2.3 Ripping of Irrigated Solonetzic Soil to Increase Water Penetration and Crop Yield

M.C.J. Grevers

(This project was supported by a grant from the Saskatchewan Water Corporation)

INTRODUCTION

The suitability of soils for irrigation depends on a number of factors such as the structure of the soil, its drainability, the depth to water table and the soil salinity. Solonetzic soils are considered to be less suitable for irrigation than Chernozemic soils because of their impermeable Bnt horizon, moderate to high levels of subsoil salinity and their extreme spatial variability (Canada Soil Survey Committee 1987). Solonetzic B horizons (Bnt) are hard when dry and swell to a sticky mass of very low permeability when wet (Canada Soil Survey Committee 1987), these Bnt horizons effectively reduce water infiltration into the soil and also reduce root proliferation. In dry years, solonetzic "pockets" in a field are the first areas showing a crop under severe water stress. It was thought that the productivity and the irrigability of Solonetzic soils could be improved by disrupting the Bnt horizon using subsoilers.

This report represents a summary on the work carried out on the field monitoring of soil physical properties, soil chemical characteristics and crop growth following deep ripping of three irrigated Solonetzic soils north-east of Glenside, Saskatchewan. The objectives of the project were to determine the effect of deep ripping on crop production and on water infiltration, and to determine if deep ripping could increase the suitability of these soils for irrigation.

MATERIALS AND METHODS

A total of three farm sites were included in the study located northeast of Glenside, Sask. Legal locations of the sites are: Site DE (Dale Eliason farm) S¹/₂-27-29-6-W3, Site JE (Jerry Eliason farm) SW-2-30-6-W3, and Site RR (Randy Riopka farm) $N^{1}/2$ -16-29-6-W3. The experimental plots consisted of 6 strips, 30 m wide and 800 m long (except at the JE Site: 30 m wide and 400 m long). Alternate strips were selected to be deep ripped (strips #'s 1, 3 and 5), while the other strips (strips #'s 2, 4 and 6) remained non-ripped (control). The 6 strips were divided into 3 sets of 2, each consisting of one deep ripped and one adjacent control plot. The 3 sets of plots are referred to as replicate blocks: north, middle and south. Deep ripping was carried out in the fall of 1987 to a depth of 61 cm, using shanks 1.12 m apart. The average soil moisture contents in the top 60 cm at the time of deep ripping were 19, 14 and 19%, for the DE, JE and RR Sites, respectively.

In the spring of 1988, 1989 and 1990, samples were collected to a depth of 60 cm from all the tillage strips, which were analyzed for NO₃-N content. In the fall of 1990 soil samples were collected for soil chemical analysis: 6 depth increments, 6 replicates, 6 tillage strips and 3 sites. Samples were taken to a depth of 120 cm, in increments of 0-15, 15-30, 30-45, 45-60, 60-90 and 90-120 cm. The samples were air-dried and then analyzed for pH, electrical conductivity (EC), water soluble cations and anions, and sodium adsorption ratio (SAR).

Soil physical parameters that were measured include soil moisture and soil bulk density. Soil water content was measured by neutron thermalization, using a DEPTH MOISTURE GAUGE (Troxler Electronic Laboratories Inc.) and a DEPTHPROBE CPN 501 (Hoskins Scientific). Soil bulk density was measured by gamma backscattering using the above CPN 501 probe. The scanning zone of the DEPTHPROBE CPN 501 has a vertical dimension of approximately 23 cm, and is therefore not sensitive to "picking up" relatively thin dense layers in the soil. Aluminum access tubes (2 per replicated plot) had been installed to a depth of 120 cm to facilitate the measurements of the soil bulk density and of the soil moisture content *in situ*, using the depth probes. During the 1990 growing season, soil moisture content and precipitation (rain gauges) at all three sites were measured bi-weekly. Bulk density measurements were taken prior to seeding and at harvest.

- 96 -

Crop yields were determined by taking square meter samples in a series of paired row samples, 6 pairs in each of the 6 tillage strips. The samples were then transported to the University of Saskatchewan, where the samples were dried, weighed, threshed and grain weights taken.

RESULTS AND DISCUSSION

Characterization of the Soils Based on Soil Chemical Criteria

All three soils are mapped as Tuxford Soil Association, which consists of Dark Brown Solonetzic soils. The soil at the JE Site meets at least one of the criteria for solonetzic B horizons, but the soils at the other two sites do not meet any of the criteria. However, there was a considerable amount of variability in soil chemical characteristics amongst the three replicate blocks at each site, as shown by soil chemical analysis in 1990 (Tables 2.3.9 through 2.3.14). At the DE Site, the south block was the most severe solonetzic (SAR ~15), the middle block was intermediate solonetzic (SAR between 5 and 10), and the north block was not solonetzic (SAR between 2 and 4). Similarly, at the JE Site, the middle and north blocks were solonetzic (SAR values between 5 and 12), whereas the south block was not solonetzic (SAR values <3), and the south block is slightly solonetzic (SAR values between 4 and 7). The soil at the JE site can thus be regarded as a Solonetzic soil, the soil at the DE site as a Solonetzic (Chernozemic intergrade (some parts of the field either Solonetzic or Chernozemic), and the soil at the RR site as a non-Solonetzic (Chernozemic) soil.

<u>Soil Density</u>

Deep ripping appeared to reduce the bulk density of the B horizon at each of the Sites as indicated by measurements taken in the spring of 1988 (Table 2.3.1); however, only at the JE Site were the differences significant (P < 0.05). By the fall of 1990, there were still trends in the data but there were no significant differences in density.

Spring 1988			Fall 19	90	
Depth	Deep ripped	Control		Deep ripped	Control
cm			g/cm ³		8 8 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
			DE Site		
5	1.250	1.250		1.250	1.250
25	1.332	1.623		1.449	1.441
40	1.431	1.442		1.486	1.457
60	1.655	1.517		1.584	1.470
80	1.651	1.480		1.575	1.473
100	1.680	1.476		1.642	1.512
120	1.692	1.617		1.690	1.605
			JE Site		
5	1.250	1.250		1.250	1.250
25	1.426*	1.604		1.326	1.518
40	1.398	1.295		1.479	1.409
60	1.467	1.499		1.553	1.551
80	1.616	1.620		1.572	1.589
100	1.633	1.657		1.614	1.662
120	1.736	1.736		1.693	1.663
			RR Site [†]		
5	1.300	1.300		1.300	1.300
25	1.458	1.548		1.396	1.389
40	1.365	1.468		1.413	1.438
60	1.590	1.584		1.462	1.384
80	1.668	1.621		1.505	1.382
100	1.684	1.642		1.466	1.414
120	1.713	1.698		1.398	1.514

