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ABSTRACT 

Systemic fungal infection is a life-threatening problem. Anti-fungal drugs are the most 

effective clinical strategy to cure such infections. However, most current anti-fungal drugs either 

have high toxicity or have a narrow spectrum of effect. Meanwhile, anti-fungal drugs are losing 

their clinical efficacy due to emerging drug resistance. To protect us from these deadly 

pathogenic fungi, scientists need to study new drug targets and to solve problems related to drug 

resistance.  

The cell wall is essential for fungal cell survival and is absent from animal cells, so it is a 

promising reservoir for screening safe and effective drug targets. Alpha-1,3-glucan is one of the 

major cell wall carbohydrates and is important for the virulence of several pathogenic fungi. In 

this thesis, molecular biology and microscopy techniques were used to investigate the function 

and the synthesis process of α-1,3-glucan in the model fungus A. nidulans.  

My results showed that α-1,3-glucan comprises about 15% of A. nidulans cell wall dry 

weight, but also that α-1,3-glucan does not have an important role in cell wall formation and cell 

morphology. Deletion of α-1,3-glucan only affects conidial adhesion and cell sensitivity to 

calcofluor white. In contast, elevated α-1,3-glucan content can cause severe phenotypic defects. 

To study the α-1,3-glucan synthesis process, I systematically characterized four proteins, 

including two α-1,3-glucan synthases (AgsA and AgsB) and two amylase-like proteins (AmyD 

and AmyG). Results showed AgsA and AgsB are both functional synthases. AgsB is the major 
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synthase due to its constant expression. AgsA mainly functions in conidiation stages. AmyG is a 

cytoplasmic protein that is critical for α-1,3-glucan synthesis, likely being required for an earlier 

step in the synthesis process. In contrast to the other three proteins, AmyD has a repressive effect 

on α-1,3-glucan accumulation. These results shed light on therapeutic strategies that might be 

developed against α-1,3-glucan.  

I also developed a strategy to investigate drug resistance mutations. The tractability of A. 

nidulans and the power of next generation sequencing enabled an easy approach to isolate single 

mutation strains and to identify the causal mutations from a genome scale efficiently. I suggest 

this strategy has applications to study the drug resistance mechanisms of current anti-fungal 

drugs and even possibly future ones.   
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CHAPTER 1 

GENERAL INTRODUCTION 

 
1.1. Fungi are Important for Human Lives 

Fungi are a diverse group of organisms, which are classified as a distinct kingdom, the 

Mycota, in the domain, Eukarya. Evolutionary analysis showed fungi and animals may share a 

common ancestor about a billion years ago (Taylor and Berbee, 2010), so fungi can be seen as 

the ‘distant relatives’ of animals. Although fungi and animals have distinct appearances, they do 

share common characteristics. For example, both fungi and animals are heterotrophic eukaryotic 

organisms, which mean they need to absorb organic food from the environment and digest them 

for energy. To do this, the cells use certain enzymes to release the nutrients from the 

environment (e.g. amylase to hydrolyze starch). Therefore, some metabolic pathways at the 

cellular level are similar between fungi and animals. 

Fungi have two main morphologies: yeast form and filamentous form (Harris, 2011). The 

yeast fungi are unicellular, and they reproduce by budding or fission. The filamentous fungi are 

multicellular, and they reproduce by generating conidia. The filamentous fungi have cell 

differentiation during asexul life cycle and therefore are more complex in respect to morphology. 

However, recent evidence suggested filamentous form is actually the morphology of ancestral 

fungi (Harris, 2011). This tentative statement is still debatable, but there is no doubt that the 

yeast and filamentous fungi have a common mechanism of cell growth based on secretory 

vesicles. As filamentous fungi have more complex growth controls, I will use filamentous fungi 
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as examples to explain the fungal growth. Filamentous fungi are composed of long tubular cells 

called hyphae that exhibited tip localized growth (Kaminskyj and Health, 1996). The polarity of 

hyphal growth is determined by a protein complex called the polarisome (Harris and Momany, 

2003). Then vesicles that contain cell wall-synthesizing enzymes, membrane proteins and 

membrane lipids are transported to the apical regions of hyphae, where they are integrated into 

the cell membrane (Read, 2011). A special fungal organelle complex called the Spitzenkörper is 

the vesicle supply center and directly decides the growth rate of the hyphal tips (Bartnicki-Garcia, 

2002). Cytoskeletal filaments actin and microtubulin, and cell turgor pressure are all involved in 

hyphal tip growth regulation (Bartnicki-Garcia, 2002; Harris and Momany, 2003). The yeast 

fungi have similar growth mechanism as that of filamentous fungi. The yeast cells need the 

polarisome to regulate growth polarity and need vesicles to provide growth materials. The 

Spitzenkörper is not present in yeast cells (Harris and Momany, 2003; Crampin et al. 2005).  

In nature, fungi can live in soil, in water and on/in plants. Most times you may not notice 

their presence. But fungi do have a wide distribution on this planet, even in Antarctica (Fubino et 

al., 2013). These small organisms have irreplaceable roles in nature. Firstly many fungi are 

decomposers that recycle the nutrients on the planet (Barr and Aust, 1994; Hattenschwiler et al., 

2011; Lunghini et al., 2012). For example, leaf litter is difficult to decompose especially for plant 

parts with high lignin content. Some fungi, such as white-rot and brown-rot fungi, can digest 

such materials efficiently (Barr and Aust, 1994, Osono, 2006). Secondly some fungal species 

form symbiotic relationships with plant partners. These symbiotic systems sometimes are 

essential for both sides to survive in stressful terrestrial environments (Rodriguez and Redman, 
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2008; Lee et al., 2013). Not only in plants, fungi are also symbiotic with some animals. Rumen 

fungi are members of microbial consortia that are essential for herbivores (such as cattle and 

sheep) to digest plant materials (Bauchop, 1989; Gordon and Philips, 1998). Otherwise these 

animals would get essentially no carloric value from the food they ate.  

Besides their natural roles, some fungi are also important in industry, especially for 

fermentation. These fungi are used commercially in production of alcoholic beverages, bread and 

many biochemicals (e.g. citric acid) (Bennett, 1998; Nevalaine and Peterson, 2014; Sohier et al., 

2014). Therefore, it is valid to say that nowadays humans could not live on this planet without 

the help from fungi. 

 

1.2. Fungi can be Human Pathogens 

Although fungi have many positive impacts on our lives, they can also be dangerous, 

because they may infect humans. Some fungi can cause superficial infection on our skin and 

nails. These infections usually can be cured by topical therapies (Hawkins and Smidt, 2014). 

However, without proper diagnosis and treatment, even superficial fungal infection can lead to 

chronic problems. 

Some other fungi can cause even more dangerous infections—systemic infections. This 

section will focus on the most common human systemic fungal pathogens. These pathogenic 

fungi include Aspergillus fumigatus, Candida albicans, Histoplasma capsulatum and 

Cryptococcus neoformans (Antinori, 2014; Davis et al., 2014; Hebecker et al., 2014; Perfect, 

2014). A. fumigatus, H. capsulatum and C. neoformans all have worldwide distributions, and C. 
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albicans is a commensal microorganism of human gut flora, so we cannot avoid contacting these 

pathogens. Thanks to our strong immune system, systemic fungal infection mostly happens to 

the individuals with compromised immune system, such as HIV, cancer and transplant patients 

(Lilic, 2012; Davis et al., 2014; Hebecker et al., 2014; Perfect, 2014). However, recent reports 

have pointed out that the infection of healthy individuals is rising (Brown et al., 2012). The 

mortality rate caused by systemic infection ranges from 30% to 50% (Netea and Brown, 2012) or 

higher. So we should be aware that fungal infection has become as heavy a burden on human 

health as other pathogens (bacteria, viruses or parasites) (Netea and Brown, 2012).  

The above mentioned pathogenic fungi are in different morphologies during pathogenesis. 

This requires them to use different mechanisms to fulfill the infection. Aspergillus and Candida 

are in filamentous form during pathogenesis. The cells of these two fungi can germinate in 

human body, and then their hyphae can penetrate into a tissue and invade an organ locally 

(Mavor et al., 2005; Dagenais and Keller, 2009), which causes physical damage to the body. 

Later, fragments of hyphae may disseminate through our circulation system to infect other parts 

of the body (Mavor et al., 2005; Dagenais and Keller, 2009). For Histoplasma and Cryptococcus, 

the invading fungal cells are in yeast form during pathogenesis. When these yeast fungal cells are 

present in our bodies, our innate immune system can recognize them and kill them. Phagocytes 

are the most common ‘killers’ for this job. However, instead of being killed, some fungi can 

survive in phagocytes, and even proliferate within the immune cells (Qin et al. 2011). Eventually, 

these pathogens escape from phagocytes and spread the infection in human body (Qin et al. 

2011).   
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1.3. Fungal Cell Wall is an Essential Structure 

Fungi need cell walls to survive in nature, which is a major distinction between fungi and 

animals. The cell wall is about 30% of the fungal biomass (Gastebois et al., 2009), and cell wall 

related genes are predicted to include as many as one third of the fungal genome (de Groot et al., 

2009). Thus cell wall is a very complex three-dimensional structure. Even with decades of effort 

to characterize individual components, many details about cell wall biosynthesis, composition, 

and maintenance are still poorly understood.  

In general, fungal cell walls are mostly (80-90%) carbohydrate supplemented with proteins 

(Latgé, 2010). The major carbohydrate components of the fungal cell wall are chitin and glucans, 

unlike the cell walls of plants, which contain cellulose (Cosgrove, 2005). Among the fungal cell 

wall components, β-glucan is most extensively studied. Beta-glucan has been shown to be 

essential for some fungal species, including species of Aspergillus and Candida (Douglas et al., 

1997; Firon et al., 2002). Beta-glucan is made from β-glucose subunits connected by 

1,3-glycosidic linkages, and is supposed to be the core of the cell wall of A. fumigatus (Fig.1-1) 

(Latgé, 2007). Beta-glucan covalently binds to other polysaccharides via its side branches, 

especially to chitin.   

http://en.wikipedia.org/wiki/Chitin
http://en.wikipedia.org/wiki/Cellulose
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Fig.1-1 Speculative cell wall structure of Aspergillus species (Modified from Latgé, 2010) 

Chitin is another important cell wall component and it is also considered as part of the core 

structure of the A. fumigatus cell wall (Latgé, 2007). Chitin synthesis and regulation are well 

studied in S. cerevisiae. Among the three chitin synthases in S. cerevisiae, Chs3p is the major 

one. It is responsible for the synthesis of most chitin component in cell wall, especially at the 

budding sites (Shaw et al., 1991; Ziman et al., 1996). The Chs3p needs to bind to an activator 

(Chs4p) to function (Ono et al., 2000). In C. albicans, elevated chitin content can rescue cells 

experimentally challenged by echinocandins (Walker et al., 2008), which block β-glucan 

synthesis. This shows chitin can partially compensate for the lack of β-glucan to stabilize the 

Candida cell wall. In Aspergillus species, usually more chitin synthases are found (e.g. eight 

chitin synthases predicted in A. nidulans). This redundancy makes it harder to study chitin 

function in the Aspergillus cell wall. However, double deletion of CsmA and CsmB, two of the 

major chitin synthases, is lethal for A. nidulans, revealing the critical role of chitin in the cell 

wall (Takeshita et al., 2006).  
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Galactomannan is another major wall carbohydrate. It is composed of a linear core of 

α-mannans with short side chains of β-1,5-galactofuranose (Gastebois et al., 2009). This 

mannan-Galf core structure usually binds to wall proteins or the branches of β-glucan in the cell 

wall (Engel et al., 2012). Studies have shown galactomannan is important for the wild type cell 

wall formation in A. nidulans and some other fungi (El-Ganiny et al., 2008; Engel et al., 2012).  

Apart from these carbohydrate components, the cell wall proteins may also play crucial roles 

in the cell wall formation. Some of the wall proteins are shown to be involved in cell-cell 

interaction, such as adhesion, biofilm formation and mating (Nather and Munro, 2008). But there 

are still many other proteins without clear functions yet. Some of them should have roles in cell 

wall composition. One of the hypotheses is these proteins should be involved in the modification 

of cell wall carbohydrates. The carbohydrate components need to be linked together to form a 

solid but flexible armor outside the cell membrane (Latgé, 2007). However, the linkages between 

carbohydrate components in fungal cell wall are still largely unknown. Right now we know most 

of the carbohydrate fibrils are generated individually and then are deposited to the cell wall 

(Latgé, 2007). The linking steps between fibrils should happen in the cell wall and the wall 

proteins are expected to fulfill these jobs (Latgé, 2007). Understanding the cross-linking between 

carbohydrates during wall maturation is one of the future challenges for the cell wall study. 

Cell wall is considered to be a dynamic structure. The dynamics are controlled by cell wall 

integrity (CWI) signaling pathways. Three different pathways have been reported in different 

fungi (Levin, 2005): the protein kinase C (PKC) cell wall integrity pathway, the high osmolarity 

glycerol response (HOG) pathway, and the Ca2+–calcineurin pathway. CWI pathways regulate 
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wall component synthesis throughout the cell cycle and respond with repair activity when wall 

integrity is challenged by anti-fungal agents or environmental stresses (Garcia-Rodriguez et al., 

2000; Teepe et al., 2007; Fuchs and Mylonakis, 2009; Walker et al., 2010). Therefore, fungal cell 

walls as well as CWI pathways are essential for fungi to survive in nature. 

 

1.4. Alpha-1,3-glucan is a Major Wall Component and is Important for Fungal 
Pathogenesis 

Among the wall carbohydrate components, α-1,3-glucan is thought to be a major one due to 

the biomass analysis in A. fumigatus (Latgé, 2010). Alpha-1,3-glucan is a long chain (more than 

200 units) of α-glucose joined by 1,3-glycosidic linkage; and it is thought to lack side branches 

(Grün et al., 2005; Choma et al., 2013). Some (about 10% of total units) 1,4-glycosidic linked 

α-glucoses are also found at the reducing end of α-1,3-glucan (Grün et al., 2005). Compared to 

β-glucan and chitin, until recently α-1,3-glucan has attracted relatively little research attention. 

Early studies showed α-1,3-glucan was essential for the morphology of S. pombe (Hochstenbach 

et al., 1998), because lack of α-1,3-glucan affected cell wall strength during cytokinesis (Cortés 

et al., 2012). In contrast, α-1,3-glucan is not essential in Paracoccidioides brasiliensis (Pereira et 

al., 2000), C. neoformans (Reese and Doering, 2003), H. capsulatum (Rappeleye et al. 2004), and 

Aspergillus species (Damveld et al., 2005; Henry et al. 2012; Yoshimi et al., 2013). However, 

α-1,3-glucan synthase was still highly expressed by A. nidulans, especially when the cell was 

challenged by echinocandins (Fujioka et al., 2007) that target β-glucan synthase FksA, by 

Calcofluor White (CFW) that inhibits chitin crystallization (Elorza et al., 1983), and by genetic 
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manipulations to reduce galactofuranose (Galf) content (Damveld et al, 2008; Alam et al., 2012). 

In addition, Fujioka et al. (2007) showed that the expression of α-1,3-glucan synthase was 

controlled by PKC signaling pathway. Thus, there is considerable reason to suspect that the 

expression level of α-1,3-glucan is related to cell wall composition, cell function and perhaps 

also to anti-fungal drug sensitivity. 

Recent evidence has pointed out that α-1,3-glucan has important roles for fungal virulence. 

In C. neoformans, loss of α-1,3-glucan led to loss of the capsule, which is an essential structure 

for virulence of this species (Reese et al., 2007). In H. capsulatum and Magnaporthe oryzae, 

α-1,3-glucan was shown to be the outside layer of cell wall, which suppresses host immune 

response to facilitate a successful infection (Rappleye et al. 2007; Fujikawa et al., 2012). In A. 

fumigatus, loss of α-1,3-glucan caused remodeling of cell wall architecture, which led to 

avirulence (Beauvais et al., 2013). Although the role of α-1,3-glucan in the cell wall remains 

controversial, the fact is clear that α-1,3-glucan is important for full virulence of these pathogenic 

fungi. Therefore α-1,3-glucan can be claimed as a virulence factor. Now developing 

antimicrobial drug that target virulence factors is a new trend in drug development (Clatworthy et 

al. 2007; Allen et al., 2014). Unlike previous drug targets, which were usually essential cell 

elements, virulence factors are non-essential for cell survival but essential for pathogenesis. 

Therefore, antivirulence drug are not expected to kill the pathogen directly but should be able to 

inhibit their pathogenesis. In addition, antivirulence drugs have been hypothesized to generate 

less selection force for drug resistance (Clatworthy et al. 2007), so antivirulence drug could be 

relatively ‘evolution-proof’. Although this hypothesis is being challenged by recent evidence 
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(Allen et al., 2014), there is no doubt that virulence factors can be useful drug targets for future 

antimicrobial drug development. 

Alpha-1,3-glucan is synthesized by α-1,3-glucan synthase. So far, all characterized 

α-1,3-glucan synthases share a common multi-domain structure (Fig.1-2) (Hochstenbach et al., 

1998; Pereira et al., 2000; Rappeleye et al. 2004; Damveld et al., 2005; Henry et al. 2012; 

Yoshimi et al., 2013). At least three functional domains are present. They are the α-amylase 

domain, α-1,3-glucan synthesis domain and transmembrane domain in order from N-terminal to 

C-terminal. Based on data from S. pombe, Grün and colleagues (2005) presented a protein model 

for α-1,3-glucan synthase (Fig.1-2). According to this model, the α-1,3-glucan synthesis domain 

synthesizes the α-1,3-glucan polymer in cytoplasm and then transports the new polymer through 

transmembrane domain to the cell wall. The α-amylase domain, which localizes on the cell wall 

side, completes the synthesis process by joining different polymers. However, much more data 

are needed to verify this model, especially from in vitro enzymatic studies.  

 
Fig. 1-2 A speculative model of α-1,3-glucan synthesis by α-1,3-glucan synthase (modified from 
Grün et al., 2005) 

The black and white circles are the putative primer structures, which are α-1,4-glycosidic 
linked α-glucose. The grey circles are the main chain of α-1,3-glucan. The primer structure 
presents at the reducing end of a α-1,3-glucan.  

Other evidence showed that α-1,3-glucan synthesis requires more than just α-1,3-glucan 
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synthase (Grün et al., 2005), because the synthase needs a primer to initiate the process. This 

primer structure is believed to be a α-1,4-glucan at the reducing end (Grün et al., 2005). The only 

evidence from H. capsulatum suggested a α-amylase-like protein may synthesize this primer 

(Marion et al., 2006). The homologue of this protein is found in A. nidulans. In addition, the 

post-synthesis modification process of α-1,3-glucan is totally unknown. Alpha-1,3-glucan has 

been shown to have no branches (Grün et al., 2005; Choma et al., 2013), but it has to cross-link 

with other wall components or the cell membrane to be stable in the wall. These questions need 

to be resolved for a better understanding of α-1,3-glucan. 

 

1.5. Current Anti-fungal Drugs are Losing Their Efficacy due to Emerging Drug 
Resistance 

Since the 1950s, scientists have made great progress to treat systemic fungal infections. 

Currrently, the three main classes of anti-fungal drugs are the polyenes, azoles and echinocandins. 

Polyenes directly bind ergosterol, which is the major sterol in fungal cell membrane, to form a 

drug-lipid complex. This complex functions as a channel to release ions from cytoplasm and in 

turn kill the fungal cell (Ostrosky-Zeichner et al., 2010). Azoles interfere with the biosynthetic 

enzymes in the ergosterol synthesis pathway (Chen and Sorrell, 2007). When the ergosterol 

cannot be synthesized, an alternative toxic sterol will accumulate in fungal cell and exert stress 

on the cell membrane (Lupetti et al., 2002). Although such kinds of drugs have a wide spectrum 

for fungal infection, the high similarity between ergosterol in fungal cells and cholesterol in 

mammalian cells make polyenes and azoles toxic to human cells and limit their usage 
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(Carrillo-Muñoz et al, 2006; Cowen, 2008). The only clinically used drugs that target fungal cell 

wall structures are the echinocandins, which specifically inhibit β-glucan synthase. As human 

cells do not have cell walls, reports on toxicity of echinocandins are rare, but echinocandins have 

a narrow spectrum of activity (Denning, 2003).  

Due to the high metabolic similarity between fungal and animal cells, discovering new safe 

and effective drug targets is extremely difficult. However, this is still not the worst news. What 

worries us more is: all existing anti-fungal drugs are now challenged by emerging drug resistance 

and so are losing clinical efficacy (Cowen, 2008). For azoles, fungi are reported to gain the 

resistance in several ways. Genetic mutations in gene that encodes the drug target are the most 

common way. In C. albicans, at least three distinct “hot-spot” mutation regions have been 

identified in erg11, which encodes the target of azoles (Marichal et al., 1999). In addition, fungi 

can also up-regulate the drug transporter (efflux) or activate the stress response pathways to gain 

drug resistance (Cowen, 2008; Shapiro et al., 2011). Echinocandins are facing the similar 

problem as azoles, because they also specifically target an enzyme. Hot mutation sites within 

fks1, which encodes the target of the echinocandins, are identified from many clinically resistant 

strains (Walker et al, 2010). Increasing cell wall chitin content also leads to higher resistance to 

echinocandins in C. albicans (Walker et al, 2008). Even polyenes, developed in 1950’s and 

considered as a durable drug, are now experiencing difficulties in the clinic, although the 

resistance mechanisms are not well understood (Kanafani and Perfect, 2008). Therefore, it is 

inevitable that more fungi will become resistant to the existing anti-fungal drugs.  
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1.6. Aspergillus nidulans is a Tractable Model System for Cell and Evolutionary Biology 

There are more than 200 species in the genus Aspergillus, all of which are filamentous fungi. 

Most Aspergillus species function ecologically as decomposers, but some of them also have 

additional roles. For example, A. niger and A.oryzae are industrially used for biochemical 

production (Schuster et al., 2002; Bechman et al., 2012); A. fumigatus is a deadly pathogen for 

humans and animals (Dagenais and Keller, 2009), whereas A. flavus could be pathogen for both 

plants and animals (Vandecasteele et al., 2002; Hedayati et al., 2009). My study 

model—A.nidulans, is mainly considered as a tractable research model. Although it is a 

bio-safety level 2 organism in Canada, reports of A. nidulans infections are rare (Lucas et al., 

1999).  

A. nidulans can be easily cultured on defined medium and the phenotypes are easy to 

observe under the microscope. It has a simple cell differentiation program and a short life cycle. 

Molecular techniques are also well established for this organism. In addition, A. nidulans genome 

has been sequenced and the data are publicly available (AspGD: www.aspgd.org; Broad Institute: 

www.broadinstitute.org). In the past 70 years, A. nidulans has been used in many fields of 

biological research. Its most prominent contribution is in cell biology. For example, some initial 

studies of tubulin were done in this organism (Sheir-Neiss et al., 1978; Morris et al., 1979). It 

was also one of the early systems for studying nuclear migration and mitosis (Morris, 1975). 

A. nidulans has well defined asexual and sexual life cycles. Its asexual life starts from a 

uninucleate spore, called a conidium. After germination, the hyphae, which are multinucleate, 

grow on and in the medium and then aerial conidiophores form from mature regions of the 
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colony (Fig.1-3). When a conidiophore matures, hundreds of conidia will be generated on each 

conidiophore to finish the asexual life cycle (Todd et al., 2007) (Fig.1-3). Under suitable 

temperature, a wild type A. nidulans can go through the asexual life cycle in about 2 days. 

During the whole asexual life cycle A. nidulans genome is haploid. A haploid genome has only 

one copy of each gene, so every gene will exhibit their effects. This feature makes A. nidulans 

convenient to dissect the roles of genes through the isolation and analysis of mutations.  

The A. nidulans sexual life cycle is much more complex. It requires the fusion of two 

individual hyphae, formation of a dikaryotic cell and nuclear fusion to form a diploid nucleus. 

Then a closed sexual fruiting body (cleistothecium) will form around the fused hyphae and 

covered with some Hülle cells. The ascus is the cell in which meiosis occurs, and this cell is 

developed inside of cleistothecium (Todd et al., 2007). After meiosis, four sexual spores 

(ascospores) will form in each ascus (Todd et al., 2007). Then after another round of mitosis, a 

mature ascus with eight ascospores is eventually produced (Todd et al., 2007). The formation of 

ascus is repeated in a cleistothecium. In the end, a large number of (usually more than 10,000) 

ascospores are produced in each cleistothecium, and they are all the progeny of one pair of 

parental nuclei. For wild type strains, a sexual life cycle usually takes 3-4 weeks. In a lab 

condition, the asexual and sexual life cycles of A. nidulans can be precisely controlled. 
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Fig. 1-3 Asexual life cycle of A. nidulans (modified from Todd et al., 2007) 

Recently, A. nidulans has also drawn the attention of evolutionary biologists (Schoustra et al., 

2009). Schoustra and colleagues found A. nidulans has strong adaptive ability in a detrimental 

environment (Schoustra et al., 2006). They showed the typical length of A. nidulans adaptive 

walk against a certain stress is only one to three mutations (Schoustra et al., 2009). In addition, 

the mutants with beneficial mutations can be readily detected and isolated from pure medium. All 

together, they proposed A. nidulans as a promising model for the study of evolution. 

 

1.7. Summary 

Systemic fungal infection is a growing problem in the last several decades, especially for 

developed countries. This kind of infection is difficult to treat by surgery. Therefore, anti-fungal 

drugs are the only hope for effective treatment. However, most anti-fungal drugs that target 

ergosterol in fungal cell membrane are toxic to humans because of the chemical similarity 

between ergosterol and cholesterol. The newest class of anti-fungal drug, echinocandins, is not 



Xiaoxiao He Ph.D. Thesis    2014 Sept 

16 
 

toxic to humans, but it has a narrow spectrum. Meanwhile, all anti-fungal drugs are losing their 

efficacy due to emerging drug resistance. Therefore, substantial work is urgently needed to 

protect us from these deadly pathogens. I suggest the work in the following two directions will be 

extremely helpful: 1) studying the metabolism of potential drug targets; 2) identifying drug 

resistance mutations.  

Scientists have spent lots of effort to search for new anti-fungal drug targets. Recently, 

α-1,3-glucan has been shown to act as a virulence factor in several pathogenic fungi (Reese et al., 

2007; Rappleye et al. 2007; Fujikawa et al., 2012; Beauvais et al., 2013) making it a potential 

drug target. Considering a α-1,3-glucan synthase homolog is not present in human cells, the drug 

targeting it should have minimal side effects for humans. However, we still have very little 

knowledge about the synthesis process of α-1,3-glucan in fungi, which hinders the development 

of drugs. A. nidulans provides a good model for such study. Firstly, A. nidulans is a tractable 

research model for cell biology and it has a substantial amount of α-1,3-glucan in its cell wall. 

Secondly, A. nidulans only has two α-1,3-glucan synthases making it easier to study the synthesis 

and the function of α-1,3-glucan. I believe studying α-1,3-glucan synthesis in A. nidulans will 

provide insights about the metabolism of this wall component, and in turn facilitate the 

development of anti-fungal drugs. 

On the other hand, we also need to avoid losing the current anti-fungal drug due to emerging 

drug resistance. Identifying resistance mutations and understanding the resistance mechanisms 

are the key steps. A. nidulans can also be a useful model for such study. As Schoustra et al. (2006) 

showed, A. nidulans with beneficial mutations that compensate for a particular stress will grow 



Xiaoxiao He Ph.D. Thesis    2014 Sept 

17 
 

faster than the parental strain on the medium with the stress. Because of the phenotypic change, 

such mutants can be readily detected and isolated. With the advances of next generation 

sequencing technique, whole genome sequencing can greatly facilitate the identification of 

individual mutations, especially for the organisms with a small genome size such as A. nidulans 

(about 30Mb). Thus, the use of A. nidulans as a platform to induce and isolate drug resistance 

mutations can be an invaluable strategy in understanding the molecular response to anti-fungal 

drugs.  

 

1.8. Research Outline and Hypotheses 

This thesis contains six chapters. Chapter 1 is a general introduction for fungi and their cell 

walls. In chapter 2, I characterize two α-1,3-glucan synthases (AgsA and AgsB) and two 

amylase-like proteins (AmyD and AmyG) in A.nidulans. This is my initial study on α-1,3-glucan 

synthesis. In this chapter, I establish methods to detect α-1,3-glucan content in cell wall and point 

out the roles of these four proteins in α-1,3-glucan synthesis. Chapter 3 and 4 are the extended 

studies based on the result from chapter 2. In chapter 3, I further study the role of α-1,3-glucan 

and α-1,3-glucan synthases using overexpression analysis. Then in chapter 4, I examine the 

α-1,3-glucan degradation process in order to understand the mechanism of AmyD. Results from 

chapters 2, 3 and 4 provide new insights for α-1,3-glucan metabolism in A. nidulans. These data 

could be useful in future drug development against this cell wall component. Chapter 5 describes 

a strategy to quickly identify drug resistance mutations. I suggest this strategy could be helpful to 

solve the emerging drug resistance. Chapter 6 is a general discussion and conclusion. I discuss 
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the role of α-1,3-glucan in the cell wall of A.nidulans, the regulation of α-1,3-glucan synthesis, 

and how a lab-based experimental approach can help us to predict the mutations involved in 

clinical drug resistance.  

My thesis is based on following objectives and hypotheses:  

Objective 1: Exploring the roles of α-1,3-glucan synthesis related enzymes in A. nidulans. 

Hypothesis 1: Deletion of any α-1,3-glucan synthesis related enzymes [α-1,3-glucan synthases 

(AgsA and AgsB) and amylase-like proteins (AmyD and AmyG)] will substantially reduce 

α-1,3-glucan content in the cell wall of A. nidulans.  

Objective 2: Exploring the roles of α-1,3-glucan in α-1,3-glucan synthases overexpression 

strains. 

Hypothesis 2: Extra α-1,3-glucan in cell wall will reduce conidiation rate but increase condial 

adhesion in liquid medium. 

Objective 3: Exploring the role of AmyD in α-1,3-glucan degradation process. 

Hypothesis 3: AmyD and α-1,3-glucanase works synergistically to degrade α-1,3-glucan from 

the cell wall. 

Objective 4: Using A. nidulans as a model to indentify drug resistance mutations. 

Hypothesis 4: The first arising accelerated growth sectors are due to the first beneficial mutations 

and such mutations can be identified by next generation sequencing.  
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CHAPTER 2 

CHARACTERIZATION OF ASPERGILLUS NIDULANS ALPHA-1,3-GLUCAN SYNTHESIS: 
ROLES FOR TWO SYNTHASES AND TWO AMYLASES  

 This is my initial study on α-1,3-glucan synthesis in A. nidulans. In this chapter, I 

characterized the roles of four candidate proteins in α-1,3-glucan synthesis. They are two 

α-1,3-glucan synthases and two amylase-like proteins. Studies from several fungi have shown 

the α-1,3-glucan synthases are the enzymes that respond for α-1,3-glucan synthesis. Based on 

sequence analysis, two α-1,3-glucan synthases (AgsA and AgsB) are found in A. nidulans. 

Results from previous studies also suggest, α-1,3-glucan synthases are not the only enzymes 

involved in the α-1,3-glucan synthesis process. Some amylase-like proteins may contribute to the 

α-1,3-glucan synthesis. I found two amylase-like proteins (AmyD and AmyG) encoding genes 

are clustered with one of the α-1,3-glucan synthase (AgsB) genes in A. nidulans genome. Gene 

cluster grouped by genes involved in the same metabolic pathway is common in fungal genomes. 

Thus, these two α-1,3-glucan synthases and two amylase-like proteins are all chosen as the 

candidates in the initial work. When I started the work, none of these proteins have been studied 

in A. nidulans.  

My role in this research: designed the study along with S Kaminskyj who funded it. I wrote 

thefirst draft; and contributed to the final revised draft. S Li provided technical assistance during 

the project. The results from this chapter have been published as “Characterization of Aspergillus 

nidulans α-1,3-glucan synthesis: roles for two synthases and two amylases” by He X., Li S. and 

Kaminskyj S.G.W. in Molecular Microbiology 2014: 91(3):579-95.  
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2.1. Abstract 

 

Cell wall is essential for fungal survival and growth. Fungal walls are ~90 % carbohydrate, 

mostly types not found in humans, making them promising targets for anti-fungal drug 

development. Echinocandins, which inhibit the essential β-glucan synthase, are already clinically 

available. In contrast, α-1,3-glucan, another abundant fungal cell wall component has attracted 

relatively little research attention because it is not essential for most fungi. Aspergillus nidulans 

has two α-1,3-glucan synthases (AgsA and AgsB) and two α-amylases (AmyD and AmyG), all of 

which affect α-1,3-glucan synthesis. Gene deletion showed that AgsB was the major synthase. In 

addition, AmyG promoted α-1,3-glucan synthesis whereas AmyD had a repressive effect. The 

lack of α-1,3-glucan had no phenotypic impact on solid medium, but reduced conidial adhesion 

during germination in shaken liquid. Moreover, α-1,3-glucan level correlated with resistance to 

Calcofluor White. Intriguingly, overexpression of agsA could compensate for the loss of agsB at 

the α-1,3-glucan level, but not for phenotypic defects. Thus, products of AgsA and AgsB have 

different roles in the cell wall, consistent with agsA being mainly expressed at conidiation. These 

results suggest that α-1,3-glucan contributes to drug sensitivity and conidia adhesion in A. 

nidulans, and is differentially regulated by two synthases and two amylases. 
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2.2. Introduction 

 

Alpha-1,3-glucan is a major component of the walls of nearly all filamentous fungi as well 

as many yeasts (Latgé, 2010). Compared with β-glucan and chitin, α-1,3-glucan has attracted 

relatively little research effort, likely because α-1,3-glucan synthases are only essential in 

Schizosaccharomyces pombe (Hochstenbach et al., 1998) when examined by gene deletion. 

