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Abstract

The Service-Oriented Architecture (soa) has become one of the most popular approaches

to building large-scale network applications. The web service technologies are de facto the

default implementation for soa. Simple Object Access Protocol (soap) is the key and

fundamental technology of web services. Service composition is a way to deliver complex

services based on existing partner services. Service orchestration with the support of Web

Services Business Process Execution Language (wsbpel) is the dominant approach of web

service composition. Wsbpel-based service orchestration inherited the issue of interoper-

ability from soap, and it was furthermore challenged for performance, scalability, reliability

and modifiability.

I present an architectural approach for service composition in this thesis to address these

challenges. An architectural solution is so generic that it can be applied to a large spectrum of

problems. I name the architectural style RESTful Service Composition (rsc), because many

of its elements and constraints are derived from Representational State Transfer (rest).

Rest is an architectural style developed to describe the architectural style of the Web. The

Web has demonstrated outstanding interoperability, performance, scalability, reliability and

modifiability.

Rsc is designed for service composition on the Internet. The rsc style is composed on

specific element types, including restful service composition client, restful partner proxy,

composite resource, resource client, functional computation and relaying service. A service

composition is partitioned into stages; each stage is represented as a computation that has

a uniform identifier and a set of uniform access methods; and the transitions between stages

are driven by computational batons. Rsc is supplemented by a programming model that

emphasizes on-demand function, map-reduce and continuation passing. An rsc-style com-

position does not depend on either a central conductor service or a common choreography

specification, which makes it different from service orchestration or service choreography.

Four scenarios are used to evaluate the performance, scalability, reliability and modifia-

bility improvement of the rsc approach compared to orchestration. An rsc-style solution

and an orchestration solution are compared side by side in every scenario. The first sce-
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nario evaluates the performance improvement of the X-Ray Diffraction (xrd) application

in ScienceStudio; the second scenario evaluates the scalability improvement of the Process

Variable (pv) snapshot application; the third scenario evaluates the reliability improvement

of a notification application by simulation; and the fourth scenario evaluates the modifiability

improvement of the xrd application in order to fulfil emerging requirements. The results

show that the rsc approach outperforms the orchestration approach in every aspect.
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Chapter 1

Introduction

The Web is more a social creation than a technical one.

—Tim Berners-Lee, Weaving the Web

1.1 Distributed computing

Distributed computing has been largely shaped by popular programming languages and

paradigms. A “Déjà Vu” was observed [100]: Remote Procedure Call (rpc) appeared in

the 1980’s with procedural languages, and object-oriented rpc prospered in the 1990’s after

Object-Oriented Programming (oop) languages became mainstream. The development of

information representation methods also impacted distributed computing technologies. For

example, Simple Object Access Protocol (soap) is based on Extensible Markup Language

(xml). Figure 1.1 shows significant events related to programming languages, standards

and techniques in distributed computing over the time. While more and more distributed

computing paradigms, standards and implementations emerged, language-, platform-, and

vendor-independence have always been a theme of the developments.

Among all the events, the emergence of the Web, or World Wide Web (www), has had

the greatest influence. The Web might be the first real success among all attempts to develop

large scale language-, platform-, and vendor-independent distributed systems. The Web has

influenced the development of distributed computing since the 1990’s. The Web showed

more advantages as a distributed computing platform than others. It was rediscovered by

the name of “Representational State Transfer (rest)” [39] with the tide of Web 2.0. Besides

the Web, cloud computing [8] and mobile computing have also brought new problems and
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1970 1980 1990 2000 2010

Figure 1.1: The trend of distributed computing.

technologies to distributed computing. Distributed applications got more and more diverse

from Enterprise Application Integration (eai) to Business To Business (b2b), Business To

Consumer (b2c), and Peer To Peer (p2p). Computing devices extended from dedicated

servers to personal computers and mobile devices. More and more distributed applications

run on the Internet beyond Local Area Networks (lans) and Wide Area Networks (wans).

As its concept suggested, distributed computing always involves communication between

computers. However, I found that it was incomplete to view distributed computing merely

from a computer-computer communication perspective1, when reviewing the successes and

failures of distributed computing technologies. That is, distributed computing is more than

making the communication between computers correct and efficient. The other perspectives

that should be taken into the view are the correctness and efficiency of developer-computer

communication and developer-developer communication.

Developer-computer communication is the activity where a developer, or even an experi-

enced user, uses available interfaces to define and modify an application. Developer-computer

communication also refers to the activity where the machine informs a developer of the state

of an application and aids the developer in finishing the application. For developers, it

could mean programming, testing, debugging, modifying and maintaining an application.

For users, it could mean participating and finishing an application.

Developer-developer communication is the activity that two or more developers or teams

collaborate in order to define and modify an application. For developers, it could mean

1I did not use the term “interaction” here in order to avoid the confusion with terms like human-computer
interaction.
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documenting, sharing, reviewing, and modifying programming artifacts. For users, it could

mean sharing application states with other users, and even learning to program based on

documentation.

1.2 Web services and composition

The Service-Oriented Architecture (soa) is a paradigm for designing, implementing and uti-

lizing services in different ownership domains in a loosely-coupled and interoperable way [35].

A service-oriented system is a group of applications that interact with other(s) by providing

and/or consuming services. A service refers to a concrete autonomous computation capabil-

ity for retrieving and processing information. Service interfaces are specified by document(s)

rather than specific programming or binary code [20]. There are already numerous “services”

running in enterprise and personal computing environments, like “create an order”, “fulfil an

order”, and “check email”. However, most of those services were not ready for easy access

due to their heterogeneous platforms, languages, and ownership. The industry has developed

many approaches to enabling easy access to the services.

Generally speaking, Web Services (ws) are a collection of technologies on the basis of

soap, covering the areas of messaging, security, process, and management. Soap is a stan-

dard for exchanging xml-represented information between two distributed applications, or

two web services [79]. Soap originally referred to “Simple Object Access Protocol”, which

indicated that the structured information was indeed objects specified by object-oriented pro-

gramming languages. The term “web” in “web service” came from the fact that most web

services leverage Hypertext Transfer Protocol (http) to transport soap messages2 although

other transportation protocols can also be used.

High-order services, taking advantage of service composability, provide their functionali-

ties by consuming partner services. Such high-order services, or service compositions, can be

implemented basically in two ways, service orchestration and service choreography. Service

orchestration depends on a conductor-like central service that acts as service consumers of

partner services. Service choreography, on the other hand, does not have a central service

2Although http is often used for just transportation, it is an application layer network protocol.
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and assumes that all partner services are collaborative enough to be able to achieve their

common goal. Because the partner services of a service orchestration do not need to know

any details about the orchestration, service orchestration is much easier to implement than

choreography. Service orchestration is the dominant approach to composing web services

currently.

1.3 Challenges of web service composition

Soap aimed to address the interoperability problem in object-oriented rpc by standardiza-

tion. Before soap, it is almost impossible to program the client and server sides of a rpc

program in two different languages. Ws has achieved a big progress beyond its predeces-

sors like rpc and xml-rpc. However, the interoperability issue remained for web services

developed in different languages and platforms. Even if the soap-based ws standards are

followed by a web service vendor, the interoperability is still doubtful. Therefore, the Web

Services Interoperability (ws-i) organization3 has published another set of standards to guide

the development and testing of web services towards true interoperability, for example, the

interoperability between a web service developed in Java and the other in .Net. The first

guiding principle of the ws-i basic profile is “No guarantee of interoperability” [106].

Besides interoperability, some other interesting properties4 — performance, scalability,

reliability, and modifiability — are also challenges for soap-based web services. Rpc-based

technologies aimed to achieve convenience in programming by allowing developers to pro-

gram a rpc the same as a local one. Soap, derived from rpc, aimed to provide the same

convenience to object-oriented programmers while taking advantage of xml as a standard

message format and http for transportation through firewalls. However, the convenience of

soap misled developers as did rpc. The illusion that a remote method call is the same as a

local one introduces many pitfalls for the correctness of developer-computer communication.

Furthermore, soap has not addressed several other important aspects in computer-computer

communication and developer-developer communication. This will be further discussed in

3See http://www.ws-i.org/
4The details of these properties are discussed in Chapter 2.
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Chapter 2.

Web service orchestration inherits the shortcomings from web services — deficiencies of

interoperability, performance, scalability, reliability, and modifiability. Some of these short-

comings become even more critical for server compositions. A service orchestration is nor-

mally constructed in a spoke-hub pattern shown in Figure 1.2. The central conductor service

resides at the hub, and clients and partner services are at the spoke ends.

1. The central conductor service needs to support many concurrent orchestration instances

and handle more Input/Output (i/o) operations than normal services, which can bring

more performance and scalability challenges.

2. The central conductor service is a single point of failure and, therefore, is critical to

the reliability of a service composition.
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1.4 An architectural approach

There could be many approaches to addressing the challenges for service compositions, for

example, developing and using web service languages or frameworks with better interoper-

ability and scalability. A more generic approach, I think, is to address these challenges at

the architectural level. This is because:

A software system’s non-functional properties are shaped by its architecture.

Performance, scalability, reliability, and modifiability are non-functional properties of

software systems. Many design decisions have to be made at the architectural level

in order to fulfil those non-functional requirements [45, 68]. Software architecture is a

set of elements that are selected and organized according to particular constraints and

rationale [86].

An architectural approach is generic. Although a system’s non-functional properties

are influenced by specific infrastructure and the language or framework used to pro-

gram it, an infrastructure or language or framework solution for scalability is often

specific to a certain context and will be quite limited in a heterogeneous environment.

On the contrary, an architectural approach can benefit many systems no matter what

infrastructures or languages/frameworks they are based on.

1.4.1 Representational State Transfer (REST)

Representational State Transfer (rest) was coined in 2000 by Roy T. Fielding, who was

the contributor to several web standards, including http [14, 36] and Uniform Resource

Identifier (uri) [15], one of the core contributors of Apache httpd, one of the first modern

web servers5, and also one of the founders of Apache Software Foundation. In his PhD thesis

[38], Fielding wrote, “The Representational State Transfer (REST) style is an abstraction

of the architectural elements within a distributed hypermedia system. Rest ignores the

details of component implementation and protocol syntax . . . ” , and “encompasses the

5See http://httpd.apache.org/ABOUT_APACHE.html
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fundamental constraints upon components, connectors, and data that define the basis of the

web architecture, and thus the essence of its behavior as a network-based application”.

Rest aimed to improve the performance, scalability, simplicity and visibility of network-

based applications. The web architecture [17] can be considered as a typical restful ap-

plication. Furthermore, rest naturally encourages correct and efficient developer-computer

communication and developer-developer communication. Chapter 2 discusses more details

of rest’s advantages.

There have been many debates about soap/ws versus rest from industry [88] to aca-

demics [85] since the early 2000s. About ten years later, big web media and application

vendors like Google, Yahoo, Microsoft, Facebook and Twitter have all started to use rest to

label their products. However, the software developer community still has no agreement on

whether or how an application is critically restful, and some hope a maturity model6 can

help. In fact, some mature technologies of the current Web, for example, the cookies, did

not follow the rest style [38]. In my opinion, it is more important to apply and extend the

architectural style to real problems than to assert dogmatically whether a solution is truly

restful.

1.4.2 RESTful service composition

When comparing different architectural approaches to improving the performance, scalability

and modifiability of service orchestration, I found that many valuable aspects of those ap-

proaches were included in or can be derived from rest. Therefore, I use the term RESTful

Service Composition (rsc) to refer to the architectural style that I present in this thesis

in order to address the challenges for service composition. What makes a restful service

composition? How to program such a restful service composition? Can this restful service

composition approach bring better scalability, reliability and modifiability than normal web

service composition approaches? These are the questions discussed by this thesis.

My research focuses on not only the architectural style for service compositions but also

the programming model to realize it. System architecture can be designed to be independent

6Richardson Maturity Model: steps toward the glory of rest. See http://martinfowler.com/articles/
richardsonMaturityModel.html
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of the programming languages or frameworks used to implement it. However, a programming

model can ease the implementations of an architectural design. A programming model ab-

stracts a group of programming problems and provides the solution in the form of Application

Programming Interface (api) design and usage.

1.5 Contributions

The contributions of this thesis are the following:

• I present an architectural style of RESTful Service Composition (rsc) that is thor-

oughly different from traditional service orchestration approaches. A rsc is partitioned

into computational stages, and the transition between stages are driven by baton pass-

ing. The definition of rsc is the key contribution of my thesis.

• I present a programming model for rsc that is designed for the specific development

requirements of rsc by leveraging functional programming technologies. The program-

ming model is a supplement to rsc.

• The architectural style is evaluated in terms of performance, scalability, reliability and

modifiability. The results quantitatively show that rsc outperforms the service orches-

tration approach in all the real-world scenarios used in the evaluation.

1.6 Structure of the thesis

Chapter 2 reviews the basic technologies of web services, compares pros and cons of rpc, Web

Services, and rest, and discusses performance and scalability of web services. Chapter 3 re-

views the technologies of web service composition, and discusses reliability and modifiability.

Chapter 4 derives the architectural style of rsc, and presents a corresponding programming

model. Chapter 5 evaluates rsc by comparing the performance, scalability, reliability and

modifiability of composition applications in four scenarios. Chapter 6 is the conclusions.

Some contents of this thesis have appeared in my previous publications [72, 73, 74, 75].
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Chapter 2

Web Services and REST

It’s called Accessibility, and it’s the most important thing in the computing world.

—Steve Yegge, Stevey’s Google Platforms Rant

The Simple Object Access Protocol (soap) protocol was standardized by the World Wide

Web Consortium (w3c) in 20001, and later became the foundation of web service technolo-

gies,. The activities of soap development can be traced back to 1998, when Don Box aimed

to “replace dcom with xml” within Microsoft [88]. Soap leveraged Extensible Markup

Language (xml) and Hypertext Transfer Protocol (http) to tackle the problems of object-

oriented Remote Procedure Call (rpc) — vendor-, environment-, and system- dependency,

and most significantly, inability to work for the Internet applications [19]. In order to solve

the firewall problem for the Distributed Component Object Model (dcom), soap used http

for message transportation, while http offers much more capabilities than transportation.

During an interview in 20092, Box mentioned that the soap team was not familiar with web

technologies back in 1998, which somehow explained why http, an application protocol, was

used as a transportation mechanism by soap from the beginning. The Web got more and

more attention with the Internet boom in late 1990s and the tide of Web 2.0 in 2000s. The

extensive development and usage of web applications brought better understanding of web

architecture to the distributed computing community.

1See http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
2See http://www.infoq.com/interviews/box-soap-xml-rest-m
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2.1 RPC

A distributed application is much more complicated than a non-distributed one of the same

purpose, for example, a network file system versus a local file system. The major differ-

ence between them is the complexity of communication. Distributed components can be

programmed in various languages, and be deployed on diverse operating systems. Remote

Procedure Call (rpc) is a programming model that allows the programmers to develop a

distributed application without worrying about network communication details. In rpc, the

call of a procedure residing in a different address space can be programmed almost the same

as the call of a local procedure from a programmer’s perspective. In this way, the complexity

of remote communication is handled by the rpc library and tool-generated stubs. The idea

of rpc can be traced back to Internet Engineering Task Force (ietf) Request For Com-

ments (rfc) 707 [103] published in 1976 [104]. Rpc improved the productivity of distributed

application developers by its convenience, and also generated a mirage that a distributed

application can be programmed the same as a local one.

The first implementation of rpc on Unix was SUN rpc, which was developed for the

NFS, SUN’s network file system. Other rpc implementations had a quite similar design

to SUN rpc. It was later standardized as Open Network Computing (onc) rpc [95]. A

developer normally uses a tool named rpcgen to generate server and client stubs from an

interface description of the procedure. A stub is a piece of code to marshal/unmarshal the

parameters and return value. The developer needs to write the client code that implements

client logic and calls the client stub, and also the server code that implements procedure logic

and is called by the server stub. Both the client code and server code have no significant

difference from the caller and callee of a local procedure call. The sequence of interactions

between the client code and the server code in an rpc is shown in Figure 2.1.

The programming model of rpc involves two types of communication in distributed com-

puting — developer-computer and computer-computer. As shown in Figure 2.1, the pro-

gramming interface is for developer-computer communication, and the address boundary is

for computer-computer communication. Rpc makes the programming interface extremely

easy, and technically hides the complexity of address boundary from the developers.
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Figure 2.1: Common interaction sequence of rpc. 1/6 and 3/4 are local calls. 2/5 is
a remote call. Marshalling happens in 1/2 and 4/5, and unmarshalling in 2/3 and 5/6.

rpc’s convenience has its cost. Two of the most significant drawbacks of rpc are

Opaque messages Most rpc developers have no idea about how the procedure parameters

and returned values are marshalled/unmarshalled. It is too expensive to develop an

intermediary application that can interpret the message and process it between the

client stub and server stub even for the developers with deep knowledge of rpc. The

messages are not human-readable.

Tight coupling between client and server The client and server stubs are always re-

leased as a pair. It is almost impossible to program the client and server sides in

different languages, to develop a compatible client or server side without the right

stub, or to update one side’s stub without breaking the compatibility.

2.2 Object-oriented RPC

When Object-Oriented Programming (oop) became the mainstream programming paradigm,

rpc also had its object-oriented version, for example, Java Remote Method Invocation (rmi).

The object-oriented rpc approaches were very similar to the original rpc. A language-
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specific tool helps the developer to generate the client stub and server stub3, and the object

marshalling/unmashalling4 are carried out by the library. The problems for rpc remained

in object rpc.

In order to develop distributed objects compatible with various object-oriented languages,

the Common Object Request Broker Architecture (corba) was standardized5 by the Object

Management Group (omg). The inter-language compatibility was achieved by standardizing

the mapping from an Interface Definition Language (idl) to specific languages like C++ and

Java.

Corba rose in the second half of the 1990s. Its growth was inhibited by Microsoft’s

dcom, and later was overwhelmed by the rise of web technologies. Corba provided a

technical solution to the language- and platform- dependency problem of rpc. However,

it is much more complicated than rpc. For example, the corba 2.0 specification is 634

pages long, and only covered the mapping from idl to C, C++ and Smalltalk. In order

to implement corba, every programming language needs a specific mapping specification

and corresponding implementation. With corba, it is still impossible to update one side

without breaking the client-server compatibility, which yields the incompatibility between

different versions of the same application. Besides these issues, corba was also criticized by

its standardization approach [52].

At the end of the 1990s, Business To Business (b2b) and Business To Consumer (b2c)

applications started to attract more attention in the area of distributed computing, where

eai used to be the focus. These applications brought two new requirements:

1. The application must work over the Internet across organizational, geographical, and

network boundaries. The most common hurdles are the firewalls.

2. Security must be considered to protect organizations and consumers in an application.

No application can go to production without security measures.

Unfortunately, rpc, object-oriented rpc and distributed objects technologies failed to

fulfil these two requirements. In order to apply rpc technologies to b2b and b2c, web tech-

3It is also called a skeleton for Java rmi.
4Serialization/deserialization are often the terms used for objects.
5See http://www.omg.org/spec/CORBA/
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nologies like xml and http were used for object marshalling/unmarshalling and transporta-

tion. However, it does not mean that there is no successful usage of rpc-based technologies.

Google, Facebook, and twitter have all invented their own new rpc frameworks: protocol

buffer6, thrift7, and finagle8.

2.3 XML

The rise of the Web brought a bunch of new technologies to the distributed computing com-

munity. Among these was the Hypertext Markup Language (html), which introduced a

simple yet powerful way to represent information. The success of html attracted developers

to work on a new markup language in w3c based on the same root of html — Standard

Generalized Markup Language (sgml) — since the mid-1990s9 in order to represent informa-

tion not merely for web browsers10. The result was the Extensible Markup Language (xml),

and it was once even considered the “silver bullet” for information exchange [77].

Xml’s structure is more restricted than html, while its vocabulary is more extensible.

The former factor benefited the development of xml parsing and query works. The latter

factor backed its expression capability with the support of the Data Type Definition (dtd)

and xml schema. Basically, xml can be used in any case when some information needs to

be presented in a machine-readable structured way. Therefore, it has been used to represent

digital media, data or objects to be persistent or serialized, interface descriptions, and also

deployment descriptions.

