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Abstract

The elastic proton-deuteron backward reaction is analyzed within a covariant
approach based on the Bethe-Salpeter equation with realistic meson-exchange in-
teraction. Lorentz boost and other relativistic effects in the cross section and spin
correlation observables, like tensor analyzing power and polarization transfer etc.,
are investigated in explicit form. Results of numerical calculations for a complete

set of polarization observables are presented.
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1 Introduction

Presently a wideranging program of precisely investigating the structure of the lightest
nuclei is under consideration. There are new proposals to study the polarization character-
istics of the deuteron using both hadronic [1, 2] and electromagnetic probes (cf. [3, 4]). Be-
sides the goal of checking fundamental results of quantum chromodynamics (for instance,
the study of the Q2 evolution of the Gerasimov-Drell-Hearn sum rule [3]) the envisaged
experiments focus on a complete reconstruction of the amplitude of the corresponding
process [1, 4, 5] and an overall investigation of the nuclear momentum distribution 2, 6].

The simplest reactions with hadron probes are processes of forward or backward scatter-
ing of protons off the deuteron. The extensive experimental study of these reactions has
started a decade ago in Dubna and Saclay (cf. [6, 7, 8, 9]) and is planned to be continued
in the nearest future at COSY [2]. One may classify this type of reactions as inclusive
break-up processes, exclusive quasi-elastic scattering and elastic processes. A common
feature of these processes is that in a collinear geometry, the measured momenta of the
fragments are directly connected with the argument of the deuteron wave function in the
momentum space, supposed the reaction mechanism is dominated by the one-nucleon ex-
change. In such a way a direct experimental investigation of the momentum distribution
within the deuteron in a large interval of internal momenta seems to be accessible. By
using polarized particles one may investigate as well different aspects of spin-orbit inter-
action in the deuteron and obtain hints on the role of non-nucleon degrees of freedom
in the deuteron wave function, like A isobars, NV excitations and so on. An encourag-
ing fact here is that the extracted momentum distributions from different reactions with
electromagnetic and hadron probes are rather similar, and therefore a realization of ex-
perimental programs at different facilities may provide a quite complete information on
the internal structure of the deuteron.

Nowadays the elastic proton-deuteron (pD) backward scattering with both polarized
protons and deuterons receives a renewed interest [2]. A distinguished peculiarity of
this process is that within the impulse approximation the cross section is proportional
to the fourth power of the deuteron wave function, contrary to the break-up and quasi-
elastic reactions which are proportional to the second power of the wave function. This
makes the processes of elastic scattering much more sensitive to the theoretically assumed
mechanisms, and even a slight modification of the deuteron wave function may result in
significant deviations from the calculated cross section. However, as pointed out by Vasan

[10], Frankfurt and Strikman [11] and Karmanov [12] the polarization observables, like



tensor analyzing power and polarization transfer, are exactly as those obtained for the
break-up and quasi-elastic scattering in the non-relativistic limit. Bevond both the non-
relativistic limit and the impulse approximation the polarization observables differ for
different processes. Hence, a combined analysis of data on polarization characteristics
from the above mentioned three processes will constrain the basic reaction mechanism
and the role of non-nucleon degrees of freedom and relativistic effects in the deuteron.
Another peculiarity of elastic backward or forward pD reactions is that the amplitude
of the processes is determined by only four complex helicity amplitudes, and a complete
reconstruction of these amplitudes seems possible in one experimental set-up. For this it
is sufficient to measure 10 independent observables as proposed in refs. [3, 13]. Certainly
this does not mean that the realization of such an exhausting experiment will determine
entirely the deuteron structure; only within the non-relativistic impulse approximation
the cross section is directly related to the deuteron wave function.

First measurements of polarization observables, such as the tensor analyzing power 7o
and polarization transfer x, have been performed in Dubna [7, 14, 15] and Saclay [8, 9].
Theoretically the elastic pD scattering has been studied by many authors [16, 17, 18, 19,
20]. It has been shown that the cross section can not be satisfactorily described within
the non-relativistic impulse approximation and that other mechanisms, e.g., described
by meson-exchange triangle diagrams [19, 20], are important. Besides the importance of
other mechanisms, the role of relativistic corrections within the impulse approximation has
been studied by several authors already some time ago (see [17, 18] and further references
therein) within the Bethe-Salpeter (BS) formalism. The unpolarized cross section and
the tensor analyzing power have been numerically computed in a fully covariant way and
a comparison with polarization data, available at this time, has been made. However, in
view of the present experimental situation and future proposals {1, 2, 5, 13] a detailed
covariant investigation of the role of relativistic corrections, such as Lorentz boost effects
and contributions of negative-energy waves etc. is still lacking. In the present paper an
attempt is presented to fill this gap.

We focus here on a detailed study of the elastic pD amplitude within the BS approach
by using the numerical solution obtained with a realistic one-boson exchange interaction
[21, 22]. It is known that one of the unpleasant features within the BS formalism is the
cumbersomeness of the final expressions for the calculated observables and diffieulties in
their physical interpretation (cf. refs. [17, 23, 24]). In this paper we try to avoid this
problem and present our results in a form as simple as possible. For this sake we separate

the contributions of the positive-energy waves and identify them in the non-relativistic
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limit. The contributions of the Lorentz boost effects and the negative-energy waves in
the deuteron are then calculated in leading order. That means, in the fully covariant
results we keep the first orders of negative-energy P waves and the leading-order terms of
a Taylor expansion. In this way we are able to separate and to investigate in explicit form
the contribution of the Lorentz boost effects and negative-energy waves to the amplitude,
cross section and polarization observables as well. Results of numerical calculations for a
complete set of observables are also presented.

Our paper is organized as follows: In section II the kinematics of the process is described,
and the covariant amplitude is derived in details in section III. Since the covariant ex-
pressions within the BS approach are rather lengthy and since in the procedure of the
arrangement of results in parts containing non-relativistic formulae and boost effects and
relativistic corrections separately, it is very important to provide a clear definition of all
the relevant variables. In sections IV - VI a complete set of polarization observables is
defined in terms of BS wave functions. The non-relativistic limit, Lorentz boost effects
and relativistic corrections are studied analytically and numerically for the cross section
and for a class of polarization observables. A comparison with available experimental
data is also made. In section VII an interpretation of the relativistic corrections in terms
of non-relativistic meson-exchange like contributions is performed. To do so we solve
the BS equation for the negative-energy P waves in the one-iteration approximation and
express explicitly the 3P~ and 1P~ waves via the non-relativistic S and D waves of
the deuteron. The obtained result for the elastic amplitude is found in a form being very
similar to amplitudes computed in the non-relativistic picture when estimating the role of
NN pair currents in electromagnetic processes. Some cumbersome expressions and useful

formulae are collected in the Appendices A and B.

