FORSCHUNGSZENTRUM ROSSENDORF e.v.

FZR

Archiv-Ex.: FZR-81 März 1995

U. Bergmann, J. Böhmert und H.-W. Viehrig

Bestimmung bruchmechanischer Kennwerte an Reaktordruckbehälterstählen mit der Einproben-Compliance-Methode und Korrelationen zur Kerbschlagarbeit

Forschungszentrum Rossendorf e.V. Postfach 51 01 19 · D-01314 Dresden Bundesrepublik Deutschland

 Telefon
 (0351)
 591
 3186

 Telefax
 (0351)
 591
 2205

 E-Mail
 viehrig@fz-rossendorf.de

Zusammenfassung

Rißwiderstandskurven und Rißinitiierungszähigkeiten sind geeignete bruchmechanische Parameter zur Bewertung des Versagensverhaltens hochzäher Reaktordruckbehälterstähle. Die experimentelle Bestimmung des Rißeinleitungs- und Rißausbreitungswiderstandes mit Hilfe der Einproben-Compliance-Methode ermöglicht, den besonderen Anforderungen der Prüfung bestrahlten Materials gerecht zu werden.

Mit der Einproben-Compliance-Methode wurden unter Verwendung ermüdungsangerissener und seitgekerbter 3-Punkt-Biegeproben der Abmessung 10x10x55 mm² Rißwiderstandskurven von Stählen mit unterschiedlichem Zähigkeitsniveau bestimmt. Die Rißinitiierungszähigkeit ist mit Hilfe der gemessenen Stretchzonenbreite und als technischer Ersatzkennwert aus der durch ein Polynom beschriebenen Rißwiderstandskurve ermittelt worden. Das breite Spektrum unterschiedlicher Zähigkeit und Festigkeit der untersuchten Materialien erlaubt die Untersuchung von Korrelationen zu konventionellen mechanisch-technologischen Kennwerten. Aus der Literatur bekannte Ansätze liefern Korrelationen, die es mit einer für technische Anwendungen akzeptablen Genauigkeit gestatten, die Rißinitiierungszähigkeit oder den Rißwiderstand aus der Kerbschlagarbeit in der Hochlage abzuschätzen. Sie beschreiben physikalisch bedingte Zusammenhänge jedoch nur unzureichend.

Abstract

Fracture-mechanics crack resistance parameters based on the J integral are useful to describe the failure behaviour of high-toughness reactor pressure vessel steels. This paper presents methodical results concerning the estimation of crack growth resistance curves of precracked and sidegrooved Charpy sized 3-PB specimens by using the single specimen compliance method. Crack initiation toughness values are estimated on the basis of the measured stretch zone with and as a technical equivalent values from the crack resistant curves described by a polynom. The wide range of toughness or strength of the investigated steels allows to investigate relationships known from the literature between the upper shelf Charpy-V notch energy and the crack growth resistance behaviour. The relationships provide acceptable technical approaches, but they can only insufficiently describe the physical meaning.

Diese Arbeit entstand im Rahmen eines Vorhabens, das mit Mitteln des Bundesministers für Forschung und Technologie gefördert wurde (Förderungskennzeichen 1500919). Wir danken dem Bundesminister für Forschung und Technologie für die finanzielle Unterstützung. Die Verantwortung für den Inhalt dieser Arbeit liegt bei den Autoren.

Inhalt

- 1 Emleitung
- 2 Das J-Integral-Konzept
- 3 Verfahren zur Bestimmung von Rißwiderstandskurven und Rißinitiierungspunkten
- 3.1 Bestimmung von Rißwiderstandskurven
- 3.2 Bestimmung von Rißinitierungspunkten und technischen Ersatzwerten
- 3.2.1 Bestimmung physikalischer Rißinitiierungspunkte
- 3.2.2 Bestimmung von technischen Ersatzkennwerten
- 3.2.2.1 ASTM-Standard E813-89
- 3.2.2.2 EGF P1-90 (ESIS P1-92)
- 3.2.2.3 DVM-Merkblatt 002
- 3.2.2.4 MPA-Methode
- 3.3 Analytische Verfahren zur Bestimmung von kritischen J-Integralen
- 3.3.1 Lineare Normalisierungstechnik
- 3.3.2 Bestimmung des Rißinitiierungspunktes aus der Kraft-Lastpunktverschiebungskurve
- 4 Experimentelle Arbeiten
- 4.1 Versuchstechnik und -bedingungen
- 4.2 Material
- 4.3 Ergebnisse
- 4.4 Berechnung der Rißinitiierungszähigkeit aus der Kraft-Lastpunktverschiebungskurve
- 5 Korrelationen zu Ergebnissen des Kerbschlagversuchs
- 5.1 Korrelationen zwischen Rißinitiierungszähigkeit und Kerbschlagarbeit
- 5.2 Berechnung von Rißwiderstandskurven aus der Kerbschlagarbeit
- 6 Schlußfolgerungen und Ausblick

Verzeichnis der verwendeten Symbole und Abkürzungen

Literaturverzeichnis

Verzeichnis der Abbildungen

Verzeichnis der Tabellen

Abbildungen

Tabellen

1. Einleitung

Die Bestimmung bruchmechanischer Materialkennwerte ist eine der erforderlichen Voraussetzungen für die Sicherheitsbewertung fehlerbehafteter Bauteile. Für elastisch-plastisches Werkstoffverhalten liefert dafür das J-Integral-Konzept einen bewährten Ansatz. Es beurteilt das Versagensverhalten mit Hilfe der - allerdings geometrieabhängigen - Rißwiderstandskurve, dem Verlauf des maximal ertragbaren J-Integrals mit zunehmendem Rißfortschritt. Der Anfangswert dieser Rißwiderstandskurve, das J-Integral bei Beginn des Rißwachstums, wird in der Literatur als ein echter Materialkennwert angesehen. Er bietet die Möglichkeit, konservative Belastungsgrenzen für Bauteile zu definieren.

Ein aktuelles Anwendungsgebiet für Kennwerte dieser Art sind Sicherheitsanalysen des Reaktordruckbehälters, insbesondere bei Thermoschockbeanspruchung durch Not- oder Nachkühlung. Hier sind hohe Belastungen bei Temperaturen im Übergangs- oder im Hochlagenbereich der Zähigkeit zu erwarten. Im kernnahen Bereich ist dabei die zunehmende Versprödung des Druckbehältermaterials unter dem Einfluß der Neutronenbelastung zu berücksichtigen. Im gültigen kerntechnischen Regelwerk geschieht dies lediglich durch die Bestimmung der Sprödbruchübergangstemperatur mit Charpy-V-Kerbschlagbiegeproben, die voreilend bestrahlt werden. Für eine qualifiziertere Sicherheitsanalyse besteht folglich ein dringender Bedarf an bruchmechanischen Materialkennwerten bei elastisch-plastischem Materialverhalten für bestrahlte Zustände.

Die Ermittlung von bruchmechanischen Kennwerten am bestrahlten Material stellt besondere methodische Anforderungen. So stehen in der Regel nur Proben in geringer Stückzahl und von kleinen Abmessungen zur Verfügung. Außerdem muß die Methode versuchstechnisch einfach realisierbar sein, um ihre Anwendung in fernbedienten heißen Zellen zu gewährleisten. Eine Prüfmethode, die ein solches Potential besitzt, ist die Einproben-Compliance-Methode.

Die nachfolgende Arbeit stellt Ergebnisse vor, die am Institut für Sicherheitsforschung unter Anwendung dieser Methode zur bruchmechanischen Charakterisierung einer Reihe von international üblichen Druckbehälterstählen - vorerst im unbestrahlten Zustand - bestimmt worden sind. Neben der vergleichenden Bewertung sollten dabei gleichzeitig Leistungs-fähigkeit und Einsatzgrenzen von Methode und Versuchstechnik nachgewiesen werden, weshalb auch Referenzstähle unterschiedlicher Zähigkeit in die Untersuchungen einbezogen worden sind.

Aus heutiger Sicht wird die Bestimmung bruchmechanischer Kennwerte kaum Routinebestandteil der anlagen-bezogenen Versprödungsüberwachungsprogramme werden. Eine indirekte Ermittlung derartiger Kennwerte aus Ergebnissen, die aus den traditionellen mechanisch-technologischen Prüfverfahren gewonnen werden können, wäre deshalb vorteilhaft. Vorzugsweise bietet sich hier die Kerbschlagarbeit an. Die Überprüfung solcher Ansätze anhand der Ergebnisse dieser Untersuchung sind ein weiteres Ziel der folgenden Arbeit.

2. Das J-Integral-Konzept

Basis für eine physikalisch begründete Beschreibung des Rißwachstums in Festkörpern ist die Energiebilanz am Riß. Für nichtlineares Materialverhalten wurde zur Beschreibung dieser Energiebilanz das J-Integralkonzept entwickelt.