Ten design goals were proposed for xml [23, 22]. During its development and applications

over more than a decade, most of the goals have been achieved. However, the success of one

goal — “XML documents should be human-legible and reasonably clear” — is still question-

able. Nowadays, xml has been used to represent very complicated structured information,

among which many were generated by machines. Such xml documents are not just “wordy”

for humans, but exceed the reading capability of developers. Using only-machine-readable

6See http://code.google.com/p/protobuf/
7See http://thrift.apache.org/
8See http://twitter.github.com/finagle/
9See http://www.w3.org/XML/hist2002

10See http://www.w3.org/TR/WD-xml-961114.html
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xml documents for developers to document and communicate had negative impacts on some

xml-related applications.

The Yet Another Markup Language (yaml)11 and the JavaScript Object Notation

(json)12 are other approaches to representing structured data. Both yaml and json are

designed for good human readability that is considered a shortcoming of XML [13].

2.4 XML-RPC

The problems of object-oriented rpc mentioned in Section 2.2 were addressed by xml-rpc

in 199813. The idea was straightforward — to use http for transportation in order to let

messages go through firewalls, and to use xml to encode the method calls, returns, and

faults. Note that the http POST method is used for all the request/response in the xml-

rpc specification.

Xml-rpc has been implemented by many languages, including some relatively new lan-

guages like Erlang and Clojure. Like rpc, many implementations provide a code generation

tool for convenience. Because the specification does not include an idl, the implementations

have different approaches to defining the interfaces. The xml-rpc specification has never

been formally standardized by an organization. This makes it impossible for xml-rpc to

become a language- and platform-independent approach.

Xml-rpc also has siblings like json-rpc and yaml-rpc. As their names suggest, they

use json or yaml to encode messages instead of xml.

2.5 SOAP and WSDL

The Simple Object Access Protocol (soap) was inspired by xml-rpc, and rpc was one of its

design goals [21]. Soap defined a more complicated way to exchange structured information

for distributed applications than xml-rpc. Soap extended xml-rpc’s message structure by

adding a header part for meta information in front of the message body.

11See http://yaml.org
12See http://json.org .
13Xml-rpc Specification, see http://www.xmlrpc.com/spec
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Soap 1.1 was loosely specified in various aspects, which hindered the implementations’

compatibility. For example, the specification did not clearly define how to locate the remote

object to access. There were three mechanisms to locate a remote object: the http request

uri, the non-standard SOAPAction http header, or an xml namespace in the soap message.

There was no agreement on which of the three mechanisms should be enforced.

A big difference between soap and xml-rpc is the Web Service Description Language

(wsdl), which is a must-have for all soap-based web services. Wsdl is an xml-based

language to describe exposed service endpoint operations, message formats to invoke the

operations, and the binding to a network protocol [30]. Most soap implementations provided

two tools, one to generate code from wsdl and the other to generate wsdl from code, namely

wsdl2code and code2wsdl. These tools enable two development models of web services:

code-first or wsdl-first. In practice, most web services were developed in a code-first way,

and the wsdls were generated. Writing a correct wsdl document is more difficult than

writing a correct program. The machine-generated wsdls documents were too complicated

to be interpreted by programmers, and therefore, they were rarely read by humans.

2.6 Stack of web service technologies

A set of service-oriented principles was summarized by Don Box, one of the original designers

of SOAP, and were known as four tenets [20]:

• Boundaries are explicit.

• Services are autonomous.

• Services share schema and contract, not class.

• Service compatibility is determined based on policy.

These four tenets were considered the guideline for web service development activities

that Microsoft took part in. Soap and wsdl were designed based on them, and the design

of other web service specifications were also influenced.
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Service registry and discovery was considered as an essential part of service-oriented

computing. This had its root in agent-based computing [1]. Universal Description Discovery

and Integration (uddi) is an xml-based specification for registering and discovering soap-

and wsdl-based web services. Uddi also refers to the service registries implementing the

specification. Customers can get answers to “who, what, where, and how” questions about

services from a uddi. The answer to the question “who” is about the enterprise supplying

services; the answer to “what” is about the services provided; that to “where” is the service

Uniform Resource Locators (urls) or email addresses; and that to “how” is about interfaces

to interact with the services. In 2006, major vendors of uddi closed their public uddi

services14. This did not imply that there was no need for sharing service descriptions, but it

did indicate that uddi was not accepted by the community. The reason could be that uddi

was too complicated or the specification did not, in fact, reflect the needs of the community.

Based on soap and wsdl, a large stack of specifications have been developed. The

specifications covered almost all aspects of eai and b2b applications: messaging, resources,

transactions, security, management, workflow, and interoperability. Figure 2.2 shows the

web service standards stack. The standards at the top depend on those beneath them. A

more detailed illustration of web service standards can be found on the innoQ website15. The

number of the standards is still growing, and new versions of some existing standards have

been published. The heavy stack showed the wide-ranging applications of web services. On

the other hand, it also shows the overwhelming complexity of web service technologies. The

industry will eventually examine whether these specifications address the real requirements

like the case of uddi.

2.7 Web architecture

The first web server, browser, and web page was developed by Tim Berners-Lee, and started

to be online by Christmas 1990 [16]. Three years later, the load on the first web page

14See http://uddi.microsoft.com/about/FAQshutdown.htm .
15See http://www.innoq.com/soa/ws-standards/poster/ .
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Figure 2.2: The web service specifications and their dependencies.

increased 1000 times16. By 2008, there were already 1 trillion unique urls17. More than 2

billion people are web users to date18. The Web is so far the largest distributed system.

The Web is “a network of information resources” [89]. A resource is the key abstraction

of the Web [38]. A resource can be any piece of information that can be named. Fielding

defined a resource as “a temporally varying membership function” [38].

r : T −→ P(RE), (2.1)

where T is the time, RE is the set of representations, and P(RE) is the power set of RE.

A resource is a mapping to a set of representations, or equivalently, a set of identifiers. At

a certain time, a source is identified or represented by a member of a subset of RE. The

membership might not change for a static resource, and varies for a dynamic one. A resource

identifier, in the form of a Uniform Resource Locator (url), has hierarchies each level of

16A Little History of the World Wide Web, see http://www.w3.org/History.html .
17See http://googleblog.blogspot.ca/2008/07/we-knew-web-was-big.html
18See http://www.internetworldstats.com/emarketing.htm
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which can be resolved by a corresponding naming authority. For example, the domain name

can be resolved by a Domain Name System (dns), and the path of a resource can be resolved

by the server hosting the resource. A resource representation is the data to describe the state

of the resource with metadata. The type of data is called a media type, and specified by the

Multipurpose Internet Mail Extensions (mime) standard [41].

I think a process view of resources is more accurate. The actual entity of a resource

can be thought as a “feeling” process in Whitehead’s language [105]. Such a process results

in a representation of the original “data” that is the piece of information of interest. The

representation is not only determined by the original data, but also by the way that a specific

subject feels it. Specifically, a web resource’s representation is decided by its url, the access

method used, the headers of the request, and content negotiations (if any).

According to Perry and Wolf [86], software architecture can be defined as a tuple of

elements, constraints19, and rationale.

architecture = {elements, constraints, rationale} (2.2)

The elements are abstractions of the components that contain data, process data, or connect

components with each other. The constraints are the rules based on which the elements are

configured and organized. The rationale is the reasons or motivations for the decisions of

elements and constraints. There are always pros and cons for a design decision, and the

rationale is a comprehensive evaluation of every aspect. The following subsections discuss

the architecture of the Web.

2.7.1 Web architectural elements

Software architecture can be described by views [7]. Web architecture is shown in Figure

2.3 from a process perspective. This viewpoint describes the common elements and their

organization. The elements shown in the figure include user agent, cache, dns, http connec-

tion, proxy, reverse proxy, and original server. It shows two scenarios. In the first one, the

19Perry and Wolf originally used the term form in their paper.
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Figure 2.3: A process view of a web architecture.

user agent sends a request via the proxy, the proxy forwards the request to a reverse proxy

resolved by a dns, and the reverse proxy then passes the request to the origin server hosting

the resource. The proxy and reverse proxy are called intermediaries. During the process, if

any intermediary has a valid cache for the request and the request indicates acceptance of

cached response, a cached response will be sent back. In the second scenario, the user agent

sends a request directly to the origin server resolved by a dns.

2.7.2 Web architectural constraints and rationale

Client-server

Client-server is the most fundamental relationship between web elements. A web server is

always in an active listening state, and ready to receive requests from web clients. The web

clients can be distributed across networks, in a state of connected, or thinking, or offline. Not

all the web elements are either client or server. The intermediaries need to play both roles.

The client-server separation of concerns can still help abstract their design and programming

into client parts and server parts. Web programmers often need to distinguish client-side

code from server-side code when they are dealing with some data elements like Active Server

Pages (asp) and JavaServer Pages (jsp), which have code for both sides woven in one file.
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With client-server, the client side and server side can evolve independently. Furthermore,

it is more straightforward for the server to update a resource when needed, and then all clients

can get the update. A drawback of client-server is that the server will be a performance and

scalability bottleneck when numerous clients are consuming it at the same time.

Stateless communication

The basic Message Exchange Pattern (mep) of the Web is the request-response pattern. A

client might need to perform a sequence of request-response with or without interruptions in

order to achieve a goal. Such a sequence is abstracted as a session. The requests at the latter

part of a session often depend on the information contained in leading request-responses in

order to continue the session. Such information can be maintained solely on the client side,

or on the server side, or on both sides. The stateless communication constraint suggests that

any request should carry sufficient20 information for the server to understand the request and

continue the session. Therefore, the communication is stateless such that there is no necessary

state dependency between a request and others. This releases the server from keeping the

state of sessions belonging to different clients. However, this does not conflict with the fact

that a server should maintain shared state of a resource. Stateless communication increases

the scalability of a web server, and also eases the recovery or change of a session.

In practice, cookies have been used for session states since the early days of the Netscape

browser. A cookie is a piece of state information generated on an origin server and saved

on a user agent. When a session state is required, the origin server sends a response with a

Set-Cookie header directive. If the user agent enables cookies from the origin server, the

cookie will be saved on the agent. The cookie will be attached on all further requests sent to

the urls that satisfied domain and path selections until its max age is reached[67].

There are three intrinsic problems with the usage of cookies. Firstly, the implicitness of

cookies prevents a user from being aware of the setting of a cookie and the state information

contained in a cookie. Therefore, it is impossible for a user to manage the cookies saved

on her/his agents efficiently. Secondly, an origin server can set cookies on a user agent even

20I use sufficient here instead of necessary used by Fielding in the sense that the information contained in
a request assures the continuation of the session.
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if the requested resource has nothing to do with a session. A user’s browsing history can

be silently revealed by an origin server that hosts resources, like images or ads, linked by

resources on other origin servers. Thirdly, an origin server can arbitrarily set a cookie’s max

age to be much longer than a real session’s lifetime. In this way, the origin server can get

all the history of a user agent visiting it. Cookies are supported by most browsers, and have

been used by many servers for various purposes, including tracking users21.

Cache

A cache stores a limited amount of replicated data temporarily in order to make future

retrieval of these data faster. The http protocol specified the capability, expiration and

validation of cache. The cache-control-related meta information is specified by http headers.

A web cache can be deployed on user agents, origin servers, or intermediaries. Web caches

can reduce the response latency by partially or completely avoiding the interactions between

a user agent and an origin server. Therefore, user-perceived performance can be improved.

Since the load on an origin server can be reduced by web caches, the scalability is also

improved. When partial failure happens, a user agent can still get resource representation

from a web cache, which benefits the system’s reliability.

The usage of caches can easily introduce inconsistency between cached resource represen-

tations and those on an origin server. Although http defines headers and mechanisms to

expire or re-validate cached representations, inconsistency can always happen. It might even

be impossible to keep consistent at any time if we want to maintain high availability of a

resource on the Web [43]. In such cases, the strategy of eventual consistency22 [99] can be

applied.

Layered system

The Web was designed to be a layered system. In order to cooperate with intermediaries,

http messages are designed to be transparent. Intermediaries can redirect, cache, check, and

21See http://collusion.toolness.org/ for a demo.
22Pat Helland might have been the first to coin this term. See http://blogs.msdn.com/b/pathelland/

archive/2007/05/15/memories-guesses-and-apologies.aspx .
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transform http messages. A load balancing intermediary improves scalability. A firewall

intermediary implements security. A cache intermediary improves scalability and reliability.

On the other side, intermediaries also brought issues. For example, intermediaries in-

troduce extra latency to end-to-end message exchanges. Intermediaries also introduce more

failure points, and make it more difficult to identify the source of partial failures. In order

to overcome these drawbacks, intermediaries are normally light-weight, highly efficient and

extra reliable.

HTTP and HTML

The http protocol was specifically designed for the Web. It follows the constraints of client-

server, stateless communication, cache, and layered system by nature. Rpc works well with

http request-response Message Exchange Pattern (mep), which makes some developers think

that http was developed as an rpc mechanism. The most significant difference between

http and rpc is that the former introduced a generic interface. All resources can be ac-

cessed via the same set of methods: Get, Post, Put, Delete, and Patch [33] for resource

manipulation; Options and Head for metadata retrieval; and Trace for testing and diag-

nosis. A resource only needs to support a subset of the methods. The uniform interface

makes it possible for web elements to evolve independently without breaking the interface

compatibility, which is almost impossible for clients and servers in rpc [107].

Although request-response is the basic mep, http was designed to encourage agent-

intermediary-server negotiations. A negotiation is a conversation in which two parties try

to reach an agreement by a sequence of request-response exchanges. Http defined message

headers, status codes, and mechanisms for content negotiation. Content negotiation aims

to provide the best resource presentation to a user agent from either an origin server or an

intermediary. A content negotiation can be driven by a user agent, an origin server, or an

intermediary. Content negotiations improve the compatibility between clients, servers, and

intermediaries, and therefore, bring better user experience.

Negotiation can happen during the transportation of an http request message. When a

request contains a relatively big body, it will be inefficient for the origin server to reject the

request after parsing the body. The performance can be improved if a user agent sends the
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headers first and waits till receiving a continuation signal from the server. The status code

100 was designed for such situations.

An http message is composed of a start line, headers and a message body if necessary.

The start line is a request line for request messages, or a status line for response messages.

The start line and all message headers are transferred in plain text. The headers indicate

meta-information about a message, including general headers, request or response headers,

and entity headers. By interpreting the start line and headers, an intermediary should be

able to get sufficient information for processing the message. In this sense, the message is

self-descriptive for the intermediaries.

With no prior knowledge about a resource, the conversation between a user via an agent

(client) and a resource normally starts from an unconditional GET of the resource. GET is both

safe and idempotent. By safe, it means the request will not cause any significant change to

the target resource. By idempotent, it means more than one identical request has the same

side-effects as a single request. The safeness and idempotance of GET make a url bookmark

always a good place for a client to start an application. The server hosting the resource or an

intermediary then sends back a representation of the resource. The representation contains

the current state of the resource, and also controls such as links and forms for the client

to trigger the state transfer of the application. Via those controls, the client can choose to

retrieve representations of other resources or to manipulate resources. Note that a resource

is always hidden behind the interfaces. After an application is initiated, every representation

sent back from the server contains the current application state. Therefore, the client has all

the application state. And at the same time, the server should maintain the shared state.

A shared state is the information that both the server and the client must keep in order to

make a state transfer.

The start line and header lines in an http message are all plain texts, which is not

efficient from a transportation point of view. It was designed in order to improve a message’s

transparency to all connectors and to gain performance by incremental processing. The html

is also designed in a similar way for incremental rendering by a user agent [89], which results

in better user-perceived performance.

Although the http standard specified message formats unambiguously, it still recom-
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mended tolerance during message parsing. For example, accept more than one whitespace

or tab character at the places where only a single space is required; and use a linefeed as the

line terminator though the carriage return linefeed was for that in the specification. Simi-

larly, the html specification suggested that a user agent renders only the recognized valid

html elements and attributes. The design rationale is to achieve the maximum compatibility

among applications with the existence of developer mistakes and other faults. It is still a

good practice for developers to validate the html pages against the validators in order to

avoid faults that are not warned by browsers during testing.

Code-on-demand

The representation of a resource is often a combination of text, hyperlinks, images, graphics,

and media streams. The Web takes advantage of a more powerful representation element

— mobile code. A piece of mobile code is a program that a user agent retrieves from an

origin server as a part of resource representation. The user agent then loads the code and

executes it on demand on the client side. The most popular form of such executable code

is JavaScript, whose kin includes Java Applet, Flash, and Silverlight. A user agent needs to

have built-in support or extended plug-ins installed to execute mobile code.

The Code-On-Demand (cod) enables rich user interfaces beyond traditional hyperme-

dia. A representation can be modified instantly according to user local context and real-time

inputs, which can be used to mimic many characteristics of desktop application software. Fur-

thermore, by using the XMLHttpRequest (xhr) api and asynchronous programming style,

an agent can retrieve representations of interesting resources either on demand or proactively

without blocking the interaction between a user and the current rendered representation.

Such an approach based on JavaScript is called Asynchronous JavaScript And XML (ajax).

Cod augmented the Web to a higher order of dynamics, and can transform hypermedia

representations into computational representations.

The power of cod raised some security issues for the Web. One of the most well-known

problems is cross-site scripting: a user agent executes malicious mobile code in a resource

representation that contains sensitive information such as user identity. A piece of mobile

code might be so computation-intensive that a user agent can be slowed down when executing
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Figure 2.4: The stack of web standards.

it. Embedding a lot of such mobile code in a representation can result in a non-responsive,

or even crashing, user agent.

Java Applet was used as a cod technology as early as JavaScript was. However, JavaScript

has been much widely used on the Web than Java Applets. Besides the issues of Java’s

runtime reliability and version incompatibility, a significant difference between those two is

that Java Applet is byte-code and JavaScript is plain text. A Java Applet is not transparent

to user agents and intermediaries, and therefore, it is difficult to retrieve information from it

automatically. There is no way to index or inspect a Java Applet, while it is not a problem

for JavaScript and hypertext. The lack of transparency could also contribute to the failing

of Flash23.

2.7.3 Web standards and specifications

The standard stack for the Web is much smaller than that of web services. Basically, there

are two independent groups of specifications: application and representation. As shown

in Figure 2.4, the left side is for applications, and the right side is for representation. The

Multipurpose Internet Mail Extensions (mime) is a standard that was originally developed for

email application. The Hypertext Transfer Protocol Secure (https) and http authentication

are two widely implemented specifications for web security.

23Flash will not be supported by HTML5 [54].
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Figure 2.5: The derivation of rest [38].

2.8 REST and RESTful services

Representational State Transfer (rest) was first described in Fielding’s PhD thesis [38]. It

was derived from a set of network-based architecture styles. A software architectural style is

a collection of constraints that is abstracted from individual architectures sharing the same

characteristics, or derived from other architectural styles. An architectural style can be used

to guide the design of a specific architecture. The relationship between an architectural style

and an architecture instance is analogous to that of a design pattern [42] and a design. The

derivation of rest from related architectural styles is illustrated in Figure 2.5.

The derivation started from the null at the very top. The first style added was RR (repli-

cated repository). The idea of $ (cache) was directly derived from RR with on-demand

capability added. The separation of concerns principle resulted in CS (client-server),

which then became client-stateless-server with the stateless communication constraint. The

combination of CS and LS (layered system) yielded LCS (layered client-server) with

intermediaries. The programmable Virtual Machine (vm) enabled the execution of mo-

bile code transferred from a server to a client, which was Code-On-Demand (cod). The

combination of all the above was LCODC$SS (layered–code-on-demand–client-cache-

stateless-server). Rest was finally derived by adding the U (uniform interface) style.
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The style of uniform interface is essential to rest. It is composed of the following five

constraints24.

All important resources are identified by one resource identifier mechanism.

The naming complexity of a system is reduced in this way.

Access methods are the same for all resources. In this way, original servers, clients,

and intermediaries can be programmed independently without the risk of being incom-

patible on the interface level. A specific resource can choose to implement a subset of

the access methods according to its requirements.

Resources are manipulated by exchanging representations. A resource is always

hidden behind the interfaces. The resource is secure since there is no way for a client

to interpret how a well-designed resource is programmed. On the other side, the rep-

resentation removes the programming coupling between a server and its clients.