Alpha-1,3-glucan is not essential in Paracoccidioides brasiliensis (Pereira et al., 2000), 

Cryptococcus neoformans (Reese and Doering, 2003), Histoplasma capsulatum (Rappeleye et al. 

2004), and Aspergillus species (Damveld et al., 2005; Henry et al. 2012; Yoshimi et al., 2013). 

However, substantial evidence has shown that α-1,3-glucan can contribute to cell morphology 

(Hochstenbach et al., 1998; Reese and Doering, 2003; Cortés et al., 2012), cell wall integrity 

(Fujioka et al., 2007), and even virulence for some pathogenic fungi (Rappleye et al. 2007; Reese 

et al., 2007; Fujikawa et al., 2012).  

In A. nidulans, α-1,3-glucan synthesis is significantly up-regulated when the cell is 

challenged by echinocandins that target β-glucan synthase FksA (Fujioka et al., 2007), by 

Calcofluor White (CFW) that inhibits chitin crystallization (Elorza et al 1983), and by genetic 

manipulations to reduce galactofuranose (Galf) content (Damveld et al, 2008; El-Ganiny et al., 

2008; Alam et al., 2012). Fujioka et al. (2007) showed that alpha-1,3-glucan synthesis was 

regulated by the protein kinase C (PKC) pathway. The PKC pathway is thought to be central cell 

wall integrity regulation in all fungi, responding to cell wall stress (Levin, 2005; Teepe et al., 

2007; Fuchs and Mylonakis, 2009; Kovács et al., 2013). Thus, there is considerable reason to 



Xiaoxiao He Ph.D. Thesis    2014 Sept 

23 
 

suspect that the expression level of α-1,3-glucan is related to cell morphology, cell wall 

composition, and perhaps also to anti-fungal drug sensitivity. 

A gene cluster composed of one α-1,3-glucan synthase and two α-amylases is conserved in 

all Aspergillus species studied except A. fumigatus, and has been suggested to increase 

α-1,3-glucan synthesis efficiency (Nakamura et al., 2006; de Groot et al., 2009). Yoshimi et al. 

(2013) recently described A. nidulans AgsA (ANID 5885) and AgsB (ANID3307) as 

α-1,3-glucan synthases. AgsB is part of this conserved gene cluster [agsBamyG, amyD], and 

it is the major α-1,3-glucan synthase in A. nidulans (Yoshimi et al., 2013). However the agsBΔ 

strain does not show any growth or conidiation defect when grown on agar medium. The major 

phenotype is that conidial adhesion during germination in shaken liquid culture is substantially 

reduced, so that many small colonies are formed rather than a few large ones (Yoshimi et al., 

2013). 

There is still limited knowledge about the relationship between α-1,3-glucan synthases and 

the overall α-1,3-glucan synthesis process. Some studies have suggested that the α-amylase-like 

proteins are involved in α-1,3-glucan synthesis, perhaps functioning in the initiation step (Grün 

et al., 2005; Marion et al., 2006; van der Kaaij et al., 2007; Yuan et al., 2008). Alpha-amylase 

belongs to glycoside hydrolase (GH) family 13. Based on sequence similarity, GHs can be 

classified into more than 100 families (Henrissat et al., 1995; Henrissat and Bairoch, 1996; see 

also www.cazy.org/Glycoside-Hydrolases.html). As well as α-amylases, GH 13 contains 

transglycosidases, isomerases and other enzymes (MacGregor et al., 2001), all of which act on 

α-glycoside linkages. 
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The A. nidulans gene cluster α-amylases are AmyD (ANID3308) and AmyG (ANID3309). 

These genes are not up-regulated by carbon starvation (Nakamura et al., 2006) suggesting they 

likely do not play a role in glucose catabolism. In addition, the homologue of AmyD in A. niger 

has been shown to have very low starch hydrolysis ability, consistent with a function such as 

transglycosylation (van der Kaaij et al., 2007), perhaps as a glucanotransferase. The homologue 

of AmyG in H. capsulatum (AMY1) has been shown to be crucial for α-1,3-glucan synthesis 

(Marion et al., 2006; Camacho et al., 2012). This evidence strongly suggests AmyD and AmyG 

may participate in α-1,3-glucan synthesis but not in glucose catabolism. Considering the fact that 

~10 % of α-1,4-glucosidic linkage was found in α-1,3-glucan (Grün et al. 2005; Choma et al., 

2013), the amylases are suspected to have a role in these α-1,4-linkages, possibly serving to 

package a primer structure to nucleate efficient α-1,3-glucan synthesis (Grün et al., 2005; Marion 

et al., 2006; van der Kaaij et al., 2007). Metabolic pathways encoded by clustered genes have 

been described in Aspergillus (e. g. Keller et al., 1997). 

In this study, we characterized two A. nidulans α-1,3-glucan synthase genes and two 

α-amylase genes by deletion and overexpression. Our results confirmed that AgsB is the major 

synthase and also revealed that agsA is mainly expressed during conidiation. In addition, we 

found the two α-amylases have different effects in α-1,3-glucan synthesis, and that the polymers 

produced by AgsA and AgsB have different roles in the cell wall. These results suggest future 

questions regarding the synthesis and function of α-1,3-glucan in fungal cell wall. 
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2.3. Materials and Methods 

2.3.1. Strains, Plasmids and Media 

All strains in this study were constructed in A. nidulans A1149. The A1149 strain was also 

the wild type control for all assays in this paper. Strains used in this study are listed in Table 1. 

Primers and plasmids are listed in Table S2-1. Strategies for gene deletion and confirmation 

methods were described by Szewczyk et al. (2006) and El-Ganiny et al. (2008). Briefly, a 

targeted replacement construct was constructed by fusion PCR including 1 kb upstream, a 

selectable marker, and 1 kb downstream (details see Fig. S2-1A). This construct was transformed 

to A1149 protoplasts. A. fumigatus pyrG and pyroA were used as selectable markers (details for 

each strain see Fig. S2-1B). Strategies for promoter exchange and GFP-tagging were previously 

described in Alam et al. (2012), except that in this study the actin promoter actA(p) was used as a 

high expression constitutive promoter. This had been amplified previously from A1149 genomic 

DNA. For promoter exchange, the transformation construct was 1 kb upstream of the target, the 

selectable marker, actA(p) and 1 kb downstream of the target gene (Fig. S2-1A). For 

GFP-tagging, the transformation construct was 1 kb of target gene at the 3’ end (lacking the stop 

codon), gfp, a selective marker and 1 kb downstream of target gene (Fig. S2-1A). Again, details 

for each construction see Fig. S2-1B. 

All strains were grown on complete medium (CM: 1 % glucose, 0.2 % peptone, 0.1 % yeast 

extract, 0.1 % casamino acids, 50 mL 20 x nitrate salts, 1 mL trace elements, 1 mL vitamin 

solution, pH 6.5) or minimal medium (MM: 1 % glucose, 50 mL 20 x nitrate salts, 1 mL trace 
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elements, 0.001 % thiamine, pH 6.5) supplemented with nutrition solution as required. Trace 

elements, vitamin solution, nitrate salt and all nutrition stocks are described in Kaminskyj (2001). 

For transformation medium, 1 M sucrose was added to MM as osmoticum. All strains were 

grown at 30ºC, unless mentioned specifically. 

2.3.2. Microscopy Studies 

For transmission electron microscopy (TEM), A1149 and [agsAΔ, agsBΔ] strains were 

grown on dialysis tubing overlying CM for 2 d at 30 ºC. TEM protocol was followed Kaminskyj, 

(2000). Briefly, samples were fixed in 2% glutaraldehyde in 50 mM phosphate buffer for 1 h and 

post-fixation in 1% OsO4 in 50 mM phosphate buffer for 1 h. Then samples were dehydrated in 

a graded ethanol series (20%, 40%, 60%, 80% and 100%) for 10 min in each concentration, and 

transfer to acetone in the end for 1 h. Samples were embedded in Eponate 12 resin. Then, 75 nm 

sections were made and stained by uranyl acetate for 20 min, followed by lead citrate for 2 min. 

Sections were rinsed with H2O between and after each staining solution for 30 s. TEM images 

were taken by a Philips CM10 model. 

For immunogold-TEM, strains were grown in shaken liquid medium (CM) for 16 h at 30 ºC. 

TEM protocol was adapted from Skepper and Powell (2008). Briefly, samples were fixed in 4% 

formaldehyde in PIPES for 1 h at 4 ºC and were rinsed four times in 0.1M PIPES buffer over a 

period of 20 min and twice in H2O. Then all samples were incubated in 2% aqueous uranyl 

acetate for 30 min at room temperature and then three times rinse in H2O. All cells dehydrated in 

three changes of 70% ethanol, three changes of 95% ethanol and three changes of 100% ethanol, 
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all for 5 min each. Then cells were imbedded in a 50:50 mixture of 100% LR white and 100% 

ethanol overnight, and in two daily changes of 100% LR white. At last, samples were placed in a 

gelatin capsule and incubated at 55 ºC for 24 h. Then 70 - 90 nm sections were made and placed 

on nickel grids. For antibody staining, grids were blocked by 1% BSA 30 min, and then stained 

by 1:20 diluted MOPC 104E (Sigma) and 1:100 diluted 12-nm gold label goat anti mouse IgG + 

IgM (Jackson Immunoresearch) 1 h respectively at room temperature, 30 s rinse by H2O was 

needed after each antibody. In the end, all grids were post stained by uranyl acetate and lead 

citrate as described above. TEM images were taken by a Philips CM10 model. A mouse IgM 

(Sigma: M5909) and L10 (IgM, anti-galactofuranose) were used as negative and positive control. 

For scanning electron microscopy (SEM), A1149 and [agsAΔ, agsBΔ] strains were grown 

on dialysis tubing overlying CM for 2 d at 30 ºC. Isolated colonies were fixed at 100 % relative 

humidity over 4 % aqueous glutaraldehyde for 1 h, frozen to -80 ºC in pre-chilled acetone for 1 h, 

then transfer to -20 ºC, 4 ºC and room temperature for 1 h respectively. Samples were dried by 

critical point dryer and then gold sputter coated. SEM images were taken by a JEOL JSM-6010 

LV model and conditions for each image were shown under the image. 

For antibody staining, primary antibody MOPC 104E and secondary antibody 

TRITC-conjugated goat-anti-mouse (Sigma) were used at 1:20 and 1:50 respectively. Antibody 

staining procedures followed El-Ganiny et al. (2008). Briefly, conidia were grown on dialysis 

tubing overnight at 30 ºC. Dialysis tubing was cut into 1 cm x 1 cm squares. Fungal cells were 

fixed in 6 % formaldehyde in P+BS buffer (50 mM PIPES, 2 mM EGTA, 2 mM MgSO4, 

137 mM NaCl, 268 µM KCl, pH 6.8) for 30min. Fixed samples were washed in P+BS for 3 x 
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5 min. Membranes were permeabilized by 3 x freeze (-80 ºC) and thaw (Shi et al 2004), then 

nonspecific binding was blocked with freshly made 5 % non-fat milk in P+BS buffer for 20 min. 

Primary antibody was diluted in 0.5 % non-fat milk in P+BS then cells were stained for 60 min. 

Samples were washed 3 x 5 min in P+BS buffer. Secondary antibody was diluted in 0.5 % 

non-fat milk in P+BS, and cells were stained for 60 min. Excess secondary antibody was 

removed by washing in P+BS buffer 3 x 5min. Samples were examined using a Zeiss META501 

confocal epifluorescence microscope at 63 x, N.A. 1.2 objective lens. Confocal imaging used 

543 nm excitation, with emission controlled by BP 560-615 nm filter.  

For GFP signal, conidia were grown on dialysis tubing at 30 ºC. Then samples were 

examined using a Zeiss META501 confocal epifluorescence microscope at 63 x or 25 x objective 

lens. Confocal imaging used 488 nm excitation with emission controlled by BP 505-530 nm 

filter.  

2.3.3. Quantification of Conidiation 

1.5 mL CM or MM agar were added to 24-well plate and seeded with 105 conidia after 

solidification. Plates were incubated for 4 d, then 1 mL ultrapure water was used to collect 

conidia from each well. Conidia were quantified by hemocytometer. 

2.3.4. Alpha-1,3-glucan Quantification 

This method was adopted from Momany et al. (2004) and Marion et al. (2006). Briefly, 107 

conidia were grown at 30 ºC in 100 mL liquid CM, shaken at 150 r.p.m. for 24 h. Colonies were 
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collected by filtration and washed with 0.5 M NaCl. Cells were frozen at -80 ºC for 2-4 h, then 

broken in disruption buffer (DB: 20 mM Tris, 50 mM EDTA, pH 8.0) using a Virsonic 

Ultrasonic Cell Disrupter until hyphal ghosts formed. Cell walls were separated by centrifugation 

at 3500 x g for 10 min. The pellet containing the cell wall fraction was washed in DB with 

stirring for 4 h at 4 ºC followed by a wash with sterile ultrapure water under the same conditions, 

pelleted again, and lyophilized. Dry cell wall samples were weighed, then suspended in 1 M 

NaOH at 0.5 mg mL -1. Alkaline extraction was performed overnight at 37 ºC. Then 0.5 mL 

alkaline-soluble fraction (containing α-1,3-glucan) was used for the following process. The alkali 

was neutralized by acetic acid until pH to 5.5. Alpha-1,3-glucan was collected by centrifugation 

12000 x g for 10min, and then washed twice in ultrapure water. Finally, α-1,3-glucan was 

hydrolyzed by 0.5 mL 3 M H2SO4, at 100 ºC for 1 h. Glucose content (mainly from α-1,3-glucan 

in the alkali-soluble fraction) was quantified by anthrone assay (Ashwell, 1957). All experiments 

were repeated three times with duplicates each time.  

2.3.5. RT-PCR and qPCR 

For the CFW treatment test, 107 conidia were inoculated in liquid CM and incubated at 30 ºC 

with shaking at 150 r.p.m. for 13 h, then CFW was added into medium at final concentration of 

50 μg mL -1 and keep growing for another 1 h. Control groups were grown for 14h with equal 

amount of ultrapure water added in the last hour. In the end, colonies were collected by filtration 

and frozen in liquid nitrogen immediately, then lyophilized.  
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For time-course expression study, 107 conidia were inoculated in liquid CM and incubated at 

30 ºC with or without shaking at 150 r.p.m., then colonies were collected at 14 h and 24 h for 

both groups. In static condition, only the colonies grown on the liquid surface were collected. 

Then colonies were frozen in liquid nitrogen immediately and lyophilized.  

For the overexpression study, 107 conidia were inoculated in liquid CM and incubated at 

30 ºC with shaking at 150 r.p.m. for 16 h. Colonies were collected by filtration, immediately 

frozen in liquid nitrogen, then lyophilized. 

Total RNA was extracted using an RNeasy plant kit (Qiagen) following manufacturer’s 

instructions. RNA concentration was measured using a Nanodrop®, then diluted to 500 ng µL-1. 

Genomic DNA elimination and reverse transcription used a QuaniTect reverse transcription kit 

(Qiagen) following the manufacturer instructions. 

Quantitative real time PCR (qPCR) was performed in 96-well optical plates in an iQ5 

real-time PCR detection system (Bio-Rad). Gene expression was assayed in total volume of 

20 µL per reaction containing cDNA at an appropriate dilution and SYBR green fluorescein 

(Qiagen). A no-template control was used for each pair of primers. Histone was used as a 

reference gene (Fujioka et al., 2007). Primers for qPCR are listed in Table S2-1.   

The qPCR amplification used the following conditions: 95 ºC /15 min for one cycle, 

95 ºC /15 s, 55 ºC /40 s and 72 ºC /30 s for 40 cycles and final extension cycle of 72 ºC /2 min. 

Melting curve analysis was done using the following cycle: 15 s at 65 ºC with an increase of 0.5 

ºC each cycle to 95 ºC. The relative expression was normalized to histone and calculated using 
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the ΔΔCt method (Livak and Schmittgen, 2001). Three independent experiments with triplicates 

were performed for each reaction.   

2.3.6. Conidia Adhesion Test 

For shaken liquid colonies, 2 x 107 freshly harvested conidia of each strain were grown in 

20 mL liquid CM in a sterile GelSlick-coated 50 mL glass Erlenmeyer flask, at 150 r.p.m. and 

30 ºC for 14 h. Then 3 mL medium was poured to Petri dishes and pictures were taken by 

flat-bed scanning. For conidia clusters, 2 x 107 of freshly harvested conidia of each strain were 

grown in 20 mL liquid CM in a sterile GelSlick-coated 50 mL glass Erlenmeyer flask, 150 r.p.m., 

at 37 ºC for 6 h. We examined 20 µL of liquid medium plus germlings using transmitted light 

microscopy (10 x objective lens) with images collected using a Dino-eye CCD.  

2.3.7. Drug Sensitivity Test 

Calcofluor White (American Cyanamid Company) was prepared as a stock at 10 mg mL -1 in 

25 mM KOH (Hill et al., 2006). Congo Red (British Drug Houses Ltd.) was prepared as a stock 

as 10 mg mL -1 in ultrapure water. Caspofungin was a kind gift from Merck, and prepared as a 

stock at 20 mg mL -1 in ultrapure water. All stock solutions were sterilized by filtration. For 

testing, each stock solution was added to CM agar cooled to 55~60 ºC. Then, 105 conidia of each 

strain were inoculated on plate on the same day. Plates were incubated for 72 h at 30 ºC. 
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2.4. Results 

2.4.1. Genes in the Conserved Alpha-1,3-glucan Cluster can be Differentially Regulated 

In A. nidulans, the conserved α-1,3-glucan gene cluster consists of the α-1,3-glucan synthase 

AgsB, and the α-amylases, AmyD and AmyG. The agsB and amyD-amyG coding regions are on 

opposite strands of chromosome VI, so they could potentially share upstream regulatory 

elements (Fig. 2-1A), whereas agsA is on chromosome I. Alpha-1,3-glucan synthases agsA and 

agsB are each ~8 kb in length, and each is predicted to encode a multiple domain protein. These 

domains are: an α-amylase domain, a starch synthase catalytic domain, a glycosyl transferase 

domain and a 12-transmembrane domain (Fig. 2-1B). The amino acid sequence identity between 

AgsA and AgsB is ~67 %. AgsA and AgsB hydropathy analysis predicted an extracellular 

domain, a single membrane-span, an intracellular domain and a multiple-transmembrane domain, 

which was very similar to that of the essential α-1,3-glucan synthase in S. pombe (Hochstenbach 

et al., 1998) (Fig. 2-1C). 

Fujioka et al. (2007) showed that agsB was up-regulated when A. nidulans was challenged 

by micafungin. Following this idea, we used CFW to treat A. nidulans cells and to test whether 

the genes in the cluster were coordinately regulated. In response to 50µg mL-1 CFW, the 

expression of all three genes in this cluster was increased, but to different extents: amyG > agsB > 

amyD (Fig. 2-2A). The expression of agsA was assessed in the same experiment, showing a 

limited increase (Fig. 2-2A). We concluded that the genes in this cluster could share a regulatory 
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element(s), which was different from that of agsA. However, the different regulation of the three 

genes in the cluster also argues that they have distinct roles in α-1,3-glucan synthesis. 

To test this notion, we performed a time-course expression study for all of our candidate 

genes. We compared two growth conditions (shaken liquid and static liquid) and two time points 

(14 h and 24 h after inoculation). In shaken liquid, A. nidulans was restricted to only the growth 

of vegetative mycelia. However in static liquid, the colonies grown on the liquid surface 

underwent asexual development and conidiated within 24 h. So the combination of these two 

growth conditions and time points gave us a comprehensive view of the expression profile for 

each gene. In shaken cultures, the only notable change in gene expression was for amyD, which 

showed a 5.9-fold increase at 24 h (Fig. 2-2B). In static culture, there was an even greater 

increase (10.3-fold) for amyD expression at 24 h, plus a dramatic increase (69-fold) for agsA 

expression (Fig. 2-2C). In contrast, agsB and amyG had relatively constant expression levels at 

14 h and 24 h in both culture conditions. Collectively, our results showed that the genes in this 

cluster were not always co-regulated. 

2.4.2. AgsA and AgsB are the Only α-1,3-glucan Synthases in Aspergillus nidulans 

In order to confirm the roles of agsA and agsB, we replaced each of them by a nutrition 

marker (strategy see Fig. S2-1). The constructed strains were confirmed by PCR (Fig. S2-2; 

primers and plasmids are listed in Table S2-1). The agsAΔ, agsBΔ, and [agsAΔ, agsBΔ] deletion 

strains each had a wild type phenotype on solid medium (Fig. 2-3A on CM; Fig. S2-3 on MM), 

consistent with reports by Yoshimi et al. (2013). In contrast, when grown in shaken liquid, the 
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agsBΔ and [agsAΔ, agsBΔ] strains formed many tiny colonies, compared to a few large colonies 

as for wild type and agsAΔ strains (Fig. 2-3C). Fontaine et al. (2010) had reported that 

α-1,3-glucan is responsible for aggregation of germinating conidia in A. fumigatus, so we also 

monitored earlier and later stages of germination in shaken liquid. After 6 h growth at 37 ºC, and 

unlike wild type, the agsBΔ and [agsAΔ, agsBΔ] strains lacked the large discrete conidia 

colonies that are characteristic of wild type strains (Fig. S2-3), however small clusters of conidia 

were visible when examined by light microscopy (Fig. S2-3). This suggested that wall 

α-1,3-glucan was important for conidial adhesion during germination in liquid but was likely not 

solely responsible for the interaction. 

To have a closer view, we also examined the ultrastructure of [agsAΔ, agsBΔ] strain by 

TEM and SEM. Although no significant difference was found for cell wall thickness (Fig. 2-4A), 

multiple (3 or 4) phialides were seen on most metulae in the double deletion strain (Fig.2-4B). In 

addition, wild type hyphae had smoother cell walls than deletion strains (Fig. 2-4D), but this was 

not seen for conidia (Fig. 2-4C). Together, these data suggested α-1,3-glucan does not have an 

important role in A. nidulans cell wall construction, but may affect formation of extracellular 

matrix.  

Alpha-1,3-glucan is also considered to be important in the sexual life of A. nidulans (Wei et. 

al., 2001). We performed a mating experiment between [agsAΔ, agsBΔ] and a wild type strain 

(AXM20). No difference was found in mating process in respect to the formation of cleistothecia 

and the number of ascospores in each cleistothecium (data not shown). We also mated a green 

[agsAΔ, agsBΔ] strain (original strain) and a white [agsAΔ, agsBΔ] strain obtained from last 



Xiaoxiao He Ph.D. Thesis    2014 Sept 

35 
 

mating experiment. Again, there was no difference in cleistothecial or ascospore formation 

compared to a wild type::wild type mating. We conclude that α-1,3-glucan does not affect the 

sexual cycle of A. nidulans. 

In order to confirm the changes of wall α-1,3-glucan content in deletion strains, we used two 

methods: an anthrone reducing-sugar analysis of alkali-extracted walls for overall quantification 

(Marion et al., 2006; Camacho et al., 2012), and an α-1,3-glucan immunolocalization for 

distribution. Compared to wild type (defined as 100 % in Table 2-2) the α-1,3-glucan content of 

the agsAΔ strain (94.3 %) was marginally reduced and that of the agsBΔ strain (3.1 %) was 

substantially reduced. The α-1,3-glucan content of the [agsAΔ, agsBΔ] strain was even lower, 

only 1.2 % remained. A low level of glucose was also seen in the Yoshimi et al. (2013) [agsAΔ, 

agsBΔ] double deletion strain.  

Our anthrone quantification results were consistent with immunolocalization used to stain 

vegetative colonies grown on dialysis tubing (Fig. 2-5). Unlike wild type hyphae, no 

α-1,3-glucan signal was detected in the [agsAΔ, agsBΔ] strain confirming a loss of 

immunodetectable wall α-1,3-glucan. And this is consistent with the conclusion in Yoshimi et al 

(2013) that agsA and agsB are the only two α-1,3-glucan synthases in A. nidulans.  

Antibody staining was also performed on the agsAΔ and agsBΔ strains. We found these two 

synthases are not equally important for α-1,3-glucan synthesis. A clear α-1,3-glucan signal was 

observed in the agsAΔ strain (Fig. 2-5), but only trace amounts of α-1,3-glucan were detected in 

the agsBΔ strain (Fig. 2-5). Therefore AgsB is the major α-1,3-glucan synthase in A. nidulans.  
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Unexpectedly, α-1,3-glucan immunolocalization showed that the growing wild type tips 

lacked substantial immunolocalizable α-1,3-glucan, whereas basal regions showed more or much 

more prominent α-1,3-glucan content (Fig. 2-5). Similar longitudinal distributions of 

α-1,3-glucan were also seen for the agsAΔ and amyDΔ strains. As expected, the agsBΔ, [agsAΔ, 

agsBΔ] and amyGΔ lacked visible immunolocalizable α-1,3-glucan. 

2.4.3. AmyD and AmyG Have Distinct Roles in α-1,3-glucan Synthesis 

In the A. nidulans genome, amyD and amyG are adjacent but divergently transcribed from 

agsB. Both are predicted to encode α-amylase like proteins. Similarly, the homologue of AmyG 

in H. capsulatum, Amy1 has been characterized and shown to be crucial for α-1,3-glucan 

synthesis. Amy1 is anticipated to synthesize the primer structure of α-1,3-glucan (Marion et al., 

2006). Although the majority of α-1,3-glucan in H. capsulatum is 1,3-linked (Grün et al., 2005; 

Choma et al., 2013), there is evidence that a 1,4-linked oligomer forms a primer structure (Grün 

et al., 2005; Marion et al., 2006; van der Kaaij et al., 2007). Enzymatic study and genomic 

analysis suggested AmyD may also have a role in α-1,3-glucan synthesis (van der Kaaij et al., 

2007; de Groot et al., 2009).  

We created amyDΔ and amyGΔ strains to assess their roles in A. nidulans α-1,3-glucan 

synthesis. As with the agsAΔ and agsBΔ deletions, neither the amyDΔ nor amyGΔ strain showed 

a phenotypic change compared to wild type when grown on solid medium (Fig. 2-3A). The 

amyGΔ strain, but not amyDΔ, formed many tiny colonies in shaken liquid (Fig. 2-3C). This was 

comparable to the agsBΔ strain, and indicated that AmyG but not AmyD was critical for 
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α-1,3-glucan synthesis. Anthrone analysis showed that amyGΔ walls had low (12.7 %) 

α-1,3-glucan content (Table 2-2), consistent with AmyG having an important role in 

α-1,3-glucan synthesis. In contrast, the α-1,3-glucan content of the amyDΔ strain walls was 

1.5-fold higher than wild type (Table 2-2). To test whether the accumulation of α-1,3-glucan in 

the amyDΔ strain was due to AgsB and AmyG, we constructed a cluster deletion [agsBΔ, 

amyDΔ, amyGΔ] strain. The triple knockout had almost no α-1,3-glucan (2.9 %) (Table 2-2) and 

its colony phenotype in shaken liquid resembled the agsBΔ and amyGΔ strains (Fig. 2-3C). 

Together, these results indicated that the roles of AmyD and AmyG in α-1,3-glucan synthesis 

differ, and that both are important. The function(s) of AmyD and AmyG require further study. 

2.4.4. Overexpression of agsB, amyD and amyG Further Suggest Their Roles in α-1,3-glucan 

Synthesis 

For overexpression studies, we used the A. nidulans actin promoter, actA(p) to provide 

strong constitutive expression that was not affected by medium glucose. Promoter exchange 

methods and strain confirmation are shown in Fig. S2-1 and S2-2. The qPCR results reported in 

Table 2-3 are with respect to the native expression for each gene (agsB > amyD > amyG >> agsA) 

in vegetative growth (16 h in shaken liquid culture). The native level of gene expression was 

lower than when driven by actA(p).  

We constructed an actA(p)-agsB strain to study the effect of increased AgsB on cell wall 

α-1,3-glucan. Anthrone and qPCR analysis showed comparable increases in cell wall 

α-1,3-glucan (Table 2-2) and agsB mRNA (Table 2-3) confirming our strategy. This strain 
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showed a moderate (30 % or 40 % depending on growth medium) reduction in conidiation 

(Table S2-2), but no change in growth rate or conidial adhesion (Fig. 2-3B and D). Then we used 

actA(p) to overexpress amyD and amyG, in order to compare the relative effect of 

overexpression with that of gene deletion. The actA(p)-amyD construct up-regulated amyD but 

led to a reduction for wall α-1,3-glucan (Table 2-2 and 2-3). Consistent with this, the 

actA(p)-amyD strain had fragmented colonies in shaken liquid and lacked discrete conidia 

clusters (Fig. 2-3D and S2-3), both of which were correlated with the loss of α-1,3-glucan. The 

actA(p)-amyG construct up-regulated amyG 18-fold at mRNA level (Table 2-3), but it only led to 

slightly higher cell wall α-1,3-glucan (Table 2-2). 

Our overexpression study further suggested the roles of these three gene products in 

α-1,3-glucan synthesis process. AgsB is the limiting step, because it can positively regulate the 

amount of α-1,3-glucan. Although AmyG is critical for synthesis, it cannot overproduce 

α-1,3-glucan without the help of other proteins. Therefore, we conclude AmyG does not directly 

synthesize α-1,3-glucan and the abundance of AmyG is more than sufficient at its normal 

expression level. AmyD can negatively regulate wall α-1,3-glucan, so it clearly has a repressive 

role for α-1,3-glucan synthesis.  

2.4.5. Wall α-1,3-glucan Mediates Sensitivity to Calcofluor White, but not Caspofungin or 

Congo Red 

Recent evidence showed that reduced wall α-1,3-glucan correlated with CFW 

hypersensitivity in A. niger (Damveld et al., 2005) and H. capsulatum (Marion et al., 2006). To 
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assess the effect of our gene manipulations on drug sensitivity, we added anti-fungal agents into 

solid medium and inoculated equivalent numbers of conidia on these plates to test their growth 

ability. The agsBΔ, [agsAΔ, agsBΔ], and amyGΔ strains were CFW hypersensitive, barely able 

to germinate on 30 µg mL-1 CFW within 3 d (Fig. 2-6A). Notably, these cells were inhibited but 

not killed, since they were viable when transferred to CFW-free medium after 3 d (data not 

shown). Higher wall α-1,3-glucan in the actA(p)-agsB strain (Table 2-2) did not confer resistance 

to CFW (Fig. 2-6B).  

Alam and Kaminskyj (2012) showed that α-1,3-glucan and β-glucan content of A. nidulans 

cell walls were coordinately regulated with galactofuranose (Galf) content. Reduction or loss of 

Galf by manipulation of UgmA function was correlated with increased α-1,3-glucan and 

decreased β-glucan, as well as with increased sensitivity to Caspofungin. In this study, we found 

that Caspofungin sensitivity was not affected by altered α-1,3-glucan content (Fig. 2-6) 

suggesting that α-1,3-glucan and β-glucan synthesis were independent. Yoshimi et al. (2013) 

reported that agsBΔ and [agsAΔ, agsBΔ] strains were hypersensitive compared to wild type to 20 

– 80 µg mL-1 Congo Red (CR). We tested for a growth response up to 200 µg mL-1 CR, but saw 

no difference in any of our strains compared to wild type (Fig. 2-6). Therefore in our experiment, 

α-1,3-glucan had a role in the drug sensitivity to CFW but not CR or Caspofungin. 
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2.4.6. AgsA Mainly Functions at Conidiation, and It Cannot Compensate for the Loss of 

AgsB 

The agsA sequence has been shown to have a very low expression level in vegetative 

colonies (Fujioka et al., 2007; Futagami et al., 2011), even in the absence of agsB (Yoshimi et al., 

2013). Aspergillus nidulans does not form conidia when grown in submerged liquid culture as is 

typical for qPCR analysis samples. Our time-course study showed that agsA expression 

increased in the 24 h static culture group only (Fig. 2-2C). This strongly suggested the 

expression of agsA was related to conidiation, which had not been reported previously. To test 

this, we used the agsA promoter to drive GFP expression [agsA(p)-GFP] in order to visualize 

when and where agsA was expressed. The GFP signal was seen in foot cells, conidiophores, 

metulae, phialides and conidia, but not significantly in hyphae (Fig. 2-7A). So agsA appeared to 

have a high expression during conidiation. 

Encouraged by this finding, we wondered if overexpression of agsA could compensate for 

the loss of agsB. We used actA(p) to overexpress agsA in an agsBΔ background [actA(p)-agsA; 

agsBΔ]. The expression level of agsA was substantially up-regulated (123-fold, Table 2-3). 