Aufbauend auf Arbeiten von Eshelby /1/ konnte Rice /2/ zeigen, daß das Linienintegral um die Rißspitze

$$\mathcal{J} = \oint \left(W_s dy - T_i \left(\frac{\partial u_i}{\partial x} \right) ds \right) \tag{1}$$

wegunabhängig ist. Dabei ist W_s die Formänderungsenergiedichte, T_i der Spannungsvektor am Linienelement ds und u_i der Verschiebungsvektor. Die Wegunabhängigkeit gilt allgemein nur für elastisches Materialverhalten, ist aber unter bestimmten Bedingungen auch auf plastisches Materialverhalten übertragbar. Diese Bedingungen sind:

- Plastische Dehnungen haben die gleiche Größenordnung wie die elastischen Dehnungen,
- die Beanspruchung erfolgt unter stetiger Lastzunahme,
- die plastische Verformung kann wie die nichtlinear-elastische Verformung als
 Ableitung einer Skalarfunktion nach der Spannung beschrieben werden ,
- der Werkstoff verhält sich außerhalb der plastischen Zone linear-elastisch.

Eine Bedeutung im Sinne einer direkten technischen Anwendbarkeit bekommt das J-Integral durch die Erkenntnis von Rice, daß das J-Integral als negative Änderung der potentiellen Energie U mit der Rißlänge a interpretiert werden kann. Für eine Probe der Dicke B gilt:

$$J = -\frac{1}{B} \frac{\partial U}{\partial a}$$
 (2)

Der erste Vorschlag zur experimentellen Bestimmung von J wurde 1972 von Begley und Landes /3/ gemacht. An mehreren Proben mit unterschiedlichen Rißlängen werden dabei Kraft-Lastpunktverschiebungskurven aufgenommen. Die Fläche unter der Kraft-Lastpunktverschiebungskurve ist identisch mit der Energie U. Das J-Integral ergibt sich dann aus dem Anstieg der U-a-Kurve.

Die experimentelle Bestimmung von J-Integralwerten nach diesem Verfahren ist sehr aufwendig. Eine wesentliche Vereinfachung bieten verschiedene Näherungsformeln. Für Proben, die im wesentlichen einer Biegebelastung unterworfen sind (Kompaktzug-(CT) und Dreipunktbiegeproben), fand Rice /4/ :

$$J = \frac{2}{B(W-a)} (U - U_0)$$
 (3)

Dabei bezeichnet U_0 die Verformungsenergie einer Probe ohne Riß, B die Probendicke, W die Probenbreite und a die Rißlänge.

Landes und Begley /5/ schlugen vor, für den Fall einer genügend großen Rißlänge bzw. einer großen plastischen Verformung U_0 in Gl. 3 zu vernachlässigen.

Nach einem von Rice, Paris und Merkle angegebenen Näherungsverfahren kann für a/W>0.5 das J-Integral nach

$$J = \frac{U}{B(W-a)} f\left(\frac{a}{W}\right)$$
(4)

berechnet werden /6/. Dabei hängt f(a/W) von der Probengeometrie ab. Es gilt f(a/W) = 2 für Dreipunktbiegeproben und f(a/W) = 2 + 0.552(1-a/W) für CT-Proben. Gl. 4 hat Eingang in eine Reihe von Standards bzw. Empfehlungen /7,8,9/ gefunden. Damit können auf einfache Art und Weise J-Integrale in Abhängigkeit von der Rißlänge bestimmt werden.

Der Verlauf des J-Integrals über der Rißverlängerung wird als Rißwiderstandskurve bezeichnet und zur Charakterisierung des Materialzustandes bei duktilem Bruch benutzt. Es lassen sich damit Grenzlasten bzw. Instabilitätsbedingungen bestimmen. Allerdings erweist sich der Verlauf der Rißwiderstandskurve als nicht unabhängig von Probenformen und größen. Deshalb sind die an Proben gewonnenen Ergebnisse nur bedingt auf reale Bauteile übertragbar. Einen echten Materialkennwert stellt, wie Untersuchungen /14/ zeigen, das J-Integral bei Beginn des stabilen Rißfortschritts (Rißinitiierung) dar. Deshalb wird bruchmechanischen Sicherheitsbewertungen vielfach auch dieser Kennwert zugrundegelegt. Die Verlängerung eines vorhandenen Risses tritt dann auf, wenn das belastungsbedingte J-Integral diesen kritischen Materialwert überschreitet.

3. Verfahren zur Bestimmung von Rißwiderstandskurven und Rißinitierungspunkten

3.1 Experimentelle Bestimmung von Rißwiderstandskurven

Für die Bestimmung von Rißwiderstandskurven haben sich Ein- und Mehrprobenverfahren gleichermaßen bewährt.

Bei Mehrprobenverfahren werden Proben bis zu unterschiedlichen Lastpunktverschiebungen belastet. Die Proben werden nach dem Versuch aufgebrochen und die stabile Rißlänge auf der Probe ausgemessen. Aus der Fläche unter der Kraft-Lastpunktverschiebungskurve erhält man die Energie U und kann dann mit Gl. 4 das zugehörige J-Intgral berechnen. Jede Probe liefert damit einen Punkt auf der Rißwiderstandskurve (J - Δa - Kurve). Besonders im Bereich der Sicherheitsbewertung von Kemreaktoren, aber auch für Altanlagen, stehen oft nur wenige Proben zur Bestimmung bruchmechanischer Kennwerte zur Verfügung, und es muß nach Möglichkeiten gesucht werden, vollständige Rißwiderstandskurven bzw. kritische J-Integralwerte an einer einzigen Probe zu bestimmen. Dazu wurden verschiedene Verfahren entwickelt oder befinden sich noch im Erprobungsstadium. Bewährt hat sich die Einproben-Compliance-Methode. Alternative Methoden arbeiten mit Ultraschall. Diese Verfahren haben jedoch noch keine Berücksichtigung in internationalen Normenwerken gefunden.

Bei der Compliance-Methode wird die Probe weggesteuert belastet. Bei definierten Werten der Lastpunktverschiebung wird die Probe um einen bestimmten Bruchteil der momentanen Kraft entlastet und anschließend wieder belastet. Aus dem reziproken Anstieg der dabei entstehenden linearen Abschnitte der Kraft-Verformungskurve, der sogenannten Compliance, kann die aktuelle Rißlänge berechnet werden. Abb. 1 zeigt eine typische

б

Kraft-Verformungs-kurve. Jede Teilentlastung liefert einen Punkt der J - Δa - Kurve. Diese Verfahrensweise verletzt eine der in 2. genannten Randbedingungen, wonach das J-Integral nur bei stetiger Lastzunahme als wegunabhängig zu betrachten ist. Verschiedene Untersuchungen zeigen jedoch, daß die Einflüsse von Entlastungen um 15% der momentanen Kraft zu vernachlässigen sind /10 /.

Bei der Berechnung der Compliance aus der Kraft-Lastpunktverschiebungskurve können eine Reihe von Fehlern auftreten, die durch Korrekturfunktionen berücksichtigt werden müssen. Beispiele dafür sind Nachgiebigkeiten im Belastungssystem und Probendeformationen.

Ausführliche Untersuchungen dazu wurden durch Steenkamp /11/ durchgeführt. Der Einfluß dieser Fehlerquellen kann durch die Messung eines Verformungsparameters direkt am Riß, wie z. B. der Rißöffnung COD, ausgeschlossen werden.

3.2 Bestimmung von Rißinitiierungspunkten und technischen Ersatzwerten

3.2.1 Bestimmung von physikalischen Rißinitiierungspunkten

Ein Verfahren zur direkten Bestimmung des physikalischen Rißinitiierungspunktes ist die Potentialmethode. Sie beruht auf der Änderung des elektrischen Widerstands der Probe durch die vom wachsenden Riß verursachte Verringerung des stromdurchflossenen Querschnitts. Man unterscheidet Gleichspannungs- und Wechselspannungspotentialmethode. Eine stromdurchflossene Probe wird kontinuierlich belastet und dabei das zwischen den Rißufern auftretende elektrische Potential gemessen. Die Abbn. 2 und 3 zeigen einen typischen Potentialverlauf bei den beiden Methoden in Relation zur Kraft-Verformungs-Kurve. Aus dem Verlauf des Potentials über dem Verformungsparameter wird ein kritischer Punkt bestimmt und das J-Integral an diesem Punkt aus der Kraft-Verformungs-Kurve berechnet.

Schwächen dieses Verfahrens liegen in der Empfindlichkeit gegenüber Temperaturschwankungen, Kontaktspannungen, Störungen in der Stromversorgung und einer möglichen Änderung der Leitfähigkeit durch die Verformung.

Auch Schallemission oder magnetischer Emission können zur Detektion der Rißinitiierung eingesetzt werden. /12, 13 /

7

Rißinitiierungspunkte lassen sich aus der Rißwiderstandskurve mit der im Rasterelektronen-mikroskop gemessenen Stretchzonenweite bestimmen /9, 14/. Nach dem Versuch wird auf der aufgebrochenen Probenoberfläche im Rasterelektronenmikroskop die Breite der Stretchzone (Bereich der Abstumpfung des Ermüdungsanrisses) Δa_i bestimmt. Aus der ermittelten Rißwiderstandskurve wird $J_i=J(\Delta a=\Delta a_i)$ bestimmt.