Table 2.3.1 Soil bulk density in the spring of 1988 and in the fall of 1990

Bulk density values for the 5 cm depth are those measured in the spring of 1988, and are assumed to be similar between ripped and control throughout the duration of the experiment * Indicates mean of deep ripped is significantly (P < 0.05) different from that of the control

[†] Bulk density values for 1990 for the RR Site represent one replicate block only, the other two replicate blocks could not be sampled because of water in the access tubes

The measurement of bulk density using a gamma probe involves a large sample volume and is not sensitive to small differences in density, particularly with respect to the density of specific soil layers. Furthermore, the spatial variability of soil density in Solonetzic soils is large (especially following deep ripping), therefore requiring a large number of replicate samples and/or large differences in the means before differences between the means can be regarded as significant at the P < 0.05 level. In light of the above, trends in the data will be discussed even though significant differences in bulk density between the deep ripped and the control plots were limited to the JE Site; the B horizon in the deep ripped plots at the JE Site was less dense than the B horizon in the control plots in 1988 and also in 1989.

The differences in bulk density density between the deep ripped and the non-ripped (control) parts of the field became smaller as time progressed (Table 2.3.1). By the fall of 1990, the differences in bulk density had disappeared in the soils at the DE and the RR sites, but were still apparent for the soil at the JE Site. The loosening of the Bnt horizon achieved with deep ripping thus lasted from 2 to 3 years. The degree of soil disturbance observed in 1987 during deep ripping was considerably less than what had been found when Solonetzic soils were deep ripped in the Tisdale area (Grevers 1989). There are two major reasons for the difference in soil disturbance; the spacing of the ripping shanks was narrower at Tisdale (0.56 m) but wider at Glenside (1.12 m), and soil moisture conditions at the time of ripping were very dry (and therefore ideal for soil shattering with the ripper) at Tisdale and moist at Glenside.

Soil-water Regime

Soil-water penetration in irrigated Solonetzic soils can be restricted because of impervious Bnt horizons. Disruption of the Bnt horizon by deep ripping should increase the penetration of water with depth. The saturated hydraulic conductivity (K-Sat) data

- 99 -

reported earlier in the 1989 S.I.P. Field Research Report suggested that deep ripping had improved the hydraulic conductivity of the soil.

Substantial increases in soil moisture content in all of the plots were indicated by measurements taken with neutron probes during a 5 to 6 week period from early May to mid June of 1990 (Table 2.3.2). During this period there were no apparent differences in crop stand between the deep ripped and the control parts of the field. Consequently, the soil-water recharge during this period provided an opportunity to study if deep ripping would increase soil-water recharge with depth.

There were no significant differences between the deep ripped and the control plots in the total amount of soil-water recharge over that period. However, there were considerable differences in soil-water recharge with depth (Table 2.3.3). Soil-water recharge with depth was generally greater in the deep ripped plots compared to that in the control plots, where the recharge was more concentrated closer to the soil surface.

Soil-water depletion with depth during the growing season was not affected by deep ripping (results not shown).

Soil Nitrate-Nitrogen in the Spring

The soil disturbance associated with deep ripping (e.g. lower bulk density levels and increased soil porosity) could increase the rates of soil organic matter decomposition, nitrogen mineralization and nitrification. The levels of nitrate-nitrogen (NO₃-N) as measured in the spring of 1988, 1989 and 1990 are shown in Table 2.3.4. There is little difference in the nitrate levels between the deep ripped plots and the control plots, with the possible exception of Site JE for 1989. In this case the nitrate-nitrogen levels in the deep ripped plots were twice that of the control plots. However, there were no significant differences (P < 0.05) between the deep ripped and the control plots for any of the Sites, for any of the three years.

<u></u>		DE Site	2		JE Site			RR Site	<u>}</u>
Date	Ptn	DR	Cntl	Pt	n DR	Cntl	Ptn	DR	Cntl
<u> </u>	@ @ @ @	8 8) io io io io a ai ai ar a a			cm H ₂ C)			
				1988	growing	season			
Apr 19	nd	38.8	36.5	nc	33.6	33.6	nd	32.5	35.6
May 30	nd	nd	nd	nc	l nd	nd	nd	34.4	37.2
Jun 12	nd	nd	nd	nc	l nd	nd	nd	39.0	40.6
Jun 25	nd	nd	nd	nc	l nd	nd	nd	33.3	34.5
Jul 23	nd	nd	nd	nc	l nd	nd	nd	31.7	32.6
Aug 5	nd	nd	nd	nc	l nd	nd	nd	30.8	30.8
Aug 23	nd	31.4	29.7	nc	1 36.6	36.0	nd	32.4	33.2
				1989	growing	season			
May 10	nd	29.9	33.2	nd	30.1	27.9	nd	29.2	33.7
Jun 15	nd	36.2	36.5	nd	40.8	39.1	nđ	41.3	44.8
Jun 28	4.0	39.3	37.0	3.4	4 40.8	39.9	9.2	40.9	46.5
Jul 14	9.1	38.2	35.7	10.	9 41.6	40.7	8.8	43.3	48.0
Jul 26	6.1	36.3	33.0	3.0	5 37.8	39.2	6.0	44.8	47.8
Aug 11	9.5	32.4	30.4	14.	2 40.7	38.8	8.4	43.9	48.0
Aug 24	nd	31.7	34.6	3.2	1 36.4	35.4	11.8	40.4	43.8
				1990	growing	season			
May 2	nd	35.5	32.9	nd	1 35.7	33.7	nd	39.7	41.6
Jun 12	nd	44.2	41.9	nd	48.5	47.1	nd	51.4	53.6
Jun 28	3.6	45.8	43.0	2.4	5 47.3	48.6	nd	nd	nd
Jul 11	5.5	43.8	41.2	4.7	7 44.9	45.1	12.7	51.3	50.7
Jul 31	15.0	47.9	45.8	9.4	45.7	47.5	7.2	48.0	46.6
Aug 22	5.9	40.5	36.8	3.6	5 41.6	40.8	9.6	46.0	47.1

-

Table 2.3.2 Soil profile moisture contents to a depth of 130 cm and precipitation during the 1988, 1989 and 1990 field seasons

Ptn = precipitation and irrigation measured by rain gauges DR = deep ripped, Cntl = control nd = no data available

Domth	DE	DE Site		lite	RR	RR Site		
Deptii	Control Ripped Control		Control	Ripped	Control	Ripped		
cm	۵. هو	1	cm H ₂ O p	er cm soil	5			
0-10	-0.016	-0.033	0.024	0.050	-0.007	-0.016		
10-30	0.009	-0.042	0.070	0.005	0.028	0.027		
30-50	0.067	0.001	0.053	0.066	0.054	0.035		
50-70	0.043	0.058	0.046	0.055	0.056	0.015		
70-90	0.002	0.034	0.065	0.062	0.045	0.107		
90-110	0.005	0.073	0.058	0.090	0.035	0.112		
110-130	0.026	0.046	0.040	0.114	0.040	0.127		