2 Kinematics

We consider the elastic backward scattering reaction of the type
p+ D=p'(0=180° + D'. (1)

The differential cross section of the reaction (1) in the center of mass system (c.m.s.) of

colliding particles reads

do 1 2
dQ  64w2s (M (2)
where s is the Mandelstam variable denoting the total energy squared in the c.m.s., and

M is the invariant amplitude of the process. In the case of backward scattering the cross
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section eq. (2) depends only on one kinematical variable which usually is chosen as s.
Other variables can be expressed via s by using energy conservation. For instance, the
Mandelstam variable u is u = (M2 — m?)?/s, while the c.m.s. momentum is p? = —t/4
etc. Here M, and m stand for the deuteron and nucleon masses, respectively. Then in
the c.m.s we define the relevant kinematical variables as follows: the four-momenta of

particles read

= (E,p), p=(&,—p), D' = (E,-p), p' = (&; D), (3)
and the polarization four-vectors of the deuteron with polarization indices M and A’ can

be written as

pgﬂf £]V[ p&]\'[ ) (4)

=g PAL(E + M)

pf M' pé;w ) (5)

& = (= ,Ew+ PIL(E + )

where £, ¢’ are the three-polarization vectors in the rest frame of the deuteron,
£ =(-1,40)/v2, &,=(11,0/v2 &=(0,0,1) (6)

The proton spinors are normalized as @(p)u(p) = 2m with

X X ’
u(p,s) =vVm+e g_é u(lp',s) =vm+e gﬂs , (7
ke X8 Tte XS’

where x; denotes the usual two-dimensional Pauli spinor.

In what follows we shall widely exploit as variable the momentum of the outgoing proton,
Py, in the rest frame of the incoming deuteron, which we here define as laboratory
system. The relation between c.m.s. and laboratory system is simply expressed by |p| =
2mPas [/ u.

Now we proceed with an analysis of the general properties of the invariant amplitude
M. In principle, the amplitude M for the elastic fermion-vector-boson scattering has
been studied in detail and is well known (see, for instance refs. [3, 13, 25]), nevertheless
for the sake of completeness we present here some of the most important characteristics
of M.

The process of the elastic pD scattering is determined by 12 independent partial ampli-
tudes [25]. However, in case of forward or backward scattering, due to the conservation
of the total helicity of colliding particles, only four amplitudes remain independent, and

these four amplitudes determine all the possible polarization observables of the process.




There are many ways of representing these four amplitudes. In order to emphasize ex-

plicitly the transition between initial and final states with fixed helicities it is convenient
to represent M in the c.m.s. in a two-dimensional spin space for the proton spinors and
three-dimensional space for the deuteron spin characteristics. In this case the manifest
covariance of the amplitude is lost. However the analysis and final formulae become much
simpler and transparent. Moreover, by making use of egs. (3) - (7) all the polarization
characteristics of the reaction may be expressed via the corresponding quantities evalu-
ated in the deuteron rest frame. This gives another advantage of such an analysis, namely
it allows for a straightforward non-relativistic limit, in particular avoiding the problem of
boosting or not the non-relativistic polarization vectors from the rest frame to the c.m.s.
It is worth emphasizing that in such a representation of the invariant amplitude, in spite
of the fact that it is not explicitly covariant, its form is the most general one and valid in
both the relativistic picture and the non-relativistic limit as well.

In this paper we keep our notation as close as possible to the one used in refs. [5, 13].

Hence the total amplitude is written in the form
M= X:; F Xs (8)
with

F = A(€y€lp) + B(néy)(n€ip) +iC (o - [€y X €fp]) +D (an)(n - [y x €32]), (9)

where n is a unit vector parallel to the beam direction; A, B,C and D are the partial
amplitudes of the pD elastic scattering process depending on the initial energy. Then the
cross section (2) is determined by Tr(F*+ F). In the following we suppress the subscripts
M and M’ of the polarization vectors £, bearing in mind that in computing observables
the summation over these indices results in the completeness relation for £ or in the
polarization density matrix of the deuteron, which reads in covariant form [26]

v DDV
%; it = (_gw/ + 7[-3‘*) ) (10)

1 D,D 1 .
Puw = E)" (—g;w + ]l;[gy) + Qllfjdze“w’y(sD’YS%
+

{_% ((Iv’wl)up(W,\z)pu + (W) (Wa1) p”) -

2 D/\le\z DMDV A1de
3 < Grnixe + _;w-—g— Guv + 11[3 D >

where (1)) o = i€y D /My; Sp is the spin vector, and @p stands for the alignment

tensor of the deuteron. p,v,A--- are Lorentz indices, and we use the metric Gy With

signature —2.



In the three-dimensional representation for the deuteron polarization and two-dimensional

Pauli matrices for the nucleon states the corresponding density matrices can be cast in

the simple form

1
b= I+ (0 Py), (12)
af 1 3. afd Go Aaf
p _—”:—3'(5&/3—'57,6 SD—ZQD)’ (13)

where P, is the proton polarization three-vector, Sp and Qp are spin and tensor polar-

ization operators (actually 3 x 3 matrices) of the deuteron.

