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Abstract
Code clones (identical or similar code fragments in a code-base) have dual but contradictory impacts (i.e.,

both positive and negative impacts) on the evolution and maintenance of a software system. Because of the

negative impacts (such as high change-proneness, bug-proneness, and unintentional inconsistencies), software

researchers consider code clones to be the number one bad-smell in a code-base. Existing studies on clone

management suggest managing code clones through refactoring and tracking. However, a software system’s

code-base may contain a huge number of code clones, and it is impractical to consider all these clones for

refactoring or tracking. In these circumstances, it is essential to identify code clones that can be considered

particularly important for refactoring and tracking. However, no existing study has investigated this matter.

We conduct our research emphasizing this matter, and perform five studies on identifying important clones

by analyzing clone evolution history.

In our first study we detect evolutionary coupling of code clones by automatically investigating clone

evolution history from thousands of commits of software systems downloaded from on-line SVN repositories.

By analyzing evolutionary coupling of code clones we identify a particular clone change pattern, Similarity

Preserving Change Pattern (SPCP), such that code clones that evolve following this pattern should be

considered important for refactoring. We call these important clones the SPCP clones. We rank SPCP clones

considering their strength of evolutionary coupling. In our second study we further analyze evolutionary

coupling of code clones with an aim to assist clone tracking. The purpose of clone tracking is to identify

the co-change (i.e. changing together) candidates of code clones to ensure consistency of changes in the

code-base. Our research in the second study identifies and ranks the important co-change candidates by

analyzing their evolutionary coupling. In our third study we perform a deeper analysis on the SPCP clones

and identify their cross-boundary evolutionary couplings. On the basis of such couplings we separate the

SPCP clones into two disjoint subsets. While one subset contains the non-cross-boundary SPCP clones which

can be considered important for refactoring, the other subset contains the cross-boundary SPCP clones which

should be considered important for tracking. In our fourth study we analyze the bug-proneness of different

types of SPCP clones in order to identify which type(s) of code clones have high tendencies of experiencing

bug-fixes. Such clone-types can be given high priorities for management (refactoring or tracking). In our

last study we analyze and compare the late propagation tendencies of different types of code clones. Late

propagation is commonly regarded as a harmful clone evolution pattern. Findings from our last study can help

us prioritize clone-types for management on the basis of their tendencies of experiencing late propagations.

We also find that late propagation can be considerably minimized by managing the SPCP clones. On the basis

of our studies we develop an automatic system called AMIC (Automatic Mining of Important Clones) that

identifies the important clones for management (refactoring and tracking) and ranks these clones considering

their evolutionary coupling, bug-proneness, and late propagation tendencies. We believe that our research

findings have the potential to assist clone management by pin-pointing the important clones to be managed,

and thus, considerably minimizing clone management effort.
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Chapter 1

Introduction

Code cloning has emerged as a controversial term in the realm of software engineering research and prac-

tice, because of its contradictory impacts on software evolution and maintenance. Code cloning generally

refers to the frequent copy/paste activities of programmers during implementation. Copying one code frag-

ment from one place of a code-base and pasting it to several other places with or without modification cause

the existence of identical or nearly similar code fragments in the code-base. Such code fragments are known as

code clones. A group of similar code fragments forms a clone class or a clone group. Two code fragments that

are similar to each other form a clone-pair. Although copy/pasting is considered to be the primary reason

behind code clones, some other factors such as: repetition of common functionality, programmer laziness,

technology limitation, and code understandability may influence clone creation.

Code clones are of significant importance from the perspectives of software maintenance. A great many

studies [19, 29, 30, 75, 78, 89, 111, 113, 114, 120, 146, 155, 158, 183, 186, 192, 194–197, 197–199, 201, 203, 211, 215,

220,229,232,233,248,272,275,276] have been conducted on analyzing clone impacts on software maintenance

and evolution. While a number of studies [19, 75, 89, 111, 131–133] identified some positive impacts of code

clones (such as: faster software development, and better understandability of source code), there is strong

empirical evidence [29, 30, 44, 51, 78, 91, 97, 141, 142, 145, 146, 156, 158, 263] of some negative impacts too.

These negative impacts include: hidden bug-propagation [145], unintentional inconsistent changes [29], late

propagations [30], and higher instability [78]. Emphasizing the negative impacts, software researchers suggest

managing code clones through refactoring [25,35,272] and tracking [61,95].

Clone refactoring refers to the task of merging several clone fragments from a clone class (i.e., a group

of code fragments that are similar to one another) into a single one if possible. However, there can be

situations where refactoring of clone fragments in a particular class is impossible but the fragments need

to be updated together consistently. Clone tracking is important in such situations. Clone tracking [61, 95]

means remembering all the clone fragments in a clone class as the software system evolves through changes so

that when a programmer makes some changes to a particular clone fragment in that class, the clone tracking

system can automatically notify her about the existence of the other clone fragments in the class. The

programmer can then decide whether she needs to implement similar changes to these other clone fragments

in order to ensure consistency of the software system’s code-base.
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1.1 Problem Definition

A software system may contain a huge number of code clones. It is impractical to consider all these clones

for refactoring or tracking, because some clones are volatile and a considerable proportion of the code clones

never change during evolution [119]. Moreover, clone refactoring is often very time consuming and requires

interactions from experienced programmers. Clone tracking is resource intensive. In such a situation, it is

essential to identify code clones that are important from refactoring and tracking perspectives. However,

although a great many studies [26,27,27,35,37,38,56,60–62,82–84,95,134,152,218,219,236,237,244,268,274]

have been conducted on clone refactoring and tracking, none of these studies investigate which of the code

clones in a software system are important to be refactored or tracked. A number of clone refactoring and

tracking tools [27, 35, 39, 61, 67, 80, 83, 87, 95, 122, 139, 151, 152, 210, 239, 244, 245] currently exist. However,

these tools cannot identify which code clones can be important for refactoring or tracking. Focusing on this

drawback of the existing studies and tools, we address the following problem through our research.

Research Problem

Given the huge number of code clones in a software system’s code-base, how do we identify the important

ones from the perspectives of clone management (clone refactoring and tracking)?

1.2 Addressing the Research Problem

In order to address the problem stated above, we conduct our research for identifying code clones that can be

important for refactoring and tracking. In our research, we automatically mine and analyze clone evolution

history from thousands of commits of software systems downloaded from on-line SVN repositories. We

investigate whether evolutionary coupling and bug-proneness of code clones can be used for prioritizing them

for management such as refactoring and tracking. We briefly describe our research behind finding important

code clones in the following way.

Our Research behind Addressing the Problem

By manually observing the clone evolution history we realize that not all of them evolve in the same way.

While some code clones evolve together (co-evolve) by preserving similarity among them, a considerable

portion of them evolve independently (without preserving similarity). Moreover, many code clones never

change during evolution. Intuitively, code clones that evolve independently or are rarely changed during

evolution should not be considered important for management. Only the code clones that co-evolve by

preserving their similarity should be considered important. By observing the evolution of such code clones we

discover their change pattern and call this pattern a Similarity Preserving Change Pattern (SPCP). We

consider SPCP clones (the code clones that evolve following an SPCP) to be the important ones for refactoring,
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because they have a tendency of co-evolving consistently (by preserving their similarity). We rank SPCP

clones on the basis of the strength of their evolutionary coupling. We further analyze the evolutionary coupling

of code clones, and utilize it for predicting and ranking co-change (changing together) candidates for a clone

fragment that a programmer attempts to change. While dealing with evolutionary coupling among clone

fragments from the same clone class, we suspected that clones might have evolutionary coupling with code

fragments beyond their class boundaries. We investigate this and realize that clones having cross-boundary

(beyond class boundary) evolutionary coupling should not be considered for refactoring. Refactoring such a

clone fragment might negatively affect the evolution of the cross-boundary code fragments that have coupling

with it. Thus, such a clone fragment should be considered important for tracking. We mine the cross-

boundary evolutionary couplings of SPCP clones, and suggest that SPCP clones having such couplings

should be considered important for tracking rather than refactoring. The non-cross-boundary SPCP clones

should be considered for refactoring. We rank the non-cross-boundary and cross-boundary SPCP clones

for refactoring and tracking on the basis of the strength of their non-cross-boundary and cross-boundary

evolutionary coupling respectively. Although we rank the SPCP clones for management on the basis of their

evolutionary coupling, we realize that we should also consider their bug-proneness when ranking. Intuitively,

code clones with a higher bug-proneness should be given a higher priority for management. Considering this

fact, we analyze the bug-proneness of different types (Type 1, 2, and 3) of code clones and realize that Type

3 clones have the highest bug-proneness among the three types. Moreover, the bug-prone clones of Type 3

have the highest possibility of evolving following an SPCP. Thus, Type 3 SPCP clones should be considered

the important ones for management. It is suspected that bug-proneness of code clones is primarily influenced

by their tendencies of experiencing late propagation. We investigate late propagation in code clones and find

that Type 3 clones have the highest tendency of experiencing late propagation among the three clone-types.

We finally discover that we can significantly minimize the occurrences of late propagation by managing SPCP

clones through refactoring and tracking.

Decomposing Our Research behind Addressing the Problem

We decompose our research behind addressing the research problem into the following five studies.

� Study 1: Identifying code clones that can be considered important for refactoring [163].

� Study 2: Ranking co-change candidates of code clones [167].

� Study 3: Identifying code clones that should be considered important for tracking [162].

� Study 4: Investigating bug-proneness of code clones [168].

� Study 5: Investigating late propagation in code clones [171].

We briefly describe each of these studies in the following subsections.
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1.2.1 Study 1: Identifying Code Clones that Can Be Important for Refactoring

In this study we investigate how we can identify code clones that can be considered important for refactoring.

We have already discussed that none of the existing studies on clone refactoring focused on identifying

important clones for refactoring. There are a number of studies [38,138,277] on scheduling clone refactoring

activity. The purpose of these studies is to determine an optimal schedule for refactoring such that refactoring

gain is maximized and refactoring effort is minimized. These studies consider all the code clones in a software

system to determine the refactoring schedule. Scheduling is one form of ranking. However, we believe

that before determining the refactoring schedule, we need to identify code clones that are important for

refactoring. We can then only consider these important clones for scheduling. We do not need to consider

the unimportant clones for scheduling. Clone refactoring is time consuming and it may require much effort

from the experienced programmers. Thus, discarding the unimportant clones from refactoring considerations

is essential to minimize clone refactoring effort.

In our first study, we analyze the clone evolution history of a software system. According to our con-

sideration, if two or more clone fragments from a particular clone class evolve together by preserving their

similarity, then these clone fragments should be considered important for refactoring. Emphasizing this fact

we define a particular clone change pattern called Similarity Preserving Change Pattern (SPCP). The

code clones that evolve following this pattern (i.e., the SPCP clones) are considered to be the important

ones for refactoring. We also rank the SPCP clones for refactoring on the basis of the strength of their

evolutionary coupling (we will discuss evolutionary coupling in Chapter 2). The non-SPCP clones (i.e., the

code clones that do not evolve following an SPCP) either evolve independently or rarely change during evo-

lution. Thus, such clones should not be considered important for refactoring. Chapter 3 presents a detailed

description of our first study.

1.2.2 Study 2: Ranking Co-change Candidates of Code Clones

Clone refactoring is one way of managing code clones. There can be situations where refactoring of code

clones in a particular clone class is impractical, however, the clone fragments in the class need to be updated

consistently. Clone tracking is important in such situations. As we explained before, a clone tracker remem-

bers the clone fragments in a clone class through system evolution so that it can notify a programmer about

the existence of the other fragments in this class when she attempts to make changes to a particular fragment.

The programmer can then decide whether she needs to change these other fragments consistently. However,

all these other fragments might not need to be changed together (i.e., might not need to be co-changed)

consistently with the particular fragment that is going to be changed. Only a few of these other fragments

might be important for changing consistently with the particular fragment. Thus, ranking these other frag-

ments on the basis of their importance of changing together with the particular clone fragment that has been

attempted to be changed can help a programmer easily identify the important ones to be co-changed.

In our second study we analyze the evolutionary coupling of the clone fragments in a clone class. Let us

consider that a programmer is attempting to change a particular clone fragment CF in a clone class. The
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other clone fragments in the clone class are the co-change candidates. We analyze the past change history

of all the clone fragments in the clone class and determine their evolutionary coupling. We then determine

which other clone fragments in the clone class exhibited evolutionary coupling with CF. Such clone fragments

have higher possibilities of co-changing with CF. We also analyze and compare two types of ranking (we

will describe these ranking mechanisms in Chapter 4) of the clone fragments that previously co-changed with

CF. On the basis of our analysis, we rank these clone fragments considering how recently they co-changed

with CF. We also rank the clone fragments that did not co-change with CF by considering their distances

from CF in the file system hierarchy. We will elaborate our second study in Chapter 4.

1.2.3 Study 3: Identifying Code Clones that can Be Important for Tracking

From our first study we discovered that SPCP clones (code clones that evolved following an SPCP) can

be the important ones for refactoring. SPCP clones from a particular clone class have evolutionary coupling

among them. However, code clones from a particular clone class might have evolutionary coupling with

non-clone fragments, and with clone fragments from other clone classes. Code clones having evolutionary

coupling beyond their class boundary should not be considered important for removal through refactoring.

Removal of such a clone fragment might negatively affect the evolution of the code fragments that have

coupling with it but reside beyond its class boundary. Thus, it is important to identify SPCP clones that

have relationships beyond their class boundaries. Such SPCP clones should not be considered for removal

through refactoring. These should be considered important for tracking along with their cross-boundary

relationships (i.e., relationships beyond their class boundaries). While the cross-boundary SPCP clones

should be considered important for tracking, the remaining SPCP clones (i.e., the non-cross-boundary SPCP

clones) in a code base can be considered important for refactoring. None of the existing studies on clone

analysis and management investigated cross-boundary relationships of code clones.

In our third study, we detect all the SPCP clones in a software system’s code-base and then analyze the

evolutionary coupling relationships of these SPCP clones beyond their class boundaries. We separate the

SPCP clones into two groups: (1) cross-boundary SPCP clones, and (2) non-cross-boundary SPCP clones.

While the cross-boundary ones are important for tracking, the non-cross-boundary ones are important for

refactoring. In Section 1.2.1, we mentioned that we rank the SPCP clones for refactoring on the basis of the

strength of their evolutionary coupling. We apply such a ranking for the non-cross-boundary SPCP clones.

We rank the cross-boundary SPCP clones on the basis of the number of cross-boundary coupling links they

have. We will describe our third study in Chapter 5.

1.2.4 Study 4: Investigating Bug-proneness of Code Clones

From our previous studies we realize that SPCP clones (Code clones that evolved following a similarity

preserving change pattern called SPCP) are important for refactoring and tracking. We ranked SPCP

clones on the basis of their evolutionary coupling. However, bug-proneness of code clones should also be
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considered when prioritizing them for management. There are a number of studies [44, 51, 91, 97, 141] on

clone bug-proneness. However, none of these studies compared the bug-proneness of the three types of code

clones. Also, there is no study on investigating which type of SPCP clones (i.e., Type 1, Type 2, or Type 3

SPCP clones) have high possibilities of containing bugs. We believe that bug-proneness of code clones should

also be considered when prioritizing them for management (refactoring and tracking).

In our fourth study, we analyze the evolutionary history of the clone fragments and identify which of the

clone fragments experienced bug-fix changes during evolution. We compare the bug-proneness of the major

types (Type 1, Type 2, and Type 3) of code clones. More specifically, we investigate which type of SPCP

clones (Type 1, Type 2, or Type 3 SPCP clones) have high possibilities of experiencing bug-fixes. Although

we previously ranked the SPCP clones on the basis of their evolutionary coupling, we can also rank them on

the basis of their bug-proneness. We present our clone bug-proneness study in Chapter 6.

1.2.5 Study 5: Investigating Late Propagation in Code Clones

Late propagation is a particular evolutionary pattern of code clones. We will define late propagation in

Chapter 7. Existing studies [19, 29, 30] show that this pattern is related to bugs and inconsistencies in the

code-base. Researchers have investigated different specific patterns [30] of late propagation and identified

which patterns are more related to bugs, faults, and inconsistencies. However, none of the studies investigated

the intensities of late propagation in different types of clones separately. Such a study is important because,

if late propagation is observed to be more intense in a particular clone type compared to the others, we

might consider being more conscious while changing clones of that particular type. Also, we might want

to refactor clones of that particular type with higher priority. None of the existing studies investigate the

bug-proneness of late propagation in different types of clones separately. Such an investigation is also very

important for understanding the comparative harmfulness of late propagation in different clone-types. Our

previous studies introduce the importance of SPCP clones. We established that SPCP clones are the

important ones for refactoring and tracking. However, we did not investigate whether managing SPCP clones

can help us minimize late propagation in code clones.

In our fifth study, we analyze the evolutionary history of three types of clones separately and identify

which code clones experienced late propagations. We then compare the intensities of late propagations in

different types (Type 1, Type 2, and Type 3) of code clones. We also investigate and compare the bug-

proneness of the late propagation clones of different clone-types. We finally investigate what percentage of

the late propagations occur in SPCP clones. If most of the late propagations occur in SPCP clones, then

it is an implication that managing SPCP clones can minimize the occurrence late propagations. We found

that Type 3 clones have higher possibilities of experiencing late propagation compared to Type 1 and Type 2

clones. We also found that late propagations can be minimized considerably by managing the SPCP clones.

We describe our fifth study in Chapter 7.
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1.3 Outline of the Thesis

Our first chapter (Chapter 1, Introduction) introduces the research problem and presents a short description

of our research behind addressing the research problem. The rest of the thesis is organized as follows.

� Chapter 2 describes the background topics.

� Chapter 3 elaborates our first study (i.e., Study 1) on identifying and ranking code clones that can

be considered important for refactoring.

� Chapter 4 discusses our second study (i.e., Study 2) on ranking co-change candidates for clones.

� Chapter 5 contains the details of our third study (i.e., Study 3) on cross-boundary coupling relation-

ships of SPCP clones (the code clones that evolved following an SPCP).

� Chapter 6 presents our fourth study (i.e., Study 4) on comparing the bug-proneness of different types

of code clones.

� Chapter 7 describes our fifth study (i.e., Study 5) on the intensity and harmfulness of late propagation

in different types of code clones.

� Chapter 8 concludes the thesis.

Our five studies described in the thesis have already been published in major software engineering con-

ferences [162,163,167,168] and journal [171]. There are a number of other publications [92,159–161,164–166,

169,170,172] from this thesis research. Appendix A contains the list of all the publications out of this thesis.

On the basis of our five studies presented in the thesis we develop an automatic system called AMIC for

mining important clones from the whole code-base of a software system, and also, for ranking these important

clones considering their evolutionary coupling, bug-proneness, and late propagation tendencies. AMIC works

by automatically mining and analyzing the clone evolution history from thousands of revisions of a candidate

software system. We develop AMIC using Java with MySQL as the back-end database server. Chapter 8

presents a conceptual description of AMIC. A user-manual for AMIC is presented in Appendix B. We have

also deployed AMIC in the web [173]. The website helps us easily detect and rank the important code clones.
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Chapter 2

Background

This chapter presents the terminology that will be used in the rest of the thesis. Section 2.1 defines code

clones, Section 2.2 describes different types of code clones, Section 2.3 focuses on the impacts of code clones

on software evolution and maintenance, Section 2.4 describes clone refactoring and tracking, and Section 2.5

defines and discusses evolutionary coupling among program entities.

2.1 Code Clone

According to the literature [110,192,203], if two or more code fragments in a software system’s code-base are

identical or nearly similar to one another, we call them code clones.

Clone-Pair

Two code fragments that are similar to each other form a clone pair.

Clone Class

A group of similar code fragments forms a clone class or a clone group.

Clone Fragment

We frequently use the term ‘clone fragment’ in the thesis. A clone fragment is a particular code fragment

which is exactly or nearly similar to one or more other code fragments in a code-base. Each member in a

clone class or a clone-pair is a clone fragment.

Cloned Method

If a method contains cloned lines, we call this method a cloned method. If all lines of a method are cloned

lines, then this method is a fully cloned method. If a method contains both cloned and non-cloned lines, we

call this method a partially cloned method.
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Figure 2.1: Type 1 (identical) clone pair

Method Clones

If two or more methods are clones of one another, we refer to these as method clones. Method clones are

fully cloned methods.