Representations are carried by self-descriptive messages. Meta-data included in the

message is encoded in an easy-to-interpret way, and contains sufficient information to

be processed by a receiver.

Hypermedia works as the engine of application state. Hypermedia or hypertext25 is

a non-sequential composition of information and controls. A hypermedia representation

sent from a server to a client indicates the current application state, and also the possible

state transfers that the client can trigger by using the controls.

A restful service is a service whose architectural design is constrained by rest. In

this thesis, the term “restful web service” refers to a service that utilizes web standards

such as url and http as major elements. A restful design only needs to comply with a

subset of rest constraints shown in Figure 2.5. A comparison between restful services and

soap-based web services is shown in Table 2.1.

24Fielding listed four constraints — the first, third, fourth and fifth items — originally in his thesis. He
added the second item later [37].

25Fielding used the term of “hypertext” instead of hypermedia in some occasions [37].
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The lack of a code generation mechanism is often a criticism of restful services. However,

code generation support for soap-based web services has its cost, like the tight-coupling

between a service and its programming language.

2.9 Interesting properties of web services

As mentioned in Chapter 1, web service technologies were developed to address the compati-

bility issues of rpc, but failed to fix them. The specification family of WS-I was developed to

address this. Besides compatibility, there are other non-functional requirements that are of

interest for large-scale distributed applications, such as performance, scalability, reliability,

and modifiability.

2.9.1 Performance

For distributed applications of client-server style, performance can be evaluated from two

perspectives. From the server’s perspective, performance can be measured by the number of

requests accomplished in a unit time, or throughput. From a client’s perspective, performance

is perceived by the time spent to wait for the response. Shorter response time is better

performance.

Little’s law [70] indicates that

N = XR (2.3)

if the system is stable26, where X is the throughput, R is the residence time, and N is the

number of requests being processed on the server. The maximum that N can reach is the

server’s capacity. The minimum that R can be is a request task’s demand.

The most natural and straightforward way to decrease the residence time is to use fast

processing units. A faster processor can finish a task in shorter time with the identical

number of required processor cycles. However, a more interesting question is how to achieve

the same by software improvement.

26Strictly, the corresponding stochastic process needs to be stationary.
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Response time is the cumulative result of the delays, including the round trip time of

request-response and residence time on the server. Basically, there are two approaches to

reducing response time:

1. Get a cached response from an intermediary instead of from the origin server.

2. Decrease the residence time by mapping a request to sub tasks and then reducing to

get the result.

The soap specification did not describe any caching approach. Even worse, the default

http method for soap requests was POST as specified in soap 1.1, which made it difficult

to take advantage of http’s caching capability to reduce the response time of soap message

exchanges.

2.9.2 Scalability

According to Little’s law, a server’s throughput can be improved by increasing the number

of requests N while keeping the residence time R unaffected. To achieve this, more resources

need to be used for processing the additional requests. The resources can be local resources –

like Central Processing Unit (cpu) cores, or distributed units – like nodes in a cluster. Such

a scale-up often implies two changes in scale: the number of simultaneous requests or clients

served, and the number of computational units in use.

Scalability is a system’s ability to sustain an acceptable service level for an increasing

number of concurrent requests [76, 57, 18]. The service level should be measured from the

client side because there is no linear correlation between throughput and response time.

With an increased workload, the most common approach is to utilize more computational or

operational resources on the server side. Since the amount of resources that can be located in

a box is always physically and economically constrained, clustering of distributed nodes with

load balancing is more widely applied. Figure 2.6 shows that a web service, programmed

in Axis227 and deployed on Tomcat, scales up with the number of threads and stops scaling

when all available resources are used up in the system. The parallel workload was generated

27See http://axis.apache.org/axis2/java/core/
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Figure 2.6: The throughput and residence time of a web service versus the number
of concurrent active threads.

by JMeter28 running on another machine located in the same wan. As shown, the average

response time increases almost linearly with the number of concurrent active threads in the

system before the system thrashes. Similar results have been observed on .NET applications

[51] and Java EE (Enterprise Edition) applications [97, 49]. More details of the measurement

and models of scalability are discussed in Appendix A.

The server side system should be a layered structure for the purpose of clustering. For

better scalability, a message should be efficiently parsed and routed through layers. Http

messages were designed for pipe-and-filter style processing in a layered architecture. This

advantage of http was not used by soap that treats http as a transport mechanism.

Although pipeline of soap processing is also possible, it can never reach the same efficiency

as http.

A networked system is more than just the server, and it includes the clients and interme-

diaries. The approaches to scalability by utilizing the resources on clients and intermediaries

are superior to those focusing on only the server side. The more clients a system has, the more

28See http://jmeter.apache.org/
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“free” resources these approaches can leverage. Caching is such an approach contributing a

lot to the Web’s scalability.

Caches on intermediaries and clients push replicated resource representations closer to

the clients than the origin server. Since the popularity of web requests follows a Zipf-like

distribution [24], caches can be efficient even if only the top portion of requests are cached

due to available space. As we discussed, soap intrinsically lacks caching capability.

2.10 Lessons of distributed computing

Peter Deutsch pointed out seven wrong assumptions made by distributed application devel-

opers when he worked at SUN, and one more item was added to the list by James Gosling

[91]. This list of assumptions is known as “Fallacies of Distributed Computing”.

1. The network is reliable.

2. Latency is zero.

3. Bandwidth is infinite.

4. The network is secure.

5. Topology doesn’t change.

6. There is one administrator.

7. Transport cost is zero.

8. The network is homogeneous.

These assumptions are fallacies because the following facts:

• The developers tend to program distributed applications in the same way as they do

for local applications.

• The developers program and test distributed applications in lab environments, and

assume the real network environments are the same.
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When frameworks/tools allow developers to program a distributed application like a local

one, the developers will be misled. This was exactly what happens with rpc. In A Note on

Distributed Computing [100], Jim Waldo and his colleagues discussed four major differences

between local and distributed computing — latency, memory access, partial failure, and

concurrency. The first two are obvious, while the latter two are not. This list resulted from

lessons learned from the NFS project where rpc was created. NFS is a re-implementation

of a non-distributed api for a distributed application. Partial failure was one of the major

reasons contributing to NFS’s reliability and robustness problem. However, a local api has

nothing do to with network partial failures. Therefore, the “reliability of NFS cannot be

changed without a change to that interface, a change that will reflect the distributed nature

of the application”.

The technology of corba, one successor of the rpc approach, did not avoid its fate of

falling after rising as a popular distributed technology [52]. One of the technical reasons is its

difficulties in working with proxy/firewall and partial failures. Although corba introduced a

standard idl, programmers still largely depended on the code generators. The compatibility

between implementations of the same interface was determined by the code generators for

the stubs.

Soap technically improved rpc and corba in many ways. However, a key characteristic

has not been changed from rpc to corba to soap — the convenience for the developers

to program a distributed application as a local one [98], and therefore all the flaws brought

by this convenience remain. For example, the root reason for incompatibility problems be-

tween different implementations of the same wsdl document is the incompatibility of the

wsdl2code tools. The developers never read the wsdl document, and only read the gener-

ated code stubs.

The misleading way of communication between developers and computers, and further-

more, the ignorance of communication between developers, in my opinion, are also common

mistakes in distributed computing. The Fallacies of Distributed Computing can be expanded

by adding two more items.

9. Tools and libraries remove network complexity.
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10. Programmers communicate in code.

2.11 Summary

This chapter reviewed the fundamental technologies of web services. The compatibility,

performance, and scalability of web services are discussed and the reasons contributing to

the issues are discussed. These issues were better addressed by the Web that implements

the rest architectural style. Web services and restful services were compared from various

technical aspects. Their differences became more clear when reexamining the lessons learned

in distributed computing.

The next chapter reviews the technologies for web service composition, their essentials

and drawbacks. The properties of performance, scalability, reliability, and modifiability of

web service compositions are discussed.
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Chapter 3

Web Service Composition

We can’t solve problems by using the same kind of thinking we used when we created them.

—Albert Einstein

Composability is one of the most fundamental principles of Service-Oriented Architecture

(soa) [34]. High-order services can be developed by composing other services, and the service

ecosystem can evolve from simplicity to sophistication in this way. Therefore, composability

should be considered when a service is initially designed, in much the same way as the

reusability of procedures in procedural programming or that of objects in object-oriented

programming.

Orchestration and choreography are two orthogonal approaches to compositions. Orches-

tration depends on a conductor-like central service controlling the workflow execution, while

choreography assumes consensus on the sequence of actions and interactions among partner

services. Obviously, a choreography instance is more difficult to implement than an orches-

tration instance of the same capability. Each partner service in an orchestration can have

its own authority regarding its service contract, while the partner services in a choreography

must have a common agreement on the contract.

3.1 A case study

In order to make the discussion about service composition easy to understand, the following

application is used as a case study in the rest of this thesis. Science Studio1 and ANISE2 are

1See http://sciencestudioproject.com/about.php
2See http://www.anise-project.com/about.php
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two joint projects that expose experimental laboratories in the Canadian Light Source (cls)3

and high-performance computing capability at the University of Western Ontario (uwo)4 as

services and, furthermore, enable near real-time collaboration for data collection and data

processing [71]. Researchers around the world are able to watch (as a team member) or

control (as an experimenter) live sessions of data collection and processing. The precious

beamline time can be effectively utilized by researches when they can check processing result

during or right after an experiment and adjust their experiment plan on time. The processing

time can be reduced by a factor of 10 to 100 by the high-performance processing capability.

A typical scenario of X-Ray Diffraction (xrd) scan and near real-time data processing is

as follows.

1. An experimenter starts a scan at the VESPERS (Very powerful Elemental and Struc-

tural Probe Employing Radiation from a Synchrotron) beamline of cls. A scan is

composed of a map of scan points.

2. The scan process triggers the Charge-Coupled Device (ccd) detector to collect an image

on each scan point. The image is transferred from the Science Studio server at cls to

a server at uwo.

3. The image is then processed by the high-performance computing facilities at uwo.

4. When an image is processed, the result is transferred back to the cls Science Studio

server, and presented to the experimenter.

Other requirements include:

• An experimenter or team member shall be able to view the process of image collection

and processing at any time, and also access available raw data, processing configura-

tions, and processing results.

• An experimenter shall be able to pause/resume/cancel a running collection and pro-

cessing.

3See http://www.lightsource.ca
4Although it is now commonly referred as Western or Western University, the University of Western

Ontario and the acronym UWO will continue to used. See http://communications.uwo.ca/brandnew/

faq.html .
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• An experimenter shall be able to start a new processing of an existing data set with a

processing configuration.

3.2 Web service orchestration

A web service orchestration is a service composition approach such that a central service is

responsible for conducting the predefined sequence of interactions with client and partner

services in order to fulfill the client’s request. The conductor service encapsulates the details

of the orchestration, and exposes a standard service interface to its clients. At the same time,

the conductor service is also a client for the partner services in the orchestration.

conductor 
service

orchestration 
consumer

partner 
service

client server client server

Figure 3.1: Two roles of conductor service in a service orchestration.

A web service orchestration is normally designed from the bottom up. That is, part-

ner services are always designed first. Even if not implemented, their interfaces should be

available when an orchestration is designed. A representation of service orchestration is the

software artifact that describes the flow of interactions between the conductor service with

its client(s) and partner service(s), including how incoming messages are parsed and pro-

cessed and how outgoing messages are composed. An orchestration representation can be

used as design document for developers and an executable program for orchestration engines.

Web Services Business Process Execution Language (wsbpel) is the most widely adopted

approach to web service orchestration description.

If the scenario described in Section 3.1 is designed as a service orchestration, the basic

partner services to compose the orchestration are described in Listing 3.2 to 3.5. The service

endpoint interfaces are described in the same way as those in Web Service Description Lan-

guage (wsdl) 1.1 [30], except for the notation. The notation in Listing 3.1 is defined based

on augmented Backus-Naur Form (bnf) [31].
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Listing 3.1: A BNF notation for describing service endpoint interface.

endpoint -interface = "interface" [service -name "::"] endpoint -
name "{"

message -exchange
"}"

message -exchange = one -way
| request -response
| solicit -response
| notification

one -way = input
request -response = input "," [CRLF]

output
["," [CRLF] fault]

solicit -response = output "," [CRLF]
input
["," [CRLF] fault]

notification = output
["," [CRLF] fault]

input = "input" ":" tuple
output = "output" ":" tuple
fault = "fault" ":" tuple
tuple = "("# parameter ")" ; a list of parameters

Listing 3.2: The interface of scan service.

name : cls_scan_service
owner : CLS
capacity : starts an XRD scan with predefined configuration;

generates scan data in CLS file system.
interfaces :
interface create_scan {

input:( scan_configuration),
output :( scan_id)

}
interface start_scan {

input:( scan_id)
}
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Listing 3.3: The interface of CLS data service.

name : cls_data_service
owner : CLS
capacity : provides access to data in CLS file system.
interfaces :
interface list {

input:( scan_id),
output :( list_of_image_id)

}
interface read {

input:(scan_id ,image_id),
output :( image)

}

Listing 3.4: The interface of UWO data service.

name : uwo_data_service
owner : UWO
capacity : provides access to data in UWO file system.
interfaces :
interface list {

input:( processing_id),
output :( list_of_result_id)

}
interface read {

input:( processing_id ,result_id),
output :( result)

}

Listing 3.5: The interface of UWO processing service.

name : uwo_processing_service
owner : UWO
capacity : processes raw data with a given configuration;

generates processing result in UWO file system.
interfaces :
interface create_processing {

input:( processing_configuration),
output :( processing_id)

}
interface process {

input:( processing_id ,image),
output :( result_id)

}
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3.2.1 WSBPEL

The language

Web Services Business Process Execution Language (wsbpel) is an XML-based language to

specify business process behaviour using web services [81]. Wsbpel is the most widely used

description language for web service orchestration. The services interacting with the pro-

cess are called partners in wsbpel. A wsbpel document describes the message exchanges

between a process and its partners, including messaging interfaces (portType), message for-

mats (message), and Message Exchange Patterns (meps) (partnerLinkType). A wsbpel

document also describes the business logic for processing messages and conducting message

exchanges. The business logic part of a wsbpel document is composed of scopes and ac-

tivities. A scope provides context for inside activities. Table 3.1 lists major basic activities

and structure activities defined in wsbpel version 2.0. Note that the wsbpel specification

does not provide graphical notations to describe business processes, although some wsbpel

designers like Oracle wsbpel process manager and Eclipse wsbpel editor provide such no-

tations. In practice, wsbpel documents are normally developed with the help of an IDE.

Developers hardly touch the xml directly due to its complexity and poor legibility for human.

Wsbpel documents are transformed to executable code by wsbpel engines for testing and

deployment. In this proposal, I use wsbpel pseudocode to describe processes for the sake of

readability. Although it cannot cover all the details available in the corresponding wsbpel

version, a pseudocode description provides a clear high-level view of a process’ structure and

behaviour. Table 3.1 lists the activities specified wsbpel, their semantics, and corresponding

bnf notations.

A WSBPEL example

The XRD scenario can be implemented by a service orchestration based on the partner

services described in Listing 3.2 to 3.5. Listing 3.6 shows the BPEL description of such an

implementation.
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Listing 3.6: A service orchestration implementation of the XRD scenario in wsbpel.

process xrd_scan_processing : {
sequence : {

receive client ::scan{
output :( scan_configuration , processing_configuration)

},
invoke cls_scan_service :: create_scan {

input:( scan_configuration),
output :( scan_id)

},
invoke uwo_processing_service :: create_processing{

input:( processing_configuration),
output :( processing_id)

},
reply client :: notify{

input:(scan_id , processing_id)
},
invoke cls_scan_service :: start_scan{

input:( scan_id)
},
flow : {

sequence : {
finished_image_list := [],
new_image_list := [],
finished := false ,
while (! finished) {

invoke cls_data_service{
input:( scan_id)
output :( list_image_id)

},
new_image_list := list_image_id -

finished_image_list ,
if (new_image_list.length > 0) {

forEach image_id in new_image_list parallel
{
reply client :: notify{

input:(scan_id ,image_id)
}
invoke cls_data_service ::read{

input:(scan_id , image_id),
output :( image)

},
invoke uwo_processing_service :: process{

input:( processing_id , image),
output :( result_id)

}
}
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}
finished_image_list := list_image_id
if (finished_image_list.length ==

scan_configuration.mapSize){
finished := true

} else {
waitFor : (4 seconds)

}
}

}
sequence : {

finished_result_list := [],
new_result_list := [],
finished := false ,
while (! finished) {

invoke uwo_data_service{
input:( processing_id)
output :( list_result_id)

},
new_result_list := list_result_id -

finished_result_list ,
if (new_result_list.length > 0) {

forEach result_id in new_result_list
parallel {
invoke uwo_data_service ::read{

input:( processing_id , result_id),
output :( result)

},
reply client :: notify{

input:( processing_id ,result_id)
}

}
}
finished_result_list := list_result_id
if (finished_result_list.length ==

processing_configuration.mapSize){
finished := true

} else {
waitFor : (4 seconds)

}
}

}
}

}
}
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3.2.2 Essentials of WSBPEL

Although it might be described in various ways, a web service orchestration can always be

characterized by two essential aspects. The message exchanges are its behaviours observed

from outside; and the concurrency-oriented control flow is its internal structure. In wsbpel,

invoke, receive, and reply are elements of message exchanges, and others are elements of

control flow.

Message exchange

An orchestration provides and accomplishes its service capacity through message exchanges

with clients and partner services. The message exchanges always happen in certain patterns

that reflect the agreed behaviour contract between two endpoints. For web services, such a

pattern is called an mep.

Most soap-based web services rely on http as the transportation protocol. It follows

that request-response is naturally the dominant mep for web services [46]. All messages of

request-response mep must appear in pair and in proper sequence. Request-response works

perfectly for cases when application state can be easily encapsulated in a message pair, and

the time span between two messages is relatively short. However, request-response is quite

constraining for describing all the message exchanges in an application.

Wsdl 1.1 described four meps: one-way, request-response, solicit-response, and notifica-

tion [30]. The details of these meps were described in Listing 3.1. When http is used for

message transportation, all these meps need to be implemented by request-response.

Publish-subscribe is a widely used message exchange pattern in event-driven systems

[58]. An endpoint gets notification for subscribed updates without issuing extra requests in

publish-subscribe pattern, which reduces the latency. Publish-subscribe can be implemented

by a combination of an initial request-response mep and following notification meps.

Concurrency-oriented control flow

A control flow, or flow of control, is the order of executions of a group of activities. The

internal of an orchestration is a control flow that determines the sequence of message ex-
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changes and message processing. Most elements of the control flow for service orchestrations,

for example, if, while, and forEach in wsbpel as shown in Table 3.1, are quite similar to

those in traditional structured programming.

A significant different between the control flows in service orchestrations and those in

structured programming is the native support of concurrency. In wsbpel, flow and pick

are used to describe explicit concurrent behaviours. The flow activity denotes the concurrent

executions of inside activities. The pick activity denotes the concurrent arriving of events.

The forEach activity can be configured to be parallel. The invoke, receive, and reply

activities describe implicit concurrent behaviours, i.e. concurrent message exchanges. Con-

current activity execution and concurrent message exchanges imply high concurrency level

that an orchestration engine needs to handle.

3.2.3 Technical drawbacks of WSBPEL

As discussed in Section 3.2.2, the concurrency-oriented control flow is one of the essentials

of wsbpel. The wsbpel syntax for control flow was designed based on C style. The basic

control flow can be easily mapped to those of structured programming languages by the

engine. A flow can be mapped to a process or a thread of the corresponding languages. The

concurrency part can be implemented by threading for languages like C and Java. However,

multi-threading programming needs a lot of careful engineering in order to avoid the pitfalls

of concurrent programming — deadlock and starvation.

The execution of a wsbpel process is carried out by the engine that it was deployed

on. A wsbpel developer is free to design an orchestration complying with the specification

supported by the engine no matter how complex its concurrency structure is. An engine will

still be able to compile such an orchestration and execute it correctly. It is inevitable for an

engine to sacrifice performance and scalability in such cases. A designer still requires effort

to configure the details of an orchestration, for example, the correlations between incoming

messages and orchestration instances.