3 The one-nucleon exchange mechanism

We investigate here the relativistic one-nucleon exchange defined by the diagram depicted
in fig. 1. Using the kinematics shown in fig. 1 and working with the Mandelstam tech-

nique [27], the one-nucleon exchange contribution to the elastic amplitude within the BS

formalism is
M =a(p)T(D,q) 2 T(D', ¢') u(p). (14)

T'(D, q) denotes the BS vertex function of the deuteron; Sy = 1/ (15/2 — q“+~m) is the
nucleon propagator, and I' = ' "7,. We use the abbreviation D= D#+, when contacting
a four-vector with Dirac matrices. The momenta g and ¢' are fixed by the conditions
D/2+ g =p and D'/2 + ¢' = p. The vertex function I'(D, g) is the solution of the BS
equation for the deuteron bound state. The BS equation and consequently its solution
I'(D, q) are sixteen-component objects in the spinor space. To solve the BS equation and
to compute observables within the BS formalism one usually represents the vertex function
I'(D, q) as a 4 x 4 matrix and utilizes a decomposition of I'(D, g) over a complete set of
matrices in the sixteen-dimensional spinor space. As mentioned in ref. [24], the choice of
the representation of the matrices depends on the special attacked problem. Actually in
some calculations it is convenient to combine two representations, namely the complete
set of Dirac matrices (to perform explicit numerical calculations) and the so-called p spin
classification of the partial vertices [28] (to have a more transparent physical interpretation
of the obtained results; for details consult ref. [24, 29]). In the present paper we use mainly
the p spin classification, however the numerical calculations have been performed in terms
of the solution of the BS equation obtained in the Dirac basis {21, 22, 30]. Notice that

the solution of the BS equation has been obtained in the deuteron rest frame, whereas
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considering the amplitude (14) it is seen that at least one vertex I'(D, q) is defined in a
system where the deuteron is moving. Obviously in this case one may explicitly boost
the vertex I'(D, q) from the rest frame to the c.m.s. and analyze the amplitude (14) in
terms of a BS solution at rest and Lorentz boost effects separately. Our experience shows
that in this way one obtains rather cumbersome expressions and a relatively simple and
physically meaningful analysis of results is straitened. Therefore, we represent the BS
vertex function in a covariant form with eight invariant scalar functions (see Appendix
A). Observing that in the process depicted in fig. 1, in each vertex I'(D, ¢) one nucleon
is on the mass shell, the part contributing to the amplitude (14) may be written in a
form exactly coinciding with the one used, for instance, by Gross [23] or Keister and Tjon
[17, 31}

(Q£)]D/2 Q+m

TD.q) = [hef + oL 4 ot 4 b =

(15)

where h; are invariant scalar functions depending on the invariants g® and Dq. Then after
summation over the spins in eq. (2) one gets the cross section in a fully covariant form in

terms of the relativistic BS solutions I'(D, q) as

'2% = 64125 éTr[(p +m)[(D, )& (D', ¢) (6 +m)T(D',¢)SL(D,9)], (16)

where, when replacing I'(D, g) by eq. (15) and summing over the deuteron spins, one
should make use of egs. (10) or (11) in dependence of the initial and final states of the
particles in a concrete measurement.

Eq. (16) together with egs. (10) and (11) completely determine all characteristics of the
process. When computing the trace in eq. (16) one obtains a fully covariant relativistic
expression of all observables. In our calculations we use a suitable algebraic formula
manipulation code which, within the representation of the solution of the BS equation
in the form (15), delivers the covariant, but rather cumbersome results (for examples
cf. ref. [17]). These results have been tested by evaluating the non-relativistic limits for
the cross section and polarization observables. However, further investigations relying
on these lengthy analytical expressions seem to be almost impossible. Therefore, for an
explicit study of the influence of the Lorentz boost effects and other relativistic corrections
we shall investigate different aspects of the amplitude M in eq. (2) instead of the cross
section (16).

By substituting eq. (15) into eq. (14) and making use of the Gordon identity,

a(p', sNa(p — m) + (p' — m)aju(p, s) = 0, one can represent the amplitude in the form

M =>"R;u(p) Riu(p) (17)

i=]1



with six invariant scalar functions R; and six covariant spin structures defined as

Ri=éf, B=TTE g 2B p_gD-pE, ()
Ro=EP8H _gt), Ry=&D- 9+ (D - HELE, (19)
Bi= %(‘Zhlh; +hel) = 75 _”;h)lfl_ . (20)
R, = -ﬂ%(hGh; +2hl) - 5 _”;}f)?fi —, (21)
Ry = - (hubi + hah§ + hohf) — 5 _”’;h)lfi — (22)
B=1 —Zt)h;— mz h;}; (23)
P hoh 2

5_(D——p’)2—m2 m2
3 hohs hshi _
Re = . 9t

8 (D—p’)Q—m2+ m?2 (25)

At first glance there seems to be a contradiction between eqs. (18) and (19) and the
general expression (9), namely instead of four amplitudes our result contains six different
structures. However it is straightforward to prove that the six covariant spin structures
in eqs. (18) and (19) in the collinear kinematics reduce to exactly four independent forms.
For instance, taking into account that, in case of forward or backward elastic scattering,
the expression (D — ') has no spatial component in the c.m.s. the three structures Ry, Hs
and Rg are equivalent and determine the amplitude B in eq. (9) (see below). The structure

£ & may be cast into the form of eq. (9) by exploiting Dirac’s matrix algebra,
E€ = (€€) — i€, 0" = (&) +70(Pr) + inons(P). (26)
Pr= (6" +68). PE = cagpbally .8,p=12.3. (27)

Then it is seen that among the six amplitudes egs. (18) and (19) only four are indepen-
dent in collinear kinematics. The correspondence between eq. (9) and eqgs. (18) and (19)

becomes obvious if the former are written in the ¢.m.s. In this case,

| o]
[o.d)
S’

WP, 5) Riu(ps) = x5 |- <ss)>e—m<axe o am (3

L (m ) —(\Id—LE) pspé' R




a0, 8) Ryulp,s) = — 2= [”5 pe ] o (29)

™2 My My
W@, ) Raulps) = 5 (30)
X Xy [4m11 11515 (€><€’)p2—2i(0p)(p,€><£')] Xs»
W, ) Ruuts,s) = (B - s | _ (e¢)2m +i(op)(p.€ x &)
< S p g e 0 T o
a(p',s') Rsu(p,s) = —-fz—(%fﬁx {gfﬁfd}x (32)
u(p',s') Reulp,s) = —Ll(im——)*x [gfﬁﬂxs (33)

It is worth stressing again that, in spite of these six covariant spin structures R; --- Rg
being written in c.m.s. have lost their explicit covariance, they still determine the covariant
amplitude M of the process. The corresponding invariant scalar functions R; defined by
egs. (20) - (25) may be computed in any reference frame. Since the numerical solutions [22]
of the BS equation have been obtained in the deuteron rest frame, we also express R; in
this system. When one nucleon is on the mass shell, i.e. My/2+ qo = E;,, the invariant

functions h; are of the form (see Appendix A)

Virh = 0= 500+ ﬂfﬂab (2B, — Ma)gs, (34)
Vs = - ﬁ(mm+ A m(ﬂ;;;%fE o + 21\3@% (Ma = By)gs, - (35)
dmhs = —?ﬁ:zpii g5, (36)

9 ! 2 2
dmhs = — \/iﬂfdzfn TEy Tt (E;;If;:)bm gs F 2£Tgab gr (37)

where g; are the BS vertex functions in the deuteron rest system and all the kinematical

variables in eqgs. (34) - (37) should be evaluated in this system.

