
1
LVDT data not available 
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APPENDIX 4F: LOAD-DEFLECTION CURVES FOR WALL SPLICE 

SPECIMENS 

Presented herein are the load versus midspan deflection curves for all wall splice 

specimens constructed and tested in this study.  Figure 4F-1(a) shows the load versus 

midspan deflection curves for replicates 1, 2, and 3 of the W200(No.20)-2.5 specimen 

configuration.  Figure 4F-1(b) shows the load versus midspan deflection curves for 

replicates 4, 5, and 6 of the W200(No.20)-2.5 specimen configuration.  Figure 4F-2(a) 

shows the load versus midspan deflection curves for replicates 1, 2, and 3 of the 

W200(No.20)-3.5 specimen configuration.  Figure 4F-2(b) shows the load versus 

midspan deflection curves for replicates 4, 5, and 6 of the W200(No.20)-3.5 specimen 

configuration.  Figures 4F-3 through 4F-7 show the load versus midspan deflection 

curves for the three replicates (1, 2, and 3) of the remaining wall splice specimen 

configurations. 

The loops seen in the load-deflection curves of specimens W200(No.20)-2.5-1,2,3, 

W200(No.20)-3.5-1,2,3, and W250(No.20)-2.5-1,2,3 are the result of an error in the load 

application for one actuator.  This loading error was similarly observed by Kisin (2014) 

in the testing of three wall splice specimens.  One actuator would overshoot its load 

target.  The control program would cause the actuator to retract momentarily in response 

to the overshooting, causing the loops seen in the data.  However, the load-deflection 

curves still follow a linear relationship when the loops are excluded, which matches the 

behaviour seen for all other wall splice specimens.  Thus, this control error did not 

significantly impact the results of the testing of these specimens.  This control error 

affected the first nine wall splice specimens tested in Phase 1, after which the problem 

was detected.  The control program was then adjusted to remediate this error for the 

testing of the remaining six specimens tested in Phase 1 and all 12 specimens tested in 

Phase 2. 
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a) 

 

b) 

Figure 4F-1.  Load versus midspan deflection curve for W200(No.20)-2.5 specimens: 

a) replicates 1, 2, and 3, and b) replicates 4, 5, and 6 
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a) 

 

b) 

Figure 4F-2.  Load versus midspan deflection curve for W200(No.20)-3.5 specimens: 

a) replicates 1, 2, and 3, and b) replicates 4, 5, and 6 
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Figure 4F-3.  Load versus midspan deflection curve for the W250(No.20)-2.5 

specimen configuration 

 

Figure 4F-4.  Load versus midspan deflection curve for the W350(No.20)-2.5 

specimen configuration 
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Figure 4F-5.  Load versus midspan deflection curve for the W400(No.25)-3.5 

specimen configuration 

 

Figure 4F-6.  Load versus midspan deflection curve for the W600(No.25)-3.5 

specimen configuration 
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Figure 4F-7.  Load versus midspan deflection curve for the W800(No.25)-3.5 

specimen configuration 
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APPENDIX 4G: AS-MEASURED LAP SPLICE LENGTHS AND TRANSVERSE 

BAR SPACINGS FOR WALL SPLICE SPECIMENS 

Table 4G-1 shows the as-measured lap splice lengths and transverse bar spacings for the 

two lap splices in each wall splice specimen.  These dimensions were measured for each 

lap splice in each specimen using a ruler or tape measure after removal of the face shell 

and grout to the depth of the reinforcement, as discussed in Section 4.3.3.   

The percent difference between the tensile resistance of the reinforcement for each 

individual specimen and the average tensile resistance of the reinforcement for the 

replicates of that specimen’s configuration was calculated.  Figure 4G-1 shows the 

percent difference in tensile resistance versus the difference between the nominal and 

actual lap splice lengths for splices 1 and 2 in all wall splice specimens.  A consistent 

trend was not evident.  The CSA A371-04 (CSA 2004e) reinforcement placement 

tolerance of 13 mm was met for the actual splice lengths of all but three specimens.  

