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Abstract 

The r d e  of the massive photon decay via intermediate states of electron-electron- 

holes and proton-proton-holes into neutrino-anti-neutrino pairs in the Course of neutron 

star cooling is investigated. These reactions may be operative in hot neutron stars in 

the region of proton paiiring. The corresponding contribution to the neutrino emissivity 

is calculated. It varies with the temperature as ~ ~ / ~ e - ~ . r l ~  for T < m„ where m, is 

an effective photon mass in superconducting matter. Estimates show that this process 

appears as strong cooling channel of neutron stars at temperatures I" E (10' - 10'') I(. 
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1. The EIESTEI'S, EXOSAT and ROSAT observatories have measured surface temperatures 

of certain neutron stars and put upper limits on the surface temperatures of some other neutron 

stars ( cf. [l, 2, 31 and further references therein). The data for the supernova remnants in 

3C58, Crab, RCW103 are related to rather slow cooling, while the data for Vela, PSR2334+61, 

PSR0656+14 and Geminga point to an essentially more rapid cooling. 

In the standard scenario of the neutron star cooling the most important channel belongs to 

the modified Urca process n n + n p  e- ü with an emissivity &FM calculate, e.g., by Friman and 

hIaxwell [4]. In ref. [4] the nucleon - nucleon interaction is treated within a model with free 

one-pion exchange (plus slight modifications). In a system with nucleon pairing this emissivity 

is suppressed by the factor exp(- (An + Ap)/T) [2], where An and Ap are the respective neutron 

and proton gaps determined by &(T) = Ai(0) (TcTi -T) T;' @(T,,; - T), (here @(X) is the step- 

function; i = {p, n), and Tc+ is the corresponding critical temperature for nucleon pairing). 

At temperatures T « Tc,p, Tc,n the cooling is determined by the photon radiation from the 

neutron star surface. 

We suggest here that the decay processes of massive photons (7,) via the electron-electron- 

hole (ee-l) and the proton-proton-hole (PP-') intermediate states to neutrino - antineutrino 

pairs, y„ + e e-I + pp-I -+ vivi, i = {e, V, T),  might be operative in hot neutron stars in the 

region of proton pairing T < Tc,p. These processes are determined by the diagrams 

Fat vertices in the nucleon diagrams (1) include the nucleon-nucleon correlations. 

In a Fermi system with pairing, besides the graphs (I) ,  tkere are also diagrams witk ansma- 

lous Green's functions of protons [5 ] .  However, their contribution to the correspsnding matrix 

elements is as small as Ap/CFP « 1 for T < T,, « cpp (cFp is the protsn Fermi energy 

Within this accuracy one can drop the ano~nalous diagrams a ~ i d  use for protsns in 

Green's functions for the normal Ferrni liquid. 

The contribution of the massive photon decay via the electrsn-efectron-hsle intermediate 

states (i.e., the first diagram in (1)) has been calculated by several authors 

references) for the case of the electron gas in white dwarfs and neutrsn star ezusts. 111 an electron 

plasma the photon acquires an effective in-medium maas which is equal to the electrow plasrna 



frequency WPI 2 2 e (31/"p)1/3, where e is the electron charge, and p, denotes the electron 

density (tve employ units with 6 = c = 1). Therefore, the contribution to the emissivity of the 

mentioned process is suppressed by the factor exp(-wpr/T). In white dwarfs and neutron star 

crusts the electron density is not too large and the process is effective. In neutron star interiors 

the electron density is equal to the proton density pp, due to the electroneutrality, which is 

where po 2 0.17 fm-3 stands for the nuclear Saturation density, and we used the values [4] of the 

neutron and proton Fermi momenta, p ~ ,  = 340(p/po) MeV and p ~ ,  = 85(p/po)2/3 MeV. Shus, 

at densities typical for the neutron star interiors, the value of the electron plasma frequency is 

large, i.e., wpr(p - po) - 8 MeV, and at temperatures T < wpl the process -I, -+ e e-l -+ viüi 

is strongly suppressed. 

Oppositely, in a superconducting medium, formed in neutron stars at T < Tc,„ photons 

acquire the effective in-medium mass due to the Higgs - Meissner effect [5] 
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and obey the dispersion relation w = Jz2  + m:, where w and k are respectively the frequency 

and the momentum of the photon, and mp stands for the effective in-medium proton mass. 