Clone Genealogy

Clone genealogy [119] detection is an integral part of clone analysis. There are a number of studies [19,

24, 77, 131, 146, 179, 207, 208, 208, 209, 241] on clone genealogy detection. We define a clone genealogy in the

following way. Let us assume that a clone fragment was created in a particular revision of a software system

and was alive in a number of consecutive revisions. Thus, each of these revisions contains a snapshot of the

clone fragment. The genealogy of this clone fragment consists of the set of its consecutive snapshots from the

consecutive revisions where it was alive. Each clone fragment in a particular revision belongs to a particular

clone genealogy. In other words, a particular clone fragment in a particular revision is actually a snapshot

in a particular clone genealogy. By examining the genealogy of a clone fragment we can determine how it

changed during software evolution.
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Clone Visualization

A number of studies [16, 17, 212, 247] have been conducted on visualizing code clones resulting a number of

tools. The goal of these studies and tools is to help us visually analyze the clone fragments in a clone class in

a particular revision of a software system. Some of these tools also help us visualize the evolution of a clone

fragment through different revisions.

2.2 Types of Code Clones

There are four types of code clones as discussed below.

2.2.1 Type 1 Clones

Exactly similar (i.e., identical) code fragments disregarding their comments and indentations are known as

Type 1 clones. Fig. 2.1 shows a Type 1 clone-pair. One fragment of the pair resides in the method named

‘DetermineFactorialAndPrime’, and the other fragment resides in the method ‘FindAllPrimes’. The two

fragments have been shown in the light gray boxes. We see that the fragment at the right hand side contains

a comment. If we disregard this comment, then the two fragments become identical.

2.2.2 Type 2 Clones

Type 2 clones are syntactically similar code fragments. These are mainly created from Type 1 clones because

of renaming identifiers and changing data-types. Fig. 2.2 shows a Type 2 clone pair where the two fragments

in the pair reside in two methods ‘DetermineFactorialAndPrime’ and ‘FindAllPrimes’. The clone fragments

have also been highlighted in the methods. We see that the fragment at the left hand side contains a variable

called n. The fragment at the right hand side the corresponding variable has been named as j. Because of

this variable renaming, these two fragments make a Type 2 clone pair.

2.2.3 Type 3 Clones

Type 3 clones are created from Type 1 and Type 2 clones because of addition, deletion, or modification of

source code lines. Type 3 clones are also known as gapped clones. Fig. 2.3 contains an example of a Type

3 clone pair. The two fragments in the clone pair again reside in the two methods ‘DetermineFactorialAnd-

Prime’ and ‘FindAllPrimes’. We see that the fragment at the right hand side contains a line ‘k=k+1’ for

counting the number of primes. However, this line is absent in the fragment at the left hand side. Thus,

these two clone fragments make a Type 3 clone pair.
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Figure 2.2: Type 2 clone pair

2.2.4 Type 4 Clones

Semantically similar code fragments are known as Type 4 clones. If two or more code fragments perform

the same task but are implemented in different ways, these code fragments are called Type 4 clones. Type

4 clones are also known as semantic clones. The two methods (’SumNonRecursive’ and ‘SumRecursive’) in

Fig. 2.4 make a Type 4 clone pair. We see that each of these two methods perform the same task (finding

the sum from 1 to n), however, they have been implemented in two different ways. When the method at the

left hand side finds the sum using a for loop, the method at the right hand side calculates the sum using

recursion. Thus, these two methods make a Type 4 clone pair.

Code clones can be of different granularities such as: file clones, class clones, method clones, or arbi-

trary block clones. Researchers have also investigated on detecting duplications (i.e., clones) in higher level

code structures [31, 32, 149], formal models [11, 57, 58, 224, 226], UML sequence diagrams [144, 228], software

requirements specifications [101,102], and Matlab/Simulink models [12,13,100,181,188,222,223,225].
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Figure 2.3: Type 3 clone pair

2.2.5 Clone Detection Techniques

A great many clone detection techniques [6, 9, 10, 20–23, 33, 35, 47, 49, 50, 54, 55, 63, 65, 66, 70, 73, 85, 88, 90, 96,

98, 99, 108, 109, 112, 114, 114–118, 121, 124–128, 130, 135–137, 140, 142, 147, 149, 150, 176–178, 185, 189, 192–194,

196, 198, 201, 204, 206, 213, 214, 216, 227, 230, 234, 235, 240, 243, 246, 253, 260, 261, 264, 269, 270, 274, 275] have

already been proposed by the researchers resulting a number of clone detection tools. Different techniques

are suitable for different purposes. The clone detection techniques as well as tools can be categorized into

the following categories on the basis of their underlying detection mechanism.

� Text similarity based clone detection: A number of clone detection techniques [98,99] detect code

clones by measuring textual similarity of the candidate code fragments. Such techniques are generally

language independent.

� Token similarity based clone detection: Such techniques [20, 21, 109, 112, 142] first convert the

program into a stream of tokens using lexical analyzers, and then compare the token sequences of the

candidate code fragments to determine whether they are clones of one another. Such techniques can

detect Type 1 and Type 2 clones.

� AST (Abstract Syntax Trees) based clone detection: Some techniques [35, 264] detect code

clones by converting the whole program into a parse tree, and then by identifying similar sub-trees.
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Figure 2.4: Type 4 clone pair

� Hybrid clone detection: There is a hybrid clone detection technique called NiCad [48] that depends

on TXL 1 parser for flexible pretty printing (i.e., normalizing) of the program source code, and then

compares pretty-printed code fragments using simple text match.

A number of studies [196,198,201,204,231] have compared the clone detection techniques on the basis of

their detection accuracy (i.e., precision, and recall). According to the most recent study [231] performed by

Svajlenko and Roy using the Mutation Framework [198], the clone detection tools: NiCad [48], iClones [76],

ConQat [103], and SimCad [249] are very good options for detecting the major three types of clones: Type

1, Type 2, and Type 3. A number of techniques [64, 115, 267] have also been proposed for detecting Type 4

clones (i.e., semantic clones).

2.3 Impacts of Code Clones

According to a great many studies [19,29,30,51,75,78,89,97,111,123,131–133,141,145,146,154,156,158,161,

200,255,256,278] code clones have both positive and negative impacts on software evolution and maintenance.

We discuss these impacts in the following paragraphs.

2.3.1 Positive Impacts of Code Clones

According to a number of studies [18, 19, 75, 89, 111, 131–133, 157, 184, 202] code cloning has some positive

impacts on software development. The positive impacts of cloning have been discussed below.

� Faster software development: Code cloning can help us in faster development of software systems.

Reusing existing code blocks by slightly modifying them for implementing similar functionalities can

considerably reduce implementation time and efforts resulting a considerable reduction of software

1http://www.txl.ca/index.html
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development costs. According to a study of Kapser and Godfrey [111] code cloning can often be

considered a reasonable development strategy.

� Program comprehension: Cloning can also help us in program comprehension. Understanding

one clone fragment in a particular clone class might often be sufficient to know what other clone

fragments in the same class do. Presence of code clones can also help us in context sensitive code

completion [18] as well as context-aware search keywords formulation for handling programming errors

and exceptions [184].

� Reducing the risks of ripple change effect: Changing a particular code fragment such as a method

that is being used by several other methods might require corresponding changes to these other methods.

In such a situation, it might be wise to create a copy of the particular method and using this newly

created copy by making necessary changes to it leaving the original one as it is [157]. Changing the

original fragment is often time consuming because it needs a proper analysis of the change impacts.

2.3.2 Negative Impacts of Code Clones

A number of studies [29, 30, 51, 78, 97, 141, 145, 146, 156, 158] have identified some strong negative impacts of

code clones on the evolution and maintenance of software systems. We discuss these in the following points.

� Hidden bug propagation: The most important negative impact of the code clones is hidden bug

propagation [29]. If one code fragment contains a bug and a programmer copy/pastes it to several

places in the code-base without knowing the existence of the bug in the original fragment, the bug gets

propagated. If such a hidden bug gets discovered at a particular point of evolution, the fixing should

take place in all the copies.

� Unintentional inconsistencies: Code clones might create unintentional inconsistencies in the code-

base. In general, the clone fragments in a clone class (i.e., a clone group) need to be updated together

consistently. However, updating a subset of these fragments leaving the others as they are only because

of not knowing the existence of these other fragments might create inconsistency in the code-base [30]. If

such inconsistencies get discovered during later evolution, the clone fragments that were previously left

unintentionally will need to be updated consistently. Such a phenomenon is also called late propagation

[30] in code clones.

� Higher change-proneness: The existing studies [145, 146, 156, 158] also show that code clones have

higher possibilities of experiencing changes (i.e., code clones are more change-prone) than non-clone

code during software evolution. Thus, code clones are expected to require higher maintenance effort

compared to non-clone code [158].

� Code bloat: Code cloning may lead to an unnecessary increase of code in the code-base [21, 111].

The increased code may require extra effort and cost during maintenance. Code cloning can also cause
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the existence of unused or dead code fragments in a code-base [111]. Such code fragments reduce code

comprehensibility.

2.4 Clone Refactoring and Tracking

Focusing on the impacts of code clones, software researchers suggest to manage code clones through refactoring

and tracking so that we can minimize the negative impacts of code clones, while also receiving their positive

impacts. A great many studies [26,27,35,37,38,45,56,59–62,74,81–84,95,134,148,152,187,205,217–219,236–

238, 242, 244, 257, 258, 266, 268, 271, 274, 279, 280] have been done on clone refactoring and tracking resulting

a number of techniques and tools.

2.4.1 Clone Refactoring

Clone refactoring is the task of merging (unifying) two or more clone fragments from the same clone class to a

single fragment. The objective of clone refactoring is to improve the internal structure of the code-base so that

the programmers can maintain it easily. The external behaviour of the software system should not be changed

because of refactoring. A number of clone refactoring tools [27,35,39,67,83,87,122,139,151,239,245] currently

exist. Given two clone fragments from a clone class, these tools can be used to assess their refactorability,

and perform refactoring if they are refactorable.

Clone Categorization from Refactoring Perspective

A number of studies [26,219,268] have categorized code clones from the perspectives of refactoring. Balazinska

et al. [26] proposed 18 categories of code clones on the basis of re-engineering/refactoring opportunities. They

only considered method clones for categorization. Yu and Ramaswamy [268] categorized code clones into the

following three categories: (1) singular concern clones, (2) cross-cutting concern clones, and (3) partial

concern clones. They found that partial concern clones are not suitable for refactoring. Schulze et al. [219]

categorized code clones for refactoring on the basis of location and type of code in the clone fragments.

According to their analysis when clone fragments of a particular clone class are scattered throughout the

code-base, AOR (Aspect Oriented Refactoring) is more appropriate for them compared to OOR (Object

Oriented Refactoring).

Automatic Refactoring of Code Clones

Balazinska et al. [27] and Meng et al. [151] investigated fully automatic refactoring of code clones. While

the tool called CLoRT introduced by Balazinska et al. [27] can refactor method clones only, Meng et al.’s

[151] tool, RASE, can refactor code clones of fragment level granularity. Meng et al. also reports that

automatic refactoring of code clones cannot eradicate the necessity of manual analysis from the experienced

programmers.
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Semi-automatic Refactoring of Code Clones

Most of the existing clone refactoring techniques [27, 39, 46, 67, 83, 84, 86, 105, 122, 139, 245, 252] are semi-

automatic (i.e., they require user interactions for the actual implementation of refactoring). The most

promising tool for seme-automatic clone refactoring is the one that was introduced by Tsantalis et al. [245].

It can automatically assess the refactorability of all major types (Type 1, Type 2, and Type 3) of code clones.

Scheduling for Clone Refactoring

After identifying the code clones for refactoring we can refactor them in different orders. Different refactoring

orders will result different extents of gains in terms of system performance, and maintainability. The studies

[38, 138, 273, 277] regarding refactoring scheduling propose different schedules (i.e., orders) for refactoring

code clones with the goal of achiving the maximum gain while minimizing the refactoring effort.

2.4.2 Clone Tracking

There can be situations where refactoring of some clone fragments is impossible, however, they need to be

updated consistently. Clone tracking is important in such situations. Clone tracking refers to the task of

remembering all clone fragments from a clone class so that when a programmer attempts to change one

fragment in the future, the system can remind her about the existence of the other clone fragments in the

same clone class. The programmer can then decide whether these other clone fragments should also be

updated consistently or not. Thus, clone tracking is important to update the code-base consistently. A

number of clone trackers [61, 80, 95, 152, 210, 244] currently exist. These can track the evolution of the clone

fragments in a clone class.

2.5 Evolutionary Coupling of Program Entities

If two or more program entities (such as files, classes, or methods) have evolved by changing together (i.e.,

by co-changing) during system evolution, then it is an implication that these entities are related and future

changes in any of these entities might require the other entities to be changed consistently. In such a situation

we say that these entities have evolutionary coupling [7,71]. A number of studies [8,14,15,28,34,41–43,52,71,

72,79,93,94,106,107,129,159,160,165,180,182,190,191,262,265,281] have investigated evolutionary coupling

for identifying file level or method level co-change candidates. We can realize evolutionary coupling by using

association rules.

2.5.1 Association Rule

An association rule [7] is an expression of the form X => Y where X is the antecedent and Y is the consequent.

Each of X and Y is a set of one or more program entities. The meaning of such a rule in our context is that if
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X gets changed in a particular commit operation, Y also has the tendency of getting changed in that commit

operation. We can determine the confidence or strength of a particular association rule by determining the

support of its constituent parts.

2.5.2 Support and Confidence

Support is the number of commit operations in which an entity or a group (two or more) of entities changed

together. We consider an example of two entities E1 and E2. If E1 and E2 have ever changed together,

we can assume two association rules, E1 => E2 and E2 => E1, from them. Suppose, E1 changed in four

commits: 2, 5, 6, and 10. E2 changed in six commits: 4, 6, 7, 8, 10, and 13. Thus, support(E1) = 4 and

support(E2) = 6. However, support(E1, E2) = 2, because E1 and E2 changed together in two commits: 6,

and 10. Also, support(E1 => E2) = support(E2 => E1) = support(E1, E2) = 2.

Confidence of an association rule, X => Y , determines the probability that Y will change in a commit

operation provided that X changed in that commit operation. We determine the confidence of X => Y in

the following way.

confidence(X => Y ) = support(X,Y )/support(X) (2.1)

From the above example of two entities, confidence (E1 => E2) = support(E1, E2) / support(E1) = 2 /

4 = 0.5 and confidence(E2 => E1) = 2 / 6 = 0.33. In our research, we extract and analyze association rules

where each of X and Y consist of a single clone or a non-clone fragment. Such a rule can be expressed as

x => y where x and y can be: (1) two clone fragments from the same clone class, (2) two clone fragments from

two different clone classes, or (3) a clone and a non-clone fragment. We investigate evolutionary coupling

considering a finer granularity (fragment level granularity) compared to file level or method level granularities

investigated in the existing studies [41,52,71,72,79]. Moreover, the existing studies on evolutionary coupling

did not investigate identifying code clones that can be important for refactoring and tracking. We investigate

this issue in our research considering fragment granularity.
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Chapter 3

Automatic Ranking of Clones for Refactoring through

Mining Association Rules

In this chapter, we present our study on identifying code clones that can be considered important for

refactoring. We mine association rules (i.e., evolutionary coupling) among clones in order to detect clone

fragments that belong to the same clone class and have a tendency of changing together during software

evolution. The idea is that if two or more clone fragments from the same class often change together (i.e.,

are likely to co-change) by preserving their similarity, they might be important candidates for refactoring.

Merging such clones into one (if possible) can potentially decrease future clone maintenance effort.

We define a particular clone change pattern, the Similarity Preserving Change Pattern (SPCP),

and consider the cloned fragments that changed according to this pattern (i.e., the SPCP clones) as important

candidates for refactoring. By automatically analyzing the clone evolution history of a software system, we

identify SPCP clones and mine evolutionary coupling (i.e., association rules) among these. We rank SPCP

clones on the basis of the strength of their evolutionary coupling. We apply our implementation on thirteen

subject systems and retrieve the refactoring candidates for three types of clones (Type 1, Type 2, and Type

3) separately. Our experimental results show that SPCP clones can be considered important candidates

for refactoring. Clones that do not follow SPCP either evolve independently or are rarely changed. By

considering SPCP clones for refactoring we not only can minimize refactoring effort considerably but also

can reduce the possibility of delayed synchronizations among clones and thus, can minimize inconsistencies

in software systems.

The rest of the chapter is organized as follows: Section II describes the significance of our study, Section

III describes the terminology, Section IV elaborates on the SPCP (similarity preserving change pattern),

Section V presents experimental results and discussion, Section VI mentions some threats to validity, Section

VII discusses related work, and Section VIII contains the concluding remarks.

3.1 Introduction

Code cloning is a common yet controversial practice frequently employed by programmers during both de-

velopment and maintenance of software systems. Cloning involves copying a code fragment from one place

and pasting it in one or more additional places in the code-base with or without modifications causing the
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Figure 3.1: Change history of clone fragments

same or similar code fragments to be scattered throughout the system. The original code fragment (i.e., the

code fragment from which the copies were created) and the pasted code fragments are clones of one another.

Numerous empirical studies [75,104,131–133,145,146,209,241] have been conducted identifying the possi-

ble impact of clones on software maintenance. While a number of studies [131–133] reported that clones are

beneficial to both software development and maintenance, there is strong empirical evidence [104, 145, 146]

of the negative effects of clones, including hidden bug propagation and unintentional inconsistent changes.

Also, higher number of clones indicate higher change-proneness of the software systems [156] as well as higher

maintenance effort and cost. The negative effects of clones indicate the necessity of clone refactoring. Clone

refactoring refers to the task of merging several clone fragments (that are similar to one another) into a single

one (if possible).

Motivation. A number of clone refactoring techniques [26, 105, 219, 239, 277] have been proposed by

different studies. Before refactoring, it is important to identify the clones that are our primary refactoring

candidates because, there can be a large number of clones in a system and not all of them need to be

refactored [119]. That is, we should identify clones that would be important to refactor. Clone refactoring

may not be able to be fully automated as it may require critical analysis by the programmer. Thus, a

significant amount of effort and cost might sometimes need to be spent for refactoring clones. Identifying

and ranking clones according to refactoring need can help us minimize refactoring effort and cost, because

we are able to focus on just those clones that are important to be refactored, and we can leave the clones

where refactoring is less important or unnecessary. However, there is no existing study that focuses on how

we should identify and rank the important clones (from the whole set of clones in a code-base) for refactoring.
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A number of studies [38, 138, 277] have investigated scheduling for clone refactoring activity. Given a

number of clone fragments for refactoring, these studies aim to find an optimal schedule for refactoring tasks

so that refactoring gain is maximized and refactoring effort is minimized. However, these studies cannot

identify which of the huge number of code clones in a software system should be given a high importance

for refactoring. Our research objective is to identify the important code clones for refactoring and ranking

those. We believe that our study can complement the existing clone scheduling studies and techniques by

pin pointing the most important ones to be scheduled.

According to our consideration, all clones in a software system might not need to be refactored with equal

importance. We use the clone change example presented in Fig. 3.1 to explain this. We see that there are

nine code fragments forming four groups (CG-1 through CG-4). The code fragments in a particular group

are clones of one another. The change history (in Fig. 3.1) of these code fragments implies the following:

(1) The clone fragments, CF-1 and CF-2 in group CG-1, are likely to be related to each other and they have

received corresponding changes. In other words, it is likely that the changes were made to these clones

focusing on their consistency. The same is also true for the two code fragments CF-6 and CF-7 in CG-3.

(2) It is likely that the clone fragments, CF-3 and CF-4 in group CG-2, have experienced independent

evolution. Because of the independent evolutions, CF-3 and CF-4 might not be regarded as clones of

each other after a particular evolution period. Out of the three clone fragments in group CG-3, clone

fragments CF-6 and CF-7 seem to be related as they received corresponding changes. However, the other

clone fragment CF-5 seems to have a tendency of independent evolution.

(3) The clone fragments, CF-8 and CF-9, are not change-prone and it is likely that in future they will exhibit

lower change-proneness compared to the others. Thus, these clones are not likely to add change effort

during maintenance.

The example in Fig. 3.1 implies that refactoring clone fragments might not always be appropriate, since

clones might evolve independently without preserving similarity. Also, if some clone fragments do not change

during evolution we might not consider refactoring those clone fragments, since they do not require additional

change effort during software evolution. Thus, when clone fragments belonging to the same clone class change

consistently during evolution these clone fragments might be important refactoring candidates. Moreover, a

clone class may contain n clone fragments, however, if it is observed that only a subset of the clone fragments

change consistently while others are either evolving independently or are rarely changing we should consider

refactoring only those consistently changing clone fragments. If the consistently changing clones can be

merged through refactoring we can reduce the effort spent for changing clones. The co-change histories of

the clones: (1) CF-1 and CF-2 in CG-1, and (2) CF-6 and CF-7 in CG-3 indicate that such clone fragments

can be identified by mining association rules among clones.