Specimen W350(No.20)-2.5-3 had one lap splice that was 15 mm shorter than designed, 

and specimen W600(No.25)-3.5-1 had lap splices that were 15mm and 20 mm shorter 

than designed.  However, the W350(No.20)-2.5-3 and W600(No.25)-3.5-1 specimens had 

percent differences in tensile resistance of the reinforcement of 1.70 percent and 0.434 

percent, respectively.  Thus, the nominal lap splice length values were used for all 

specimens. 

Figure 4G-2 shows the percent difference in tensile resistance versus the difference 

between the nominal and actual transverse spacing for splices 1 and 2 in all wall splice 

specimens.  A consistent pattern trend was not found. 
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Table 4G-1.  Actual Lap Splice Lengths and Transverse Bar Spacings for Wall 

Splice Specimens 

Test Specimen 
Actual Splice Length, ls (mm) 

Actual Transverse Spacing, 

St (mm) 

Splice 1 Splice 2 Splice 1 Splice 2 

W200(No. 20)-2.5-1 193 198 5 15 

W200(No. 20)-2.5-2 199 198 7 8 

W200(No. 20)-2.5-3 202 204 11 6 

W200(No. 20)-2.5-4 190 195 15 10 

W200(No. 20)-2.5-5 n/a
1
 195 11 13 

W200(No. 20)-2.5-6 203 197 12 8 

W200(No. 20)-3.5-1 200 194 8 7 

W200(No. 20)-3.5-2 204 200 11 10 

W200(No. 20)-3.5-3 197 198 9 10 

W200(No. 20)-3.5-4 195 198 2 11 

W200(No. 20)-3.5-5 195 190 10 7 

W200(No. 20)-3.5-6 195 197 7 1 

W250(No. 20)-2.5-1 253 254 1 8 

W250(No. 20)-2.5-2 245 249 10 12 

W250(No. 20)-2.5-3 245 243 12 7 

W350(No. 20)-2.5-1 n/a
1
 350 3 5 

W350(No. 20)-2.5-2 338 n/a
1
 7 15 

W350(No. 20)-2.5-3 345 335 10 8 

W400(No. 25)-3.5-1 400 403 8 15 

W400(No.25)-3.5-2 n/a
1
 n/a

1
 n/a

1
 n/a

1
 

W400(No. 25)-3.5-3 401 398 11 5 

W600(No. 25)-3.5-1 580 585 7 8 

W600(No. 25)-3.5-2 595 590 1 3 

W600(No. 25)-3.5-3 590 595 5 8 

W800(No. 25)-3.5-1 805 805 8 9 

W800(No. 25)-3.5-2 795 795 8 8 

W800(No. 25)-3.5-3 810 n/a
1
 14 n/a

1
 

1
Measurement could not be determined because of damage to specimen that occurred 

during transportation of specimen or jackhammering of specimen. 
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Figure 4G-1.  Percent difference in tensile resistance versus difference between 

nominal and actual splice length 

 

Figure 4G-2.  Percent difference in tensile resistance versus actual transverse 

spacing 
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APPENDIX 4H: MOMENT-CURVATURE ANALYSIS AND THEORETICAL 

LOAD-DEFLECTION CURVES FOR WALL SPLICE SPECIMENS 

Presented herein is a description of the numerical moment-curvature model used to 

determine the tensile resistance of the spliced reinforcement and the theoretical load-

deflection curves for the wall splice specimens.  This appendix elaborates on the remarks 

given in Section 4.3.4; as noted, the model is similar to that used by Ahmed (2011), 

Sanchez (2014), and Kisin (2014).  The MathCAD code used to conduct this numerical 

analysis is included for a representative sample, W200(No.20)-2.5-1, and is presented on 

page 151 and onward. 

Stress-Strain Relationship for Masonry 

The stress-strain relationship for the masonry was modelled using a modified Kent-Park 

curve (Priestly & Elder 1983), as discussed in Section 4.3.4.  This curve includes a 

parabolic rising curve, presented in Equation 4H.1a, and a linear falling curve, presented 

in Equation 4H.1b.  The stress in the masonry,   , at a given strain   , is calculated as: 

             [(
   

    
)  (

  

    
)
 

]         {4H.1a} 

                                         

  
   

[
         

            
]      

 

{4H.1b} 

 

where    is a strength enhancement coefficient, equal to 1.0 for unconfined masonry with 

no transverse reinforcement provided,      is the compressive strength of the masonry 

assembly determined from masonry prism testing (MPa), and    is the strain 

corresponding to the maximum stress, equal to 0.0020 as originally proposed by Kent & 

Park (Priestly & Elder 1983). 