Although wsbpel was designed as a specification language rather than a programming

language, it includes some details that should be kept in a programming language. For ex-

ample, the <assign> activity seems more complicated than the assignment in programming

45



languages. The type system of wsbpel relies on the proper interpretations of the wsdl doc-

uments of its partner services. A single <assign> operation often needs the compatibility

of three pairs of wsdl2code and code2wsdl tools — two for partner services and one for the

orchestration itself. The compatibility of wsbpel orchestrations is even worse than that of

normal Web Services.

3.2.4 Other service orchestration approaches

Windows workflow foundation

A workflow describes the series of activities required in order to achieve a goal. It specifies the

person or group of persons to perform the activities and the time and logic dependency among

them. In many cases, the term “workflow” has little semantic difference from “orchestration”

or “process”. A subtle difference between workflow and orchestration is that the former

often includes human activities. Although human activities are not explicitly specified in the

original wsbpel specification, BPEL4People was developed for this purpose [66].

Windows Workflow Foundation (wf), a component of the .Net framework, provides a

namespace, an in-process workflow engine, and a design environment within Visual Studio

for developing workflows interacting with humans and applications [80, 65]. Workflows can

be programmed by markup, code, or combination of code and markup. Markup and code

are equivalent in development because they are based on the same wf apis. Extensible

Application Markup Language (xaml) is the Microsoft native markup language for wf.

Note that an add-on of wf can import and export orchestration descriptions in wsbpel5,

and this add-on is not officially supported by Microsoft.

BPMN

The Business Process Model and Notation (bpmn) specifies a set of graphical notations to

describe business processes. Bpmn was originally developed by the Business Process Manage-

ment Initiative (bpmi)6, which joined omg in 2005. Bpmn aimed to provide understandable

5See http://www.microsoft.com/downloads/details.aspx?FamilyID=

6D0DAF00-F689-4E61-88E6-CBE6F668E6A3&displaylang=en .
6See http://www.bpmi.org/ .
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notations for all business process users, including business analysts and technical developers.

The business partners in a process are called participants in Bpmn. The notations in Bpmn

can be classified into four categories: flow objects, connecting objects, swimlanes, and arti-

facts. Flow objects are the nodes representing events, activities, and gateways. Connecting

objects are the connectors to link flow objects together. A swimlane denotes the ownership or

partition that a group of objects belong to. Artifacts are extra information about the process

like data and annotations. The design of Bpmn is influenced by state transition diagrams

[50] and Petri nets [87]. Table 3.2 lists major notations defined in Bpmn version 1.1.

Bpmn representation is more intuitive than wsbpel representation. The graphical no-

tations of bpmn constrains its ability to describe details like meps and message schemata.

These tasks are no problems for text-based notations like wsbpel. It is possible to convert an

orchestration’s description from bpmn to wsbpel [82]. However, the conversion is difficult

to produce executable wsbpel descriptions.

3.3 Web service choreography

Service composition can also be achieved by service choreography. The fundamental differ-

ence between a service choreography and a service orchestration is that the former has no

centralized point that controls how the interactions among the participants are performed.

The participants of a choreography agree on a predefined protocol that specifies their inter-

actions during the choreography.

Service choreography does not constrain any behaviour inside of an individual service.

Therefore, a participant service can change its internal implementation without breaking the

compatibility with other participants of a choreography as long as the common protocol is

followed. This implies a top-down development approach for service choreography, in which

the message exchange behaviour of a participant should be developed or adjusted according

to the agreed choreography shared by many parties. This often makes the time to market of

a choreography longer than an orchestration.

A choreography cannot be owned by any participant because there is no single point of

control. A choreography often has no clear rule about which participant should be responsible
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Table 3.2: BPMN notations

Name Meaning Notations

F
lo

w
o
b

je
ct

s Event
The start, stop, or intermediate of a flow. An event can
be triggered by message, timer, or others.

Activity An activity can be a task, sub-process, or process.

Gateway
A gateway specifies the divergence or convergence of
sequence flows

C
o
n
n

e
ct

in
g

o
b

je
ct

s Sequence
flow

A sequence flow object denotes the sequence of two con-
nected activities. It can also combined with conditions.

Message
flow

A message flow object denotes the flow of messages be-
tween two participants. Its end can be attached to an
activity or a lane.

Association
An association denotes the relationship between an an-
notation or data object and an activity or connecting
object.

S
w

im
L

a
n
e
s

Pool
A pool is the container of a participant’s activities in a
process

P
o
o
l

Lane
A pool can be divided into several lanes that categorize
activities.

L
a
n
e

A
rt

if
a
ct

s Data ob-
ject

A data object specifies the data associated with a flow
or activity.

Group
A group visually divides a set of activities from the rest
in a diagram.

Text an-
notation

A text annotation provides more information for the
object that it links to.

Text annotation
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for maintenance. The successful execution of a service choreography depends on a shared

interest by all the participants. A choreography will be broken once a participant does

not share the interest any longer. All these factors make choreographies more frangible

than orchestrations since the partner services in an orchestration have their own ownership,

responsibility, and interest.

3.3.1 WS-CDL

The Web Services Choreography Description Language (ws-cdl) is a w3c specification for

describing choreographies of soap-based web services. Ws-cdl is an xml-based language

that provides a global view of the observed behaviour in terms of ordered message exchanges

during p2p collaboration. Note that the development of ws-cdl had not been finished when

its working group was closed in 20097.

Since ws-cdl was not designed as an implementation language, it does not provide the

capacity to replace an executable composition description language like wsbpel. On the

contrary, ws-cdl can be used as a complement of wsbpel, for example, to describe the

collaboration between two wsbpel processes or that between a client and a wsbpel process.

The language

A ws-cdl document contains a root choreography that is the only top-level choreography

allowed in a ws-cdl document. A root choreography can contain enclosed choreographies

that are defined either locally in the enclosing choreography or globally as a separate root

choreography. In this way, a choreography can be the composition of other choreographies.

The basic building block of a choreography in ws-cdl is an interaction. An interaction

is one or more message exchanges between two participants. The participants taking part in

an interaction play different roles. The messages are exchanged through channels connect-

ing roles. The sequence of interactions can be constrained by three ordering structures:

sequence, parallel, and choice. These structures are quite similar to sequence, flow,

and pick in wsbpel respectively. Interaction(s) can be grouped into a container called work

7See http://www.w3.org/2002/ws/chor/

49

http://www.w3.org/2002/ws/chor/


unit. A work unit provides a guard, a repeat, and a block constraint to its body.

Similar to wsbpel, ws-cdl uses activities to describe the performed work. An activity

can be an ordering structure, a work unit, or a basic activity. A basic activity is an interaction,

a perform activity, an assign activity, a silent action activity, a no action activity, or

a finalize activity. The perform activity is used to perform an enclosed choreography.

The assign activity is for copying the value from a source variable to a target variable. The

silent action is designed for an unobserved action, and no action for doing nothing. The

finalize activity is used to denote the last action to perform before a choreography instance

is finished. Such an action can be to confirm, or to cancel the result of the instance based on

some condition. Listing 3.7 shows the augmented bnf notation of ws-cdl.

Listing 3.7: Bnf notation for ws-cdl.

choreography = "choreography" choreography -name ":" "{"
activity [, finalizer] [, exception] "}"

activity = ordering -structure | work -unit | basic -activity
finalizer = "finalizer" : "{" activity "}"
exception = "exception" : "{" work -unit "}"

ordering -structure = sequence | parallel | choice
sequence = "sequence" ":" "{" #activity "}"
parallel = "parallel" ":" "{" #activity "}"
choice = "choice" ":" "{" #activity "}"

work -unit = "work -unit" unit -name ":" "{"
["guard" ":" boolean | expression ","]
[" repeat" ":" boolean | expression ","]
["block" ":" boolean | expression ","]
activity

"}"

basic -activity = interaction | perform | assign | silent | no |
finalize

perform = "perform" "(" choreography ")"
assign = target ":=" source
silent = "silent" "(" role ")"
no = "no" "(" role ")"
finalize = "finalize" "(" choreography -name [, finalizer] ")"

interaction = "interaction" interaction -name ":" "{"
"channel" ":" channel ,
"from" ":" role ,
"to" ":" role ,
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"operation" ":" operation ,
#exchange

"}"

exchange = "exchange" exchange -name ":" "{"
"send" ":" tuple ,
"receive" ":" tuple

"}"

A WS-CDL example

We can use ws-cdl to describe the protocol between the xrd scan processing orchestra-

tion and the uwo processing service discussed in Section 3.2.1. Listing 3.8 shows the

choreography described by the notation introduced in Listing 3.7.

Listing 3.8: A choreography for XRD image processing.

choreography xrd_processing_on_demand : {
sequence : {

interaction create_processing : {
channel : processing_channel ,
from: processing_client ,
to: processing_service ,
operation: create_processing ,
exchange create_processing_instance : {

send : ( processing_configuration ),
receive : ( processing_id )

}
},
workunit processing : {

repeat : true ,
sequence : {

silent (processing_client),
interaction process : {

channel : processing_channel ,
from: processing_client ,
to: processing_service ,
operation: process ,
exchange process : {

send : ( processing_id , image ),
receive : ( result_id )

}
}

} } } }
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3.3.2 Essentials of WS-CDL

Conversation

Service choreography emphasizes conversations more than message exchanges. A conversa-

tion is a sequence of message exchanges between two or more participants without a third-

party control. A conversation provides to all participants a context within which the messages

are directly correlated. An ongoing conversation can yield various possible flows of message

exchanges. Note that ws-cdl uses interaction for conversation, and only allows two par-

ticipants in an interaction. The message exchanges in an interaction happen on the same

channel.

Modular design

Different from service orchestration, a service choreography does not itself provide a web ser-

vice interface. It just describes the possible interactions among service participants. There-

fore, a choreography can be absolutely independent of other choreographies about the same

set of web services. This makes it possible to design choreography in a fully modular fashion,

as suggested by perform in ws-cdl.

The modular design of service choreography benefits its reusability. For micro choreogra-

phies can be used to construct macro choreographies without modification. If the implemen-

tation of a choreography can keep the modular nature of its design, then the reliability of

a composition system can be improved. Most part of a macro choreography will still work

properly when a micro choreography inside it fails.

3.3.3 Technical drawbacks of WS-CDL

Ws-cdl working group started to work within w3c in 2003. The first version of the spec-

ification was published in 2004, and it became a w3c candidate recommendation in 2005.

However, there were only very few attempts to implement it. pi4soa8 was a joint project by

academics and industry. It delivered a graphical editor for ws-cdl as an Eclipse plug-in.

8See http://sourceforge.net/projects/pi4soa/
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The developer can also use the tool to define scenarios of the choreography and simulate it.

By scenario simulation, the choreography can be verified empirically. A similar implementa-

tion to the pi4soa Eclipse plug-in was programmed in Erlang [40]. So far, there has been no

commercial implementation or support for ws-cdl. The w3c ws-cdl working group was

closed in 2009 with major documents unfinished9.

One of the original goals of ws-cdl was to develop the language as a documentation

tool for service choreography. Ws-cdl, represented in xml, was designed on the basis

of π-calculus [27], a formal process language. Theoretically, a ws-cdl choreography can

be formally verified, and be transformed into π-calculus descriptions of end-point service

behaviour [26]. Those descriptions, in turn, can help the development of individual services

or service orchestrations. Unfortunately, neither xml nor π-calculus was a developer-legible

language for documentation.

3.4 Interesting properties of web service compositions

The compatibility, performance and scalability of web services were discussed in Chapter 2.

Most of the arguments are still applicable to web service compositions. A service composi-

tion, either an orchestration or a choreography, tends to have more complex structures and

behaviour than normal web services. This also complicates the analysis of a composition’s

properties of performance, scalability, reliability and modifiability.

3.4.1 Performance

The performance of a composition service depends on the performance of all its partner

services, its structure, and its workload characteristics. Although the overall structures of

service orchestration and service choreography are quite different, they share some common

flow structures. Table 3.3 shows the shared structures and their corresponding wsbpel and

ws-cdl notations.

9See http://www.w3.org/2002/ws/chor/ and http://www.w3.org/2002/ws/chor/edcopies/primer/

primer.html
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Table 3.3: Common flow structures of wsbpel and ws-cdl.

Structure BPEL notation CDL notation

sequence sequence, while sequence, repeat
parallel flow, forEach parallel
choice pick, if choice, guard

We can apply the method of hierarchical modelling [28, 69] to analyze the perfor-

mance of service compositions with complex structure. The basic idea of hierarchical mod-

elling is to treat a block of network in a model as a black box with input and output, and

assume we know its performance measures like residence time. We then decompose the black

box into more blocks recursively until we have the performance measures of all the compo-

nents inside. This process is called decomposition. After decomposition, we can put the

pieces together and have an approximate result of the whole model’s performance. This

second process is called aggregation.

Lots of work has been done on analyzing queueing network models by aggregation. Most

approaches target closed networks. A service composition cannot be modelled as a closed

network because the partner services are open to other consumers other than the clients and

services of the composition. We can model a service choreography as an open network, where

all the partner services are open to external workloads. A service orchestration can be mod-

elled as a mixed network, where the client requests to the orchestration are within a network

while partner services are open to external requests. The response time of an arbitrary web

service is load-dependent and its distribution is so complicated that even the major service

providers like Google App Engine10 and Amazon Web services11 do not specify a guaran-

teed response time in their service level agreements. It is both technically and economically

difficult to analyze the queueing network model for a service composition. However, the

hierarchical modelling approach still can be used to perform approximate boundary analysis

of service compositions. For example, the residence time of a parallel structure will have

a lower boundary as the maximum of the lower boundaries of all branches, and an upper

boundary as the maximum of the upper boundaries of all branches.

10See http://code.google.com/appengine/sla.html
11See http://aws.amazon.com/ec2-sla/
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The performance of partner services of an orchestration can be assumed to be independent

of its workload, i.e. the number of orchestration requests. However, the performance of the

conductor service depends on its workload. Furthermore, the performance of the whole

orchestration depends on the workload. This is also a reason to model a service orchestration

as a mixed network. The conductor service needs to perform multiple message exchanges with

partner services and the client for every orchestration instance. Each message exchange will

consume resources like network I/O, memory, cpu, and perhaps databases. High concurrency

level and tight competition for resources often degrade the performance of the conductor

service, and hence of the service orchestration as a whole.

For a long-run process, the clients normally want to be able to retrieve the progress of

their requests from time to time. Such requests make the performance of central conductor

service worse. For they increase the concurrency level and compete for the resources. Caching

can improve the responsiveness by reducing the workload on an origin server.

3.4.2 Scalability

A service orchestration’s scalability is largely decided by the conductor service. State and

concurrency are the major factors affecting a conductor service’s scalability. These two factors

are often entangled with each other.

The states in a service orchestration can be grouped into three categories according to their

lifetime. The states of first type have short lifetimes. Such states come to exist triggered by an

inbound message and disappear when the incoming message is processed or a corresponding

message is sent out. The states of second type have relatively long lifetimes. They can span

a pair of or more of request-responses. The states of third type have the same lifetimes as an

orchestration instance. We name the states instant states, conversational states and lifelong

states according to their lifetimes.

In order to allow an orchestration instance to execute correctly and efficiently, states

should be managed corresponding to their nature. Implementing a lifelong state as a conver-

sational state will result in incorrectness of execution. On the other side, implementing all

states as lifelong states will waste computation resource and make the execution inefficient.

A sequence of interactions with a server with state dependency among them is called a
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session in web applications and web services [55]. A session is normally programmed as an

object associated with a client on the server side in technologies like asp, jsp and Servlets.

Orchestration states can be implemented by these session technologies as well. There are two

ways to achieve session clustering — session affinity and session sharing [29].

By session affinity, all requests belonging to a session are always routed to the same node

on which the session was initialized. This requires a front end node to maintain a record of

the associations between sessions and back end nodes. A back end node with live sessions

needs to be available so that those sessions can be successfully finished. Obviously, sticky

sessions will add extra load to front end node(s) and can also bring load imbalance among

back end nodes. The dependency between a request and the corresponding pre-determined

node will also degrade the reliability of the service and increase management complexity.

By session sharing, sessions are shared by all the nodes in a cluster, so that a request

can be handled by any node. Session state can be shared in two ways: 1) Updated session

states are maintained by a persistence service like a database, and later retrieved by any

node needing that state. 2) Session states are maintained in the memory that is accessible

to all nodes. These two approaches are shown in Figure 3.2.

The first approach is often criticized for moving the bottleneck from the application

layer to the persistence layer. For normal relational database, many write operations for

each orchestration instance will bring high latency to the database. That will result in longer

residence time for all orchestration instances, and the capacity and performance gains brought

by clustering can be neutralized. This problem can be partially fixed by putting the storage

of the persistence service in memory like Redis12.

The second approach is known as software-based Distributed Shared Memory (dsm).

Dsm makes development easier when information in distributed memory can be treated the

same as that in local memory. However, dsm introduces coupling between the nodes, and

the nodes clustered by dsm need to be more homogeneous than those in the first approach.

Multithreading is implemented in many servers in order to handle simultaneous requests

easily, improve performance by increased concurrency, and utilize multiprocessors. When a

request initializes an orchestration instance on a multithreading application server, a thread

12See http://redis.io/
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Figure 3.2: Two architectural approaches for session sharing.
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will be located for the instance. There are two design options regarding the thread’s be-

haviour: 1) the thread continues working for the instance until the orchestration instance is

finished, and 2) the thread stops working for the instance when there is no active processing.

If a large portion of the instance’s lifetime is not active and waiting for messages or events,

the second option will save computational resources and provide better scalability than the

first option for a given number of threads.

The second-type and third-type states often need to be shared by threads. The issues of

deadlock and starvation are inevitable when states and threads are entangled together. The

global variables and assign operation in wsbpel can cause such issues.

3.4.3 Reliability

Reliability of systems is often described and measured as the probability of no failure within a

given operating period [94]. The reliability can also be derived via failure rate, which describes

the probability that a failure happens instantly after a failure-free period t. The exponential

failure distribution is a popular model for reliability, i.e. R(t) = e−λt, where R(t) is the

reliability of operating period t, λ is the failure rate. Besides the failure rate, reliability can

also be measured by Mean Time To Failure (mttf), Mean Time Between Failures (mtbf),

Mean Time To Repair (mttr), and availability. Availability is the probability that a system

is available at any point of time. Simply, reliability can be measured by

A =
mttf

mtbf
=

mttf

mttf + mttr
(3.1)

A system’s reliability is determined by its vulnerable components. There will be a relia-

bility limitation for any component to reach due to physical or cost reasons. Meanwhile, a

system’s reliability can always be improved by removing single points of failure by introduc-

ing redundancy to the system. Note that too much redundancy will still increase the cost

and management complexity of a system.

For a network-based application, reliability is the capability to maintain its normal service

level or recover from a degraded service level. Partial failures are inevitable for elements like
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data, processors, and connectors13in network-based applications.

The pursuit of reliability in network-based applications sometimes brings conflicts with

other properties like data consistency. In the context of databases, consistency refers to the

property that a database remains consistent after a transaction [44]. In the context of data

services, a strong sense of consistency means that all processes get the same representation

of system state after the state is updated by one of the processes, no matter where a process

resides on the network [99]. In other words, if a data service is consistent, then its clients

can always get accurate information at the same time. A network partition is an event when

the communication between two parts of the network is lost, which is often caused by the

failures of network devices.

Eric Brewer made the following conjecture known as the CAP theorem [25].

Theorem 3.4.1 It is impossible to have a network-based system that has all three properties

of consistency, availability, and tolerance to network partitions.

This conjecture was later formally proved [43]. An implication of the CAP theorem is

that a system cannot be consistent if it has to be highly available and tolerant to network

partitions. For some situations, the availability of incomplete information is still better than

unavailability. Vogels reported that availability was more desired than consistency in the

design of Amazon web services [99].