3.2.2 Bestimmung von technischen Ersatzkennwerten

Verschiedene Standards und Empfehlungen regeln unterschiedliche Prozeduren zur Ermittlung technischer Ersatzwerte für den Rißinitiierungspunkt. Sie lassen einen bestimmten Betrag an duktilem Rißwachstum zu und gelten unter bestimmten Bedingungen per definitionem als Rißinitiierungswert.

3.2.2.1 ASTM-Standard E813-89 /7/

Im J- Δa -Diagramm wird die theoretische Rißabstumpfungsgerade J = 2 $\sigma_y \Delta a$ ('blunting line') sowie zwei um 0.15 mm bzw. 1.5 mm verschobene Parallelen zu dieser Geraden (exclusion lines) eingezeichnet. Dabei ist σ_y der Mittelwert aus Streckgrenze und Zugfestigkeit. An die J- Δa -Punkte zwischen diesen Geraden wird eine Potenzfunktion der Form

$$\mathcal{J}=A(\Delta a)^{B}$$
 (5)

angepaßt. Weiterhin wird gefordert, daß ein maximaler J-Wert $J_{max} = (W-a_0)\sigma_y/15$ nicht überschritten wird. Der Schnittpunkt der Fitfunktion mit der um 0.2 mm verschobenen Rißabstumpfungsgeraden wird mit J_Q bezeichnet. (Abb. 4)

Unter folgenden Bedingungen wird Jo als kritisches J-Integral Jie betrachtet:

- $B > 25 J_q / \sigma_y ,$
- $(W-a_0) > 25 J_q / \sigma_y$
- der Anstieg der Fitfunktion im Punkt Δa_0 ist kleiner als σ_y ,
- keine Probe zeigt bei der vorliegenden Testtemperatur und Belastungsgeschwindigkeit Sprödbruch,
- keine der 9 Messungen der Rißlänge weicht um mehr als 7 % vom Mittelwert ab,

- keine der 2 Rißwachstumsmessungen nahe den Probenseitenflächen weicht um mehr als
 ± 0.02 W vom Rißwachstum in der Probenmitte ab und
- die Abweichung zwischen gemessener und aus der Compliance berechneter Rißlänge beträgt nicht mehr als 15%.

3.2.2.2 EGF P1-90 (ESIS P1-92) /8/

Nach dieser Norm werden J-Aa-Punkte unterhalb der Grenzen

$$\Delta a_{\max} = 0.06 (W - a_0), \quad J_{\max} = (W - a_0) \frac{\sigma_y}{25}$$
(6)

als gültige, von der Probengeometrie unabhängige Werte angesehen. An diese Punkte wird eine Funktion der Form

$$J=A(\Delta a+B)^{c}, B\geq 0$$
(7)

angepaßt. Mit dieser Funktion können 3 Kennwerte bestimmt werden:

- J_{02/bl}: der Schnittpunkt mit der um 0.2 mm verschobenen Rißabstumpfungsgeraden,
- J_{0.2}: der J-Wert bei 0.2 mm Rißwachstum einschließlich der Stretchzone,
- J_i: der J-Wert bei der mittels Elektronenmikroskops ausgemessenen Stretchzonenbreite.

Die Rißabstumpfungsgerade wird mit einem Formalismus berechnet, der Werkstoffparameter verwendet, die aus Zugversuchen gewonnen werden können (Elastizitätsmodul, Elastizitäts-grenze, Zugfestigkeit und Verfestigungsexponent).

Bei Anwendung der Compliance-Methode wird vorgeschlagen, 3 Proben bis zu einem unterschiedlichen Betrag des Rißwachstums (0.1-0.3mm, $\Delta a_{max}/2$, Δa_{max}) zu belasten, um die Güte des Verfahrens zur Rißlängenberechnung über dem gesamten Bereich des Rißwachstums zu überprüfen. Wenn die Differenz zwischen berechneter und gemessener Rißlänge 15% übersteigt, ist der Test ungültig. Weitere Gültigkeitskriterien werden nicht angegeben.

Als alternative Methode zur Bestimmung von J, wird die Potentialmethode zugelassen.

3.2.2.3 DVM-Merkblatt 002 /9/

Das Vorgehen nach diesem Merkblatt entspricht im wesentlichen der EGF-Empfehlung. Zur Anpassung wird die Funktion nach ASTM verwendet, jedoch wird auch jede andere monotone Funktion, die eine bessere Anpassung erlaubt, zugelassen.

Es werden die Kennwerte $J_{0.2h1}$ und J_i bestimmt.

Gültigkeitsgrenzen für die J-Integralbestimmung sind:

- $J < R_{e}(W-a_{0})/25$ mit der Streckgrenze R_{e} und
- $\Delta a < 0.1 (W-a_0)$.

J_{0.2/b1} wird als Kennwert angesehen, wenn für die Probendicke B

$$B \ge \frac{25J_i}{R_{\phi}} \tag{8}$$

gilt.

3.2.2.4 MPA-Methode /14, 15/

Durch Roos und Eisele wurden an der MPA Stuttgart umfangreiche Arbeiten zum Vergleich bruchmechanischer Rißinitiierungskennwerte durchgeführt. Es zeigt sich, daß die nach den verschiedenen Methoden ermittelten Ersatzkennwerte $(J_{Ie}, J_{0.2/bl})$ erst kurz vor oder nach Überschreiten des Höchstlastpunktes erreicht werden. Damit sind diese Kennwerte von der Versuchsführung abhängig und können nicht als Werkstoffkennwerte betrachtet werden. Weiterhin tritt besonders bei Kleinproben der Fall auf, das keine gültigen Werte ermittelt werden können, da bei Erreichen von J_{max} das duktile Rißwachstum zu gering ist. Für Sicherheitsanalysen sind diese technischen Ersatzkennwerte daher unbrauchbar.

Die Kenngrößen J_i und $J_{0,2}$ liegen im ansteigenden Bereich der Kraft-Verformungs-Kurve. Durch vergleichende Untersuchungen an Großproben konnte gezeigt werden, daß J_i unabhängig von Probengeometrie und Versuchsführung ist. Dieser Kennwert stellt daher eine übertragbare Werkstoffkenngröße dar, die auch an Proben mit unterschiedlichem Beanspruchungszustand reproduzierbar ermittelt und zur Sicherheitsbewertung von Bauteilen eingesetzt werden kann.

Um den Ji-Wert zuverlässig zu bestimmen, ist es notwendig, die gemessenen Punkte so zu

beschreiben, daß der Kurvenverlauf im gesamtem Bereich, beginnend vom Nullpunkt, möglichst wenig von den Meßpunkten abweicht. Die Funktionen nach ASTM bzw. EGF erfüllen diese Forderungen in der Regel nicht. Besser geeignet ist ein Polynom höheren Grades der Form:

$$\mathcal{J}=A(\Delta a)^{a}+B(\Delta a)^{b}+C(\Delta a)^{c}$$
(9)

mit den Exponenten a=0.1, b=0.3 und c=0.5.

Mit Hilfe des so ermittelten Kurvenverlaufs werden J_i und $J_{0,2}$ entsprechend der EGF-Empfehlung bzw. dem DVM-Merkblatt bestimmt. Diese Methode steht nicht im Widerspruch zur Prozedur nach DVM-Merkblatt 002.

3.3 Analytische Verfahren zur Bestimmung von kritischen J-Integralen

In letzter Zeit wurden eine Reihe von Verfahren entwickelt, die es gestatten, Rißwiderstandskurven bzw. kritische J-Integrale ohne Messung zusätzlicher Größen aus der Kraft-Verformungkurve zu berechnen. Besondere Bedeutung haben dabei die sogenannten Key-Curve-Verfahren. / 16/

Bei diesen Verfahren werden für verschiedene Rißlängen theoretische Kraft-Verformungskurven, die sogenannten 'key curves', mittels FEM-Methoden berechnet. Aus den Schnittpunkten der gemessenen Kraft-Verformungskurve mit diesen Key-Curves werden die diesen Punkten entsprechenden Rißlängen bestimmt und das J-Integral nach den üblichen Methoden bestimmt. Nachteilig ist der große Aufwand für die Finite-Elemente-Berechnungen zur Berechnung der Key-Curves.

Im folgenden sollen eine spezielle Key-Curve-Methode, die ohne solche Berechnungen auskommt, sowie ein weiteres, besonders einfaches Verfahren zur Berechnung eines Rißinitiierungskennwertes aus der Kraft-Verformungs-Kurve beschrieben werden.

