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Abstract 

Recent SU(3) gauge field lattice data for the equation of state are interpreted 
by a quasi-particle model with effective thermal gluon masses. The model 
is motivated by lowest-order perturbative QCD and describes very well the 
data. The proposed quasi-particle approach can be applied to study color 
excitations in the non-perturbative regime. As an example we estimate the 
temperature dependence of the Debye screening mass and find that it declines 
sharply when approaching the confinement temperature from above, while the 
thermal mass continuously rises. 

PACS number(s): 12.38.Gc, 11.15.Ha 



I. INTRODUCTION 

The recent Progress in calculating properties of quarks and gluons by numerical meth- 
ods on space-time lattices also provides new information on the equation of state. It is 
!generally believed that at sufficiently high temperature the strongly interacting matter ap- 
pears as plasma of quarks and gluons, while at low temperatures the matter constituents 
are represented by hadrons (we consider here charge symmetric matter). Due to subtleties 
in incorporating fermions on a lattice the most accurate information is available for the pure 
+on Plasma. There are extensive studies of the SU(2) [1,2] and SU(3) [3,4] gluon plasma. 
D 

An intriguing question concerns finite-size effects and the extrapolation to the continuum 
Iimit, which has been investigated recently [2,4]. 

Even if precision data for the equation of state are available, one must ask whether they 
a1fo-w for an interpretation in terms of physical quantities. Indeed, there are various attempts 
to find suggestive interpretations of the lattice numerology. In an early attempt the SU(2) 
data [I] are described by a low-momentum cut-off model. In ref. [5] a finite gluon mass 
arid a vacuum pressure are fitted to previous SU(3) data. More accurate SU(3) data [3] are 
described in ref. [6] by a modified cut-off model with perturbative corrections and a bag 
constant, while in refs. [7,8] a thermal mass alone is found to be sufficient for describing the 
data. The latter approach has also proven to be successful for the SU(2) data 191. Despite 
the accuracy of the SU(3) data on a 163 X 4 lattice [3], by now there are data on larger 
lattices available [4]. These new data seem to permit a safe extrapolation to the continuum 
limit and are worth to be interpreted. 

The aim of our note is to present an interpretation of the recent SU(3) data [4] in terms 
of an ideal gas model of quasi-particles with thermal masses m(T) .  This model can be 
applied for studying various physical quantities (such as Debye or screening mass of heavy 

potential, transport coefficients, dilepton and Photon rates) at physically relevant, 
low temperatures near the confinement temperature Tc, where perturbative &CD can not 
be utilized directly. The particular point we adopt is that the high temperature limit of our 
thermal mass follows essentially from perturbative QCD. Such a functional dependence of 
m(T) turns out to reproduce quite well the newest SU(3) lattice data. We extend our model 
here to estimate the Debye mass in SU(3) gauge theory near T,. 

11. IDEAL QUASI-PARTICLE GAS MODEL 

Our goal is a quasi-particle model for the equation of state of a gluon plasma which is 
compatible with both the continuum extrapolation of lattice data, currently available up to 
4T„ and the perturbative region, i.e., QCD at T 4 co. We utilize the dispersion relation 

(U and k: are the quasi-particle energy and momentum). The effective Hamiltonian for such a 
t system of quasi-particle excitations may be written as [I01 Heff = ~t~ CI ~ ( k ,  T) q i  + 

E&!'), with af and a as usuaI creation and destruction operators for bosons, and E. denoting 
the ground state energy; d is the degree of degeneracy of energy eigen states. With the 



distribution function f (k) = [exp{ dk2  + m2(T)} - I]-' the entropy density takes then the 
ideal gas form 

while the primary thermodynamical potential pressure p and the energy density e read 

e(T) = lrn dk f (k) k 2 J k ' + m ; i T j  + B(T): 27r2 o (4) 

These relations are thermodynamically self consistent, i.e., they fulfill e + p = sT and 
Eo T s = ap/aT. The function B(T) = l i m ~ , ~  4 (with V as volume of the system) is a 

necessary quantity when allowing for a temperature dependent quasi-particle energy w(k, T) 
[10]. B(T) is not a second independent function, but related to the thermal mass, due to 
self consistency, via 

The integration constant B. resembles somewhat the bag constant. Note that the previous 
approaches [8,9] used p(T) with B(T) 0, and that consequently neither the entropy density 
nor the energy density take the structure of an ideal gas. Eqs. (3, 4) are used in ref. 151. 