Contribution. Focusing on the above discussion we define a particular clone change pattern called

SPCP (Similarity Preserving Change Pattern) such that the clone fragments that change following
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Figure 3.2: Proposed refactoring step

this pattern (i.e., SPCP clones) are likely to be important candidates for refactoring. We describe SPCP in

Section 3.3. For the purpose of our study, we develop a prototype tool that can detect all SPCP clones from

a subject system and then mines association rules among SPCP clones. It ranks these rules according to

their support and confidence values (defined in Chapter 2). According to our investigation on the rules as

well as SPCP clones retrieved by our prototype tool,

(1) SPCP clones can be important candidates for refactoring. The clones that do not follow SPCP either

evolve independently or are rarely changed during evolution. Thus, we can mainly focus on the SPCP

clones for refactoring.

(2) Overall, only 7.04% of the clones existing in a code-base are SPCP clones. Also, for each of 63.44% of

the association rules retrieved by our prototype tool, the corresponding SPCP clones are method clones

and also, they belong to the same source code file. Thus, automatic identification and ranking of SPCP

clones can save a considerable amount of time, effort, and cost for clone refactoring, because we could

leave the remaining 92.96% of the clones in the code-base without refactoring.

(3) From our manual analysis on 224 association rules from all 13 subject systems (considering the top 10

rules of each clone-type), for overall 64.37% of the association rules we can suggest a standard refactoring

technique [68].

(4) A considerable amount (overall 11.64%) of SPCP clones can receive resynchronizing changes. Thus,

refactoring of SPCP clones can minimize delayed synchronizations among clone fragments and can min-

imize unwanted inconsistencies in software systems.
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Figure 3.3: Similarity preserving change pattern (SPCP)

3.2 Significance of Our Study

Existing clone refactoring studies and techniques mainly consider four refactoring steps (cf. Fig. 3.2): (1)

detection of clones, (2) scheduling of clones for refactoring (3) analysis of refactoring possibilities on the

basis of different cloning situations, and (4) application of selected refactoring. Our study differs in that we

propose an additional step after clone detection that involves the analysis of the clone evolution history to

determine the clones we should consider as the primary refactoring candidates. According to our expectation,

this additional step will minimize the clone refactoring effort and task considerably, because this step filters

out a significant portion of clones from the refactoring target list based on their change pattern and change-

proneness. According to our analysis the excluded clones do not need to be refactored with the same

importance as the ones included in the target list, since they either changed rarely or changed independently.

3.3 Similarity Preserving Change Pattern

Our prototype tool mines association rules considering those clone fragments that followed a similarity

preserving change pattern (SPCP) during evolution. It can also rank these rules on the basis of change-

proneness (described in Section 3.3.4) of the participating clones. We define similarity preserving change

pattern in the following way.

3.3.1 Definition of Similarity Preserving Change Pattern

If two clone blocks received either similarity preserving changes or re-synchronizing changes or both

during evolution, then we say that these clone blocks follow a similarity preserving change pattern (i.e., are

SPCP clones).
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Definition of Similarity Preserving Change

We consider two clone blocks CB1 and CB2 that belong to the same clone class, say CLS1, in revision Ri.

Suppose, a commit operation Ci on Ri changes any (one or both) of these clone fragments. If in revision Ri+1

(created because of commit Ci) these two clone blocks, CB1 and CB2, again remain in one particular clone

class (which might not be CLS1), then we say that CB1 and CB2 have received a similarity preserving

change in commit operation Ci. If both of the clone blocks (i.e., CB1 and CB2) change preserving their

similarity in such a commit then we call this change a similarity preserving co-change (SPCO). If the

SPCP of two clone blocks contains SPCOs, then it is likely that the participating clone blocks have changed

consistently (evaluated in Section 3.4.1).

Definition of Re-synchronizing Change

Suppose, two clone blocks CB1 and CB2 belong to the same clone class, CLS1, in revision Ri. The commit

Ci on revision Ri modified any of these clone blocks in such a way that CB1 and CB2 could not be considered

as clones of each other in revision Ri+1 (i.e., CB1 and CB2 may diverge into two different clone classes or one

or both of these might not be regarded as a clone fragment). However, in a later commit operation, say Ci+n

where n ≥ 1, any one or both of CB1 and CB2 changed in such a way that CB1 and CB2 become clones

of each other (they converged into one clone class) again. Such a converging change following a diverging

change is termed as a re-synchronizing change in our experiment.

3.3.2 Example of a Similarity Preserving Change Pattern

Fig. 3.3 contains an SPCP followed by the clone blocks, CB1 and CB2. As indicated in the figure, these

clone blocks belong to two methods M1 and M2 respectively. We see that in each of the commit operations,

C2 to C7, the clone blocks CB1 and CB2 received similarity preserving change. In commit C1, none of

the clone blocks were changed. We now consider the commit operation C2. Before this commit both of the

clone blocks (CB1 and CB2) belonged to the clone class CLS1. After this commit, the clone blocks belonged

to CLS2. Although CLS1 and CLS2 are different clone classes, we see that before or after this commit

operation both clone blocks belonged to a single clone class. Thus, CB1 and CB2 preserved their similarity

after commit C2. In other words, CB1 and CB2 received a similarity preserving change in commit C2. We

also see that these two clone blocks received similarity preserving changes in each of the commits C3 to C7.

Moreover, the similarity preserving changes in commits C2, C5, C6, and C7, are SPCOs (similarity preserving

co-changes). Finally, the changes in commits C8 to C10 can be considered as an example of re-synchronizing

change. Because of the change in C8, CB2 diverged into a different clone class, CLS5, and thus, CB1 and

CB2 could not be considered as clones of each other. However, the change in commit C10 is a converging

change because, both of the clone blocks again converged into a single clone class after this commit.
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3.3.3 Mining Association Rules Considering SPCP

In this experiment, we consider clones residing in methods. Thus, both fully cloned and partially cloned

methods have been investigated. For a particular subject system, we collect all of its revisions (mentioned in

Table 3.1), then extract the methods in each revision using CTAGS, and then determine method genealogies

following the technique proposed by Lozano and Wermelinger [145]. We detect clones in each revision using

NiCad [48] and then map the clones to the already detected methods of the corresponding revisions. As

method genealogies are already detected, after clone mapping we can easily track the evolution of each clone

fragment. Finally, we detect changes between every two consecutive revisions and map these changes to the

methods as well as clones located inside the methods.

Extraction of Association Rules

After the preliminary steps we determine all possible pairs of clones. A possible pair of clones consists of

two clone fragments CF1 and CF2 from the same clone class such that they together followed an SPCP

during the evolution and are alive in the last revision. As we map clones to methods, CF1 and CF2 reside in

methods. From such a clone pair we can determine two association rules: CF1 => CF2, and CF2 => CF1.

According to the definition, these two rules have the same support value. However, their confidences can be

different. We determine support by the number of similarity preserving co-changes (SPCOs) in the SPCP

followed by the clone fragments in a rule. We extract all association rules with a minimum support of 1.

3.3.4 Ranking of Association Rules

According to our consideration and discussion in the introduction, if a rule detected by our prototype tool

has a higher support value (i.e., higher SPCO count) compared to the others, we should assume a higher

priority for refactoring the associated clone fragments. Our decision of ranking considering the support value

is reasonable from two perspectives.

(1) Higher support value (i.e., higher SPCO count) for a rule (consisting of two SPCP clone fragments)

indicates a higher likelihood that the participating clone fragments have changed consistently during

evolution. The underlying assumption is that in a similarity preserving co-change (i.e., in a SPCO), the

two participating SPCP clone fragments generally change consistently. We empirically evaluate this in

Section 3.4.1. Intuitively, if two clone fragments have a tendency of changing together consistently, then

changes in one fragment in a particular commit operation generally require corresponding changes to the

other one in that commit operation.

(2) Higher support value for a rule provides evidence that the corresponding SPCP clones have exhibited

higher change-proneness (i.e., changed in higher number of commits) during the past evolution compared

to the other SPCP clones in other rules. Thus, considering the existing evolution history we rank the
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Figure 3.4: Rules of Type 3 clones sorted in decreasing order of support values

association rules according to the decreasing order of change-proneness of the corresponding SPCP clones.

As it is difficult to be certain about the future change-proneness of the rules as well as SPCP clones,

our decision of ranking relying on the past history is reasonable. We assume higher ranks for those rules

as well as SPCP clones that exhibited higher change-proneness in the past. However, higher support

might also be an indicator of higher change-proneness of the associated SPCP clones in future. We do

not investigate this issue (i.e., future change-proneness) in this research work.

3.3.5 Finding Groups of Refactoring Candidates

Each rule consists of two SPCP clones. This is also possible that more than two clone fragments from the

same class are preserving their similarity during evolution following a similarity preserving change pattern

(SPCP). Thus, this is convenient to determine groups of refactoring candidates from these rules where a

group contains two or more clones (from the same clone class) and all the clones in a group have evolved

following a SPCP. Suppose two clone blocks, CB1 and CB2, formed a rule because they followed a SPCP. If

there is another rule consisting of the clone blocks CB2 and CB3 (CB2 is common in these two rules), then

we can form a group consisting of CB1, CB2, and CB3, because according to the conditions in Section 3.3.1

these three clone blocks together followed a SPCP. Focusing on this fact, we automatically determine groups

of refactoring candidates. We term each group as a SPCP clone-class. In Table 3.2 we report the count of

groups for each subject system considering each clone-type.

3.3.6 Tool Support

We have developed our prototype tool such that for a particular clone-type of a particular subject system,

it generates two XML files. One file contains the ranked rules and the other one contains the SPCP clone

groups merging these rules. While each rule in the first file contains only two SPCP clones, a group in the

second file may contain more than two SPCP clones. For each SPCP clone (whether in a rule or in a group)

we include the starting and ending line numbers of the clone fragment, the name of the method containing
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Table 3.1: Subject Systems

System Domain LOC Revisions

J
a
v
a

freecol Game 91,626 1950

jEdit Text Editor 1,91,804 4000

Plandora Project Management 94,076 73

Carol Game 25,092 1699

OpenYMSG Yahoo Messenger 15,553 297

C

Ctags Code Def. Generator 33,270 774

QMail Admin Mail Management 4,054 317

GNUMake Uniproc Auto-build System for C/C++ Projects 68,095 863

C
# MonoOSC Formats & Protocols 14,883 355

GreenShot Multimedia 37,628 999

P
y
th

o
n Pyevolve Artificial Intelligence 8.809 200

Ocemp Game 57,098 438

Noora Development Tool 14,862 140

Table 3.2: Statistics Regarding the Important Cloned Fragments (i.e., the SPCP Clones) Retrieved
by Our Prototype Tool

Type 1 Type 2 Type 3

System CC CF SCC SCF PSCF CR CC CF SCC SCF PSCF CR CC CF SCC SCF PSCF CR

J
a
v
a Freecol 93 251 27 56 22.31 31 95 259 28 63 24.32 49 255 799 78 180 22.52 147

jEdit 1516 4284 3 8 0.18 7 115 531 27 62 11.67 46 399 2009 51 108 5.37 64

Plandora 77 297 5 10 3.36 5 160 633 2 4 0.63 2 381 1748 19 48 2.74 44

Carol 31 154 15 51 33.11 39 30 185 17 58 31.35 80 69 300 22 127 42.33 481

OpenYMSG 10 24 3 8 33.33 7 10 22 0 0 0.0 0 40 112 7 16 14.28 10

C

Ctags 11 29 3 6 20.68 3 19 46 4 8 17.39 4 56 168 15 33 19.64 21

QMailAdmin 15 49 3 6 12.24 3 11 43 1 2 4.65 1 13 77 4 8 10.38 4

GNUMake Uniproc 144 308 3 6 1.94 3 28 69 0 0 0.0 0 57 199 2 5 2.51 3

C
# MonoOSC 4 21 3 6 28.57 3 3 6 1 2 33.33 1 9 23 8 17 73.91 10

GreenShot 168 379 2 4 1.05 2 36 141 11 22 15.60 11 67 279 15 32 11.46 19

P
y
. Pyevolve 52 117 0 0 0.0 0 13 54 3 6 11.11 3 25 123 4 11 8.94 13

Ocemp 19 50 0 0 0.0 0 24 60 0 0 0.0 0 61 167 3 6 3.59 3

Noora 43 114 4 18 15.78 37 8 40 0 0 0.0 0 26 126 3 10 7.94 12

CC = Number Clone Classes CF = Number of cloned fragments SCC = Number of SPCP Clone classes CR = Count of Rules

SCF = Number of cloned fragments that followed SPCP (i.e., the SPCP clones) PSCF = Percentage of SPCP clones

the clone fragment, and the starting and ending line numbers of this method considering the last (i.e., the

latest) revision so that we can easily trace the clone fragment for refactoring in the latest revision of the

candidate software system. The six XML files containing the association rules and groups of three types of

SPCP clones of our subject system Freecol are available on-line [175].

In order to assist in analyzing the evolution of SPCP clones, our tool also shows important information

regarding the ranked rules including (i) the list of commits where the SPCOs occurred, (ii) whether the

participating clone blocks are method clones, (iii) whether the clones belong to the same file, (iv) the support

and confidence values, (v) the file paths and starting and ending line numbers of the clone blocks and container

methods in the revision where the last SPCO occurred. Such a ranking with all information regarding the

SPCP clones is presented in Fig. 3.4 that shows the top two rules of total 481 rules retrieved for Type 3 case

of our subject system Carol.
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3.4 Experimental Results and Discussion

We applied our prototype tool on each of the thirteen subject systems listed in Table 3.1 and detected all

SPCP clones and association rules & groups formed by these SPCP clones considering three clone-types

(Type 1, Type 2, and Type 3) separately. We manually examined the changes occurred to the SPCP

clones. According to our observation, implementation of the changes (similarity preserving changes and

resynchronizing changes) required proper analysis by the responsible programmers. The changes were not

tool generated and thus, these were not just reformatting or code transformations (e.g., replacement of for

loops by for-each loops). In the following subsections and also in Fig. 3.6 we have mentioned and explained

such changes. By analyzing our experimental results we answer the following five research questions.

RQ 1. Can we minimize clone refactoring effort and cost by considering SPCP clones for refactoring?

RQ 2. Are the changes occurring to the clone fragments in SPCOs (similarity preserving co-changes) consis-

tency ensuring changes?

RQ 3. Can SPCP clones be candidates for refactoring?

RQ 4. What are the characteristics of the clones that change following similarity preserving change pattern

(SPCP)?

RQ 5. What ratio of the SPCP clones do receive resynchronizing changes?

Statistics of the important refactoring candidates: Table 3.2 shows the statistics of the clone

fragments that followed SPCP. We regard these cloned fragments as the important refactoring candidates.

For each type of clones of a particular subject system we determine the followings considering all revisions: (1)

Number of clone classes per revision (CC), (2) Number of clone fragments per revision (CF), (3) Number of

SPCP clones that is, the number of clone fragments that followed similarity preserving change pattern during

evolution (SCF), (4) Number of SPCP clone-classes (SCC), (5) The percentage of SPCP clones (PSCF),

and (6) Number of association rules formed by the SPCP clones (CR). These six measures for each clone

type are presented in Table 3.2. Looking at the percentages (PSCF) of the cloned fragments that followed

SPCP (i.e., the important candidates for refactoring) we realize that the number of important refactoring

candidates can be considerably smaller compared to the total number of clone fragments in a system.

From Table 3.2, for each clone type, we also determined the overall percentages of the SPCP clones

(denoted by Overall-PSCF ) considering all subject systems according to the following equation.

Overall-PSCFTi =
∑for all systems SCFT1

∑for all systems CFT1
(3.1)

Here, Ti (i = 1, 2, or 3) denotes a particular clone-type (Type 1, Type 2, or Type 3), SCFTi denotes

the number of SPCP clones of a particular type (Ti) of a particular subject system, and CFTi stands for

the total number of clones of type Ti in a particular system. We also calculate the overall percentage of
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Figure 3.5: Overall percentages of cloned fragments that followed SPCP

SPCP clones considering all subject systems and all clone-types in a similar way. These overall percentages

(Overall-PSCFs) are shown Fig. 3.5. From this graph it is clear that a considerable amount (i.e., 97.05%,

89.13%, 90.2%, and 92.96% for Type 1, Type 2, Type 3, and overall case respectively) of clone fragments (i.e.,

the clone fragments that did not follow SPCP) can be filtered out from our consideration during refactoring

because, these cloned fragments either evolved independently or rarely changed. This reduction in the number

of considerable refactoring candidates can minimize refactoring effort and cost.

We answered the following four research questions by analyzing the SPCP clones and rules retrieved by

our prototype tool.

3.4.1 Answer to Research Question RQ 1: Are the changes occurring to the

clone fragments in SPCOs (similarity preserving co-changes) consis-

tency ensuring changes?

To answer this question, we manually analyzed 485 SPCOs occurred in the SPCPs of 150 rules (considering

Type 3 case of Carol) involving 73 SPCP clones. For each of 100 rules, the support value (SPCO count) was

greater than 1 (highest support = 7). Each of the remaining rules had a support of 1.

We know that the clone blocks in each of the rules retrieved by our prototype tool followed an SPCP.

The support value of a rule is equal to the number of SPCOs in the SPCP of the rule. While examining the

SPCP of a rule our tool stores:

(1) The list of commit(s) where the SPCO(s) occurred.

(2) The start and end line numbers of each of the participating clone blocks before and after every commit

in the list of commits obtained in Step 1.
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Figure 3.6: Changes to two Type 3 clone fragments of Carol in commit 51

Suppose the clone blocks regarding a particular rule are CB1 and CB2 respectively and they received an

SPCO in commit Ci applied on revision Ri. Then, for each of these clone blocks we collect the snapshot in

revision Ri and the snapshot in revision Ri+1 using the line numbers. For each clone block we determine the

differences of the corresponding snapshots. Then, we manually compare the changes that occurred to CB1

with those that occurred to CB2 and decide whether the changes were consistent or not.

Investigation details. Among 485 SPCOs that we analyzed manually, in 477 SPCOs (98.35%), the

changes to the participating clone blocks (i.e., SPCP clones) were consistent. According to our observation,

in each of these 477 SPCOs, the corresponding lines (the same or similar lines) of the two participating

SPCP clones were changed in the same or similar way. Thus, the changes in these 477 SPCOs can be termed

as consistency ensuring changes to clones. In each of the remaining eight SPCOs, the changes to the clone

blocks were not consistent. However, the associated clone blocks still preserved their similarity even after

these eight SPCOs.

An example of the consistency ensuring changes that occurred to two clone blocks (corresponding to

a rule) in an SPCO on commit 51 of Carol is presented in Fig. 3.6. The method bind and the method

destroySubcontext in Fig. 3.6 are Type 3 clones (full method clone) of each other according to the clone

detection results of NiCad. From Fig. 3.4 we see that the rule consisting of these two clone blocks has a

support of 7. That is, these two clone blocks received seven SPCOs (i.e., similarity preserving co-changes) in

their SPCP (i.e., similarity preserving change pattern). These SPCOs occurred in commits: 42, 51, 54, 58,

91, 153, and 156 respectively. The details of the co-changes in commit 51 (Fig. 3.6) demonstrate that the

changes occurred to the two clone blocks (i.e., method clones), bind and destroySubcontext, are consistent.
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As demonstrated in the figure, almost the same if-blocks were added just after the first line in each of these

method clones in revision 52. The only differences in these two if-blocks are in the method names and

parameters. Also, lines 9 to 12 (in revision 51) in each of the method clones were changed in the same way as

can be seen in revision 52. We observed the changes occurred to the method clones in the other six SPCOs

too. The changes in each of these SPCOs were also consistent.

We were also interested in identifying the types of changes that mostly occur to the SPCP clones during

similarity preserving co-changes (SPCOs). The dominant change types were: addition or deletion of the same

or similar statements in both clone fragments; modification of the same or similar corresponding statements

in both clone fragments in the same way (e.g., the SPCO occurred in commit 91 on method clones bind and

destroySubcontext); and, addition of the same or similar if-else blocks.

Answer. Thus, the changes occurring to the SPCP clone fragments in similarity preserving co-changes

(SPCOs) generally ensure consistency between the clone fragments. Thus, the higher number of SPCOs

in a rule indicates a higher probability that the participating SPCP clones are related and will also change

consistently in future commits. So, ranking of rules for refactoring according to the SPCO count is reasonable.

3.4.2 Answer to Research Question RQ 2: Can SPCP clones be candidates for

refactoring?