The quantity P;(T) = pp(T,,, - T)/T, ,  denotes the paired proton density. Supposing m;(po) = 
0.8mN (with mN as the free nucleon mass) with eqs. (2,3) we estimate m,(p = po, T)  2 

1.6 J(T,, - i')/T,,, MeV < wpl(p PO) - 8 MeV. 

Due to the rather small effective photon mass in superconducting neutron star matter at 

T < T,, « wpl one may expect a corresponding increase of the contribution of the processes (1) 

to the neutrino emissivity. We shall calculate the contribution of these processes to the neutrino 

emissivity E; and compare the results with the emissivity of the modified Urca process E:" [4] 

and with the photon emissivity E; from the star surface. We show that the processes (1) may 

play an important r6le in the Course of neutron star cooling at temperatures T = (10" 1O1O) K. 

2. The matrix element of the diagrams (1) for the ith neutrino species (i = {U„ V„ U,}) 

reads 

where 



1 and 

I is the in-medium electron (proton) Green's function, and n j ( p )  = O ( p ~ j  - p) .  E; is the cor- 

responding polarization four-vector of the massive photon with three polarization states in 

~u~erconducting matter. The factor I', takes into account the ~iucleon-nucleon correlations in 

the photon vertex. The quantity G = 1. l'i . 10-5 GeV-2 is ithe Fermi constant of the weak in- 

teraction. Above, 1, denotes the neutrino weak current. The electron aad proton weak currents 

are determined by 

where CF) = CF) = 1 + 4sin2 Ow 2 1.92 and c(V.') = c $ ~ )  = C$) = 1 - 4sin2 Bw E 0.08. Bw 

stands for the Weinberg angle, and c p )  = -C?J~') = 1. The proton coupling is corrected by 

the nucleon-nucleon correlations, i.e., by factors rcPp and -fPp [7]. 

By integrating in eq. (5) over the energy variable, we obtain for the i-th neutrino species 

-4 

- k k p  = u2 - i2. The four-velocity of tlie medium where j P  = (k u)kP - upk2, kP = (W, k), k - P 

u P  is introduced for the sake of a covariant notation. The transverse (rt), longitudinal (71) and 

axial (r5)  components of the tensors in eq. (7) render 



Here we note that the contribution of the axial component TS to the resulting neutrino emissivity 

is small ( T ~ / T ~  ~ : T ~ / W ~ T [  m,/m> for protons and .- (m,m,/p:.e) In(p~./rn,) for electrons), 

so that i t  will be dropped below. 

The squared matrix element (4) Tor a certain neutrino species, summed over the lepton 

Spins, and averaged over the three photon polarizations, may be cast into the following form 
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where (k- - q1,z) = ww1,2 - (kqi ,~) ,  and w1,2 and (1;,2 denote the frequencies and the momenta of 

the neutrino and anti-neutrino. We have also used that Tr{l'lu) = 8[qfq; + q;q; - g'U(ql . q2) - . 

4-i e~~~~ q l~q~p] .  

3. The emissivity of the processes (1) is given by 

Substituting eq. (11) into eq. (12), we obtain eventually after some integrations 

where rr = 7 and 

Some numerically small terms are dropped in eq. (14). 

The integral I can be calculated analytically in two limiting cases a « 1 and cu » 1, 

Thus, cornbining eqs. (SJ3-151, tve. obtain an estimate for the emissivity of the reactions 

(1) (we present here the result for m, > T an$ for three neutrino species): 



Here the quantity T9 stands for the temperature measured in 10' E(. The unity in squared 

brackets of eq. (16)  corresponds to the electron-electron-hole diagram, whereas the factor 17 is 

related to the proton-proton-hole (first term in eq. (17))  and the interference diagrams (second 

term in eq. (17)) .  

The emissivity eq. (16) varies with the temperature as exp(-m-, /T),  whereas the emis- 

sivity of the modified Urca process varies as T 8 e x p ( - ( A ,  + An)/T)  in the region of proton 

(LI, # 0 )  and neutron (An # 0 )  pairing. Hence, one can expect that the process y, -+ v6 will 

dominate at comparatively low temperatures, when Ap(T) + & ( T )  - m,(T) > 0 and T < T,,p. 

4. In order to perform quantitative estimates we need the values of the nucleon-nucleon 

correlation factors i1;„ and I?,. According to ref. [7] one has 

where fnp  E -0.75 and fnn E 1.25 stand for the constants in the theory of finite Fermi systems 

[8, 71; C;' = m n p ~ , / 7 ( - ~  is the density of states at the Fermi surface; Am is the neutron- 

neutron-hole loop, 
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for values of W » I k lpFn/m; of interest, and I'-'( f„) = 1 - 2 fnnCoAm. 

We note that the second terrn in eq. (18) is not proportional to a small factor CL-', because 

the nucleon - nucleon correlations also allow for the radiation of v6-pairs frsm the nn-' losp. 