For service composition, reliability means the ability to provide service to new requests

and recover instances from partial failures. Partial failures for a composition can be the loss

of partner services due to either network problems or crashed partner services. Wsbpel and

ws-cdl both support the description of fault or exception handling mechanisms. However,

the notion of faults is different from that of partial failures. Faults are systemically predictable

behaviours that are not success, while partial failures are unpredictable behaviours. In other

words, a fault can be caught and handled, while a partial failure can only be recovered

from. Recovery from partial failures is also different from compensation that is defined in

13In Section 2.3.7 of his dissertation, Roy Fielding wrote “Reliability, within the perspective of application
architectures, can be viewed as the degree to which an architecture is susceptible to failure at the system
level in the presence of partial failures within components, connectors, or data.” I think what he meant was
“the degree to which an architecture is” NOT “susceptible to failure at the system level ...”
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wsbpel to implement transactional data handling. A service composition’s reliability can

be examined by how fast the composition instances can return to normal operation condition

from partial failure. It can also be quantified by the portion of an application that still works

when the rest of it fails.

3.4.4 Modifiability

The modifiability is how easy an application can be changed in order to modify a specific

component’s implementation (evolvability), or adding functionalities to it (extensibility), or

reuse some components to achieve new functionalities [38]. A networked application needs to

evolve when service hosting systems, client environments, or the network is updated. Such

updates might not be the common scenarios for a standalone desktop application to handle,

but they are never exceptional for distributed applications running on the Internet like service

compositions. When a component is to be updated, the other part of the application should

still work as normal. Because the component instances are often distributed across networks,

the update should be performed in a gradual manner. When end users have new requirements,

an application needs to be extended, which means to add more functions to the application

while keeping existing functions working.

For service composition, modifiability can be specified as

evolvability a service composition can replace a partner service with a new one in order to

sustain or achieve a better service level.

extensibility a service composition needs to provide new services to the clients according

to changed requirements.

reusability Part of a service composition can be used in a new service composition without

modification.

These properties are very difficult to achieve by service orchestration. A wsbpel process can

never be modified once it is deployed. A modified process needs to be compiled and deployed

again on the process engine.
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3.5 Summary

This chapter reviews and compares the approaches for service composition representation.

I analyzed the essential characteristics of service orchestration and choreography from their

representations. These characteristics contribute to some issues of properties like perfor-

mance, scalability, reliability and modifiability. The next chapter presents the architectural

style of RESTful Service Composition (rsc) and a corresponding programming model.
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Chapter 4

RESTful Service Composition

Design-by-buzzword is a common occurrence. At least some of this behavior within the

software industry is due to a lack of understanding of why a given set of architectural

constraints is useful.
—Roy Fielding, Architectural Styles and the Design

of Network-based Software Architectures

You can’t connect the dots looking forward; you can only connect them looking backwards.

—Steve Jobs, You’ve got to find what you love

As discussed in Chapter 2 and 3, the traditional web service composition approaches face

challenges from the aspects of performance, scalability, reliability and modifiability. The

approaches to addressing such challenges on the implementation level, for example, replacing

a Java Virtual Machine (jvm) implementation with a native C implementation to improve

service performance, have the following disadvantages:

• Such an approach is often application-specific. It is difficult to apply a solution for one

application to others.

• Such an approach is often constrained by its dependent environment. For example, the

demand of a cpu-intensive task is always limited by the available cpu speed, which, in

turn, is physically limited [60].

• Such an approach does not address the group of challenges as a whole. In some cases,

the improvement in one aspect can lead to degradation of other aspects. For example,

when an application’s performance is improved by increasing the concurrency level on
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the host system, its reliability is often degraded because the system is less robust to

workload fluctuations.

In order to avoid these disadvantages, I choose an architectural approach to addressing the

challenges facing service compositions, because it is application-independent, environment-

neutral, and able to address the challenges as a whole. For example, such an architecture can

utilize event-driven programming for concurrency instead of multi-threading in order to avoid

the reliability penalty of increasing concurrency level. I name this approach RESTful Service

Composition (rsc). The notion of restful service composition in this thesis is different from

those that provide “restful” interfaces for traditional web service compositions or service

compositions of restful services [84, 90]. The questions discussed in this chapter are:

1. How to describe a software architectural style in a systematic way?

2. What is rsc? How is it derived?

3. How to program an rsc-style application in practice?

4.1 Describing software architectural style

The design patterns [42] initiated by the “gang of four” have become a movement in oop.

One of the advantages of their approach was to describe design patterns in a unified way.

A software architectural style is quite similar to a software pattern in that they are both

abstract and generic software artifacts for specific type of design problems. I adapt the

approach to describing design patterns to architectural styles in this thesis. In fact, such

an approach was also used for building architectural styles [3], which inspired the work of

software design patterns.

A software architectural style is composed of four elements: the problem domain, the

proposed solution, one or more application examples of the solution, and the consequences.

The problem domain describes the common characteristics of design problems that an archi-

tectural style aims to tackle. Such characteristics reflect both functional and non-functional

requirements. The non-functional requirements are often more difficult to be addressed than

the functional requirements.
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Some common non-functional requirements are:

Performance/Scalability A system provides service in a responsive manner, and is able

to sustain the service with increasing numbers of users or user requests;

Reliability A system sustains its service in the presence of errors and failures;

Modifiability A system evolves easily when it needs to fulfill new functional requirements.

The proposed solution is an architectural style that is designed for the specific problem

domain. As discussed in Chapter 2, a software architectural design is composed of a set of

elements, constraints describing the organization and interaction of elements, and the ratio-

nale behind the choice of elements and constraints. An architectural style, correspondingly,

is composed of a set of generic elements, the constraints ruling the common way for the

generic elements to interact, and the rationale. A generic element can be of a type that

represents how it is connected to other elements. For example, in the architectural style of

client-stateless-server (CSS), a server is connected to its clients in a one-to-many relationship.

A generic element can also be of a role that represents how it interacts with connected ele-

ments. For example, a server needs to respond to proper requests from clients. A constraint

in an architectural style does not restrict the details of interactions between generic elements,

but their principles. For example, the stateless communication constraint limits a client’s

dependence on the context state stored on a server.

The consequence is the structural, behavioral and implementation details resulting from

the constraints. For the CSS architectural style, the consequence is that a request needs

to contain all the information that the server needs to generate the correct response. The

rationale behind the client/server abstraction of elements is modifiability, and that behind

the stateless constraint is scalability and reliability.

4.2 Defining RESTful Service Composition

A restful service composition, in this thesis, does not simply refer to a composition of

restful services, nor a service composition with so-called restful interfaces. The archi-

tectural style constrains not only its external interfaces to service consumers and partner
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services, but also its internal structure in order to achieve the desired properties. A RESTful

Service Composition (rsc) does not have to be developed as a service orchestration nor as a

service choreography. Instead, an rsc has a decentralized structure like service choreography

but still provides interfaces to initiate composition instance and track its status like service

orchestration.

4.2.1 The problem domain

RESTful Service Composition (rsc) describes an architectural style for networked systems

where services are the basic building blocks. A networked system is composed of elements

distributed across networks. Partial failures are common and not abnormal in a networked

system. Therefore, it is a basic functional requirement for a networked system to be able

to work with partial failures. A service is an element providing access to information or

functions to process information. As far as rsc is concerned, the services can be rpc- or

soap-based web services, or restful services.

The service composition should be able to provide performance as good as its partner

services, though by nature, it is more complicated than any of its partner service. The service

composition needs to be able to scale with increasing work load or number of consumers. The

service composition should still be able to provide service, to some extent, with the existence

of partial failures related to partner services or network. The target service should be able

to be modified easily in order to deliver new functionalities.

4.2.2 Element types and roles

Elements can be classified into different categories or types based on their characteristics.

The type represents an element’s nature and capabilities inside a system. An element can

play different roles in various circumstances. There are basically three roles for the elements

in a normal service composition — composition consumer, partner service and composition

itself. In soap-based service compositions — either service orchestration or service chore-

ography — the element types include web service, web service client, and soap message.

This section discusses the rsc element types, including restful service composition client,
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restful partner proxy, composite resource and functional computation, and rsc element

roles, including resource client and relaying service. Some types and roles are introduced so

that an rsc-style composition is able to cooperate with existing non-restful services. Some

types and roles are inherited from rest, and some are specially designed for rsc.

RESTful service composition client

An rsc provides services to its consumers in a restful way. This requires composition

clients to comply with the rest constraints of cache, stateless, and uniform interface. The

cache constraint requires a client to understand cache control metadata in messages and also

implement a client-side cache if possible. For service responses of big payloads, cache can

dramatically improve the user-perceived performance by reducing the response time. The

stateless constraint requires a client to include enough explicit information in each request so

that the service composition understands the requests without maintaining the session state

with its clients. The uniform interface constraint requires a client to make use of the uniform

identification and methods provided by the services, and furthermore, to be able to take part

in state transitions driven by hypermedia.

RESTful partner proxy

A partner service of rsc can be either restful or non-restful. Although some might argue

whether a service with restful interfaces is truly restful, I use “restful partner service” to

refer to a partner service providing restful interfaces. A more straightforward distinction

between a restful partner service and non-restful one is that the latter’s interfaces are

developed on the basis of soap or rpc.

As discussed in Chapter 2, rpc or soap makes a service difficult to work with cache

and intermediaries. These drawbacks prevent a service composition of non-restful services

from achieving the desired properties of performance, scalability, and reliability. The restful

partner proxy element type is introduced to rsc in order to overcome these drawbacks while

still making use of the existing non-restful services.

A restful partner proxy connects restful clients to a non-restful service. The proxy

communicates with non-restful services in soap or rpc, and communicates with restful
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clients through its uniform interfaces. With the help of restful partner proxies, a rsc can

treat non-restful services as restful at least at the interface level.

There is no way for obtaining information for building a restful interface from the in-

terface description of a non-restful service, for example, we cannot get the cacheability and

idempotence of an operation by analyzing the wsdl of a soap-based web service. Therefore,

the implementation details are required in order to develop a restful partner proxy for a

non-restful service.

Composite resource

A resource in the context of rsc has the same sense as that in rest discussed in Section

2.7. A resource is any information that can be named. A composite resource is a resource

composed of a set of other resources. An operation of a composite resource is often mapped

to corresponding operations of its members. The representation of a composite resource is

normally generated by retrieving, processing and combining the representations of its member

resources. A common pattern for service compositions is that an operation is first mapped

to a set of partner services and then yield the result by reducing. This pattern can be

implemented as a composite resource.

Resource client

In rest, the server is viewed as a connector, and the details inside a server are not of interest

in architectural design. This makes sense for designers to focus on the relationships between

server and other connectors like client and cache. However, from rsc developer’s point of

view, the internal structure of a server is important for the overall quality of the whole

application. For example, Model-View-Controller (mvc) is a widely used architectural style

for web application servers. It is also called a multi-tier architecture, and somehow related

to the layered system constraint in rest.

An rsc-style composition plays the role of service client as shown in Figure 3.1 when

consuming restful partner services. It is obvious that the client element needs to follow the

rest constraints when interacting with restful partner services. An rsc-style composition

is also a client when accessing other resources like files or Database (db). For such resources,
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the access is normally conducted through native file or db interfaces.

The accesses of partner services, files and db are all related to i/o. Such operations

are normally slow. The synchronous way of programming i/o often degrades a system’s

performance and scalability. In rsc, the resource clients need to follow the constraints that

results in an asynchronous i/o operations and programming.

Functional computation

The most important abstraction in rsc is a functional computation. A functional compu-

tation is a self-contained computation that can be represented by a function and its inputs.

The inputs to a function can be other functions, and the output can also be a function.

The evaluation of a function in rsc may depend on its environment, and form a closure. A

functional computation can relay the computation to another functional computation with

a future computation as the callback. Such computation relays are often related to i/o

operations that might take a while to finish.

Furthermore, a computational representation can be sent to a capable service where the

computational representation can be evaluated to create a computation instance. This makes

it possible for a service to finish part of the computation of a composition instance, and then

pass it to the other service where the computation can be continued. A decentralized structure

will therefore be formed.

Relaying service

When a service finishes part of the requested computation and then passes the rest of the

computation to the next service, it plays the role of relaying service. A relaying service can

send a computation representation to another service or even to itself. The computation of

a composition instance can be carried out by a series of inter-connected relaying services.

During the process of computational relaying, each relaying service needs to decide how

to finish the received computation according to its perception of the “baton”. Different from

the baton used in a race, a computational baton can be modified during a relay, and it can be

branched and merged by a relaying service on the path to the finish. The sender has knowl-

edge of the receiver’s capacity to evaluate the relayed computation. This can be achieved by
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computational content negotiation. A relaying service always behaves conservatively so that

it only executes the trusted part of received computation representation.

4.2.3 Constraints

Staged computation

A service composition is partitioned into loosely-coupled process sections called stages. A

stage is a scope where computation is carried out within its own context and control flow. It

is also a leg that composes the whole process.

A stage normally starts with an i/o event that can be a message, a file event, or a db

operation event. A stage ends with an i/o operation such as sending a message or a group

of similar messages, or initiating a file or db operation that will trigger new events in the

future. There is no i/o operation inside a stage.

A stage encapsulates computational state so that there is no shared state between stages.

The lifetime of a stage is always shorter than the composition because it does not need to

wait from an i/o or timing operation to finish. The lightweight character of a stage makes

it computationally cheap to replicate a stage or re-execute a stage.

An existing service composition designed in the orchestration way can be transformed

into stages by partitioning it according to stage patterns [72]. This process can also happen

dynamically by a relaying service that finishes the leading stage of a received computation

and passes the rest to the next relaying service or a resource client.

Uniform computation identifier

Service compositions, composition instances and stages are explicitly identified by one mech-

anism. Since functional computation is the abstraction for compositions, composition in-

stances and stages in rsc, their identifiers are called computation identifiers. A computation

identifier can be considered as a special type of resource identifier, and therefore can reuse

the syntax of a resource identifier.

A computation identifier is the name of a computation and is the endpoint to manipulate

it. The uniform computation identifier makes it possible to expose the computations in
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different locations to the same space of inter-connected resources and services.

Access methods are the same for all computations

Similar to rest, rsc requires all computations and computation instances to be accessed

by the same set of methods. A specific computation or computation instance may allow a

subset of the methods. The semantics of those methods for computations or computation

instances are semantically similar to those for resources. This constraint makes it possible for

an intermediary service, like a relaying service, to get the basic information of a request just

by interpreting the access method and the identifier. For example, we can reuse http meth-

ods for access computations in an rsc-style composition. Table 4.1 describes the methods’

semantics.

Table 4.1: The semantics of http methods for computation and computation
instances in rsc.

Method Semantics

GET
retrieve the representation of the computation

retrieve the status of the computation instance

PUT
create a new computation or modify the existing one identified by the uri

change the state of the computation instance, for example, pause or resume,
modify the inputs of an active computation instance

POST
create a new computation instance with given inputs

provide an active computation instance with more inputs

DELETE
remove the computation

stop and remove the computation instance

The transitions between stages are driven by baton passing

The loosely-coupled stages of an rsc instance are linked together by batons. Each instance

stage is initiated by a baton, which is either passed to it from the previous stage or created

on the initial composition request. Different from the baton used in race, a computational

baton can be modified during a relay, and it can be branched and merged on the path to

finish. The sender and the receiver of a baton have mutual trust. The sender has knowledge
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Figure 4.1: The flow structure of rsc compared with typical hub-spoke structure of
service orchestration.

of the receiver’s capacity to understand and finish the relayed computation. This can be

achieved by computational content negotiation if possible.

A baton can be a message that contains a computation representation or computation

identifiers based on which the receiver can construct its stage computation. A baton can

also be a callback passed to a resource client. The callback will be triggered to continue the

computation when the resource access is finished.

4.2.4 Consequences

Structure

When a service composition is partitioned into computational stages, the typical orchestra-

tion’s hub-spoke structure will likely change to a flow structure shown in Figure 4.1. The

flow structure makes it possible for a service composition to be deployed in a decentralized

way. This improves a service composition’s scalability by removing the major scalability

bottleneck — the central hub.

The continuation of a functional computation makes it possible for a service to finish
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part of a computation and pass the rest of the computation included in a baton to the

next service. The computation of a composition can be relayed until it is finished in this

way. A service can relay the computation to a different service or to itself. An rsc-style

composition can be implemented by the services capable of executing staged computations.

Computation negotiation can make the flow structure of baton passing even dynamic since

a relaying service can choose to accept or alter the computation to be passed at runtime.

Behaviour

The functional computation abstraction and baton passing require composition stages to sup-

port computation negotiation. Computation negotiation makes a service composition more

dynamic and flexible than traditional service orchestration or choreography, since each relay-

ing service can choose to accept or alter the computation included in a baton message. The

programming of service and client part of a relaying service becomes even more sophisticated

because of the dynamics.

Many services use http for message transportation. Request-response is the only mes-

sage exchange pattern supported in http [14, 36]. Most http-based server applications

like servlets can commit responses only when the computation initiated by the request is

finished. This model of synchronous processing and messaging brings challenges for rsc’s

staged computation because a stage can never wait for its successor stages to finish their

computation. Asynchronous conversation is one of the consequences for services in order

to carry out asynchronous processing. Asynchronous conversation can be implemented with

either new meps or a series of request-response’s.

An asynchronous conversation based on request-response needs the participants to follow

simple protocols. For example, endpoint A sends a request to endpoint B, and B replies

immediately and tells A to retry in a period of time. Then A is free to do something else

until the time for retrying. In this case, A needs to be able to schedule the retry. Another

way is as the following. B replies immediately and tells A that A will be contacted when

what A just requested is available. In this case, B needs to be able to send messages to A,

and A needs to be able to listen. Figure 4.2 shows two asynchronous conversations composed

of synchronous messaging. An asynchronous conversation needs more request-response pairs
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Figure 4.2: Asynchronous conversations composed of synchronous messaging.

than the corresponding synchronous version.

Implementation

The abstraction of functional computation implies that an rsc-style composition needs to

be implemented by a language with first-class functions. Popular oop languages like Java

or imperative programming languages like C also can be used for implementation, but the

lack of first-class functions in such languages will increase the complexity of programs and

the effort of programming enormously. Chapter 5 will have a simple comparison for this.

The computation to be passed to a relaying service needs to be represented by a language

that can be converted to or is itself executable in run time by the relaying service. For a

static programming language like C or Java, that will be difficult to implement. It will be

quite natural to use dynamic languages with virtual machine support like JavaScript for this

purpose.

When a stage ends with an i/o operation via a resource client, its computation terminates

right after the resource client sends out the resource access request, no matter how long the

i/o operation will run. This requires the resource client to be programmed in an asynchronous

way. And that in turn requires the system to support Asynchronous Input/Output (aio).
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Table 4.2: File and composite file resource interfaces.

URL Method Request Response

/{scan}/?{query} GET indicates accepted
mime types and cache
control in headers

the representation
of the composite
resource specified by
the query

/{scan}/{file} GET indicates cache control
in headers

the content of the file

/{scan}/ POST indicates form-data
and files in head-
ers and multipart
contents in body

the locations of newly
created resources like
/{scan}/{file} if
present.

4.2.5 An example

As discussed in Section 3.1, a service composition can be developed for near real-time pro-

cessing of XRD data. Part of the service composition is to transfer raw data from a cls

service to a uwo service when it is available, and similarly to transfer the processing results

in the opposite direction. Section 3.2.1 described a service orchestration designed on the basis

of web services. The scenario can be implemented as an orchestration based on http-based

restful services. The key resources in this design are file and composite file whose interfaces

are listed in Table 4.2.