For answering this research question we manually examined the rules and groups of SPCP clones to determine

whether we can suggest particular refactoring for the SPCP clones included in a rule or a group (defined

in Section 3.3.5). For each clone-type of a subject system we considered the top 10 rules and groups (for

the cases with less than 10 rules or groups we considered all) totaling 224 rules and 191 groups from all

13 subject systems. Through our manual analysis on these rules and groups, we determine how many of

these are refactorable using standard refactoring mechanisms such as pull up method, extract method, remove

method, parameterize method, replace conditional with polymorphism etc [68]. Then, for each type of clone

we determine overall percentage of refactorable rules and groups considering all subject systems. Overall

percentages were calculated following a equation similar to Eq. 3.1. Finally, we determine the overall

percentage considering all clone-types and subject systems. These percentages are shown in Fig. 3.7.

Fig. 3.7 shows that the proportions regarding Type 1 case are the highest ones compared to the other

two cases (Type 2, Type 3). As Type 1 clone fragments are exactly similar clone fragments, it was easier

to suggest refactoring techniques for them compared to the other two types. Type 2 clones are syntactically

similar with variable renaming and/or changes in data types. According to our investigation some Type 2

clones with different data types were not refactorable. We get the lowest proportions for the Type 3 case,

because Type 3 clones often had dissimilar code fragment and we could not suggest refactoring for those.

Overall, for 64.37% of the association rules (64.62% of the groups), we could suggest refactoring techniques

for the participating SPCP clones. Here, we should mention that the groups are formed from the rules (c.f.,

Section 3.3.5). As a group may contain more than two SPCP clones while a rule contains only two, the top
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Figure 3.7: Overall percentages of refactorable rules and groups

10 groups regarding a particular clone type of a particular subject system sometimes had more SPCP clones

compared to the corresponding top 10 rules. Thus, the percentages regarding the rules and groups are almost

the same with little differences.

However, from our investigation we realize that although we could not suggest refactoring for some rules

and groups, the participating clone blocks in these rules and groups might often need to be consistently

changed. As we generate XML files containing the rules and groups, these files can suggest co-change

candidates for any future change in any of the SPCP clones. While changing a particular SPCP clone, the

developer can look at the other SPCP clones in the same group to determine whether the changes need to be

propagated to these clones too. However, we have not yet automated this feature. We also do not investigate

the predictability of future co-change candidates in this research work.

Example of a refactorable rule. As an example, consider the rule (with support / SPCO count of 7)

consisting of the method clones, bind and destroySubcontext, mentioned in Section 3.4.1. The confidence of

each of the rules, bind => destroySubcontext and destroySubcontext => bind, is one. Thus, these methods

(i.e., method clones) always co-changed (i.e., in 7 commits); that means, there is no commit where one

changed but the other did not. These methods are almost the same. The only differences are in the method

names and parameters (bind takes an extra parameter ‘obj’ of Object type). The first commit where these

methods co-changed was applied on revision 42. In this commit, the same statement ‘e.prntStackTrace();’

was added after the eighth line of each method. In commit 51 (as mentioned in Section 3.4.1), almost the

same if-blocks were added after the first line of each method. Also, the lines 9 to 12 in each of these methods

where changed in a similar way (Fig. 3.6) in this commit. The only differences in the added if-blocks and

changed lines were in the names of the methods and parameters. In the commit on revision 54, the same

changes occurred at the third line of each method. In the same way, in each of the other commits (58, 91,
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153, 156) these two methods received the same changes at the same relative line numbers. The changes

obviously indicate that those were made focusing on the consistency of these method clones. Now we discuss

the possibility of refactoring these method clones (i.e., merging these into one).

We already mentioned that the method bind takes one extra parameter obj of type Object. The other

parameter is the same (same name and type) as that of the method destroySubcontext. These two method

clones remain in the same file1 and in the same class (Class Name: MultiOrbInitialContext). According to

our analysis, it is possible to replace these two methods with a single one that takes the two parameters.

The callers of destroySubcontext can call it using an extra dummy object. Focusing on this possibility we

identified the places where destroySubcontext was called. We found two places in the same file1 where both

bind and destroySubcontext remain (and no other places in the code-base) and determined that we can add

an extra dummy object in these calls. This is also possible that the new method that will replace the old

ones will take an additional context-sensitive string parameter (a third parameter) for printing purpose. We

saw that each of these methods, bind and destroySubcontext, prints an error message containing the method

name. The only difference is the method name used in the message. We can replace this method name by the

context sensitive string parameter (that can determine what type of failure has occurred depending on the

caller) if necessary. So, the rule consisting of the method clones, bind and destroySubcontext, is an important

refactoring candidate.

Example of a refactorable group. An example group of Type 3 clones in Carol contains 4 method

clones: list, listBindings, rebind, and unbind. These method clones remain in the same file2, under the same

package and also in the same class (Class Name: javaURLContext). According to our analysis, these method

clones are important candidates for refactoring and can surely be replaced with a single method. Three of

these methods (list, listBindings, unbind) perform exactly the same task taking the same parameter. The

remaining one takes an extra parameter. It is possible that we decide to only refactor the first three method

clones. For refactoring all four, one can follow the technique described in our previous example.

Answer. Finally, in answer to the second research question we can say that a considerable amount of

association rules (overall 64.37%) and groups (overall 64.62%) formed by the SPCP clones can be refactored

using standard refactoring techniques. Thus, SPCP clones can be considered important candidates for refac-

toring. From our experience we realize that the refactoring task often requires proper analysis by the expert

users. Also, refactoring can be time consuming because the user might need to analyze the evolution history

of the target clones. Thus, automatic identification and ranking of important refactoring candidates (i.e.,

SPCP clones) can help us minimize refactoring time and effort.

1File Path: carol/src/org/objectweb/carol/jndi/spi/MultiOrbInitialContext.java
2File Path: carol/src/org/objectweb/carol/jndi/enc/java/javaURLContext.java
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Figure 3.8: Statistics regarding SPCP clones and rules

3.4.3 Answer to Research Question RQ 3: What are the characteristics of

the clones that change following similarity preserving change pattern

(SPCP)?

During manual examination of the rules from Carol we observed that most of the rules consist of method

clones (i.e., clone fragments that are full methods). Also, a recent study conducted by Göde [74] demonstrates

that developers generally consider removing clones that belong to the same source code file. Considering these

two perspectives we determined the followings to answer this research question.

(1) The overall proportion of SPCP clones that are full methods (denoted by Overall-PSMC ).

(2) The overall proportion of rules where each rule consists of clones belonging to the same file (denoted by

Overall-SF ).

Overall proportions were calculated using a mechanism similar to the one demonstrated in Eq. 3.1. After

calculating the overall percentages for each clone-type individually, we also determine the overall proportions

considering all clone types. Finally, we calculate the overall proportions of rules consisting of SPCP method

clones from the same file (denoted by Overall-PSMC-SF ). These proportions are shown in Fig. 3.8.

From Fig. 3.8 we see that each of the three measures, Overall-PSMC, Overall-SF, and Overall-PSMC-SF

appear in an increasing order from Type 1 case to Type 3 case. Also, Overall-SF is above 60% for each type

of clone. Although, Overall-PSMC is below 50% for Type 1 case, this value is above 50% for the other two

types with Type 3 case having the highest value (76.66%). From Fig. 3.5 we see that the percentage of clone

fragments that follow SPCP is lowest for Type 1 case. Ultimately, in Fig. 3.8 the three bars belonging to
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overall case (considering all clone types and all subject systems) are mainly influenced by Type 2 and Type

3 rules and the values of all three measures are above 60% for this case.

Answer. According to our experimental result considering all systems and all three clone-types we can

draw the following general conclusions: (1) most of the SPCP clones (overall 66.52%) are method clones and

(2) most of the rules (overall 63.44%) consist of SPCP method clones from the same file.

In this experiment we detected block clones using NiCad. However, NiCad also facilitates the detection

of method clones only. In general, clones in the same file might be easier to be refactored. Clones that

belong to different files or folders might require the creation of a separate library for refactoring. This may

be difficult without programming language support. Thus, SPCP clones that belong to the same file can

be promising refactoring candidates. According to our observation, we can mainly focus on detecting and

refactoring SPCP method clones belonging to the same file.

3.4.4 Answer to Research Question RQ 4: What ratio of the SPCP clones do

receive resynchronizing changes?

We have already mentioned that SPCP clones can receive two types of changes: similarity preserving changes

and resynchronizing changes (elaborated in Section 3.3.1). Intuitively, resynchronizing changes indicate

delayed synchronization among the clone fragments. Delay in synchronization might introduce temporary

inconsistency to the functionality of the software systems. We calculated the overall proportions of the

SPCP clones that received resynchronizing changes (i.e., delayed synchronizations). For the purpose of

calculation we automatically examine the entire evolution histories of the two participating SPCP clones of

each association rule and determine whether they received resynchronizing change(s). These proportions are

shown in the graph of Fig. 3.9. We see that overall 6.45%, 10.20%, and 13.57% of the Type 1,Type 2, and

Type 3 SPCP clones received resynchronizing changes considering all subject systems. If we consider all

subject systems and clone-types, this percentage becomes 11.64%.

Answer to RQ 4. According to our investigation, a considerable amount of the SPCP clones can

receive resynchronizing changes during evolution. As delay in synchronizations may introduce temporary

inconsistency to the software systems, it is important to identify SPCP clones and refactor them.

3.5 Threats to Validity

In our experiment we detected clones using NiCad [48]. For different settings of NiCad, the clone detection

results may be different. Thus, there might be variations in the association rules as well as the SPCP

clones detected for different NiCad settings. However, the settings used in our experiment are considered

standard [196,209]. Thus, we think that our findings are significant and can help us minimize clone refactoring
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effort considerably. Moreover, the subject systems that we have used in our experiment are of diverse variety

in terms of application domains, implementation languages, sizes, and revisions. Thus, we expect that our

findings are not biased.

3.6 Related Work

Numerous studies have been conducted regarding the detection, impact analysis [40,75,78,104,119,131–133,

145, 146, 208, 241, 259], management [241, 251] and refactoring [25, 74, 105, 219, 239, 277] of clones. As our

experiment is centered on clone refactoring, we discuss clone refactoring related studies below.

A number of refactoring approaches [25,105,219] select clones for refactoring on the basis of the abstract

syntax tree representation of the code base. Higo et al. [83] selected clones for refactoring (implementing

a tool called CCShaper) based on the lexical analysis of the source code. Zibran and Roy [277] proposed

a conflict aware optimal scheduling algorithm for clone refactoring on the basis of constraint programming.

They showed that their scheduling algorithm is superior to the other algorithms those are based on genetic

algorithm approaches, greedy approaches and linear programming. Bouktif et al. [38] considered the clone

refactoring problem as a constrained knapsack problem where the knapsack consists of all the clones to be

refactored. They found an optimal schedule for refactoring the clones in the knapsack by applying a genetic

algorithm. Göde [74] performed a case study to determine why clones are removed from the code base.

According to his observation, developers often consider removing clones residing in the same source code file.

Tairas and Gray [239] developed an Eclipse plug-in, CeDAR, that can forward the detected clones to the

Eclipse refactoring engine. The Eclipse engine then handles the refactoring decisions.

We see that none of the existing studies and techniques focused on our proposed refactoring step (c.f.,

Fig. 3.2) involving the determination of clones that should be considered as important refactoring candidates.

Automatic identification of important refactoring candidates can help us minimize refactoring time and effort.

We define a particular clone change pattern, SPCP (Similarity Preserving Change Pattern), and show that
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the clones that changed following this pattern can be important candidates for refactoring. The clones

excluded by this pattern either evolved independently or changed rarely during the evolution of the subject

system. Thus, these clones should not be our primary targets for refactoring. Our prototype tool can detect

all SPCP clones in a system.

3.7 Summary

In this chapter, we present our empirical study on identifying code clones that can be considered as important

refactoring candidates. We define a particular clone change pattern, SPCP (Similarity Preserving Change

Pattern), such that the clones that changed following this pattern during evolution can be considered as

important candidates for refactoring. For the purpose of our study, we implement a prototype tool that

mines association rules among clones that follow SPCP.

Using our prototype tool we detected all SPCPs in each of our 13 candidate subject systems considering

three clone-types (Type 1, 2, and 3). We also detect association rules among the SPCP clones and rank these

SPCP clones for refactoring on the basis of the support values of the rules. More importantly, we determine

groups of refactoring candidates by merging the association rules where a group can contain two or more

clones that together followed a SPCP. According to our experimental results and manual investigation, we

have the following concluding remarks and suggestions.

(1) SPCP clones are important candidates for refactoring. The clones that do not follow SPCP either change

independently or are rarely changed. Thus, while taking refactoring decision we suggest to mainly focus

on SPCP clones.

(2) On an average only 7.04% of the clones existing in a code-base are SPCP clones. Thus, we can filter-out a

significant amount (92.96%) of clones from our refactoring decision. We observe that in case of 63.44% of

the association rules (formed by the SPCP clones), the two participating SPCP clones are method clones

and moreover, these method clones belong to the same source code file. Thus, automatic identification

and ranking of SPCP clones can help us minimize a considerable amount of clone refactoring effort and

cost. In presence of ranking, we can decide to primarily refactor the more important SPCP clones.

(3) According to our manual investigation on 224 rules and 191 groups considering all 13 subject systems,

overall 64.37% of the rules and 64.62% of the groups can be refactored using standard refactoring tech-

niques.

(4) Refactoring of SPCP clones can minimize the possibility of delayed synchronizations among clone frag-

ments and thus, can minimize unwanted inconsistencies in software systems.

While our investigation in Chapter 3 involves analyzing evolutionary coupling of code clones with a goal

of assisting clone refactoring, we further investigate whether we can utilize clone evolutionary coupling in

order to assist clone tracking. Chapter 4 contains the details of this investigation.
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Chapter 4

Prediction and Ranking of Co-change Candidates for

Clones

In the previous chapter (i.e., Chapter 3) we identified code clones that can be considered important

for refactoring. We ranked the important refactoring candidates by analyzing their evolutionary coupling

(association rules). Clone refactoring is one way of clone management. There can be situations where

refactoring of clone fragments from a clone class is impossible, however, the fragments in the class need to

be updated together consistently. Clone tracking (defined in Section 2.4.2 of Chapter 3) is important in

such situations. Our study presented in Chapter 4 focuses on clone tracking. In this study we again analyze

evolutionary coupling of clone fragments in a clone class in order to identify and rank fragments having

tendencies of co-changing (i.e., changing together) consistently.

The rest of the chapter is organized as follows. Section 4.2 describes the terminology, Section 4.3 discusses

the experimental steps, we present and analyze our experimental results in Section 4.4, Section 4.5 mentions

some possible threats to validity, Section 4.6 elaborates on the related work, and Section 4.7 concludes the

chapter by mentioning our study findings.

4.1 Introduction and Motivation

Let us consider a clone class that contains a number of clone fragments. We assume that this class is being

tracked by a clone tracker so that when a programmer attempts to make changes to a particular fragment

in this class, the tracking system can automatically notify the programmer about the existence of the other

fragments in the same class. The programmer can then also change these other clone fragments consistently

with the fragment that she is going to change. We call these other fragments the co-change (changing

together) candidates of the clone fragment that is going to be changed. However, all the clone fragments

in a clone class might not need to be changed together consistently because clone fragments might evolve

independently. Thus, it is important to have a prior knowledge about which other clone fragments in a

clone class need to be consistently co-changed (i.e., need to be changed together consistently) while changing

a particular clone fragment in that class. Without such prior knowledge a developer can be overwhelmed

while dealing with a clone class with a large number of clone fragments (such as 76 clones in a class of our

candidate system jEdit) and might need to spend a significant amount of time and effort in understanding
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Figure 4.1: Evolution history of four clone fragments from the same clone class

and determining which other clone fragments in the clone class need to be consistently co-changed. Focusing

on this issue we propose to automatically rank the other clone fragments (i.e., the co-change candidates) in a

clone class according to their probability of being co-changed with the particular clone fragment that is going

to be changed from that class by a programmer. For the purpose of ranking, we automatically analyze the

evolution history of the clone fragments in the class, and mine evolutionary coupling among the fragments.

Our idea of ranking co-change candidates will be described later.

4.1.1 Importance of Our Study with Respect to the Existing Studies

There is no existing study on ranking of the co-change candidates for clones. There is an existing tool called

CloneTracker [61] that presents the other clones in a clone class while a programmer changes a particular

clone fragment in that class. However, this tool does not support ranking of the clone fragments by their need

to co-change consistently. There are also several other clone tracking tools [95, 152, 244]. However, none of

these tools supports ranking of co-change candidates for clones. There is no previous study on the possibility

of ranking the co-change candidates for clones to assist programmers in dealing with consistent updates of

clone fragments. Thus, our study presented in this chapter is unique.

4.1.2 The Underlying Idea of Ranking

Our idea of ranking on the basis of the past evolutionary history is illustrated in Fig. 4.1. We can see the

evolution history of four clone fragments CF1, CF2, CF3, and CF4 in a particular clone class CC through

ten commit operations (C1 to C10 ). The clone fragments CF1 and CF3 changed together (i.e., co-changed)

most times. In other words, these two clone fragments have a high tendency of changing together. Thus, it

is highly probable that these two clone fragments have co-changed consistently [163]. Also, it is likely that
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a future change in any one of these two fragments will accompany a corresponding change in the other one.

CF2 has rarely co-changed with CF1 and CF3. CF4 has never co-changed with any other fragments in its

class. In this case, it is likely that CF4 has a tendency of experiencing independent evolution. After a certain

period of evolution, CF4 might not be considered as a clone in the clone class CC.

Given this evolutionary history, if a developer makes a change to the clone fragment CF1 at a later time,

he/she should at first look at CF3 to check whether CF3 needs a corresponding change, because CF3 has

co-changed with CF1 most frequently. CF2 has a comparatively lower probability (compared to CF3) of

getting a corresponding change, because CF2 has co-changed with CF1 less frequently. Finally, CF4 has the

lowest probability. Thus, the co-change candidates of CF1 can be ordered as: CF3, CF2, CF4 according to

their tendency of getting co-changed with CF1. In this way, as a software system evolves, we can store the

past co-change history of the clone fragments and infer this history to make decisions regarding co-change

candidates in the future. In this example, we present a ranking on the basis of co-change frequency of CF

with the other clone fragments. However, we also investigate ranking on the basis of co-change recency (i.e.,

how lately the other clone fragments co-changed with CF ). We describe this in Section 4.4.2.

The co-changing tendency of the related program entities (such as files, classes, methods) is known as

evolutionary coupling in the literature [71]. We apply the concept of evolutionary coupling in ranking the

co-change candidates for clones. Evolutionary coupling will be discussed in Section 4.2.

4.1.3 Findings

We performed our investigation on six subject systems written in two different programming languages (Java

and C) and answer four important research questions listed in Table 4.1. According to our observation,

ranking of co-change candidates for clones is very important because a clone class may contain a large

number of clone fragments. The sizes of the largest clone classes of our subject systems Ctags, QMailAdmin,

jEdit, Freecol, Carol, and Jabref are respectively 22, 9, 57, 76, 40, and 65. Also, considering all the systems

overall, 4% of the clone classes contain more than 10 clone fragments. Thus, we believe that automatic

ranking of co-change candidates for clones can help programmers identify which other clone fragments from

a clone class actually need to be co-changed while changing a particular clone in that class with significantly

less effort and time. Even if a clone class contains only a few clones (such as three or four), our ranking

mechanism can still help programmers by pin-pointing the most likely co-change candidates for a particular

clone fragment being changed. According to our experimental results and analysis we can state that:

While changing a particular clone fragment CF from a particular clone class, we can automatically rank

its possible co-change candidates (i.e., the other clone fragments in the same clone class) according to its co-

change tendency with them. For ranking we automatically retrieve and infer the evolutionary coupling of CF

with its possible co-change candidates from the previous evolution history. We propose a composite ranking

mechanism for ranking the possible co-change candidates of CF. Our empirical study shows that our proposed

ranking mechanism can assign higher ranks to the actual co-change candidates (i.e., the other clone fragments
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Table 4.1: Research Questions

SL Research Question

1 Can we predict co-change candidates for a particular clone fragment by using evolutionary coupling?

2 Can we achieve better ranking of co-change candidates that exhibited evolutionary coupling by con-

sidering co-change recency instead of co-change frequency?

3 What are the characteristics of the clone fragments that exhibit evolutionary coupling? Which charac-

teristic can help us in better ranking of co-change candidates that have not yet exhibited evolutionary

coupling?