3.3.1 Lineare Normalisierungstechnik /17/

Nach Landes läßt sich die Kraft-Verformungskurve durch das Produkt einer von der Rißlänge a und einer von der plastischen Deformation v_{pl} abhängigen Funktion beschreiben. Mit der Funktion

$$F=G\left(\frac{a}{W}\right)H\left(\frac{v_{pl}}{W}\right)$$
(10)

$$G\left(\frac{a}{W}\right) = BW\left(\frac{W-a}{W}\right)^{\eta_{pl}}$$
(11)

läßt sich eine normierte Kraft berechnen. Dabei ist η_{pl} eine von der Probengeometrie abhängige Konstante. Es gilt $\eta_{pl}=2.13$ für CT-Proben und $\eta_{pl}=1.96$ für Dreipunktbiegeproben.

$$F_{N} = \frac{F}{G\left(\frac{a}{W}\right)} = H\left(\frac{V_{pl}}{W}\right)$$
(12)

$$\Delta F_N = F_N(a) - F_N(a_0) \tag{13}$$

Mit (12) kann ΔF_N als Funktion von Δa für vorgegebene Kräfte berechnet werden. Die so erhaltenen Kurven konstanter Kraft werden als Key-Curves verwendet. Aus dem letzten Punkt der Kraft-Verformungskurve des Tests und der nach dem Test gemessenen Anrißund Endrißlänge wird der Punkt A im ΔF_N - Δa -Diagramm berechnet. Die Schnittpunkte der Geraden 0-A mit den Kurven konstanter Kraft liefern die diesen Kräften zugeordneten Werte des Rißwachstums (Abb. 5). Die Key-Curve für die im Test aufgetretene Maximalkraft ergibt das geringste Rißwachstum. Mit abnehmender Kraft verlaufen die Kurven flacher und liefern damit zunehmendes Rißwachstum. Daher erhält man nur für den abfallenden Teil der Kraft-Durchbiegungskurve sinnvolle Werte.

Nach den üblichen Normen kann aus der Kraft-Lastpunktverschiebungskurve das diesen Kräften zugeordnete J-Integral berechnet und J_{ie} bestimmt werden..

Die Schwäche dieses Verfahrens zeigt sich bei Materialien, bei denen der Riß-initiierungspunkt deutlich vor der Maximalkraft erreicht wird. Wenn bei der Maximalkraft schon ein größerer Betrag des dukilem Rißwachstums vorliegt, ist zur Bestimmung von kritischen J-Integralen eine Extrapolation notwendig und es können größere Fehler auftreten. Abb. 6a zeigt eine solche Kraft-Durchbiegungskurve für eine Probe des Stahls 10CrMo9.10 und Abb. 6b die daraus berechnete Rißwiderstandskurve.

3.3.2 Bestimmung des Rißinitierungspunktes aus der Kraft-Lastpunktverschiebungskurve /18, 19/

Ullrich und Krompholz stellten eine Methode vor, die es erlaubt allein aus der Kraft-Lastpunktverschiebungskurve den Rißinitiierungspunkt zu bestimmen.

Dabei wird das Spannungs-Dehnungsverhalten der Probe als linearer Relaxationsprozess betrachtet. Es wird ein elastisches Spannungsniveau σ_0 konstruiert und angenommen, daß sich der entsprechende Punkt auf der elastisch-plastischen Kurve σ_{∞} durch Spannungsrelaxation einstellt. Das Verhältnis dieser Größen wird mit γ bezeichnet.

$$\gamma = \frac{\sigma_{\infty}}{\sigma_0}$$
(14)

Durch Anwendung einer konformen Abbildung und einfacher trigonometrischer Beziehungen (Abb. 7) läßt sich folgende Beziehung zur Maximalkraft herleiten:

$$\sigma_{0} = \frac{\sigma_{\max}\sqrt{1-\gamma^{2}}}{\gamma} = \frac{\sigma_{\infty}(=\sigma_{i})}{\gamma}$$
(15)

Der Rißinitiierungspunkt wird als Gleichgewichtspunkt betrachtet. Analog zu einem thermodynamischen Phasengleichgewicht wird γ durch eine Koexistenzbedingung bestimmt. In /18/ wird eine Beziehung zur Koexistenz von Druck- und Zugspannungen hergestellt und abgeleitet:

$$\gamma = \frac{\mu}{E} = \frac{1}{2(1+\nu)}$$
 (16)

Dabei ist μ der Schubmodul, E der Elastizitätsmodul und ν die Poissonzahl. Für Stahl ergibt sich damit $\gamma \approx 3/8$. Damit kann der Rißinitiierungspunkt allein aus der Kraft-Lastpunktverschiebungskurve berechnet werden.

In /19/ wird die Methode weiter theoretisch untersetzt und eine Formel zur Berechnung des Faktors γ aus der Probengeometrie und der im Test aufgetretenen Maximalkraft angegeben.

Ullrich und Krompholz erhalten für Dreipunktbiegeproben des Stahls A533B1 y≈0.381

und damit eine gute Übereinstimmung mit der Potentialmethode.

4. Experimentelle Arbeiten

4.1 Versuchstechnik und -bedingungen

Alle Versuche wurden mit der Einproben-Compliance-Methode durchgeführt. Es wurde ein servohydraulisches Prüfsystem MTS 810 / TestStar mit einer selbst-entwikkelten Software eingesetzt. Die Tests erfolgten mit Dreipunktbiegeproben in Charpy-Geometrie (10x10x55 mm), die seitgekerbt (20%) und mit einem Ermüdungsanriß versehen wurden. Die Temperierung erfolgte in einem Flüssigkeitsbad. Abb. 8 zeigt eine Prinzipskizze der verwendeten Versuchstechnik.

Folgende Versuchsbedingungen wurden gewählt:

- Geschwindigkeit 0.35 mm/min
- Abstand der Teilentlastungen 0.075 mm
 Betrag der Teilentlastungen 15 %
 Stützweite 40 mm
- Temperaturbereich -115 .. 100 °C

Die Bestimmung der Compliance erfolgte auf der Basis von Rißöffnungsmessungen. Zur Bestimmung von J_i wurden die Stretchzonen manuell an rasterelektronenmikroskopischen Aufnahmen markiert und kontinuierlich von einem Bildverarbeitungssystem ausgemessen.

4.2 Material

Tabelle 1 enthält die Bezeichnung und den Wärmebehandlungszustand und Tabelle 2 die chemische Zusammensetzung der untesuchten Materialien.

Untersucht wurden Proben der russischen Reaktordruckbehälterstähle 15Ch2MFA,

15Ch2NMFA und 10ChNMAA (Schweißmetall). Die Proben wurden aus Positionen von 1/4 bis 3/4 der Dicke der Schmiedestücke entnommen und sind für den Grundwerkstoff in L-S-Richtung und das Schweißmetall in T-S-Richtung orientiert. Weiterhin wurden Proben des Stahls 18Ch2MFA, die aus einem Segment eines Reaktordruckbehälterdeckels entnommen wurden, untersucht.

Zum Vergleich standen Proben der ASTM-Reaktordruckbehälterstähle A533B Class 1 (Codebezeichnung JRQ), A508 Class 3 (JFL) sowie Schweißmaterial A508 (JWQ) aus einem internationalen Forschungsprogramm zur Verfügung /20/. Die Proben wurden in T-L-Orientierung (JRQ, JWQ) bzw. L-T-Orientierung (JFL) aus dem Bereich 1/4-T bis 3/4-T der Stahlplatten entnommen.

Als Referenzmaterialien wurden die Stähle 10CrMo9.10 und StE460 verwendet.

4.3 Ergebnisse

Mit den verwendeten Kleinproben ist die Bestimmung gültiger J_{Ie} -Kennwerte nicht möglich, da das Limit für J-kontrolliertes Rißwachstum J_{max} schon im Bereich der Rißinitiierung überschritten wird (Abb.9). Daher erfolgte die Auswertung der Messungen in Anlehnung an EGF P1-90 nach der in Abschnitt 3.2.4 beschriebenen MPA-Methode. Als technischer Kennwert wurde $J_{0.2}$ ermittelt. Im Übergangsgebiet ($\Delta a < 0.2$ mm) wurde das J-Integral bei Einsetzen instabiler Rißausbreitung J_e bestimmt.

Mittels der Einproben-Compliance-Methode konnten für verschiedene Materialien aus einem breiten Zähigkeitsbereich Rißwiderstandskurven bei verschiedenen Temperaturen bestimmt werden. Abbildung 10 zeigt die typische Temperaturabhängigkeit der Rißwiderstandskurven am Beispiel des Referenzmaterial StE460. Mit zunehmender Temperatur verläuft die Rißwiderstandskurve flacher und der technische Rißinitiierungskennwert $J_{0,2}$ nimmt ab.

Abb. 11 zeigt die Rißwiderstandskurven verschiedener Materialien bei Raumtemperatur. Aus beiden Abbildungen ist erkennbar, daß die J-Integrale bei 0.2 mm duktilem Rißwachstum sich deutlich für verschiedene Materialien und Temperaturen unterscheiden. Im Bereich der Stretchzonenbreiten (\approx 50µm) fallen die Rißwiderstandskurven in ein gemeinsames Streuband. Die unterschiedlichen J_i-Werte resultieren dann im wesentlichen aus dem durch Punkte mit größerem Rißwachstum bestimmten Verlauf der Fitfunktion. Offensichtlich überwiegen die Streuungen im Anfangsbereich der Rißwiderstandskurve die materialbedingten Unterschiede in der Rißinitiierungszähigkeit.