4 Observables

Having determined the amplitude by egs. (17) - (37) one may define various polarization

characteristics of the process. Employing the notation used in refs. [5, 13, 25] we define
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the set of all possible polarization observables for the non-covariant amplitude (8) by

Tr (.FO‘)\'DH.?"_O' 1 Dypr
Ha, g o = T (j—']—"-l-)/\ 2 ), (38)

where the subscripts A and H () and H') refer to the polarization characteristics of the

initial (final) proton and deuteron respectively; o is the Pauli matrix, and D stands for
a set of 3 x 3 operators defining the deuteron polarization. Note that the introduced sub-
scripts may appear as either single index or double indices in dependence on the reaction
cqnditions. For instance, 0,0 — 0,0 means a process with unpolarized particles, while
0, NN — 0, NN means the tensor-tensor polarization of the initial and final deuterons
parallel to the normal of the reaction plane direction.

At this point it is worth mentioning that the numerical solution of the BS equation
has been obtained in the Euclidean space-time with imaginary time component ¢, of the
relative momentum ¢. In the process under consideration gqq is fixed and real. Hence, one
needs either a numerical procedure for an analytical continuation of the amplitudes to the
real relative energy axis (cf. [17]) or another recipe [32] for using the numerical solutions
in this case.

We rely on the analysis of the BS partial vertices performed in ref. [24], where the
dependence of S and D wave vertices upon the relative energy is shown to be smooth,
contrary to the amplitudes which display a strong dependence on gg. Therefore, in our
calculations, we can replace, at moderate values of gy, the S and D vertices by their
values at gy = 0 with good accuracy. The P vertices can be expanded into Taylor series
around go = 0 up to a desired order in ppo/m. Then the corresponding derivatives can be
computed numerically along the imaginary axis since they are analytical functions of go
[32].

Finally, to cast our formulae in a more familiar form, known from non-relativistic cal-

culations, we introduce the notion of BS wave functions [17, 23, 24]

Us(|Puas]) = N%?g)%—l&‘ﬂ)- N30 [P]) (39)
“p

o, (Pl = N5

5(0. [Pua -g7(0, [P |
W (Pugl) = N 2GR gy = OBl gy
A[D JID

where A" = 1/47/21p. Then the cross section (16) and the amplitude (9) may be com-
puted in terms of positive and negative-energy wave functions, ¥ p and ¥p, p. respec-
tively. The BS wave functions ¥s p are intimately related to the famous non-relativistic
deuteron wave functions u{Pap). w(Piap), and at small values of Py they practically coin-

cide [24]. Therefore, their contribution to the amplitudes and cross section is henceforth
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referred to as the non-relativistic result. The parts containing the negative-energy waves
U p, p, are of a purely relativistic origin and consequently they manifest genuine relativistic
correction effects. The weights of these wave functions are quite small [24, 33] and we shall
neglect all the terms proportional to ¥%, p ; only interferences between Vsp and ¥p, p,
are kept in our results. Besides the mentioned relativistic effects there is another source
of relativistic corrections, namely the so-called Lorentz boost effects stemming from the

transformation of the BS wave functions from the c.m.s. to the deuteron rest frame.

5 Lorentz boost effects

A straightforward way to study effects of the Lorentz boost is to compare the non-
relativistic results with those obtained in the BS formalism by equating to zero all contri-
butions from the negative-energy waves leaving only the contribution of the waves Wy .
In the non-relativistic case, the cross section and the spin amplitudes take a simple form
[5, 18]

e YGORC) y
Ann = (u<q)+ ﬁ)) , (12
Brn = ~ula) (2v/2u(g) ~ w(9)) (43)
Cxn = () + 2] (u(o) - VEu(@) (14)

Drn = (o) (ute) + 22, (45)

where in egs. (42) - (45) the relative momentum ¢ and appropriate sign conventions are
introduced in the definition of the non-relativistic wave functions u(g) and w(g). Note that
in non-relativistic calculations there are ambiguities in treating the internal momentum
g- It is not clear in what frame of reference the argument of the non-relativistic wave
functions u(g) and w(g) should be evaluated: is ¢ to be computed in the three-body
center of mass frame as proposed in ref. [34] or should one use the deuteron rest frame
[20] in defining the deuteron wave function? At small momenta these alternatives become
identical, however a difference occurs already at intermediate energies P, ~ 0.2... 0.3
GeV/c. In the covariant BS approach this problem is solved by using invariant amplitudes
hi(¢%, Dq) and by taking into account the boost effects.

Substituting egs. (28) - (37) into egs. (16) and (38) and expanding the result into

12



Taylor series around P2,/2m? and keeping the leading terms we obtain the contribution

of positive-energy BS waves in the form

doyg 12m® 2 2 o4 P2,  29PF;,  83F}, ,
a T s (@S(Plab) +\IID(PM)) Fuap | 1+ om? T T6mt T 32ms e ) (40)
Up(Pias) \ i,
Ay = 16mmPy, (‘I’S(Plab) - —2\(7—5@) L(Piab), (47)
3
By, = 16rmP}, ;‘I’D(Ptab) (2\/§‘I’S(Pzab) + ‘I’D(Pzab)) L(Pias), (48)
Un(P
Co = 16mmPy, (ws(ﬂab) ~ —’%) (Ts(Pias) + V2Up(Puas)) L(Puas)s  (49)
3 Up(Fy,
DO - - 167rm‘Pl?1b E\IID(BGJJ) <\I[S(Plab) - —i(——\/'z‘l—i)> E(Bab): (50)
where the Lorentz boost effects are represented by L(P,) defined as
P2 TP
) = 1 lab lab . 51
L(Pap) ( trat g T ) (51)

It is seen that the results within the BS approach recover the non-relativistic formulae in
the leading order in P2,/2m? and receive additional corrections from the Lorentz boost
effects. At small values of Py, these corrections are negligible but at moderate values
of P they become important and may give up to 30 - 40% contributions in the non-
relativistic cross section. Note that within the one-nucleon exchange mechanism, Fjqp 18
kinematically restricted so that the Taylor expansion in egs. (46) - (51) is justified since
P2,/2m? < 1 in the whole range of the initial energy +/s.