4 How can we rank both types of co-change candidates - (1) the candidates that exhibited evolutionary

coupling, and (2) the candidates that did not exhibit evolutionary coupling for a particular clone

fragment?

from the same clone class that actually co-changed with CF) so that a developer attempting to change CF

can identify the more likely co-change candidates with less effort and time. The ranking mechanism is our

primary contribution. The state of the art techniques and tools [61, 95, 152, 244] do not rank the possible

co-change candidates for clones. We believe that our proposed ranking mechanism can complement existing

clone tracking tools and techniques.

4.2 Terminology

4.2.1 Evolutionary Coupling

We defined evolutionary coupling in Chapter 2. However, we again provide a brief description about it here

for the ease of our discussion.

During the evolution of a software system if two or more program entities (such as files, classes, methods)

appear to change together (i.e., co-change) frequently (i.e., in many commits) then we say that these entities

exhibit evolutionary coupling. It is likely that these entities are related and a future change to any one of these

entities will accompany corresponding changes to the other entities. By mining and analyzing evolutionary

coupling we can discover the underlying relationships among program entities in a software system [71,281].

Evolutionary coupling helps us predict the co-change candidates (i.e., the other entities that might also need

to be changed) while changing a particular entity [281]. In this research work, we apply the concept of

evolutionary coupling to discover the underlying relationships among clones and to predict the co-change

candidates while changing a particular clone fragment in a particular clone class.
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Table 4.2: Subject Systems

Subject Systems Language Application Domains LOC in Last Revision Revisions

Ctags C Code Def. Generator 33,270 774

QMail Admin C Mail Management 4,054 317

jEdit Java Text Editor 191,804 4000

Freecol Java Game 91,626 1950

Carol Java Game 25,091 1700

Jabref Java Reference Manager 45,515 1545

In order to mine evolutionary coupling among clone fragments we determine all possible pairs of co-

changed clone fragments by examining the software evolution history.

4.2.2 Pair of Co-changed Clone Fragments (PCCF)

A pair of co-changed clone fragments (i.e., a PCCF ) consists of two clone fragments CF1 and CF2 from the

same clone class such that they changed together (i.e., co-changed) in at least one commit operation during

system evolution. During the evolution of a software system, if n ≥ 2 clone fragments from a particular clone

class changed together (co-changed) in a particular commit, we determine all possible pairs from these n clone

fragments. Each of these pairs is a PCCF. For every PCCF that we obtain by mining the whole evolution

history, we determine the number of times (i.e., the number of commits) the constituent clones co-changed.

We call this number the co-change frequency of a PCCF.

4.3 Experimental Steps

In this experiment, we consider clones residing in methods. Thus, both fully cloned and partially cloned

methods have been investigated. For a particular subject system, we collect all of its revisions (mentioned in

Table 4.2), then extract the methods in each revision using CTAGS, and then determine method genealogies

following the technique proposed by Lozano and Wermelinger [145]. We detect clones in each revision using

NiCad [48] and then map the clones to the already detected methods of the corresponding revisions. As

method genealogies are already detected, after clone mapping we can easily track the evolution of each clone

fragment residing inside a method. Finally, we detect changes between every two consecutive revisions and

map these changes to the methods as well as clones located inside the methods. We detected both exact and

near-miss block clones using the NiCad clone detector considering a dissimilarity threshold of 20% with blind

renaming. This setting of NiCad is considered standard for detecting near-miss clones [196].

After the preliminary steps we determine all possible pairs of co-changed clone fragments (PCCF s) by

examining all the commit operations. For each of the PCCF s we determine its co-change frequency. We rank

the possible co-change candidates of a particular clone fragment on the basis of this co-change frequency.

However, we also rank the possible co-change candidates on the basis of co-change recency (i.e., on the basis

of how lately a co-change occurred). We describe and compare these ranking mechanisms in Section 4.4.2.

41



Table 4.3: Statistics Regarding Evolutionary Coupling among Clones

Systems NC NCRC NCEC NPCCF

Ctags 694 412 89 79

QMailAdmin 137 128 34 347

jEdit 12329 1356 326 324

Freecol 2265 1659 489 577

Carol 3040 1365 616 2041

Jabref 3708 1552 509 684

NC = No. of Clones created during system evolution.

NCRC = No. of Clones that Received Changes.

NCEC = No. of Clones that showed Evolutionary Coupling.

NPCCF = No. of the pairs of co-changed clone fragments.

4.4 Experimental Results and Analysis

We perform our investigation on each of the subject systems listed in Table 4.2. We determine all pairs of

co-changed clone fragments (PCCF s) from these candidate systems. For each of the systems we determine

four measures - (1) total number of clones created during system evolution, (2) total number of clones that

received changes (at least once) during evolution, (3) total number of clones that exhibited evolutionary

coupling, and (4) total number of PCCF s and show these in Table 4.3. If a clone fragment is included in at

least one PCCF, we consider that it has exhibited evolutionary coupling, because it has co-changed with at

least one of the other clone fragments in its clone class during evolution.

We also determine the percentage of modified clones (i.e., the clones that received changes at least once

during evolution) that exhibited evolutionary coupling. This percentage for each subject system is shown

in Fig. 4.2. The figure shows that in case of each of the subject systems, a considerable percentage of

modified clones exhibited evolutionary coupling. The overall percentage considering all subject systems is

31.85%. Thus, it seems that overall 68.15% of the modified clones (i.e., clone fragments that received changes)

evolved independently. However, according to our observation, overall 70.82% of the total clone fragments of

a subject system never changed during evolution.

We automatically retrieve evolutionary coupling from each of the candidate subject systems. The XML

files containing the pairs of co-changed clone fragments are available on-line1. Our primary goal in this

research work is to investigate whether we can predict and rank co-change candidates for clones using evolu-

tionary coupling. In the following subsections, we answer four research questions regarding this.

1XML Files: https://homepage.usask.ca/~mam815/ongoingresearch.php
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Figure 4.2: Proportion of modified clones (i.e., the clones that received changes at least once during
evolution) that exhibited evolutionary coupling

4.4.1 Answering Research Question 1

RQ 1: Can we predict co-change candidates for a particular clone fragment using evolutionary coupling?

Finding the answer to this research question is the central objective of our research work. Here, we

should note that by the term ‘co-change candidates’ for a particular clone fragment we mean the other clone

fragments in the same clone class containing the particular clone fragment. However, non-clone fragments

can also co-change with a clone fragment. We do not investigate this in this research work. We mainly focus

on the efficient tracking as well as proper management of code clones. We target to minimize the drawbacks

of the existing clone tracking techniques and tools. We plan to investigate the non-clone co-change fragments

as future work. In the following paragraphs we describe our investigation methodology for answering RQ 1.

Methodology. For answering this research question we automatically analyze each of the commits of a

subject system. Let us consider a particular clone class CC in a particular revision R of a subject system.

A commit operation C was applied on revision R and more than one clone fragments of the clone class CC

co-changed (i.e., changed together) in this commit. We consider a particular clone fragment CF from CC

such that CF changed in commit C. So, we know which other clone fragments from clone class CC actually

co-changed with CF in commit C. However, we want to determine whether and to what extent we can predict

these true co-change candidates for CF (in commit C) by analyzing the evolutionary coupling exhibited by

CF during the previous commits 1 to C − 1.

Our prediction mechanism is presented in Fig. 4.3. In this figure, we see a clone class CC in revision R.

The clone class CC contains eight clone fragments CF to CF7. A commit operation C applied on revision R

modified five clone fragments - CF, CF1, CF4, CF6, and CF7 from this class. The corresponding clone class

in revision R+1 (i.e., after the application of the commit operation C) is also shown in the figure. We consider
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Figure 4.3: Prediction of co-change candidates using evolutionary coupling
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the clone fragment CF. From the figure we can determine the actual co-change candidates (CF1, CF4, CF6,

and CF7 ) for CF. We want to determine the extent that we can correctly predict these actual co-change

candidates for CF by analyzing its evolutionary coupling during the past commits (i.e., the commits from 1

to C − 1). For the purpose of describing, we define the following four sets considering the clone fragment CF

and the commit operation C.

Possible Co-change Candidates. All the clone fragments of the clone class CC excluding CF are

termed as the set of possible co-change candidates of CF. Each of these clone fragments has a possibility of

co-changing with CF. However, all of these possible co-change candidates might not co-change with CF in a

particular commit.

True Co-change Candidates. All those clone fragments (from the clone class CC ) that actually co-

changed with CF in commit operation C are termed as the set of true co-change candidates of CF in commit

C.

Predicted Co-change Candidates. All those clone fragments (in the clone class CC ) that we can

predict as the co-change candidates for CF by analyzing the evolutionary coupling of CF in previous commits

(from commit 1 to C − 1) are termed as the set of predicted co-change candidates.

Correctly Predicted Co-change Candidates. All those clone fragments from the set of predicted co-

change candidates that actually co-changed with CF in commit C are termed as the set of correctly predicted

co-change candidates.

Fig. 4.3 shows these four sets for clone fragment CF considering commit C. We determine the set of

predicted co-change candidates for CF in the following way. We at first retrieve all the pairs of co-changed

clone fragments (PCCF s) considering all the commits from 1 to C − 1. We select those PCCF s where the

clone fragment CF appears. Fig. 4.3 shows five such PCCF s. From these PCCF s we determine all other

clone fragments beside CF. These clone fragments (CF2, CF4, CF5, CF6 and CF7 as shown in Fig. 4.3) are

the set of predicted co-change candidates for CF. We get these by analyzing evolutionary coupling of CF.

Finally, we determine the set of correctly predicted co-change candidates for CF in commit C. Fig. 4.3

shows three correctly predicted co-change candidates - CF4, CF6, CF7. We determine the following six

measures for CF considering the commit operation C.

(1) The number of possible co-change candidates for CF,

(2) The number of possible co-change candidates that exhibited evolutionary coupling with CF in the pre-

vious commits 1 to C − 1. This is the number of predicted co-change candidates for CF in commit

C

(3) The number of possible co-change candidates that did not exhibit evolutionary coupling with CF in the

past commits. We call these co-change candidates the non-predicted co-change candidates for CF in

commit C, because we could not predict them by analyzing evolutionary coupling.
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Figure 4.4: Comparison between the proportions of predicted co-change candidates and non-predicted
co-change candidates

(4) The number of predicted co-change candidates that actually co-changed with CF in commit C. This is

the number of correctly predicted co-change candidates for CF.

(5) The number of non-predicted co-change candidates that co-changed with CF in commit C.

(6) The number of true co-change candidates (i.e., the possible co-change candidates that actually co-changed

with CF ) for CF in commit C.

We examine all the commit operations where more than one clone fragments from the same clone class

changed together (i.e., co-changed). For each of the clone fragments (CF ) that changed in such a commit, we

determine the above six measures. Considering all the commit operations of a particular subject system we

determine the summation for each of the respective measures. Then, we calculate the following percentages

using these measures.

(1) The percentage of possible co-change candidates that were selected as the predicted co-change candidates.

In other words, the percentage of possible co-change candidates that exhibited evolutionary coupling with

CF.

(2) The percentage of possible co-change candidates that were selected as the non-predicted co-change candi-

dates. In other words, the percentage of possible co-change candidates that did not exhibit evolutionary

coupling with CF.

(3) The percentage of predicted co-change candidates that are true co-change candidates. We also call this

the precision in predicting true co-change candidates by analyzing evolutionary coupling.
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Figure 4.5: Comparison between the percentage of predicted co-change candidates that were true
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(4) The percentage of non-predicted co-change candidates that are true co-change candidates.

(5) The percentage of true co-change candidates that we could predict (i.e., by analyzing evolutionary cou-

pling). We also call this percentage the recall in predicting true co-change candidates by analyzing

evolutionary coupling.

Fig. 4.4 compares the first two percentages - (1) the percentage of possible co-change candidates that

exhibited evolutionary coupling, and (2) the percentage of possible co-change candidates that did not exhibit

evolutionary coupling, for each of the subject systems. We see that the proportion of possible co-change

candidates that exhibited evolutionary coupling is much lower than its counter part for most of the subject

systems. The overall values of these percentages are, 26% and 74% respectively.

However, from the comparison scenario in Fig. 4.5 (comparing the third and fourth percentages) we see

that the proportion of predicted co-change candidates that were true co-change candidates (i.e., that were

correctly predicted) is much higher compared to the proportion of non-predicted co-change candidates that

were selected as true co-change candidates for most of the subject systems. Thus, the predicted co-change

candidates have a much higher probability of being true co-change candidates. In other words, the possible co-

change candidates that exhibited evolutionary coupling have a much higher probability of being true co-change

candidates compared to the possible co-change candidates that did not exhibit evolutionary coupling.

Finally, Fig. 4.6 demonstrates that for each of the subject systems a considerable proportion of true co-

change candidates can be predicted by analyzing evolutionary coupling. The overall proportion considering

all subject systems is 43.17%. As we mentioned before, this percentage is the recall in predicting true co-
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change candidates by analyzing evolutionary coupling. We also determine the overall precision (i.e., the third

percentage) in predicting true co-change candidates considering all systems. This overall precision is 85.18%.

Answer to RQ 1. From our analysis and discussion we can say that evolutionary coupling can help

us predict true co-change candidates for a particular clone fragment with considerable accuracy in terms of

precision (= 85.18%) and recall (= 43.17%).

4.4.2 Answering Research Question 2

RQ 2: Can we achieve better ranking of co-change candidates by considering co-change recency instead of

co-change frequency?

From the first research question we understand that we can predict a considerable amount of true co-

change candidates for clones by analyzing evolution coupling. For answering this research question we rank

predicted co-change candidates (i.e., predicted by analyzing evolutionary coupling) in the following two ways.

(1) On the basis of co-change frequency

(2) On the basis of co-change recency (i.e., how lately a co-change occurred)

Then, we determine which ranking system generally gives better ranks for the correctly predicted co-

change candidates. In the following paragraphs we describe the ranking mechanisms and compare those.

Description of the ranking mechanisms. We at first assume a particular clone class CC in a particular

revision R of a particular candidate system. More than one clone fragments from this class co-changed in

the commit operation C applied on revision R. We consider a particular clone fragment CF from CC that

changed in this commit operation C. For the clone fragment CF, we determine the following two sets of
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co-change candidates considering commit operation C following the methodology described in the previous

subsection.

(1) True co-change candidates. The clone fragments from clone class CC that actually co-changed with

CF

(2) Predicted co-change candidates. The clones in clone class CC that exhibited evolutionary coupling

with CF

We rank these predicted co-change candidates in two ways. The ranking procedures are as follows.

Ranking predicted co-change candidates on the basis of co-change frequency. We know that

each of the predicted co-change candidates has previously (in the commits preceding the commit C) co-

changed with the clone fragment CF. We assume higher ranks for those predicted co-change candidates that

previously co-changed with CF more frequently. We sort these predicted co-change candidates in decreasing

order of their co-change counts with CF .

Ranking predicted co-change candidates on the basis of co-change recency. In this case the

predicted co-change candidates that co-changed with CF more recently are given higher ranks. For each of

the predicted co-change candidates, we determine the last commit operation where it co-changed with CF.

We sort the predicted co-change candidates in decreasing order of their last commits.

An example describing the two ways of ranking. Fig. 4.7 shows an example of the two ways

of ranking of the predicted co-change candidates for a clone fragment CF. The sets - (1) true co-change

candidates, (2) predicted co-change candidates, and (3) correctly predicted co-change candidates for CF are

taken from Fig. 4.3. In this figure (i.e., Fig. 4.7) we show a possible co-change history of CF with each of

the predicted co-change candidates. The co-change history consists of two pieces of information - (1) The

number of times CF co-changed with a predicted co-change candidate, and (2) The last commit operation

where CF co-changed with a predicted co-change candidate.

These are the indicators of co-change frequency and co-change recency respectively. We automatically

collect this information from the co-change history of CF. From the figure (Fig. 4.7) we see that CF co-

changed with CF7 the highest number of times (i.e., 6 as shown in the figure). However, among all the

predicted co-change candidates, CF4 co-changed with CF most recently. This co-change occurred in commit

245 as shown in the figure. Rankings (i.e., orderings) of the predicted co-change candidates in two ways (i.e.,

on the basis of co-change frequency and co-change recency) are also shown in Fig. 4.7. We see that while

CF7 is assigned the highest rank (i.e., its serial number is 1) on the basis of co-change frequency, CF4 is

assigned the highest rank on the basis of co-change recency. In both cases, CF5 gets the lowest rank.

Comparison of the ranking mechanisms. We see that each of the two ranking systems described

above is based on evolutionary coupling of the clone fragments. However, we want to determine which one

is better. The ranking system that provides better ranks for the correctly predicted co-change candidates

should be considered as the superior one.
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Figure 4.7: Ranking of predicted co-change candidates by co-change frequency and co-change recency
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For each clone fragment CF changed in a commit operation C we determine its predicted co-changed

candidates and rank these in two ways to get two different rankings (or orderings) of the predicted co-change

candidates. Then we determine the correctly predicted co-change candidates and locate them in each of the

rankings of the predicted co-change candidates. We determine the serial numbers (i.e., position values) of the

correctly predicted co-change candidates from each ranking. We get two sets of serial numbers from the two

ranking systems. We determine the summation of the serial numbers obtained from each ranking system. A

lower summation indicates better ranking.

In Fig. 4.7, the widest table (i.e., the bottom one) shows the comparison of the ranking systems considering

the predicted co-change candidates for the clone fragment CF. There are five predicted co-change candidates

for CF. According to the example, three (CF4, CF6, CF7 ) of these predicted co-change candidates have

actually co-changed with CF in commit operation C. We show the serial numbers of the predicted co-change

candidates in each of the rankings. We see that from the ranking on the basis of co-change frequency, we

get the serial numbers - 2, 3, and 1 for the correctly predicted co-change candidates CF4, CF6, and CF7

respectively. The serial numbers obtained from the other ranking system are 1, 2, and 4 respectively. The

summations (6 considering co-change frequency, and 7 considering co-change recency) of the serial numbers

are also shown in the figure. According to our explanation, the ranking system on the basis of co-change

frequency provides better ranks to the correctly predicted co-change candidates.

For each of the clone fragments changed in each of the commits we determine which ranking system

provides better ranks to the correctly predicted co-change candidates. We determine two percentages - (1)

The percentage of cases where the ranking on the basis of co-change frequency gives us better ranks for the

correctly predicted co-change candidates, and (2) The percentage of cases where the ranking on the basis of

co-change recency provides us better ranks for the correctly predicted co-change candidates

We show these percentages in Fig. 4.8. In case of each of the subject systems, for most of the cases the

two ranking systems provide the same ranks to the correctly predicted co-change candidates. However, if we

consider the remaining cases, we see (c.f., Fig. 4.8) that for each of the subject systems, co-change recency

provides better ranks to the correctly predicted co-change candidates compared to co-change frequency.

Answer to RQ 2. From our discussion we decide that we can achieve better ranking of co-change

candidates by considering co-change recency instead of co-change frequency.

4.4.3 Answering Research Question 3

RQ 3: What are the characteristics of the clone fragments that exhibit evolutionary coupling? Which char-

acteristic can help us in better ranking of the co-change candidates that have not yet exhibited evolutionary

coupling?

Answering this research question is important. From our discussion and analysis while answering RQ 1

we understand that the percentage of predicted co-change candidates for a particular clone fragment CF (i.e.,

the percentage of possible co-change candidates that exhibit evolutionary coupling with CF ) is always smaller

51



Carol Jabref Freecol jEdit Ctags QMailAdmin

0

0.5

1

1.5

2

Percentage of cases where co-change frequency provides better rank than co-change recency

Percentage of cases where co-change recency provides better rank than co-change frequency

Figure 4.8: Comparison of the two ranking systems (ranking using co-change frequency and co-change
recency)

compared to the percentage of non-predicted co-change candidates (i.e., the possible co-change candidates

that have not yet exhibited evolutionary coupling with CF ). We can rank the predicted co-change candidates.

However, we are also interested in ranking the non-predicted co-change candidates. For this purpose we

analyze the characteristics of the clone fragments that exhibit evolutionary coupling. Let us assume that

we have discovered a dominant characteristic of the clone fragments that exhibit evolutionary coupling. If

we see that some of the non-predicted co-change candidates also possess this characteristic, we can assume

better ranks for these non-predicted co-change candidates.

Methodology. For answering this research question, we analyze the following two characteristics of the

clone fragments that exhibit evolutionary coupling.

(1) Regarding clone type. We analyze whether the clone fragments exhibiting evolutionary coupling

are method clones or block clones.

(2) Regarding the proximity of the clone fragments. We analyze whether two clone fragments

exhibiting evolutionary coupling generally remain in close proximity to each other or not.

Considering each of the subject systems we determine all the pairs of co-changed clone fragments (PCCF s).