Part of the orchestration of these restful services will be

Listing 4.1: Part of an orchestration of restful services.

flow : {
sequence : {

finished_image_list := [],
new_image_list := [],
finished := false ,
while (! finished) {

list_image_id := GET(cls_data_service/scan_id?all),
new_image_list := list_image_id -

finished_image_list ,
if (new_image_list.length > 0) {

forEach image_id in new_image_list parallel {
image := GET(cls_data_service/scan_id/

image_id),
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result_id := POST(uwo_processing_service/
scan_id , {processing_id , image})

}
}
finished_image_list := list_image_id
if (finished_image_list.length ==

scan_configuration.mapSize){
finished := true

} else {
waitFor : (4 seconds)

}
}

}
sequence : {

finished_result_list := [],
new_result_list := [],
finished := false ,
while (! finished) {

list_result_id := GET(uwo_data_service/
processing_id?all)

new_result_list := list_result_id -
finished_result_list ,

if (new_result_list.length > 0) {
forEach result_id in new_result_list parallel {

result := GET(uwo_data_service/
processing_id/result_id)

}
}
finished_result_list := list_result_id
if (finished_result_list.length ==

processing_configuration.mapSize){
finished := true

} else {
waitFor : (4 seconds)

}
}

}
}

One of the benefits of rest is that the solution described in List 4.1 can improve perfor-

mance by caching file resources. Except for the restful interfaces, this design has the same

structure to that in List 3.6. Such a structure makes both designs suffer two issues:

• Transferring large image files from the cls service to the service composition and in

turn to the uwo service can be slow and resource-intensive.
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• The parallel access of many remote resources can slow down the service composition

and even lead to race conditions.

A new composition is designed by applying the rsc style. In this new design, the access

to remote resources is represented as a computation, and the composition is partitioned into

stages.

Listing 4.2: The relaying service of uwo data service.

on(POST , /scans , image_resource_list , processing_id) {
transfer_stage_id := create_stage(image_resource_list ,

processing_setting_id , callbacks)
reply(uwo_data_service/transfers/transfer_stage_id)

}
create_stage = function(image_resource_list ,

processing_setting_id , callbacks) {
transfer_stage_id := gid(image_resource_list)
register_state(transfer_stage_id)
forEach resource in image_resource_list {

http_client(resource/method , resource/url , callbacks(
transfer_stage_id , processing_setting_id , request ,
response))

}
return transfer_stage_id

}
callbacks = [onSuccess , onFail]

onSuccess = function(transfer_stage_id , processing_setting_id ,
request , response) {
image_id := save_resource(request , response)
update_state(transfer_stage_id , image_id)
uwo_processing_service/processings/processing_stage_id :=

POST(uwo_processing_service/processings ,
processing_setting_id , image_id)

update_state(image_id , processing_stage_id)
}

on(GET , transfers/transfer_stage_id) {
return retrive_state(transfer_stage_id)

}

on(GET , scans/image_id) {
return retrive_state(image_id)

}

The image resource list is a computation representation sent from the composition
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to uwo data service. It contains a list of image resources and the way to retrieve them,

basically the resource urls and methods. A transfer stage is started when the uwo data -

service received the transfer baton. The transfer stage ends when all the retrieving of

resources are handled by http client. The transfer baton is then branched into batons that

are represented by callbacks. When a callback is executed, an anonymous stage is started.

The anonymous stage saves the image, sends the processing request to processing service,

and updates the persistent state of the transfer stage and the image. A client can figure out

the state of a transfer from uwo_data_service/transfers/transfer_stage_id, and also

the state of an image from uwo_data_service/scans/image_id, and further the state of a

processing from uwo_processing_service/processings/processing_stage_id.

The cost of sending computation representation of image transfer is much lower than

sending the images themselves. For k images of size S, the transportation payload size is

reduced from 2kS to kS, and the number of required i/o operations in services is reduced from

4k to 2k. This will result an improvement of performance by 100%. The other significant

difference between this design and the previous is the usage of forEach. For composite

resources, forEach is the most common construction for performing computation on each

resource. As discussed in Section 3.2.1, wsbpel provides two forms of forEach, sequential

and parallel. For the sake of performance, parallel execution is often chosen, which requires

careful handle of state synchronization in order to avoid deadlocks and race conditions in the

normal multi-threading programming model. In the design described in Listing 4.2, there is

no need to perform the forEach in parallel. Sequential execution can achieve the same level

of performance thanks to the style of baton passing. The programmers can benefit from this

without worrying about state synchronization. Section 4.3 discusses how to achieve this in

detail.

4.2.6 The connections to RESTful Service Composition

As mentioned in Section 1.4.1, I named the architectural style presented in this thesis REST-

ful Service Composition because rest contains most essentials of the style. It is not a

design-by-buzzword, nor a direct application of rest to service composition. RESTful Ser-

vice Composition is developed on a wide spectrum of theoretical and empirical foundations.
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Process and reality

Alfred North Whitehead described a view of the actual entities in his work of Process and

Reality [105, 92]. In this view, a reality exists in process instances. An actual entity never

“changes” because it is nothing but a process instance that is either a concrescence or a

transition. A concresence instance results in positive prehensions of a particular existent. A

transition instance results in an original element that constitutes other particular existent

when the process perishes. A feeling is the process to map a datum to a subjective form by

the subject.

When we think service composition in Whitehead’s way, a composition’s state is the

reality of interest. The process of feeling can be considered as a computation that results

in a prehension of the initial input or effects a state transition. “There is a becoming of

continuity, but no continuity of becoming”. A computation can be always partitioned into

stages. Stages connect together to become a continuous flow. A computation’s state can

only be “felt” via its representation.

Finite-state machine

A finite-state machine, or a state machine, is a mathematical model to prescribe or describe

the behaviour of an abstract machine that could be a simple or complex system. A finite-

state machine is composed of a finite number of states, a set of events, and the transitions

between states on specific events. When its next state is fully decided by its current state

and a given event, a state machine is deterministic. Theoretically, a nondeterministic state

machine can be converted to a deterministic one by powerset construction [59]. Deterministic

state machines are more widely used in modelling because of the easiness of implementation.

Mathematically, a deterministic state machine can be defined as quintuple (Σ, S, s0, δ, F ),

where Σ is a non-empty finite set of events, S is a non-empty finite set of states, s0 is an

initial state, δ is the state transition function such that δ : S × Σ −→ S, and F is a subset

of S containing the final states.

By definition, a deterministic state machine can be in only one state at any given mo-

ment, and its next state is deterministic according to a given event and the current state.
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The determinism ensures the state machine can be implemented by a normal single process

program. Although very simple, the state machine is so powerful that it can be used to model

and design complex systems. Some real software systems like lighttpd1, a high-performance

web server, were designed as a state machine.

Can we use a state machine, or more precisely a “distributed state machine”, to model

and design distributed applications? At first glance, it might seem to be viable because each

distributed node can be modelled as a state machine. However, it has an intrinsic issue —

an inability to determine the local state transition triggered by an event sent from a remote

node given a local state and vice versa. A deterministic state machine has clear notion of

its current state, while it is difficult to tell the state of a remote state machine R given its

current state stR and the event that a local state machine L will trigger by sending a message

m to R. For the knowledge that L has about R was its perception of R’s state, which could

change when m reaches R because of latency. In fact, even L’s perception about R’s state

could be wrong due to network partitions. The lack of state consensus prevents a distributed

state machine from working as a normal state machine. This theoretically contributes to the

technical issues of rpc discussed in Section 2.10.

We can consider each staged computation in rsc as a state machine, and the intercon-

nected stages as a distributed state machine. This is only made possible by the style of baton

passing when recognizing the non-existence of state consensus.

Actor

The actor model described a generic model for distributed parallel programming [53, 11]. The

actor model extended the dataflow programming model by enabling an actor to create new

actors. Each actor has a message box via which messages can be received asynchronously.

Message passing is the only way to interact with an actor after it is created. A message

can contain the identifier of actor(s). Global state is considered harmful in the world of

actors. Because the actor model was purely abstract, there have been only a few direct

implementations. In fact, the model is so generic that one can easily see its connections to

rpc, soap and rest.

1See http://www.lighttpd.net/
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The styles of the actor model were carried forward by Erlang/OTP2, a concurrency-

oriented programming language and libraries original developed by Ericsson and now open-

sourced. An Erlang-based system, the AXD301 switch by Ericsson, achieved 99.9999999%

(nine 9’s) reliability [10], which is equivalent to about only 3 seconds downtime in a year.

It is not by failure avoidance that the system achieved such high reliability but by isolation

of partial failures and recovery from partial failures. Joe Armstrong, one of the major con-

tributors of Erlang/OTP, summarized the design principles of Erlang that result in reliable

distributed systems in the presence of software errors as follows [9].

• Computation is virtualized as processes.

• Processes running on the same machine are isolated.

• Each process is identified by a unique unforgeable identifier.

• Processes share no state (memory), and asynchronous message passing is the only way

for processes to communication.

• Unreliable message passing is never exceptional. There is no guarantee of delivery.

• The failure of a process can be detected by another process, and the failure reason is

described in a failure message.

These principles make the Erlang model much suitable for developing distributed systems

that can tolerate partial failures. Asynchronous message passing between isolated computa-

tions is the common feature of the actor model, Erlang style and rsc. A significant difference

between the Erlang-style concurrency model and the actor model is that the former assumes

no guarantee of message delivery while the latter does. The reliable message delivery assump-

tion was a huge simplification of the real distributed systems, and also prevented the actor

model to be applied to networked applications. Rsc does not assume guaranteed message

delivery.

2See http://erlang.org/ .
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SEDA

Welsh proposed an architecture named Staged Event-Driven Architecture (seda) for scalable

Internet services [102, 101]. A seda style application is a network of event-driven stages

connected by queues. A stage always follows an event queue and contains a private thread

pool. The queues separate the execution environments for stages and provide admission

control support and event management. Resource allocation on the stage level can be tuned

with private thread pools.

Stage computation is the connection between seda and rsc. The stages in seda are

static and fixed for all the computation tasks in the application. In rsc, stages are request-

dependent. Some stages can be determined in design time by the logic of composition. And

others are dynamically generated during run time by batons.

ARRESTED and CREST

ARRESTED was an architectural style proposed for distributed and decentralized systems

[64]. Distributed systems need to work on a partitioned network where faulty message passing

is the norm and asynchronous messaging is required. Decentralized systems need to deal with

uncertainty and disagreement of remote resource states. It is almost impossible to achieve

consensus of a remote resource’s state in distributed decentralized systems. Rest is extended

to ARRESTED by the following constraints.

• Use asynchronous event notification to achieve quick updating of state.

• A message can be routed via a proxy or directly delivered to the destination.

• A delegation can provide a decision function that ensures distributed consistent access

of a resource.

• An estimation function provides the most precise representation of a remote resource

base on available local information when the remote resource is not accessible within a

given duration.

Although ARRESTED addresses a different problem from rsc, the message routing con-

straint can be considered as a special case for computational baton passing.
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Computational REST (crest) extended rest by adding the following constraints to

rest.

• The representation of a resource is a computation that can be a program, a closure, a

continuation, or a computation description and its binding data.

• All computations are context-free. This is corresponding to the stateless constraint in

rest.

The computational representation is the key connection between rsc and crest.

4.3 Programming RESTful Service Composition

Generally speaking, an architectural style should be generic so that it can be applied to a

matching application no matter how it is programmed. However, certain language and library

can make the implementation easier. For example, html is more suitable for representing

hypermedia in a restful application than json. This section discusses the programming

paradigm for an rsc-style application.

4.3.1 Functional programming elements for RESTful service com-

position

On-demand Function

As discussed in Section 4.2.2, functional computation is a key element in rsc. It is quite

straightforward to implement such functional computation as functions. The function refers

to the same term used in functional programming, not the subroutine in imperative pro-

gramming. Although a typical imperative programming language like C, C++ and Java can

use their own constructions to mimic functions, like anonymous class in Java [12], such lan-

guages are more restricted than functional programming languages. In a functional language,

functions are first-class constructions that can be passed, returned, assigned to a variable,

and stored in data structures. Scala, Clojure and JavaScript are functional languages widely

used.
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A computational representation needs to be easily executed by a relaying service or a

resource client. If the computation is represented by a non-dynamic programming language

like Java, Scala or Clojure, a service needs to compile the representation and then execute it in

a proper virtual machine. It is also possible to use pre-compiled byte code as the computation

representation, but that violates the self-descriptive message constraint of rest. It is more

difficult to verify if a byte-code representation is secure and trustful than to verify a plain

text representation. Dynamic languages can represent a computation in plain text code,

which makes the development of responsive and safe relaying services and resource clients

much easier.

Map-reduce

The Parallel structures in most service compositions from an orchestration’s perspective can

be considered as composition resources in rsc. The typical programming style for such

problems is map-reduce. It is different from the MapReduce model proposed by Google

engineers [32]. However, they are closely related because they address the same type of

problems. The problem is, for a given list of elements, to apply a function to each element

(map), and then to compose the result based on the output of each function (reduce). Clearly,

map can be implemented as a high-order function, like the forEach used in Listing 4.2. The

map function is implemented by most functional programming languages. How to implement

the reduce part is trickier than the map part because the result is shared by all mapped

functions.

Continuation passing

A continuation is an abstract representation of computation whose execution is in the future

upon a control event. Continuation can be implemented by both functional languages and

object-oriented languages like Java. In Jetty3, a continuation is an object that can be used

to control the processing of an HTTP request. A processing can be suspended and later

resumed. Jetty uses this mechanism to achieve better usage of threads. When a processing

3See http://wiki.eclipse.org/Jetty/Feature/Continuations
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is suspended, the thread carrying on the processing is freed and returns to the thread pool;

when a processing is resumed, a new thread is located from the thread pool to carry on the

processing. Therefore, a Servlet can be “asynchronous” so that a thread never blocks when

the processing needs to wait for some events. Continuation can be implemented much more

easily in a functional programming language merely by a closure.

A closure is formed when a function is associated with its context — in terms of variables

— in which the function is created. In functional languages, a continuation is often passed

to a function as a callback that becomes a closure by passing the function’s local variables

to it. Therefore, it was also called closure passing [5]. When the callback is asynchronous,

the function returns instantly without blocking, and the computation in the callback will be

executed in the future and still has access to the free variables that are local to the function

that already returned. Continuation passing is the most common style that can be found

in functional implementations for the map-reduce and resource client scenarios that I have

discussed.

Programs with Continuation-Passing Style (cps) design can often be optimized by com-

pilers to improve their execution efficiency [6, 63]. If a cps-based program is not optimized,

it could cause memory overflow because of deep stacks. However, such a problem does need

to be worried about in the rsc style, because a continuation should always appear in the

form of asynchronous callback. An asynchronous callback is always executed on a new stack.

4.3.2 Infrastructure for programming RESTful service composi-

tion

The resource client discussed in Section 4.2.2 needs the service infrastructure to support

non-blocking access of files, web resources, and databases. In order to cooperate with i/o

events, the resource client needs to be programmed in an event-driven style. Evented i/o is

a promising solution for the so-called C10K [62] and RC10K [74] problems.

The original C10K problem studies how to provide reasonable service to 10,000 concurrent

clients using a normal server. The essential of the C10K problem is how to support a large

number of inbound Transmission Control Protocol (tcp) connections and how to serve the
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concurrent requests, which leads to two key design decisions of HTTP servers: i/o and

concurrency strategy. The RC10K problem studies how to support 10,000 simultaneous

outbound HTTP requests running on a web server. The RC10K problem can be considered

as a mirror of the C10K problem, and therefore, the solution of evented i/o is almost identical

for both problems.

The i/o models can be divided into two groups: basic i/o and advanced i/o. Basic

i/o is synchronous and blocking. An i/o operation is synchronous if the thread initializing

the i/o operation cannot switch to other operations until the i/o operation is finished. A

function or method is blocking if it does not return until its execution either successfully

finishes or encounters an error. There are three ways to implementing advanced i/o [96].

The first approach is to construct a loop to keep trying an i/o option while catching i/o

errors until it succeeds. This approach is called polling, and it wastes cpu time. The second

approach is i/o multiplexing using select()-like system functions. Most operating systems

support select(), and it is also supported by jvm 1.4 and later versions. The descriptors of

connections can be registered on a selector, which calls select() to check if there is any i/o

event for each of the descriptors. So a thread initializing an i/o operation can delegate the

job to a selector and switch to another job. Note that select() is blocking until one of the

registered descriptors has an event or a timeout occurs. The third approach is Asynchronous

Input/Output (aio), which is both asynchronous and non-blocking. Both i/o multiplexing

and aio enable a server to use a few threads to handle many concurrent connections. Because

the native i/o interfaces supported by systems are quite diverse, it is critical for rsc to be

implemented on the basis of virtual machines supporting advanced i/o.

4.3.3 Related programming paradigms

Event-driven programming

An event is either the start or the end of a process. In event-driven programming, the flow

of a program is controlled by events, which is achieved by 1) detecting an event, and 2)

handling the event by executing all actions bound to the event. These two steps are the

responsibilities of the event loop that is the main component of the event-driven runtime. It
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is the programmer’s responsibility to define event handlers and bind them to events. Most

event-driven frameworks also allow the programmer to create customized events. Event

handlers can be naturally implemented by functions.

Graphical User Interface (gui) might be the most popular domain where event-driven

programming is applied. This is decided by the nature of the problem — user interactions

with gui components are parallel and responsiveness is critical for the user experience. These

requirements are also true for most server applications. Many traditional web server imple-

mentations use processes or threads to handle concurrent requests, like Apache httpd4 and

Tomcat5. Event-based server implementations have got more and more attention because of

their light weight and performance, for example, lighttpd6 and NGINX7. These implemen-

tations were designed to address the C10K problem and outperformed httpd in consistent

response time and low memory footprint for a large number of concurrent clients.

Dataflow programming

The dataflow programming paradigm appeared in late 1970’s, aimed to address how to pro-

gram parallel processors [61]. It was later developed as a general purpose programming

paradigm. The most well-known dataflow programming languages are LabView and VHSIC

(Very-High-Speed Integrated Circuits) Hardware Description Language (vhdl). LabView8

is a graphical programming language developed by National Instruments9 for virtual instru-

mentations. A virtual instrumentation is the combination of user-defined gui and processing

functions that mimics circuits. Vhdl is a description language for digital and mixed-signal

electronic systems like integrated circuits. Vhdl is capable of easily describing concurrent

systems because of its dataflow nature. The vhdl description of a system can be verified by

simulation. Most dataflow programming languages are closely related to hardware, including

processors, circuits, and instruments.

A dataflow program is often represented as a directed graph, where nodes are instructions

4See http://httpd.apache.org/docs/2.2/programs/httpd.html
5See http://tomcat.apache.org/
6See http://www.lighttpd.net/
7See http://nginx.org/
8See http://www.ni.com/labview/
9See http://www.ni.com/
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and directed arcs are the data flows between nodes. A node is fired once its input arcs have

data10. This makes the biggest difference between a dataflow language and an imperative

language. For the instructions are executed one after the other pointed to by the program

counter in the machine code of an imperative program, while multiple instructions can be

executed in parallel in a dataflow program.

There is no notion of global variables in a dataflow program, which implies that all effects

of computation are local [2]. If we consider the arcs as variables in a dataflow program, such

variables never change their values once assigned. Two or more arcs forking from one node

hold duplicates of the same value, which makes the computation in various nodes connected

to those arcs independent. In other words, the computation happening in a node has no side

effects. A dataflow program is functional because of these features.

4.4 Summary

This chapter systematically describes the rsc architectural style. Rsc is described as a

problem–solution–consequence–example for easy understanding. The connections between

rsc and other architectures or architectural styles are examined. A reference programming

model is proposed for implementing rsc-style applications. The programming model can help

developers not only to understand the architectural design but also to grasp the essential of

programming techniques. The major differences between rsc and traditional web service

orchestration approaches are

• A rsc-style composition is partitioned into stages that can be developed and deployed

independently. On the contrary, a service orchestration can only be developed and

deployed as a whole.

• A message represents a computation that can be initialized, executed, modified and

relayed in rsc, while it contains the representation of a shared object and its invocation

in web service compositions.

10This is the behaviour of the most widely used dataflow models.
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• The interactions between the composition clients and the composition and between dif-

ferent composition stages are all through uniform interfaces in rsc while the interfaces

in web service compositions are all based on soap.

Next chapter presents the evaluation of rsc in order to prove these differences bene-

fit service composition applications with respect to performance, scalability, reliability and

modifiability.
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Chapter 5

Evaluation

My friend, all theory is grey, and green

The golden tree of life.

—Johann Wolfgang von Goethe, Faust

The impacts of a software architectural design on system properties can be evaluated

on a conceptual level. For example, the architectures of the File Transfer Protocol (ftp)

and BitTorrent (bt) can be compared by the elements — the clients and the server in ftp

vs the peers and the tracker in bt. Furthermore, one can find that bt is more scalable

than ftp because the number of a shared file’s replicates increases without boundary with

the number of peers in a bt network. The impacts of a software architectural style can be

evaluated in a similar way. For example, one can easily conclude that caching can improve

a networked system’s scalability and reliability by adding more replicates of data into the

system. However, such a conceptual approach has the following limitations:

1. There is no way to quantify an architecture’s or an architectural style’s impacts on the

conceptual level.