Numerical estimates of the ratio R, are as follows: for cr » 1 R, 2 1.6 fsr p = po, rnE(p0) 2 

0.8mn and B, E 2.1 for p = 2po, m;(2po) 2 0.7mn; for cu « 1 R, E 1  and csrrelation effects 

are negligible. The factor r, is approximately unity, since the correction is proportional to 

a small proton-proton-hole loop factor ( / I p p )  being suppressed at comparatively small protsn 

densities. 

With these estimates we observe that the main contributisn to the neutrino emissivity is 

given by the electron-electron-hole processes. 

5. The ratio of the emissivity E; (16)  to the emissivity &yhf of thc modified Urca process 

yields 



For further estimates we need the values of the neutron and proton gaps, which unfortunately 

are essentially model dependent. E.g., the evaluation in ref. [9] yields &(0) 2 8.4T,, Y 

0.6 MeV, T,,, = 0.07 MeV for 3P2 neutron pairing at p = po, and A,(0) = 1.76T,,p = 3 MeV, 

T,, 1.7 MeV for 1s proton pairing, while ref. [10] uses A,(O) 2 2.1 MeV, T , ,  2 0.25 MeV 

and A,(0) z 0.7 MeV, T , ,  E 0.4 MeV for p = po. Employing these estimates of the zero- 

temperature gaps, their temperature dependence and the photon effective mass, we obtain from 

eq. (20) the temperature dependence of the ratio RF,i. 

In order to  find the lower temperature limit, at which the processes ;im -t v F  are still 

operative, we need to compare the value E: with the value of the photon ernissivity from the 

neutron star surface, E; = 3aT,4/R, where a is the Stefan-Boltzmann constant, T, denotes the 

surface temperature of the star and R stands for the star radius. By employing a relation [11] 

between the surface and interior temperatures, we obtain 

&-' 9. - 0 . 7  m~ ( 7 ) I 2  ( 3 T ) (:)'I3 R, = 2% 1.2.10 J' 
MeV 

I$- -  
Es, 2 m, 

[l +I], 

where the star radius and the mass are supposed to be respectively 10 km and 1.4-M@, with 

n/r, as solar mass, and is some averaged value of the density in the neutron star interior. 

The ratios RFIM and R, are plotted as a function of the temperature in Fig. 1 for the 

both mentioned above parameter choices. We See that the processes (1) are operative in the 

temperature range 1-10' K5 T K' 8.10' K for the parameter choice [9] and 1-10' KK' T 5 4-10" 

for the parameters of ref. [10]. 

6 .  A few remarks are in order: 

(i) Photons with electron plasma frequency wpl may also decay into neutrino pairs. How- 

ever, the corresponding contribution to the emissivity of the neutron star interior is negligible 

compared to that for the modified Urca process. 

(ii) The processes (1) may also occur in a charged-pion (or kaon) condensate state, however, 

they are suppressed due to the large value of the effective photon mass4 m, z d m  Y 

6 MeV for the condensate field y, 2 O.lm, 2 14 MeV. 

(iii) Deriving the above used value erfilZ"I, one describes the nucleon-nucleon interaction es- 

sentially by the free one-pion exchange. However, in reality at p > (0.5 - l)po the total 

nucleon-nucleon interaction does not reduce to the free one-pion exchange because of the strong 

polarization of the medium, by which an essential part belongs to the in-medium pionic excita- 

tions [7, 12, 13, 143. Occurring in the intermediate states of the reaction, the in-medium pions 

41n this estirnate the peculiarities of the coridensate with the non-vanishing rnomentum [12] are for simplicity 

ignored. 



can also decay into eü, or first into a nucleon-nucleon-hole, which then radiates ey, thereby 

substantially increasing the resulting emissivity. She other reaction channels [T ,  141 in the 

superfluid phase with paired nucleons n 4 n„;,vü and p t p„;,vV give rise to even a larger 

contribution to the emissivity than that of the modified Urca process. A b o ~ e  we compare the 

value EJ, with the value erbf just because the latter is used in the st.andard scenarios of cooling, 

while the mentioned in-medium processes are not yet included in computer simulation code. 

7. In Summary, the processes .;/, t e e-I $ pp-I -+ vv might be operative in some 

temperature interval T ( I O ~ - ~ O ' ~ )  K, T < T,,„ and, together with other in-medium modified 

processes, it should be incorporated into computer simulations of neutron star cooling. 
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Figure I: The temperature dependence of the ratios RF.+I and R, at nucleon density p = po. 

The solid curves correspond to the parameter choice of ref. 191, whereas the dashed curves depict 

results with parameters of ref. 1101. 
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