The elastic cross section for a process with unpolarized particles evaluated within the
BS formalism is shown in fig. 2. The dashed line is the contribution of only positive-
energy BS functions ¥s and ¥p (to be compared with the dotted line which represents
the computation of the cross section in the non-relativistic limit with Bonn potential [35]).
The long-dashed curve represents the corrections from pure Lorentz boost effects. The
solid line is the result of full BS calculations by exploiting the numerical solutions [21, 22,
24] of the BS equation with a realistic kernel with 7, w, p, 5,7, § exchanges. Experimental
data are taken from refs. [20, 36]. The relativistic effects coming from the negative-energy
waves are much smaller and they are not displayed here. From fig. 2 it becomes clear that
the Lorentz boost effects become essential at Py > 0.5 GeV/c. This is an understandable
effects, since it is expected that the boost corrections should increase with increasing initial
energy. Remind that the region P > 0.5 GeV/c corresponds already to rather high initial
energies, say Tk, ~ 6 GeV. (The kinematics of the process is so that at /s — oc the

momentum of the detected slow proton becomes P, — 0.75 m.)

13




A comparison with experimental data shows that the one-nucleon exchange mechanism

alone does not describe satisfactorily the cross section and that other mechanism should
be considered [19, 20]. One should keep in mind, however, that measurements of the cross
section in the strict backward direction are rather difficult and many experimental data
are presented as extrapolations of do/dQ obtained in nearly backward direction to the
exact backward angle [16, 36]. In view of the very strong angular dependence of the cross
section the data from different groups differ noticeably (see fig. 2 in ref. [17] and fig. 27
in ref. [16]). This, together with the above mentioned sensitivity of the results to the
chosen deuteron wave function, generates uncertainties in a detailed comparisons with
data. It is not our aim here to improve the agreement with the data, but we intend to
proceed with our methodological study within the well defined framework of the impulse
approximation.

The Lorentz boost does not affect at all the polarization characteristics defined by
eq. (38), as it should be. For instance, a direct calculation of the cross section eq. (16)

with the density matrix (11) results in the known non-relativistic formulae for the tensor

analyzing power To0 = —Ho,nN—0,0/ v/2 and the polarization transfer & = 3Ho,1-1,0/2
e 1 =93 (Pa) — 2v/295(Piap) ¥ p(Piab)
TQO = 7= ) ) ) (52)
\/§ \PS(Bab) + \IID (})lab)
a1 U5(Pa) — U (Puay) + V5 (Pian) ¥ (Pi) [ V2 (53
V2 U2 (Piap) + % (Pras)

Observe that in the non-relativistic limit the polarization characteristics egs. (52) and
(53) in the elastic pD elastic scattering exactly coincide with ones in the reactions of
inclusive [5, 6] or exclusive [2] deuteron break-up processes. In the relativistic case such
simple relations among polarization observables do not hold. From this one may conclude
that a combined analysis of data obtained within different processes would allow for an

estimate of the role of relativistic corrections in the deuteron wave function.

6 Relativistic corrections

In this section we present results of numerical calculations of the contribution to the
polarization observables coming from the negative-energy P waves. We are going to
investigate the tensor analyzing power and polarization transfer.

There are two factors of smallness in computing relativistic corrections: the term
P},/2m? and terms proportional to the negative-energy P waves in the BS amplitude. In

estimating corrections to eq. (46) we expand the result of the trace operation in eq. (16)

14



and our results of calculating egs. (28) - (33) into Taylor series around P2,/2m? and
keep only the leading terms relative to negative-energy waves and to PZ,/2m?. The final

results for the relativistic effects reads for the cross section

do do -
o=@ (54)
24\/6m* P2 2v2P}
do = #\/—Tl—b(\l’é +0%) (‘I’S + \/i\IID) (‘Ilps -+ W—Q‘I’H)
2v/6mPg
f\? lab (2 + p2) (9\/_\1113 + 337, ) Up, +

and for the tensor analyzing power T
Ty = Ty" + 6T, (35)

2
2v3 (¥s +v2Up) (¥s — ¥p/v2) m
0T = — (U2 + 022 P Vet =5 5 Uk

and for the polarization transfer
k = kB4 6k, (56)

VB (W5~ W/ V3) [(2vET0 — 05)' —ow3)] , (2 ).
B+ ) Pua sm?

0K =

It should be stressed that a comparison of the relativistic corrections (55) and (56) with
those obtained for the deuteron break-up reaction [29, 37] demonstrates that in the elastic
proton-deuteron scattering the polarization observables coincide with the ones in the
deuteron quasi-elastic and break-up processes only in the non-relativistic limit. Therefore,
the data from these processes all together (cf. [14]) can determine the magnitude of the
relativistic corrections and further constrain the deviation of the mechanism of these
processes from the simple one-nucleon exchange picture.

In fig. 3 results of calculations of the tensor analyzing power Ty in the elastic pD back-
ward reaction are presented. The long-dashed curve is the contribution of only positive-
energy BS waves eq. (52), the dotted line represents the pure relativistic corrections in
eq. (55), while the solid line is the total result within the BS formalismn. Experimental
data (open and full circles) are from refs. [7, 14, 15]. For the sake of completeness we
present some experimental data for the deuteron break-up processes [6] (triangles) and
results of computation of Ty within the minimal relativization scheme [38, 39] with the
Paris deuteron wave function [40]. In fig. 3 it is seen that the theoretical calculations

predict a change of sign in the T5 whereas the experimental data from both deuteron
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break-up and elastic scattering processes shows that Tho remains negative in the whole

interval of measured values of Pg,. However, calculations with the positive-energy BS
wave functions (long-dashed line) together with the relativistic corrections (dotted line)
result in a better description of data.