2. The differences made by some architectural constraints cannot be clearly shown without

comparing the implementations.

In order to evaluate rsc’s impacts on systems’ various properties, including performance,

scalability, reliability and modifiability, I use four service composition applications for eval-

uation. The evaluation goals of the applications are listed in Table 5.1.
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5.1 XRD file transfer service

The details of Science Studio [71, 78, 93] have been described in Chapters 3 and 4. This

section presents two implementations of the xrd file transfer service, and compares their

performance in a real working environment with simulated workload. The first implementa-

tion is a typical service orchestration, and the second implementation is an rsc-style com-

position. A significant difference between them is that an image is only transferred once in

the rsc-style implementation rather than twice in the orchestration implementation. In the

rsc-style implementation, both the cls-side service and the uwo-side service are able to

initiate a message exchange. The rsc style introduces these structural differences between

the two implementations.

The xrd file transfer orchestration creates two http clients instances when there is an

image to transfer. One http client sends a GET request to the url identifying the new

image to transfer hosted on the cls-side partner service. When the image is sent back in the

response body, the other client sends a PUT request to the url identifying the new image

to create hosted on uwo-side partner service with that image in the request body. A new

image is then created in the uwo-side file system.

In the rsc implementation, the cls-side partner service sends a PUT request to the

url for the image to be created on the uwo-side partner service when an image is available.

Different from the orchestration implementation, the request body does not include the image,

but a link to the image. The message sequences of the orchestration implementation and the

rsc implementation are shown in Figure 5.1.

5.1.1 Experiment setup

Two implementations are deployed and tested with simulated workload as described in Table

5.2.
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Table 5.2: Testing environments and workload for the xrd file transfer service
implementations.

Orchestration
implemen-
tation

A Servlet implementation of the service orchestration described in
Section 3.2.1 is developed based on Jetty 7. The partner services are
also based on Jetty 7. The service orchestration runs on Scientific
Linux 5.3 64-bit servers named srv-ibm-01 with Oracle (Sun) jvm
6. The cls-side partner service runs on a server named srv-rba-01

with the same software environment as srv-ibm-01, and they are
connected with cls lan. srv-ibm-01 has a cpu of 8 cores of 2.4
GHz and 12 GB memory. srv-rba-01 has a cpu of 4 cores of 2
GHz and 2 G memory. The service orchestration polls the cls-
side partner service for new images through http. The uwo-side
partner service run on a Ubuntu Linux 10.04 32-bit server named
beowulf, which connects to cls-side servers through high speed
research networks1. beowulf has a cpu of 4 cores of 2 GHz and 8
GB memory.

Rsc imple-
mentation

The cls-side partner service and uwo-side partner service are de-
signed as described in Section 4.2.5, and developed based on Jetty
7. The cls-side service runs on srv-ibm-01, and the uwo-side
service runs on beowulf. The cls-side service polls the file system
for new images.

Workload A serial of xrd scans are simulated for both Setup A and B. The
map sizes are 10 × 10, 20 × 20, 40 × 40, and 80 × 80. In real
beamline experiments, the ccd detector acquires an SPE image
every 8 seconds. The simulation program writes a new image to a
scan directory every 4 seconds instead. This does not make the test
result different from real situations because cpu and i/o resources
are underutilized in both cases. The polling interval is set to 2
seconds in both Setup A and B.

MeasurementIn order to obtain the time required to transfer an image from cls
to uwo, the transfer start time and end time are logged. They
are the time to send message 1 and to receive message 4 shown in
Figure 5.1 for both cases.

Source
code

The source code of both implementations is available at https:

//github.com/dongliu/rsc/tree/master/xrd.
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orchestrationCLS UWO

1. GET /path/id 3. PUT /path/id

2. 200 4. 201

CLS UWO3. GET /path/id

1. PUT /id {"source": "cls://path/id"}

4. 200

2. 201

Figure 5.1: The message sequences of the orchestration and rsc-style implementations
for xrd file transfer.

5.1.2 Other implementation details

There are three options for the xrd service orchestration’s internal design regarding how to

put the image data obtained from the GET response message body into the POST request

message body. The first option is to save the image data as a temporary file, and then

set the file as the content source of the PUT request. Such a design is obviously resource-

consuming, because two extra file i/o operations are needed. The second option is to put

the content in memory. The tested orchestration is implemented in this way. The last option

is to pipe the stream from the response directly to the request. Obviously, the last one is

the most efficient among the three. However, it is also the most challenging technically. The

program needs to be able to coordinate the connections and the receiving/sending of http

headers and body in two different exchanges. Frameworks like Netty2 providing Application

Programming Interfaces (apis) on the socket level can be used for such implementations.

It will be more efficient to use file system events like a file previously opened for writing

being closed to trigger the transfer of a new image. Libraries like inotify on Linux and

FileSystemWatcher on Windows can be programmed to monitor such events. However,

the monitors must run in the system kernel where the file operations happen. In xrd data

acquisition, the images are collected by the ccd detector driver running on a Windows system

2See https://netty.io/
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on a workstation, and they are written on a mapped drive that is also mounted on srv-ibm-01

via Common Internet File System (cifs). Therefore, a service must run on the Windows

system to notify the i/o events related to xrd images. Such a design was not implemented

because 1) the beamline scientist wanted the Windows workstation to be isolated to other

services for the sake of reliability, and 2) we wanted the solution to work with other scans.

Instead, the files inside a scan directory are periodically checked in order to find the new

images to transfer. It is a little difficult for such a polling approach to tell whether an image

is ready for transfer. In the implementations, an image is considered finished when its size

does not change within a period3.

5.1.3 Measurement result and analysis

During an xrd scan, the images are generated at a constant rate, and no resources on the

servers are overutilized for transferring them regardless of the scan size. Therefore, the

transfer time is used as the performance metric rather than throughput. In the orchestration

implementation, the orchestration service logs the time to start retrieving an image from the

cls side partner service and the finish time that the image is saved on the uwo side partner

service. In the rsc implementation, the start time and finish time of a transfer have to be

logged on different services. The start time of a transfer is logged on the cls side service,

and the finish time is logged on the uwo side service. In both cases, the transfer time for

an image is the difference of the finish time and the start time. The time records do not

need to be adjusted when calculating the difference in the rsc implementation because of

the followings.

• The system clocks on the cls and uwo systems are synchronized with network time

servers.

• Ever if the difference between the two system clocks is not negligible, it does not affect

the results of comparison between them, because this difference applies to the whole

series of measurements.

3This period is the polling interval that is much longer than the time required to finish writing the file.
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Figure 5.2 shows the time for transferring an image for rsc and orchestration imple-

mentations from cls to uwo for different scan sizes. Each scan transfer is repeated for 10

times, and the measurement results are averaged. The services on cls and uwo sides are

reset to the same condition before each scan in order to get consistent behaviours. However,

because the traffic went through wide area networks, the transfer time could be affected by

the network load when the experiments were conducted.

Obviously, the rsc implementation performs better than the orchestration implementa-

tion consistently for various scan sizes. The rsc implementation saves about 0.7 seconds for

each image. Although the network latency from cls at Saskatoon to uwo at London, Ont. is

larger than that within the cls intranet, the time cost of exchanges 1 and 2 shown in Figure

5.1 in the orchestration implementation is still higher than the corresponding exchange of

the rsc implementation. We can conclude that the structural change introduced by rsc

brought the performance improvement by reducing network traffic.
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Figure 5.2: The image transfer time from cls to uwo.

During the tests, the transfer time of the 10 × 10 scan, especially for the orchestration

implementation, is constantly longer than that of other bigger scans. A close inspection of

the collected data reveals that the transfer time of the images at the beginning is always

95



longer than the average of the whole scan. An explanation is that the congestion control

mechanism of tcp contributes to the slowness of the leading message exchanges. In the

tests, each simulated scan is started from a “cool” state, that is, there is a relative long

period between two scans.

5.2 PV snapshot

In many big science facilities like cls, the control systems are developed on the basis of

real-time experimental control software. The Experimental Physics and Industrial Control

System (epics)4 is a popular one for such purposes. The accelerator and beamline control

systems at cls are developed on the basis of epics. With epics, a control application is

composed of a number of Process Variables. A beamline is normally controlled by several

applications that can have hundreds of pvs. Logit is a control application developed for the

BioMedical Imaging and Therapy (BMIT) beamline at cls. The major goal is to provide a

web-based application that can capture diverse experimental information on the beamline,

including instrument states and control parameters available as epics pvs, image acquisition

parameters, and other manually input records. A feature of Logit is to take a snapshot of

a number of pvs. A snapshot should be taken as fast as possible because some pvs change

frequently. The snapshot result is composed of the values of a list of pvs. The snapshot

application is implemented as a service composition that is composed of services retrieving

pv values.

5.2.1 PVs as restful services

A pv is a resource within an Input/Output Controller (ioc) in an epics system. The

Channel Access (ca) is the application protocol that epics implemented to manipulate

process variables [56]. Each pv is identified by a unique name like “SMTR1605-1-B10-

10:BraggAngle:fbk”. The first part of a pv name separated by colons (:), “SMTR1605-1-B10-

10”, is the ioc name. Similar to the slash (/) in a url, the colon denotes the hierarchical

4See http://www.aps.anl.gov/epics/
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Table 5.3: The semantics of common pv access methods.

Method Semantics

caget retrieve the current value of a pv

caput update the value of a pv

camonitor subscribe the changes of a pv

cainfo retrieve the meta information of a pv

structure in a pv name. The example pv name refers to the Bragg angle feedback that is

hosted on SMTR1605-1-B10-10. The ca protocol supports two message exchange patterns —

request/response and subscribe/notify. The most common methods to access a pv includes

caget, caput, camonitor, and cainfo. The basic semantics of these methods are listed in

Table 5.3. Although the messages in pv access are neither self-descriptive (U4 in Table 2.1)

nor hypertext (U5), pvs do follow the first three constraints (U1, U2, and U3) of the uniform

interface. Therefore pvs can be considered as restful services. Pv accesses involve mainly

network i/o resources.

The snapshot service receives a snapshot request with a snapshot description via http.

The description is translated into a list of pvs in the service. The snapshot task is then

mapped to a list of pv caget operations. The results from the caget operations are reduced

to form the result of the snapshot. Obviously, the caget operations should be executed in

parallel in order to get the snapshot instantly. A question naturally following is how to reduce

the parallel caget results or errors.

5.2.2 Experiment setup

Five implementations are evaluated in this experiment. The first four implementations are

service orchestrations programmed in Python. The fifth implementation is an rsc-style

composition. The experiment setup to evaluate different implementations of the pv snapshot

application is described in Table 5.4.
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Table 5.4: The experiment setup to evaluate different implementations of the pv
snapshot application.

Server envi-
ronment

The application runs on a Scientific Linux 5.4 64-bit server named vsrv-
bmitsql-01. vsrv-bmitsql-01 is a virtual machine on cls VWware cluster.
vsrv-bmitsql-01 is configured to run with two 2.2 GHz cpus and 6 GB mem-
ory. It has Python 2.6.8, PyEpics5 3.2.1, node.js6 0.6.18 installed. The epics
version is 3.14.9.

Implemen-
tations

Five implementations are developed and tested in the same environment and
workload. The first four are based on the PyEpics library — a single-threading
PV object-based implementation whose core part is shown in Listing 5.1, a
single-threading low-level ca-based implementation shown in Listing 5.2, a
multi-threading version of the PV-based one shown in Listing 5.3, and a multi-
threading version of the ca-based one shown in Listing 5.4. The fifth im-
plementation is a node.js implementation based on event-driven map-reduce
shown in Listing 5.5.

Workload Three different snapshot tasks are tested. The first task is to get the snap-
shot of 91 connected pvs. The second is to get that of 91 connected and 4
disconnected pvs. The third is of 91 connected and 15 disconnected pvs.

Measurement The response time is measured in all the tests.
Source code The source code of all implementations are available at https://github.com/

dongliu/rsc/tree/master/snapshot.

Listing 5.1: A single-threading implementation of the snapshot based on the PV class.

for pv_name in pv_list:
pv = PV(pv_name)
if pv.wait_for_connection(timeout = 1.0):

result[pv_name] = pv.get(use_monitor=False , timeout =
0)

else:
result[pv_name] = ’not connected ’

# send the result

Listing 5.2: A single-threading implementation of the snapshot based on the ca class.

for pv_name in pv_list:
ch = ca.create_channel(pv_name , connect = False , auto_cb =

False)
result[pv_name] = [ch, None , None]

for pv_name , data in result.items ():
result[pv_name ][1] = ca.connect_channel(data[0], timeout =

1.0)
ca.poll()
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for pv_name , data in result.items ():
if result[pv_name ][1]:

ca.get(data[0], wait = False)

ca.poll()
for pv_name , data in result.items ():

if result[pv_name ][1]:
val = ca.get_complete(data [0])
result[pv_name ][2] = val

else:
result[pv_name ][2] = ’not connected ’

# send the result

Listing 5.3: A multi-threading implementation of the snapshot based on the PV class.

def get(d, pv_name , size , start , pid):
pv = PV(pv_name)
if pv.wait_for_connection(timeout = 1.0):

d[pv_name] = pv.get(use_monitor = False)
else:

d[pv_name] = ’not connected ’
if len(d) == size:

# send the result
os.kill(pid , signal.SIGTERM)

# ...
size = len(pv_list)
manager = Manager ()
d = manager.dict()
pid = os.getpid ()

for pv_name in pv_list:
p = Process(target=get , args=(d, pv_name , size , start , pid)

)
p.start()

time.sleep (30)

Listing 5.4: A multi-threading implementation of the snapshot based on the ca class.

def get(d, pv_name , size , start , pid):
ch = ca.create_channel(pv_name , connect=False , auto_cb=

False)
if ca.connect_channel(ch, timeout =1.0):

d[pv_name] = ca.get(ch, wait=True)
else:

d[pv_name] = ’not connected ’
if len(d) === size:
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# send the result
os.kill(pid , signal.SIGTERM)

# the rest is similar to the PV multi -threading version

Listing 5.5: A node.js implementation of the snapshot based on the epics caget

command line tool.

size = pv_list.length;
pv_list.forEach(function(pv) {

ca.exec(’caget ’, pv , function(err , result) {
complete = complete + 1;
if (err) {

results[pv] = {
name: pv,
value: ’unavailable ’

};
} else {

results[pv] = ca.parseCaget(result);
}
if (complete == size) {

// return the results
}

});
});

5.2.3 Measurement result and analysis

The response time of the five implementations for three snapshot tasks is shown in Figure

5.3. The legend key “91c+4d” denotes a snapshot of 91 connected pvs and 4 disconnected

ones. For the task of catching 91 connected pvs, the single-threading ca implementation

performs the best. This is because the ca.create channel() and ca.get() calls do not

explicitly wait for the i/o events to any specific pv, instead, it uses ca.poll to get the

events for all the pvs7. This strategy works fine for connected pvs, since the ca.connect -

channel() calls to them always return instantly. However, when a pv is disconnected, a

ca.connect channel() call can only return when the one-second timeout happens. Because

all the timeouts happen serially, the snapshot of 91 connected and 4 disconnected pvs takes

about 4 more seconds than that of just 91 connected pvs. Similarly, the snapshot of 91

7See http://cars.uchicago.edu/software/python/pyepics3/advanced.html for more details
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connected and 15 disconnected pvs takes about 15 more seconds.

The single-threading PV implementation behaves like the single-threading ca version ex-

cept for two differences. Firstly, the PV implementation needs to create an object for each

pv, which results in about two more seconds of response time than the ca implementation

for the 91 connected pvs. Secondly, the PV implementation needs two seconds timeout for

each disconnected pv, one for pv.wait for connection() and the other for pv.get() when

there are disconnected pvs in the snapshot.

A straightforward approach for tackling the accumulating timeouts is to wait for each pv’s

connection timeout in parallel. Python provides two libraries to achieve parallelism — thread-

ing8 and multiprocessing9. The evaluated implementations are based on the latter library

in order to make the Python implementations comparable with the node.js implementation.

The node.js snapshot implementation achieves parallelism by spawning processes, which is

the same as what the Python multiprocessing library does. Both the PV and ca parallel

implementations successfully reduce the time required for waiting for the timeout. However,

the cost of spawning a new process for each pv is significant and is proportional to the num-

ber of pvs in a snapshot. Two factors contribute to the cost — constructing the objects and

manipulating the data created by the server process.

The performance of the node.js implementation is not as good as that of the single-

threading ca implementation in the case of capturing a snapshot of only connected pvs.

However, when there are disconnected pvs, the node.js implementation outperforms all other

implementations in the tests. It performs almost the same for the snapshot of 15 disconnected

pvs as that of 4 disconnected pvs. The extra response time caused by disconnected pvs are

listed in Table 5.5. The column of “4d” lists the extra response time caused by 4 disconnected

pvs, and the column of “10d” list that by 10 disconnected pvs. The scale factors can

be calculated by Equation A.14. Although the difference between the scale factors is not

big, it can result in significant response time difference for a large number of disconnected

pvs, because the scale factor has an exponential effect on the performance metrics. In

reality, the scale factor will accelerate degrading for non-scalable systems when the job scale

8See http://docs.python.org/2/library/threading.html
9See http://docs.python.org/2/library/multiprocessing.html
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Figure 5.3: The response time of various implementations of the pv snapshot appli-
cation for three different snapshot tasks.

Table 5.5: The response time in milliseconds for disconnected pvs and correspond-
ing scale factor.

Implementation 4d 10d Scale factor 15d(calculated) 15d(measured)

PV parallel 3,099 3,287 0.990 3,452 4,015
ca parallel 1,058 1,169 0.984 1,270 1,828
node.js 950 963 0.998 974 993

increases. The column of “15d(calculated)” lists the calculated extra response time caused by

15 disconnected pvs based on the scale factor. The column of “15d(measured)” have the extra

response time from measurement. Obviously, the performance of Python implementations

degrades faster than that of the node.js implementation.

By Amdahl’s law (see Appendix A), the speedup of a parallel application is bounded by

the portion of a job that cannot be paralleled. For a multi-threading or multi-process program

like the pv snapshot, the non-paralleled portion includes 1) to spawn threads/processes, 2)

to map jobs to the threads/processes. The node.js implementation performs better than the

parallel Python implementations because the following reasons:

• The node.js process is lighter than the Python ones. node.js interacts with the process
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directly through stdin, stdout, and stderr in a non-blocking way10. On the other

hand, the Python process is wrapped with a Python Thread api.

• The node.js implementation maps jobs when spawning processes. That takes shorter

time than first creating a process and then starting it in the Python way.

According to Gunther’s model (see Appendix A.3.2), the scalability of a parallel appli-

cation is suppressed by the coherency between the concurrent parts — threads or processes.

For map-reduce processing of the computation, the coherency is the reduce part that gathers

the results from parallel processes to the master or server process. The rsc implementation

in node.js performs the reduce by asynchronous callbacks, and no synchronization is required

when manipulating the variable for the reduced results. The orchestration implementations in

multi-threading Python have to deal with the synchronization of threads by using a Manager

object.

5.3 Notification in the presence of network partitions

The top wrong assumption about distributed computing as discussed in Section 2.10 is that

the network is reliable. The network can be considered reliable when it is homogeneous within

a fully controlled boundary like an organization’s intranet. When an application needs to

operate across wan, or some traffic goes though wireless networks, the developers should

not assume that the network is reliable in the presence of network partitions. The reliability

of service compositions will be more difficult to achieve in such environments than that of

normal services. This section uses a simple notification application to show how rsc style

can bring better reliability than the normal orchestration approach.

A large number of services belonging to an application are deployed in a network that can

be divided into different areas. One of the application scenarios is to synchronize the states

of all the services at a specific time. This requires sending notifications of adjusting the state

to all services as soon as possible. In order to save time and other resources like network

bandwidth and energy, no acknowledge is required. A composition is developed such that

10See http://nodejs.org/api/child_process.html
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the operator needs to send the change state request to the composition, then the states of

all services will be changed by the composition. The most straightforward way to implement

the composition is a service orchestration that goes through the list of services and sends

a notification to each of them. The working model of the orchestration implementation is

shown in Figure 5.4 (a).