 Table 2.3.3
 Soil-water recharge with depth during the spring of 1990

Table 2.3.4 Soil NO₃-nitrogen levels in the spring of 1988, 1989 and 1990

Denth	19	1988		89	199	90
Lopur	Rip	Cntl	Rip	Cntl	Rip	Cntl
cm			kg	/ha	19 49 40 11 11 10 10 10 10 10 10 10 10 10 10 10	स्र स्ट क क क क क न न न
			DE	Site		
0-15 15-30 30-60	15.0 4.7 6.7	12.0 3.0 11.3	21.0 3.0 8.0	16.0 4.7 10.7	12.7 3.3 4.7	14.0 3.0 4.7
0-60	26.4	26.3	42.0	31.4	20.7	21.7
			JE	Site		
0-15 15-30 30-60	20.3 6.0 6.0	16.0 4.7 8.7	13.3 8.7 23.0	13.7 5.0 11.3	11.3 4.0 2.7	14.0 3.0 2.7
0-60	32.3	29.4	45.0	30.0	18.0	19.7
			RR	Site		
0-15 15-30 30-60 0-60	32.1 28.9 26.8 87.8	50.3 25.6 10.0 85.9	23.0 7.1 4.6 34.7	13.9 4.3 4.1 22.3	11.9 4.3 7.1 23.3	9.3 3.1 5.3 17.7

None of the above values for Rip (deep ripped) are significantly different (P < 0.05) from the corresponding values for Cntl (control)

•

Deep ripping increased crop yields at the DE and the JE Sites, but not at the RR Site (Table 2.3.5). There were no yield increases in the first year at the DE Site; agronomic difficulties not related to deep ripping (poor weed control and inadequate water supply) limited the crop from reaching its full potential and thus may have hidden a possible effect of deep ripping on yield. However, deep ripping at this Site increased yields by 39 and 13% in the second and third year following deep ripping, respectively. At the JE Site, deep ripping resulted in a 26% yield increase in the first year, but not in subsequent years. There

Veen	<u>Cro</u> r	Grain	n yield	WUE	(Grain)	Dry m	atter
rear	Crop	DR	Check	DR	Check	DR	Check
	an a	(Bu A	cre ⁻¹)	(kg ha ⁻¹ cm ⁻¹)		(kg/ł	na)
				DI	E Site		
1988	Lentils	17.0	11.2	nd	nd	2089	1564
1989	Durum	75.4*	54.1	169*	117	10868*	7483
1990	Durum	65.6*	58.2	131*	111	9573*	8110
				JI	E Site		
1988	Durum	49.7*	39.6	nd	nd	7667	6392
1989	Beans	38.0	33.0	65.7*	53.5	5527*	4184
1990	Spr. wheat	57.7	56.2	110	111	9772	9014
				RI	R Site		
1988	Spr. wheat	21.8	21.9	nd	nd	3968	3732
1989	Spr. wheat	48.7	46.7	nd	nd	7588	7113
1990	Spr. wheat	38.2	36.4	nd	nd	8002	7034

Table 2.3.5Crop yields and water-use efficiency during the first three years
following deep ripping

nd = no data available

WUE = water use efficiency (grain weight/total water use)

* Significant differences between the control and the deep ripped plots at P < 0.05

were difficulties with harvesting the beans in the second year at the JE Site; this could have masked any possible differences, since deep ripping did increase the total dry matter content of the bean crop.

For the RR site, it appears that deep ripping is of little value, since no significant yield increases were found in the first three years following deep ripping. The soil at the RR Site, on the other hand, was not considered to be Solonetzic based on soil chemical criteria, as was the case with the soil at the other two sites.

The water-use efficiency of the crops was determined in 1989 and in 1990 (rain gauges were installed in 1989 and 1990; but not in 1988). Deep ripping increased the WUE of the 1989 and 1990 durum crops at the DE Site by 44% and 19%, respectively. Deep ripping increased the WUE of the 1989 bean crop at the JE Site by 23%. It was not possible to determine crop WUE at the RR Site since many of the neutron access tubes were filled with water during the summer, which effectively reduced the number of samples for soil-moisture content determination.

Irrigation Suitability of Solonetzic Soils

The irrigation suitability of soils depends on the nature and degree of limitations imposed by a number of characteristics. The Working Group on Irrigation Suitability Classification (1985) used four categories of limitations from "none" to "severe" and listed ratings for soil structure, saturated hydraulic conductivity, soil drainability, available water holding capacity, soil-water infiltration rates, soil salinity and sodicity, geological uniformity, depth to bedrock and and depth to water table. According to their classification for electrical conductivity, the soil at the RR Site would present only a slight limitation for irrigation, the soil at the DE Site a moderate limitation, and the soil at the RR Site would present no limitation. Similarly using the rating for SAR, the soil at the RR Site would present a slight limitation, and the soil at the JE Site a would present a slight limitation.

The chemical criteria regarding the suitability of Solonetzic soils for irrigation according to Bennett and Entz (1990) are: (a) the electrical conductivity (EC) of the saturation past extract must be less than 6 dS m⁻¹ within the top 0.5 m, (b) the EC must be less than 12 dS m⁻¹ within the remainder of the 1-m root zone, and (c) the sodium adsorption ratio (SAR) must be less than 12 within the upper 1-m profile. Converting the above criteria on a 1:1 suspension basis for a clay loam, then the limits become: (a) the EC must be less than 3 dS m⁻¹ within the top 0.5 m, (b) the EC must be less than 6 dS m⁻¹ within the remainder of the 1-m root zone. Using the criteria from Bennett and Entz, it appears that only the soil at the RR Site is suitable for irrigation, while the soil at the JE Site is the least suitable for irrigation.

Soil disturbance with deep ripping should improve soil-water penetration, which, under irrigation should result in increased leaching of salts. Soil chemical characteristics measured in the fall of 1990, three years after deep ripping, revealed significant differences between the deep ripped and the control plots at the JE Site but not at the DE and RR Sites (Tables 2.3.6, 2.3.7 and 2.3.8). At the JE Site, deep ripping lowered the electrical conductivity in the top 90 cm, the sodium adsorption ratio in the top 45 cm and the percentage water-soluble sodium in the top 15 cm (Table 2.3.6). The leached salts included mostly Na₂SO₄ and MgSO₄ (Tables 2.3.7 and 2.3.8). Deep ripping improved the suitability of the soil at the JE Site from a "moderate to severe" to a "slight" limitation with respect to the EC value in the top 60 cm, from a "severe" to a "moderate" limitation with respect to the EC value in the 60-120 cm depth, and from a "moderate" to a "slight" limitation with respect to the SAR of the top 120 cm. Similarly, when using the criteria from Bennett and Entz (1990) the rating of the soil at the JE Site is improved by deep ripping from "not suitable" to "suitable".