To determine the functional dependence of m(T) on the temperature let us first con- 
sider the perturbative regime. The thermodynamical properties of the gluon plasma depend 
predominantly on the transverse part of the gluon self-energy [11,12]. In the weak coupling 
regime the transversal gluon self-energy in a gluon plasma with N, colors results in a disper- 
sion relation which can be approximated [11,12] by w2 = cuk2 + ßd, with a = 1 (8) and P 
= % (1) at large (small) momenta and gauge invariant plasma frequency W: = % g 2 ~ 2  (here 
g2 denotes the perturbative QCD coupling constant). Numerically, the large momentum ap- 
proximation to the fuH transverse one-loop dispersion relation [U] holds at k/T > 2 J%; 
longitudinal excitations are there overdamped. Otherwise, the large momentum region dom- 
inates the statistical integrals in eqs. (2 - 4), e-g., more than 96.5% of the contribution to 
the energy density come from k/T 2 1. Therefore, eq. (1) represents an excellent approx- 
imation of QCD properties, relevant for evaluating eqs. (2 - 4), and m2(T) = f with 
ß = f is supported within this approximation. We have here included the factor $ nhich, 
according to Goloviznin, Satz and Shuryak [9], accounts for ~artitfoning the self-energy in 

12 lowest order between two interaction partners. Hence, nz2(T) = l?;g2(T)T2, with = N;, 
emerges approximately from perturbative QCD. 

Let us now compare the obtained pressure potential ( 3 )  at high temperature with the 
corresponding pressure obtained within first-order QCD. The high-ternperature expansion 
(i-e., m / T < 1) of eq. (3) reads 



with psB = % T ~ .  From QCD it is known [l l]  that the perturbative contribution to the 
pressure is 

Comparing the leading terms in eqs. (6,7) one reveals that, despite of massive quasi-particles, 
one needs to include only the two transverse degrees of freedom, i.e., d = 2(N: - 1). The 
next-to-leading order terms in the parenthesis confirm our above ansatz for m2(T). In this 
way the perturbative part of QCD pressure (7) is related to the quasi-particle excitations 
with energy w ( k ,  T), while the ground state contribution E0 is related to B(T) and can be 

estimated in such an expansion from eq. (5) as B(T) = - p ~ ~ $  This interpretation 
Points to the non-trivial rde  of the ground state contribution even at high temperatures. 
This particular aspect is discussed in ref. [ll] and exemplified in ref. [14]. 

Finally we specify the coupling constant in accordance with perturbative &CD as 

with Ts/Tc as phenomenological regularization as in ref. [8] and limT„ G2(T) + g2(T); 
Tc/X represents the usual regularization scale parameter A. In the following we utilize in 
eqs. (2, 3, 4) the thermal mass 

111. ANALYSIS OF LATTICE DATA 

We apply our model now to the SU(3) lattice data [4]. In fig. 1 we demonstrate that 
our model, defined by eqs. (1, 2 - 5, 8, 9), describes very well the continuum-extrapolated 
data. As fit parameters we obtain X = 1.66, Ts/Tc = -0.53. B. = 0.25T: turns out as an 
optimum choice for the present data. As Seen in fig. 1 the function B(T), which becomes 
small at T > 1-5Tc, changes its sign at 2Tc (a similar observation is made in ref. [10] for 
the older data [3]). This might be considered as a hint on a complicated non-perturbative 
vacuum structure. 

Fig. 2 displays the interaction measure (e - 3p) T-4, which is a sensitive quantity. One 
observes that for T > 1.2Tc the 323 X 6 and 323 X 8 lattice data are nicely reproduced. In 
the region Tc - 1.2TC the scaled energy density is a rapidly varying function. It might turn 
out that our quasi-particle model does not Cover perfectly the very details of forthcoming 
high-precision lattice data in this region. However, it seems that the gross features of the 
equation of state in the physically relevant region are fairly well described. This gives some 
confidence in our quasi-particle interpretation. 



As matter of fact we mention three obvious aspects of our phenomenological approach. 
(i) The flexibility, introduced by the definition of G(T) in eq. (8), allows to some extent for 
the description of the data. (ii) Otherwise, this flexibility is insufficient to describe the data 
on the basis of a different model, wherein eqs. (6) and (7) would be completely identified. 
(iii) Higher order agreement of the corresponding parts of eqs. (6,7) is not achievable due 
to a mismatch .of numerical prefactors, therefore, eq. (3) can not be considered as resumed 
expression. 