Sometimes the conductor service of the orchestration cannot send notifications to the

services located in a different area when the connection between them is lost, or a network

partition happens. In such cases, the notification can still be sent once the connection is

recovered before timeout.

In an rsc implementation, the notifications are not sent out from only one centralized

service. Instead, a notification task can be passed to a service in a different area, and then

the service can send out notifications to other services within the same area, or forward a

modified task to another service. This makes it possible for a service located in area A to

send notifications to the services in area B, even when the connection between A and B is

lost, if meanwhile A is still connected to area C and C is connected to B. The notification

task can be passed from A to C then to a service inside B. The working model of the rsc

implementation is shown in Figure 5.4 (b).

In both the orchestration implementation and the rsc implementation, the state of a

notification can be modeled as shown in Figure 5.5. For the orchestration implementation, the

“waiting” state refers to waiting for the connection to recover. For the rsc implementation,

the “waiting” state refers to waiting for the notification task being routed and executed. This

generic state machine is implemented in a simulation program.

5.3.1 Simulation parameters

A simulation program is developed in node.js for the notification application in order to

evaluate the impact of rsc on reliability. The source code is available at https://github.

com/dongliu/rsc/tree/master/notification. Some popular simulation frameworks like

SimPy11 and MASON12 can be used to develop the simulation. However, extra efforts of

11See http://simpy.sourceforge.net/
12See http://cs.gmu.edu/~eclab/projects/mason/
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Figure 5.4: Two implementations for notification.
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Figure 5.5: The state transitions of a notification task.

programming Python or Java are still required to simulate the behavior of the notification

application. The simulation can be programmed naturally in an event-driven way based on

the state machine model in Figure 5.5.

The important parameters and metrics of the simulation are described in Table 5.6. Table

5.7 shows the parameter values specified in the simulation.

5.3.2 Simulation results and analysis

The simulation is run with 1 million notification tasks for each availability option. Figure

5.6 (a) shows the failure ratios for two implementations in respect to different connection

availability values from high to low. Figure 5.6 (b) shows the average time spent for a

notification.

Obviously, the rsc implementation constantly provides higher success ratios than the

orchestration implementation for various connection availabilities. This is because the prob-

ability of two network partitions is always lower than that of one at any given time. When

the connection availability is very high, like 99%, the average time to deliver a notification for

the orchestration implementation is shorter than that of the rsc implementation. For two
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Table 5.6: The parameters and metrics for notification simulation.

Name Notation Assumptions

composition
request
arrival rate

λ The inter-arrival time follows exponential distribution
with a parameter λ.

number of
areas

p More areas imply higher probability that a notification
can be affected by the unreliable connection between
areas.

number of
services in P

nP The number of services to notify can be different for area
P . In the simulation, they are set to be the same.

concurrent
connections

cn A service can set up a number of concurrent connections
to other services and send notification in parallel. The
service is perfectly scaled for a large number of connec-
tions, and the latency is not degraded because of this.

timeout T Timeout occurs when either the notification cannot be
delivered or the acknowledgment cannot be received. A
notification fails when timeout occurs.

transportation
latency

LAB The one-way latency from a service in area A to
the other in B follows a bounded Pareto distribution
Par(α,L,H) [83]. Assume LAB = LBA and LAA �
LAB.P

ar
am

et
er

s

connection
availability

Ast The connection from area s to area t can be lost because
of partitions. By definition, Ast = Ats. The connection
within the same area is always available, or Ass = 1. The
availability is derived by mttf and mttr as in Equation
3.1. Both mttf and mttr are normally distributed
N(µ, σ2) [94].

failure ratio f f = failures
failures+successes

M
et

ri
cs

notification
time

t t is the time to deliver a notification. Assume the think-
ing time for a service to forward a notification task is
negligible compared to the transportation latency.

Table 5.7: Parameter values specified for the simulations.

λ p nP cn T LAB LAA MTTF MTTR

0.25 3 10 30 2 Par(1, 0.2, 1) Par(1, 0.02, 0.1) N(µ, 12) N(100− µ, 12)

µ = 99, 95, 90, 85, 80, 75. Correspondingly, A = 0.99, 0.95, ..., 0.75.
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Figure 5.6: The failure ratio and latency of orchestration and rsc implementations
obtained from simulation.
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stages are required to deliver a notification to a service located in a different area, the first for

the task and the second for the notification. However, when the connection availability gets

lower, the penalty for the orchestration implementation to wait for a connection to recover

becomes so significant that its average time is longer than that of the rsc implementation.

5.4 Modification of the XRD file transfer service

During the development of Science Studio, the requirements kept changing from gui to

work flow to back end services. These requirement changes were mainly driven by tasks like

application integration, and improving performance and reliability. This section reviews the

requirement changes related to the xrd file transfer service, and compare the modifiability of

orchestration implementation and rsc implementation regarding these requirement changes.

5.4.1 Emerging requirements and corresponding modifications

The emerging requirements are listed according to the time sequence as follows.

1. Retrieve the information of all the finished scans on the cls service.

2. Transfer a finished scan from cls to uwo by the image name pattern.

3. Transfer a finished scan from als13 located at Berkeley, CA to uwo.

4. Verify if a transferred scan is identical to the source, and identify the modified images.

5. Allow patch option when transferring a scan.

Requirement 1

Each xrd image processing requires a set of processing configuration parameters. The pa-

rameters need to be tuned in order to find interesting pattern information from the images.

The scientists and users wanted to extend the processing capacity to finished scans. The

first step for doing that is to list all finished scans hosted on the cls service. The images are

13See http://www-als.lbl.gov/
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always named in a format like prefix num.ext. The start number of a scan is configured

by the user, and it is then automatically incremented by one for every sequential new image

during a scan. The information about a scan should include the image name prefix, image

type, the start number, the end number, the missing images between the start and the end.

For both implementations, the feature should be provided by the partner services.

Requirement 2

When a user wants to process a finished scan on the cls service, the scan needs to trans-

ferred from cls to uwo. The transfer request contains the parameters for the name pattern

composed of the prefix, start number, end number, missing numbers, and image type. The

conductor service in the orchestration implementation needs to construct the list of urls.

The conductor service sends a GET request to the cls service for each image and then PUT

it to the uwo service. In the case of rsc implementation, the uwo service accepts a POST

request with the name pattern parameters. When the url list is constructed, it can then

GET the images in the list.

Requirement 3

When the xrd processing service at uwo was able to process the images produced at cls,

the scientist and users at a beamline of als also wanted to use the service to process their

finished xrd scans. In the orchestration implementation, a new partner service needs to

be deployed on the als server. The network distance between cls and als is much longer

than that between uwo and als, and transferring an image from als to cls and then to

uwo is much slower than from als to uwo. Therefore, the conductor service should also be

deployed on als. For the rsc implementation, a standard service like the cls one can be

deployed on the als server.

Requirement 4

An image can be corrupted during transfer, and it can be modified accidentally after trans-

ferred to the destination file system. To ensure the integrity of a scan before the processing,

users want to verify that the scan on the uwo server is identical to its source. Comparing
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only the size of corresponding files cannot ensure the integrity. The MD5 checksum is used

for this. In the orchestration implementation, the conductor service can get two MD5 di-

gests of the same image from two services, and then compare the digests. This requires the

partner services to be able to generate MD5 digests for the images in a given scan. For the

rsc implementation, the uwo service GET the MD5 digests of the image in a scan from the

cls/als service, and then do the check locally. Most checksum tools and libraries support

both computing and checking the digests of given files.

Requirement 5

When a scan is already transferred, it will waste both the time and network bandwidth to

transfer all the images again. Only the missing or different images should be transferred from

the source. Obviously, this feature relies on the solution for Requirement 4.

5.4.2 Modifiability analysis

The interface changes and reuse related to the requirements are compared in order to eval-

uate the modifiability of the orchestration implementation and the rsc implementation. R0

represents the original requirement for real-time processing.

The modifiability of an application can be evaluated by the cost required to modify it

for new or changed requirements. The cost is threefold: implementation, deployment and

maintenance. The reuse of services can greatly reduce the implementation cost, which is also

an essential value of soa. For the orchestration implementation, only 3 interfaces out of 9 (4

for the conductor service and 5 for the partner services) are reused for the 6 requirements.

On the other side, 4 interfaces of the total 8 are reused for rsc. Approximately, that will

result in 17% cost saving for the rsc implementation.

In the orchestration implementation, the source code is located in two packages, one

for the conductor service and the other for the partner service. They need to be packaged

separately and also deployed to different contexts on a server. On the contrary, the rsc has

only one package for all the services. In order to enable als to use the processing service,

both the conductor service and the partner service need to be deployed on their server in the

case of orchestration, while only one service is enough for the rsc implementation. When
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more and more facilities want to consume the processing service, to deploy and maintain two

services will definitely cost more than only one service.

5.5 Summary

This chapter presents four application scenarios to evaluate the performance, scalability, re-

liability and modifiability improvement brought by rsc to service composition applications.

In all these scenarios, rsc style implementations performed better in each evaluation per-

spective than the corresponding orchestration implementations. Rsc’s design goals were

evidenced by these results. However, in order to obtain such benefits, the developers will

need to adapt to programming paradigms like event-driven programming and functional pro-

gramming. These evaluation scenarios demonstrate how to apply the rsc architectural style

and corresponding programming style to real design problems.
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Chapter 6

Conclusions

We drive into the future using only our rearview mirror.

—Marshall McLuhan

My discussion of RESTful Service Composition (rsc) began with the review of distributed

computing history. Rpc, corba, and soap have been hyped one after the other. Although

the popularity of rpc and corba has declined, one can still find their tracks in various pro-

gramming libraries and applications. The soap technology led the migration for distributed

computing technologies toward so called Web Services and Service-Oriented Architecture.

Soap took advantage of three successful technologies — rpc, oop, and xml. Rpc pro-

vides a convenient way to distributed programming through code generation. Oop brought

the power of new languages and libraries to distributed programming. Xml makes the mes-

sages exchanged between distributed programs explicit. However, these technologies also

brought their intrinsic shortcomings to soap. Some essential characteristics of distributed

computing, like time out and partial failures, can be easily ignored by the programmers

when using rpc. Oop adds more complexity to the compatibility aspects. Xml messages

generated by the machines are beyond human legibility.

An important but often neglected technology contributing to the success of soap is http.

Without http, soap could only be an eai technology like corba or dcom. Http boosted

soap to the application environment of Internet or the Web. However, http was used just

as a transportation mechanism, which is far below what http can do. Similarly, the “web”

used in Web Services is far below what the real Web does.

Almost everyone knows the basics of how the Web works like a browser talking to the

servers, yet not too many really understand how it was designed. Fielding summarized the
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style as Representational State Transfer (rest) based on his experiences of developing the

Apache httpd, one of the most popular http servers, and several important web specifica-

tions. Rest provided a foundation for the developers to review how to design distributed

services based on the pros and cons of soap. It is also the foundation for my examination of

the existing web service composition technologies.

Service orchestration is the dominating service composition technology in Web Services. It

overwhelmed the service choreography approach from the beginning because of its simplicity.

The w3c choreography committee did not produce a final specification because of the lack of

industrial support. The typical hub-spoke structure of service orchestration makes the central

conductor service the hot spot regarding performance, scalability, reliability and modifiability.

The RESTful Service Composition (rsc) approach was proposed to addressing this problem

from an architectural perspective.

The following are the contributions made in this thesis:

• an analysis of the performance, scalability, reliability and modifiability issues of service

orchestration from the foundational technologies to high-level specifications;

• rsc, a novel architectural style for developing service compositions and a corresponding

programming model to support such a style; and

• an evaluation of rsc by a broad group of scenarios from real-world applications covering

all design goals.

This thesis connects the high-level abstract architectural aspects of service composition

designs to the low-level practical programing aspects of application implementations. It can

help both software architects and also programmers to understand the essentials of rsc. I

believe such an approach is a valuable contribution to both research and development related

to software architecture.

Since rest was proposed by Fielding, it has been endorsed by more and more parties from

both industry and academia. It offers the values of simplicity, transparency, performance,

scalability and reliability that make restful services popular in the community. Although

not all rest constraints are followed, the services tagged with rest generally feature better
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simplicity and transparency than the traditional soap approaches. Some constraints of rsc,

like the uniform identifier and same access methods, are already used in service compositions,

including both server-side compositions and client-side mashups. Spring Web Flow1 is an

application framework that supports the notion of staged computation in rsc.

Among all rsc constraints, baton passing is the most difficult one to implement. It

requires partner services to be able to interpret a computation representation and execute

the representation properly. It is like the case for the hypermedia as the engine of application

state constraint in rest, which is considered the most difficult to achieve for a restful

service2. The complexity arises from the fact that the client portion of such an application

needs to handle either computation representation or hypermedia. As we know, a web client

is more complex than a web server.

In order to overcome such complexities, the community needs to shift the development

focus from the server side to the client side by providing more libraries and tools to help

the development of powerful clients. Since a function is a key abstraction in rsc, the pro-

grammers also need to shift their programming paradigm from oop to functional in order

to implement rsc-style service compositions naturally. The research presented in this thesis

can be continued in these directions.

I believe that the complexity and difficulty of distributed computing can be addressed

when a technology provides not only an appropriate means for computer-computer com-

munication, but also an appropriate means for developer-computer and developer-developer

communication. Rsc is an attempt I made in this thesis.

1See http://www.springsource.org/spring-web-flow
2See http://martinfowler.com/articles/richardsonMaturityModel.html
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Appendix A

Scalability

A.1 Performance, capacity and scalability

When a system is stable, or more strictly the corresponding stochastic process is stationary,
the mean number of concurrent requests or jobs (N) in the system follows Little’s law [70].

N = X ×R (A.1)

where R is the mean residence time and X is the throughput. When the system is stable,
the throughput equals to the arrival rate, or X = λ. The arrival rate is a measurement of
the work load.

Obviously, N will increase when λ increases given that R remains unchanged or increases
with N . The maximum that N can reach when the system is still stable is the system’s
capacity.

C = Nmax = Xmax ×R(Nmax) (A.2)

A simple way to increase a system’s capacity is to add a job queue. However, if the
server is slow compared to job arrival, then the queue can be overflowed in a short time.
Furthermore, the residence time will be increased because of waiting time as a result of
increased queue size.

R = W + S (A.3)

where W is the waiting time that a job spent in the queue before served, and S is the service
time.

A system’s performance can be measured by either X or R in Little’s law. Throughput
and residence time represent different characteristics of a system. Throughput is always
driven by arrival rate and it upper bound is constrained by capacity. In practice, only stress
testing can reveal the maximum of throughput Xmax. On the other side, residence time is
driven by the number of concurrent jobs in a system and its lower bound is constrained by
a job’s serial fraction of demand. Parallel processing can only reduce the parallel fraction
of demand. Residence time R is a more user-centric metric of performance than throughput
X. For a multi-user system, an end user’s experience is mainly decided by user perceived
response time, which is a sum result of residence time and transmission time. Sometime, the
residence time can vary a lot while the throughput is about the same. Figure 2.6 shows the
relationship between X, R and N in a stress testing of a web service.

Scalability is quite different from performance that can be measured by throughput,
residence time, and capacity. It focuses on the change of performance along with system
resource being utilized. This difference yields the difficulties of scalability measurement, that
is, a single scalability measurement needs a series of performance measurements of a system
in different configurations. This chapter discusses the mathematical model for scalability and
its metrics.
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A.2 Definition of scalability

A pure mathematical definition of scalability can be derived from the metrics in Little’s law.
If we choose the number of jobs in the system, or N in Equation A.1, the scalability can be
defined as

S = dN/dr, (A.4)

where S is the scalability and r is the resource. Considering that most resources are
discrete, the equation can be rewritten as

S = ∆N/∆r =
Nn+1 −Nn

rn+1 − rn
, (A.5)

where n is the count of used resource and n ∈ N. The above equation can be simplified
as

S = Nn+1 −Nn, (A.6)

when the unit of resource is 1. Similarly, if we choose throughput X, the scalability can be
defined as

S =
Xn+1 −Xn

rn+1 − rn
. (A.7)

Note that these two metrics only make sense when the other performance metric R in Little’s
Law does not change much from Rn to Rn+1 correspondingly.

When two systems’ scalability need to be compared, it is tricky to use the above metrics
because one system’s initial performance metrics, N1, X1 and R1, can be quite different from
the other. This issue can be addressed by using relative metrics. Assume a system is perfectly
scalable, and every used unit of resource makes the system’s performance increased by the
same amount.

Xn+1 −Xn = Xn −Xn−1 = . . . = X2 −X1 = X1, (A.8)

or
Xn+1/(n+ 1) = Xn/n = . . . = X2/2 = X1. (A.9)

This can be improved by adding a scaling factor to be more realistic.

Xn+1/(n+ 1) = sXn/n = s2Xn−1/(n− 1) = . . . = sn−1X2/2 = snX1 (A.10)

The scaling factor s can be used to measure scalability. s can be calculated when we have
any 2 measurements of X, Xm and Xn. For most systems, s is always less or equal to one.

Xn/n = sn−mXm/m (A.11)

yields

s = (
mXn

nXm

)
1/(n−m)

. (A.12)
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When comparing the scalability of two systems, it is better to choose the measurements
of X at same scales to calculate the corresponding scaling factors. When one has k measure-
ments of X, s can be calculated by non-linear regression of the k− 1 independent equations.
The non-linear regression can be simplified to linear regression by applying logarithm to both
sides of Equation A.12.

(n−m) ln s = ln(Xn/n)− ln(Xm/m) (A.13)

The scale factor can also be calculated by residence time R.

(n−m) ln s = lnRm − lnRn (A.14)

The other relative scalability metric is speedup, which is the ratio of R1 to Rn for vertical
scaling, or the ratio of Xn to X1 for horizontal scaling.

Sn =
R1

Rn

or
Xn

X1

(A.15)

A.3 Scalability models

A.3.1 Amdahl’s law

The map-reduce approach requires a server to be able to do parallel processing. The demand
of a request task can therefore be distributed to many processes that running on different
processing units. The optimal result will be the residence time be decreased to 1

n
of the

original, where n is the number of parallel processes. However, by Amdahl’s Law [4], the
speedup,

S =
R1

Rn

(A.16)

will be always less than 1
1−P no matter how large n is.

Rn = ((1− P ) + P/n)R1 (A.17)

S(n) =
1

(1− P ) + P/n
(A.18)

where P is the portion of a job that can be parallel processed. When n is extremely large,
P/n will be close to 0, and S converges towards 1

1−P .

A.3.2 Gunther’s scalability model

Gunther extended Amdahl’s Law and proposed a more generic model for scalability [47, 48].
In Gunther’s model, a system’s capacity is characterized by three factors: concurrency, con-
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tention, and coherency. The concurrency is the number of workers that process a job in
parallel. A worker can be a thread, or a process, or a cluster node in different implemen-
tations. The contention is the portion of a job that cannot be processed in parallel. The
coherency is the penalty caused by parallelism, for example, concurrency accesses of the same
memory block, database, or a service. When a big number of threads are created on a system,
the sharing of memory and thread scheduling service is also coherency.

In Gunther’s model, the scalability of a system is quantified by its capacity.

C(p) =
p

1 + σ(p− 1) + κp(p− 1)
(A.19)

where C is the capacity, p is the number of parallel processes — concurrency, σ is the
contention, and κ is the coherency. When there is only one process in the system, C = 1,
which is the baseline of the system’s capacity. If there is not coherency, that is κ = 0, the
Gunther’s model is exactly the same as Amdahl’s law, except the notations.

C(p) =
p

1 + σ(p− 1)
=

1

(1− P ) + P/p
(A.20)

where σ = 1−P . The κp(p− 1) results in a quadratic effect on a system’s behaviour so that
the performance or capacity drop when the coherency penalty becomes large enough. Figure
2.6 shows such a behaviour. Concurrency, contention and coherency denote the strategy,
constraint, and pitfall when scaling up a system.
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