Der ASTM-Standard E813 legt einen Maximalfehler für die Rißwachstumsbestimmung von 15% fest. Bei den durchgeführten Messungen wurde ein mittlerer Fehler von 7.6% festgestellt. Damit genügt die verwendete Rißlängenberechnung den Anforderungen des Standards. Einen großen Einfluß auf die Compliance und die daraus berechnete Rißlänge haben Krümmungen der Rißfront. Das setzt der Steigerung der Genauigkeit eine prinzipielle Grenze. Darüber hinaus haben Nebenrißbildung und ungleichmäßiger Rißfortschritt ebenfalls einen erheblichen Einfluß auf die Compliance und damit auf die Rißwiderstandskurve. Diese Einflüsse sind wesentlich weniger evident im Bereich der technischen Rißinitiierungs-zähigkeit. Allerdings ist mit dem technischen Kennwert J_{0.2} nur ein qualitativer Vergleich der Werkstoffe möglich. Bei der verwendeten Probengeometrie liegt die Grenze für J-kontrolliertes Rißwachstum J_{max} bei 100 bis 120 N/mm. Die J_{0.2}-Werte liegen oberhalb dieser Grenze und sind damit keine gültigen Werkstoffkennwerte.

Die Temperaturabhängigkeit der technischen Rißinitiierungszähigkeit zeigen die Abbn. 12 bis 14. Für den Fall der instabilen Rißausbreitung und einem duktilem Rißwachstum von weniger als 0.2 mm wurde das J-Integral bei Beginn der instabilen Rißausbreitung berechnet. Der Vergleich zwischen russischen und ASTM-Stählen zeigt, daß die technischen Rißinitiierungszähigkeiten des russischen Stahls 15Ch2NMFA und des ASTM-Stahls A508 Cl. 3 im duktilen Bereich vergleichbar sind. Die Spröd-Duktil-Übergangstemperatur des russischen Stahl liegt niedriger (Abb. 15). Der Ni-arme, V-haltige Stahl 15Ch2MFA besitzt eine deutlich niedrigere technische Rißinitiierungszähigkeit und eine höhere Übergangstemperatur. Die beiden Chargen unterscheiden sich dabei beträchtlich.Im Vergleich zum Schweißmaterial A508 verhält sich das russische Schweißmetall spröder.

Einen sehr breiten Übergangsbereich mit starker Streuung zeigen die Proben aus der Walzplatte des ASTM-Stahles A533B. Die Hochlagezähigkeit ist vergleichbar mit den Werten des Schmiedestücks JFL (A508).

Mit dem $J_{0,2}$ -T-Kurven der Referenzmaterialien wird ein Wertebereich erfaßt, in den näherungsweise alle Ergebnisse der untersuchten RDB-Stähle einzuordnen sind. Damit sollten methodische Untersuchungen an den beiden Stählen vernünftige Transformationen zum Verhalten der RDB-Stähle erlauben. Von Nachteil ist allerdings die starke Streuung im Zähbereich des Stahles 10CrMo9.10. Sie gehen konform mit dem Auftreten von Aufreissungen senkrecht zur Rißfront, die durch eine Walzzeiligkeit verursacht werden. Abb. 16 zeigt einen Vergleich zwischen $J_{0,2}$ -T- und J_i -T-Verlauf am Beispiel des Materials 10ChNMAA. Die J_i -Werte schließen sich nicht an die J_e -Werte im Übergangsbereich an, da die J_e -Werte noch ein duktiles Rißwachstum < 0.2 mm enthalten.

4.4 Berechnung der Rißinitiierungszähigkeit aus der Kraft-Lastpunktverschiebungskurve

Für die bei Raumtemperatur geprüften Kurven wurden die Rißinitiierungspunkte nach Ullrich und Krompholz aus der Kraft-Lastpunktverschiebungskurve berechnet. Die ermittelten Werte liegen zwischen J_i und $J_{0,2}$ (Tab. 3). Es zeigt sich eine gute Korrelation zwischen den berechneten Rißinitiierungspunkten und den technischen Kennwerten $J_{0,2}$ für alle Materialien (Abb. 17). Bei den mittels der Stretchzone ermittelten Rißinitiierungspunkten zeigt sich eine sehr gute Korrelation für die russischen Stähle und die Referenzstähle. Die ASTM-Stähle ordnen sich in diesen Zusammenhang nicht ein. Bei Berücksichtigung aller Werte erhält man eine sehr schlechte Korrelation. Ursache dafür kann die Interpretation des Stretch-zonenbereiches bei der rasterelektronenmikroskopischen Bruchflächenauswertung sein. Die Festlegung der Grenze der Stretchzone ist in der zweidimensionalen Bruchflächenprojektion zu einem beträchtlichen Maß subjektiv.

Zusammenfassend kann gesagt werden, daß die Methode sinnvolle Rißinitiierungszähigkeiten liefert, die gut mit den technischen Ersatzkennwerten korreliert und damit als Näherungswert für J_i verwendbar sind.

Damit steht eine Methode zur Verfügung, mit der auf einfachste Art und Weise Näherungswerte für die Rißinitiierungszähigkeiten sowohl im quasistatischen als auch im dynamischen Fall bestimmt werden können. Voraussetzung ist lediglich das Auftreten eines Maximums der Kraft-Lastpunktverschiebungskurve.

5. Korrelationen zu Ergebnissen des Kerbschlagversuchs

Mit den untersuchten Materialien wird ein großer Zähigkeitsbereich überstrichen. Die Kerbschlagarbeiten im Hochlagenbereich liegen im Bereich von 85 bis 250 J, die technische Rißinitiierungszähigkeit $J_{0,2}$ liegt im Bereich von 134 bis 242 N/mm. (Tab. 3) An Hand dieses Datenmaterials sollen Korrelationen zwischen Rißinitiierungszähigkeiten und Kerbschlagarbeiten untersucht werden, mit dem Ziel einen Beitrag zur Entwicklung einer Methode zur Bestimmung von bruchmechanischen Kennwerten aus dem Kerbschlagversuch zu leisten.

In der Literatur werden eine Reihe von Ansätzen für Korrelationen zwischen Riß-widerstandskurven oder Rißinitiierungszähigkeiten und der Kerbschlagarbeit angegeben. Dabei werden 2 Lösungswege beschritten:

- a) direkte Korrelationen zwischen Kerbschlagarbeit und Rißinitiierungszägigkeit und
- b) die Berechnung der kompletten Rißwiderstandskurve aus der Kerbschlagarbeit.

5.1 Korrelationen zwischen Rißinitiierungszähigkeit und Kerbschlagarbeit

In Abb. 18 sind der technische Rißinitiierungswert $J_{0,2}$ und die Rißinitiierungzähigkeit J_i bei Raumtemperatur über der Kerbschlagarbeit in der Hochlage aufgetragen. Die Hochlagenwerte wurden dabei dem tanh-Fit der A_v-T-Kurve entnommen.

In erster Näherung kann sowohl für die technische Rißinitiierung $J_{0,2}$ als auch für den Rißinitiierungspunkt J_i eine lineare Abhängigkeit von der Kerbschlagarbeit postuliert werden. Dabei fallen alle $J_{0,2}$ -Werte in ein Streuband von \pm 40 N/mm um die Ausgleichsgerade. Die Ji-Werte zeigen eine Streubreite von \pm 30 N/mm. Es fallen jedoch 5 Materialien auf, die bei annähernd gleicher Rißinitiierungszähigkeit deutlich unterschiedliche Kerbschlagarbeiten aufweisen.

Somit scheint eine lineare Näherung des Zusammenhangs zwischen Rißinitiierungszähigkeit und Kerbschlagarbeit wie in /21/ nicht ausreichend zu sein. Zusätzlich muß berücksichtigt werden, daß steiler verlaufende Rißwiderstandskurven zu einer höheren Kerbschlagarbeit führen. Verschiedene Materialien wie z. B. 15Ch2MFA/Charge 3 und StE460 oder 10CrMo9.10 und A508 haben im Rahmen der Fehlergrenzen identische Rißinitiierungs-zähigkeiten, jedoch deutlich unterschiedliche Kerbschlagarbeiten. Dabei verlaufen die Rißwiderstandskurven der Materialien mit den höheren Kerbschlagarbeiten bei einem Rißwachstum über 0.2 mm steiler.

Von Roos /22/ ist auf der Basis statistischer Auswertungen des umfangreichen an der MPA Stuttgart vorliegenden Datenmaterials eine Korrelation der Form

$$\overline{J_i} \pm n\sigma = c_1 + c_2 A_v^2 + c_3 A_v^3 \tag{17}$$

n	cı	c ₂	C ₃
-2	21.811	0.003161	-1.395 -10-6
0	48.06	0.0017	15.47 -10-6
2	78.75	-0.000482	35.58 -10-6

mit den folgenden Koeffizienten aufgestellt worden:

Der Verlauf dieser Kurve und das 2σ -Streuband ist in Abb. 19 dargestellt. Bis auf 2 Ausnahmen liegen die $J_{0,2}$ -Punkte innerhalb dieses Streubandes. Die aus der Stretchzonenbreite ermittelten Rißinitiierungszähigkeiten liegen jedoch unterhalb des Streubandes. Da die Beziehung (17) für durch Stretchzonenmessungen ermittelte J_i -Werte aufgestellt worden ist, sind die Ergebnisse dieser Arbeit nicht mit denen nach /22/ konsistent. Es muß angenommen werden, daß Unterschiede in der Stretchzonenmessung hierfür verantwortlich sind.