Anthrone analysis showed that the α-1,3-glucan level of the [actA(p)-agsA; agsBΔ] strain had 

recovered from the agsBΔ strain levels to more than double the wild type levels (3.1 % to 228 %) 

(Table 2-2). This suggested that AgsA is a fully functional α-1,3-glucan synthase. Intriguingly, 

the [actA(p)-agsA; agsBΔ] strain still produced tiny fragmented colonies in shaken liquid 

medium (Fig. 2-3D), comparable to the agsBΔ strain. In addition, it was still more sensitive to 
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CFW than the wild type strain, but better than agsBΔ (Fig. 2-6B). So overexpression of agsA 

could only partially compensate for the loss of agsB. 

2.4.7. Functions of Both AgsA and AgsB are Dependent on AmyG  

Combining our previous results that AgsB is the main synthase in vegetative growth and 

AmyG was crucial for wild type α-1,3-glucan synthesis in hyphae, it appeared that AgsB 

function was AmyG-dependent. The fact that AgsA could not fully compensate the loss of AgsB 

raised the question: was AgsA also AmyG-dependent? To test this, we constructed 

[actA(p)-agsA; amyGΔ] strain. If AgsA was AmyG-dependent, this strain should have low 

α-1,3-glucan content, similar to amyGΔ. If not, the α-1,3-glucan content should be similar to that 

of [actA(p)-agsA; agsBΔ]. The result showed a low α-1,3-glucan content (19.0 %) in the 

[actA(p)-agsA; amyGΔ] strain (Table 2-2), and this strain behaved as amyGΔ strain in shaken 

liquid (Fig. 2-3D) and on CFW (Fig. S2-5). All these results were consistent with both AgsA and 

AgsB being AmyG-dependent.  

2.4.8. AgsB-GFP is Concentrated at Growing Hyphal Tips 

AgsA and AgsB are predicted to have an N-terminal signal peptide (by SignalP 4.1 server) 

and C-terminal multiple-transmembrane domains (Fig. 2-1C). Some experiments have proven 

their localization on cell membrane (Hochstenbach et al., 1998; Beauvais et al., 2005; Cortés et 

al., 2012). However, no fluorescence-tagging information was yet available for Ags in a 

filamentous fungal species. We tagged the C-terminal of AgsB with GFP to visualize the 
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localization of this protein. AgsB-GFP fluorescence was mostly concentrated on the membrane 

of growing tips (Fig. 2-7B), consistent with recent result from S. pombe (Cortés et al., 2012). 

However, C-terminal GFP-tagging killed the function of AgsB (based on fragmentation in 

shaken liquid culture, Fig. S2-6), indicating that the C-terminal was essential for AgsB function, 

which was also seen in S. pombe Ags1 (Cortés et al., 2012). As expected for an N-terminal 

GFP-tagged strain (GFP-AgsB; data not shown) AgsB function was maintained, however, 

GFP-AgsB fluorescence had an even cytoplasmic distribution, consistent with having the GFP 

tag being removed with the signal peptide. So the C-terminal tagging strain (AgsB-GFP) 

revealed the most likely localization (Fig. 2-7B). In addition, since AmyG is also crucial for 

α-1,3-glucan synthesis in A. nidulans, we also C-terminal tagged AmyG with GFP. The 

AmyG-GFP was a functional strain (Fig. S2-6) and the signal evenly distributed in the cytoplasm 

of the hyphae and conidia (Fig. 2-6C), suggesting there was no obvious co-localization between 

AgsB and AmyG.  

2.4.9. Alpha-1,3-glucan can be Immunolocalized Throughout the A. nidulans cell wall 

To further explore the difference of AgsA-α-1,3-glucan and AgsB-α-1,3-glucan, we 

wondered if these two cell wall components could have different localization within the cell wall. 

We used immunogold-TEM to assess this. MOPC 104E was used to detect α-1,3-glucan. A 

purified mouse immunoglobulin (IgM: no target in fungal cell) and L10 (anti-galactofuranose) 

were used for negative and positive control. In wild type strains, α-1,3-glucan was mostly seen at 

the outer layer of the cell wall, but also at the inner layer (Fig.2-8). This showed α-1,3-glucan 
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presented throughout the A. nidulans cell wall without a noticeable pattern. In [actA(p)-agsA, 

agsBΔ] (only AgsA-α-1,3-glucan) and agsAΔ (only AgsB-α-1,3-glucan), similar patterns of 

α-1,3-glucan distribution were also found (Fig. 2-8). Although slightly more gold particles near 

the cell membrane were presented in [actA(p)-agsA, agsBΔ] strain, we did not think this revealed 

an essentially different distribution, especially considering α-1,3-glucan is a polymer (a long 

chain) instead of a single molecule. In addition, we found much more binding gold particle on 

wild type strain cell wall when using L10 (Fig. S2-8). However, galactofuranose is a less 

abundant component compared with α-1,3-glucan. So the number of gold particles was more 

affected by antibody affinity, than the abundance of particular cell wall components.  
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2.5. Discussion 

 

We have presented a systematic investigation of four genes likely to be involved in 

A. nidulans α-1,3-glucan synthesis. These include α-1,3-glucan synthases AgsA and AgsB, and 

α-amylases AmyD and AmyG. All except AgsA are part of a conserved cluster in most 

Aspergillus species. Another protein, UGP1 (A. nidulans GalF; UTP-glucose-1-phosphate 

uridylyltransferase that synthesizes UDP-glucose monomers) has also been shown to be involved 

in α-1,3-glucan synthesis in H. capsulatum (Marion et al., 2006), consistent with a requirement 

for UDP-glucose. The A. nidulans UGP1 homologue (GalF) is essential (Alam and Kaminskyj, 

unpublished data). Since GalF function is upstream of the genes in this study and likely is not 

specific to this pathway, we considered it to be not directly relevant.  

2.5.1. AgsA and AgsB Have Distinct Expression Profiles and Different Roles in A. nidulans 

Cell Walls 

Previous studies have noted that agsA has a very low expression level compared to agsB 

(Fujioka et al., 2007; Futagami et al., 2011; Yoshimi et al., 2013). However, those studies did not 

consider the expression time-course of agsA. Using qPCR and GFP tagging, we found that agsA 

had a low expression at most life stages, but a high expression during conidiation. Since agsB 

also expressed at conidiation (Fig.S2-5), this raised the question: do A. nidulans conidia need 

extra α-1,3-glucan compared to vegetative hyphae, or, are the products of AgsA and AgsB are 

somehow different?  
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We overexpressed agsA in an agsBΔ background to see if it could compensate. Based on 

α-1,3-glucan quantification with the anthrone assay, overexpression of agsA more than 

compensated for the loss of agsB, so a full phenotype compensation of the agsBΔ defect was 

expected. Instead, only a slight recovery was seen for phenotypic defects in shaken liquid or on 

CFW-containing plates. Therefore the products of AgsA and AgsB appear to have different roles 

in A. nidulans cell walls. Despite this difference, we also showed that both synthases appear to 

be AmyG dependent. Combining the results that substantial amounts of AgsA-α-1,3-glucan and 

AgsB-α-1,3-glucan were both present in conidia but only the loss of AgsB reduced conidial 

adhesion, we concluded that AgsB-α-1,3-glucan was responsible for the conidia adhesion 

interaction. In addition, AgsB-α-1,3-glucan is also responsible for drug sensitivity. The 

biological function of AgsA-α-1,3-glucan is still unknown. 

Distinct roles for AgsA-α-1,3-glucan and AgsB-α-1,3-glucan could relate to differences in 

wall localization or polymer-linkage. No side branches were found for α-1,3-glucan in S. pombe 

(Grün et al. 2005) and A. wentii (Choma et al., 2013), suggesting that different localization is 

more likely. Information from other fungal species did not show a consistent localization for 

α-1,3-glucan. In H. capsulatum (Rappleye et al., 2007) and M. oryzae (Fujikawa et al., 2012) 

α-1,3-glucan is suggested to be part of the outside wall layer. In S. pombe α-1,3-glucan is thought 

to be in the inner wall layer, as it appears to be deposited early in protoplast wall regeneration 

(Osumi, 2012). S. pombe α-1,3-glucan is also critical to secondary septum formation for cell 

separation (Cortes et al., 2012). In A. fumigatus two separate layers of α-1,3-glucan have been 

localized using immunogold transmission electron microscopy of hyphae grown in submerged 
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culture (Beauvais et al., 2007). Immunogold-TEM showed that α-1,3-glucan was found 

throughout the cell wall (Fig. 2-8), and no distinguishable distribution was seen for strains 

engineered to have only AgsA-α-1,3-glucan compared to only AgsB-α-1,3-glucan (Fig.2-8). 

Immunolocalization does not explain how the products of AgsA and AgsB are different. In 

addition, as we were not able to show the localization of AgsA and AgsB in a functional format, 

the difference between AgsA and AgsB needs further exploration. 

Our other TEM and SEM results showed that α-1,3-glucan depletion did not significantly 

change the A. nidulans hyphal wall thickness. There was a minor difference in cell morphology 

(Fig. 2-4) suggesting α-1,3-glucan does not have an obvious role in hyphal cell wall construction 

in A. nidulans. But it is still too early to say α-1,3-glucan is dispensable (Henry et. al., 2012) 

because evidence has shown it is involved in host-pathogen recognition process (Rappleye et al. 

2007; Fujikawa et al., 2012). We are planning to use functionalized AFM to examine 

α-1,3-glucan to study cell wall morphology, as per (Paul et al., 2011). These studies should lead 

to a better overall understanding of the function of α-1,3-glucan. 

2.5.2. There is a Delay for α-1,3-glucan Deposition at the Tips 

Immunofluorescence with the MOPC 104E monoclonal antibody showed that α-1,3-glucan 

was not detectable at hyphal tips (Fig. 2-5). This was unexpected, especially as AgsB-GFP was 

most abundant at growing tips (Fig. 2-7B and Cortés et al., 2012). Alpha-1,3-glucan is composed 

of glucose monomers that are later assembled into extended polymers of >100 subunits (Grün et 

al., 2005; Choma et al., 2013). To our knowledge the time-course for in vitro α-1,3-glucan 
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synthesis has not been estimated, however, the immunofluorescence distribution suggests it is 

delayed with respect to chitin and beta-glucan. In addition, the MOPC 104E antibody has a 

relatively low affinity at least for immunofluorescence (Hogan and Klein, 1994; Klein et al., 

1997; Fujikawa et al. 2009; Wang, et al. 2009). Since α-1,3-glucan localization is first visualized 

in subapical regions, we expect that near-apical α-1,3-glucan is below the immunofluorescence 

detection threshold rather than being absent. Because our most definitive localizations were in 

cross-sections or glancing sections, we cannot be sure of where these were taken with respect to 

the hyphal tip. In addition, we have successfully stained the tips by using the same isotype 

antibody (L10 against galactofuranose; Alam et. al., 2012). So it is less likely we cannot reach 

α-1,3-glucan at those positions. However, the possibility that other materials blocked 

α-1,3-glucan from being detected at the tips still cannot be ruled out. 

2.5.3. The AgsB C-terminal is Essential for Function 

In our experiment, the C-terminal tagged AgsB-GFP strain had a phenotype resembling 

agsBΔ in shaken liquid (Fig. S2-6) and hypersensitivity on CFW containing medium (data not 

shown), suggesting it was unable to synthesize cell wall α-1,3-glucan. Grün et al. (2005) made 

the reasonable suggestion that the transmembrane domain formed a passage through the 

membrane to transport α-1,3-glucan from cytoplasm to cell wall right after synthesis. 

Hydropathy analysis (Fig. 2-1C) suggested that the AgsB C-terminal was the transmembrane 

domain, so it is possible that the C-terminal GFP was reducing channel function through steric 

hindrance. Nevertheless, we were able to find evidence of AgsB-GFP localization at the apical 
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cell membrane of growing hyphae. Recently, Cortes et al (2012) made thirteen separate 

N-terminal, C-terminal, and internal GFP-tagged constructs targeting the S. pombe Ags1 

functional domains. Of these only one of the internal GFP-tagged strains was functional as 

assessed by phenotype rescue of the ags1 deletion strain, and it revealed cell-membrane 

localization. So the GFP may block the transmembrane passage when it is tagged at the 

C-terminal.   

2.5.4. AmyG is a Cytoplasmic Protein that May Not Interact Directly with AgsB 

  The only α-amylase that has been confirmed as a factor in α-1,3-glucan synthesis is AMY1 

in H. capsulatum (Marion et al., 2006). Further work also showed the conserved role of this 

protein in P. brasiliensis (Camacho et al., 2012). In this study, we provided the first evidence 

that an α-amylase, AmyG, also has crucial function in A. nidulans α-1,3-glucan synthesis. Since 

AmyG is predicted to have neither a signal peptide nor a GPI-anchor site (de Groot et al., 2009), 

which is consistent with our AmyG-GFP tagging result, we conclude AmyG is a cytoplasmic 

protein, albeit one that is important for the synthesis of a cell wall component. Our 

overexpression studies revealed that the native expression level of amyG was only 10 % that of 

agsB, raising the question: how could AmyG efficiently serve for AgsB-mediated α-1,3-glucan 

synthesis?   

Analysis of α-1,3-glucan showed that it contained non-reducing end α-1,4-glycosidic 

oligosaccharide thought to be the primer structure for α-1,3-glucan (Grün et al., 2005; Choma et 

al., 2013). In S. pombe this primer was shown to be synthesized by Ags itself (Vos et al. 2007). 
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In H. capsulatum, AMY1 (homologous to AmyG) is also suggested to be involved in 

synthesizing this primer (Marion et al., 2006). Hydropathy analysis of the putative Ags structure 

suggested that it has both extracellular and intracellular domains (Grün et al., 2005), which is 

also suggested by hydropathy analysis of AgsB (Fig. 2-1C). We hypothesized that AmyG 

synthesizes the primer structure and directly interacts with the intracellular fraction of Ags to 

efficiently facilitate the synthesis of α-1,3-glucan, meaning that they should co-localize. 

However our AmyG-GFP tagging result was inconsistent with this idea. Therefore a question 

remains: if AmyG is responsible for the primer structure, how is the primer delivered to Ags? In 

the future, protein interaction experiment (e.g. yeast two hybrid or TAP-tagging) will be needed 

to verify whether AmyG physically interacts with intracellular fraction of Ags. Moreover, 

enzymatic study will also be needed to find out the function of AmyG, and to clarify the primer 

structure for α-1,3-glucan synthesis. 

2.5.5. AmyD Has a Repressive Effect for α-1,3-glucan; the Gene Cluster is not Properly 

Defined 

Unlike AmyG, the AmyD sequence is predicted to have both a signal peptide and a 

GPI-anchor site (de Groot et al., 2009). In this study, we showed that AmyD has a clear 

repressive role on α-1,3-glucan synthesis: the amyDΔ strain had more α-1,3-glucan than wild 

type whereas the actA(p)-amyD strain had less. The expression of amyD was 

independently-regulated with respect to agsB and amyG (Fig. 2-2C). And the 

[agsBamyG, amyD] gene cluster is only found in most Aspergillus species, but not in other 
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fungi that also have α-1,3-glucan, such as S. pombe, C. neoformans and H. capsulatum. It is 

possible these three ‘clustered’ genes have roles apart from α-1,3-glucan synthesis.  

Enzymatic study of AgtA, the homologue of AmyD in A. niger, has revealed its function as 

a glucanotransferase that acts on α-1,4-glycosidic bonds (van der Kaaij et al., 2007), however 

AgtA cannot hydrolyze α-1,3-glucan directly. In addition, three α-1,3-glucanases are found in 

A. nidulans genome (de Groot et al., 2009), which likely have roles in α-1,3-glucan degradation. 

Their homologue in S. pombe, Agn, is already shown to be able to hydrolyze α-1,3-glucan 

polysaccharide into α-1,3-glucan pentasaccharides (Dekker et al., 2004). Moreover, considering 

that amyD showed a high expression in the later life stage of A. nidulans, we hypothesize that 

AmyD might degrading the α-1,3-glucan primer, which is α-1,4-glycosidic linked. This primer 

structure may stabilize α-1,3-glucan in vivo. If the primer is degraded, this could lead to the 

degradation of α-1,3-glucan. Further experiments are needed to test this hypothesis. 

2.5.6. Αlpha-glucan Has Limited Ability to Mediate Drug Sensitivity 

In our experiments, we found A. nidulans wall α-1,3-glucan content correlated with CFW 

sensitivity. Similar results have been shown in A. niger (Damveld et al., 2005) and 

H. capsulatum (Marion et al., 2006). In contrast, results in Yoshimi et al (2013) showed that 

α-1,3-glucan content did not correlate with sensitivity to CFW in A. nidulans. Yoshimi et al 

(2013) used low CFW concentrations (5 and 10 µg mL-1) compared to our studies (30 µg mL-1). 

Previous result in our lab showed that low concentration (≤10 µg mL-1) CFW did not have 

inhibitory effect on wild type strain and even has beneficial effect on ugmAΔ strain (El-Ganiny et 
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al., 2008). This inconsistency is likely due to the CFW concentration used in these two assays. In 

addition, hypersensitivity to CR was not seen in our study but was reported in Yoshimi et al. 

(2013). We applied CR concentrations up to 200 µg mL-1 to our strains, however the growth 

inhibitory effect was the same at all CR concentrations (10, 50 and 100 µg mL-1 data not shown; 

200 µg mL -1 see Fig.2-6). The difference could be related to the source of CR, which was not 

indicated in Yoshimi et al (2013). Based on our own results, we do not think α-1,3-glucan has 

the ability to regulate the sensitivity against CR.  

In this study, we functionally characterized two A. nidulans α-1,3-glucan synthases (AgsA 

and AgsB) and two α-amylases (AmyD and AmyG) by deletion and overexpression. We showed 

that AgsB is the major α-1,3-glucan synthase at most of the life stages, whereas AgsA has a 

specific high expression level at conidiation. Nevertheless, loss of AgsB-α-1,3-glucan but not 

AgsA-α-1,3-glucan decreased conidial adhesion during germination in shaken liquid, and drug 

sensitivity against CFW. Intriguingly, overexpression of agsA in an agsBΔ background more 

than doubled α-1,3-glucan content, but only had a slight recovery effect on the agsBΔ phenotypic 

defects, indicating different roles of their products in cell wall. Immunolocalization did not show 

difference between these two polymers. Meanwhile, we found the gene cluster is not for efficient 

α-1,3-glucan synthesis. Although the crucial function of AmyG for α-1,3-glucan synthesis is 

proven for the first time in a filamentous fungus, AmyD clearly shows a repressive effect on 

α-1,3-glucan synthesis. Enzymatic studies will be needed to investigate the nature of each 

enzyme and in turns to reveal the synthesis process of α-1,3-glucan. 
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2.7. Tables 

Table 2-1 Anthrone assay quantification of alpha-1,3-glucan in Aspergillus nidulans cell walls  

Strain Relative glucose (%) in alkaline 
soluble fraction (Mean ± SD) 

A1149 

agsAΔ 

agsBΔ 

agsAΔ, agsBΔ 

amyDΔ 

amyGΔ 

clusterΔ 

actA(p)-agsA 

actA(p)-agsB 

actA(p)-amyD 

actA(p)-amyG 

actA(p)-agsA, agsBΔ 

actA(p)-agsA, amyGΔ 

100.0 ± 6.0 

94.3 ± 8.5 

3.1 ± 0.6 

1.2 ± 1.0 

152.5 ± 13.5 

12.7 ± 0.9 

2.9±0.9 

211.5±28.0 

291.0 ± 25.7 

56.3 ± 4.0 

127.7 ± 4.2 

227.8 ± 17.7 

19.0±6.3 

Results represent the average from three independent experiments with duplicates each time ± 
standard deviation 
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Table 2-2 qPCR results for overexpression strains 

Strain Relative expression of actin-promoter 
regulated genes compared to wild type 
(100 %) 

actA(p)-agsB 

actA(p)-amyD 

actA(p)-amyG 

actA(p)-agsA, agsBΔ 

179% ± 18% 

230% ± 25% 

1803% ± 368% 

12367% ± 2434% 

Results represent the average of three independent qPCR tests with triplicates each time ± 
standard deviation 
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Table 2-3 Aspergillus nidulans strains in this study 

Strains alias Genotype Origin 

A1149 

agsAΔ 

agsBΔ 

agsAΔ, agsBΔ 

amyDΔ 

amyGΔ 

clusterΔ 

actA(p)-agsB 

actA(p)-amyD 

actA(p)-amyG 

agsA(p)-GFP-actA(p)-agsA 

actA(p)-agsA, agsBΔ 

 

actA(p)-agsA, amyGΔ 

 

agsB-GFP 

amyG-GFP 

 

Mating strain 

A1149 

AXH11 

AXH1 

AXH21 

AXH2 

AXH3 

AXH12 

AXH17 

AXH38 

AXH36 

AXH30 

AXH23 

 

AXH41 

 

AXH15 

AXH33 

 

AXM20 

pyrG89; pyroA4; nkuA::argB 

AN5885::AfpyrG; pyrG89; pyroA4; nkuA::argB 

AN3307::AfpyrG; pyrG89; pyroA4; nkuA::argB 

AN5885::AFpyroA; AN3307::AfpyrG; pyrG89; pyroA4; nkuA::argB 

AN3308::AfpyrG; pyrG89; pyroA4; nkuA::argB 

AN3309::AfpyrG; pyrG89; pyroA4; nkuA::argB 

AN3307, AN3308, AN3309::AfpyrG; pyrG89; pyroA4; nkuA::argB 

agsBp::AfpyrG:actAp:agsB; pyrG89; pyroA4; nkuA::argB 

amyDp:: AfpyroA:actAp:amyD; pyrG89; pyroA4; nkuA::argB 

amyGp::AfpyroA:actAp:amyG; pyrG89; pyroA4; nkuA::argB 

agsAp::agsAp:gfp:AfpyroA:actAp:agsA; pyrG89; pyroA4; nkuA::argB 

agsAp:: agsAp:gfp:AfpyroA:actAp:agsA; AN3307::AfpyrG; pyrG89; 

pyroA4; nkuA::argB 

agsAp:: agsAp:gfp:AfpyroA:actAp:agsA; AN3309::AfpyrG; pyrG89; 

pyroA4; nkuA::argB 

agsB::agsB:gfp:AfpyrG; pyrG89; pyroA4; nkuA::argB 

amyGp:amyG:: AfpyroA:actAp:amyG:gfp:AfpyrG ; pyrG89; pyroA4; 

nkuA::argB 

nicB; wA2 

FGSC 

this study 

this study 

this study 

this study 

this study 

this study 

this study 

this study 

this study 

this study 

this study 

 

this study 

 

this study 

this study 

 

this study 
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2.8. Figures 

 
Fig. 2-1 Sequence analysis of Ags and the alpha-1,3-glucan synthase gene cluster 
A. agsB and amyD-amyG are on different strands and transcribed in opposite directions 
B. Domains predicted for alpha-1,3-glucan synthase are an α-amylase domain, a single 
transmembrane-span, a starch synthase catalytic domain, a glycosyl transferase domain and a 
multiple-transmembrane domain. Information was collected from Broad Institute. 
C. Hydropathy prediction of AgsB revealed an extracellular fraction at the N-terminal, an 
intracellular fraction and a mutiple-transmembrane domain at C-terminal. AgsA had a very 
similar prediction result (data not shown). Hydropathy prediction was done by TMHMM 2.0 
web-server. 
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Fig. 2-2 qPCR examination of the expression of agsA, agsB, amyD and amyG  
In each test 2x107 spores of wild type strain were inoculated 20 mL complete medium in 
designed condition. Results represent the average of three independent qPCR tests with 
triplicates each time ± standard deviation 
A. No treatment group was grown in flask at 30 °C with 150rpm for 14h; CFW treatment group 
was grown at the same condition except CFW was added to the medium at the last hour at a 
concentration of 50 µg mL-1. No treatment group was used as control. 
B. All groups were grown in flask at 30 °C with 150rpm for 14h or 24h as designed. 14 h group 
was used as control. 
C. All groups were grown in petri dish at 30 °C with 150rpm for 14h or 24h as designed. Only 
the mycelia mat at the surface was collected for RNA extraction. 14 h group was used as control. 
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Fig. 2-3 Phenotypes of wild type and all constructed strains on solid medium and in shaken 
liquid medium 
A. 105 freshly harvested conidia of each deletion strain were inoculated on the complete medium 
and the plates were incubated at 30 °C for 48 h. All constructed strains showed the wild type 
colony phenotype on solid medium. 
B. 105 freshly harvested conidia of each overexpression strain were inoculated on the complete 
medium and the plates were incubated at 30 °C for 48 h. Only actA(p)-agsB showed a moderate 
reduction in conidiation. 
C. 5x107 freshly harvested conidia were inoculated in 20 mL complete medium, incubated at 
30 °C, 150 r.p.m., overnight. In deletion strain group, agsBΔ, [agsAΔ, agsBΔ] and amyG Δ 
formed many tiny colonies compared to a few large colonies in wild type. These same deletion 
strains had dramatically reduced wall α-1,3-glucan.  
D. 5x107 freshly harvested conidia were inoculated in 20 mL complete medium, incubated at 
30 °C, 150 r.p.m., overnight. In overexpression strain group, actA(p)-amyD resembled the 
phenotype as agsBΔ strain, but the colony sizes were visibly bigger. This is consistent with the 
anthrone result that wall α-1,3-glucan reduction is not as much as agsBΔ strain. The 
[actA(p)-agsA, agsBΔ] strain also had a similar phenotype as agsBΔ strain, suggesting 
overexpression of agsA cannot compensate for the loss of agsB. 
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Fig. 2-4 TEM and SEM examination of the wild type strain and the [agsAΔ, agsBΔ] 
strain 
A. Samples were grown on dialysis tubing at 30 °C for 48 h. 75nm thin sections were 
used for TEM imaging. Scale bar = 1µm 
For SEM, samples were grown on dialysis tubing at 30 °C for 48 h. Conidiaphore, conidia and 
hyphae were shown in B, C and D respectively. 
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Fig. 2-5 MOPC 104E antibody immunofluorescent staining of wild type and deletion 
strains  
Germlings grew overnight on dialysis tubing at 30ºC. Hyphal tip was from a wild type 
strain and was shown for the gradual decrease of antibody staining.  
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Fig. 2-6 Drug sensitivity test of constructed strains. For each strain, 105 conidia were inoculated 
on plates and incubated for 72 h at 30 ºC. 
A. All deletion strains had wild type phenotype on solid medium when not challenged by 
anti-fungal agent. The agsBΔ, [agsAΔ, agsBΔ] and amyGΔ strains were hypersensitive to 
Calcofluor White (30 µg mL-1), but all strains maintained comparable sensitivity against 
Caspofungin (10 µg mL-1) and Congo Red (200 µg mL-1).  
B. Overexpression strains were selected to test their drug sensitivity on Calcofluor White (30 µg 
mL-1), Caspofungin (10 µg mL-1) and Congo Red (200 µg mL-1). [agsAΔ, agsBΔ] was used as a 
negative control. Overexpression of agsB, amyD and amyG did not have a noticeable effect on 
drug sensitivity against Calcofluor White, and overexpression of agsA in an agsBΔ background 
[actA(p)-agsA, agsBΔ] can only slightly recover the hypersensitivity. All tested strains still had 
comparable sensitivity against Caspofungin and Congo Red.  
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Fig. 2-7 Fluorescence examination of agsA(p)-GFP, AgsB-GFP and AmyG-GFP strains  
A. Samples at different life stages were prepared of agsA(p)-GFP strain to visualize the 
expression profile of agsA. The GFP signal was seen in conidia, foot cell, conidiophores, metulae 
and phialides, which are all involved in conidiation, but not in vegetative hyphae. Therefore agsA 
has a specific high expression during conidiation. 
B, GFP signal for the AgsB-GFP strain can be seen along the hypha, but mainly concentrated in 
tips (top panel). Magnified view revealed the signal is come from the membrane. 
C. Signal of the AmyG-GFP strain was evenly distributed in hyphae and conidia, suggesting a 
cytoplasmic localization. 
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Fig. 2-8 Alpha-1,3-glucan distribution in wild type, [actA(p)-agsA, agsBΔ] and agsAΔ strains. 
All scale bar = 500 nm.  
All samples were grown in shaken liquid medium for 16 h, fixed and then embedded in LR 
White. We used 70-90 nm sections for antibody (MOPC 104E followed by 12nm-gold labeled 
goat anti mouse) straining. 
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2.9. Supplemental Materials 

Table S2-1 Primers and plasmids in this study 

Primers Sequence 5’ to 3’ Description 
Selective marker and strain confirmation 
AME1  

AME2 

SE231 

SE232 

AME7 

AME8 

AME15 

AME16 

ATGTCGTCCAAGTCGCAATT 

TCATGACTATGCCGCATACTAC 

GGACATCAGATGCTGGATTACTAAAG 

TTACCATCCTCTCTTGGCCA 

CAATACCGTCCAGAAGCAATAC 

CACATCCGACTAGCACTATCC 

ATTCCTGTCATGGCCAAAG 

TCAACAACATCTCCGGTACC 

AfpyrG* 

AfpyrG* 

AfpyroA with native promoter 

AfpyroA with native promoter 

AfpyrG confirmation* 

AfpyrG confirmation* 

AfpyroA confirmation* 

AfpyroA confirmation* 

Gene deletion 
SE77 

SE78 

SE79 

SE80 

SE81 

SE82 

SE191 

SE190 

SE85 

SE197 

SE87 

SE88 

SE89 

SE90 

SE242 

SE99 

SE103 

SE104 

SE105 

SE106 

SE107 

SE108 

CATACAAAAATCCATGGACCG 

AATTGCGACTATGGACGACATACTAGATGAAGCGAGAACGAG 

GAGTATGCGGCAAGTCATGAGGCTTAGCAACCGTAGTTTGG 

CTGGATTAAACATGAGAGGGAGA 

AGCAAACGATTTTCAGGGTC 

AGCAACCCAAACGCTACG 

TACGTTAAAGGCTCGCCC 

AATTGCGACTATGGACGACATGGTGTTTAGGGGTGGATTAGAA 

TAGACGAGGAACATTTACCGG 

GGGCGAGCCTTTAACGTAGGTCGATTTTTCCGGATGT 

GAGTATGCGGCAAGTCATGACAACTAAAAGGCTACGCTTTGGT 

AAGTTCACAACCCTCAAGGG 

GGCTTGTAGACTAGGAATGGTATCT 

GGTCTTGGCTCTGCTCTCTTC 

CTTAGTAATCCAGCATCTGATGTCCGGTCGATTTTTCCGGATGT 

TGGCCAAGAGAGGATGGTAACAACTAAAAGGCTACGCTTTGGT 

CGGCCATTGACCATGAAC 

AATTGCGACTATGGACGACATTGTGACGATGTCTGGACCG 

GAGTATGCGGCAAGTCATGATTTGATCTGTTTTCATCTTTTTGC 

GTCATAGATGTCATACCCGTTTCC 

GTCTTCATCCGGTCCACTATC 

GAAGATGAGGGTGTTGTCG 

agsB upstream F 

agsB upstream R (pyrG tail) 

agsB downstream F (pyrG tail) 

agsB downstream R 

agsB Fusion F 

agsB Fusion R 

A.nidulans actA(p) F 

A.nidulans actA(p) R (pyrG tail) 

agsA upstream F 

agsA upstream R (actA(p) tail)  

agsA downstream F (pyrG tail) 

agsA downstream R 

agsA Fusion F 

agsA Fusion R 

agsA upstream R (pyroA tail)  

agsA downstream F (pyroA tail) 

amyD upstream F 

amyD upstream R (pyrG tail) 

amyD downstream F (pyrG tail) 

amyD downstream R 

amyD Fusion F 

amyD Fusion R 
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SE111 

SE112 

SE113 

SE114 

SE115 

SE116 

SE134 

CGGATGTGTTGCACTAGTGTT 

AATTGCGACTATGGACGACATGTTCTCCTGGGGGCAGAC 

GAGTATGCGGCAAGTCATGA GAAGCCAGAGACGCAAATAGA 

GCAAATCGACTAGGGACTAGA 

CAGACCTGATGGAAGGAAGTG 

TCAGAGTCTGCTTCCGTGACTA 

AATTGCGACTTGGACGACATGAAGCCAGAGACGCAAATAGA 

amyG upstream F 

amyG upstream R (pyrG tail) 

amyG downstream F (pyrG tail) 

amyG downstream R 

amyG Fusion F 

amyG Fusion R 

Cluster deletion (pair with SE114) 

Promoter exchange and GFP tagging 
SE207 

SE209 

SE143 

SE144 

SE233 

SE234 

SE208 

SE235 

SE236 

SE237 

SE238 

SE239 

SE240 

SE241 

SE276 

SE277 

SE278 

SE243 

SE146 

SE147 

AME27 

AME28 

SE148 

SE149 

SE150 

SE217 

SE218 

SE219 

GAGTATGCGGCAAGTCATGATACGTTAAAGGCTCGCCC 

TTCTAATCCACCCCTAAACACCATGGGGAGGCTCCAGCTC 

GATAGACCCAAAAGTATTGCCTCC 

AGGCAATGATCATGCATGTG 

CTTAGTAATCCAGCATCTGATGTCCTGTGACGATGTCTGGACCG 

TGGCCAAGAGAGGATGGTAATACGTTAAAGGCTCGCCC 

GGTGTTTAGGGGTGGATTAGAA 

TTCTAATCCACCCCTAAACACCATGAAAATCCTCCCATCCTTG    

CATCATTGAAGCTCGGCAC 

CCTTGGGTAAAGGCGTCC 

CTTAGTAATCCAGCATCTGATGTCCGTTCTCCTGGGGGCAGAC 

TTCTAATCCACCCCTAAACACCATGTTGTCGCTCCTAACATGC 

CGAGAGGAACATCATACGCC 

CTCCCCTATAATATAGAACCCCG 

ATGAGTAAAGGAGAAGAACTATTTCACTAGG 

CTTAGTAATCCAGCATCTGATGTCCCCCGCGAAGAGGGTGAAGA 

CCAGTGAAAAGTTCTTCTCCTTTACTACATGGTCGATTTTTCCGGATGT 

TTCTAATCCACCCCTAAACACCATGAGGTGGAGGCCTTTAAAC 

ATTGGTTGGGCTGTCTTCC 

CACACTACACGATAAGCACTACG 

GGAGCTGGTGCAGGC 

TCATGACTATGCCGCATACTA 

GCCGAGAAACTAGTACGGAAT 

CTCCAGCGCCTGCACCAGCTCCAGGCTTCGCAAGTTGCTC 

GTATGGAATTGCGTTCCTCTTC 

GTACTAGGACTAGCCAATATACGG 

GCCTGCACCAGCTCCGATAGCGTGGTAAATGTTCACATC 

GCTGATCTGAGGCGGATATT 

actA(p) F (pyrG tail) 

agsB F (actA(p) tail) 

agsB_1210 R 

actA(p)-agsB Fusion R 

amyD upstream R (pyroA tail) 

actA(p) F (pyroA tail) 

actA(p) R 

amyD F (actA(p) tail) 

amyD_1000 R 

actA(p)-amyD Fusion R 

amyG upstream R (pyroA tail) 

amyG F (actA(p) tail) 

amyG_1095 R 

actA(p)-amyG Fusion R 

GFP F 

GFP R (pyroA tail) 

agsA upstream R (GFP tail) 

agsA F (actA(p) tail) 

agsA_1200 R 

actA(p)-agsA Fusion R  

GFP-pyrG construct F* 

GFP-pyrG construct R* 

agsB_6300 F 

agsB R (GFP tail) 

agsB-GFP Fusion F 

amyG_1034 F 

amyG R (GFP tail) 

amyG-GFP Fusion F 



Xiaoxiao He Ph.D. Thesis    2014 Sept 

66 
 

qPCR 
SE244 

SE245 

SE246 

SE247 

SE248 

SE249 

SE153 

SE154 

SE155 

SE156 

CACCCGGACACTAGGTATCTC 

GAATACTATCGTAACGGCCTTGG 

ATCGGACACTAACCTTCCCTG 

GACTATGGCTGACGATCAACG 

GCTTTCCAAATCCCACAGTTGG 

GTGAAGCAGATATGCATCCGTG 

GGATGGAGATGACCCTGCTA 

TGCGCATCATGGTAGTCATT 

CGCAATCAGGACAAATGATG 

ATTCGGATGCTTAACGTTGG 

Histone qPCR F# 

Histone qPCR R# 

agsB qPCR F# 

agsB qPCR R# 

agsA qPCR F# 

agsA qPCR R# 

amyD qPCR F 

amyD qPCR R 

amyG qPCR F 

amyG qPCR R 

#, Fujioka et al. (2007) 

*, Alam et al. (2012) 
  
 

 

 

 

Table S2-2 Conidiation of wild type and actA(p)-agsB 

Medium CM MM 

Strains Wild type actA(p)-agsB Wild type actA(p)-agsB 

Conidiation 100% ± 16% 60% ± 7% 100% ± 9% 73% ± 6% 

105 conidia were grown on 1.5mL medium in 24-well plate at 30 °C for 4 d. 1 mL ddH2O was 

used to collect conidia from each well. Conidia were quantified by hemocytometer. Results 

represent the average of three independent quantification tests with triplicates each time ± 

standard deviation 

 

 



Xiaoxiao He Ph.D. Thesis    2014 Sept 

67 
 

 

Fig. S2-1 Deletion, promoter exchange and GFP-tagging schema and PCR constructs of each strain 
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Fig. S2-2 PCR confirmation of all constructed strains. Strains labeled at right of each gel picture. 