Stress-Strain Relationship for Reinforcing Steel 

The stress-strain relationship for the reinforcement was modelled by assuming a linear 

rising segment to represent its elastic region, presented in Equation 4H.2a, a straight line 
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corresponding to the yield plateau, presented in Equation 4H.2b, and a parabolic segment 

corresponding to the strain-hardening region for the reinforcement, presented in Equation 

4H.2c.  The stress in the reinforcement,   , at a given strain   , is calculated as follows: 

            , for        {4H.2a} 

          , for            {4H.2b} 

                      
       

  , for             {4H.2c} 

 

where    is the yield strain of the reinforcement,    is the elastic modulus of the 

reinforcement,    is the yield strength of the reinforcement (MPa),     is the strain in the 

reinforcement at the initiation of strain-hardening, and      is the strain in the 

reinforcement at its ultimate strength.  The constants    ,    ,    , and     in equation 

4H.2c were determined based on the following boundary conditions: 

           {4H.3a} 

              {4H.3b} 

             {4H.3c} 

             {4H.3d} 

 

where      is the ultimate strength of the reinforcement (MPa), and     is the 

instantaneous slope at the initiation of strain-hardening (MPa).  The properties of the 

reinforcement used in this numerical model were determined based on testing of 

reinforcing bar companion specimens, as presented in Table 4.4. 

Moment-Curvature Relationship for Uncracked Section 

The curvature for the uncracked section,    , is given by: 

    
  

    
 {4H.4} 

 

where    is the applied moment,    is the elastic modulus of the masonry calculated in 

accordance with CSA S304.1-04 (CSA 2004a), and    is the moment of inertia of the 
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gross section calculated from the dimensions of the wall splice specimen.  Equation 4H.4 

is valid for applied moments less than the cracking moment, Mcr.  As such, the curvature 

at the initiation of cracking,    , is given by: 

    
   

    
 {4H.5} 

 

Moment-Curvature Relationship for Cracked Section 

A sectional analysis was used to determine the moment-curvature relationship and the 

tensile resistance of the spliced reinforcement for each wall splice specimen.  The neutral 

axis depth,   , was assumed, from which the strain in the extreme compressive fibre of 

the masonry,    , could be determined based on the assumed linear strain distribution 

and the given curvature,  , as follows: 

         
{4H.6} 

 

The compressive zone was then divided into 100 segments, each having a thickness of 

  /100.  The centroid of the ith segment was located at a distance of di from the neutral 

axis, where: 

   
  

   
                  

{4H.7} 

 

The strain at centroid of the ith segment,   , was then determined from the linear strain 

distribution as: 

       
  

  
 

{4H.8} 

 

The compressive stress in the ith segment,    was then found using the modified Kent-

Park curve described above, where: 

          
{4H.9} 
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The resultant compressive force for each segment was then calculated by multiplying the 

stress in the segment by the area of the segment, and the total compressive force in the 

masonry was then calculated by summating the compressive forces for each segment: 

  ∑    (
  

   
)

     

   
 

{4H.10} 

 

The strain at the effective depth of the reinforcement,     , equal to 95 mm, was 

calculated based on the linear strain distribution also: 

   
   

  
 (       ) 

{4H.11} 

 

from which the tensile force in the reinforcement was determined based on the nominal 

bar area of the reinforcement,   , and the theoretical stress-strain relationship (Equation 

4H.3). 

            
{4H.12} 

 

These calculations were conducted iteratively until the difference between the tensile 

force in the reinforcement and the resultant compressive force in the masonry was less 

than or equal to 0.5 percent.  The tensile resistance of the spliced reinforcement at a given 

curvature,      , was then calculated by dividing the tensile force in the reinforcement 

calculated as per Equation 4H.12 by two, such that the tensile resistances are reported for 

an individual splice.  The resulting moment at a given curvature was calculated by the 

following equation: 

    [        
     ∑       

     
   

     ∑       
   

] {4H.13} 

 

Equation 4H.13 was used to create a database of corresponding moment and curvature 

values by calculating the moment corresponding to curvatures in 0.0001m
-1

 increments 

for 300 points.  The function       was then created to calculate the curvature 

corresponding to a given moment,  , for the cracked section, using the database of 
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corresponding moments and curvatures.  This function was used to linearly interpolate 

between the curvature and corresponding moment values in the database to find the 

curvature corresponding to the moment entered as the argument to the function. 