For each PCCF we determine the types (method clone or block clone) of the two participating clone fragments.

We also determine whether the two clone fragments remain in the same file or in different files. For each of

the subject systems we determine the following two percentages - (1) The percentage of PCCF s (i.e., the

pairs of co-changed clone fragments) where the participating clone fragments remain in the same file. (2)

The percentage of PCCF s where both of the participating clone fragments are method clones. We present

these two percentages in Fig. 4.9. From the black bars we see that for most of the subject systems (except
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QMailAdmin), the participating clone fragments in most of the PCCF s (i.e., above 55% of the PCCF s)

remain in the same file. We also observe (from the white bars) that in the case of four subject systems

(Carol, Freecol, jEdit, and Ctags), both of the participating clone fragments in most of the PCCF s are

method clones (i.e., clones are full methods). However, if we compare these two characteristics, we see that

file proximity is the more dominant one for most of the subject systems (except Carol).

We rank the non-predicted co-change candidates (for a particular clone fragment CF in a particular

commit C) in the following two ways.

(1) Considering clone file proximity and

(2) Considering clone type (method clones or block clones)

In case of ranking considering clone file proximity, we provide higher (i.e., better) ranks to those non-

predicted co-change candidates that are nearer (i.e., in closer proximity) to the clone fragment CF. The clone

file proximity between CF and a particular non-predicted co-change candidate is determined by the distance

between the corresponding container files in the file system structure as was done by Alali et. al [14]. In

case of ranking considering clone type, we provide higher ranks to those non-predicted co-change candidates

that are method clones. We compared these two ranking systems following the same way described while

answering RQ 2. In this case, from the ranking (of the non-predicted co-change candidates) obtained from

each ranking system, we determine the summation of the position values (i.e., serial numbers) of the non-

predicted true co-change candidates. The ranking system that provides the lower summation (i.e., the higher

rank) is the better one.

Considering each of the clone fragments changed in each of the commits (where more than one clone

fragments from the same clone class co-changed) of a particular subject system we determine and rank the

non-predicted co-change candidates using the above two ranking systems and determine which ranking system

provides better ranks to the non-predicted true co-change candidates. We determine two percentages - (1)

The percentage of cases where the ranking system on the basis of clone file proximity provides better ranks,

and (2) The percentage of cases where the ranking system on the basis of clone type provides better ranks

These two percentages for each of the subject systems is shown in Fig. 4.10. We see that for the case of

each of the subject systems, the percentage of cases where ranking by clone file proximity provides better ranks

is much higher than the percentage of cases where ranking by clone type provides better ranks to the non-

predicted true co-change candidates. However, we observed that for 56% to 87% of cases (considering all the

subject systems), the two ranking systems provided the same ranks. Finally, we consider the ranking system

on the basis of clone file proximity to be the better for ranking the non-predicted co-change candidates.

Answer to RQ 3. Generally, the clone fragments that exhibit evolutionary coupling - (1) remain in

close proximity (i.e., in the same file) to each other, and (2) are method clones. According to our analysis,

consideration of clone file proximity can help us in better ranking of the non-predicted co-change candidates

for a particular clone fragment.
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Figure 4.9: Comparing the characteristics of clone fragments that exhibit evolutionary coupling

4.4.4 Answering Research Question 4

RQ 4: How can we rank both types of co-change candidates - (1) the candidates that exhibited evolutionary

coupling, and (2) the candidates that did not exhibit evolutionary coupling for a particular clone fragment?

Answering this research question is important. From the answers to the previous research questions we

understand that the possible co-change candidates for a particular clone fragment can broadly be divided into

two disjoint sets - (1) the predicted co-change candidates (i.e., the candidates that exhibited evolutionary

coupling with the particular clone fragment), and (2) non-predicted co-change candidates (i.e., the candidates

that have not yet exhibited evolutionary coupling with the particular clone fragment). For the first set we

decide a ranking mechanism on the basis of co-change recency as the better one. For the second we found the

ranking mechanism on the basis of clone file proximity to be the better one. Thus intuitively, a combination

of the two ranking mechanisms (ranking by co-change recency for the predicted candidates and ranking by

clone file proximity for the non-predicted candidates) can possibly be used for better ranking of all co-change

candidates of a particular clone fragment. We verify this in this research question in the following way.

Methodology. We rank all the possible co-change candidates for a particular clone fragment CF changed

in a particular commit C in the following two ways:

(1) Ranking of all possible co-change candidates using two ranking mechanisms: ranking of the predicted

candidates by co-change recency, and ranking of the non-predicted candidates by clone file proximity,

(2) Ranking of all possible co-change candidates by clone file proximity.

We compared these two ways of ranking to determine which one can provide better ranks to all the

true co-change candidates for a particular clone fragment CF in a particular commit C. We performed our
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comparison in the same way (i.e., considering all commit operations ) as is described while answering RQ

2. We determine the percentage of cases where we get better ranks for the true co-change candidates using

the combined ranking mechanism (the first way mentioned above) and also the percentages of cases where

the second way of ranking (ranking all candidates by clone file proximity) provides better ranks. These

percentages are shown in Fig. 4.11. From Fig. 4.11 we see that in the case of each of the subject systems,

the percentage of cases where the combined ranking provides better ranks is much higher compared to the

percentage of cases where ranking by only clone file proximity provides better ranks to the true co-change

candidates. Thus, we decide that the combined ranking mechanism yields in better ranking of the true

co-change candidates compared to the file proximity ranking.

Answer to RQ 4. From our discussion and analysis presented above, we suggest a combined ranking

(ranking of predicted co-change candidates by co-change recency, and ranking of non-predicted co-change

candidates by clone file proximity) of the possible co-change candidates for a particular clone fragment.

4.5 Threats to Validity

We used the NiCad clone detector [48] for detecting clones. For different settings of NiCad, the statistics that

we present might be different. Wang et. al [254] defined this problem as the confounding configuration choice

problem and conducted an empirical study to ameliorate the effects of the problem. However, the settings

that we have used for NiCad are considered standard [196] and with these settings NiCad can detect clones

with high precision and recall [198,201].

For determining the prediction accuracy of our implemented prediction system, we have used the precision

and recall measures. Shepperd and MacDonell [221] conducted a fine grained study on the evaluation of the
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prediction systems. According to their observation different prediction systems might give us conflicting re-

sults. They advised researchers not to use biased accuracy measures for the purpose of determining prediction

accuracy. However, precision and recall are well known and extensively used measures and they represent

the exact scenario (in term of accuracy) when reported together. Thus, we believe that our reported findings

in the form of precision and recall are important.

The subject systems that we have studied in this experiment are not enough to take a concrete decision

regarding the ranking of co-change candidates for clones. However, our candidate systems are of diverse

variety in terms of application domains, sizes and revisions. Thus, our findings cannot be attributed to

chance. Finally, we believe that our findings are important and can help us in better clone management.

4.6 Related Work

A great many studies have already been done regarding the detection, evolution [19,119,241], impact analysis

[29,78,111,131,132,145,146,156,158], and maintenance [60,95,152,163,244] of code clones. Although there are

some positive impacts [75,111,131,132] of cloning on both software development and maintenance, a number

of studies [29, 145,146,156] have shown empirical evidence of a strong negative impact of clones on software

evolution. Focusing on the negative impacts, software researchers have emphasized proper maintenance of

code clones through clone refactoring [25, 25, 38, 163] or tracking [60, 61, 95, 152, 244]. As clone refactoring is

not always possible [119], tracking of clones becomes very important for better software maintenance. As our

research work is focused on clone tracking, we discuss the existing clone tracking techniques and studies.
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The most recent study on clone tracking was conducted by Duala-Ekoko and Robillard [60]. They in-

troduced the concept of clone region descriptor. On the basis of this concept they proposed a technique for

tracking clones in evolving software. They implemented a tool called ‘CloneTracker’ [61] as an Eclipse plug-in

for tracking clones. The tool provides supports for two tasks - (1) change notifications and (2) simultaneous

editing of clones. After modifying a particular clone tracked by CloneTracker, the programmer is notified

about the other clone fragments in the same group that contains the modified clone. However, ‘CloneTracker’

does not support any type of ranking of these other clone fragments. In other words, this tool does not have

any prior knowledge about which other clone fragments have higher probability of co-changing with the par-

ticular clone fragment. Our research presented in this chapter (Chapter 4) focuses on ranking of these other

clone fragments so that the responsible programmer can easily pinpoint those other clone fragments that are

more likely to consistently co-change with the particular clone fragment.

Jablonski and Hou [95] developed a tool called CReN to track copy-paste code clones and support consis-

tent renaming of identifiers. Miller and Myer [152] proposed a technique for simultaneous editing in multiple

clone fragments in the same clone class to minimize the task of repetitive editing. They implemented their

technique in a text editor called LAPIS. There is also another clone tracking tool called Codelink developed

by Toomin et. al [244]. However, none of these existing clone trackers supports ranking of the co-change

candidates for clones.

We previously conducted a study [163] on the detection and ranking of SPCP clones (i.e., clones that

evolve following a similarity preserving change pattern) through analysis of evolutionary coupling. SPCP

clones are important candidates for refactoring. We ranked these SPCP clones using evolutionary coupling

to prioritize refactoring tasks. However, as clones are not always refactorable, it is important to track them

efficiently. Our prime focus in this research work is to support the existing clone trackers by providing

facilities for automatic prediction and ranking of the likely co-change candidates when we change a particular

clone fragment.

From our discussion above we believe that our study presented in Chapter 4 is important and unique.

Our experimental result has the potential to assist in better management of code clones, and thus can help

us in better software maintenance.

4.7 Summary

In this research work we present an in-depth investigation into the possibility of predicting and ranking co-

change candidates for clones through analysis of evolutionary coupling among clone fragments. We empirically

studied six subject systems written in two programming languages (Java and C). We used the NiCad clone

detector for detecting clones. Our experimental results and analysis imply that while changing a particular

clone fragment in a particular clone class
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(1) We can predict which other clone fragments in the same clone class will also co-change with the partic-

ular clone fragment with considerable accuracy (precision = 85.18%, recall = 43.17%) by analyzing the

evolutionary coupling of the particular clone fragment.

(2) We can automatically rank the possible co-change candidates (all other clone fragments in the same

clone class) on the basis of their evolutionary coupling with the particular clone fragment such that the

co-change candidates that are more likely to co-change with the particular clone fragment get higher

ranks.

We propose a composite ranking mechanism for ranking the possible co-change candidates of a particular

clone fragment. In the presence of such a ranking, the responsible programmer can easily pinpoint the

likely co-change candidates while changing a particular clone. Thus, our ranking mechanism can complement

existing clone tracking techniques and tools for better management of code clones.

While our investigation in this chapter (i.e., Chapter 4) and in the previous one (i.e., Chapter 3) involves

analyzing evolutionary coupling among code clones from the same clone class, we suspect that a clone

fragment in a particular clone class might have evolutionary coupling with code fragments beyond its class

boundary. We investigate this matter in Chapter 5.

58



Chapter 5

Automatic Identification of Important Clones for

Refactoring and Tracking

In Chapter 3 we presented our study on identifying code clones that are important for refactoring. We

discovered a particular clone change pattern called Similarity Preserving Change Pattern (SPCP), and pro-

posed a mechanism for detecting the SPCP clones (i.e., the code clones that evolved following an SPCP). The

clone fragments that do not follow this pattern either evolve independently or rarely change during evolution.

Thus, these non-SPCP clone fragments cannot be important candidates for management. We proposed that

the SPCP clone fragments can be considered important for refactoring. In Chapter 5 we further analyze the

evolutionary coupling of SPCP clones, and divide those into two disjoint subsets on the basis of our analysis.

While clone fragments in one subset should be considered important for tracking, the clone fragments in the

remaining subset can be considered important for refactoring.

The rest of the chapter is organized as follows. Section 5.2 describes the terminology, Section 5.3 elaborates

on the cross-boundary relationships of SPCP clones, Section 5.4 describes the methodology, Section 5.5

answers the research questions based on experimental results, Section 5.6 mentions possible threats to validity,

Section 5.7 discusses the related work, and Section 5.8 concludes the chapter by summarizing our findings.

5.1 Introduction and Motivation

In our previous studies we only analyzed evolutionary coupling among clone fragments from the same clone

class. However, a clone fragment in a particular clone class can have evolutionary coupling with clone

fragments from other clone classes, and also, with non-clone fragments. Such couplings across the class

boundaries should also be considered when selecting code clones for refactoring or tracking. In Fig. 5.1 we

provide an example of such couplings.

The figure shows that an SPCP clone fragment in Clone Class 1 has couplings with four code fragments

beyond its class boundary. Two code fragments are clone fragments from two other clone classes, Clone Class

2, and Clone Class 3. The remaining two code fragments are non-clone fragments. Removal of this SPCP

clone fragment might have ripple change effects on these four code fragments remaining outside of Clone

Class 1 and also, might negatively affect their future evolution. Thus, according to our consideration, such

an SPCP clone fragment having relationships across its class boundary should not be considered for removal
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Figure 5.1: Example of an SPCP clone fragment having relationships beyond its class boundary
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through refactoring. Rather, these should be important candidates for tracking, because they evolve by

maintaining consistency not only with other SPCP clones in their own clone classes but also with non-clone

fragments as well as with clone fragments from other clone classes beyond their class boundaries. We should

track these clone fragments along with their cross-boundary relationships so that we can update them (i.e.,

the SPCP clone fragment as well as the code fragments beyond its class boundary) consistently in the future.

However, if we want to refactor such an SPCP clone fragment, then we must analyze its relationships beyond

its class boundary so that removal of it does not leave the related code fragments (beyond class boundary)

in an inconsistent state and does not negatively affect the future evolution of these related code fragments.

Thus, it is important to automatically identify SPCP clone fragments that have couplings beyond their

class boundaries so that we can discard these from consideration while taking refactoring decision and consider

them as important candidates for tracking and future change prediction. Focusing on this important issue, in

this study, we automatically extract and analyze the evolutionary coupling (i.e., change coupling) of SPCP

clones and identify those SPCP clones each of which has change coupling with non-clone fragments and/or

with clone fragments from other clone classes rather than its own clone class. Finally, we separate the whole

set of SPCP clones into two disjoint subsets: (1) one contains the cross-boundary SPCP clones (i.e., the

SPCP clones having cross boundary relationships), and (2) the other contains the non-cross-boundary SPCP

clones. We perform an in-depth empirical study on both cross-boundary and non-cross-boundary SPCP

clones.

According to our investigation considering both exact (Type 1) and near-miss (Type 2, Type 3) clones in

thousands of revisions of six diverse subject systems covering two programming languages (Java, and C) we

answer four research questions listed in Table 5.1 and come to the following decisions.

(1) The cross-boundary SPCP clones should be considered as the important candidates for tracking. Removal

of these clone fragments without taking proper care of their cross-boundary relationships might negatively

affect the future evolution of the related code fragments. We should track cross-boundary SPCP clones

along with their coupled code fragments so that we can update them consistently in the future. However,

if such an SPCP clone fragment needs to be refactored, then we should be careful of their relationships

across their class boundaries. Overall, 10.27% of all clones in a software system are cross-boundary SPCP

clones.

(2) The non-cross-boundary SPCP clones should be considered as the important candidates for refactoring.

Overall, 13.20% of all clones in a software system are non-cross-boundary SPCP clones.

(3) The cross-boundary SPCP clones have much higher change-proneness than the non-cross-boundary SPCP

clones. The main reason behind this higher change-proneness is that the cross-boundary SPCP clones

are generally highly coupled with other code fragments beyond their class boundaries. Thus, such SPCP

clones are the places in a software system where we can think of possible restructuring to minimize their

coupling.
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Table 5.1: Research Questions

SL Research Question

1 What proportion of the SPCP clones have cross-boundary relationships?

2 Should we discard the cross-boundary SPCP clones from consideration while taking refactoring

decisions and also, consider them for tracking?

3 Do cross-boundary SPCP clones have higher change-proneness than the non-cross-boundary SPCP

clones?

4 Which types (i.e., Type 1, Type 2, or Type 3) of SPCP clone fragments have higher possibility of

having cross-boundary relationships?

(4) Considerable proportions of Type 2 and Type 3 SPCP clones have cross-boundary relationships. However,

cross-boundary SPCP clones are rare in Type 1 case.

As the non-SPCP clone fragments either evolved independently or rarely changed during evolution, we

can exclude them from management considerations. Overall 43% of the SPCP clones of a subject system can

have cross-boundary relationships. Our implemented system can automatically identify these and thus, can

help us identify the important candidates for tracking as well as for refactoring.

5.2 Terminology

We conduct our experiment considering both exact (Type 1) and near-miss clones (Type 2 and Type 3

clones) defined in Chapter 2. Our study evolves analyzing evolutionary coupling of code clones. We discussed

evolutionary coupling in Chapter 6.

Corresponding change. Let us assume that two code fragments have co-changed (changed together)

in a particular commit operation. If the changes are related such that changes in one code fragment required

changes to the other fragment to ensure consistency between them, then we say that the changes to these two

code fragments are corresponding changes. Here, a code fragment can be a clone fragment from a particular

clone class or a non-clone fragment (defined in Section 5.4).

5.3 SPCP Clones having Relationships beyond their Class Bound-

aries

In this section, we at first discuss SPCP clones and then describe how we detect those SPCP clones each having

change coupling with other code fragments (clone and/or non-clone fragments) beyond its class boundary.
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5.3.1 SPCP Clones

The elaboration of SPCP is Similarity Preserving Change Pattern. As we defined in our earlier work [163], if

two or more clone fragments from the same clone class evolve by receiving only Similarity Preserving Changes

and/or Re-synchronizing changes, then we say that these clone fragments follow a Similarity Preserving

Change Pattern. We call these clone fragments the SPCP Clone Fragments or SPCP Clones.

Similarity Preserving Change. Let us consider two code fragments that are clones of each other in a

particular revision of a subject system. A commit operation was applied on this revision, and any one or both

of these code fragments (i.e., clone fragments) received some changes. However, in the next revision (created

because of the commit operation) if these two code fragments are again considered as clones of each other

(i.e., the code fragments preserve their similarity), then we say that the code fragments received Similarity

Preserving Change in the commit operation.

Re-synchronizing Change. Let us consider two code fragments that are clones of each other in a

particular revision. A commit operation was applied on this revision, and any one of both of the fragments

received some changes in such a way that the code fragments were not considered as clones of each other

in the next revision. However, in a later commit operation any one or both of the code fragments received

some changes, and because of these changes the code fragments again became clones of each other. Such a

converging change followed by a diverging change is termed as a re-synchronizing change.

5.3.2 SPCP Clones having Cross-Boundary Relationships

In our previous work [163] we mentioned that if two or more clone fragments from a particular clone class are

identified as SPCP clones, then they might be important candidates for refactoring, because they evolve by

receiving similarity preserving changes or re-synchronizing changes. However, merging these clone fragments

into one, that is, removal of all these fragments by a single one is tricky. Here, we should not only think

of whether we can merge them but also think about whether we should merge them. If we remove a code

fragment from a code-base without being conscious about its relationships with other code fragments, then it is

likely that the related code fragments will be negatively affected. These relationships might not be structural.

Most of the recent IDEs are capable of pin-pointing the violations or breaking of structural relationships.

However, code fragments might have evolutionary coupling relationships, and the IDEs cannot identify if we

are going to break such a relationship between two code fragments. By analyzing the evolutionary history

of the clone fragments of our subject systems, we observe that an SPCP clone fragment from a particular

clone class can also have evolutionary coupling relationships with other two types of code fragments: (1)

clone fragments from other clone classes and, (2) non-clone fragments such that the SPCP clone fragment

and these other code fragments often need to be changed together (co-changed) correspondingly. In presence

of such co-change relationships, also known as change couplings, this SPCP clone fragment should not be

removed by refactoring. Removal of this fragment can negatively affect the other related fragments. Thus,
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this is important to identify SPCP clones with relationships beyond their class boundaries so that we can

filter-out them from consideration while taking refactoring decisions and can keep track of them along with

their cross-boundary relationships for updating them consistently in the future. We detect cross-boundary

SPCP clones by analyzing evolutionary coupling. The detection procedure is described below in detail.

5.3.3 Detecting Cross-Boundary SPCP Clones by Mining their Evolutionary

Coupling

We at first detect all the SPCP clones from a subject system following the procedure we proposed in our

earlier work [163]. We then automatically examine the evolutionary history of the subject system in order

to extract the evolutionary coupling of each SPCP clone with non-clone fragments as well as with clone

fragments from other clone classes rather than its own clone class. By examining the evolutionary history,

we determine pairs of co-changed code fragments that can be categorized into the following two categories.