Primers are indicated at the bottom and DNA templates are on the top. 
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Fig. S2-3 Phenotype of all strains on CM and MM plates. 105 conidia of each strain were 

inoculated on CM and MM plates and incubated at 30 °C for 72 h. All strains showed a similar 

phenotype as wild type on both CM and MM. Only a moderate conidiation reduction was seen 

for actA(p)-agsB on both plates. 
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Fig. S2-4 Conidia cluster formation in A1149 and deletion strains. For each strain, 5x107 

freshly harvested conidia were inoculated in 20 mL complete medium, incubated at 37 °C, 

150 r.p.m. for 6h. Then 3 mL medium were poured to petri dish for scanning to show the 

visible conidia cluster. 20 µL of medium with germlings were added to glass slide and 

examined under light microscope (10X objective lens). The pictures were captured by 

Dino-eye camera. The whole view pictures are shown are the left top of each petri dish. 

 



Xiaoxiao He Ph.D. Thesis    2014 Sept 

71 
 

 
Fig. S2-5 Drug sensitivity of clusterΔ, actA(p)-agsA and [actA(p)-agsA, amyGΔ]. For each 

strain, 105 conidia were inoculated on plates and incubated for 48 h at 30 ºC. ClusterΔ and 

[actA(p)-agsA, amyGΔ] showed hypersensitivity to CFW (30 µg mL-1), whereas 

actA(p)-agsA maintianed  the same sensitivity as wild type strain. 
 
 
 
 
 
 
 

 

Fig. S2-6 agsB-GFP strain grown in shaken liquid medium 

The agsB-GFP also showed fragmented colonies when grown in shaken liquid medium, 

indicating that function of AgsB was eliminated by C-terminal GFP tagging. But no such growth 

defect showed with AmyG-GFP strain, indicating a functional AmyG in this strain.
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Fig. S2-7 Fluorescence examination of AgsB-GFP  
GFP was seen both in conidiophore and conidia as well as hyphae (Fig. 5). All results together 
showed agsB constitutively expresses at all A. nidulans life stages. 

 
Fig. S2-8 Immunogold-TEM of A1149 with mouse IgM (A) and L10 (B). Scale bar = 500 nm 
Cells were grown in shaken liquid medium, and embedded in LR White. Mouse IgM is the 
negative control for MOPC 104E. L10 targets galactofuranose in A. nidulans.  
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CHAPTER 3 

OVEREXPRESSION OF AgsB IN ASPERGILLUS NIDULANS CAUSES CELL WALL 
DEFECTS AND REVEALS HIGHLY MUTABLE SITES IN AgsB 

 

 In chapter 2, I characterized the roles of α-1,3-glucan synthases in A. nidulans. I found AgsB 

is the major synthase due to its constant expression and its functional product. Deletion of 

α-1,3-glucan from the A. nidulans cell wall reduced conidial adhesion, but caused no other 

phenotypic change. In contrast, overexpression of AgsB using an actin promoter led to a 

moderate conidiation defect. To pursue the work on α-1,3-glucan, I choose to study it using 

overexpression analysis. Two different promoters were used to give a high expression for AgsA 

and AgsB. The phenotypic changes were detected using microscopy. This is the first study to 

show more α-1,3-glucan can cause severe phenotypic defects in an Aspergillus species. Results 

from this chapter further explain the roles of α-1,3-glucan in A. nidulans cell wall. 

My role in this research: designed the study along with S Kaminskyj who funded it. I wrote 

thefirst draft; and contributed to the final revised draft.  

This chapter has formed a manuscript as “Overexpression of AgsB in Aspergillus nidulans 

causes cell wall defects and reveals highly mutable sites in agsB” by Xiaoxiao He and Susan 

Kaminskyj. The manuscript is in revision at Fungal Genetics and Biology.  
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3.1. Abstract: 

 

Alpha-1,3-glucan (α-1,3-glucan) is a major cell wall component for Aspergillus species, and 

it has been shown to be important for the virulence of A. fumigatus. Studying wall α-1,3-glucan 

could help to clarify aspects of the pathogenesis process. Our previous work in A. nidulans 

showed that deletion of AgsB, the major α-1,3-glucan synthase, had no major impact for cell 

wall formation on agar medium, but substantially reduced conidial adhesion in liquid medium. In 

this work, we further studied the function of α-1,3-glucan using overexpression analysis. When 

agsB was overexpressed by a histone promoter [H2A(p)], a high α-1,3-glucan content was 

detected in the cell wall. This was coupled with phenotypic changes including conidiation 

defects and thicker hyphal walls. This is the first report of altered α-1,3-glucan affecting A. 

nidulans cell morphology. Notably, the H2A(p)-agsB strain did not show increased conidial 

adhesion, but had increased cellular adhesion to hydrophobic materials. Our results also 

suggested this high level of α-1,3-glucan content in the H2A(p)-agsB strain caused cell wall 

defects and remodeling. Intriguingly, spontaneous mutants with no α-1,3-glucan content were 

readily isolated from plates inoculated with the H2A(p)-agsB strain. DNA sequencing showed 

that these mutants had different short deletions within agsB that abolished its function, which 

appeared to have been generated by a common mechanism: replication slippage. These mutations 

revealed the highly mutable sites in agsB during DNA replication.  
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3.2. Introduction 

  

Alpha-1,3-glucan is a major cell wall component in many fungi (Latgé, 2010). 

Characterization work on this wall component using synthase deletion analysis showed 

α-1,3-glucan is only essential for the morphology of Schizosaccharomyces pombe (Hochstenbach 

et al., 1998), but has no major impact on other investigated fungi, including Aspergillus spp. 

(Rappleye et al. 2004; Henry et al. 2012; Yoshimi et al. 2013; He et al. 2014). However, 

α-1,3-glucan is still required by these fungi, especially the pathogenic ones. Accumulated 

evidence has shown α-1,3-glucan is important for a successful pathogenesis (Rappleye et al. 

2007; Fujikawa et al., 2012; Beauvais et al., 2013). Therefore, a better understanding of the roles 

of α-1,3-glucan may help to dissect the pathogenesis process.  

In our previous work, we characterized α-1,3-glucan synthases in A. nidulans using gene 

deletion and overexpression approaches (He et al. 2014). We found deletion of the major 

α-1,3-glucan synthase (AgsB) had no impact on colony development on agar medium, whereas 

overexpression of AgsB by an actin promoter [actA(p)] caused a minor conidiation defect, 

suggesting further investigations on the roles of α-1,3-glucan could use overexpression analyses. 

Unfortunately, few data are available from α-1,3-glucan synthase overexpression in any fungal 

system. 

 To have a stronger expression level than our previously used promoter [actA(p)], we applied 

a histone promoter [H2A(p)] to regulate agsB. As expected, a much higher level of mRNA 
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expression was detected, however the α-1,3-glucan content in the walls was higher than wild 

type but surprisingly lower than the actA(p)-agsB strain (He et al., 2014). In addition, a series of 

phenotypic changes were noted in the H2A(p)-agsB strain, which had not been seen before in a 

α-1,3-glucan related strain in A. nidulans. Most intriguingly, phenotype-reversion mutants 

lacking α-1,3-glucan were readily isolated from plates inoculated with the H2A(p)-agsB strain, 

revealing several highly mutable sites within agsB. These data suggested α-1,3-glucan is already 

fully optimal at its normal expression level, and high α-1,3-glucan content is deleterious for cell 

morphology. 
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3.3. Materials and Methods  

 

3.3.1. Strains and Media 

 All strains in this study are listed in Table S3-1. They were constructed from A1149, which 

was also the wild type control for all the experiments. The promoter exchange strategy was 

described in He et al. (2014), except in this study an A. nidulans histone promoter was used 

instead of an actin promoter.  The PCR protocol, protoplast generation and transformation 

strategies followed Szewczyk et al. (2006) and El-Ganiny et al. (2008). Primers are shown in 

Table S3-2. Details for each strain construction and confirmation can be found in Fig. S3-1. 

All strains were grown on complete medium (CM per litre: 1 % glucose, 0.2 % peptone, 0.1 % 

yeast extract, 0.1 % casamino acids, 50 mL 20 x nitrate salts, 1 mL trace elements, 1 mL vitamin 

solution, pH 6.5), or on minimal medium (MM per litre: 1 % glucose, 50 mL 20 x nitrate salts, 

1 mL trace elements, 0.001 % thiamine, pH 6.5) supplemented with nutrition solution as required. 

Trace elements, vitamin solution, nitrate salt and all nutrition stocks are described in Kaminskyj 

(2001). For transformation medium, 1 M sucrose was added to MM as osmoticum. For 

phenotype rescue, 1 M sucrose was added to CM. Glucose concentration was tripled in 3 % CM. 

All strains were grown at 30 ºC, unless mentioned specifically. 
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3.3.2. Adhesion Tests 

 For conidial adhesion, 5 x 107 freshly harvested conidia were inoculated in 20 mL liquid CM 

and incubated at 30 ºC with shaking at 150 r.p.m. for 16 h. Then, 1 mL medium was taken from 

the flask and scanned for imaging.  

For polystyrene bead adhesion, 105 freshly harvested conidia were mixed with 1 µL 

fluorescent-conjugated polystyrene beads (Sigma L5530: 0.5 μm mean particle size) and grown 

in 1 mL CM at 37 ºC for 7 h with shaking at 150 r.p.m. A 50 µL aliquot of this culture was 

scanned and imaged by confocal microscopy. Bead adhesion test samples were examined using a 

Zeiss META501 confocal epifluorescence microscope with a 63 × objective lens. Confocal 

imaging used 514 nm excitation with emission controlled by a BP 530–600 nm filter. 

For the biofilm formation test, the method was adapted from Gravelat et al. (2010). Briefly, 

300 μL of complete medium was added in each well of a 24-well plate. Then, 105 freshly 

harvested conidia were inoculated in each well, and the plate was incubated at 30 ºC for 48 h. 

Each well was washed three times by 1 mL of ultra-pure water to assess cell adhesion. 

3.3.3. Microscopy Studies 

For transmission electron microscopy (TEM), strains were grown on dialysis tubing 

overlying CM for 2 d at 30 ºC. The TEM protocol was described in Kaminskyj (2000) using 

fixation with glutaraldehyde and OsO4. Samples were embedded in Epon 812 resin. Following 

polymerization, 70-90 nm sections were stained by uranyl acetate for 20 min, followed by lead 
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citrate for 2 min. Sections were rinsed with ultrapure water for 30 s after each staining solution. 

TEM images were taken by a Philips CM10 model TEM, collected on x-ray film, and digitized. 

For scanning electron microscopy (SEM), strains were grown on dialysis tubing overlying 

CM for 3 d at 30 ºC. The SEM protocol was described in He et al. (2014). SEM images were 

taken by a Phenom™ G2 Pure model. 

3.3.4. Alpha-1,3-glucan Quantification 

This method was adapted from Momany et al. (2004) and Marion et al. (2006), previously 

described in He et al. (2014). Alpha-1,3-glucan was extracted from dry cell wall samples by 1 M 

NaOH, and then was digested to glucose by 3 M H2SO4. Glucose content was quantified by the 

anthrone assay (Ashwell, 1957). All experiments were repeated three times with duplicates each 

time. 

3.3.5. Real Time PCR 

For gene expression studies, 2 x 107 conidia were inoculated in liquid CM and incubated at 

30 ºC with shaking at 150 r.p.m. for 16 h. Colonies were collected by filtration, immediately 

frozen in liquid nitrogen, then lyophilized. Total RNA was extracted using an RNeasy plant kit 

(Qiagen) following manufacturer’s instructions. Genomic DNA elimination and reverse 

transcription used a QuaniTect reverse transcription kit (Qiagen). Quantitative real time PCR 

(qPCR) used a SYBR® select Master Mix kit (Applied Biosystems) following the protocol 

described in Alam et al. (2012). Histone was used as a reference gene (Fujioka et al., 2007). 
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Primers for qPCR are listed in Table S3-2. The relative expression was normalized to histone and 

calculated using the ΔΔCt method (Livak and Schmittgen, 2001). Three independent experiments 

with triplicates were performed for each reaction.     
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3.4. Results 

3.4.1. Overexpression of AgsB Causes Severe Conidiation Reduction 

In our previous study, we reported that overexpression of AgsB by actA(p) in A. nidulans 

caused a moderate conidiation defect, suggesting higher than wild type α-1,3-glucan content may 

somehow affect the conidiation process (He et al., 2014). In order to further study the roles of 

α-1,3-glucan on cell morphology, we used a histone promoter [H2A(p)] to overexpress AgsB for 

a higher expression level than with actA(p). As expected, the H2A(p)-agsB strain had a 14-fold 

overexpression level for agsB in qPCR assay (Table 3-1), which was much higher than the 

actA(p)-agsB strain (~2 fold; He et al., 2014). With a 14-fold overexpression of AgsB, the 

H2A(p)-agsB strain showed a severe reduction in conidiation, which was readily visualized by 

the pale color of the colony (Fig. 3-1A). We then used SEM to examine the conidiation 

phenotype. The individual conidiophores of the H2A(p)-agsB strain were comparable to wild 

type morphology (Fig. 3-1B), but their density and the number of conidia on each was much 

lower (Fig. 3-1B). Besides the conidiation deficiency, the H2A(p)-agsB strain also showed other 

phenotypic changes, including slower hyphal growth rate (Fig. 3-1A), a 3-fold thicker cell walls 

(Fig. 3-1C and Table S3-3), abnormal hyphal morphology (Fig. 3-1D), and greatly swollen 

germinated conidia (Fig. 3-1D and Table S3-4). Cleistothecia were already seen on a 3-day old 

H2A(p)-agsB colony (data not shown), which was taken as a sign for an early self-mating. 

However, unexpectedly, in α-1,3-glucan quantification test, while the α-1,3-glucan abundance in 

the H2A(p)-agsB strain was higher than the wild type strain (Table 3-1), it was lower than the 
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actA(p)-agsB strain (He et al., 2014). 

3.4.2. Overexpression of AgsB did not Increase Conidial Adhesion but Increases Cellular 

Adhesion to Hydrophobic Materials 

 Previously, we found that deletion of AgsB substantially reduced conidial adhesion in 

shaken liquid culture, resulting in formation of many small colonies rather than fewer larger ones 

(He et al., 2014). Therefore we might expect that overexpression of AgsB would increase 

conidial adhesion, resulting in formation of fewer and larger colonies than the wild type strain. 

However, when the overexpression strains were grown in shaken liquid medium overnight, the 

actA(p)-agsB strain colonies resembled the wild type, whereas the H2A(p)-agsB strain formed 

many tiny colonies (Fig. 3-2A). Although superficially the H2A(p)-agsB strain colonies looked 

like those produced by the agsBΔ strain (Fig. 3-2A), compound microscope images showed they 

were actually different. The colonies of the H2A(p)-agsB strain were compact and small, whereas 

the colonies of the agsBΔ strain were loose and tiny (Fig. 3-2B), indicating the colony 

phenotypes of these two strains resulted from different reasons. Nevertheless, neither 

overexpression strain showed the signs of increased conidial adhesion.  

In addition, we also noticed that the H2A(p)-agsB strain but not the actA(p)-agsB strain 

showed very strong adhesion to the glass surface treated with GelSlick® (Fig. 3-2A), in other 

words an increased cellular adhesion to a hydrophobic surface. To confirm that, we used 

fluorophore-conjugated polystyrene beads to assess the cellular adhesion of our strains. 

Polystyrene beads have been used to test cell surface adhesion ability for Aspergillus species 
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(Lamarre et al. 2009; Alam et al., 2014). When examined by fluorescence microscope, both 

overexpression strains had higher adhesion ability to polystyrene beads, especially the 

H2A(p)-agsB strain (Fig. 3-2C). However, the agsBΔ strain maintained a similar adhesion ability 

as the wild type strain (Fig. 3-2C). 

 With noticing the strong adhesion ability of the H2A(p)-agsB hyphae, we wondered whether 

this change could enable A. nidulans to form a biofilm. Strong adhesion to a hydrophobic surface 

is a characteristic of A. fumigatus biofilms (Kaur and Singh, 2014), which contributes to making 

A. fumigatus a successful pathogen (Kaur and Singh, 2014; Muszkieta et al., 2014). A simplified 

testing method for biofilm formation was developed by Gravelat et al. (2010) using adhesion to a 

plastic tissue culture well. Following their idea, we found that hyphal mats formed by wild type 

A. nidulans, agsBΔ and actA(p)-agsB strains could be washed away easily (Fig. 3-4D), indicating 

a weak adhesion and no biofilm formation. In contrast, the H2A(p)-agsB and wild type A. 

fumigatus strains formed a layer of hyphae that could not be removed by washing (Fig. 3-4D). 

3.4.3. Overexpression of AgsB-α-1,3-glucan Causes Cell Wall Defects and Remodeling 

 Wide, slow-growing hyphae can be caused by a diversity of cellular defects (Harris et al., 

1994; Shi et al., 2004; El-Ganiny et al., 2008). Given that in the H2A(p)-agsB strain a major cell 

wall carbohydrate was dramatically overexpressed, we wondered whether the reason for the 

slow-growing hyphae was resource depletion. Glucose is the main source for energy production 

and a major substrate for cell wall polysaccharides. If overexpression of AgsB consumed too 

much glucose, this might cause problems for cell growth. To test that, we tripled the glucose 
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concentration in the complete medium (from 1% w/v to 3% w/v). However, no improvement was 

seen for the phenotypes of the H2A(p)-agsB strain (Fig. 3-3A). We then tried 1M sucrose 

medium, which is commonly used as an osmoticum to remediate cell wall defective strains (Lin 

and Momany, 2004; El-Ganiny et al., 2008). The phenotypes of the H2A(p)-agsB stain were 

partially recovered on 1 M sucrose medium regarding hyphal growth rate and conidiation rate 

(Fig. 3-3A), suggesting overexpression of AgsB caused a cell wall defect. 

As reported previously, the carbohydrate products of AgsA and AgsB are not equivalent with 

respect to their cellular functions (He et al. 2014): AgsB-α-1,3-glucan was more important for 

conidial adhesion in liquid medium and for CFW sensitivity. We were interested to see whether 

H2A(p)-overexpressed AgsA-α-1,3-glucan, on its own, could lead to similar phenotypic changes 

as the H2A(p)-agsB stain. To test this notion, we generated the [H2A(p)-agsA, agsBΔ] strain. The 

expression of agsA in this strain was greatly increased in qPCR assay (Table 3-1), and the 

α-1,3-glucan content was also dramatically elevated (Table 3-1). However, there was no 

phenotypic change observed in respect to hyphal growth rate or conidiation rate on solid medium 

(Fig. 3-3B). The conidial adhesion defect due to the loss of AgsB-α-1,3-glucan was also not 

recovered (Fig. 3-3B) by overexpression of AgsA-α-1,3-glucan. So overexpression of 

AgsA-α-1,3-glucan did not cause a cell wall defect, or recovery, under the conditions we tested. 

 Although the H2A(p)-agsB strain had a conidiation defect and a 3-fold thicker cell wall, the 

α-1,3-glucan abundance in this strain was not as high as the [H2A(p)-agsA, agsBΔ] strain (Table 

3-1). We think this could because of cell wall remodeling. It is likely that overexpressing a 
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component of the cell wall by molecular genetic means will trigger a CWI-mediated 

restructuring. The dynamics of cell wall architecture have been recorded in Aspergillus species 

(Beauvais et al., 2013; Alam et al., 2014). In our lab, Alam et al. (2012) showed that loss or 

down-regulation of galactopyranose mutase (ugmA) expression in A. nidulans led to an 

expression increase for agsB and an expression decrease for β-glucan synthase (fksA). Therefore, 

we tested the expressions of ugmA and fksA in the H2A(p)-agsB strain to see how the cell 

responded to α-1,3-glucan overexpression. Results showed both ugmA and fksA had higher 

expression levels than the wild type strain (Fig. 3-3C). In contrast, when we tested the same 

genes in the [H2A(p)-agsA, agsBΔ] strain, both ugmA and fksA were maintained at comparable 

expression levels as the wild type strain (Fig. 3-3C). 

3.4.4. Spontaneous Mutants from H2A(p)-agsB Reveal Highly Mutable Sites in agsB During 

DNA Replication 

 Intriguingly, the H2A(p)-agsB strain colonies streaked across a plate often became 

interspersed with wild type-appearing colonies, these typically arising after being grown for a 

few days (Fig. 3-4A indicated by the arrows). At first, we thought this could be contamination 

from a wild type strain. However, due to their delayed colony appearance and because their 

relatively high frequency, we wondered whether these wild type-like colonies were actually 

derived from the H2A(p)-agsB strain itself. Four potential mutant strains from four individual 

plates were collected to ensure these isolates had been generated independently. Mutants were 

named as H2A(p)-agsB mutant #1 to #4. Genomic DNA was extracted from each mutant and 
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tested for the source of the mutant. When we generated the H2A(p)-agsB strain, we had inserted 

a nutrition marker (AfpyroA) and a H2A(p) between agsB and its upstream (Fig. S3-1). Therefore, 

the sequence before agsB 5’ end was changed in the H2A(p)-agsB strain, which could be tested 

by PCR (Fig. S3-2) and used to determine the source for these mutants. The results showed all 

the mutants had the same band as the H2A(p)-agsB strain rather than the wild type strain (Fig. 

3-4B), suggesting they were derived from the H2A(p)-agsB strain. We then tested these mutants 

in shaken liquid medium to assess the α-1,3-glucan content. Surprisingly, they all formed the 

loose and small colonies like agsBΔ strain (Fig. 3-3C), indicating these mutants had no 

α-1,3-glucan in their cell walls. The lack of α-1,3-glucan in the mutants’ cell wall was also 

confirmed by anti-α-1,3-glucan antibody staining (Fig. S3-2). 

 It was very interesting to see the α-1,3-glucan content in these mutants changed from a high 

level to none. Because we artificially overexpressed agsB in the H2A(p)-agsB strain, the most 

likely changes in these mutants were mutations within agsB or its promoter that eliminated AgsB 

function. We sequenced agsB as well as the inserted H2A(p) (about 8.5 kb in total) in these four 

mutants. Short sequence deletions within the agsB coding region were found in each of the 

mutant strains (Table 3-2). In mutant #1, four nucleotides were deleted in the middle of the gene 

(Table 3-2), which shifted the reading frame. In mutant #3, fourteen nucleotides were missing 

near the 3’ end (Table 3-2), which also shifted the reading frame. Most intriguingly, in the other 

two mutants (mutant #2 and #4) exactly the same eighteen nucleotide deletions were found near 

the 3’ end (Table 3-2), which did not change the reading frame but still abolished its function. So 
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all these mutants resulted from short sequence deletions and two of them even shared the same 

deletion. Obviously, these were not random mutations.  

One of the most well defined mechanisms for short sequence deletion/insertion is replication 

slippage (Li et al., 2002; Lovett, 2004; Montgomery et al., 2013), which requires adjacent direct 

sequence repeats on genome. For each of our mutants the deleted sequences were repeated or 

partially repeated by the sequence right before them (Table 3-2). Therefore, these mutants were 

probably the results of replication slippage during DNA replication. 
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3.5. Discussion 

 

Previous studies on α-1,3-glucan were mostly based on α-1,3-glucan synthase deletion 

(Hochstenbach et al., 1998; Rappeleye et al. 2004; Henry et al. 2012; Yoshimi et al. 2013). Data 

on α-1,3-glucan overexpression are rare (He et al 2014). In this study, we constructed 

α-1,3-glucan synthase overexpression strains to further study the roles of α-1,3-glucan in the A. 

nidulans cell wall. 

3.5.1. Alpha-1,3-glucan Content is Optimally Expressed in A. nidulans Cell Wall under 

Regular Growth Conditions 

 When the major α-1,3-glucan synthase (AgsB) was overexpressed by actA(p) or H2A(p), 

more α-1,3-glucan was found in the hyphal cell wall (Table 3-1 and He et al., 2014) as well as 

the conidial cell wall of actA(p)-agsB strain (Table S3-5). However, neither of these 

overexpression strains showed higher conidial adhesion when grown in shaken liquid medium 

(Fig. 3-2A). Therefore, simply increasing cell wall α-1,3-glucan did not increase conidial 

adhesion, suggesting additional factors were involved. In addition, both overexpression strains 

showed phenotypic defects on solid medium. The actA(p)-agsB strain had a moderate conidiation 

defect related to conidia abundance (He et al., 2014), whereas the H2A(p)-agsB strain had more 

dramatic phenotypic changes, including a severe conidiation defect, slower growth rate and 

thicker hyphal cell wall (Fig. 3-1). These phenotypic changes were partially rescued by growth 

on 1 M sucrose medium, indicating more α-1,3-glucan appeared to cause a cell wall weakness 
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(Fig. 3-3A). Especially for the H2A(p)-agsB strain, the cell had remodeled its cell wall to cope 

with α-1,3-glucan overexpression, as shown by increased wall thickness (Fig. 3-1C). In fungi, 

cell wall remodeling is controlled by cell wall integrity pathways (Levin, 2005; Fujioka et al., 

2007; Munro et al., 2007). Activation of such pathways can alter the expression of many wall 

components, as we found for ugmA and fksA (Fig. 3-3C). This explained why the α-1,3-glucan 

abundance in the H2A(p)-agsB strain was not as high as the [H2A(p)-agsA, agsBΔ] strain, 

because other cell wall components (at least β-glucan and galactofuranose) were also increased 

in H2A(p)-agsB cell walls. These increased wall components together made the abnormally 

thickened cell wall in the H2A(p)-agsB strain. All together, these data suggest α-1,3-glucan is 

already optimally expressed in the A. nidulans cell wall to support conidial adhesion under 

regular growth condition, whereas more α-1,3-glucan is deleterious for cell morphology.  

3.5.2. Increased Cellular Adhesion in AgsB Overexpression Strains is not Due to 

α-1,3-glucan Itself 

 Although α-1,3-glucan is a major cell wall component in many filamentous fungi as well as 

some yeasts (Latgé, 2010), most existing data show it is dispensable for cell wall formation on 

solid medium (Henry et al., 2013; Yoshimi et al. 2013; He et al. 2014). This begs the question of 

why many fungi still produce α-1,3-glucan in a high abundance. Accumulated evidence has 

shown α-1,3-glucan contributes to the full virulence of some pathogenic fungi (Rappleye et al. 

2007; Fujikawa et al., 2012; Beauvais et al., 2013). In our study, α-1,3-glucan content was 

related to the adhesion ability to hydrophobic materials (Fig. 3-2A, C and D). The H2A(p)-agsB 
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strain even restored the ability for biofilm formation in A. nidulans (Fig. 3-2D). Adhesion ability 

and biofilm formation are both important factors for the virulence of Aspergillus species 

(Yoshijima et al., 2010; Muszkieta et al., 2013). Therefore, our results supported the previous 

findings that α-1,3-glucan contributes to fungal virulence. However, based on our results, we 

cannot make a direct link between α-1,3-glucan and the cellular adhesion, especially when we 

found that α-1,3-glucan content in the H2A(p)-agsB strain was not the highest in our strain lists 

(Table 3-1), other cell wall components (β-glucan and galactofuranose) were also induced in this 

strain and more extracellular matrix was observed outside of many H2A(p)–agsB cells (Fig. 

S3-2), perhaps galactosaminogalactan (Gravelat et al., 2013). Therefore, our results suggested 

the change of adhesion property was triggered by the factors associated with the overexpression 

of α-1,3-glucan, but not because of α-1,3-glucan itself. For instance, increased hyphal surface 

adhesion could result from exposure of mannans in A. fumigatus (Lamarre et al 2009). Further 

studies on cell wall analysis are needed to figure out the reasons for this high cellular adhesion, 

and this could also help to dissect the biofilm formation itself. Nevertheless, the current data 

showed A. nidulans also has the potential to form a biofilm under extreme α-1,3-glucan 

overexpression. 

3.5.3. H2A(p)–agsB Provides a Tool to Study Important Sites in agsB 

 Spontaneous phenotype-reversion mutants were frequently isolated from the H2A(p)-agsB 

strain. Since we found these mutants had no α-1,3-glucan, it was clear that the function of AgsB 

had been eliminated, presumably by mutation(s). When we sequenced agsB in these mutants, we 
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expected to find single base-pair mutations disabling AgsB. If so, these mutations might have 

provided useful information related to the essential amino acids within AgsB, and these 

mutations could help for the further protein study of α-1,3-glucan synthase. However, so far, we 

were only able to find short sequence deletions but not single base-pair mutations (Table 3-2).  

According to the sequencing result, we found these mutants were not generated by totally 

random events. The most likely mechanism was replication slippage, which is a common type of 

DNA replication error that requires adjacent direct sequence repeats (mechanism reviewed by 

Lovett, 2004). Replication slippage mainly happens at tandem repeat sequences (Li et al., 2002), 

but is not restricted to those regions (Li et al., 2004). In the human genome, it is estimated that 

up to 75 % short sequence deletions/insertions could be due to replication slippage (Montgomery 

et al., 2013).  In fungi, replication slippage has been reported in yeast (Mar Albà et al., 1999), 

and our result suggests it also happens in A. nidulans. The agsB sequence was ideal for detecting 

this type of mutation, because the overexpression strain had a phenotype on solid medium 

whereas the deletion strain did not. The sequencing results also confirmed our previous finding 

that the transmembrane domain is essential for AgsB function (He et al., 2014). Even loss of 6 

amino acids in this critical domain was not affordable for the protein (see results for mutants #2 

and #4). 