Deep ripping had no significant effect on either the EC or the SAR of the soil at the DE Site; however, there were large differences between the deep ripped and the control plots in at least part of the plots (Tables 2.3.9 and 2.3.12). In the south replicate block of

Danah	I	EC	pl	H	S	AR †	WS	S‡
Depth	Check	DR	Check	DR	Chec	k DR	Check	DR
cm	dS :	m ⁻¹					%)
				DI	E Site			
(0-15)	0.69	0.77	7.3	7.2	1.7	1.9	34.1	35.2
(15-30)	0.73	1.32	7.8	7.8	4.2	4.4	54.0	51.8
(30-45)	3.86	2.80	8.2	8.2	8.9	6.8	51.1	54.5
(45-60)	6.52	4.08	8.3	8.2	7.3	7.8	44.7	50.9
(60-90)	7.47	6.95	8.3	8.3	10.0	10.6	50.9	55.3
(90-120)	8.34	8.24	8.2	8.2	11.1	12.2	50.8	52.4
				JF	E Site			
(0-15)	1.01	0.64**	6.9	6.9	4.2	1.8**	53.1	34.7**
(15-30)	2.21	0.65	7.9	7.1	7.3	2.9**	60.0	46.7
(30-45)	4.46	1.36*	8.2	7.5	9.4	4.6*	56.6	50.2
(45-60)	7.08	2.89*	8.2	8.0	9.4	7.7	43.5	52.7
(60-90)	9.51	4.56*	8.2	8.1	10.0	8.2	40.6	49.8
(90-120)	9.08	5.79	8.2	8.1	11.6	9.4	48.4	49.9
				RI	R Site			
(0-15)	0.78	0.73	7.6	7.4	1.6	1.9	30.1	34.4
(15-30)	0.78	0.81	8.1	7.9	2.6	3.7	42.1	48.3
(30-45)	1.40	1.87	8.2	8.1	4.3	5.6	51.4	54.6
(45-60)	2.86	2.54	8.2	8.4	6.6	8.1	53.7	62.8
(60-90)	5.42	4.52	8.1	8.3	7.8	9.0	47.6	55.4
(90-120)	7.63	6.88	8.0	8.0	10.4	9.2	50.8	47.2

Table 2.3.6	Chemical ch	aracteristics	of deep	ripped	(DR)	and adjacen	t check on
So	lonetzic soils	at Glenside	samples	3 years	after	deep rippin	g

[†] SAR is sodium adsorption ratio [‡] WSS is percentage water-soluble sodium *,** Significant differences between check and DR at P < 0.05, P < 0.01, respectively

	Ca	ı	Ň	Na		g	K	
Depth	Check	DR	Check	DR	Check	DR	Check	DR
cm	රු පැහැක හා හා හා හා රු පැහැක හා හා හා හා	F W W W W W W W W W		mmc	oles kg ⁻¹		um um dat um co um co aco aco aco aco aco aco aco aco aco	
				DF	E Site			
(0-15)	1.34	1.31	2.4	2.9	0.9	1.2	0.31	0.46
(15-30)	0.86	1.83	5.0	7.9	0.8	2.4	0.09	0.09
(30-45)	5.61	3.46	39.9	18.9	10.6	6.0	0.32	0.22
(45-60)	7.85	6.23	41.6	31.4	20.5	11.5	0.58	0.46
(60-90)	7.58	7.26	50.8	49.4	19.8	16.8	0.64	1.39
(90-120)	8.16	9.56	58.6	66.3	21.4	22.0	0.72	0.87
				JE	2 Site			
(0-15)	1.2	1.0	6.0	2.4***	1.1	0.8	0.39	0.56*
(15-30)	2.1	0.9	16.1	3.6*	4.4	0.7	0.23	0.16
(30-45)	3.7	1.8	32.4	7.6**	9.6	2.4	0.44	0.21
(45-60)	1 9.9	3.7	55.4	17.3**	20.7	7.4	0.74	0.42
(60-90)	21.8	5.6	75.8	30.0*	32.2	11.3*	0.94	0.61
(90-120)	9.1	6.0	73.6	39.8	26.8	14.0	0.74	0.74
				RF	R Site			
(0-15)	1.72	1.38	2.5	2.7	1.2	1.1	0.30	0.24
(15-30)	1.24	1.02	3.7	4.8	1.2	1.0	0.14	0.09
(30-45)	2.12	2.33	7.7	12.0	2.5	3.3	0.18	0.16
(45-60)	5.06	3.18	15.6	17.7	5.9	5.4	0.41	0.28
(60-90)	9.14	4.88	31.1	30.3	13.1	9.4	0.69	0.52
(90-120)	9.95	7.83	51.6	46.5	17.8	16.2	0.85	0.75

Table 2.3.7	Concentrations	of soluble c	ations in d	eep ripp	ed (DR)	and adjacer	it check
or	Solonetzic soil	s at Glensid	e samples	3 years a	fter deep	o ripping	

*,**,*** Significant differences between check and DR at P < 0.05, P < 0.01 and P < 0.001, respectively