(1) Different Class Category: Each pair in this category consists of two clone fragments: (1) one is an

SPCP clone fragment from a particular clone class, and (2) the other one is a clone fragment (may be

an SPCP clone fragment or not) from a different clone class rather than the clone class of the first one

such that these two clone fragments co-changed (i.e., changed together) during the past evolution.

(2) Clone Non-clone Category: A pair in this category consists of two code fragments: (1) one is an

SPCP clone fragment from a particular clone class, and (2) the other one is a non-clone fragment such

that these two code fragments co-changed during the past evolution.

We examine each of the commit operations and determine the pairs of co-changed code fragments. A

particular pair may appear more than once. We count the number of commits a pair appears. From a

particular pair (CF1, CF2) of co-changed code fragments we determine two association rules CF1 => CF2

and CF2 => CF1 along with their support and confidence values. We consider only those association rules

each of which satisfies the following two conditions.

Condition 1. The rule has a support (i.e., the number of times the constituent code fragments co-

changed) of at least 2. We discard the lowest support rules (i.e., the rules with support of 1) from consideration

because the constituent code fragments in such a rule has a very low probability of having change coupling

between them. Such kind of discarding of rules has been done by previous studies [41,107].

Condition 2. The rule has a confidence of 1 (i.e., the highest confidence). An association rule CF1 =>

CF2 with highest confidence indicates that each commit operation where CF1 received some changes, CF2

also received some changes. Thus, it is very much likely that CF1 and CF2 have change coupling, and a

future change in one fragment will trigger a corresponding change to the other one. The term corresponding

change is defined in Section 5.2.

We determine the set of SPCP clone fragments involved in those rules that satisfy the above two conditions.

We consider these SPCP clones as the cross-boundary SPCP clones. By excluding these cross-boundary SPCP

clones from the whole set of SPCP clones of a subject system, we get the non-cross-boundary SPCP clones.
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Table 5.2: Subject Systems

System Language Domain LOC Revisions

Ctags C Code Def. Generator 33,270 774

QMailAdmin C Mail Management 4,054 317

jEdit Java Text Editor 191,804 4000

Freecol Java Game 91,626 1950

Carol Java Game 25,091 1700

Jabref Java Reference Manager 45,515 1545

Revisions = Number of revisions investigated

5.4 Methodology

Table 5.2 lists the six open source subject systems that we investigate in our study. We consider all the

revisions (as noted in Table 5.2) beginning with the first one for each of the systems.

We first download all the revisions as noted in Table 5.2 for all the subject systems from their open-

source SVN repository1. Then, for each system we perform nine experimental steps as follows: (1) Method

detection and extraction from each of the revisions using CTAGS 2, (2) Detection and extraction of code

clones from each revision using the NiCad clone detector [48], (3) Detection of changes between every two

consecutive revisions using diff, (4) Locating these changes to the already detected methods as well as clones

of the corresponding revisions, (5) Locating the code clones detected from each revision to the methods of

that revision, (6) Detection of method genealogies considering all revisions using the technique proposed by

Lozano and Wermelinger [145], (7) Detection of clone genealogies by identifying the propagation of each

clone fragment through a method genealogy, (8) Detection of SPCP clone fragments following technique we

proposed in our earlier work [163], and (9) Mining the evolutionary coupling of SPCP clone fragments to

identify the cross-boundary SPCP clones.

Detecting the method-genealogy for a particular method involves identifying each instance of that method

in each of the revisions where the method was alive. By detecting the genealogy of a method, we can

determine how it changed during evolution. We detect clone genealogies by locating the clones detected from

each revision to the already detected methods of that revision. The genealogy of a particular clone fragment

also helps us determine how it evolved through the commits. We assign unique IDs to the method genealogies

and clone genealogies to recognize them across revisions. We use NiCad [48] for detecting clones because it

can detect all major types (Type 1, Type 2, and Type 3) of clones with high precision and recall [198, 201].

Using NiCad we detect block clones including both exact (Type 1) and near-miss (Type 2, Type 3) clones of

1Open source SVN repository. http://sourceforge.net/
2CTAGS: http://ctags.sourceforge.net/
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a minimum size of 5 LOC with 20% dissimilarity threshold and blind renaming of identifiers. These settings

are considered standard [196].

In this experiment we consider clone and non-clone fragments that reside within methods. We already

mentioned that after detecting clones we locate them in the methods. A clone fragment is recognized by its

starting and ending line numbers. However, non-clone fragments require explanation. If a method contains

one or more clone fragments, then we consider the remaining code in the method as a non-clone fragment.

If a method does not contain any clone fragment, then we consider the full method as a non-clone fragment.

A fully cloned method does not contain a non-clone fragment.

5.5 Experimental Results and Discussion

We apply our implemented system on each of the six subject systems listed in Table 5.2. Our implemented

system automatically determines the SPCP clones, and then identifies those SPCP clones that have rela-

tionships across their class boundaries. By analyzing these SPCP clones we answer the research questions

mentioned in Table 5.1.

5.5.1 RQ 1: What Proportion of the SPCP Clones of a Subject System Have

Cross-boundary Relationships?

Answering this research question is important. If it is observed that generally a significant proportion of

the SPCP clones of a subject system have cross boundary relationships, then we can consider these clone

fragments for tracking along with their cross-boundary relationships in order to update them consistently in

future. However, if the number of cross-boundary SPCP clones is too low compared to the total number of

SPCP clones in a system, then the detection of such SPCP clones might just be an overhead.

Methodology. We have already mentioned that in our previous study [163] we detected SPCP clone

pairs. We merged these pairs to form groups of SPCP clone fragments. While detecting SPCP clone pairs in

our previous work, we considered the following two constraints: (1) the two constituent SPCP clone fragments

in a pair must co-change at least once during evolution, and (2) the two SPCP clone fragments in a pair must

remain in two different methods. However, in this research work, we did not apply these constraints. Firstly,

according to the definition of similarity preserving change pattern (SPCP) [163], two clone fragments from a

particular clone class can follow an SPCP without being co-changed at all. So, in this experiment we detect

all those SPCP clone pairs where the constituent clone fragments in a particular pair might not co-change

at all. Secondly, two clone fragments remaining in the same method can also follow a similarity preserving

change pattern and can be important candidates for refactoring. So, in this experiment we consider the same

method case too. We show the amount of SPCP clones detected from each of the subject systems in Table

5.3. The proportion of SPCP clones having cross-boundary relationships is shown in Fig. 5.2. Fig. 5.2 shows

that in case of each of the subject systems a considerable amount of the SPCP clones have change couplings
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Table 5.3: Number of SPCP Clone Fragments

Ctags QMail. Freecol jEdit Carol Jabref

No. of SPCP Clones 229 31 860 902 238 418

% of SPCP Clones w.r.t all clones in the system 43.04 59 55.69 12 29.45 43.63

No. of CBSPCP Clones 116 28 340 442 125 121

% of CBSPCP Clones w.r.t all clones in the system 21.80 53.29 22.02 5.88 15.47 12.63

% of NCBSPCP Clones w.r.t all clones in the system 21.24 5.70 33.67 6.12 13.98 31

SPCP Clones = The clone fragments that evolved following SPCP

No. of CBSPCP Clones = Number of Cross-Boundary SPCP clone fragments

CBSPCP Clones = Cross-boundary SPCP clone fragments

NCBSPCP Clones = Non-cross-boundary SPCP clone fragments

with code fragments beyond their class boundaries. According to our consideration, such SPCP clones should

not be considered for removal through refactoring. They should be tracked along with their cross-boundary

relationships. Moreover, we have already mentioned that we detect cross-boundary SPCP clones considering

the highest confidence rules. As higher confidence indicates stronger change coupling between the constituent

code fragments in a rule, we can expect that each of our detected cross-boundary SPCP clones has strong

change coupling with non-clone fragments and/or with clone fragments (may be SPCP clone fragments or

not) from clone classes other than its own clone class.

For each of our candidate systems we develop two separate XML files containing respectively the cross-

boundary and non-cross-boundary SPCP clones from that system. For each cross-boundary SPCP clone

fragment, we list the other code fragments (along with their file and starting and ending line numbers)

that are related to it. We determine groups of non-cross-boundary SPCP clones following the procedure we

proposed in our previous study [163] and include the groups in the XML files. These XML files are available

on-line3.

Answer to RQ 1: In general, a considerable proportion (overall 43% considering all six subject

systems) of the SPCP clones of a subject system have strong change couplings with code fragments

beyond their class boundaries. These cross-boundary SPCP clones should be considered as the important

candidates for tracking. We should track them along with their cross-boundary couplings so that we can

update them consistently during future evolution. Overall 10.27% of all clones in a software system are

cross-boundary SPCP clones. The non-cross-boundary SPCP clones are conservative in the sense that

3http://goo.gl/r6gDm2
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Figure 5.2: Percentage of cross-boundary SPCP clone fragments

they do not have change couplings with code fragments beyond their class boundaries. Thus, these should

be considered as the important candidates for refactoring. According to our statistics considering all

subject systems, overall 13.20% of all clones in a software system are non-cross-boundary SPCP clones.

5.5.2 RQ 2: Should We Discard the Cross-boundary SPCP Clones from Con-

sideration While Taking Refactoring Decisions and also, Consider them

for Tracking?

Answering this research question is the central objective of our research work. However, it is difficult to

answer this question, because we do not have any empirically established set of characteristics such that a

clone fragment that does not have any of the characteristics in the set should not be considered for removal

through refactoring. In our previous study we considered that two or more clone fragments from a particular

clone class might be important for refactoring only if they evolve following an SPCP (Similarity Preserving

Change Pattern). The clone fragments that do not follow SPCP either evolve independently or rarely change

during evolution. However, another important characteristic for a clone fragment to be considerable for

refactoring is that it is not expected to have change couplings with other code fragments beyond its class

boundary. We did not consider this issue in our previous study. If an SPCP clone fragment has such couplings,

then it is better not to refactor it, rather it should be tracked along with its cross-boundary couplings so that

the maintenance engineers can update them (i.e., the SPCP clone fragment and the code fragments coupled

with it beyond its class boundary) consistently in the future.

In Fig. 5.1 (explained in the introduction) we showed an SPCP clone fragment having couplings beyond

its class boundary. We also explained that removal of such an SPCP clone fragment might have ripple change
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effects1 on the related code fragments remaining outside of its class boundary and also, might negatively affect

the future evolution of these related code fragments. Thus, possibly we should not consider refactoring such

an SPCP clone fragment. Here we should note that it is impossible to calculate how much negative effect

can be caused in future because of the removal of such an SPCP clone fragment. However, we can have an

idea from the number of change coupling relationships an SPCP clone fragment currently has. According to

our consideration, if a number of fragments are related to a particular code fragment, then removal of that

particular fragment might negatively affect the future evolution of all the related code fragments. Thus, by

looking at the number of cross-boundary code fragments (i.e., the code fragments beyond class boundary)

a particular SPCP clone fragment is related to we can have an idea of how much negative effect might be

caused for the removal of that particular SPCP clone fragment.

In this research question, we determine how many change couplings an SPCP clone fragment can have

beyond its class boundary. We automatically identify these change couplings by mining association rules as

mentioned previously and then manually investigate the association rules to determine whether an SPCP

clone fragment is really coupled with code fragments beyond its class boundary. If an SPCP clone fragment

has change couplings with code fragments across its class boundary, then we can possibly decide that removal

of this clone fragment can negatively affect these related code fragments and thus, can be harmful for future

software evolution.

Methodology. We determine all the association rules associating an SPCP clone fragment with other

code fragments (non-clone fragments or clone fragments from other clone classes rather than its own class)

beyond its class boundary. As we previously mentioned, we consider each of those rules that have the

highest confidence (confidence of 1) to ensure the likeliness of change coupling between the code fragments

constituting a rule. Considering all the cross-boundary SPCP clone fragments in a subject system, we

determine the average number of code fragments (clone fragments from other clone classes, and non-clone

fragments) a cross-boundary SPCP clone fragment is associated to by association rules beyond its class

boundary. The average numbers for each of the subject system are shown in Fig. 5.3.

From the figure we see that a cross-boundary SPCP clone fragment can exhibit strong evolutionary

coupling (i.e., change coupling) with a considerable number of other code fragments beyond its class boundary.

Most of these code fragments are clone fragments from different clone classes rather than its own clone class.

We sort the cross-boundary SPCP clone fragments in decreasing order of the number of cross-boundary code

fragments they are associated to and then analyze the association rules of the top ten SPCP clone fragments

from each subject system. In the case of each of the association rules, we determine the commit operations

where the constituent code fragments (a cross-boundary SPCP clone fragment and a code fragment beyond

its class boundary) co-changed and whether they co-changed correspondingly. According to our manual

investigation, each of our investigated cross-boundary SPCP clone fragments was actually related to the code

fragments beyond its class boundary. We provide an example of a corresponding change in the following

paragraphs.
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Figure 5.3: The average number of code fragments to which a cross-boundary SPCP clone fragment
is related beyond its class boundary

Example: We provide an example of a corresponding change between an SPCP clone fragment and a

non-clone fragment from our subject system Ctags. The SPCP clone fragment is a method called ‘tagName’

with signature const char * tagName (const tagType type). The non-clone fragment is also a method with

name ‘includeTag’ and signature boolean includeTag(const tagType type, const boolean isFileScope). These

two code fragments belong to the same file ‘c.c’. They co-changed in two commit operations applied on

the revisions 217, and 242. Also, both of the association rules constructed from these two code fragments

have the highest confidence (confidence = 1). Thus, these two code fragments always co-changed (changed

together), and also, there is no commit operation where one fragment changed but the other did not. In

such a situation, we can expect strong change coupling between these two code fragments (an SPCP clone

fragment, and a non-clone fragment). We manually analyze the changes occurred to these code fragments in

both of the commit operations. According to our analysis, the changes occurred to the two code fragments

in each of the commit operations were corresponding and thus, the code fragments have change coupling.

We show the changes occurred to the two code fragments in the commit operation applied on revision 217

in two figures: Fig. 5.4, and Fig. 5.5.

Fig. 5.4 shows the changes occurred to the SPCP clone fragment (tagName), and Fig. 5.5 shows the

changes occurred to the non-clone fragment (includeTag). Each figure shows the two instances of the re-

spective code fragment in two revisions 217, and 218. We also highlight the changes between these two

instances. From Fig. 5.4 we see that two lines (statements) were added to the SPCP clone fragment because

of the commit on revision 217. If we take a look at Fig. 5.5, we can see that the same statements were
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Figure 5.4: Changes occurred to an SPCP clone fragment in the commit operation applied on revision
217 of our subject system Ctags.

Figure 5.5: Changes occurred to a non-clone fragment in the commit operation applied on revision
217 of our subject system Ctags.

also added to the non-clone fragment in the same commit operation. The changes occurred to the two code

fragments imply that those (i.e., the changes) were made focusing on the consistency of the two code frag-

ments. In other words, the SPCP clone fragment and the non-clone fragment co-changed correspondingly

in the commit operation. The changes occurred to these two code fragments in the commit 242 are also

corresponding according to our manual investigation. Thus, we can expect that these two code fragments are

related although there is no caller-callee relationship. According to our analysis, these code fragments have a

tendency of co-changing consistently. In such a situation, deletion of the SPCP clone fragment (‘tagName’)

through refactoring might negatively affect the future evolution of the non-clone fragment. However, if we

still want to remove this SPCP clone fragment, then we must take the relationship between this fragment

and the non-clone fragment (‘includeTag’) into consideration so that removal of the SPCP clone fragment

does not leave the non-clone fragment in an inconsistent state and also does not affect the future evolution

of the non-clone fragment.

Answer to RQ 2. From our discussion and analysis we can say that the SPCP clone fragments

having cross-boundary relationships should not be considered for removal through refactoring. They should

be tracked along with their relationships for their consistent updates in future. However, in case we want

to remove such a clone fragment, we must consider and analyze its relationships (change couplings in our

experiment) with the other code fragments beyond its class boundary so that these other code fragments

are not left in an inconsistent state because of the removal of the SPCP clone fragment.
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5.5.3 RQ 3: Do Cross-boundary SPCP Clones Have Higher Change-proneness

Than the Non-cross-boundary SPCP Clones?

Motivation. From our answer to the previous research question we understand that a cross-boundary

SPCP clone fragment has a tendency of maintaining consistency (i.e., changing consistently) with non-clone

fragments as well as with clone fragments from other clone classes. Also, as it is an SPCP clone fragment, it

also maintains consistency with other SPCP clone fragment(s) in its own clone class. From this we suspect

that possibly cross-boundary SPCP clones have higher change-proneness compared to the non-cross-boundary

SPCP clones. Also, our detection mechanism of cross-boundary SPCP clone fragments described in Section

5.3.3 ensures that each cross-boundary SPCP clone fragment must co-change at least twice with a non-

clone fragment or with a clone fragment from other clone class. In these circumstances it is highly likely that

cross-boundary SPCP clones will exhibit higher change-proneness than the non-cross-boundary SPCP clones.

However, we investigate this matter in detail in this research question. Such an investigation is important

from the perspective of software maintenance.

Literature [145, 146, 156] shows that code clones have higher change-proneness compared to non-cloned

code. However, some studies [119, 163] also show that not all clone fragments in a software system are

highly change-prone, and even some clone fragments never change during software evolution. Thus, this

is important to identify which clones are highly change-prone and to investigate the reasons behind their

high change-proneness. If our investigation shows that cross-boundary SPCP clones have significantly higher

change-proneness than the non-cross-boundary SPCP clones, then the cross-boundary SPCP clones should be

regarded as the hot spots in a software system. In general, highly change-prone code fragments have higher

possibilities of introducing bugs and inconsistencies to the software system if the changes occurred to them

are not properly propagated to the other related code fragments because of unconsciousness. We know that

the cross-boundary SPCP clones are related with many other code fragments beyond their class boundaries.

If such an SPCP clone fragment appears to be highly change-prone, then we should be more conscious about

the changes that occurred to it. If a change occurred to it is not properly propagated to the other related code

fragments both inside and outside of its class, then the software system might become inconsistent. Thus, if

cross-boundary SPCP clones have high change-proneness, then it is very much important that they should

be tracked along with their relationships so that we can change them consistently during future evolution. In

this research question we investigate whether cross-boundary SPCP clone fragments have significantly higher

change-proneness compared to the non-cross-boundary SPCP clones.

Methodology. To quantify the change-proneness of a particular SPCP clone fragment, we measure

the number of times it changed (i.e., the number of commits where it changed) during the whole evolution

period of the software system as we did in a previous study [160]. We at first determine all the SPCP clone

fragments of a particular subject system, and then separate them into two groups. One group contains

the cross-boundary SPCP clone fragments. We call this group the cross-boundary-group. The other group
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Figure 5.6: Comparison of change-proneness between cross-boundary and non-cross-boundary SPCP
clone fragments

contains the non-cross-boundary SPCP clone fragments. We call this group the non-cross-boundary-group.

We measure the change-proneness of each of the SPCP clone fragments included in each of the two groups.

We then determine the average change-proneness per group. These average values are shown in Fig. 5.6.

Fig. 5.6 shows that in case of each of the subject systems the change-proneness of the cross-boundary

SPCP clones is much higher than the change-proneness of the non-cross-boundary SPCP clones. This is

expected according to our previous discussion. However, we also wanted to investigate whether the cross-

boundary SPCP clones exhibit significantly higher change-proneness than the non-cross-boundary SPCP

clones. We perform our investigation in the following way.

In case of this investigation, we did not rely on the average change-proneness values, rather we used

the actual change-proneness value of each of the SPCP clone fragments in each of the groups. For each of

the subject systems, we performed the Mann-Whitney-Wilcoxon Tests [3, 4] on the change-proneness values

of the SPCP clone fragments of the two groups: cross-boundary-group, and non-cross-boundary-group. We

determine whether the change-proneness values in the cross-boundary-group are significantly higher than

the change-proneness values in the non-cross-boundary-group. For our six subject systems we performed six

tests and observed that in case of each test, the difference between the change-proneness values in the two

groups was highly significant with p-value < 0.001 (for both one-tailed and two-tailed tests). Thus, we can

say that the change-proneness values in the cross-boundary-group are significantly higher than those in the

non-cross-boundary-group. The test details are shown in Table 5.4.