In fig. 4 similar calculations are presented for the polarization transfer k. The dashed
line is the contribution of the positive-energy BS wave functions eq. (53), while relativistic
corrections eq. (56) are presented by the dotted line; the solid line is the total BS result.
As in the previous results the relativistic corrections in & are small for small and moderate

values of P, but become essential at higher values of the initial energies.

7 Other spin observables

As mentioned in ref. [5], one of the goals of the future experiments is a direct reconstruc-
tion of the four complex amplitudes (9). For this one needs to measure 7 independent
observables, however as seen from the above formulae, all polarization observables are bi-
linear combinations of the amplitudes (9) so that the necessary number of measurements
at given energy increases. A full set of polarisation observables for complete measurement
has been proposed in refs. [5, 13]. It is found that 10 spin observables, i.e. the two of the
first order, like cross section and tensor analyzing power Ho nn-s0,0, and 8 spin correla-
tions of the second order, for instance Ho yn—o,nn  Ho,nN-0,55, Hon—o,08, Hononp,
Hy,N—00, Horsonp, Hors—oo and Hornv—orn could provide a complete analysis of
the spin amplitudes (9).

In the previous section the results of relativistic calculations of the tensor analyzing
power and polarization transfer from the initial deuteron to the final proton have been
presented. In this section additional calculations of spin-correlation observables of the
second order are performed. We consider here the proton vector-vector transfer, the

deuteron vector-vector and tensor-tensor transfer coeflicients. They read explicitly

" 234+ 248+ B2 —2c? — 4D~ 2D?) 1 (Us+V2Tp)
NO—=NO = T (FFH) =9 (\IIZ n ‘1’20)2 +(,3,)
2 3
4v/6 (¥s — ¥p/v2) (s +v2Up) m o 2P
9 (W3 + 03)° P \ 7 3m2 ’
2 2
o A+ ABrC)  4(Us—To/V3) (Us+VEUD) )
ON=oN = T (FFT) =3 0+ ) + (58)
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16 (s = Wp/V3)" (Ts + v2Up) (s — 2v20p)* = 993) my 2/3P2,
(\I’P5+ m2 \IlP7+"'>7

9 (2 + ¥3)° Flap 3
; 2 .9
2 _ 2(-3A°+2AB+3C*+10CD +5D%) 1 (2\/5‘1’5 + ‘I’D) vy L (59)

V6T p (‘I’s + \/5‘1’0) (‘I’s - ‘I’D/\/i)2 (2\/§\I’S + ‘I’D) m 2/2P2,

(V2 + 03)° Py (ll"’ HEC A ) ’
where the first lines in each of egs. (57) - (59) display the non-relativistic limit, while the
second lines are the corresponding parts of purely relativistic corrections.

Figs. 5 - 7 show these spin-correlation observables according to egs. (57) - (59) calculated
within the BS formalism; they are depicted as solid lines. The dashed lines show the
contribution of the positive-energy BS waves (i.e., the non-relativistic limit), while the
dotted lines are the relativistic corrections due to the contribution of P waves in the
deuteron. It is seen that the relativistic effects for the proton-proton transfer coefficients
are negligible (see fig. 5) while for the deuteron-deuteron correlations these effects are
essential at P, > 0.5 GeV/e.

It is interesting to notice that there are observables which in the non-relativistic limit
are exactly zero and therefore consist of relativistic corrections only. For instance the

tensor-tensor transfer coefficient Ho v,z is predicted to vanish in the non-relativistic

case, while within the BS formalism one gets

Tr (.7'-.7:'+> HO,LN—)O,LN = 9 (.Az + ReAB — CQ) (60)

o~ 54m41:',ib [\/—2—\115 (‘I’Ps -+ 2\/§\I,P7) _ 'U’)D (T\I]P.s -+ 2\/§\IIP7)]2 ’

where all the contributions from higher orders in P2,/m? have been neglected. In spite
of the small value of this tensor-tensor correlation (see fig. 8) the measurements of such
observables may directly quantify the importance of relativistic P waves in the deuteron.

As a conclusion of this section we emphasize that for some of the computed spin ob-
servables the relativistic effects are not too important, whereas for a specific class of
observables (like the tensor-tensor correlations) admixtures of P waves in the deuteron
may result in important corrections, for instance the coefficient (60) differs from zero only

due to relativistic effects in the deuteron.
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8 One-iteration approximation

The relativistic corrections in egs. (35) - (60) are governed by negative-energy P wave
states in the deuteron. This can be considered as a hint that admixtures of P waves within
the BS approach are related to relativistic corrections by taking into account meson-
exchange currents and NN pair production diagrams [41] in the non-relativistic picture.
To establish a correspondence between our results and the mentioned non-relativistic
calculations we estimate the contribution of the relativistic corrections by computing
the P wave vertices in the so-called “one-iteration approximation” [42]. The gist of this
approximation is as follows: In solving the BS equation by an iteration procedure one puts
as zeroth iteration the exact solution of the Schrédinger equation for S and D vertices and
zero for other waves; then the P vertices are found by one iteration of the BS equation.
Our experience in solving numerically the BS equation shows that it converges rapidly
for relatively small momenta < 1 GeV/c. That means when utilizing the exact non-
relativistic solutions, after one iteration the resulting P waves are not too far from the
full solution.

To obtain analytical expressions for the negative-energy waves we proceed with the
mixed BS equation in the sense that the BS vertices are expressed via the BS amplitudes
as

32

mes

G(k) = 'L/ (27_()4 p— k)2 — 12 Ymes @(p) Ymes; (61)

where G(k) and &(p) are the BS vertex and amplitude respectively, A2, denotes the
meson-nucleon coupling constant and 7es the meson-nucleon coupling vertex (for scalar,
pseudo-scalar or vector couplings).