 In summary, our overexpression study showed that more α-1,3-glucan did not increase 

conidial adhesion in shaken liquid medium, but triggered a higher cellular adhesion to 

hydrophobic materials. Abnormally high α-1,3-glucan content in the A. nidulans cell wall was 
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shown to be harmful, causing cell wall defects and remodeling. Intriguingly, phenotype reversion 

mutants from the H2A(p)–agsB strain could be readily isolated on the agar cultures. To date, our 

results suggest the mutations were generated by replication slippage, and these mutations were at 

non-random mutable sites in agsB. More independent mutants have been isolated and archived. 

Preliminary sequencing showed they do not share any previous identified mutations. Further 

work on more mutants may provide new insights for α-1,3-glucan synthase protein. 
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3.7. Tables 

Table 3-1 Expression changes and α-1,3-glucan quantification for H2A(p) overexpression strains 

 

Strains 

Expression changes for target 

gene (in folds) a  

Relative α-1,3-glucan 

abundance in hyphal cell wall 

(%) b 

Wild type 

H2A(p)-agsB 

H2A(p)-agsA, agsBΔ 

1 

13.5 ± 3.0 

1523 ± 478 

15 ± 1  

28 ± 4  

34 ± 2 
a : Expression changes were measured by qPCR as mentioned in Materials and Methods. Target 

gene expression in the wild type strain was defined as 1. Results represent the mean ± SD from 

three independent experiments with triplicates each time. 
b: Alpha-1,3-glucan was quantified by an anthrone assay as mentioned in Materials and Methods. 

Relative α-1,3-glucan abundance represents the percentage of total α-1,3-glucan weight in 1 mg 

dry cell wall. Mean ± SD was shown for each strain. Each experiment was repeated three times 

with duplicates each time. 
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Table 3-2 Deleted sequences in H2A(p)-agsB mutants 

Strains Sequences position a Deleted sequence b (5’to 3’) with repeat sequence at 5’ 

Mutant #1 

Mutant #2 

Mutant #3 

Mutant #4 

3784-3787 

6582-6599 

6316-6329 

6582-6599 

CTTGCTTG 

TCGGCCTCCTGCTGATCTTCGGCCT 

GCGGCTTCTATGCTGCGGCTTC 

TCGGCCTCCTGCTGATCTTCGGCCT 
a: Sequence position represents position in cDNA 
b: Deleted sequence shown by strikethrough. 
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3.8. Figures 

 

Fig. 3-1 The H2A(p)-agsB strain exhibits phenotypic changes compared to wild type. 
A. 105 freshly harvested conidia of each strain were inoculated on complete medium and 
incubated at 30 ºC for 72 h. Only the H2A(p)-agsB strain showed obvious growth and 
conidiation defects. 
B. SEM showed the H2A(p)-agsB strain has fewer conidiophores and fewer conidia per 
conidiophore. 
C. TEM showed cell wall thickness is obviously increased in the H2A(p)-agsB strain. Bar = 500 
nm 
D. 63× phase contrast images showed the H2A(p)-agsB strain has bigger germinated conidia and 
abnormal hyphal morphology. 
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Fig. 3-2 Adhesion test for wild type and AgsB deletion and overexpression strains 
A. 2 x 107 freshly harvested conidia of each strain were inoculated in 20mL complete medium. 
Flask was incubated at 30 ºC for 16 h with 150 r.p.m. The actA(p)-agsB strain behaved the same 
as the wild type strain, whereas the agsBΔ and H2A(p)-agsB strains formed many tiny colonies. 
In addition, only the H2A(p)-agsB strain showed strong adhesion to Gel Slick pre-treated flask 
walls (Lower panel). 
B. Compound microscope magnified individual colony of the H2A(p)-agsB and agsBΔ strains 
showed these two small colonies are actually different. 
C. 105 freshly harvested conidia of each strain and 1 µL polystyrene beads were grown in 1 mL 
complete medium at 37 ºC for 7 h with 150 r.p.m. Images were captured by a Zeiss META501 
confocal epifluorescence microscope at 63× objective lens. Confocal imaging used 514 nm 
excitation with emission controlled by a BP 530–600 nm filter. The actA(p)-agsB strain had more 
adhered beads than wild type, whereas the H2A(p)-agsB strain was fully covered by beads. 
D. 105 freshly harvested conidia of each strain were grown in 300 µL complete medium at 30 ºC 
for 48 h (upper panel), then washed by ultra-pure water (lower panel). Strains are 1) wild type 
A.fumigatus, 2) wild type A. nidulans, 3) agsBΔ, 4) actA(p)-agsB and 5) H2A(p)-agsB. Only the 
colonies formed by wild type A. fumigatus and H2A(p)-agsB cannot be removed by washing, 
indicating the formation of biofilm. 
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Fig. 3-3 Overexpression of AgsB-α-1,3-glucan causes cell wall defects and remodeling 
A. 105 freshly harvested conidia of each strain were inoculated on indicated medium. Plates 
incubated at 30 ºC for 48 h. Compare to wild type control on each medium, the H2A(p)-agsB 
strain showed faster growth rate and higher conidiation rate on 1 M sucrose medium than CM or 
3 % CM. 
B. The phenotype of the [H2A(p)-agsA, agsBΔ] strain is indistinguishable from wild type when 
grown on solid complete medium (left). But the conidial adhesion defect due to the loss of AgsB 
was not recovered in shaken liquid complete medium (right).  
C. The expressions of ugmA and fksA were up-regulated in the H2A(p)-agsB strain but not in the 
[H2A(p)-agsA, agsBΔ] strain.  
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Fig. 3-4 Spontaneous mutants from the H2A(p)-agsB strain have no α-1,3-glucan 
A. Wild type-like colonies (indicated by arrows) spontaneously grew on the H2A(p)-agsB plate. 
B. These isolated strains had the same PCR band as the H2A(p)-agsB strain. Therefore they are 
the mutants from the H2A(p)-agsB strain ]. 
C. The spontaneous mutants formed tiny colonies comparable to the agsBΔ strain, indicating 
they had no α-1,3-glucan in their cell walls. 
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3.9. Supplemental Materials 

 

Table S3-1 Aspergillus nidulans and Aspergillus fumigatus strains in this study 

Strains Name Genotype Origin 

Aspergillus nidulans 

agsBΔ 

actA(p)-agsB 

H2A(p)-agsB 

H2A (p)-agsA, agsBΔ 

 

H2A(p)-agsB mutant #1 

H2A(p)-agsB mutant #2 

H2A(p)-agsB mutant #3 

H2A(p)-agsB mutant #4 

A. fumigatus 

A1149 

AXH1 

AXH17 

AXH20 

AXH59 

 

AXH65 

AXH67 

AXH68 

AXH70 

A1151 

pyrG89; pyroA4; nkuA::argB 

AN3307::AfpyrG; pyrG89; pyroA4; nkuA::argB 

agsBp::AfpyrG:actAp:agsB; pyrG89; pyroA4; nkuA::argB 

agsBp::AfpyrG:H2Ap:agsB; pyrG89; pyroA4; nkuA::argB 

agsAp:: agsAp: AfpyroA:H2Ap:agsA; AN3307::AfpyrG; pyrG89; 

pyroA4; nkuA::argB 

agsBp::AfpyrG:H2Ap:agsB; pyrG89; pyroA4; nkuA::argB 

agsBp::AfpyrG:H2Ap:agsB; pyrG89; pyroA4; nkuA::argB 

agsBp::AfpyrG:H2Ap:agsB; pyrG89; pyroA4; nkuA::argB 

agsBp::AfpyrG:H2Ap:agsB; pyrG89; pyroA4; nkuA::argB 

pyrG^AF::Delta KU80; pyrG-  

FGSC 

He et al. 2014 

He et al. 2014 

this study 

this study 

  

this study 

this study 

this study 

this study 

FGSC 

 
 
 

Table S3-2 Primers in this study 

Primers Sequence 5’ to 3’ Description 

Selective marker and strain confirmation 

AME1  

AME2 

SE231 

SE232 

AME7 

AME8 

AME15 

AME16 

ATGTCGTCCAAGTCGCAATT 

TCATGACTATGCCGCATACTAC 

GGACATCAGATGCTGGATTACTAAAG 

TTACCATCCTCTCTTGGCCA 

CAATACCGTCCAGAAGCAATAC 

CACATCCGACTAGCACTATCC 

ATTCCTGTCATGGCCAAAG 

TCAACAACATCTCCGGTACC 

AfpyrG* 

AfpyrG* 

AfpyroA with native promoter 

AfpyroA with native promoter 

AfpyrG confirmation* 

AfpyrG confirmation* 

AfpyroA confirmation* 

AfpyroA confirmation* 

Gene deletion 

SE77 CATACAAAAATCCATGGACCG agsB upstream F 
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SE78 

SE79 

SE80 

SE81 

SE82 

AATTGCGACTATGGACGACATACTAGATGAAGCGAGAACGAG 

GAGTATGCGGCAAGTCATGAGGCTTAGCAACCGTAGTTTGG 

CTGGATTAAACATGAGAGGGAGA 

AGCAAACGATTTTCAGGGTC 

AGCAACCCAAACGCTACG 

agsB upstream R (pyrG tail) 

agsB downstream F (pyrG tail) 

agsB downstream R 

agsB Fusion F 

agsB Fusion R 

Promoter exchange  

SE211 

SE212 

SE311 

SE213 

SE143 

SE144 

SE85 

SE242 

SE312 

SE146 

SE89 

SE147 

GAGTATGCGGCAAGTCATGATCGAAAGTTGAATTCGGTAATG 

TTTGATTGATTTGGAGAATCAGG 

TGGCCAAGAGAGGATGGTAATCGAAAGTTGAATTCGGTAATG 

CCTGATTCTCCAAATCAATCAAAATGGGGAGGCTCCAGCTC 

GATAGACCCAAAAGTATTGCCTCC 

AGGCAATGATCATGCATGTG 

TAGACGAGGAACATTTACCGG 

CTTAGTAATCCAGCATCTGATGTCCGGTCGATTTTTCCGGATGT 

CCTGATTCTCCAAATCAATCAAAATGAGGTGGAGGCCTTTAAAC 

ATTGGTTGGGCTGTCTTCC 

GGCTTGTAGACTAGGAATGGTATCT 

CACACTACACGATAAGCACTACG 

H2A promoter F (pyrG tail) 

H2A promoter R 

H2A promoter F (pyroA tail) 

agsB F (H2A(p) tail) 

agsB_1210 R 

H2A(p)-agsB Fusion R 

agsA upstream F 

agsA upstream R (pyroA tail) 

agsA F (H2A(p) tail) 

agsA_1200 R 

H2A(p)-agsA Fusion F 

H2A(p)-agsA Fusion R 

qPCR 

SE244 

SE245 

SE246 

SE247 

SE248 

SE249 

SE11 

SE12 

AME84 

AME85 

CACCCGGACACTAGGTATCTC 

GAATACTATCGTAACGGCCTTGG 

ATCGGACACTAACCTTCCCTG 

GACTATGGCTGACGATCAACG 

GCTTTCCAAATCCCACAGTTGG 

GTGAAGCAGATATGCATCCGTG 

GTGTGGTCCGTTTCGCTATT 

GCTCAAGAAGGATGCCACTC 

CGTTCCCAGCTTTCAGGATA 

CTTTGCAGCACCCAATCC 

Histone qPCR F# 

Histone qPCR R# 

agsB qPCR F# 

agsB qPCR R# 

agsA qPCR F# 

agsA qPCR R# 

fksA qPCR F* 

fksA qPCR R* 

ugmA qPCR F* 

ugmA qPCR R* 

#, Fujioka et al. (2007) 

*, Alam et al. (2012) 
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Table S3-3 Quantification of cell wall thickness (nm) 

Strains Cell wall thickness (nm) 

Wild type 

H2A(p)-agsB 

53 ± 10 

157 ± 38 

TEM images were used for the measurement of cell wall thickness. 30 individual cells from each 

group were measured. Results represent mean ± SD. 

 

 

Table S3-4 Quantification of conidia diameter (μm) 

Strains Ungerminated Germinated 

Wild type 

H2A(p)-agsB 

3.4 ± 0.4 

3.5 ± 0.4 

6.0 ± 0.4 

8.1 ± 1.1 

Conidia were spread on dialysis tubing overlying CM without incubation (ungerminated) or 

incubated overnight (germinated). Then slides were made from dialysis tubing and imaged by a 

Zeiss META501 confocal epifluorescence microscope at 63×. All images were processed by 

Zeiss LSM Image Browser. At least 30 conidia were measured for each strain under each 

condition. Results represent mean ± SD. 

 

Table S3-5 Abundance of α-1,3-glucan in conidial cell wall (%) 

Strains Ungerminated Germinated 

Wild type 

actA(p)-agsB 

5.3 ± 0.4 

8.5 ± 0.8 

7.1 ± 0.7 

9.8 ± 0.6 

The ungerminated conidia were freshly collected from the medium and the germinated conidia 

were grown in liquid CM for 8 h at 30 °C with 150 r.p.m. The α-1,3-glucan quantification 

process followed the method previously described. Due to the poor conidiation rate of 

H2A(p)-agsB strain, this strain was not used in this experiment. 
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Fig. S3-1 Promoter exchange strategy, PCR construct for each strain, and strain confirmation. 
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Fig. S3-2 MOPC 104E straining for wild type, agsBΔ and H2A(p)-agsB strains. 

Primary antibody MOPC 104E and secondary antibody TRITC-conjugated goat-anti-mouse 

(Sigma) were used at 1:20 and 1:50 respectively. Samples were examined using a Zeiss 

META501 confocal epifluorescence microscope at 63 x objective lens. Confocal imaging used 

543 nm excitation, with emission controlled by BP 560-615 nm filter. 

 

 

Fig. S3-3 Typical TEM images of wild type and H2A(p)-agsB strains. Many cells of 

H2A(p)-agsB strain are surrounded by excessive extracellular matrix (black materials). Scale bar 

= 500 nm 
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CHAPTER 4 

AN AMYLASE-LIKE PROTEIN, AmyD, IS THE MAJOR NEGATIVE REGULATOR FOR 
ALPHA-1,3-GLUCAN SYNTHESIS IN THE ASPERGILLUS NIDULANS ASEXUAL LIFE 

CYCLE 

 

 In chapter 2, I found AmyD can repress α-1,3-glucan synthesis in A. nidulans. Previously, 

the only proteins reported to have repressive effects on α-1,3-glucan synthesis were 

α-1,3-glucanases. Both AmyD and the three annotated α-1,3-glucanases in A. nidulans were 

predicted to have an N-terminal signal peptide and a C-terminal GPI-anchor site. Considering the 

similar localizations of AmyD and α-1,3-glucanases, I hypothesized that AmyD works together 

with α-1,3-glucanases to degrade α-1,3-glucan in A. nidulans. In this chapter, I examined the 

function of AmyD in the α-1,3-glucan degradation process along with three putative 

α-1,3-glucanases to verify that hypothesis. Results from this chapter further explain the 

α-1,3-glucan metabolism process in A. nidulans.  

My role in this research: designed the study along with S Kaminskyj who funded it. I wrote 

thefirst draft; and contributed to the final revised draft.  

Results from this chapter have formed a manuscript as “An amylase-like protein, AmyD, is 

the major negative regulator for α-1,3-glucan synthesis in Aspergillus nidulans during the 

asexual life cycle” by Xiaoxiao He and Susan Kaminskyj.  

  



Xiaoxiao He Ph.D. Thesis    2014 Sept 

107 
 

 

An amylase-like protein, AmyD, is the major negative regulator for α-1,3-glucan synthesis 

in Aspergillus nidulans during the asexual life cycle 

 

Xiaoxiao He, Susan G. W. Kaminskyj* 

Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK 

S7N 5E2, Canada 

 

*Author for correspondence 

Tel: +1 306 966 4422; email: susan.kaminskyj@usask.ca  

Key words: alpha-1,3-glucan, cell wall, alpha-amylase, alpha-1,3-glucanase, Aspergillus 

nidulans 



Xiaoxiao He Ph.D. Thesis    2014 Sept 

108 
 

4.1. Abstract 

 

Alpha-1,3-glucan affects fungal cell-cell interactions and is important for the virulence of 

pathogenic fungi. Interfering with production of α-1,3-glucan could help to prevent fungal 

infection. In our previous study, we reported that an amylase-like protein, AmyD, could repress 

α-1,3-glucan accumulation in Aspergillus nidulans. To further explore the mechanism of AmyD, 

we studied its function in the α-1,3-glucan degradation process along with two other predicted 

amylase-like proteins and three annotated α-1,3-glucanases. AmyC and AmyE share substantial 

sequence identity with AmyD, however neither affects α-1,3-glucan synthesis. In contrast, AgnB 

and MutA (but not AgnE) are functional α-1,3-glucanases that also repress α-1,3-glucan 

accumulation. Nevertheless, the functions of AmyD and these glucanases were independent from 

each other. The dynamics of α-1,3-glucan accumulation showed different patterns between the 

AmyD overexpression strain and the α-1,3-glucanase overexpression strains, suggesting AmyD 

may not be involved in the α-1,3-glucan degradation process. In addition, we confirmed that the 

final localization of AmyD is on cell membrane. These results suggest the function of AmyD is 

to directly suppress α-1,3-glucan synthesis, but not to facilitate its degradation. 
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4.2. Introduction 

 

Alpha-1,3-glucan and β-glucan are major cell wall components for many filamentous fungi 

as well as for many yeasts (Latgé, 2010). However, they have very different impacts on fungal 

cells. Beta-glucan is essential for fungal cell survival, at least for species of Aspergillus and 

Candida (Douglas et al., 1997; Firon et al., 2002). Hence, β-glucan synthase inhibitors 

(echinocandins) are used clinically to treat systemic aspergillosis and candidiasis (Denning, 

2003).  In contrast, α-1,3-glucan has only found to be important for the morphology of 

Schizosaccharomyces pombe (Hochstenbach et al., 1998), particularly for cell integrity at 

cytokinesis (Cortés et al., 2012). For other fungal species, α-1,3-glucan synthase deleted strains 

cause minor or no phenotypic change (Rappeleye et al. 2004; Henry et al. 2012; Yoshimi et al. 

2013; He et al. 2014). Nevertheless, accumulated evidence has suggested α-1,3-glucan has a role 

in host-pathogen interaction (Rappleye et al. 2007; Fujikawa et al., 2012; Beauvais et al., 2013), 

which is important for a successful pathogenesis. Thus, treatments that could eliminate fungal 

α-1,3-glucan might be able to prevent fungal infection. Unfortunately, to our knowledge no drug 

is developed yet targeting α-1,3-glucan synthase. As an alternative strategy to blocking the 

synthesis of α-1,3-glucan, we could potentially degrade α-1,3-glucan from fungal cell walls to 

achieve the same purpose.  

 Alpha-1,3-glucanase (hereafter, α-1,3-glucanase) expressed by fungal cells can recycle 

α-1,3-glucan from their cell walls. In S. pombe, α-1,3-glucanase (SpAgn1p) was shown to have 
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an endo-catalytic hydrolysis ability on α-1,3-glucan (hydrolyzing α-1,3-glucan into 

pentasaccharides), and thereby was important for successful cell division (Dekker et al, 2004). 

Paracoccidioides brasiliensis α-1,3-glucanase (PbAgn1p) has comparable activity 

(Villalobos-Duno et al., 2013). In Trichoderma species, two α-1,3-glucanases have been 

characterized, and these were suggested to have anti-fungal effects because their expression was 

highly induced under antagonistic conditions (Ait-Lahsen et al., 2001, Sanz et al., 2005). 

Together this is strong evidence that α-1,3-glucanase has the potential to digest α-1,3-glucan 

from fungal cell walls. Consistent with this, a strain of transgenic rice plants that expressed a 

bacterial α-1,3-glucanase was more resistant to Magnaporthe oryzae (Fujikawa et al., 2012). 

Therefore, degrading α-1,3-glucan from fungal cell walls is a possible way to prevent fungal 

infection, and characterization of glucanase-like protein is expected to provide additional useful 

information about this major but enigmatic wall carbohydrate. 

  In our previous study, we reported that an amylase-like protein (AmyD) had a repressive 

effect on α-1,3-glucan synthesis in A. nidulans (He et al., 2014). Amylase-like proteins with 

similar effects were also seen in S. pombe (Morita et al., 2006) and A. niger (van der Kaaij et al., 

2007). These data suggest some amylase-like proteins may have the same potential as 

α-1,3-glucanase to eliminate α-1,3-glucan from fungal cell walls. To further explore this 

possibility, we studied the function of AmyD along with two other amylase-like proteins and 

three α-1,3-glucanases in the α-1,3-glucan degradation process. We found that AmyD was the 

only amylase-like protein in A. nidulans that could repress α-1,3-glucan accumulation, and that 
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AmyD function was independent from α-1,3-glucanase. The functional α-1,3-glucanases 

maintained low expression levels in the A. nidulans asexual life cycle. Therefore, AmyD is the 

major negative regulator for α-1,3-glucan accumulation in A. nidulans during asexual life cycle. 

The function of AmyD is more likely to repress α-1,3-glucan synthesis, but not to facilitate its 

degradation.   
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4.3. Materials and Methods 

4.3.1. Strains, Plasmids and Media 

All strains in this study were constructed in A. nidulans A1149. The A1149 strain was also 

the wild type control for all assays in this paper. Strains used in this study are listed in 

Table S4-2. Primers and plasmids are listed in Table S4-3. Strategies for gene deletion and 

confirmation methods were described by Szewczyk et al. (2006) and El-Ganiny et al. (2008). 

Briefly, a targeted replacement construct was constructed by fusion PCR including 1 kb 

upstream, a selectable marker, and 1 kb downstream (details see Fig. S4-1A). This construct was 

transformed to A1149 protoplasts. A. fumigatus pyrG and pyroA were used as selectable markers 

(details for each strain see Fig. S4-1B). The strategy for promoter exchange was previously 

described in He et al. (2014). For promoter exchange, the transformation construct was 1 kb 

upstream of the target, the selectable marker, actA(p) and 1 kb of the target gene from 5’ end 

(Fig. S4-1A). The actA promoter was amplified from A1149 genomic DNA and the sequence 

was given in Fig. S4-3. Again, details for each construction are given in Fig. S4-1B. PCR 

confirmation of each constructed strain is shown in Fig.S4-2. The sequence of each 

overexpression strain was confirmed by DNA sequencing, and only clones with no mutation 

were used for further study.  

All strains were grown on complete medium (CM per litre: 10 g glucose, 2 g peptone, 1 g 

yeast extract, 1 g casamino acids, 50 mL 20 x nitrate salts, 1 mL trace elements, 1 mL vitamin 

solution, pH 6.5) or minimal medium (MM: 10 g glucose, 50 mL 20 x nitrate salts, 1 mL trace 



Xiaoxiao He Ph.D. Thesis    2014 Sept 

113 
 

elements, 0.001 % thiamine, pH 6.5) supplemented with nutrition solution as required. Trace 

elements, vitamin solution, nitrate salt and all nutrition stocks are described in Kaminskyj (2001). 

For transformation medium, 1 M sucrose was added to MM as osmoticum. All strains were 

grown at 30 ºC, unless mentioned specifically. 

4.3.2. Quantification of Conidiation 

1.5 mL CM agar were added to each well of a 24-well plate and seeded with 105 conidia 

after solidification. Plates were incubated for 4 d, then 1 mL ultra-pure water from Barnstead™ 

Nanopure™ system was used to collect conidia from each well. Conidia were quantified by 

hemocytometer. 

4.3.3. Alpha-1,3-glucan Quantification 

The method was adopted from Momany et al. (2004) and Marion et al. (2006). Briefly, 2 x 

107 conidia were grown at 30 ºC in 100 mL liquid CM, shaken at 150 r.p.m. for 24 h (or the 

indicated time). Colonies were collected by filtration and washed with 0.5 M NaCl. Cells were 

frozen at -80 ºC for 2-4 h, then broken in disruption buffer (DB: 20 mM Tris, 50 mM EDTA, pH 

8.0) using a Virsonic Ultrasonic Cell Disrupter, until hyphal ghosts formed. Cell walls were 

separated by centrifugation at 3500 x g for 10 min. The pellet containing the cell wall fraction 

was washed in DB with stirring for 4 h at 4 ºC followed by a wash with sterile ultrapure water 

under the same conditions, pelleted again, and lyophilized. Dry cell wall samples were weighed, 

then suspended in 1 M NaOH at 0.5 mg mL -1. Alkaline extraction was performed overnight at 
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37 ºC. Then 2 mL alkaline-soluble fraction (containing 1 mg cell wall) was used for the 

following process. The alkali was neutralized by acetic acid until pH 5.5. Alpha-1,3-glucan was 

collected by centrifugation 12000 x g for 10min, and then washed twice in ultrapure water. 

Finally, α-1,3-glucan was hydrolyzed by 2 mL 3 M H2SO4, at 100 ºC for 1 h. Glucose content 

(mainly from α-1,3-glucan in the alkali-soluble fraction) was quantified by anthrone assay 

(Ashwell, 1957). All experiments were repeated three times with duplicates each time.  

4.3.4. RT-PCR and qPCR 

For the time-course expression study, 2 x 107 conidia were inoculated in liquid CM and 

incubated at 30 ºC with or without shaking at 150 r.p.m., then colonies were collected at 14 h and 

24 h for both groups. In static condition, only the colonies grown on the liquid surface were 

collected. Collected colonies were immediately frozen in liquid nitrogen, then lyophilized.  

For the overexpression study, 2 x 107 conidia were inoculated in liquid CM and incubated at 

30 ºC with shaking at 150 r.p.m. for 14 h. Colonies were collected by filtration, immediately 

frozen in liquid nitrogen, then lyophilized. 

Total RNA was extracted using an RNeasy plant kit (Qiagen) following manufacturer’s 

instructions. RNA concentration was measured using a Nanodrop®, then diluted to 500 ng µL-1. 

Genomic DNA elimination and reverse transcription used a QuaniTect reverse transcription kit 

(Qiagen) following the manufacturer instructions. 

Quantitative real time PCR (qPCR) was performed in 96-well optical plates in an iQ5 
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real-time PCR detection system (Bio-Rad). Gene expression was assayed in a total volume of 

20 µL per reaction containing cDNA at an appropriate dilution and SYBR green fluorescein 

(Qiagen). A no-template control was used for each pair of primers. Histone was used as a 

reference gene (Fujioka et al., 2007). Primers for qPCR are listed in Table S4-3.   

The qPCR amplification used the following conditions: 95 ºC /15 min for one cycle, 

95 ºC /15 s, 55 ºC /40 s and 72 ºC /30 s for 40 cycles and final extension cycle of 72 ºC /2 min. 

Melting curve analysis was done using the following cycle: 15 s at 65 ºC with an increase of 0.5 

ºC each cycle to 95 ºC. The relative expression was normalized to histone and calculated using 

the ΔΔCt method (Livak and Schmittgen, 2001). Three independent experiments with triplicates 

were performed for each reaction.   

4.3.5. Drug Sensitivity Test 

Calcofluor White (American Cyanamid Company) was prepared as a stock at 10 mg mL -1 in 

25 mM KOH (Hill et al., 2006). The stock solution was sterilized by filtration. For testing, CFW 

stock solution was added to CM agar cooled to 55~60 ºC. Then, 105 conidia of each strain were 

inoculated on plate on the same day. Plates were incubated for 48 h at 30 ºC. 
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4.4. Results 

4.4.1. AmyC and AmyE do not Affect α-1,3-glucan Accumulation  

In the A. nidulans genome, there are two putative/annotated amylase-like proteins, AmyC 

(encoded by ANID4507) and AmyE (encoded by ANID6324) that share high sequence similarity 

with AmyD. Like AmyD, both are predicted to have an N-terminal signal peptide and a 

C-terminal GPI-anchor site (de Groot et al. 2009). Their overall amino acid sequence identities to 

AmyD are 59 % (AmyC) and 47 % (AmyE) respectively, suggesting they could have conserved 

functions with AmyD.  

To study their functions, we first examined their expression levels to see when we could 

expect to detect their activities. Samples were grown in shaken liquid medium and in static liquid 

medium for 14 h and 24 h respectively. In shaken liquid medium, A. nidulans grows vegetatively 

(hyphal elongation only) but does not undergo colony development. In static liquid medium, A. 

nidulans could undergo a complete asexual life cycle. Conidiophores with some conidia were 

seen when we collected the static samples at 24 h. Unlike amyD (He et al., 2014), we found 

amyC and amyE maintained low expression levels throughout the A. nidulans asexual life cycle 

(represented by high Ct value in qPCR) (Table 4-1). Therefore, their activities are not expected 

in all asexual life stages. 

We chose to overexpress these putative amylase genes instead of deleting them to examine 

their effects on α-1,3-glucan. In our previous study, we showed that the actin promoter [actA(p)] 

gave a ~2-fold expression for amyD in A. nidulans (He et al., 2014), so we also used it in this 
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study for gene overexpression. The actA(p)-amyC and actA(p)-amyE strains had no obvious 

phenotypic change when tested on solid medium, or when grown in shaken liquid medium in 

respect to the colony size (Fig. 4-1A and B). In contrast, the actA(p)-amyD strain formed many 

tiny colonies in shaken liquid (Fig. 4-1B). This suggests that AmyC and AmyE may not have the 

same function as AmyD. Our qPCR results showed amyC and amyE were each overexpressed by 

several hundred-fold when regulated by actA(p), consistent with their low expression under 

native promoters (Table 4-1). However, the α-1,3-glucan content in actA(p)-amyC and 

actA(p)-amyE was comparable to wild type cells (Fig. 4-1C), unlike actA(p)-amyD (Fig. 4-1C). 

We interpret this to mean AmyC and AmyE did not reduce α-1,3-glucan accumulation in 

A. nidulans. So far, AmyD is the only reported amylase-like protein that has a repressive effect 

on α-1,3-glucan accumulation in A. nidulans.   

4.4.2. MutA as well as AgnB but not AgnE can Repress α-1,3-glucan Accumulation 

In order to verify whether AmyD could facilitate α-1,3-glucan degradation, we needed to 

find a functional α-1,3-glucanase. MutA (encoded by ANID7349) is the only characterized 

α-1,3-glucanase in A. nidulans. However its expression has only been studied for the sexual life 

cycle (Wei et al., 2001). Two more α-1,3-glucanase encoding genes, agnB (ANID3790) and 

agnE (ANID1604) have also been annotated in the A. nidulans genome (de Groot et al., 2009). 

Therefore, AgnB and AgnE were chosen as our study candidates and MutA was included as a 

positive control. 

A time-course expression study showed that both agnB and mutA had very low expression 
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throughout the A. nidulans asexual life cycle (Table 4-1), whereas expression of agnE was highly 

induced during conidiation (Table 4-1). When the α-1,3-glucanases were individually deleted, 

this change had no impact on colony phenotypes or α-1,3-glucan content (Fig. 4-2A-C), as we 

expected due to their low expression levels in vegetative growth. When the α-1,3-glucanases 

were individually overexpressed by actA(p), each had a many hundred-fold increase in 

expression level (Table 4-1), but only the overexpression of AgnB and MutA led to a lower 

α-1,3-glucan content (Fig. 4-2F). Therefore, AgnB and MutA are the functional α-1,3-glucanases 

in our test. Intriguingly, both actA(p)-agnB and actA(p)-mutA behaved the same as wild type in 

shaken liquid medium (Fig. 4-2E), unlike actA(p)-amyD that formed tiny colonies (Fig. 4-1B).  

The actA(p)-agnB strain had a pale conidia color for colonies grown on solid medium 

(Fig. 4-2D), although quantification of conidiation did not show obvious difference (Table S4-1). 

This suggests that the conidia color difference could be due to a defect in pigment formation 

somehow related to the overexpression of agnB.  

We then also deleted AgnB and MutA together, just in case they might compensate for each 

other when individually deleted. However, the double deletion strain still had no impact on 

α-1,3-glucan content (Fig. 4-2C). 

4.4.3. Functions of AgnB and MutA are Independent from AmyD 

Our results showed that AgnB, MutA and AmyD all had similar repressive effects on 

α-1,3-glucan content when overexpressed (Fig. 4-1D and 4-2F). Considering they each have a 
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signal peptide and a GPI-anchor site (de Groot et al., 2009), we hypothesized that AmyD may 

work together with either or both α-1,3-glucanases to degrade α-1,3-glucan (He et al., 2014). If 

our hypothesis was correct, the repressive effects on α-1,3-glucan content from AgnB and MutA 

should be abolished or reduced when AmyD was deleted. To verify this, we generated 

[actA(p)-agnB, amyDΔ] and [actA(p)-mutA, amyDΔ] strains. We found these two strains had 

wild type phenotypes on solid medium and in shaken liquid medium (Fig. 4-3A and B). The 

pigment defect in actA(p)-agnB was recovered with the deletion of amyD (Fig. 4-2D and 4-3A). 

However, both strains still showed low α-1,3-glucan content similar as in actA(p)-agnB and 

actA(p)-mutA (Fig. 4-3C and 4-2F), indicating the effects of AgnB and MutA were still present. 

Therefore, the functions of AgnB and MutA appear to be independent from AmyD. 