The error in the calculated moments corresponding to a given curvature based on the 

selection of 100 segments was evaluated.  Figure 4H-1 shows the moment corresponding 

to a fixed curvature of 0.025 m
-1

 for a representative specimen W200(No.20)-2.5-1 as 

calculated for 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, and 1000 segments.  The 

moment at this given curvature approaches an approximate asymptotic value of 14.035 

kN·m, found graphically from Figure 4H-1.  The moment calculated based on 100 

segments was equal to 14.025 kN·m.  The error associated with the selection of 100 

segments was therefore 0.07 percent.  The error associated with the selection of 100 

segments was also calculated for the 15 course walls.  The error associated with selecting 

100 segments at a fixed curvature of 0.025 m
-1

 for a representative specimen was 0.08 

percent. 

 

Figure 4H-1.  Moment corresponding to a curvature of 0.025 m
-1

 based on number 

of segments, for representative sample W200(No.20)-2.5-1 
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Theoretical Load-Deflection Curve 

The theoretical load versus midspan deflection relationship for all wall splice specimens 

were then determined based on the conjugate beam method, using the process described 

herein. 

The moment of inertia of the cross-section of the wall splice specimen was needed in 

order to compute deflections using the conjugate beam method.  The moment of inertia 

for the uncracked section was set equal to the gross moment of inertia for the cross 

section, calculated using the wall splice specimen dimensions.  Bischoff’s (2005) 

equation was used to determine the effective moment of inertia for moments greater than 

the cracking moment, as described in Section 4.3.4: 

     
   

  (     
  

) (
   

  
)

  {4H.14} 

 

where     is the fully cracked section moment of inertia,    is the moment of inertia of the 

gross cross section,     is the cracking moment, and    is the applied moment.  

Equation 4H.14 can be rearranged as shown by Ahmed (2011) to obtain an equation for 

the effective curvature,   , at a given applied moment: 

          [  (
   

  
)

 

]  
  

     
(
   

  
)
 

 
{4H.15} 

 

where        is the curvature at a given moment,   , calculated using the function 

      for the moment-curvature relationship for the cracked section, as described 

above. 

The wall was divided into segments that were 10 mm wide for the purpose of calculating 

the theoretical midspan deflection,     , for a given applied load,  .  Therefore, the 13 

course and 15 course walls were divided into 240 segments and 280 segments, 

respectively.  The moment at the middle of the i
th

 segment,    , was calculated from 

basic principles of statics.  The curvature at the middle of the i
th

 segment,   , was 
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calculated using Equation 4H.4 if     was less than     or Equation 4H.15 if     was 

greater than    .  The midspan deflection was then calculated as: 

           ∑     

    

   

 
{4H.16} 

 

where n is the number of segments, equal to 240 and 280 for the 13 course and 15 course 

walls, respectively, and    is the distance from the centerline of the left support of the wall 

to the middle of the i
th

 segment. 

The error in the applied loads as calculated using this numerical method based on the 

selection of the number of segments was evaluated for both heights of wall splice 

specimens.  Figure 4H-2 shows the midspan deflection corresponding to an applied load 

of 30 kN for representative specimen W200(No.20)-2.5-1 as calculated for 24, 48, 120, 

240, 480, and 960 segments.  The midspan deflection at this applied load level 

approaches an asymptotic value of approximately 12.6022 mm, found graphically from 

Figure 4H-2.  The midspan deflection calculated using 240 segments was equal to 

12.6020 mm.  The error associated with the selection of 240 segments was therefore 

0.002 percent.  Similarly, the error associated with the selection of 280 segments for the 

15 course walls was 0.000 percent.  Thus, the calculated midspan deflection values were 

relatively insensitive to the selection of the number of segments. 

 

Figure 4H-2.  Midspan deflection corresponding to an applied load of 30 kN based 

on number of segments, for representative sample W200(No.20)-2.5-1  
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MATHCAD CODE 
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