Then using the decomposition of G(k) and ®(p) in the complete set of spin angular
matrices I, (for details consult ref. [24]) the BS equation for partial vertices g, and am-
plitudes @, (here  accounts for the p spin indices of the corresponding partial amplitude)
may be written in the form

A2 o
s N2 Tr [I‘; (k07 _“k)’YmesFﬂ(pO:@'}’mes] (D/S‘ (po, Iﬁ])

(p—k)? -
(62)
Using the standard decomposition of the meson propagator over generalized Legendre

functions Qy(z), where z = (|F]? + [k + 12 — (po — ko)2)/|P||k| , one gets

oo, |K]) =i P_ a0,

(" )

gtk JF) = =A% [ BRI 1) @ 0o, 1) (63)
Was(k.p) = % zQénA,i / A% Vi (p)Yirn (k) Tt [T (o, —E) s T (Po: D) Ymes) -

18



These expressions are still the exact BS equation in the ladder approximation. Further
we assuIne:
(i) in the first approximation the negative-energy waves are exactly zero, i.e., in egs. (63)

remain only &5 = S*+ and DT,

(ii) in the interaction kernel W,s and in the vertex functions g*+(p) we neglect the
dependence on the relative energy, i.e., Wys(k, p) ~ W’aﬁ(lk-;[, Ip]) and gT+(p) ~ g7 (0, p),
(iii) the negative-energy waves are obtained by only one iteration of eq. (63).

For the pseudo-scalar isovector exchange we get

Wit see = Wpot g0 = N [Qo(2)|F] — Qu(2)[7], (64)
LVPI"‘—)D"’“" = I’1’713;+—>D++ =NV2 [Q2(Z)|E| ~Q1(2) 'ﬂ] ’ (65)
Wei-se+ = ~Wprt g4 = NV2 [‘QO(Z)IEI +Q1(2) [ﬂ] ) (66)
I"VP;-—u)-Hr = ’—VVP;“'—)D““" =N [‘Ql(z) |p] + QQ(Z)V;I] , (67)

where N = —/3/(2|p||k|Ey), Ex = V&% + mZ ~m.

We perform further calculations in the coordinate space:

/ ;ﬁ; @) ~ 17Qi)] (i) = [ ar¥E e 1+ (i), (69

[ £ ()~ @] ) = - [ dr T2 (1 o, (69

where Wg(r) and Up(r) are the deuteron wave functions in the coordinate space.

Then the result for the function ¥p,, with a BS kernel with pseudo-scalar one-boson
exchange reads

3 T e
VU p, ,(Plap) = QWW
Po

(1 + pr) j1(r Pigy) [Ny u(r) + Ny w(r)], (70)

where u(r) and w(r) are the non-relativistic deuteron wave functions in the coordinate
representation, and g2 = 14.5 is the pion-nucleon coupling constant. The normalization
factors are N, = v/2 (1) and N, = -1 (v/2) for ¥p, (¥p,) waves.

With this definition of the negative-energy waves one may estimate the origin of the
relativistic corrections computed within the non-relativistic limit as additional contribu-
tion to the impulse approximation diagrams, such as meson exchange currents and NN
pair production currents. As an example we compute within the one-iteration approxi-
mation the amplitude A which turns out to have the simple form of a negative-energy

wave contribution

A=Ay + 32V6rF, (‘I’s - ‘\'}-‘;—\I’D) Up,. (1)
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Substituting (70) into the expression for the amplitude eq. (71), the relativistic corrections
in the one-iteration approximation become

- 1922

A = —g?P} V2

T labm

y /dr e;;tr (14 pr) j1(r Pap) {\/iu(r) - w(r)] (\_TJS - 715\11D> , (72)

which is similar to expressions obtained in non-relativistic evaluations of the so-called

“catastrophic” and pair production diagrams in electro-disintegration processes of the
deuteron [43] and which is also similar to results of computation of the triangle diagrams
usually considered in the elastic pD processes [19, 20]. In our case these corrections
may be represented as diagrams with meson exchange due to anti-nucleon degrees of
freedom in the BS equation, as depicted in fig. 9. The remaining amplitudes B,C,D
and, consequently, the cross section (54) and all the polarization observables (38) receive
analogous corrections. From this it becomes clear that generic relativistic calculations,
even in impulse approximation, contain already to some extent specific meson-exchange
diagrams, i.e., pair production currents, and one should pay attention on the problem of

double counting when computing relativistic corrections beyond the spectator mechanism.

9 Summary

In summary, we present an explicit analysis of various relativistic effects in elastic back-
ward scattering of protons off deuterons within the Bethe-Salpeter formalism with a real-
istic interaction kernel. To have a well defined framework for our methodological investi-
gations we rely here on the impulse approximation. This allows to identify and investigate
separately the contributions of the positive-energy waves, Lorentz boost corrections and
relativistic effects due to negative-energy waves. Particular attention is paid to the com-
putation of the four spin amplitudes of the process within the Bethe-Salpeter approach.
By writing these amplitudes in the center of mass system in a non-covariant form a direct
correspondence between our approach and the general phenomenological analysis of the
process is found. In such a way a suitable representation of the polarization observables
and a straightforward investigation of the non-relativistic limit are achieved.

Numerical estimates of the Lorentz boost and other relativistic effects in the cross section
and selected polarization observables, at kinematical conditions of ongoing and forthcom-
ing experiments [1, 2| are presented. It is found that in a complete set of polarization

observables, proposed for a reconstruction of the amplitude, relativistic corrections either
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may be negligible for a certain class of spin-correlations or play a crucial role for other
observables. It is shown that the one-nucleon exchange mechanism alone does not give the
predominant contribution in these reactions and future experiments must clarify effects

beyond the impulse approximation.
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Appendix A

The covariant expression of the vertex function I'(D,q) for the BS equation with one
particle on mass shell is rather known and may be found, for instance in refs. [17, 23, 33].