Chloride		Sulfa	ate	Cl/SO ₄		
Check	DR	Check	DR	Check	DR	
********		mmo	les kg ⁻¹			
		DE S	Site			
1.12	1.41	1.2	1.8	0.932	0.804	
0.61	0.57	1.7	5.6	0.367	0.101	
0.96	0.70	25.2	14.3	0.038	0.049	
1.29	0.82	46.1	31.5	0.028	0.024	
1.13	0.99	49.6	47.4	0.023	0.021	
1.55	1.10	57.4	62.6	0.030	0.020	
		JE S	Site			
1.02	0.94	1.6	1.1	0.634	0.834	
0.71	0.35	9.6	1.3	0.074	0.271	
1.21	0.63	25.5	5.0*	0.048	0.126	
1.52	0.70	49.9	15.3*	0.030	0.046	
1.93	0.83	72.9	28.2*	0.026	0.029	
1.79	1.21	64.4	35.1	0.028	0.034	
		RR	Site			
0.51	0.34	1.8	1.8	0.287	0.196	
0.10	0.20	1.9	1.7	0.055	0.113	
0.20	0.47	5.8	9.3	0.034	0.050	
0.21	0.85	16.5	13.8	0.013	0.061	
0.34	0.69	35.2	27.4	0.010	0.025	
0.34	1.05	51.0	49.6	0.007	0.023	
	Chlor Check 1.12 0.61 0.96 1.29 1.13 1.55 1.02 0.71 1.21 1.52 1.93 1.79 0.51 0.10 0.20 0.21 0.34 0.34	$\begin{tabular}{ c c c c } \hline Chloride & DR & \\ \hline Check & DR & \\ \hline \\ \hline \\ \hline \\ \hline \\ 1.12 & 1.41 & \\ 0.61 & 0.57 & \\ 0.96 & 0.70 & \\ 1.29 & 0.82 & \\ 1.13 & 0.99 & \\ 1.55 & 1.10 & \\ \hline \\ \hline \\ 1.02 & 0.94 & \\ 0.71 & 0.35 & \\ 1.21 & 0.63 & \\ 1.52 & 0.70 & \\ 1.93 & 0.83 & \\ 1.79 & 1.21 & \\ \hline \\ \hline \\ \hline \\ 0.51 & 0.34 & \\ 0.10 & 0.20 & \\ 0.20 & 0.47 & \\ 0.21 & 0.85 & \\ 0.34 & 0.69 & \\ 0.34 & 1.05 & \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c c } \hline Chloride & DR & Chloride & Check & DR & Check & \hline \end{tabular} \\ \hline \hline Check & DR & Check & \hline \end{tabular} \\ \hline \hline Check & DR & Check & \hline \end{tabular} \\ \hline \hline \end{tabular} \\ \hline \hline \end{tabular} \\ \hline \hline \end{tabular} \\ \hline \end{tabular} \\$	$\begin{tabular}{ c c c c } \hline Chloride & DR & Chloride & DR & Check & DR & \\ \hline Check & DR & & \\ \hline mmoles kg^{-1} & & \\ \hline DE Site & & \\ \hline DE Site & & \\ \hline 1.12 & 1.41 & 1.2 & 1.8 & \\ 0.61 & 0.57 & 1.7 & 5.6 & \\ 0.96 & 0.70 & 25.2 & 14.3 & \\ 1.29 & 0.82 & 46.1 & 31.5 & \\ 1.13 & 0.99 & 49.6 & 47.4 & \\ 1.55 & 1.10 & 57.4 & 62.6 & \\ \hline & JE Site & & \\ \hline 1.02 & 0.94 & 1.6 & 1.1 & \\ 0.71 & 0.35 & 9.6 & 1.3 & \\ 1.52 & 0.70 & 49.9 & 15.3^* & \\ 1.52 & 0.70 & 49.9 & 15.3^* & \\ 1.52 & 0.70 & 49.9 & 15.3^* & \\ 1.52 & 0.70 & 49.9 & 15.3^* & \\ 1.52 & 0.70 & 49.9 & 15.3^* & \\ 1.52 & 0.70 & 49.9 & 15.3^* & \\ 1.93 & 0.83 & 72.9 & 28.2^* & \\ 1.79 & 1.21 & 64.4 & 35.1 & \\ \hline & $RR Site $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$	$\begin{tabular}{ c c c c c } \hline Chloride & DR & Chloride & DR & Chloride & Chloride & Chlor & DR & Chlor & Check & DR & Check & Check & DR & Check & Check & Check & DR & Check & DR & Check & Check & DR & Check & Check & Check & DR & Check & Check & Check & DR & Check & Check & DR & Check & Check & Check & DR & Check & Check & OR & 0.96 & 0.70 & 25.2 & 14.3 & 0.038 & 1.29 & 0.82 & 46.1 & 31.5 & 0.028 & 1.13 & 0.99 & 49.6 & 47.4 & 0.023 & 1.55 & 1.10 & 57.4 & 62.6 & 0.030 & DI & D$	

Table 2.3.8	Concentrations of soluble anions in deep ripped (DR) and adjace	ent check
or	Solonetzic soils at Glenside samples 3 years after deep ripping	

* Significant differences between check and DR at P < 0.05

(R ANK					P**		0	
				%		dS/m		%
DE	South	RIP	0-15	67	7.5	0.78	2.1	39
DE	South	RIP	15-30	69	8.2	0.77	4.3	62
DE	South	RIP	30-45	83	8.4	1.13	9.0	78
DE	South	RIP	45-60	93	8.2	2.67	9.2	56
DE	South	RIP	60-90	96	8.0	8.40	10.5	47
DE	South	RIP	90-120	91	7.9	8.53	12.4	54
DE	South	CNTL	0-15	67	7.7	0.65	1.5	32
DE	South	CNTL	15-30	66	8.1	0.60	3.8	58
DE	South	CNTL	30-45	78	8.4	0.75	6.4	69
DE	South	CNTL	45-60	81	8.2	3.70	6.5	55
DE	South	CNTL	60-90	100	7.9	7.40	8.7	43
DE	South	CNTL	90-120	93	8.0	8.80	11.1	49
DE	Mid	RIP	0-15	57	7.1	0.95	2.1	35
DE	Mid	RIP	15-30	57	7.8	3.20	7.8	53
DE	Mid	RIP	30-45	59	8.1	7.65	8.5	42
DE	Mid	RIP	45-60	74	8.2	9.35	9.9	44
DE	Mid	RIP	60-90	67	8.3	10.70	11.3	46
DE	Mid	RIP	90-120	56	8.5	10.0	12.7	52
DE	Mid	CNTL	0-15	54	7.3	0.73	1.8	36
DE	Mid	CNTL	15-30	58	7.9	0.80	5.6	61
DE	Mid	CNTL	30-45	66	8.3	6.23	7.8	47
DE	Mid	CNTL	45-60	77	8.4	10.73	10.2	42
DE	Mid	CNTL	60-90	52	8.5	9.97	11.6	49
DE	Mid	CNTL	90-120	46	8.4	10.07	12.6	52
DE	North	RIP	0-15	56	7.0	0.63	1.5	31
DE	North	RIP	15-30	59	7.5	0.63	2.3	41
DE	North	RIP	30-45	61	8.1	1.23	3.4	39
DE	North	RIP	45-60	48	8.3	1.97	5.0	51
DE	North	RIP	60-90	47	8.5	3.00	10.3	69
DE	North	RIP	90-120	51	8.2	6.77	11.8	51
DE	North	CNTL	0-15	55	6.9	0.63	1.6	36
DE	North	CNTL	15-30	57	7.5	0.77	3.3	46
DE	North	CNTL	30-45	65	8 0	3 33	4 0	35
DE	North	CNTL	45-60	50	87	4 60	6.2	<u>4</u> 7
DE	North	CNTL	60-90	<u>4</u> 7	84	5.00	9 1	57
DE	North	CNTL	90-120	55	87	6.90	111	55