4.4.4. Dynamics of α-1,3-glucan Accumulation Affects Colony Formation in Liquid as well 

as Calcofluor White Drug Sensitivity 

It was interesting to see that actA(p)-agnB, actA(p)-mutA, and actA(p)-amyD strains had 

similar α-1,3-glucan content (Fig. 4-1D and 4-2F), but behaved differently in shaken liquid 

medium (compare Fig. 4-1B with 4-2E). We think this may be because of how α-1,3-glucan 

accumulates in these strains. In all our previous quantification experiments, we collected the 

fungal cell samples at 24 h post inoculation. In contrast, visualization of colonies in shaken 

liquid medium had typically been done earlier, usually around 16 h post inoculation. So, we also 

collected additional samples at 16 h and 20 h post inoculation to examine the dynamics of 

α-1,3-glucan accumulation in cell walls. Results showed very different patterns of α-1,3-glucan 
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accumulation in these strains (Fig. 4-4A). In wild type, α-1,3-glucan content did not stay at a 

constant level but showed a continuous growing trend from 16 h to 24 h. In actA(p)-amyD, the 

growing trend was maintained, but at each time point the concentration of α-1,3-glucan was only 

about 50 % of wild type. However, in actA(p)-agnB and actA(p)-mutA, α-1,3-glucan content 

showed a decreasing trend from 16 h to 24 h. We also noticed that at 16 h the α-1,3-glucan 

content in wild type, actA(p)-agnB and actA(p)-mutA was very similar, whereas the α-1,3-glucan 

content in actA(p)-amyD was much lower.  

In our previous work, we found that α-1,3-glucan content was correlated with sensitivity to 

Calcofluor White (CFW) (He et al., 2014). We wondered if this change was also correlated with 

α-1,3-glucan content in early life stage. We tested all stains on 50 µg mL-1 CFW. Only 

actA(p)-amyD showed delayed germination and/or slower growth, whereas all other strains 

maintained the same growth ability (Fig. 4-4B). 

4.4.5. The localization of AmyD associates with cell membrane 

In order to understand the mechanism of AmyD, it is important to figure out the localization 

of this protein. However, due to the hinder from the AmyD protein structure and the GPI-anchor 

site, we did not get viable signal when the GFP was tagged after the signal peptide (between 26th 

and 27th amino acid) or tagged after the GPI-anchor site. To sovle these problems, we replaced 

the amylase domain of AmyD (from the 63th to the 507th amino acid) by a GFP (details of 

strain’s construction see Fig. S4-4). The N-terminal signal peptide and C-terminal GPI anchor 

site of AmyD were maintained, which are the elements determined the localization of AmyD. 
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The GFP signal of the constructed strain (AmyD-GFP) showed strong association with septa (Fig. 

4-5A) and cell membrane (Fig. 4-5B), although some signal also presented in the cytoplasm. We 

interpret these as showing the final localization of AmyD is on cell membrane, which is the same 

as a GPI-anchor protein. 
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4.5. Discussion 

 

In our previous study, we reported that AmyD repressed α-1,3-glucan accumulation in 

A. nidulans, and we hypothesized that AmyD might work together with one or more 

α-1,3-glucanases to degrade α-1,3-glucan (He et al., 2014). In our current study, we extended our 

work to α-1,3-glucan degradation-related genes to further understand the function of AmyD. 

4.5.1. AmyD is the Major Negative Regulator of α-1,3-glucan Accumulation in the A. 

nidulans Asexual Life Cycle 

AmyC and AmyE share high sequence similarity with AmyD, however our results showed 

they do not affect α-1,3-glucan accumulation. They also had no impact on starch digestion when 

tested on starch-only medium (unpublished data), so their functions are still unclear. So far, 

AmyD is the only reported amylase-like protein that can repress α-1,3-glucan accumulation in A. 

nidulans. From our results, two α-1,3-glucanases (AgnB and MutA) showed similar repressive 

effects as AmyD when overexpressed (Fig. 4-2F). However, each maintained a very low 

expression level in the A. nidulans asexual life cycle (Table 4-1). Altogether, we conclude 

AmyD is the major negative regulator of α-1,3-glucan accumulation during the A. nidulans 

asexual life cycle. 

4.5.2. Functions of α-1,3-glucanases and AmyD are Independent from Each Other 

Our results confirmed MutA as a functional α-1,3-glucanase and also revealed AgnB but not 
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AgnE had the same effect as AmyD to repress α-1,3-glucan accumulation. However, the low 

expression level of mutA and agnB in the A. nidulans asexual life cycle (Table 4-1) suggested 

α-1,3-glucan degradation is not active during these stages. This is consistent with why even the 

mutA and agnB double deletion strain maintained the same α-1,3-glucan content as wild type. 

This also could explain why the most prominent anti-α-1,3-glucan antibody-staining signal was 

from the older hyphae (He et al., 2014), because α-1,3-glucan was not recycled during the 

asexual life cycle. With this in mind, we think the function of AmyD is not based on 

α-1,3-glucanase.  

On the other hand, amyD had a relatively high expression level during A. nidulans asexual 

development (He et al., 2014). It is still possible the function of α-1,3-glucanase depends on 

AmyD. However, when amyD was deleted from actA(p)-agnB and actA(p)-mutA, the repressive 

effects on α-1,3-glucan from AgnB and MutA were maintained (Fig. 4-3C). Therefore, the 

functions of these glucanases are independent from AmyD. Evidence from other α-1,3-glucanase 

characterization work also showed α-1,3-glucanase is functional by itself (Ait-Lahsen et al., 2001; 

Dekker et al, 2004; Villalobos-Duno et al., 2013). In our study, we did find the deletion of amyD 

in an actA(p)-agnB strain reversed the pigment formation defect (compare Fig. 4-2D with 4-3A), 

which was a specific phenotypic change in actA(p)-agnB. Otherwise, we have never found low 

α-1,3-glucan content leads to a pigment defect. Therefore, we think this phenotypic change does 

not relate to α-1,3-glucan content. 
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4.5.3. Alpha-1,3-glucan Content in Early Life Stage is Critical for Colony Formation in 

Shaken Liquid as well as Drug Sensitivity 

Our dynamics study showed the α-1,3-glucan accumulation processes in actA(p)-agnB and 

actA(p)-mutA are very different from actA(p)-amyD (Fig. 4-4A). Although these colonies had 

similar α-1,3-glucan content after 24 h growth, the α-1,3-glucan content at earlier times (16 h and 

20 h) was very different. Especially at 16 h, the α-1,3-glucan content in actA(p)-agnB and 

actA(p)-mutA was almost the same as wild type, whereas in actA(p)-amyD it was only half that 

of wild type. This could explain why actA(p)-agnB and actA(p)-mutA formed the regular size 

colonies as wild type (Fig. 4-3E), because colony formation in shaken liquid was already 

complete at 16 h. Even though the α-1,3-glucan content decreased in these two strains at later 

time, the formed colonies were unable to disassemble. The same principle also explained why 

actA(p)-agnB and actA(p)-mutA maintained the same drug sensitivity as wild type (Fig. 4-4B). 

When A. nidulans was stressed by CFW, spore germination was delayed. However, the higher 

α-1,3-glucan content in early life stage enabled the actA(p)-agnB and actA(p)-mutA strains to 

form colonies faster than actA(p)-amyD.  

Why the effects of AgnB and MutA started later than AmyD still needs further investigation, 

however it is clear the mechanism of AmyD is different from α-1,3-glucanase. According to the 

different α-1,3-glucan accumulation patterns (Fig. 4-4A), it is more likely that AmyD directly 

represses α-1,3-glucan synthesis rather than facilitates α-1,3-glucan degradation. One of the 

possible reasons is AmyD may affect the major α-1,3-glucan synthase (AgsB) expression. 
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However, when we replaced the native promoter of agsB with alcA(p) and grew the strain under 

constant expression condition (100 mM threonine) (as per Alam et al., 2012), we found the 

repressive effect from AmyD overexpression was still present (unpublished data), suggesting 

that AmyD did not affect agsB expression.  

AgtA, the homologue of AmyD in A. niger, has been enzymatically characterized (van der 

Kaaij et al., 2007). Their results showed AgtA has very low starch hydrolysis ability but serves 

as a glucanotransferase on α-1,4-glucosidic linkages. The amino acid sequence identity between 

AmyD and AgtA is 70 %, so it is highly likely AmyD will have a similar function as AgtA, but 

this will need enzymatic study to confirm and is beyond the scope of our current work. Further 

study on the mechanism of AmyD will also require establishing an in vitro α-1,3-glucan 

synthesis system to find out how AmyD prevents the synthesis. Nevertheless, considering the 

different mechanisms between AmyD and α-1,3-glucanase, AmyD likely cannot be used the 

same way as α-1,3-glucanase to prevent fungal infection.  

In summary, AmyD localizes on cell membrane and is the only reported amylase-like 

protein that can repress α-1,3-glucan accumulation in A. nidulans. Expression analysis showed 

AmyD is the major negative regulator during the A. nidulans asexual life cycle. The function of 

AmyD is independent from the α-1,3-glucanases MutA and AgnB. The dynamics study showed 

the effect of AmyD started earlier than α-1,3-glucanase, and the mechanism of AmyD is 

different from the α-1,3-glucanase. These data suggested AmyD may not serve for α-1,3-glucan 

degradation, but directly represses α-1,3-glucan synthesis at the protein level.   
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4.7. Tables 

Table 4-1: Time-course expression study 

 Shaken growth Static growth Overexpression 

by actA(p) 

genes 14 h 24 h 14 h 24 h 14h 

amyC 1 1.44 ± 0.44 1.28 ± 0.28 18.84 ± 6.36 794.13 ± 190.28 

amyE 1 1.72 ± 0.71 1.93 ± 0.49 27.82 ± 9.79 484.82 ± 140.61 

agnB 1 2.16 ± 0.63 2.39 ± 0.83 11.71 ± 3.93 871.00 ± 191.59 

agnE 1 1.92 ± 0.57 1.59 ± 0.53 274.90 ± 85.55 1268.84 ± 292.38 

mutA 1 2.97 ± 0.89 2.31 ± 0.96 6.96 ± 1.99 1753.59 ± 654.97 

2 x 107 conidia were inoculated in liquid CM and incubated at 30 ºC under indicated conditions. 

The overexpression strains were grown in shaken condition for 14 h. Expression of each gene in 

14 h shaken growth group was defined as 1. Results present the mean of three independent qPCR 

tests with triplicates each time ± standard deviation. 
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4.8. Figures 

 

Fig. 4-1 AmyC and AmyE do not affect α-1,3-glucan accumulation 

A. 105 freshly harvested conidia of each strain were inoculated on complete medium and the 

plates were incubated at 30 °C for 48 h. All constructed strains showed the wild type colony 

phenotype on solid medium. 

B. 5 x 107 freshly harvested conidia were inoculated in flasks with 20 mL complete medium, 

then was incubated at 30 °C, 150 r.p.m. overnight. Only actA(p)-amyD formed tiny colonies. 

C. 2 x 107 spores of each strain were inoculated in flasks with 100 mL complete medium. 

Samples were grown at 30 °C with 150 r.p.m. for 24h. Alpha-1,3-glucan was extracted from 

1 mg dry cell wall, and then digested to glucose and quantified by anthrone assay. Results 

represent the mean of three independent quantification tests with duplicates each time ± standard 

deviation. The data of each mutant were compared with the data of wild type (column 1) 

individually by Mann Whitney U Test. The significant difference (P<0.05) was indicated by 

asterisks. 
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Fig. 4-2 AgnB and MutA are functional α-1,3-glucanases 

A. 105 freshly harvested conidia of each strain were inoculated on complete medium and the 
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plates were incubated at 30 °C for 48 h. All constructed strains showed the wild type colony 

phenotype on solid medium. 

B. 5 x 107 freshly harvested conidia were inoculated in flasks with 20 mL complete medium, then 

were incubated at 30 °C, 150 r.p.m. overnight. All strains behaved the same as wild type. 

C. 2 x 107 spores of each strain were inoculated in flasks with 100 mL liquid complete medium. 

Samples were grown at 30 °C with 150 r.p.m. for 24h. Alpha-1,3-glucan was extracted from 1 mg 

dry cell wall, and then digested to glucose and quantified by anthrone assay. Results represent the 

mean of three independent quantification tests with duplicates each time ± standard deviation. 

The data of each mutant were compared with the data of wild type (column 1) individually by 

Mann Whitney U Test. No significant difference was found. 

D. 105 freshly harvested conidia of each strain were inoculated on complete medium and the 

plates were incubated at 30 °C for 48 h. Only actA(p)-agnB showed pigment deficiency. 

E. 5 x 107 freshly harvested conidia were inoculated in flasks with 20 mL liquid complete 

medium, then incubated at 30 °C, 150 r.p.m. overnight. All strains behaved the same as wild type. 

F. 2 x 107 spores of each strain were inoculated in flasks with 100 mL liquid complete medium. 

Samples were grown at 30 °C with 150 r.p.m. for 24h. Alpha-1,3-glucan was extracted from 1 mg 

dry cell wall, and then digested to glucose and quantified by anthrone assay. Results represent the 

mean of three independent quantification tests with duplicates each time ± standard deviation. 

The data of each mutant were compared with the data of wild type (column 1) individually by 

Mann Whitney U Test. The significant difference (P<0.05) was indicated by asterisks.  
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Fig. 4-3 AmyD is not required for the functions of AgnB and MutA 

A. 105 freshly harvested conidia of each strain were inoculated on complete medium and the 

plates were incubated at 30 °C for 48 h. All constructed strains showed the wild type colony 

phenotype on solid medium. 

B. 5 x 107 freshly harvested conidia were inoculated in flasks with 20 mL liquid complete 

medium, then the flask was incubated at 30 °C, 150 r.p.m. overnight. All strain behaved the same 

as wild type. 

C. 2 x 107 spores of each strain were inoculated in flasks with 100 mL liquid complete medium. 

Samples were grown at 30 °C with 150 r.p.m. for 24h. Alpha-1,3-glucan was extracted from 

1 mg dry cell wall, and then digested to glucose and quantified by anthrone assay. Results 

represent the mean of three independent quantification tests with duplicates each time ± standard 

deviation. The data of each mutant were compared with the data of wild type (column 1) 

individually by Mann Whitney U Test. The significant difference (P<0.05) was indicated by 

asterisks. 
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Fig. 4-4 Alpha-1,3-glucan content in early germination and growth is critical for colony 

formation in shaken liquid medium and drug sensitivity against CFW  

A. Dynamics of α-1,3-glucan accumulation in each strain. 2 x 107 spores of each strain were 

inoculated in flasks with 100 mL liquid complete medium. Samples were grown at 30 °C with 

150 r.p.m. for 16h, 20h and 24h respectively. Alpha-1,3-glucan was extracted from 1 mg dry cell 

wall, and then digested to glucose and quantified by anthrone assay. Wild type and actA(p)-amyD 

showed the same increasing trend from 16 h to 24 h, except the glucose concentration in 

actA(p)-amyD was much lower than wild type at each time point. The actA(p)-agnB and 

actA(p)-mutA had the same decreasing trend from 16 h to 24 h.  

B. 105 freshly harvested conidia of each strain were inoculated on 50 µg mL-1 CFW plate and the 

plates were incubated at 30 °C for 48 h. Only actA(p)-amyD (arrow) showed delayed 

germination and growth. 
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Fig. 4-5 Localization of AmyD associates with cell membrane 

Then samples were examined using a Zeiss META501 confocal epifluorescence microscope at 

63 x or 25 x objective lens. Confocal imaging used 488 nm excitation with emission controlled 

by BP 505-530 nm filter. The GFP singal mostly associated with septa and cell membrane. 
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4.9. Supplemental Materials 

 
Table S4-1 Quantification of conidiation 

Medium CM 

Strains Wild type actA(p)-agnB 

Conidiation 100% ± 9.7% 94.7% ± 5.9% 

105 conidia were grown on 1.5mL medium in 24-well plates at 30 °C for 4 d. 1 mL ultra-pure 

water was used to collect conidia from each well. Conidia were quantified by hemocytometer. 

Results represent the average of three independent quantification tests with triplicates each time 

± standard deviation. 
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Table S4-2 Aspergillus nidulans strains in this study 

Strains alias Genotype Origin 

A1149 

actA(p)-amyD 

actA(p)-amyC 

actA(p)-amyE 

agnBΔ 

agnEΔ 

mutAΔ 

agnBΔ, mutAΔ 

actA(p)-agnB 

actA(p)-agnE 

actA(p)-mutA 

actA(p)-agnB, amyDΔ 

 

actA(p)-mutA, amyDΔ 

 

AmyD-GFP 

A1149 

AXH38 

AXH52 

AXH53 

AXH78 

AXH42 

AXH79 

AXH80 

AXH50 

AXH47 

AXH51 

AXH55 

 

AXH56 

 

AXH86 

pyrG89; pyroA4; nkuA::argB 

amyDp:: AfpyroA:actAp:amyD; pyrG89; pyroA4; nkuA::argB 

amyCp:: AfpyroA:actAp:amyC; pyrG89; pyroA4; nkuA::argB 

amyE:: AfpyroA:actAp:amyE; pyrG89; pyroA4; nkuA::argB 

AN3790:: AfpyroA; pyrG89; pyroA4; nkuA::argB 

AN1604:: AfpyroA; pyrG89; pyroA4; nkuA::argB 

AN7349::AfpyrG; pyrG89; pyroA4; nkuA::argB 

AN3790:: AfpyroA; AN7349::AfpyrG; pyrG89; pyroA4; nkuA::argB 

agnBp:: AfpyroA:actAp:agnB; pyrG89; pyroA4; nkuA::argB 

agnEp:: AfpyroA:actAp:agnE; pyrG89; pyroA4; nkuA::argB 

mutAp:: AfpyroA:actAp:mutA; pyrG89; pyroA4; nkuA::argB 

agnBp:: AfpyroA:actAp:agnB; AN3308::AfpyrG; pyrG89; pyroA4; 

nkuA::argB 

mutAp:: AfpyroA:actAp:mutA; AN3308::AfpyrG; pyrG89; pyroA4; 

nkuA::argB 

amyD:: AfpyroA:actAp:gfp; pyrG89; pyroA4; nkuA::argB 

FGSC* 

He et al. 2014 

this study 

this study 

this study 

this study 

this study 

this study 

this study 

this study 

this study 

this study 

 

this study 

 

this study 

* Fungal Genetics Stock Center 
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Table S4-3 Primers and plasmids in this study 
Primers Sequence 5’ to 3’ Description 
Selective marker and strain confirmation 
AME1  
AME2 
SE231 
SE232 
AME7 
AME8 
AME15 
AME16 
SE101 
SE102 

ATGTCGTCCAAGTCGCAATT 
TCATGACTATGCCGCATACTAC 
GGACATCAGATGCTGGATTACTAAAG 
TTACCATCCTCTCTTGGCCA 
CAATACCGTCCAGAAGCAATAC 
CACATCCGACTAGCACTATCC 
ATTCCTGTCATGGCCAAAG 
TCAACAACATCTCCGGTACC 
ATGAAAATCCTCCCATCCTTG 
TCACGCCAAAAGCAGTACG 

AfpyrG* 
AfpyrG* 
AfpyroA with native promoter 
AfpyroA with native promoter 
AfpyrG confirmation* 
AfpyrG confirmation* 
AfpyroA confirmation* 
AfpyroA confirmation* 
amyD clone F 
amyD clone R 

Gene deletion 
SE103 
SE104 
SE105 
SE106 
SE107 
SE108 
SE343 
SE344 
SE408 
SE409 
SE347 
SE410 
SE320 
SE321 
SE322 
SE323 
SE324 
SE325 
SE326 
SE327 
SE349 
SE411 
SE190 
SE191 
SE412 
SE413 
SE353 
SE414 

CGGCCATTGACCATGAAC 
AATTGCGACTATGGACGACATTGTGACGATGTCTGGACCG 
GAGTATGCGGCAAGTCATGATTTGATCTGTTTTCATCTTTTTGC 
GTCATAGATGTCATACCCGTTTCC 
GTCTTCATCCGGTCCACTATC 
GAAGATGAGGGTGTTGTCG 
GGGGAGTCGAGTTTACACCA 
CTTAGTAATCCAGCATCTGATGTCCGATCTGGACCGTCAGTTTCG 
TGGCCAAGAGAGGATGGTAATTAGCGCATTGTTTCTGCAG 
GTAGAGACCGCGCTCTGTCT 
TTCTCAGTAACCCCCAAGACG 
CGAAGACTGACTTTGGTACCG 
ATGCCATTGAGCTGGACATT 
TCATATCAGGCAAGAGAGCAGG 
CTGGCGAGAGATTCTGGAAC 
TCCATTACCCATTTCGAAGC 
TGGCCAAGAGAGGATGGTAACACCTAATACCAGGCCAGTTTT 
CCTCATATAGAGACCGCGCA 
CTAGCCTAGCATCTTTACCGACTG 
GTAGAGTTGGGACTTAAGCTAGTCG 
AGTAATTTCGCGCGATACCC 
GGGCGAGCCTTTAACGTACAGTTGCTTGCTTGAGGCT 
AATTGCGACTTGGACGACATGGTGTTTAGGGGTG 
TACGTTAAAGGCTCGCCC 
GAGTATGCGGCAAGTCATGATGCTAGAAGGATCGAGCCA 
GTTTTCCTCTGACCCAGTCG 
GTTCGAGTTGGTTGCGAGTC 
CCAAGTTGAGTCTTACGCCG 

amyD upstream F 
amyD upstream R (pyrG tail) 
amyD downstream F (pyrG tail) 
amyD downstream R 
amyD Fusion F 
amyD Fusion R 
agnB upstream F 
agnB upstream R (pyroA tail) 
agnB downstream F (pyroA tail) 
agnB downstream R 
agnBΔ Fusion F 
agnBΔ Fusion R 
agnE F 
agnE R 
agnE upstream F 
agnE upstream R (pyroA tail) 
agnE downstream F (pyroA tail) 
agnE downstream R 
agnEΔ Fusion F 
agnEΔ Fusion R 
mutA upstream F 
mutA upstream R (pyrG tail) 
actAp R (pyrG tail) 
actAp F 
mutA downstream F (pyrG tail) 
mutA downstream R 
mutAΔ Fusion F 
mutAΔ Fusion R 
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Promoter exchange and GFP tagging 
SE234 
SE208 
SE355 
SE356 
SE357 
SE358 
SE359 
SE360 
SE361 
SE362 
SE363 
SE364 
SE365 
SE366 
SE343 
SE344 
SE345 
SE346 
SE347 
SE348 
SE322 
SE323 
SE340 
SE341 
SE326 
SE342 
SE349 
SE350 
SE351 
SE352 
SE353 
SE354 
SE429 
SE427 
SE328 
SE315 

TGGCCAAGAGAGGATGGTAATACGTTAAAGGCTCGCCC 
GGTGTTTAGGGGTGGATTAGAA 
AGAGCTCATCGTGAAGGATGA  
CTTAGTAATCCAGCATCTGATGTCCGGTTTGATAGACGGATCTTGTCTT 

TTCTAATCCACCCCTAAACACCATGACTGACAGATTCGCCC 
CGTGTTGTAAAGTGGGGAGG 
CCTGGAAGTACCTAGGAAACTGG 
AAATTATTGAGTCTAATGGGCGAC 
GGCGCTCCAGTTATACCG 
CTTAGTAATCCAGCATCTGATGTCCCCTTAGAAAGGTAGGTTGCTGTG 
TTCTAATCCACCCCTAAACACCATGCGGCGCCTCACATGT 
GTCAGTAGAAGTATGCAGCAGGTTCT 
AAATACCGTTCACCTTGGACG 
CATGGGGTAATTCAGGAGACC 
GGGGAGTCGAGTTTACACCA 
CTTAGTAATCCAGCATCTGATGTCCGATCTGGACCGTCAGTTTCG 
TTCTAATCCACCCCTAAACACCATGTATCTGAAAACGCTCTTTTTG 
TTCTCGTCTTGAATGTACTGGTC 
TTCTCAGTAACCCCCAAGACG 
GAATGCTGCTCACATGTCCA 
CCGACTGACCATTTGCATC 
CTTAGTAATCCAGCATCTGATGTCCTTTGCTTCAGGTTCGCTTC 
TTCTAATCCACCCCTAAACACCATGCCATTGAGCTGGACATT 
ACAGCTTGATGAGAGCTCTTGC 
CTAGCCTAGCATCTTTACCGACTG 
TCACAGGGCCGATATAATGG 
AGTAATTTCGCGCGATACCC 
CTTAGTAATCCAGCATCTGATGTCCCAGTTGCTTGCTTGAGGCT 
TTCTAATCCACCCCTAAACACCATGAAGATCTTCCACCGCTG 
CTAGGCGCTAAAAGAGCCAA 
GTTCGAGTTGGTTGCGAGTC 
TACGTCAACCGAAAACTCCAG 
CCAGTGAAAAGTTCTTCTCCTTTACTGCAGTATAGACCAGCGGTCG 
CATGGCATGGATGAACTATACAAAGCTGGGGGGAACGTTAGT 
AGTAAAGGAGAAGAACTTTTCACTGG 
TTTGTATAGTTCATCCATGCCATG 

actA(p) F (pyroA tail) 
actA(p) R 
amyC upstream F 
amyC upstream R (pyroA tail) 
amyC F (actA(p) tail) 
amyC_1100 R 
actA(p)-amyC Fusion F 
actA(p)-amyC Fusion R 
amyE upstream F 
amyE upstream R (pyroA tail) 
amyE F (actA(p) tail) 
amyE_1100 R 
actA(p)-amyE Fusion F 
actA(p)-amyE Fusion R 
agnB upstream F 
agnB upstream R (pyroA tail) 
agnB F (actA(p) tail) 
agnB_1140 R 
actA(p)-agnB Fusion F 
actA(p)-agnB Fusion R 
agnE upstream F 
agnE upstream R (pyroA tail) 
agnE F (actA(p) tail) 
agnE_1100 R 
actA(p)-agnE Fusion F 
actA(p)-agnE Fusion R 
mutA upstream F 
mutA upstream R (pyroA tail) 
mutA F (actA(p) tail) 
mutA_1100 R 
actA(p)-mutA Fusion F 
actA(p)-mutA Fusion R 
amyD_186R gfp tail 
amyD_1633F gfp tail 
gfp F no start codon 
gfp R no stop codon 

qPC 
SE244 
SE245 
SE153 
SE154 
SE334 

CACCCGGACACTAGGTATCTC 
GAATACTATCGTAACGGCCTTGG 
GGATGGAGATGACCCTGCTA 
TGCGCATCATGGTAGTCATT 
GGATTCCAGCCAAGTGTTGT 

Histone qPCR F# 
Histone qPCR R# 
amyD qPCR F 
amyD qPCR R 
amyC qPCR F 
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SE335 
SE336 
SE337 
SE332 
SE333 
SE330 
SE331 
SE338 
SE339 

AAAGCCCACTCCCTCTCATT 
TCTGGGTAAAGGGACTGGTG 
GTAGACTTCCCCCATCGTGA 
CTGGCGAGAGATTCTGGAAC 
TCCATTACCCATTTCGAAGC 
CATGATGGGTGGAGGAGTCT 
CAGGAGAGAGCCGATACCAG 
CCAAATGGAATCAACCTGCT 
ATGGGGAAGCTGTTTGTCAC 

amyC qPCR R 
amyE qPCR F 
amyE qPCR R 
agnB qPCR F 
agnB qPCR R 
agnE qPCR F 
agnE qPCR R 
mutA qPCR F 
mutA qPCR R 

 
#, Fujioka et al. (2007)  

*, Alam et al. (2012) 
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Fig. S4-1 Deletion and promoter exchange schema and PCR constructs of each strain 
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Fig. S4-2 PCR confirmation of all constructed strains.  
Strains labeled at right of each gel picture. Primers are indicated at the bottom and DNA 
templates are on the top. 
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Fig. S4-3 Sequence of actA upstream 

 

 

Fig. S4-4 AmyD-GFP construction and PCR confirmation 
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CHAPTER 5 

USING ASPERGILLLUS NIDULANS TO IDENTIFY ANTI-FUNGAL DRUG RESISTANCE 
MUTATIONS 

 

 While scientists are trying to develop new effective and safe anti-fungal drug, the existing 

ones are being challenged by emerging drug resistance. Given the fact that new broad-spectrum 

drug targets candidates are few and drug development is expensive, studies exploring resistance 

mechanisms against the current anti-fungal agents are important. In this chapter, I develope a 

strategy to identify drug resistance mutations using A. nidulans and next generation sequencing. 

As a proof-of-principle study, I use this strategy to investigate the drug resistance mutations 

against calcofluor white. Results showed this is a promising strategy to reveal the drug resistance 

causing mutations in a time-saving manner.  

My role in this research: designed the study along with S Kaminskyj who funded it. I wrote 

thefirst draft; and contributed to the final revised draft. S Li provided technical assistance during 

the project. 

The manuscript of this chapter has been published as “Using Aspergillus nidulans to identify 

anti-fungal drug resistance mutations” by Xiaoxiao He, Shengnan Li and Susan Kaminskyj in 

Eukaryotic Cell 2014:13(2):288-94.  
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5.1. Abstract 

 

Systemic fungal infections contribute to at least 10 % of deaths in hospital settings. Most 

anti-fungal drugs target ergosterol (polyenes) or its biosynthetic pathway (azoles and 

allylamines), or beta-glucan synthesis (echinocandins). Anti-fungal drugs that target proteins are 

prone to the emergence of resistant strains. Identification of genes whose mutations lead to 

targeted resistance can provide new information on those pathways. We used Aspergillus 

nidulans as a model system to exploit its tractable sexual cycle, and Calcofluor White as a model 

anti-fungal agent to cross-reference our results with other studies. Within two weeks from 

inoculation on sub-lethal doses of Calcofluor White, we isolated 24 A. nidulans adaptive strains 

from sectoring colonies. Meiotic analysis showed that these strains had single-gene mutations. In 

each case the resistance was specific to Calcofluor White, since there was no cross-resistance to 

Caspofungin (echinocandin). Mutation sites were identified in two mutants by next generation 

sequencing. These were confirmed by re-engineering the mutation in a wild type strain using a 

gene replacement strategy. One of these mutated genes was related to cell wall synthesis and one 

to drug metabolism. Our strategy has wide application for many fungal species, for anti-fungal 

compounds used in agriculture as well as health, and potentially during protracted drug therapy 

once drug resistance arises. We suggest our strategy will be useful for keeping ahead in the 

drug-resistance arms race. 
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5.2. Introduction 

 

Fungal infection is growing problem in the developed world, particularly over the last 

several decades. Fungi readily infect immune-compromised patients, and systemic infections 

typically cause high morbidity (Pfaller et al., 2010; Brown et al., 2012; Lilic, 2012; Netae and 

Brown, 2012). In addition, reports of fungal infections in healthy populations are rising (Brown 

et al., 2012; Netae and Brown, 2012), for example due to increasing virulence of pathogens such 

as Aspergillus fumigatus (Brown et al., 2012). Fungi are now as serious a threat to human health 

as bacteria, viruses and parasites (Netae and Brown, 2012).  

 Fungi and animals have conserved metabolic pathways, which limits the options for drug 

targets. There are four major classes of anti-fungal drugs. Azoles and polyenes interfere with 

biosynthesis or distribution of ergosterol, the sterol in fungal membranes (Chen and Sorrell, 

2007). Although these drugs have a wide spectrum of effect against fungal growth, the structural 

similarity between ergosterol in fungi and cholesterol in mammals leads to toxicity and limits 

human drug usage (Carrillo-Munoz et al., 2006; Cowen, 2008). Azoles also have substantial 

application as agricultural fungicides and there are cases of cross-resistance (Verweij et al., 

2009). The newest anti-fungal drug class to be released clinically, echinocandins, targets cell 

wall beta-1,3-glucan synthase (Denning, 2003). Human toxicity of echinocandins is low, but 

their narrow spectrum of activity and already emerging resistance was a severe disappointment 

to the community (Walker et al., 2010). Collectively, we are still searching for new anti-fungal 
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drug targets, but progress is slow. 

 With new broad-spectrum drug targets being few, and drug development being expensive, 

studies exploring resistance mechanisms against our current anti-fungal agents are important. 

Cowen (2008) notes that the effectiveness of all existing anti-fungal drugs is reduced by resistant 

strains. Especially for echinocandins, clinically resistant strains were isolated shortly after their 

launch (Alexander et al., 2013; Fekkar et al., 2013). The strong adaptation ability of fungi is well 

documented (Schoustra et al., 2006; Schoustra et al., 2007; Schoustra et al., 2009; Gifford et al., 

2011) so it was not surprising to see anti-fungal drug resistance emerging quickly. Mutation hot 

spots in FKS1, which encodes beta-glucan synthase, were detected in some of the resistant 

strains, but not in all (Walker et al., 2010; Alexander et al., 2013; Fekkar et al., 2013). Our 

strategy can efficiently identify mutations in this latter group. 

Aspergillus nidulans is used as a model for adaptation studies (Schoustra et al., 2006; 

Schoustra et al., 2009). Vegetative nuclei in a colony are mitotically derived from a single spore 

nucleus, so the only source of genetic variation in an A. nidulans colony is somatic mutation, 

which then is clonally propagated as a mycelial sector (Schoustra et al., 2006). In A. nidulans, 

the asexual nuclear duplication cycle is roughly comparable to a somatic generation in yeast. In 

growing A. nidulans hyphae the nuclear duplication cycle is ~100 min (Trinci, 1970), and a 

typical hyphal growth rate is ~1 µm/min (Hubbard and Kaminskyj, 2007).  