Here we present the covariant solution I'(D, ¢) for the full BS equation when both particles

are off the mass shell

D(D.g) = [ + by Ly 4 DT LT ey, (08

D/2~g+m D/2+§- : D/2—g¢+m
2-d+m  Dp2+izmy o, , (@) D/2=dtm ;)
m m m m

[hs€ + he (Zf)}

The eight invariant scalars h;(Dg,¢?) are connected with the corresponding spin-orbit

momentum vertex functions g;(po, Pias), which are numerically determined in the deuteron

rest frame, via

2 / ,
v 4’ﬂ'h1 = EE\/I—:T&(QEP - on + A[d) (Md + 2p0 + QEp)gl +
P
\/5
16E, Ud( My + 2po + 2E,)(2E, — 2po — My)g> ~
1 ’ :
16E’ AId (QEP - 2p0 -+ Afd) (J.[d -+ 2])0 -+ 2Ep)g‘3 -
P
1 ‘ /
m(——ﬂ[d + 2pg + ZEP) (QEP — 2pg — A-[d)gul -+
Pt
3m ‘
labivid
Té?\/:g_\[_E( E, — 2po — M) (2E, — 2po + My)gs, (A2)
labs¥id




et N V2m ,

T6(E, + m)MaB,
v2m A , ,
T6(E, + m)aL,E, M 2P0+ 2B;) (2B, — 2po = Ma)gn -
(m+2E,)m o ,
16(E, — m) (B, -+ m) By e~ 2P0 T Ma)(MatZpo + 2E,)g: =
(m + ZE;)m, , )
16(E, — m)(E, + m) B, M, (=Ma+2po + 2E,)(2E;, — 2po — Ma)gs —
V3m , ,
W(—ﬂ-fd -+ 2pgy + ZE'I,)(]WC[ + 2pg + 2Ep)95 4+
V3m ,
16pM,E, (2B, — 2p0 — Ma) (2, — 2po + Ma)gs, (A3)
, \/3
\/3
S0Py 2B~ 20+ Ma)gs, (A4)
er V2m? :
e = SE T )M, 2D~ 2P0 + Ma)gi +
v2m? ,
8T, + m)MpE, M4t ot 2B,)0: —
(E, + 2m)m? -
B = m) (&, + m) L, 200 — 20+ Ma)gs =
(E;, + 2m)m? N )
8(E, — m)(E, + m)E,M; (=Ma + 2po + 28, )9 +
V3v/2m? ,
By Pt 20 25,01 -
V3v2m? oF /
S B, ~ 0t Mg, (45)
= __mV/3 ,
dnhs = —ir g (Ma+ 2po +25,)g5 +
mv3
SM,P, 5 ( E on - Af[d)g& (A 6)
= m?v2
47;'}36 = S(E/ +m) ’L[dE' (1[d+2p0 "LOE )gl
m?y/2
8(E, +m)ME, (2B, = 2p0 — Ma)gs +
(E, + 2m)m?

8(E, —m)(E, + m)E,Mq (Mg + 2po + 2E,)gs +

(E, +2m)m?
8(E, — m)(E, +m)E, My

(2E, — 2pg — My)gy +

AV}
[




NV
8MyPiu B,

V3v2m?
SXIdPlabE ("‘ 2p0 "" «A’[d)g&

V2m? V2m? m?

(Afd + 2pp + 2E )g7

Virh: = DLEN T BLE” T e
m2 m3v/3 m3v/3
TULE T DPLE” T DPwE,"™
2m3 '3
dnhs = i(E, +\/_m) MET T A(E {m) MJE, 92+
m?(m + 2E,) m?(m + 2E,)
B, —m)(E, - mE, M, T 1B, —m)(B, + mEMy
m®y/3 m3v/3

TIMPRE " T BB,

(A7)

(A8)

(A9)

where po = (Dgq)/My and B, = 1/ P2, +m?. The spin-orbit momentum vertex functions
are defined within the p spin classification as g1 = S*t, go =577, g3 = D+t gy =D"",

gs :3P+—7 Je 3P +7 gr = 1P+ y g8 lP +

Eqgs. (A2) - (A9) may be written in a more compact form, however the present expres-

sions are more informative and easily understood by the reader.

10 Appendix B

In obtaining egs. (28) - (33) the following relations are useful

/_E e —
€ = Y “(p€), PE=

(la x B])([c x d]) = (ac)(bd) — (ad)(bc),

—io(p x &)(pt') +io(p x £)(p€) = io (& x &)p* —i(op)(p.& X &),

_ __?_é__ gl p'f,
a=EHPinEr . C TS YPILE L)
L PE p¢ L
(ca)(oa’) = (6€) +io(€ x s) A~ Nep e X T

(B1)
(B2)
(B3)

(B-4)
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Figure 1: The one-nucleon exchange graph for the reaction p+ D = p/(© = 180°) + D
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differential cross section do/dQ for the elastic proton-

deuteron backward scattering in the c.m.s. as a function of the momentum of the de-

tected proton in the laboratory system. Dashed line: contribution of the positive-energy

BS waves, long-dashed line: contribution of the Lorentz-boost effects eq. (31}, solid line:

full BS calculations, dotted line: results of calculations within the non-relativistic limit

with the Bonn potential wave function. Experimental data from {20, 36].
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Figure 3: The deuteron tensor analyzing power Ty for the elastic proton-deuteron back-
ward scattering. Long-dashed line: contribution of the positive energy BS waves eq. (52).
dotted line: purely relativistic corrections computed by eq. (55), solid line: results of
computation within the BS approach eq. (55), short-dashed line: results of computation
within the minimal relativization scheme [39] with Paris potential wave function. Exper-

imental data: circles - elastic backward scattering [7, 8. 14, 15], triangles - Ty measured

in the deuteron break-up reaction [6].
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Figure 4: The polarization transfer x for the elastic proton-deuteron backward scattering.

Notation as in fig. 3.
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Figure 5: The vector-vector polarization transfer coefficient from the initial proton to
the final proton. Dashed line: contribution of the positive-energy BS waves (i.e., the
non-relativistic limit), dotted line: relativistic corrections, solid line: full BS results via

eq. (57).
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Figure 6: The vector-vector polarization transfer coefficient from the initial deuteron to

the final deuteron. Notation as in fig. 5
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Figure T: The tensor-tensor polarization transfer coefficient from the initial deuteron to

the final deuteron. Notation as in fig. 5.
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Figure 8: The relativistic corrections for the tensor-tensor polarization transfer coeflicient

from the initial deuteron to the final deuteron Hg rn—orn defined by eq. (60). In the

non-relativistic limit Ho zy—o,.x vanishes.




Figure 9: A possible intermediate mechanism already included in the one-nucleon ex-

change diagram in the BS approach.
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