Table 2.3.9Soil salinity values per replicate block for Site DE: pH, EC, SAR
and WSS

 $\overline{Sat} = saturation of soil sample, EC = electrical conductivity, SAR = sodium adsorption ratio, WSS = water-soluble sodium$

٠

Site	Block	Tillage	Depth	Sat	pH	EC	SAR	WSS
				%		dS/m		%
JE JE JE JE JE JE	South South South South South	RIP RIP RIP RIP RIP RIP	0-15 15-30 30-45 45-60 60-90 90-120	53 53 54 53 57 54	6.9 7.1 7.5 7.8 8.2 8.1	$\begin{array}{c} 0.65 \\ 0.55 \\ 1.70 \\ 4.45 \\ 4.90 \\ 5.35 \end{array}$	1.3 1.3 2.5 3.9 6.7 6.9	25 29 28 29 53 44
JE JE JE JE JE JE	South South South South South	CNTL CNTL CNTL CNTL CNTL CNTL	0-15 15-30 30-45 45-60 60-90 90-120	56 57 70 68 68 75	7.3 7.4 7.8 7.8 7.9 8.0	$\begin{array}{c} 0.70 \\ 0.63 \\ 0.80 \\ 2.63 \\ 6.10 \\ 6.77 \end{array}$	1.5 2.8 5.5 7.5 7.1 8.2	28 47 58 47 36 40
JE JE JE JE JE JE	Mid Mid Mid Mid Mid	RIP RIP RIP RIP RIP RIP	0-15 15-30 30-45 45-60 60-90 90-120	58 60 63 70 69 75	7.2 8.0 8.2 8.2 8.1	0.73 0.83 2.73 3.90 6.87 7.67	2.3 3.8 5.2 8.7 10.0 10.7	38 50 50 60 47 48
JE JE JE JE JE JE	Mid Mid Mid Mid Mid	CNTL CNTL CNTL CNTL CNTL CNTL	0-15 15-30 30-45 45-60 60-90 90-120	62 67 78 70 75 59	7.0 8.2 8.3 8.2 8.2 8.1	0.77 1.27 3.33 7.37 9.53 9.83	4.0 9.1 11.0 11.3 12.8 13.8	61 76 67 53 53 56
JE JE JE JE JE JE	North North North North North North	RIP RIP RIP RIP RIP RIP	0-15 15-30 30-45 45-60 60-90 90-120	51 52 59 68 60 55	6.6 6.8 7.2 8.0 8.2 8.2	$\begin{array}{c} 0.77 \\ 1.13 \\ 3.20 \\ 3.37 \\ 4.03 \\ 5.50 \end{array}$	3.4 5.0 5.6 9.3 9.8 12.3	47 53 52 58 67 68
JE JE JE JE JE JE	North North North North North North	CNTL CNTL CNTL CNTL CNTL CNTL	0-15 15-30 30-45 45-60 60-90 90-120	51 75 73 61 52 52	6.8 8.0 8.4 8.3 8.3 8.1	1.4 5.1 6.2 9.0 11.4 11.0	5.8 8.7 12.5 9.3 9.4 12.6	62 57 62 37 33 49

Table 2.3.10 Soil salinity values per replicate block for Site JE: pH, EC, SAR and WSS

Sat = saturation of soil sample, EC = electrical conductivity, SAR = sodium adsorption ratio, WSS = water-soluble sodium

٠

Site	Block	Tillage	Depth	Sat	pН	EC	SAR	WSS
				%		dS/m	on and a second s	%
RR	North	RIP	0-15	64	7.7	0.63	1.4	31
RR	North	RIP	15-30	63	8.1	0.67	3.0	45
RR	North	RIP	30-45	71	8.5	0.73	5.4	61
RR	North	RIP	45-60	87	8.8	0.93	7.6	74
RR	North	RIP	60-90	70	8.3	5.13	8.8	54
RR	North	RIP	90-120	55	8.0	7.77	8.7	43
RR	North	CNTL	0-15	60	7.6	0.77	1.2	24
RR	North	CNTL	15-30	65	8.0	0.83	1.7	33
RR	North	CNTL	30-45	63	8.2	0.80	3.3	50
RR	North	CNTL	45-60	68	8.3	1.87	6.3	57
RR	North	CNTL	60-90	83	8.5	2.27	8.7	65
RR	North	CNTL	90-120	70	8.1	5.63	10.7	59
RR	Mid	RIP	0-15	57	7.2	0.80	1.2	25
RR	Mid	RIP	15-30	62	7.5	0.70	1.7	35
RR	Mid	RIP	30-45	65	7.6	1.53	2.3	33
RR	Mid	RIP	45-60	60	7.9	2.20	3.5	41
RR	Mid	RIP	60-90	59	8.0	3.27	5.5	44
RR	Mid	RIP	90-120	70	8.0	4.17	6.7	46
RR	Mid	CNTL	0-15	61	7.8	0.97	1.4	26
RR	Mid	CNTL	15-30	64	8.0	0.77	1.6	32
RR	Mid	CNTL	30-45	61	8.2	1	2.6	41
RR	Mid	CNTL	45-60	62	8.2	2.2	4.6	45
RR	Mid	CNTL	60-90	51	7.9	5.73	4.8	31
RR	Mid	CNTL	90-120	57	7.8	7.23	8.4	44
RR	South	RIP	0-15	58	7.3	0.77	3.0	47
RR	South	RIP	15-30	63	8.0	1.07	6.3	65
RR	South	RIP	30-45	63	8.3	3.33	9.0	70
RR	South	RIP	45-60	83	8.5	4.50	13.2	74
RR	South	RIP	60-90	99	8.5	5.17	12.6	69
RR	South	RIP	90-120	96	8.1	8.70	12.2	53
RR	South	CNTL	0-15	62	7.5	0.60	2.1	40
RR	South	CNTL	15-30	58	8.3	0.73	4.4	61
RR	South	CNTL	30-45	78	83	2 40	71	63
RR	South	CNTL	45-60	92	82	4 50	9.0	50
RR	South	CNTI	60-90	<u> </u>	8 1	8 27	<u>9</u> 0	<u>4</u> 7
RR	South	CNTL	90-120	81	79	10.03	120	50
/ 4/ 4	ooum		70 140	01	101	10.02	1. dar () V	50

 Table 2.3.11
 Soil salinity values per replicate block for Site RR: pH, EC, SAR and WSS

 \overline{Sat} = saturation of soil sample, EC = electrical conductivity, SAR = sodium adsorption ratio, WSS = water-soluble sodium