Der Ansatz ist prinzipiell in der Lage, den aus Abb. 19 erkennbaren geringen Einfluß kleiner Kerbschlagarbeiten auf die Rißinitiierungszähigkeit zu beschreiben. Die von Roos angegebenen Parameter sind aber für die vorliegenden Messungen nicht brauchbar. Daher wurden für die im FZR gemessenen Rißinitierungszähigkeiten eigene Rechnungen mit dem oben genannten Ansatz durchgeführt. (Abb. 20) Es ergeben sich die folgenden Koeffizienten:

	c ₁	C ₂	с ₃
J _{0.2}	114.805	7.247 -10-4	6.077 - 10 ⁻⁶
J _i	60.331	-0.00176	1.0211 -10-3

Der Ansatz beschreibt die Korrelation besser als die lineare Korrelation nach Abb. 18. Die $J_{0,2}$ -Werte liegen in einem Streuband von \pm 30 N/mm und die J_i -Werte in einem Streuband von \pm 20 N/mm um die zugehörige Fitkurve. Damit ist es möglich den Rißinitierungswert $J_{0,2}$ bzw. J_i aus der Kerbschlagarbeit in der Hochlage abzuschätzen. Im ungünstigsten Fall ergibt sich ein relativen Fehler von 20% für $J_{0,2}$ und 35% für J_i .

5.2 Berechnung von Rißwiderstandskurven aus der Kerbschlagarbeit

In /21/ gibt Aurich ein Verfahren zur Berechnung der Rißwiderstandskurve einer ISO-V-Probe und darauf aufbauend zur Abschätzung der Rißwiderstandskurve einer CT-Probe an. Es wurde beobachtet, daß für das stabile Rißwachstum bis $\Delta a=1$ mm schon ca. 40% der Kerbschlagarbeit verbraucht werden. In /21/ wird nun versucht durch verschiedene Funktionen die Abhängigkeit der verbrauchten Arbeit U vom Rißwachstum Δa anzunähern. Aus dieser Funktion U(Δa) kann dann unter Verwendung des Formalismus der Norm ASTM E813 eine Rißwiderstandskurve berechnet werden. Man erhält für die ISO-V-Probe :

$$(J_R)_{ISO-V} = [(J_R)_{ISO-V}]_{\Delta a=0} + \left[\frac{1.03*(0.4*A_{VH})}{B\sqrt{a_0}\sqrt{W-a_0}}\ln\frac{\sqrt{W-a_0}+\sqrt{\Delta a}}{\sqrt{W-a_0}-\sqrt{\Delta a}}\right]$$
(18)

Für die CT-Probe wird daraus abgeleitet:

$$(J_R)_{CT} = K_1 \frac{A_{\nu H}}{B(W-a_0)} + \frac{1}{K_2} [(J_R)_{ISO-V} - [(J_R)_{\Delta a=0.1mm}]_{ISO-V}]$$
(19)

mit den Parametern K_1 =0.115 und K_2 =2.8 (bei T=20°C).

Damit ergibt sich beim Referenzmaterial StE460 eine gute Übereinstimmung von berechneten und gemessenen Rißwiderstandskurven für CT-Proben (Abb. 21) für $\Delta a > 0.1$ mm. Der Verlauf der Rißwiderstandskurve ist jedoch abhängig von Probengeometrie und -größe. Die Rißwiderstandskurve der kleineren Dreipunktbiegeprobe liegt bei höheren Werten. Bei Stählen mit höheren Zähigkeiten zeigt sich der Geometrieeinfluß erst bei einem größeren Rißwachtum. Die Rißwiderstandskurve des russischen RDB-Stahls 15Ch2NMFA wird bis zu einem Rißwachstum von 0.5 mm gut durch den Ansatz nach Aurich beschrieben (Abb. 22). Andere Stähle zeigen ein ähliches Bild.

Eine andere Möglichkeit Zusammenhänge zwischen Kerbschlagarbeit und Rißwiderstandskurven zu beschreiben liefert die von Dougan /23/ empirisch ermittelte Formel zur Berechnung von J-R-Kurven aus der Kerbschlagarbeit:

$$J=175.13 \cdot C_1 \left(\frac{\Delta a}{25.4}\right)^n$$
 (20)

mit den folgenden Koeffizienten:

$$c_1 = 0.144 \left(\frac{A_v}{135.82}\right) + 5.382 \left(\frac{A_v}{135.82}\right)^2$$
 (21)

$$n = \frac{0.473 \cdot x^3}{14.421 + x^3}$$
(22)

$$x = c_1 + 1.5 \frac{R_f}{689.48}$$
 (23)

Dabei ist A_v die Kerbschlagarbeit in der Hochlage und R_f die Fließspannung. In Abb. 23 ist das so berechnete J-Integral in Abhängigkeit von der Kerbschlagarbeit für ein Rißwachstum von 0.2 mm und von 0.05 mm dargestellt. Es wurde mit einer mittleren Fließspannung gerechnet, da ihr Einfluß gegenüber der Kerbschlagarbeit gering ist. Die Kurve für 0.2 mm liegt innerhalb des von Roos angegebenen 2 σ -Streubandes. Der Ansatz beschreibt zwar den abnehmenden Einfluß der Kerbschlagarbeit auf die Rißinitiierungszähigkeit unter 150J, liefert jedoch in diesem Bereich viel zu geringe Werte. Im gesamten Bereich treten größere Abweichungen als beim Polynomansatz auf. Die mit der Stretchzonenbreite bestimmten Rißinitiierungszähigkeiten liegen unterhalb der Kurve für 0.05 mm Rißwachstum.

Der Ansatz ist damit nicht geeignet, um für die getesteten Materialien und Probengeometrie Rißinitiierungszähigkeiten und Rißwiderstandskurven aus der Kerbschlagarbeit abzuschätzen.

6. Schlußfolgerungen und Ausblick

Mit der beschriebenen Methode und Versuchstechnik kann das unterschiedliche Rißinitiierungs- und Rißwachstumsverhalten von verschiedenen Stählen quantitativ untersucht werden. Es konnten zuverlässig Rißwiderstandskurven und technische Rißinitiierungszähigkeiten für eine Reihe von Reaktordruckbehälterstählen und Referenzmaterialien aus einem breiten Zähigkeitsbereich bestimmt werden. Um gültige, für Sicherheitsbewertungen verwendbare Werkstoffkennwerte zu bestimmen, ist jedoch die Bestimmung von physikalischen Rißinitiierungspunkten notwendig. Die Ermittlung von J_i auf der Basis der Stretchzonenweite ist sehr aufwendig und besonders im Spröd-duktil-Übergangsbereich schwierig. Aus dem vorliegenden Datenmaterial ergeben sich eine Reihe von Hinweisen darauf, daß die Kriterien zur Festlegung der Stretchzonenbreite neu zu überdenken sind. Durch einen Interlaborvergleich sollen die hier erzielten Ergebnisse überprüft werden.

Mit der Berechnung von J_i aus der Kraft-Durchbiegungskurve nach /18/ steht eine einfache Methode zur Abschätzung von Rißinitiierungszähigkeiten im Hochlagenbereich zur Verfügung. Die Methode versagt aber im Übergangsgebiet, wenn der Bruch im ansteigenden Teil der Kraft-Lastpunktverschiebungskurve auftritt. Es muß daher weiter nach einem geeigneten physikalischen Verfahren zur Bestimmung des Rißinitiierungspunktes gesucht werden.

Einen Schwerpunkt in der aktuellen Forschung stellt die Untersuchung des Zusammenhanges zwischen bruchmechanischen und mechanisch-technologischen Kennwerten dar. Das Ziel besteht darin, auf der Basis von relativ einfachen konventionellen Tests, wie z. B. dem Kerbschlagbiegeversuch, bruchmechanische Kennwerte zu ermitteln. Es wurden verschiedene, aus der Literatur bekannte Korrelationen zwischen der Kerbschlag-arbeit in der Hochlage und der Rißinitiierungszähigkeit untersucht. Eine Korrelation kann gut durch einen Polynomansatz nach Roos beschrieben werden. Nach Arbeiten von Aurich sowie von Dougan kann aus der Kerbschlagarbeit eine komplette Rißwiderstandskurve für eine CT-Probe berechnet werden. Das Verfahren nach Aurich liefert eine gute Übereinstimmung zwischen berechneten und gemessenen Rißwiderstandskurven für CT-Proben. Mit Einschränkungen kann auch die Rißwiderstandskurve einer Dreipunktbiege-probe abgeschätzt werden. Bei hohen Zähigkeiten und einem Rißwachstum unter 0.5 mm kann der geometriebedingte Unterschied zwischen berechneter und mittels einer Dreipunktbiegeprobe ermittelter Rißwiderstandskurve vernachlässigt werden. Damit kann das Verfahren nach Aurich auch auf die russischen Reaktordruckbehälterstähle angewendet werden. Es muß jedoch weiter untersucht werden, ob mit einem modifizierten Ansatz Rißwiderstandskurven für Dreipunktbiegeproben im gesamten Zähigkeitsbereich berechnet werden können.