 We used Calcofluor White (CFW) as an anti-fungal agent to cross-reference with earlier 

studies. We found that robust, heritable adaptation against CFW could rapidly be acquired in 
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multiple ways, each requiring only one mutation based on analysis of meiotic progeny. Two 

adaptive strains were selected for Next Generation Sequencing (NGS), to determine if this would 

be sufficient to identify adaptive mutations. Potential mutation sites were confirmed by gene 

replacement in parental strain. In this study, one adaptive strain was related to cell wall synthesis 

and the other to drug metabolism. We suggest our strategy can help us stay ahead in the fungal 

drug-resistance arm race. 
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5.3. Materials and Methods 

5.3.1. Strains, Plasmids and Media 

All of the strains in this study were derived from A. nidulans A1149, which was the wild 

type control for all assays in this paper. All strains, primers and plasmids are listed in Table S5-1. 

All strains were grown on complete medium (CM: 1 % glucose, 0.2 % peptone, 0.1 % yeast 

extract, 0.1 % casamino acids, 50 mL 20 x nitrate salts, 1 mL trace elements, 1 mL vitamin 

solution, pH 6.5) or minimal medium (MM: 1 % glucose, 50 mL 20 x nitrate salts, 1 mL trace 

elements, 0.001 % thiamine, pH 6.5) supplemented with nutrients for auxotrophies as required. 

Trace elements, vitamin solution, nitrate salt and all nutrition stocks are described in (Kaminskyj, 

2001). For transformation medium, 1 M sucrose was added as osmoticum to MM. All strains 

were grown at 30 ºC, unless mentioned specifically. For adaptive strain induction, CFW stock 

solution (10 mg/mL in 25 mM KOH) was added as required into CM when it cooled to 60 ºC.  

Strategies for gene deletion and gene replacement methods used a fusion PCR method 

(Szewczyk et al., 2006; El-Ganiny et al., 2008). Briefly, deletion constructs were constructed by 

fusion PCR including 1 kb upstream, a selectable marker, and 1 kb downstream. Gene 

replacement constructs were made by fusion PCR including 1 kb upstream, the mutated gene 

sequence, a selectable marker, and 1 kb downstream (details see Fig. S5-1A). Constructs were 

transformed to A1149 protoplasts. Aspergillus fumigatus pyrG and pyroA were used as selectable 

markers (details see Fig. S5-1A and Fig. S5-1B). Mutations in replacement strains were 

confirmed by Sanger sequencing. 
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5.3.2. Drug Sensitivity Test 

The disc-diffusion assay was adapted from (Alam et al., 2012). Briefly, freshly harvested 

spores (106 /mL) were added to CM at 55 ºC, and poured immediately into 9 cm diameter Petri 

plates. After the agar solidified, a sterilized paper disc was put at the designated places, followed 

by 20 µL of drug stock solution CFW (10 mg/mL in 25mM KOH), Congo Red (CR, 10 mg/mL 

in H2O), or Caspofungin (20 mg/mL in H2O). Plates were incubated at 30 ºC for 1 d. 

For the growth sensitivity assay, drug stock solution was added to CM at 60 ºC at the 

designated concentration and poured immediately into 9 cm diameter Petri plates. Then 105 

freshly harvested spores were spread over medium after it solidified. Plates were incubated at 

30 ºC for 2 d. 

5.3.3. Mating of Aspergillus nidulans 

Mating experiments were performed as described in the work of Kaminskyj (2001). AXM5 

and AXM20 are white spore-color, morphologically wild type and CFW-sensitive strains. They 

were obtained from previous mating experiments in our lab. The genotypes of AXM5 and 

AXM20 are given in Table S5-1. For assessing the drug sensitivity of progeny, at least 100 

ascospores from each outcrossed cleistothecium were selected and tested for growth sensitivity 

on 30 μg/mL CFW.  

5.3.4. Next Generation Sequencing  

NGS was performed at the Beijing Genomic Institute as a commercial service using platform 
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Illumina HiSeq 2000. Two strains were sequenced in separate lanes. 1 GB draw data was 

generated from each run and an average 31x depth of each nucleotide (genome size 30Mb) was 

gained. Sequence assembly and single nucleotide polymorphism (SNP) analysis were also done 

at the Beijing Genomic Institute. The details of Illumina DNA sequencing technique can be 

found in Metzker 2010.  
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5.4. Results 

5.4.1. Aspergillus nidulans Has Strong Adaptive Ability against Sub-Lethal Levels of 

Calcofluor White.  

Schoustra and colleagues (Schoustra et al., 2009; Gifford et al., 2011) showed that A. 

nidulans readily gained fitness against the anti-fungal agent fluodioxinil under partially 

suppressed growth conditions. One to three mutations were sufficient to recover full fitness, with 

the first having the greatest phenotypic effect (Schoustra et al., 2009; Gifford et al., 2011). 

Following this idea, we grew 105 freshly harvested A. nidulans spores on CFW-containing 

medium (15 or 30 μg/mL). As expected, CFW suppressed A. nidulans growth in vitro: colony 

growth was restricted to ~50 % and ~30 %, respectively of that on drug-free medium (Fig. 5-1A). 

Colonies that were grown on 30 μg/mL CFW plates developed rapid-growing sectors (Fig.5-1B), 

which we called adaptive strains, in about a week after inoculation. We named two of the 

adaptive strains AXE5 and AXE8: these arose at 5 d and 8 d after inoculation, respectively. No 

adaptive sectors developed on the 15 μg/mL CFW plates during this experiment.  

To test whether adaptive sectors would eventually emerge on 15 μg/mL CFW, and to 

increase the number of adaptive strains in our collection, we performed the inducing experiment 

with 20 replicas at each CFW concentration and extended the incubation time to 10 d (15 μg/mL) 

and 15 d (30 μg/mL) by which time the Petri plates were completely covered. No adaptive 

sectors developed on 15 μg/mL CFW. However, as before, adaptive sectors emerged on 

30 μg/mL CFW beginning at 5 d. Eventually, 22 adaptive strains were isolated from twenty 
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30 μg/mL CFW plates (Table 5-1, AXE20 to AXE69). Finally, a total of 24 adaptive strains 

collection were generated in our experiment (Table 5-1). All of the adaptive strains were stably 

resistant to 30 μg/mL CFW after re-streaking and also after storing at -80 °C in glycerol (Fig. 

5-2). 

5.4.2. Adaptation to CFW can be Acquired by Single Mutations 

We hypothesized that the adaptive sectors were each due to the first mutation that increased 

hyphal growth rate on CFW. To test this, each adaptive strain was crossed with AXM5 and with 

AXM20, both of which are wild type for CFW sensitivity, and have white spores. Mating with 

mutant strains is less consistent than with wild type ones (El-Ganiny et al., 2008). We performed 

each mating experiment in duplicate and unsuccessful mating experiments were repeated once 

more. Compared to wild-type strains, many matings with adaptive strains showed delayed 

cleistothecium formation and/or reduced ascospore production. Nevertheless, we had mating 

results from 19 adaptive strains. For each of these strains, the ratio of CFW-resistant to 

CFW-sensitive progeny was ~1:1 (Table 5-1 and Fig. 5-3), consistent with single-gene defects 

and χ2 goodness-of-fit analysis. Five strains from our collection failed to mate with either AXM5 

or AXM20, producing at best only tiny cleistothecia. We dissected some of these, but they 

produced only white-spored colonies. Therefore we were not able to assess the number of 

mutations in these adaptive strains. However, our mating results have revealed that adaptation in 

first-arising sectors was most likely due to one mutation, and that this adaptation was sexually 

heritable.  



Xiaoxiao He Ph.D. Thesis    2014 Sept 

153 
 

5.4.3. Adaptation to CFW is Specific 

To test whether any of our adaptive strains had cross-resistance to other wall-targeting 

agents, we assessed their response to Congo Red (CR, which binds to cellulose fibres) and to 

Caspofungin. For AXE5 and AXE8, which were isolated from our preliminary test, we used a 

disc diffusion method (Alam et al., 2012). Weak cross-resistance to CR was found for both 

strains, but there was no cross-resistance to Caspofungin (Fig. 5-2A). For the remainder of the 

adaptive mutant strains, we used a more efficient method to compare drug sensitivity by testing 

their survival ability on drug-containing medium. A few strains (AXE 37, 51, 62, 64 and 69) 

showed a weak resistance to 500 μg/mL CR (Fig. 5-2B), whereas all strains maintained the same 

sensitivity to 10 μg/mL Caspofungin as the A1149 (Fig. 5-2B). We interpret this as showing that 

the adaptation in these mutants was specific to CFW compared to Caspofungin. 

5.4.4. Adaptation to CFW Appears to be Acquired by Many Different Mutations 

Calcofluor inhibits chitin crystallization during cell wall formation (Elorza et al., 1983), 

which is likely to require many protein products. To estimate the number of different 

CFW-adaptive mutants in our collection, we assessed their phenotypes under a suite of growth 

conditions. Precise analysis would have required 552 pairwise matings.  

Based on this information, the 24 strains were grouped into five classes. Five strains (AXE 8, 

52, 62, 66 and 69) showed obvious growth defects on drug-free medium (Fig. S5-2). Three 

strains (AXE 5, 33 and 37) were temperature sensitive, since they could not conidiate at 37 °C. 
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Five strains (AXE 29, 30, 35, 41 and 58) showed resistance only to 30 μg/mL CFW but not to 

50 μg/mL CFW (Fig. S5-2). Six strains (AXE 35, 52, 58, 62, 64 and 69) showed growth defects 

on 1M NaCl (Fig. S5-2). Ten strains (AXE 20, 22, 43, 44, 46, 49, 51, 54, 63 and 65) had no 

obvious growth defect under any condition tested (Fig. S5-2). Within these groups, there were 

minor differences between strains. This suggested they may share the same overall resistance 

mechanism (perhaps mutations in the same gene or genes in the same pathway) but not necessary 

the same mutation (e.g. a non-conservative mutation vs a premature stop). For example, AXE5, 

AXE33 and AXE37 were all temperature sensitive, but their phenotypes at 37 °C differed (Fig. 

S5-2 and S5-3), suggesting they are related but different mutations. Eventually we found only 

strains AXE 20 and 22; AXE29 and 30; AXE35 and 58; AXE 44 and 51; AXE 52, 62 and 69 

could not be distinguished based on these criteria. We interpret this to mean that there were at 

least 18 different mutations in our adaptive strain collection.  

Since many mutations appeared to be unique in our collection, our current screen for 

CFW-resistance mutation is not exhaustive. However, the goal of this study was to assess 

whether we could efficiently identify fast-emerging resistance mutations to an anti-fungal agent, 

not to discover new genes involved in CFW resistance, so we concentrated on two strains and 

archived the rest. 

5.4.5. Next Generation Sequencing (NGS) Revealed Potential Mutations in Adaptive Strains.  

Plasmid complementation is a well-established method for gene identification in A. nidulans 

mutants,(e.g. Lin and Momany, 2004) but is not optimal for drug resistance mutants, due to their 
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relatively subtle phenotypes, and need for a reverse-selection strategy. Instead, we used NGS to 

identify candidate genes, a strategy that has been used in other organisms to identify single 

mutations (Srivatsan et al., 2008; Laitinen et al., 2010; Schmitt et al., 2012). We selected AXE5 

and AXE8 for whole genome sequencing. Sequence assembly was based on the A. nidulans A4 

genome (Arnaud et al., 2012). Compared to the A4 reference strain, about 400 single nucleotide 

polymorphisms (SNPs) were detected in each of the adaptive strains (Table 5-2). These were 

roughly evenly distributed across the 17 scaffolds that represent whole genome (Fig. S5-4). 

Since the two adaptive strains were both induced from the A1149 parent, the SNP distributions 

were very similar. After removing common SNPs, and SNPs that were not in a coding region, 

there were only 15 (AXE5) and 13 (AXE8) unique SNPs (Table 5-2 and Table S5-2). In this way, 

we successfully narrowed our targets from genome scale to a limited number of genes. Based on 

two well-established Aspergillus genome databases (AspGD and Broad Institute), we 

comprehensively analyzed each candidate gene (Table S5-2). Two SNPs that caused 3’ 

truncations and had 99 % confidence scores drew our attention and were selected for closer 

examination. 

5.4.6. CFW Resistance Mutations were Confirmed by Mutation-Reintroduction 

For the AXE5 gene sequence, a C1198T mutation was detected in ANID_10647, which 

created a premature stop codon in the predicted protein product. Lin and Momany (2004) had 

previously characterized this gene and annotated it as a predicted cytochrome P450 protein. 

Their study had been based on a different genetic mutation (G1225T), which also introduced a 
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premature stop codon near the 3’ end. All of the AXE5 phenotypes were consistent with those 

described in Lin and Momany (2004), including temperature sensitivity, resistance to CFW, and 

being osmotically remediable for temperature sensitivity (Fig. 5-2 and Fig. S5-3). 

 For AXE8 gene sequence, a G1081T mutation created a premature stop codon in 

ANID_03445. This is an uncharacterized gene in A. nidulans. However, CHS4 in S. cerevisiae, 

the orthologue of ANID_03445, has been characterized (Choi et al., 1994; Ono et al., 2000). 

CHS4 encodes the activator of the major chitin synthase (CHS3) in S. cerevisiae, which 

positively regulates chitin formation (Choi et al., 1994; Ono et al., 2000). Chs4p has been shown 

to physically interact with Chs3p (DeMarini et al. 1997), and this binding relies on the 

C-terminal 86 amino acids of Chs4p. Sequence analysis by ClustalW2 showed a 54 % sequence 

identity between ANID_03445 and CHS4. The G1081T mutation in ANID_03445 created a 

premature stop codon in the middle of the predicted protein product, thereby truncating 371 

amino acids from the C-terminal. It is possible the ANID_03445 G1018T mutation affects the 

binding between this activator and chitin synthase in A. nidulans. In turn, the lack of this chitin 

synthase activation could lead to reduced chitin in the A. nidulans cell wall, and resistance to 

CFW.  

 To test whether these two specific mutations caused the CFW resistance, we first confirmed 

the sequence of the target genes in AXE5/ANID_10647 and AXE8/ANID_03445 by Sanger 

sequencing, revealing the same mutation as with NGS. Using PCR-based methods we 

re-constructed the mutations and separately replaced each gene in A1149 (Fig. S5-1). The PCR 
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constructs contained 1 kb of target gene upstream + the whole mutated gene + a nutrition marker 

with its native promoter (A. fumigatus pyroA in our case) + 1kb of target gene downstream.  

All of the constructed ANID_10647 C1198T strains showed CFW resistance, however this 

was only so for some ANID_03445 G1081T strains. We sequenced the constructed strains and 

found only the CFW-resistant colonies from ANID_03445 G1081T transformation plates had the 

desired mutation, whereas the other colonies did not. This is likely because the mutation site in 

ANID_03445 G1081T is far (1174 bp) from the nutrition marker in PCR construct. Therefore, 

homologous recombination can happen after the mutated site. In that case, the selective marker 

would be introduced to the A1149 genome without mutation site, and those transformants would 

not have CFW resistance. In contrast, the mutation in ANID_10647 C1198T is close (242bp) to 

the 3’ end of the gene, so there was a low possibility that homologous recombination can happen 

after this site. 

The proper re-constructed strains showed the same drug resistance as AXE5 and AXE8 

respectively (Fig. 5-4). All other associated phenotypic changes in AXE5 (e.g. temperature 

sensitivity) (Fig. S5-3) and AXE8 (e.g. growth defect on drug free medium; Fig. 5-4) were also 

present in our re-constructed strains. Therefore, the drug resistance mutations were confirmed. In 

addition, we deleted ANID_03445, and found that deletion strain was phenotypically 

indistinguishable from AXE8 (Fig. 5-4). As expected, the premature stop mutation in AXE8 may 

prevent the interaction between this activator and its correspondent chitin synthase. Lack of this 

interaction may lead to less chitin deposition in the A. nidulans cell wall and in turn lead to CFW 
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resistance as it did in S. cerevisiae (Choi et al., 1994; Ono et al., 2000). Furthermore, AXE8 

showed phenotype defects in the absence of CFW, which is consistent with changes in its wall 

composition. Lin and Momany 2004 had already deleted ANID_10647 (Lin and Momany, 2004), 

so this was not repeated in our study. 
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5.5. Discussion 

Excitingly, our strategy enabled us to generate and isolate adaptive strains in A. nidulans that 

had single-gene mutations, and to rapidly identify the mutated genes. Working with single gene 

mutations was important to simplify NGS analysis. We expect that our strategy should be 

generally applicable to fungi regardless of whether they have a tractable sexual life cycle to test 

the number of mutations.  

Is our single-gene mutation collection a special case for CFW? We think not. First: 

Schoustra and colleagues found that single-gene mutations were sufficient to create a high level 

of resistance to fluodioxinil (Schoustra et al., 2009; Gifford et al., 2011). They did not identify 

the mutated genes, probably due to factors mentioned earlier. Second: echinocandin resistance 

mutations are typically at single sites in FKS1 (Walker et al., 2010; Alexander et al., 2013; 

Fekkar et al., 2013). Third: single mutations in Erg11 lead to resistance against azoles (Kanafani 

and Perfect, 2008). Fourth: we were able to generate a single adaptive strain with resistance to 

500 mg/mL CR. Mating results for that strain were consistent with a single-gene mutation (data 

not shown). Fifth: if multiple mutations were necessary for drug resistance, anti-fungal 

adaptation that required a particular combination of mutations would be expected to be 

extremely rare. Taken together, several lines of evidence besides our study show drug resistance 

based on protein function can emerge quickly given the appropriate selection pressure (Kanafani 

and Perfect, 2008; Schoustra et al., 2009; Fekkar et al., 2013), consistent with single-gene 

mutations. In contrast, resistance to polyenes that target ergosterol distribution, rather than its 
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synthesis, has been relatively durable, although even it has been overcome recently (Kanafani 

and Perfect, 2008).  

Based on phenotype analysis, we have evidence to suggest there are at least 18 different 

single-gene mutations that cause resistance to ≥30 μg/mL CFW, suggesting the screen is not 

exhaustive. Multiple resistance mutations against CFW have been reported for fungi (Roncero et 

al., 1988; Garcia-Rodriguez et al., 2000), however at least one mutated gene [ANID_03445] that 

we identified had not been characterized in A. nidulans. The objective of our study was not to 

determine how many mutations lead to CFW resistance, and in addition, the protein basis for the 

mode of action of CFW is not fully understood. The ways that fungi can gain resistance will 

depend on the mechanism of a certain drug. And this will also decide the adaptation rate. 

However, as long as single mutations can lead to resistance, then we should expect to isolate 

such mutants. 

We were able to identify many adaptive sectors on the 30 µg/mL CFW treatment but none 

on the 15 µg/mL plates, suggesting that the degree of inhibition may be important for induction 

of adaptive mutations. An interesting additional phenotype for the colonies on 30 µg/mL CFW 

was the marked increase in Hülle cells (see Fig. 5-1A). Schoustra et al (2007) proposed that 

mitotic recombination has the potential accelerate adaptation rates in A. nidulans. We suggest 

that the presence of large numbers of Hülle cells could be a sign that the colony has become 

potentiated for cell fusion. Hülle cells are seen with increasing frequency in older A. nidulans 

colonies, which may be associated with cleistothecia. Hyphal fusion and subsequent nuclear 
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migration could lead to enhanced spread of nuclei bearing a beneficial mutation, and a more 

efficient formation of a fast-growing sector (Trinci, 1970). We suggest that Hülle cell formation 

could be a harbinger of potential spread of adaptive mutations, and is consistent with the 

differences in adaptation rate between the two CFW concentrations we used. 

 Identifying a single critical mutation site in a whole genome is not trivial. Since the 

development of NGS in 2008 (Mardis, 2008), its application in resolving questions of adaptation 

has been applied in many organisms (reviewed in Stapley et al., 2010). NGS still suffers from 

short reads and high cost, which reduce its commercial availability, nevertheless, the small (30 

Mb) haploid genome of A. nidulans made NGS more practical. We had ~ 31x coverage of each 

nucleotide and had high accuracy for most sites. Most SNPs were shared between the two strains, 

as expected since they were derived from the same parent, A1149. Despite this, we were able to 

use the A4 genome, which is thoroughly annotated, as a reference strain. In the end, only a few 

useful SNPs were identified in each adaptive strain. In our experiment, two samples were 

sequenced in separated lanes in order to assemble accurate genome sequence. However, if the 

purpose is to figure out the mutation sites, this is still not the optimal way for cost efficiency. 

Recently, a new type of “phenotype sequencing” would enable us to identify all potential 

causal-genes when all collected mutants were pooled and sequenced together (Lee and Harper, 

2013). This would provide a more cost-saving manner for such studies; however stringent 

criteria must be met for this strategy.  

The downstream work is straightforward for A. nidulans, since two well-established 
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databases (AspGD and Broad Institue) were available and all molecular techniques for gene 

manipulation were developed (Szewczyk et al., 2006). As a result, the target mutations were 

readily verified.  For some fungal species, genome databases may be less well established. Until 

these resources are expanded, the metabolic conservation between fungi should enable us to 

apply most results to other species. Beginning with a model system such as A. nidulans should 

facilitate development. 

 In this proof-of-principle study, we developed a strategy to use A. nidulans and NGS to 

rapidly identify potential drug resistance mutations to CFW, which otherwise are difficult to 

locate. Our strategy has wide applicability to all anti-fungal drugs. Especially, we suggest this 

strategy could be using during drug development in order to predict where these new treatments 

will fail in the future. The value of this will be in having a combination therapy in anticipation of 

future need. In summary, we suggest that our strategy will be broadly useful in the 

drug-resistance arms race between humans and pathogenic microorganisms. 
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5.7. Tables 

Table 5-1 Isolation day and meiotic progeny for each adaptive strain 

Strain Isolation 
day 

Ratio of CFW 
resistant : sensitive 

progeny 

Strain Isolation 
day 

Ratio of CFW 
resistant : sensitive 

progeny 

AXE5 
AXE8 
AXE20 
AXE22 
AXE29 
AXE30 
AXE33 
AXE35 
AXE37 
AXE41 
AXE43 
AXE44 

5 
8 
5 
7 
8 
8 
5 
5 
5 
7 
8 
8 

81:85 
40:60 
54:46 
40:60 
58:41 
N/A 

49:51 
41:59 
N/A 
N/A 

48:52 
46:54 

AXE46 
AXE49 
AXE51 
AXE52 
AXE54 
AXE58 
AXE62 
AXE63 
AXE64 
AXE65 
AXE66 
AXE69 

10 
10 
5 
5 
5 
6 
8 
9 
9 
9 
13 
13 

41:59 
58:42 
N/A 

45:55 
53:46 
N/A 

44:56 
52:48 
51:49 
53:47 
35:65 
37:62 

Isolation date represents by days post-inoculation. Strains without successful mating results show 
as N/A. 

 

Table 5-2 Summary of single nucleotide polymorphisms in AXE5 and AXE8 

Strain Total 

SNPs 

Unique 

SNPs 

Synonymous 

mutation 

Non-synonymous 

mutation 

Premature 

stop 

mutation 

AXE5 

AXE8 

393 

384 

15 

13 

5 

5 

8 

7 

2 

1 

 



Xiaoxiao He Ph.D. Thesis    2014 Sept 

165 
 

5.8. Figures 

 

Fig. 5-1 Induction of adaptive strains 

A. 105 freshly harvested spores were inoculated on CM, CM+15 μg/mL CFW, and 

CM+30 μg/mL CFW and plates were incubated at 30 °C for 5 d. A. nidulans colony growth was 

restricted on CFW containing medium. 

B. Example of accelerated growth sector (top). AXE5 was shown, which was isolated on the fifth 

day post inoculation.  
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Fig. 5-2 Drug sensitivity of adaptive strains against CFW, CR and Caspofungin 

A. Disc diffusion method was used to test drug sensitivity for AXE5 and AXE8. Freshly 

harvested spores were added to CM at a final concentration of 106 /mL. After solidification, 

10 μL of each drug solution (CFW: 10mg/mL; CR: 10mg/mL; Caspofungin: 20mg/mL) was 

added on medium. Plates were incubated at 30 °C for 2 d. Both strains showed strong resistance 

to CFW and a weak cross-resistance to CR, but not to Caspofungin. 

B. Survival ability test was used to show the drug sensitivity of other adaptive strains. 105 freshly 

harvested spores from each strain was added on CM, which was supplemented with 30μg/mL 

CFW, 500μg/mL CR and 10μg/mL Caspofungin respectively as indicated. Plates were incubated 

at 30 °C for 2 d. Again, all strains have stable resistance to CFW, some of them showed weak 

resistance to CR, but all maintained the same sensitivity to Caspofungin. 
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Fig. 5-3 Example of mating result between an adaptive strain and a wild type strain 

Ascospores from AXM20::AXE49 were randomly inoculated on CM and CM+50 μg/mL CFW 

plates by toothpick. Parental strains were used as control (indicated by arrows). Plates were 

incubated at 30 °C for 2 d. CFW resistance was equally distributed in white color and green 

color ascopores, which indicated one mutation event happened in AXE49. 
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Fig. 5-4 Test of drug sensitivity for engineered strains  

105 freshly harvested spores were inoculated on CM and CM+50 μg/mL CFW and plates were 

incubated at 30 °C for 2 d. Both site-mutagenesis strains showed the same drug resistance as 

parental strain. ANID_03445 knock out strain was also made and showed same phenotype as 

AXE8, which indicated mutation in AXE8 eliminate the function this gene.  
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5.9. Supplemental Materials 

 

 

Fig. S5-1 Strategy and PCR confirmation for site-directed mutagenesis strains and gene knock 

out strain 
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Fig. S5-2 Adaptive strains phenotype on different growth condition 

105 freshly harvested spores of each strain were inoculated on medium and plates were incubated 

at 30 or 37 °C for 2 d. The order of strains is the same as Fig. 2B. 

 

 

 

 

 
Fig. S5-3 AXE5 at high temperature, and remedial at high osmolarity plate.  

105 freshly harvested spores were inoculated on medium and plates were incubated at 42 °C for 2 

d. AXE5 and ANID_10647 C1198T were both temperature sensitive, but the defect was 

remedial by high osmolarity (1 M sucrose).  
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Fig. S5-4 Distribution of SNPs in AXE5 and AXE8 genome.  

Genome was represented by 17 scaffolds. Total SNPs distributions were similar for AXE5 and 

AXE8, which indicates a similar genome background for these two strains. 



Xiaoxiao He Ph.D. Thesis    2014 Sept 

172 
 

Table S5-1 Strains, primer and plasmids used in this study 

Strain Genotype Origin 

A1149 
AXE5 
AXE8 
AXE20 
AXE22 
AXE29 
AXE30 
AXE33 
AXE35 
AXE37 
AXE41 
AXE43 
AXE44 
AXE46 
AXE49 
AXE51 
AXE52 
AXE54 
AXE58 
AXE62 
AXE63 
AXE64 
AXE65 
AXE66 
AXE69 
AXM5 
AXM20 
ANID_10647 C1198T 
ANID_03445 G1081T 
ANID_03445 knock out 

pyrG89; pyroA4; nkuA::argB 
pyrG89; pyroA4; nkuA::argB 
pyrG89; pyroA4; nkuA::argB 
pyrG89; pyroA4; nkuA::argB 
pyrG89; pyroA4; nkuA::argB 
pyrG89; pyroA4; nkuA::argB 
pyrG89; pyroA4; nkuA::argB 
pyrG89; pyroA4; nkuA::argB 
pyrG89; pyroA4; nkuA::argB 
pyrG89; pyroA4; nkuA::argB 
pyrG89; pyroA4; nkuA::argB 
pyrG89; pyroA4; nkuA::argB 
pyrG89; pyroA4; nkuA::argB 
pyrG89; pyroA4; nkuA::argB 
pyrG89; pyroA4; nkuA::argB 
pyrG89; pyroA4; nkuA::argB 
pyrG89; pyroA4; nkuA::argB 
pyrG89; pyroA4; nkuA::argB 
pyrG89; pyroA4; nkuA::argB 
pyrG89; pyroA4; nkuA::argB  
pyrG89; pyroA4; nkuA::argB 
pyrG89; pyroA4; nkuA::argB 
pyrG89; pyroA4; nkuA::argB 
pyrG89; pyroA4; nkuA::argB 
pyrG89; pyroA4; nkuA::argB 
nicB, wA2(chaA) 
nicB, wA2 
AN10647::AN10647C1198T: AfpyrG; pyrG89; pyroA4; nkuA::argB 
AN3445::AN3445G1081T: AfpyrG; pyrG89; pyroA4; nkuA::argB 
AN3445::AfpyrG; pyrG89; pyroA4; nkuA::argB 

FGSC 
this study 
this study 
this study 
this study 
this study 
this study 
this study 
this study 
this study 
this study 
this study 
this study 
this study 
this study 
this study 
this study 
this study 
this study 
this study 
this study 
this study 
this study 
this study 
this study 
this study 
this study 
this study 
this study 
this study 

Primers Alias Sequence: 5’ to 3’ Description 

pyrG F 
pyrG R 

AME1 
AME2 

ATGTCGTCCAAGTCGCAATT 
TCATGACTTGCCGCATACTC 

marker 
marker 
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pyroA F 
pyroA R 
10647 up F 
10647 clone R 
10647 down F 
10647 down R 
10647 fusion F 
10647 fusion R 
3445 up F 
3445 clone R 
3445 down F 
3445 down R 
3445 fusion F 
3445 fusion R 
3445 up R 
3445 down F(2) 
3445 clone F 
3445 clone R 
pyrG detect  
pyroA detect 

SE231 
SE232 
SE139 
SE269 
SE270 
SE131 
SE132 
SE133 
SE121 
SE271 
SE272 
SE124 
SE125 
SE126 
SE122 
SE123 
SE119 
SE120 
AME8 
AME15 

GGACATCAGATGCTGGATTACTAAG 
TTACCATCCTCTCTTGGCCA 
GTCAAGCTCTCCGTGAGCTC 
CTTAGTAATCCAGCATCTGATGTCCTGTCGGCACATCGTCAAT 
TGGCCAAGAGAGGATGGTAAGCAGGGTCCATATATTCAAGGT 
GGTTTCCACTTGCTGTTTGC 
TGACCGTCATGTGTTTGTCC 
CCATAACGCCGCATGTTC 
ACTTAGAACAAGACCCGGCA 
CTTAGTAATCCAGCATCTGATGTCCTCACATGACGATCTGGTAAAGAG 

TGGCCAAGAGAGGATGGTAACGCGTCTATTTGTTTCGTGTAA 
TTTCTCGAGCTCCGTGATCT 
CTGGGGGCATACCTTGAAA 
GTTCTCCTTGAGACTGGAGAGTTG 
AATTGCGACTTGGACGACATTGTTCACGAGAATAGGCCG 
GAGTATGCGGCAAGTCATGACGCGTCTATTTGTTTCGTGTAA 
ATGAATCGACCACCACAAGG 
TCACATGACGATCTGGTAAAGAG 
CACATCCGACTGCACTTCC 
ATTCCTGTCATGGCCAAAG 

marker  
marker 
10647 replacement 
10647 replacement 
10647 replacement 
10647 replacement 
10647 replacement 
10647 replacement 
3445 replacement 
3445 replacement 
3445 replacement 
3445 replacement 
3445 replacement 
3445 replacement 
3445 knock out 
3445 knock out 
strain confirmation 
strain confirmation 
strain confirmation 
strain confirmation 

Plasmids Description Origin 

pAO81 
pHL85 

S-TAG, A. fumigatus pyrG, kan R 

GA5-mCherry, A. fumigatus pyroA, amp R, kan R 
FGSC 
FGSC 
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Table S5-2 Details list of unique SNPs in AXE5 and AXE8 
Gene ID Mutation 

site 
Confidence 

score 
Codon 
change 

Gene annotation# 

AXE5    
ANID_8717 

 
ANID_8177 

 
ANID_8179 

 
ANID_7792 
ANID_6239 
ANID_10647 
ANID_5254 
ANID_5254 
ANID_5254 
ANID_5254 
ANID_5254 
ANID_2262 

 
ANID_1453 
ANID_2154 
ANID_0003 

G1192A 
 

C1036G 
 

C104A 
 

G1124A 
C1058A 
C1198T 
A1164C 
C679T 
G659A 
G515A 
C90T 

G333C 
 

C557T 
G2186T 
G1137A 

88% 
 

33% 
 

45% 
 

99% 
29% 
99% 
30% 
55% 
31% 
73% 
67% 
45% 

 
30% 
99% 
57% 

GAG→AAG 
 

CGG→GGG 
 

TCA→TAA 
 

GGC→GGA 
GGG→GTG 
CAA→TAA 
GCA→GCC 
CGT→TGT 
CGG→CAG 
CGT→CAT 
TTC→TTT 
GCG→GCC 

 
TCC→TTC 
GGT→GTT 
CTG→CTA 

Uncharacterized; has domain(s) with predicted DNA 
binding, nucleic acid binding activity 
Uncharacterized; putative glucose responsive transcription 
factor 
Uncharacterized; has domain(s) with predicted heat shock 
protein binding activity 
Uncharacterized; putative lysophospholipase A 
Uncharacterized; siderophore biosynthesis lipase/esterase 
Verified; putative cytochrome P450 protein 
Uncharacterized; has domain(s) with predicted RNA binding 
Uncharacterized; has domain(s) with predicted RNA binding 
Uncharacterized; has domain(s) with predicted RNA binding 
Uncharacterized; has domain(s) with predicted RNA binding 
Uncharacterized; has domain(s) with predicted RNA binding 
Uncharacterized; ortholog(s) have role in cellular response to 
oxidative stress, response to osmotic stress 
Uncharacterized 
pseudogene 
hypothetical protein 

AXE8  
ANID_8541 
ANID_8331 
ANID_7848 
ANID_7848 
ANID_6966 
ANID_6242 
ANID_5095 
ANID_5254 
ANID_5254 
ANID_4102 
ANID_3445 
ANID_2711 
ANID_1159 

T1223C 
G1726C 

C60T 
C37T 

C108T 
A193G 
C399T 
C941T 
C254T 

A2439G 
G1081T 
G1110C 
A1038C 

29% 
20% 
83% 
60% 
40% 
37% 
76% 
47% 
93% 
99% 
99% 
99% 
71% 

GTC→GCC 
GGG→CGG 
CCC→CCT 
CGC→TGC 
CAC→CAT 
AAT→GAT 
GCC→GCT 
TCA→TTA 
GCA→GTA 
AAG→AAA 
GGA→TGA 
TCG→TCC 
AAA→AAC 

Uncharacterized 
Hypothetical protein 
Uncharacterized 
Uncharacterized 
Uncharacterized; putative transposon-encoded protein 
Uncharacterized 
Uncharacterized; predicted gypsy transposon-related ORF 
Uncharacterized; has domain(s) with predicted RNA binding 
Uncharacterized; has domain(s) with predicted RNA binding 
Uncharacterized; putative beta-glucosidase 
Uncharacterized; putative chitin synthase activator 
Uncharacterized; predicted LINE transposon-related ORF 
Uncharacterized; has domain(s) with predicted acid-amino 
acid ligase activity 

#, annotation was based on information from online database (28,29). 
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CHAPTER 6 

GENERAL DISCUSSION AND CONCLUSION 

 

 Systemic fungal infection is a fast growing problem in developed countries, in part due to 

the success of modern medicine. Fungi tend to infect immunocompromised patients, in which 

they can take advantage of the host’s immunosuppressed condition. With the advances in 

medical technology, the number of surviving patients with immune deficiencies is growing fast 

(Steele and Wormley, 2012), thus providing many more opportunities for fungal infections. At 

the same time, fungal infections are causing an increasing danger for healthy people as well 

(Brown et al., 2010). The mortality due to systemic fungal infection may be as high as 50% 

(Netea and Brown, 2012) although other authors suggest even higher mortality levels. Thus, with 

respect to mortality rate, pathogenic fungi are very dangerous human pathogens.  