Site	Block	Tillage	Depth	Na	Ca	Mg	K	Cl	SO4
a Manda ang Kanang pang kanan Manda pang kanang	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				p	ppm			
DE DE DE DE DE DE	South South South South South	RIP RIP RIP RIP RIP RIP	0-15 15-30 30-45 45-60 60-90 90-120	3.2 5.4 10.8 28.8 58.3 64.0	2.5 1.6 1.5 15.0 21.7 18.1	2.4 1.6 1.4 19.2 39.8 35.6	$\begin{array}{c} 0.34 \\ 0.06 \\ 0.08 \\ 0.41 \\ 2.61 \\ 0.50 \end{array}$	38.0 16.0 13.7 16.3 16.3 30.0	142 102 313 2824 5727 5543
DE DE DE DE DE DE	South South South South South South	CNTL CNTL CNTL CNTL CNTL CNTL	0-15 15-30 30-45 45-60 60-90 90-120	2.3 4.4 6.3 23.4 47.5 62.7	2.5 1.4 1.2 12.5 22.7 22.0	$2.1 \\ 1.3 \\ 1.0 \\ 16.1 \\ 35.6 \\ 40.5$	$\begin{array}{c} 0.20 \\ 0.04 \\ 0.05 \\ 0.30 \\ 0.62 \\ 0.58 \end{array}$	34.5 6.0 5.5 6.0 2.5 20.0	75 83 119 2379 5065 6030
DE DE DE DE DE DE	Mid Mid Mid Mid Mid	RIP RIP RIP RIP RIP RIP	0-15 15-30 30-45 45-60 60-90 90-120	3.7 19.1 49.3 62.5 74.9 72.7	3.5 9.1 21.1 21.6 21.7 14.6	3.0 14.3 40.5 53.8 63.5 51.7	0.59 0.16 0.49 0.79 1.00 0.86	48.0 33.0 40.5 52.5 78.0 67.5	300 1824 4405 6540 7560 6330
DE DE DE DE DE DE	Mid Mid Mid Mid Mid	CNTL CNTL CNTL CNTL CNTL CNTL	0-15 15-30 30-45 45-60 60-90 90-120	2.6 5.9 41.9 72.6 69.2 73.2	$3.1 \\ 1.5 \\ 14.8 \\ 22.0 \\ 16.4 \\ 16.6$	$1.8 \\ 1.5 \\ 35.8 \\ 74.3 \\ 62.4 \\ 57.2$	0.37 0.08 0.40 0.72 0.71 0.78	30.0 19.7 54.0 81.7 68.0 98.3	154 183 4167 7590 6467 6907
DE DE DE DE DE DE	North North North North North North	RIP RIP RIP RIP RIP RIP	0-15 15-30 30-45 45-60 60-90 90-120	$2.1 \\ 2.8 \\ 6.8 \\ 13.2 \\ 23.4 \\ 64.3$	2.2 2.1 2.9 3.8 2.6 23.1	$ 1.8 \\ 1.8 \\ 3.6 \\ 6.1 \\ 7.3 \\ 47.4 $	0.49 0.08 0.20 0.29 0.44 1.23	63.3 16.0 25.7 26.0 25.7 29.0	108 126 399 894 1371 6267
DE DE DE DE DE DE	North North North North North North	CNTL CNTL CNTL CNTL CNTL CNTL	0-15 15-30 30-45 45-60 60-90 90-120	2.2 4.6 19.1 30.1 34.5 48.1	$2.1 \\ 2.0 \\ 9.5 \\ 8.4 \\ 7.4 \\ 10.1$	1.6 1.9 18.6 28.5 23.5 32.3	$\begin{array}{c} 0.37 \\ 0.12 \\ 0.40 \\ 0.61 \\ 0.64 \\ 0.79 \end{array}$	52.0 36.7 40.7 48.7 44.0 49.3	101 202 2003 2901 2890 4113

 Table 2.3.12
 Soil salinity values per replicate block for Site DE: water-soluble cations and anions

Site	Block	Tillage	Depth	Na	Ca	Mg	К	Cl	SO4
G				400000000	m	p	ppm		
JE JE JE JE JE JE	South South South South South	RIP RIP RIP RIP RIP RIP	0-15 15-30 30-45 45-60 60-90 90-120	$1.7 \\ 1.6 \\ 7.0 \\ 22.2 \\ 27.1 \\ 30.2$	$2.1 \\ 2.0 \\ 5.0 \\ 12.2 \\ 13.3 \\ 12.6$	1.7 1.3 6.8 32.7 34.9 29.4	$1.10 \\ 0.69 \\ 0.78 \\ 0.82 \\ 0.66 \\ 0.90$	39.5 17.5 43.5 56.0 41.0 26.5	89 129 669 2715 3141 3253
JE JE JE JE JE JE	South South South South South South	CNTL CNTL CNTL CNTL CNTL CNTL	0-15 15-30 30-45 45-60 60-90 90-120	2.4 3.8 6.0 17.6 40.8 45.7	3.1 1.8 1.2 8.0 17.3 18.6	$2.2 \\ 1.7 \\ 1.6 \\ 13.4 \\ 34.6 \\ 35.0$	$\begin{array}{c} 0.56 \\ 0.09 \\ 0.07 \\ 0.23 \\ 0.57 \\ 0.70 \end{array}$	28.7 9.0 14.0 9.7 45.0 36.0	101 118 166 1580 4279 4453
JE JE JE JE JE JE	Mid Mid Mid Mid Mid	RIP RIP RIP RIP RIP RIP	0-15 15-30 30-45 45-60 60-90 90-120	3.2 6.1 16.6 28.1 46.8 53.7	2.4 1.8 7.7 6.2 16.7 17.3	2.0 3.5 14.2 18.0 36.5 36.7	0.35 0.10 0.29 0.44 0.74 0.77	42.3 9.3 10.7 16.0 35.3 41.3	126 176 1583 2103 4073 4200
JE JE JE JE JE JE	Mid Mid Mid Mid Mid	CNTL CNTL CNTL CNTL CNTL CNTL	0-15 15-30 30-45 45-60 60-90 90-120	4.9 12.3 25.0 53.4 71.7 74.1	$1.7 \\ 1.7 \\ 4.3 \\ 13.7 \\ 15.8 \\ 15.9$	1.3 2.0 8.6 34.0 49.9 50.8	0.19 0.11 0.29 0.68 0.84 0.74	24.7 25.0 39.0 53.7 57.3 70.0	118 267 1383 4443 5920 6153
JE JE JE JE JE JE	North North North North North North	RIP RIP RIP RIP RIP RIP	0-15 15-30 30-45 45-60 60-90 90-120	4.4 8.2 21.2 24.9 32.3 42.5	1.8 2.0 7.7 5.0 5.2 7.3	1.5 1.9 15.1 14.7 17.5 21.2	$\begin{array}{c} 0.43 \\ 0.16 \\ 0.35 \\ 0.36 \\ 0.43 \\ 0.56 \end{array}$	30.3 11.3 17.3 11.7 20.3 54.7	193 290 1748 1459 2156 2402
JE JE JE JE JE JE	North North North North North North	CNTL CNTL CNTL CNTL CNTL CNTL	0-15 15-30 30-45 45-60 60-90 90-120	9.1 31.0 47.0 65.7 83.9 83.1	$1.9 \\ 11.5 \\ 5.6 \\ 115.5 \\ 114.3 \\ 22.1$	3.3 25.6 27.2 51.4 74.9 64.9	$\begin{array}{c} 0.35 \\ 0.52 \\ 0.66 \\ 0.98 \\ 1.10 \\ 0.86 \end{array}$	40.0 43.5 70.0 115.0 148.0 117.0	157 2732 3465 5900 8055 7680