Damit steht ein Instrumentarium zur Verfügung, um näherungsweise für die interessierenden Druckbehälterstähle Rißinitiierungszähigkeiten und Rißwiderstandskurven aus der Kerbschlagarbeit abzuschätzen. In weiteren Arbeiten muß jedoch die Temperaturabhängigkeit der Rißwiderstandskurve berücksichtigt werden.

Der Ansatz nach Dougan erwies sich als ungeeignet zur Beschreibung der gemessenen Rißwiderstandskurven.

In Fortsetzung dieser Arbeit sind die beschriebenen Methoden für die Untersuchung von Reaktordruckbehälterstählen in verschiedenen Bestrahlungs- und Ausheilzuständen anzuwenden.

٠

Verzeichnis der verwendeten Symbole und Abbkürzungen

а	Rißlänge
a ₀	Anrißlänge
A _{vH}	Kerbschlagarbeit in der Hochlage
В	Probendicke
ds	Linienelement
E	Elastizitätsmodul
J_{calc}	nach Ullrich und Krompholz berechnetes J-Integral bei Rißinitiierung
J_i	J-Integral bei Rißinitiierung
J_{Ic}	kritisches J-Integral
J _{0.2}	J-Integral bei 0.2 mm duktilem Rißwachstum
R _e	Streckgrenze
R _f	Fließspannung
T _i	Spannungsvektor
U	Verformungsenergie
U ₀	Verformungsenergie einer Probe ohne Riß
u _i	Verschiebungsvektor
V_{pl}	plastische Deformation
W	Probenbreite
W _s	Formänderungsenergiedichte
Δa_i	Breite der Stretchzone
μ	Schubmodul
ν	Poissonzahl
σ_y	Fließspannung, $\sigma_y = R_f$
COD	Rißöffnung
CT-Probe	Kompaktzugprobe
SZW	Stretchzonenweite
USE	Kerbschlagarbeit in der Hochlage

Literaturverzeichnis

- /1/ Eshelby, J. D., "A Continuum Theory of Lattice Deffects", Progress in Solid State Physics, Academic Press New York (1956).
- /2/ Rice, J. R., "A Path-independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks", Journal of Applied Mechanics 35 (1968), pp. 379-386.
- /3/ Landes, J. D., Begley, J. A., "The J-integral as a Fracture Criterion. Fracture Toughness", Proceedings of the 1971 National Symposium on Fracture Mechanics, Part II, ASTM STP 514 (1972), pp. 1-20.
- Rice, J. R., "Mathematical Analysis in the Mechanics of Fracture", Fracture Vol. II,
 H. Libowitz Editor, New York and London: Academic Press, 1969, p. 191.
- /5/ Landes, J. D., Begley, J. A., "Test Results from J-integral Studies an Attempt to Establish a J_{Ie} Testing Procedure", Bericht der Westinghouse Research Laboratories, Scientific Paper 73-1E7-FMPWR-P3 (1973).
- /6/ Werkstoffprüfung, Herausgeber H. Blumenauer, Deutscher Verlag für Grundstoffindustrie, Leipzig, 1977.
- /7/ ASTM E813-89, Annual Book of ASTM Standards, Vol 03.01. American Society for Testing and Materials, Philadelphia, 1990.
- /8/ EGF P1-90: Recommendations for Determining the Fracture Resistance of Ductile Materials, European Group on Fracture, 1989.
- /9/ "Ermittlung von Rißinitierungswerten und Rißwiderstandskurven bei Anwendung des J-Integrals", DVM-Merkblatt DVM002, Deutscher Verband für Materialprüfung, 1987
- /10/ Sutton, G. E., Vassilaros, M. G., "Study of the Effect of Elastic Unloading on the J-R-Curves from Compact Specimens", NUREG-Report CR-4283, 1985.
- /11/ Steenkamp, P. A. J. M., "Investigation into the Validity of J-based Methods for the Prediction of Ductile Tearing and Fracture", Dissertation, Technische Hochschule Delft, 1986.
- /12/ Lottermoser, J., " Schallemissionsmessungen an bruchmechanischen Proben", Vorträge der 10 Sitzung des Arbeitskreises Bruchvorgänge, Deutscher Verband für Materialprüfung e. V., 1979.
- /13/ Winkler, S., "Magnetische Emission Ein neues Brucherkennungsverfahren", Bericht T3/88, Fraunhofer-Institut f
 ür Werkstoffmechanik, Freiburg, 1988.

- /14/ Eisele, U., Roos, E., "Bestimmung bruchmechanischer Initiierungskenngrößen auf der Basis des J-Integrals", Materialprüfung 31(1989)10.
- /15/ Eisele, U., Roos, E., "Determination of Material Characteristic Values in Elastic-Plastic Fracture Mechanics by Means of J-Integral Crack Resistance Curves", Journal of Testing and Evaluation 16(1988)1.
- /16/ Kußmaul, K., Klenk, A., Link, T., "Ermittlung von Rißwiderstandskurven mit Hilfe der Key-Curve-Methode", 24. Vortragsveranstaltung des DVM-Arbeitskreises Bruchvorgänge, Aachen, 1992.
- /17/ Reese, E. D., Schwalbe, K.-H., "The Linear Normalization Technique an Alternative Procedure for Determining J-R-Curves from a Single Specimen Test Record Based on Landes' Normalization Method", Fatigue & Fracture of Engineering Materials and Structures 16(1993)3.
- /18/ Ullrich, G., Krompholz, K., "Bestimmung der Initiation des stabilen Rißwachstums (J-Integral) auf der Basis des Theorems der übereinstimmenden Zustände", Materialprüfung 28(1986)3.
- /19/ Ullrich, G., Krompholz, K., "Fracture Mechanics Investigations within the Swiss Surveillance Programme for the Pressure Vessels of Modern Nuclear Power Plants", IAEA Specialists Meeting on "Irradiation Embrittlement and Optimization of Annealing", Paris, 1993.
- /20/ Viehrig, H.-W., Bergmann, U., Böhmert, J., Richter, H., Final Report on Contribution of the Research Center Rossendorf Inc. to IAEA Co-ordinated Research Programme
 "Optimizing of Reactor Pressure Vessel Surveillance Programmes and Their Analysis Phase 3", Rossendorf, 1993.
- /21/ Aurich D., "Analyse und Weiterentwicklung bruchmechanischer Versagenskonzepte", Forschungsbericht 174, Bundesanstalt f
 ür Materialforschung und -pr
 üfung, Berlin, 1990.
- /22/ Roos E., "Grundlagen und notwendige Voraussetzungen zur Anwendung der Rißwiderstandskurve in der Sicherheitsanalyse angerissener Bauteile", Fortschritt-Berichte VDI, Reihe 18 Nr. 122, VDI-Verlag Düsseldorf, 1993
- /23/ Dougan J. R., "Relationships between Charpy V-Notch Impact Energy and Fracture Toughness", NUREG/CR-2362, ORNL/TM-7921, 1982.

Verzeichnis der Abbildungen

- Abb. 1: Typische Kraft-Lastpunktverschiebungskurve beim Compliance-Verfahren
- Abb. 2: Potentialverlauf bei der Gleichspannungspotentialmethode (nach EGF P1-90)
- Abb. 3: Potentialverlauf bei der Wechselspannungspotentialmethode (nach EGF P1-90)
- Abb. 4: Auswertung der J-∆a-Kurve nach ASTM E813
- Abb. 5: Bestimmung von Δa -Werten mit der Normalisierungsmethode
- Abb. 6a: Kraft-Durchbiegungskurve einer Probe des Stahls 10CrMo9.10
- Abb. 6b: Nach der Normalisierungsmethode berechnete Rißwiderstandskurve
- Abb. 7: Kraft-Lastpunktverschiebungsdiagramm zur Bestimmung des Rißinitiierungspunktes nach Krompholz und Ullrich /18, 19/
- Abb. 8: Prinzipskizze der Compliance-Versuchstechnik
- Abb. 9: Gültigkeitsgrenzen des J-Integrals nach ASTM E813
- Abb. 10: Einfluß der Temperatur auf die Rißwiderstandskurve im duktilem Bereich
- Abb. 11: Rißwiderstandskurven verschiedener Stähle bei Raumtemperatur
- Abb. 12: J-T-Diagramm für die russischen Druckbehälterstähle
- Abb. 13: J-T-Diagramm für die ASTM-Stähle A533B Cl. 1 (JRQ), A508 Cl. 3 (JFL) und Schweißgut zu A508 Cl. 3 (JWQ)
- Abb. 14: J-T-Diagramm für die Referenzmaterialien
- Abb. 15: Vergleich der J-T-Kurven der Stähle 15Ch2NMFA und A508 Cl. 3 (JFL)
- Abb. 16: Vergleich von J_{0.2}-T- und J_i-T-Verlauf für das Schweißgut 10ChNMAA
- Abb. 17: Korrelation zwischen experimentell bestimmten und nach Krompholz und Ullrich berechneten Rißinitiierungskennwerten
- Abb. 18: Korrelationen zwischen Rißinitiierungszähigkeiten und Kerbschlagarbeit
- Abb. 19: Korrelation zwischen Rißinitiierungszähigkeit und Kerbschlagarbeit nach Roos
- Abb. 20: Korrelation zwischen Rißinitiierungszähigkeit und Kerbschlagarbeit (eigene Rechnung)
- Abb. 21: Gemessene und nach Aurich berechnete Rißwiderstandskurve für das Referenzmaterial StE460
- Abb. 22: Gemessene und nach Aurich berechnete Rißwiderstandskurve für den Druchbehälterstahl 15Ch2NMFA
- Abb. 23: Vergleich zwischen technischer und physikalischer Rißinitierungszähigkeit mit den aus der Kerbschlagarbeit nach Dougan /23/ berechneten J-Integral