 Systemic fungal infections are difficult to treat by surgery, because fungi are seldom easily 

to be separated from the infected organ and any fungal residue will be able to grow again. 

Therefore anti-fungal drugs are the best clinical method to treat and cure systemic fungal 

infections. Polyenes and azoles are the most common anti-fungal drugs, which target the 

integrity or biosynthesis of ergosterol in the fungal membrane (Shapiro et al., 2011). However, 

due to the high chemical similarity between ergosterol in fungal cells and cholesterol in 

mammalian cells, polyenes and azoles are highly toxic to humans (Carrillo-Muñoz et al, 2006; 

Cowen, 2008). The newest class of anti-fungal drug—echinocandins, which target β-glucan 

synthase, have low toxicity, but also have a narrow activity spectrum (Denning, 2003). In 
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addition, all existing anti-fungal drugs are losing efficacy due to emerging drug resistance 

(Cowen, 2008). In particular, drugs that target biosynthetic enzymes are liable to resistance 

mutations. Substantial effort is still needed to protect us from fungal infections. I suggest that my 

work in the following two directions will be extremely helpful: 1) studying the metabolism of 

potential drug targets; 2) developing a strategy to identify the drug resistance mutations.  

 In my Ph.D. thesis research, I addressed these approaches using A. nidulans, which is a 

tractable model for experimental research. Aspergillus nidulans has been used in many fields of 

biological study for more than 70 years (Morris, 1975). Although A. nidulans is not a common 

human fungal pathogen, it is closely related to A. fumigatus, which is one of the most deadly 

human pathogens. Thus, A. nidulans can be used as a safe surrogate fungal model to understand 

the cell biology of related pathogenic fungi.  

Recently, α-1,3-glucan was shown to have important roles for the virulence of several 

pathogenic fungi (Rappleye et al. 2007; Reese et al., 2007; Fujikawa et al., 2012; Beauvais et al., 

2013), thus could be a potential drug target. To facilitate future drug development against this 

wall component, I explored the metabolism processes of α-1,3-glucan in A. nidulans (Chapter 2, 

3 and 4). As introduced in chapter 1, the cell wall is an essential structure for fungi to survive in 

nature, and it is absent from human cells. Therefore, any drug developed against a cell wall 

component should have low toxicity to humans (Kingsbury et al., 2012). Echinocandins are just 

one successful example, which block the synthesis of β-glucan (Denning, 2003). 

Alpha-1,3-glucan is also a major cell wall component in many filamentous fungi and some yeast 

strains (Latgé, 2010). Unlike β-glucan, evidence showed α-1,3-glucan is not important for cell 
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morphology in many fungi (Damveld et al., 2005; Henry et al. 2012; Yoshimi et al., 2013; He et 

al., 2014a), but the presence of α-1,3-glucan appears to be critical for a maximum virulence 

(Rappleye et al. 2007; Reese et al., 2007; Fujikawa et al., 2012; Beauvais et al., 2013). 

Therefore, research on the metabolism process of α-1,3-glucan should reveal targets for drugs 

that are aimed at reducing virulence. 

In order to identify anti-fungal resistance mutations, I developed a strategy by using A. 

nidulans and next generation sequencing to identify the drug resistance-causing mutations. The 

tractability of A. nidulans and the power of next generation sequencing enabled me to find the 

drug resistance mutations efficiently (He et al., 2014b). Finding out the causal mutations is a key 

step in understanding the molecular basis of resistance and the first step in assessing ways to 

overcome it. I suggest this strategy can be useful to study the drug resistance mechanisms for all 

current anti-fungal drugs and even the future ones while under development. In addition, the 

knowledge from these mutations will also contribute to our understanding of the fungal cell wall.  

 

6.1. Alpha-1,3-glucan Affects Conidial Adhesion; Are There Other Functions? 

Alpha-1,3-glucan is a major cell wall component in Aspergillus species. In my experiment, it 

comprised ~15 % of cell wall dry weight in a wild type A. nidulans, whereas in A. fumigatus it is 

estimated to be 30 % of cell wall carbohydrate (Latgé, 2007). However, using deletion analysis, 

α-1,3-glucan has been shown to be dispensable for cell morphology in several Aspergillus 

species (Damveld et al., 2005; Henry et al. 2012; Yoshimi et al., 2013; He et al., 2014a).  
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So far, the only characterized phenotypic changes associated with deletion of α-1,3-glucan 

are reduced conidial adhesion and increased sensitivity to calcofluor white (CFW) (Chapter 2). 

When α-1,3-glucan was removed by gene deletion or by α-1,3-glucanase treatment, conidia did 

not efficiently cluster together when grown in shaken liquid medium (Fontaine et al., 2010; Fig. 

2-3). In contrast when grown on solid medium, the α-1,3-glucan deletion strain was 

phenotypically indistinguishable from the wild type strain, even under TEM examination (Fig. 

2-4). Moreover, α-1,3-glucan is not always required in the wild type hyphae. When a wild type A. 

nidulans was grown in medium without glucose, the expression of AgsB, the major α-1,3-glucan 

synthase, was down-regulated and α-1,3-glucan was produced at a minimal level (unpublished 

data from He and Kaminskyj). This indicated that α-1,3-glucan is not critical for the cell wall 

formation and cell morphology of A. nidulans.  

The CFW hypersensitivity upon α-1,3-glucan deletion suggested that chitin may be easier to 

access in this mutant, because CFW must physically bind to chitin in the cell wall to exert 

toxicity. Therefore, α-1,3-glucan may be playing a non-structural role in the cell wall, filling the 

spaces between the fibrillar skeleton, which is composed of β-glucan and chitin. This does not 

mean α-1,3-glucan is not cross-linked to other wall components or the cell membrane, because 

all existing evidence indicates that α-1,3-glucan is a very stable wall component. However, 

currently the linkages between α-1,3-glucan and other wall components are unknown. 

In contrast to the α-1,3-glucan deletion strains, phenotypic defects on solid medium were 

seen for α-1,3-glucan overexpression strains. A 2-fold overexpression of α-1,3-glucan synthase 

(actA(p)-agsB) caused a moderate conidiation defect (Fig. 2-3), whereas a 14-fold 
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overexpression of α-1,3-glucan synthase (H2A(p)-agsB) led to a severe conidiation defect as well 

as a series of phenotypic changes (Fig. 3-1). However, none of the α-1,3-glucan overexpression 

strains showed increased conidial adhesion or CFW tolerance (Fig. 2-5 and 3-2).  Therefore, 

when grown in complete medium, α-1,3-glucan content appears to be already optimal for the 

A.nidulans cell wall.  

I did find the α-1,3-glucan overexpression strains have higher adhesion ability to 

hydrophobic materials (Fig. 3-2). And the 14-fold overexpression strain (H2A(p)-agsB) was even 

able to form a biofilm-like structure (Fig. 3-2). However, my results also showed this unnatural 

high amount of α-1,3-glucan caused cell wall defects and remodeling (Fig. 3-3), indicating the 

whole cell wall architecture was changed in the overexpression strain, probably due to the 

activation of CWI pathways. Therefore, the change of cellular adhesion to hydrophobic materials 

was triggered by overexpression of α-1,3-glucan, but not because of α-1,3-glucan itself (Chapter 

3).  

In conclusion, my studies showed α-1,3-glucan is only important for conidial adhesion and 

CFW sensitivity under the conditions that I tested. Though α-1,3-glucan content is apparently not 

necessary in structuring the cell wall of A. nidulans, abnormally high levels of α-1,3-glucan were 

harmful for cell morphology. The levels of α-1,3-glucan also correlate with the cell’s ability to 

adhere to hydrophobic materials.  
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6.2. Alpha-1,3-glucan Produced by the AgsA and AgsB Are Not Equivalent 

A. nidulans has two annotated α-1,3-glucan synthases (AgsA and AgsB), which were both 

functional proteins in my test (Chapter 2). When these proteins were overexpressed by the same 

promoter, a similar high level of α-1,3-glucan was found in the cell wall (Table 2-1), suggesting 

they have similar potency in synthesizing this wall component. However, these two synthases 

differ in expression profiles when regulated by their native promoters and even differ in their 

final products.  

Under its native promoter, agsB had a constant high expression level throughout the asexual 

life cycle, whereas agsA was only highly expressed during conidiation stages (Fig. 2-7). 

Therefore, the A. nidulans hyphal cell wall α-1,3-glucan was mostly produced (up to 97%) 

through AgsB activity while in conidial cell wall the α-1,3-glucan was derived from the activities 

of both synthases (Chapter 2). Intriguingly, the α-1,3-glucan produced by two synthases is not 

even equivalent in respect to cellular function. To differentiate the source of α-1,3-glucan, one 

can speak of two subsets of polymers depending on the original enzyme used: 

AgsA-α-1,3-glucan and AgsB-α-1,3-glucan. The existing evidence suggests that 

AgsB-α-1,3-glucan was clearly more important: loss of AgsB-α-1,3-glucan substantially reduced 

conidial adhesion in liquid, but loss of AgsA-α-1,3-glucan did not change this phenotype (Fig. 

2-3). As mentioned above the α-1,3-glucan in the conidial wall was composed of 

AgsA-α-1,3-glucan and AgsB-α-1,3-glucan, so AgsB-α-1,3-glucan was the only α-1,3-glucan 

responsible for the conidial adhesion ability. AgsB-α-1,3-glucan was also the only α-1,3-glucan 

responsible for the CFW sensitivity (Fig. 2-6). In addition, overexpression of AgsA-α-1,3-glucan 
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did not recover the conidial adhesion defect or the CFW sensitivity defect due to the loss of 

AgsB-α-1,3-glucan (Fig. 2-3 and 2-6). Consistent with these, using overexpression (by either the 

actA or the H2A promoter) analyses, only more AgsB-α-1,3-glucan led to phenotypic defects and 

cell wall defects (Fig. 3-1 and 3-3). Therefore, all the functions and phenotypic changes related 

to α-1,3-glucan content are due to AgsB-α-1,3-glucan. The function and role of 

AgsA-α-1,3-glucan is still a mystery.  

I tried to explore the difference between AgsA-α-1,3-glucan and AgsB-α-1,3-glucan. But no 

difference was found in assays using an antibody that binds to α-1,3-glycosidic linked glucose, in 

chemical analysis using alkali extraction and the anthrone assay, and in TEM studies using 

immunogold technique (Fig. 2-8). Since α-1,3-glucan is suggested to have no side branches 

(Grün et al., 2005; Choma et al., 2013), other possible reasons for this difference could be the 

post-synthesis modification or the length of α-1,3-glucan, which warrants further research.  

 

6.3. Alpha-1,3-glucan Synthesis Is Differentially Regulated by a Conserved Gene Cluster 

 Evidence showed the synthesis of α-1,3-glucan requires more than just α-1,3-glucan 

synthase (Grün et al., 2005). From my result, at least two amylase-like proteins (AmyD and 

AmyG) are involved in α-1,3-glucan synthesis regulation (Chapter 2 and 4). The encoding genes 

of these two amylase-like proteins (amyD and amyG) are adjacent to the major α-1,3-glucan 

synthase encoding gene (agsB) (Fig. 2-1), and these three genes together forms a small gene 

cluster [agsBamyD amyG]. Although a three-gene cluster is smaller than typical for gene 

cluster in filamentous fungi, as some of the cluster could have more than 20 genes (Keller et al., 
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1997), I still think it is valid to claim these three genes as a gene cluster based on the following 

two reasons. First all these three genes are all involved in the same metabolic process, which is 

α-1,3-glucan synthesis. A similar use of ‘gene cluster’ has been used for the four galactose 

metabolism (Leloir pathway) genes by Slot and Rokas (2010). In addition, the localization 

relationship of these genes is conserved in almost all Aspergillus species except A. fumigatus 

(Chapter 2).  

 Among gene products from this gene cluster, α-1,3-glucan synthase (AgsB) is the key 

enzyme to synthesize α-1,3-glucan (as discussed above). My results showed the expression level 

of AgsB positively determines the amount of α-1,3-glucan in the cell wall (Chapter 2 and 3). In 

addition, the GFP-tagging results for AgsB-GFP strain strongly indicated the localization of 

AgsB is on the cell membrane (Fig. 2-7). Although due to the resolution of fluorescence 

microscope and the small size of A. nidulans cells, I could not generate very convincing evidence 

to conclude the localization of AgsB to date. Due to the lack of AgsB antibody, western blot and 

immunogold TEM technologies are also not available to further verify the localization of AgsB. 

But based on the sequence analysis of agsB, which has a 12 repeats transmembrane domain, and 

the GFP tagging result from S. pombe α-1,3-glucan synthase (Cortés et al., 2012), which also 

showed a cell membrane localization, I think it is still valid to say the localization of AgsB is on 

cell membrane. And the membrane localization of α-1,3-glucan synthase confirmed part of the 

protein model of α-1,3-glucan synthase presented by Grün et al. (2005) (Fig. 1-2), which 

suggested that α-1,3-glucan synthases localize on the cell membrane. This model also suggests 

that the transmembrane domain of α-1,3-glucan synthase forms a channel to transport the newly 
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synthesized α-1,3-glucan from the cytoplasm to the cell wall. In that case, the integrity of the 

transmembrane domain should be very important, which was also supported by my results. 

When GFP tagged at the C-terminal of AgsB (right after the transmembrane domain), AgsB 

completely lost its function (Chapter 2). In addition, a 6 amino acids deletion in transmembrane 

domain also totally abolished the function of the protein (Chapter 3). Altogether, I interpret this 

as showing the importance of the transmembrane domain in AgsB. The transmembrane domain 

in AgsB serves as more than just an element for localization, but also as a functional domain 

involved in the α-1,3-glucan synthesis process.  

 AmyG is another protein crucial for α-1,3-glucan synthesis. The function of this kind of 

protein was first reported in H. capsulatum (Marion et al., 2006). From results in this thesis, A. 

nidulans AmyG localized in the cytoplasm and its function was very important for α-1,3-glucan 

synthesis (Table 2-1 and Fig. 2-7). Unlike α-1,3-glucan synthase, overexpression of AmyG did 

not greatly increase wall α-1,3-glucan content (Table 2-1) suggesting it was not the limiting step 

in the synthesis process. Considering the localizations of AmyG and AgsB, AmyG should 

respond for an earlier step in α-1,3-glucan synthesis process, likely the synthesis of the 

α-1,4-glycosidic linked oligosaccharide primer structure (Grün et al., 2005; Marion et al., 2006) 

(Fig. 1-2). Since AmyG has an amylase-like domain, it may have a role in breaking down 

α-1,4-glycosidic linkage. Therefore, two possible working models could be hypothesized based 

on that enzymatic function. One model is AmyG may breakdown long chain α-1,4-glucan into 

small chains, which provides the primer structure for α-1,3-glucan synthesis. The second model 
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is AmyG may break down the α-1,4-glucan to provide glucose for α-1,3-glucan synthesis. But to 

test these models, a study on AmyG enzymatic function is needed first. 

 Interestingly, AmyD had a totally different impact on α-1,3-glucan content than AmyG. 

AmyD repressed α-1,3-glucan synthesis. In fungal cells, α-1,3-glucanase is expected to be the 

hydrolytic enzyme that degrades the α-1,3-glucan on cell wall. Although AmyD and 

α-1,3-glucanase both have repressive effects on α-1,3-glucan accumulation, their functions are 

independent from each other (Fig. 4-2 and 4-3). The dynamics of α-1,3-glucan accumulation 

study revealed different working mechanisms between AmyD and α-1,3-glucanase (Fig. 4-4) 

with AmyD impacting α-1,3-glucan accumulation much earlier than α-1,3-glucanase. Therefore, 

AmyD should not be involved in α-1,3-glucan degradation. As discussed in last paragraph for 

AmyG, if AmyD also served as a amylase to breakdown α-1,4-glycosidic linkage, the potential 

working model for AmyD would be to degrade the primer structure of α-1,3-glucan, which 

would prevent α-1,3-glucan from being synthesized.  

 Although AgsA is also a functional α-1,3-glucan synthase in A. nidulans, its activity only 

accounted for a small amount of α-1,3-glucan (mostly in conidia). Furthermore, 

AgsA-α-1,3-glucan had no characterized impact on cell wall formation and cell morphology. 

Therefore, AgsA activity does not appear to be important for functional α-1,3-glucan synthesis.  

In summary, gene products from the conserved [agsBamyD amyG] gene cluster appear 

to control α-1,3-glucan synthesis in A. nidulans (Fig. 6-1). AgsB synthesizes α-1,3-glucan; 

AmyG works at an earlier step in the synthesis process, presumably the primer structure (Marion 

et al., 2006); and AmyD negatively regulates the production of α-1,3-glucan. Although these 
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three proteins have different roles, they all regulate the synthesis of the wall α-1,3-glucan content 

(Fig. 6-1). 

 

Fig. 6-1 Model of α-1,3-glucan synthesis regulation in A. nidulans 

 

6.4. How Could These Data Help in Drug Development against α-1,3-glucan? 

 Is α-1,3-glucan a useful drug target? From the results presented here, α-1,3-glucan does not 

appear to be important for cell wall formation and cell morphology. With respect to the existing 

drug targets, which are mostly essential cell elements, α-1,3-glucan is not a suitable drug target. 

However, from other evidence, α-1,3-glucan was shown to be important for the virulence of 

three human pathogens and one plant pathogen (Rappleye et al. 2007; Reese et al., 2007; 

Fujikawa et al., 2012; Beauvais et al., 2013). Alpha-1,3-glucan is clearly a virulence factor in 

these pathogenic fungi. Discovering virulence factors is a new trend in antimicrobial drug 

development (Clatworthy et al. 2007; Allen et al., 2014), as few essential factors are left to 

explore. Therefore, α-1,3-glucan may be still a promising drug target to prevent fungal infections, 

at least for H. capsulatum, C. neoformans, A. fumigatus and M. oryzae. If α-1,3-glucan does turn 
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out to be a viable drug target, how could the results presented in this thesis contribute to this 

goal? 

 Since the presence of α-1,3-glucan is important for fungal virulence, the therapeutic strategy 

should be to eliminate α-1,3-glucan from the cell surface. If so, drugs that inhibit the function of 

α-1,3-glucan synthase will be the best choice. So far all α-1,3-glucan related studies showed 

α-1,3-glucan synthases are important for α-1,3-glucan synthesis process (Hochstenbach et al., 

1998; Pereira et al., 2000; Rappeleye et al. 2004; Damveld et al., 2005; Henry et al. 2012; 

Yoshimi et al., 2013; He et al., 2014a). Alpha-1,3-glucan synthases are big (mostly ~2500 amino 

acids) and complex membrane proteins with at least three functional domains (Fig. 1-2) 

complicating the resolution of their protein structure. Maybe due to this reason, no anti-fungal 

drug that targets α-1,3-glucan synthase has so far been developed. A more realistic way to gather 

structural information on α-1,3-glucan synthases would be to resolve the structure of each 

individual functional domain. As discussed above, there is evidence showing that α-1,3-glucan 

synthase may initiate the synthesis from cytoplasmic side, suggesting that the cytoplasmic 

domain should be the primary target in an inhibitor screening. In addition, given that the 

transmembrane domain may work as a channel and is essential for the function (Grün et al. 2005; 

Cortés et al., 2012; Chapter 2), any compound that can specifically block this channel will likely 

also stop the α-1,3-glucan synthesis.  

 AmyG is also very important for α-1,3-glucan synthesis. The crucial function of this protein 

in α-1,3-glucan synthesis was also reported in H. capsulatum (Marion et al., 2006). Thus, AmyG 

is very likely a conserved protein involved in α-1,3-glucan synthesis in other fungi, (homologues 
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listed in Table 6-1). AmyG has an amylase-like domain and localizes in the cytoplasm of A. 

nidulans cell, which could facilitate the protein structure analysis. Therefore, AmyG could be an 

alternative target to block α-1,3-glucan synthesis process. 

 As an alternative to interrupting the synthesis of α-1,3-glucan, increasing its removal from 

the cell wall could theoretically lead to a similar decrease in virulence. Alpha-1,3-glucanase is 

the enzyme that degrades α-1,3-glucan. A transgenic rice plant expressing a bacterial 

α-1,3-glucanase has been shown to be resistant to M. oryzae infection (Fujikawa et al., 2012). In 

this thesis, AmyD activity, like α-1,3-glucanase, is shown to be important to suppress 

α-1,3-glucan accumulation (Chapter 2 and 4), suggesting AmyD may be a viable way to treat 

fungal infection. However, contrary to α-1,3-glucanase, AmyD activity is important to slow 

down the accumulation of α-1,3-glucan, but not to degrade already deposited α-1,3-glucan. In 

respect to that, I think AmyD will not be as useful as α-1,3-glucanase to treat fungal infection. In 

addition, digesting α-1,3-glucan from the fungal cell wall should be only valid to treat fungal 

infection in plants but not animals. 

 

6.5. Can We Predict the Most Likely Drug Resistance Mutations? 

Results from chapter 5 suggest the answer is YES. Using A. nidulans as a model to induce 

resistant mutants and using next generation sequencing to identify causal mutations may be a 

time-saving strategy to find out the genes and mutations involved in drug resistance.  

Within two weeks under exposure to moderate levels of CFW, A. nidulans wild type strain 

developed resistant sectors. Because A. nidulans is haploid during its asexual life, we 
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hypothesized that the appearance of the accelerated growth sectors immediately follows the first 

beneficial mutation. By assessing the inheritance of resistance phenotypes from mating 

experiment between adaptive strain and wild type strain, we were able to support this hypothesis 

(Chapter 5). Isolation of single mutation strains is the first step towards the identification of the 

mutated genes that generated the resistance.  

Data in Chapter 5 indicated that the dosage of the inducing drug was critical to isolate the 

mutants. For instance, while no resistant mutant was isolated on 15 μg/mL CFW medium, 24 

individual mutants were isolated within 2 weeks on 30 μg/mL CFW medium. The higher CFW 

dosage (30 μg/mL) showed higher inhibition rate (70 %) on colonies growth and also induced 

Hülle cells at the edge of colonies (Fig. 5-1), which are a sign for cell fusion. Hyphal fusion and 

subsequent nuclear migration could lead to enhanced spread of nuclei bearing a beneficial 

mutation and a more efficient formation of a fast-growing sector. Therefore, higher drug dosage 

is more potent in inducing resistant mutants in this assay. However, high drug concentration will 

eventually lead to very weak growth rates that can also impact the ability to detect outgrowths of 

resistant mutants. In practice, the dosages of the inducing drug need to be tested individually. 

Based on the results from Chapter 5, a dose that inhibits the wild type A. nidulans growth to 

about 70 % or a dose that can enhance hyphal fusion (represented by appearance of the Hülle 

cells) are likely good starting points.  

Eventually, the occurrence of resistant mutants in an inducing experiment will still be 

decided by the specific mechanism of the anti-fungal drug in question. For CFW, previous 

studies have reported many different mutations can cause resistance, explaining perhaps the fact 
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that so many different resistant mutants were isolated (Chapter 5). For polyenes, where the 

resistance rate has been suggested to be low (Kanafani and Perfect, 2008), fewer genes may be 

involved in the resistance mechanism(s). Irrespective of these differences, as long as single 

mutations lead to improved growth, and the size of inducing experiment is large enough, 

resistant mutants with single mutation should be able to be isolated within days. This is a 

convenient method to test the durability of anti-fungal drugs. 

The isolation of drug resistant mutants could be the first step towards solving the drug 

resistance problem. Determining the identity of the mutated genes is the next important step. 

With the development of next generation sequencing, gene finding through single nucleotide 

polymorphism (SNP) mapping on a genome scale is much easier than before, especially for a 

small and haploid genome (30Mb for A. nidulans). In the inducing step, all mutants were induced 

from the same parental strain within a short time. Therefore genetic variabilities should be 

limited between different mutants. This was confirmed upon sequencing of two of the CFW 

resistant mutants (Chapter 5). Fewer than 20 unique SNPs per strain were identified (Table 5-2). 

Combining gene annotation data from two well established Aspergillus databases (AspGD and 

Broad Institute), the most probable genes bearing the mutations could be identified. As a final 

step to determine the exact gene involved, experiments to test the effects of mutations could be 

performed by re-introducing the mutated gene into a wild type genome. 

These results suggest this strategy can be an efficient way to identify the causal mutations of 

most if not all drug resistance, perhaps as ways to predict their appearance in the clinic. By 

knowing such mutations, new drugs or new therapeutic strategies can be designed to promptly 
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respond to emerging resistance. This will enable us to stay ahead in the drug resistance arms 

race. 

 

6.6. Future Directions 

 Given the fact that fungal systemic infection is on the rise and anti-fungal drug resistance is 

becoming more prevalent, we are facing the challenge of developing strategies to control the 

upwards trajectory of fungal infections. For that purpose, we need first to understand more about 

these organisms.  

 In this thesis, I used A. nidulans as a model to study the α-1,3-glucan synthesis process and 

also to develop a strategy for identifying the drug resistance mutations. For α-1,3-glucan 

synthesis, I systematically characterized the roles of two α-1,3-glucan synthases and two 

amylase-like proteins in the synthesis process. For the first time, I presented data that show the 

α-1,3-glucan polymers produced by two α-1,3-glucan synthases are not equivalent and that the 

α-1,3-glucan synthesis is differentially regulated by a conserved gene cluster [agsBamyD 

amyG]. But there are still many questions left to explore. Amongst these, four questions are 

particularly relavent.  

 1) Are the functions of AmyG and AmyD conserved in α-1,3-glucan containing fungi? 

Alpha-1,3-glucan synthase is the essential protein for α-1,3-glucan synthesis, and its function has 

been studied in several pathogenic fungi (Rappleye et al. 2007; Reese et al., 2007; Fujikawa et al., 

2012; Beauvais et al., 2013), revealing a conserved working mechanism (Hochstenbach et al., 

1998; Grün et al., 2005). In my study, I found that AmyD and AmyG also regulate α-1,3-glucan 
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synthesis, though in different ways. Homologues of AmyD and AmyG exist in α-1,3-glucan 

containing fungi, at least for A. fumigatus, H. capsulatum, C. neoformans and M. oryzae (Table 

6-1). Therefore, it would be useful to know if the functions of AmyD and AmyG are conserved 

in these pathogenic fungal species.  

 A. fumigatus H. capsulatum C. neoformans M. oryzae 

amyD 

 

Afu3g00910  HCBG_00468.2 

HCBG_03431.2 

CNAG_02189 

CNAG_05264 

MGG_09640.7 

amyG Afu1g15150 HCBG_01374.2* CNAG_03146 MGG_03287 

MGG_09642 

Table 6-1 Homologues of amyD and amyG in four pathogenic fungi 
Data were gained by BLAST analysis using the protein sequence of AmyD and AmyG. 

Genome data were obtained from AspGD and Broad Institute. Genomes of following strains 
were used: A. nidulans A4, A. fumigatus AF293, H. capsulatum G186AR, C. neoformans H99 
and M. oryzae 70-15. If multiple hits were found, the first two with highest similarity were listed 
in the table. 
*: verified gene 

2) What are the enzymatic functions of α-1,3-glucan synthase and AmyG? The critical roles 

of α-1,3-glucan synthase and AmyG in α-1,3-glucan synthesis have been confirmed in at least 

two different fungal species (Rappleye et al., 2004; Marion et al., 2006). However, no data from 

enzymatic studies are available so far. Without this information, we will not be able to reveal the 

details of α-1,3-glucan synthesis process. Therefore, understanding the enzymatic functions is a 

key step to move forward in the research of α-1,3-glucan synthesis. 

3) What cell wall components enable A. nidulans to form the biofilm-like structure? It is 

very intriguing to see that A. nidulans can also form a biofilm-like structure as A. fumigatus (Fig. 

3-2). The inability to form a biofilm is one of the reasons why A. nidulans is less virulent than A. 

http://www.aspergillusgenome.org/cgi-bin/locus.pl?locus=Afu1g15150
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fumigatus. However, an A. nidulans AgsB overexpression strain [H2A(p)-agsB] showed the 

ability to form biofilm (Fig. 3-2). Data from one of our collaborators showed that overexpression 

of an adhesin in A. nidulans can also enable biofilm formation (unpublished data from the D. 

Sheppard group, McGill University). Together, these results revealed that A. nidulans may have 

a latent ability to form biofilm. This provides a useful tool to study the process of the biofilm 

formation itself, which is not very clear at the moment. H2A(p)-agsB had high α-1,3-glucan 

content and other changes in cell wall architecture (Fig. 2-3). A transcriptome comparison 

between H2A(p)-agsB and a wild type A. nidulans may reveal the key factors that regulate 

biofilm formation. The highly overexpressed wall components in H2A(p)-agsB are the most 

promising targets. 

4) What are the resistance mechanisms for drugs of polyenes and echinocandins? As 

searching for new effective anti-fungal drugs is difficult and expensive, protecting our current 

anti-fungal drugs from emerging resistance is as important as developing new drugs. In this 

thesis, a strategy was developed to quickly identify drug resistance mutations by using A. 

nidulans and next generation sequencing. So far, the strategy has been successful in exploring 

CFW resistance. However, CFW is not a clinical anti-fungal drug, and all the CFW resistant 

mutants maintained the wild type drug sensitivity against caspofungin (Fig. 5-2), which belongs 

to the echinocandins. Therefore the mutations that we have identified have limited clinical 

relevance, though they have great potential for better understanding cell wall synthesis. To go 

forward, clinically used drugs should be used to induce resistant mutants. Polyenes and 

echinocandins are suitable candidates, since the resistance mechanism against these two kinds of 
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drug are not fully understood at the moment (Kanafani and Perfect, 2008). In addition, because 

of the predictive potential of this strategy, it would be reasonable to also test drugs currently 

under development. In this way, we may assess the drug durability and predict the likelihood and 

identities of resistance mutations before their occurence in the clinic.  

In summary, the research conducted in this thesis systematically studied the synthesis 

process of α-1,3-glucan in A. nidulans. It showed that the α-1,3-glucan synthesis is regulated by 

two α-1,3-glucan synthases and two amylase-like proteins. The α-1,3-glucan polymers produced 

by two synthases were not equivalent; however none of them had an important impact on cell 

wall formation and cell morphology. These results shed light on therapeutic strategy 

development against α-1,3-glucan. In addition, a new strategy to quickly identify drug resistance 

mutations was presented. This may help us to predict the most likely mutations that can cause 

anti-fungal drug resistance. In the end, I hope this work will increase our general understanding 

about cell wall structure/function/composition and contribute to the existing arsenal against 

pathogenic fungi.  
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