 Table 2.3.13
 Soil salinity values per replicate block for Site JE: water-soluble cations and anions

Site	Block	Tillage	Depth	Na	Ca	Mg	K	Cl	SO4	
Callenge (1997)			- cm -		me/l			ppm		
RR RR RR RR RR RR RR	North North North North North	RIP RIP RIP RIP RIP RIP	0-15 15-30 30-45 45-60 60-90 90-120	$2.1 \\ 3.7 \\ 5.2 \\ 8.0 \\ 32.6 \\ 50.2$	2.6 2.1 1.4 0.9 15.8 22.6	2.0 1.9 1.5 1.5 25.1 38.5	0.23 0.09 0.17 0.19 0.81 1.05	14.0 3.7 5.0 9.0 16.7 52.7	136 106 145 139 3281 5173	
RR RR RR RR RR RR	North North North North North North	CNTL CNTL CNTL CNTL CNTL CNTL	0-15 15-30 30-45 45-60 60-90 90-120	2.1 3.0 4.3 7.7 13.5 39.0	3.4 3.0 1.6 7.6 9.0 14.6	2.8 2.9 2.2 10.2 8.8 26.0	0.36 0.19 0.25 0.56 0.66 0.97	16.7 5.7 8.7 5.7 7.7 12.7	161 220 180 990 1226 3633	
RR RR RR RR RR RR RR	Mid Mid Mid Mid Mid Mid	RIP RIP RIP RIP RIP RIP	0-15 15-30 30-45 45-60 60-90 90-120	2.1 2.6 5.5 8.9 17.6 25.2	3.5 2.5 7.3 10.1 7.6 8.2	2.6 2.2 6.3 9.9 13.0 18.6	$\begin{array}{c} 0.34 \\ 0.08 \\ 0.16 \\ 0.21 \\ 0.38 \\ 0.53 \end{array}$	10.3 3.2 23.3 27.3 8.0 8.7	215 176 751 1157 1711 2325	
RR RR RR RR RR RR RR	Mid Mid Mid Mid Mid	CNTL CNTL CNTL CNTL CNTL CNTL	0-15 15-30 30-45 45-60 60-90 90-120	2.8 2.7 4.3 9.2 25.1 43.9	4.7 2.7 2.3 10.2 23.9 22.0	2.9 2.7 3.9 8.9 31.5 32.1	0.28 0.19 0.16 0.34 0.82 0.91	19.0 3.3 5.7 9.7 8.0 9.7	275 217 303 1219 3723 4583	
RR RR RR RR RR RR	South South South South South South	RIP RIP RIP RIP RIP RIP	0-15 15-30 30-45 45-60 60-90 90-120	3.8 8.1 25.3 36.2 40.7 64.1	$2.1 \\ 1.5 \\ 5.3 \\ 8.1 \\ 5.8 \\ 16.2$	1.9 1.6 12.3 21.2 18.6 39.9	0.17 0.08 0.15 0.45 0.38 0.68	12.3 14.0 21.3 53.7 48.7 50.0	155 217 1779 2690 2912 5820	
RR RR RR RR RR RR	South South South South South South	CNTL CNTL CNTL CNTL CNTL CNTL	0-15 15-30 30-45 45-60 60-90 90-120	2.6 5.5 14.7 29.8 54.5 71.8	2.2 1.7 8.8 12.5 22.0 23.1	1.8 1.6 8.9 16.5 38.3 48.5	$\begin{array}{c} 0.25 \\ 0.05 \\ 0.12 \\ 0.32 \\ 0.60 \\ 0.65 \end{array}$	18.7 2.0 6.7 7.0 20.0 13.7	77 108 1196 2535 5200 6480	

 Table 2.3.14
 Soil salinity values per replicate block for Site RR: water-soluble cations and anions

the plots, the SAR values in the Bnt horizon were around 15 in the control plot to less than 9 in the deep ripped plot.

CONCLUSIONS

Deep ripping had been carried out on three irrigated Tuxford soils to increase crop production and soil-water penetration, and to improve the suitability of these soils for irrigation. Two of the soils were classified as Solonetzic, either the entire field plot or part of it, and the third soil was classified as non-Solonetzic.

Deep ripping reduced the density of the B horizon (15-30 cm depth) and increased soil-water penetration with depth. Crop production was increased by deep ripping of the Solonetzic soils, but not of the non-Solonetzic soil. The increased crop production lasted from 2 years to at least 3 years. Greater water-use efficiency was the main reason for the increased crop production.

Deep ripping improved the suitability for irrigation of the most severe Solonetzic soil from "not suitable" to "suitable", which demonstrates the usefulness of deep ripping for managing irrigated Solonetzic soils. Deep ripping did not affect the irrigability of the second Solonetzic soil, but did appear to improve the irrigability of at least the Solonetzic part of the field plot of this Solonetzic/Chernozemic intergrade. There was no effect by deep ripping on the soil chemical characteristics of a non-Solonetzic soil, which was already rated as "suitable for irrigation" prior to deep ripping.

REFERENCES

- Bennett, D.R. and T. Entz. 1990. Irrigation suitability of Solonetzic soils in the county of Newell, Alberta. Can. J. Soil Sci. 70: 705-715.
- Canada Soil Survey Committee. 1987. The Canadian System of Soil Classification. Research Branch, Canada Dept. Agriculture Publication 1646.
- Grevers, M.C.J. 1989. The effect of deep ripping and paraplowing on crop production in Saskatchewan, an up-date. Pages 47-54 *in* 1989 Soils and Crops Workshop. University of Saskatchewan, Saskatoon, Sask.
- Working Group on Irrigation Suitability Classification. 1985. Irrigation suitability classification system for the Canadian Prairies. Preliminary Draft of Workshop Rept., Prairie Region.