Verzeichnis der Tabellen

- Tab. 1: Werkstoffe
- Tab. 2: Chemische Zusammensetzung der untersuchten Werkstoffe
- Tab. 3: Kritische J-Integrale bei Raumtemperatur und Kerbschlagarbeit in der Hochlage

Tab. 1: Werkstoffe

Material	Charge	Wärmebehandlung
russischer RDB- Stahl	2	nicht bekannt
Grundwerkstoff 15Ch2MFA	3	1000°C/10h/Öl + 680°C/29h/Luft
russischer RDB- Stahl	10	925°C/8h/Wasser + 625°C/18.5h/Luft
15Ch2NMFAA	11	915°C/8h/Wasser + 645°C/4.5h/im Ofen auf 400°C + 625°C/6.5h/im Ofen auf 400°C/ + 650°C / 9.5h/ im Ofen auf 400°C/ Luft
russischer RDB- Stahl Schweißmetall 10ChNMAA	17	620°C/4.5h + 625°C/6.5h + 650°C/9.5h/im Ofen auf 400°C/Luft
russischer RDB- Stahl Grundwerkstoff 18Ch2MFA		1000°C/Öl + 680-720°C/Luft
ASTM RDB-Stahl Grundwerkstoff A508 Cl. 3	JFL	650°C/4h + 880°C/9h/Wasser + 640/9h /Luft
ASTM RDB-Stahl Grundwerkstoff A533-B Cl.1	JRQ	Normalgeglüht 900°C + 880°C/abgeschreckt + 665°C/12h + 620^C/40h
ASTM RDB-Stahl Schweißmetall zu A508	JWQ	UP-Schweißung + 620°C 40h
warmfester Stahl 10CrMo9.10		luftvergütet entsprechend DIN 17155
höherfester Baustahl StE460		normalgeglüht

Material	Charge	С	Mn	Si	Cr	Ni	Mo	v	S	Р	Cu	Al
RDB-Stahl 15Ch2MFA	2	0.14	0.25	0.44	2.82	0.12	0.68	0.29		0.014	0.12	
	3	0.17	0.26	0.45	2.60	0.12	0.67	0.30		0.024	0.12	
RDB-Stahl	10	0.15	0.31	0.48	2.21	1.11	0.58	0.10		0.012	0.07	
15Ch2NMFAA	11	0.15	0.27	0.47	2.08	1.30	0.57	0.10		0.013	0.13	
RDB-Stahl 10ChNMAA		0.06	0.37	0.82	1.65	1.72	0.66	0.10	0.008	0.008	0.04	
RDB-Stahl 18Ch2MFA		0.16	0.41	0.27	2.5	0.13	0.65	0.29	0.009	0.012	0.10	<0.003
RDB-Stahl A508 Cl. 3	JFL	0.17	1.42	0,25	0.16	0.75	0.52	0.004	0.002	0.004	0.01	0.014
RDB-Stahl A508	JWQ	0.09	1.29	0.30	0.04	1.10	0.48	0.002	0.005	0.026	0.26	0.011
RDB-Stahl A533-B Cl.1	JRQ	0.19	1.41	0.25	0.12	0.84	0.50	0.003	0.004	0.019	0.14	0.012
10CrMo9.10 DIN 17555		max 0,15	max 0,70	max 0,50	max 2,50	**	max 1,10		max 0,030	max 0,035	0,30	-
StE460		0,17	1,52	0,28	0,04	0,62	0,01	0,18	0,009	0,009	0,03	0,010

Tab. 2: Chemische Zusammensetzung der untersuchten Werkstoffe (in Masse-%)

Material	Probe	J _{0.2} [N/mm]	J _{calc} [N/mm]	J _i [N/mm]	USE [J]
15Ch2MFA Charge 2	22	185	92.2	*)	211
15Ch2MFA Charge 3	2	136	54.3	*)	171
15Ch2MFA Charge 3	1	161	69	64	171
15Ch2NMFA(A) Charge 10	C19	197	97.2	85	196
10ChNMAA Charge 17	1	134	66.0	63	110
18Ch2MFA Lage A	A18	134	56.9	*)	142
18Ch2MFA Lage B	B18	134	62.4	*)	126
weld metal A508 (JWQ)	235	200	101.0	56	193
A533B (JRQ)	J2/2	216	124.9	70	199
A508 (JFL)	160	234	145.1	63	217
StE460	E29	136	69.6	*)	85
10CrMo9.10	C97	242	136.6	118	250

Tab. 3: Kritische J-Integrale bei Raumtemperatur und Kerbschlagarbeit in der Hochlage

*) Stretchzonenweiten nicht im REM bestimmbar

Abb. 1: Typische Kraft-Lastpunktverschiebungskurve beim Compliance-Verfahren

Abb.2: Potentialverlauf bei der Gleichspannungspotentialmethode (nach EGF P1-90)

Abb. 3: Potentialverlauf bei der Wechselspannungspotentialmethode (nach EGF P1-90)

Abb. 4: Auswertung der J-Da-Kurve nach ASTM E813

Abb. 5: Bestimmung von Δa -Werten mit der Normalisierungsmethode

Abb. 6a: Kraft-Durchbiegungskurve einer Probe des Stahls10CrMo9.10

Abb. 6b: nach der Normalisierungsmethode berechnete Rißwiderstandskurve

Abb. 7: Kraft-Lastpunktverschiebungsdiagramm zur Bestimmung des Rißinitiierungspunktes nach Krompholz und Ullrich /18, 19/

Abb. 8: Prinzipskizze der Compliance-Versuchstechnik

 Abb. 9:
 Gültigkeitsgrenzen des J-Integrals nach ASTM E813 und Rißwiderstandskurve

 einer Dreipunktbiegeprobe des Stahls StE460

Abb. 10:Einfluß der Temperatur auf die Rißwiderstandskurve im duktilem BereichamBeispiel des höherfesten Baustahls StE460

Abb. 11: Rißwiderstandskurven der Stähle StE460, 15Ch2NMFA und A508 Cl. 3 bei Raumtemperatur

Abb. 12:Temperaturabhängigkeit des J-Integrals bei Rißinitiierung für die russischen
RDB-Stähle 15Ch2MFA, 15Ch2NMFA und das Schweißgut 10ChNMAA

Abb. 13: Temperaturabhängigkeit des J-Integrals bei Rißinitiierung für die ASTM-Stähle A533B Cl. 1 (JRQ), A508 Cl .3 (JFL) und das Schweißgut zu A508 Cl. 3 (JWQ)

Abb. 14: Temperaturabhängigkeit des J-Integrals bei Rißinitiierung für die Referenzmaterialien 10CrMo9.10 und StE460

Abb. 16: Vergleich von $J_{0,2}$ -T- und J_i -T-Verlauf für das RDB-Schweißgut 10ChNMAA

Abb. 17: Korrelation zwischen experimentell bestimmten und nach Krompholz und Ullrich berechneten Rißinitiierungskennwerten

Abb. 18: Korrelationen zwischen Rißinitiierungszähigkeiten und Kerbschlagarbeit

,

Abb. 19: Korrelation zwischen Rißinitiierungszähigkeit und Kerbschlagarbeit nach Roos |22|

.

Abb. 20: Korrelation zwischen Rißinitiierungszähigkeit und Kerbschlagarbeit (eigene Rechnung)

Abb. 21: Gemessene und nach Aurich berechnete Rißwiderstandskurve für das Referenzmaterial StE460

Abb. 22: Gemessene und nach Aurich berechnete Rißwiderstandskurve für den Druchbehälterstahl 15Ch2NMFA

Abb. 23: dem aus der Kerbschlagarbeit nach Dougan /23/ berechneten J-Integral Vergleich zwischen technischer und physikalischer Rißinitiierungszähigkeit mit