IV. SCREENING MASS 

Our model can be applied to study various collective properties of a colored quark- 
gluon system. Since even at comparatively low temperatures the gas of quasi-particles 
still remains weakly interacting, we have a chance to treat this gas in a perturbative way 
down to Tc. Here we estimate as an example the temperature dependence of the Debye 
screening mass. The Debye mass reflects the property of a plasma medium to screen the 
static chromoelectric interactions. Following the standard definition [I 1,151 the Debye mass 
mD for an electromagnetic plasma is given by the small momentum limit of the static 
longitudinal photon self-energy function IIoo(w, k), 

rn; = limIIoo(w = 0, k). 
k - 4  (10) 

It is connected with the longitudinal part of the plasma dielectric tensor eL(u, k) via k2 + 
IIoo(O, k) = k2eL(0, k) [16]. At leading order in a, the above definition is valid also for 
the &CD plasrna [17]. In our model a, is the coupling constant of the color interaction 
between quasi-particles. The chromoelectrical tensor eL(w, k) can be calculated in lowest 
order in a, within the kinetic theory of collective color excitations [18] with the corresponding 
corrections related to the non-zero effective mass m(T) of our quasi-particles. (The analogous 
approach has been employed for calculations within the cut-off model [19].) 

For the gluon plasma the chromoelectrical tensor is 

where k' = (W, k) is the wave four-vector , and f (P) denotes the above distribution function 
of quasi-particles with four momentum pp = (E, P )  and the dispersion relation (1). The 
factor y = 2 accounts for the spin degrees of freedom of the quasi-particle~ with respect to 
the asymptotic limit above and to ref. [5]. Solving eq. (11) in the limit (10) yields 

J, (T) = T-3 ICo dp p2 f (p) exp 
0 

In the limit m(T)/T -+ 0 one recovers the well known perturbative QCD limit mr> = 
L 3 Nc g2 T2. The perturbative QCD coupling constant can be expressed by 



where the quantity &Pis determined by averaging over the squared quasi-particle momenta 
[ l l ] ,  i.e., 

tVe choose the scale parameter A in accordance with the high-temperature limit of eqs. (8, 
13). Since in this lirnit 1\/i N 3.7 T, we find A/TC = 3.7 X - l  . For the temperature dependence 
of m(T), extracted above from the lattice data, the coupling constant (13) remains as small as 
0.68 at  Tc. So based on the perturbative ansatz for rn; we get in our quasi-particle model the 
non-perturbative behavior of the Debye mass displayed in fig. 3. As Seen in fig. 3 the thermal 
mass increases when approaching Tc from above, while the screening mass rng drops; above 
1.3Tc mD/T stays roughly constant. The obtained behavior of the Debye screening mass 
is confirmed by lattice calculations [20]. Such a sharp dropping of rno near T, might have 
quite interesting consequences for several deconfinement probes in ultrarelativistic heavy-ion 
collisions, e.g., the mono-jets considered in ref. [21]. At the Same time we stress that the 
direct comparison of the screening mass in our model with the lattice data requires a more 
impraved analysis of the static quak  potential due to contributions from the vacuum state 
to the free energy, where the potential is extracted from. This quantitative comparison is 
envisaged, as also an extension to SU(2) [22]. 

V. SUMMARY 

In Summary we present an interpretation of new SU(3) gluon lattice data within a model 
of an ideal gas of quasi-particles with effective thermal masses, which is motivated by per- 
turbative &CD. Such a functional dependence of the effective mass is found to reproduce 
rather perfectly the recent SU(3) lattice data of therm~d~namical  parameters. We utilize 
our model to deduce the behavior of the Debye Screening mass near the confinement tem- 
perature and find a sharply dropping Debye mass, when approaching close to Tc from above, 
while the thermal mass continuously rises. 
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FIG. 1. Comparison of our model (thin lines) with continuum-extrapolated lattice data (sym- 
bols, from [4]) of scaled energy density, pressure and entropy density. The dash-dotted curve 
depicts the function B(T)/T4.  



FIG. 2. The interaction measure as function of temperature (heavy full line: our model; sym- 
bols: lattice data [4]. 



FIG. 3. The thermal mass (dashed line) and the estimated Debye screening mass (heavy fuil 
line) in our model. 
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