Answer to RQ 3. According to our analysis cross-boundary SPCP clones have significantly higher

change-proneness than the non-cross-boundary SPCP clones. Thus, cross-boundary SPCP clones should

be tracked along with their cross-boundary couplings with high priority so that we can change them

consistently during future evolution.
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Table 5.4: Mann-Whitney-Wilcoxon Tests Regarding the Significance of Difference between Change-
proneness Values of Cross-Boundary-Group and Non-Cross-Boundary-Group

Ctags QMail. Freecol jEdit Carol Jabref

SCBG 116 28 340 442 125 121

SNCBG 113 3 520 460 113 297

p-Value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

SCBG = No. of Samples (SPCP clone fragments) in Cross-Boundary-Group

SNCBG = No. of Samples in Non-Cross-Boundary-Group

p-Value = Probability Value. If it is less than 0.05 then the difference

between the two samples are considered significant.

The main reason behind this high change-proneness of the cross-boundary SPCP clones is that each of

these has change couplings beyond its class boundary. From Fig. 5.3 we see that a cross-boundary SPCP

clone fragment is generally coupled with a high number of code fragments beyond its class. In other words,

these clone fragments are highly coupled. Generally highly coupled code fragments are not desirable in a

software system, because changes to such a code fragment might cause ripple change effects to the related

code fragments. Thus, the cross-boundary SPCP clones are the possible places in a software system where

we can think of possible restructuring to minimize their couplings. Also, as the cross-boundary SPCP clones

are not suitable for removal through refactoring, we propose efficient tracking of these clone fragments along

with their cross-boundary relationships.

5.5.4 RQ 4: Which Types of SPCP Clones Have Higher Possibility of Having

Cross-boundary Relationships?

In this research question we wanted to see a comparative scenario of the proportions of SPCP clone fragments

as well as of the proportions of cross-boundary SPCP clone fragments in different types of clones of our

candidate systems. The findings from this research question can help us understand two important things:

(1) which type(s) of SPCP clone fragments have lower possibilities of having cross-boundary relationships

and thus, are more suitable for refactoring, and (2) which type(s) of SPCP clones have higher possibility of

having cross-boundary relationships and thus, are more suitable for tracking. We perform our analysis in the

following way.

Methodology. We detect each of the three major types (Type 1, Type 2, and Type 3) of clone fragments

separately using the NiCad [48] clone detector and then automatically determine the SPCP clone fragments

having cross-boundary change couplings in each clone type. We determine the percentage of such SPCP clone

fragments with respect to the total number of SPCP clone fragments considering each clone type. Table 5.5

shows the numbers of SPCP clone fragments and cross-boundary SPCP clone fragments in three clone types.

The percentages of the cross-boundary SPCP clones are shown in the graph of Fig. 5.7.

74



Table 5.5: Cross-Boundary SPCP Clones in Three Clone-types

Type 1 Type 2 Type 3

SPCP CB-SPCP SPCP CB-SPCP SPCP CB-SPCP

Ctags 6 0 42 12 133 65

QMailAdmin 0 0 11 9 10 9

Freecol 75 2 143 42 534 164

jEdit 146 66 69 10 458 179

Carol 2 0 48 21 142 58

Jabref 13 0 84 12 236 70

SPCP = Count of SPCP clone fragments

CB-SPCP = Count of cross-boundary SPCP clone fragments

From Table 5.5 we see that the number of SPCP clone fragments is generally the highest in Type 3 case

among all three types except QMailAdmin. Also, for three subject systems Ctags, Carol, and Jabref we

did not get any cross-boundary SPCP clone fragments in Type 1 case. Fig. 5.7 shows that for most of the

subject systems except jEdit and Carol, the percentage of cross-boundary SPCP clones is the highest in

Type 3 clones. However, the percentages of cross-boundary SPCP clones are also considerable for the Type

2 cases. In case of jEdit and Carol, the percentages regarding Type 1 and Type 2 cases are the highest ones

respectively. Considering all the subject systems it seems that the percentage of cross-boundary SPCP clones

is generally the lowest in Type 1 case and the highest in Type 3 case.

Answering RQ 4. According to our investigated subject systems, the SPCP clones in both Type 2

and Type 3 cases have high possibilities of having cross-boundary relationships. However, the proportions

of cross-boundary SPCP clones are generally very low for the Type 1 case.

As Type 1 SPCP clones have lower probabilities of having cross-boundary relationships compared to the

SPCP clones in the other two types (Type 2, and Type 3), Type 1 SPCP clones should be considered for

refactoring with higher priority. According to our observation, we can even exclude Type 1 clones from

consideration while detecting cross-boundary SPCP clones. However, the amounts of cross-boundary SPCP

clones in the other two types are considerable. According to our analysis, we should detect cross-boundary

SPCP clones considering these two clone types (Type 2, and Type 3) so that we can exclude such SPCP

clones from refactoring decision and also, can keep track of them along with their relationships for consistent

updates in future.
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Figure 5.7: Comparison of change-proneness between cross-boundary and non-cross-boundary SPCP
clone fragments

5.5.5 Ranking of SPCP Clones for Tracking and Refactoring

From our previous analysis it is clear that we recommend the cross-boundary SPCP clones as the important

candidates for tracking and the non-cross-boundary SPCP clones as the important candidates for refactoring.

In our previous study we ranked the SPCP clones for refactoring on the basis of their similarity preserving

co-changes [163]. According to our findings in this research work, we can apply such a ranking for refactoring

the non-cross-boundary SPCP clones. However, the cross-boundary SPCP clones should be treated in a

different way. We suggest to rank them on the basis of the number of cross-boundary code fragments they

are related to. An SPCP clone fragment having a higher number of cross-boundary relationships can be

given a higher rank compared to the other SPCP clone fragments having comparatively a lower number of

cross-boundary relationships. In general, the more a code fragment is coupled, the more it is challenging to

be changed. Tracking of such a code fragment with all of its couplings can help us change it consistently

in future. Thus, we believe that our consideration regarding the ranking of cross-boundary SPCP clones for

tracking is reasonable. We rank the cross-boundary SPCP clones detected from each of our candidate systems

considering our proposed ranking mechanism. The XML files containing these ranked cross-boundary SPCP

clones are available on-line4.

5.6 Threats to Validity

We used the NiCad clone detector [48] for detecting clones. For different settings of NiCad, the statistics that

we obtain might be different. Wang et al. [254] defined this problem as the confounding configuration choice

problem and conducted an empirical study to ameliorate the effects of the problem. However, the settings

that we have used for NiCad are considered standard [196] and with these settings NiCad can detect clones

with high precision and recall [198,201].
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In our experiment we did not study enough subject systems to be able to generalize our findings regarding

the cross-boundary relationships of SPCP clones. However, our candidate systems were of diverse variety

in terms of application domains, sizes and revisions. Thus, we believe that our findings are important and

can help us to better manage code clones by minimizing clone refactoring effort and suggesting important

candidates for tracking.

5.7 Related Work

Numerous studies have been conducted regarding the detection, impact analysis [75,78,104,119,131,132,145,

146], management [251], refactoring [25,105,239,277] and tracking [61,95,152,244] of code clones.

A number of refactoring approaches [25, 105] select clones for refactoring on the basis of the abstract

syntax tree representation of the code base. Higo et al. [83] selected clones for refactoring (implementing

a tool called CCShaper) based on the lexical analysis of the source code. Bouktif et al. [38] proposed an

optimal schedule for refactoring clones using genetic algorithm. Zibran and Roy [277] proposed a conflict

aware optimal scheduling algorithm for clone refactoring using constraint programming. Tairas and Gray [239]

developed an Eclipse plug-in, CeDAR, for the purpose of clone refactoring.

A number of techniques for clone tracking also exist. Duala-Ekoko and Robillard [61] implemented an

Eclipse plug-in ‘CloneTracker’ for tracking clones. Jablonski and Hou [95] developed a tool called CReN to

track copy-paste activities. Miller and Myer [152] proposed a technique for simultaneous editing of multiple

clone fragments. Toomin et al. [244] developed a clone tracking tool called Codelink.

We see that a number of studies and techniques for clone refactoring and tracking already exist. These

techniques and tools consider all clones in a software system for refactoring and tracking. However, our study

in Chapter 5 is different and unique in the sense that we detect only those clones that are important for

refactoring or tracking.

Previously we conducted a study [163] to identify important clones for refactoring. We defined a particular

clone change pattern called SPCP (Similarity Preserving Change Pattern ) and proposed a mechanism for

detecting clones that follow SPCP. The non-SPCP clones are not important for refactoring or tracking,

because they either evolve independently or rarely change during evolution. We proposed that the SPCP

clones could be important candidates for refactoring. However, an SPCP clone fragment can have couplings

with other code fragments beyond its class boundary. Such cross-boundary SPCP clones should not be

considered for removal through refactoring. They should be considered as important candidates for tracking.

In this research work we propose a mechanism for automatically identifying cross-boundary SPCP clones. We

also propose a particular ranking mechanism for prioritizing the cross-boundary SPCP clones for tracking.

We perform an in-depth empirical study on both the cross-boundary and non-cross-boundary SPCP clones.

From our empirical evaluation we suggest that cross-boundary SPCP clones are the important candidates for

tracking and the non-cross-boundary SPCP clones are the important candidates for refactoring.
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In a previous study [164], we analyzed the evolutionary couplings of clone fragments in order to predict

their future co-change candidates. However, our study in Chapter 5 is different in the sense that here we focus

on identifying clones that are important for tracking or refactoring. Our implemented system in this research

work can automatically extract the important clones for refactoring (non-cross-boundary SPCP clones) as

well as for tracking (cross-boundary SPCP clones). Thus, our study is important for better management of

code clones.

5.8 Summary

In Chapter 5, we perform an in-depth empirical study on the identification of clone fragments that are

important for refactoring or tracking. We first detect all the SPCP clones (i.e., the clone fragments that

evolved following a similarity preserving change pattern) in a software system. We analyze the evolutionary

coupling of the SPCP clones and identify those SPCP clones that have change couplings (i.e., evolutionary

couplings) with other code fragments beyond their class boundaries. According to our consideration, these

cross-boundary SPCP clones should not be considered for removal through refactoring, because removal of

such clone fragments might negatively affect the future evolution of the related code fragments beyond the

class boundaries. We consider these as the important candidates for tracking. We suggest the non-cross-

boundary SPCP clones to be the important candidates for refactoring. Our implemented prototype tool

can automatically identify both cross-boundary and non-cross-boundary SPCP clones by analyzing software

evolution history.

We apply our prototype tool on six diverse subject systems written in two programming languages and

detect the cross-boundary and non-cross-boundary SPCP clones. According to our empirical study involving

rigorous manual analysis, overall 43% of the SPCP clone fragments have cross-boundary relationships. Cross-

boundary SPCP clones exhibit significantly higher change-proneness than the non-cross-boundary SPCP

clones. The reason behind this higher change-proneness is that cross-boundary SPCP clones are generally

highly coupled. As lower coupling is always desirable in software systems, cross-boundary SPCP clones are

possible places in a software system where we can think of possible restructuring to minimize their coupling.

We also observe that the percentage of cross-boundary SPCP clones is generally the lowest in Type 1 case,

and the highest in Type 3 case. We believe that automatic detection of cross-boundary as well as non-

cross-boundary SPCP clones will help us in better management of code clones in terms of both tracking and

refactoring.

While our investigations in Chapter 3, 4, and 5 involve identifying and ranking important clones for

refactoring and tracking on the basis of their evolutionary coupling, we believe that bug-proneness of code

clones should also be considered when prioritizing them for management. Our next chapter (Chapter 6)

presents our investigation on clone bug-proneness.
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Chapter 6

A Comparative Study on the Bug-Proneness of Dif-

ferent Types of Code Clones

In our previous chapters we identified code clones that are important for refactoring or tracking. We called

these code clones SPCP clones (i.e., code clones that evolved by following a Similarity Preserving Change

Pattern called SPCP). We ranked these important clones on the basis of their evolutionary coupling. However,

we realize that bug-proneness of code clones should also be considered when prioritizing or ranking them for

management. Focusing on this we perform a comparative study on the bug-proneness of different types of

code clones so that clone-types with higher bug-proneness can be given higher priorities for management. We

also analyze which type of bug-prone clones have high possibilities of evolving following an SPCP. Chapter

6 contains the details of our clone bug-proneness study.

The rest of the chapter is organized as follows. Section 6.2 describes the terminology, Section 6.4 dis-

cusses the experimental steps, Section 6.5 answers the research questions by presenting and analyzing the

experimental results, Section 6.6 mentions the possible threats to validity, Section 6.7 discusses the related

work, and finally, Section 6.8 concludes the chapter by summarizing our study findings.

6.1 Introduction and Motivation

According to a number of studies [29, 44, 51, 78, 91, 97, 141, 142, 263], code clones are directly related to bugs

and inconsistencies in a software system. However, although there are different types of code clones, none

of the existing studies investigate the comparative bug-proneness of these different clone-types. Such an

investigation is important because it can help us identify which type(s) of clones have the highest tendency

of exhibiting bug-proneness and thus, should be considered to be the important ones for management such

as refactoring and tracking. Focusing on this issue in this research work we investigate the comparative

bug-proneness of the major types of code clones: Type 1, Type 2, and Type 3 (defined in Chapter 2).

In particular, we answer four important research questions listed in Table 6.1. According to our in-depth

investigation on thousands of revisions of seven diverse subject systems written in two different programming

languages (C and Java) we can state that:
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Table 6.1: Research Questions

SL Research Question

RQ 1 Which clone types have a higher possibility of experiencing bug fixing changes?

RQ 2 Do the clone fragments from the same clone class co-change (i.e., change together) consistently

during a bug-fix?

RQ 3 What proportion of the clone fragments that experienced bug-fixing changes are SPCP clones?

(1) Type 3 clones have a higher bug-proneness compared to Type 1 and Type 2 clones. The bug-proneness

of Type 1 clones is the lowest among the three clone-types. Our statistical significance tests show that

Type 3 clones have a significantly higher bug-proneness than Type 1 clones.

(2) Type 3 clones have the highest likeliness of being co-changed (i.e., getting changed together) consistently

among the three clone-types when changed to fix a bug.

(3) Type 3 bug-fix clones have the highest possibility of evolving following a Similarity Preserving Change

Pattern called SPCP. According to our previous studies [162, 163], SPCP clones (i.e., clones that evolve

following a Similarity Preserving Change Pattern) are the important ones to consider for clone manage-

ment.

Our experimental results imply that Type 3 clones should be given a higher priority than the other

two clone-types when making clone management decisions (such as clone refactoring, or tracking) and our

findings (points 2 and 3 above) can be used to rank code clones during clone management. In our previous

studies [162, 163] we detected and ranked SPCP clones for refactoring and tracking on the basis of their

co-change tendencies. However, we should also consider their bug-proneness. Our implemented prototype

tool is capable of automatically detecting SPCP clones that exhibited bug-proneness during evolution. Thus,

it can help us rank clones considering their bug-proneness too.

6.2 Terminology

We conduct our experiment considering both exact (Type 1) and near-miss clones (Type 2 and Type 3 clones).

We defined these clone-types in Chapter 2.

6.3 Similarity Preserving Change Pattern (SPCP)

In our previous studies [162,163] we showed that the code clones that evolve following a Similarity Preserving

Change Pattern (SPCP) are the important ones for refactoring or tracking. A Similarity Preserving Change

Pattern consists of a Similarity Preserving Change and/or a Re-synchronizing Change.
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Table 6.2: Subject Systems

Systems Lang. Domains LLR Revisions

Ctags C Code Def. Generator 33,270 774

Camellia C Image Processing Library 89,063 170

BRL-Cad C 3-D Modeling 39,309 735

jEdit Java Text Editor 191,804 4000

Freecol Java Game 91,626 1950

Carol Java Game 25,091 1700

Jabref Java Reference Management 45,515 1545

LLR = LOC in the Last Revision

Similarity Preserving Change. Let us consider two code fragments that are clones of each other in

a particular revision of a subject system. A commit operation was applied to this revision, and any one or

both of these code fragments (i.e., clone fragments) received some changes. However, in the next revision

(created because of the commit operation) if these two code fragments are again considered clones of each

other (i.e., the code fragments preserve their similarity), then we say that the code fragments received a

Similarity Preserving Change in the commit operation.

Re-synchronizing Change. A re-synchronizing change consists of a diverging change followed by a

converging change. Let us consider two code fragments that are clones of each other in a particular revision.

A commit operation Ci was applied to this revision, and any one or both of the fragments received some

changes in such a way that the code fragments were not considered clones of each other in the next revision.

We say that the code fragments experienced a diverging change. However, in a later commit operation Ci+n

(n ≥ 1) any one or both of the code fragments received some changes, and because of these changes the

code fragments again became clones of each other. We say that the code fragments experienced a converging

change in commit Ci+n. A diverging change followed by a converging change is termed a re-synchronizing

change.

6.4 Experimental Steps

We perform investigation on seven subject systems (Table 6.2) downloaded from an on-line SVN repository [5].

6.4.1 Preliminary Steps

We perform the following preliminary steps before analyzing bug-proneness: (1) Extraction of all revisions

(as mentioned in Table 6.2) of each of the subject systems from the online SVN repository; (2) Method
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detection and extraction from each of the revisions using CTAGS [2]; (3) Detection and extraction of code

clones from each revision by applying the NiCad [48] clone detector; (4) Detection of changes between every

two consecutive revisions using diff ; (5) Locating these changes to the already detected methods as well as

clones of the corresponding revisions; (6) Locating the code clones detected from each revision to the methods

of that revision; (7) Detection of method genealogies considering all revisions using the technique proposed

by Lozano and Wermelinger [145]; (8) Detection of clone genealogies by identifying the propagation of each

clone fragment through a method genealogy; and (9) Detection of SPCP clone fragments by analyzing clone

change patterns. For completing these steps we use the tool SPCP-Miner [170].

We use NiCad [48] for detecting clones because it can detect all major types (Type 1, Type 2, and Type

3) of clones with high precision and recall [198,201]. Using NiCad we detect block clones including both exact

(Type 1) and near-miss (Type 2, Type 3) clones of a minimum size of 10 LOC with 20% dissimilarity threshold

and blind renaming of identifiers. For different settings of a clone detector the clone detection results can

be different and thus, the findings regarding the bug-proneness of code clones can also be different. Thus,

selection of reasonable settings (i.e., detection parameters) is important. We used the mentioned settings in

our research, because in a recent study [231] Svajlenko and Roy show that these settings provide us with

better clone detection results in terms of both precision and recall.

Clone Genealogies of Different Clone-Types. SPCP-Miner [170] detects clone genealogies consid-

ering each clone-type (Type 1, Type 2, and Type 3) separately. Considering a particular clone-type it first

detects all the clone fragments of that particular type from each of the revisions of the candidate system.

Then, it performs origin analysis of these detected clone fragments and builds the genealogies. Thus, all the

instances in a particular clone genealogy are of a particular clone-type. An instance is a snap-shot of a clone

fragment in a particular revision. A detailed elaboration of the genealogy detection approach is presented in

our previous study [163]. As we obtain three separate sets of clone genealogies for three different clone-types,

we can easily determine and compare the bug-proneness of these clone-types.

Tackling Clone-Mutations. Xie et al. [263] found that mutations of the clone fragments (i.e., a

particular clone fragment may change its type) might occur during evolution. If a particular clone fragment

is considered of a different clone-type during different periods of evolution, SPCP-Miner extracts a separate

clone-genealogy for this fragment for each of these periods. Thus, even with the occurrences of clone-

mutations, we can clearly distinguish which bugs were experienced by which clone-types.

6.4.2 Bug-proneness Detection Technique

For a particular candidate system, we first retrieve the commit messages by applying the ‘SVN log’ command.

A commit message describes the purpose of the corresponding commit operation. We automatically infer the

commit messages using the heuristic proposed by Mockus and Votta [153] in order to identify those commits

that occurred for the purpose of fixing bugs. Then we identify which of these bug-fix commits make changes

to clone fragments. If one or more clone fragments are modified in a particular bug-fix commit, then it is an
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implication that the modification of those clone fragment(s) was necessary for fixing the corresponding bug.

In other words, the clone fragment(s) are related to the bug. In this way we examine the commit operations

of a candidate system, analyze the commit messages to retrieve the bug-fix commits, and identify those clone

fragments that are related to the bug-fix. We also determine the number of changes that occurred to such a

clone fragment in a bug-fix commit using the UNIX diff command.

The way we detect the bug-fix commits was also previously followed by Barbour et al. [29]. Barbour et

al. [29] detected bug-fix commits in order to investigate whether late propagation in clones is related to bugs.

They at first identified the occurrences of late propagations and then analyzed whether the clone fragments

that experienced late propagations are related to bug-fix. In our study we detect bug-fix commits in the same

way as they detected, however, our study is not limited to the late propagation clones only. We investigate

the bug-proneness of all clone fragments in a software system. Also, Barbour et al. [29] did not investigate

Type 3 clones in their study. We consider Type 3 clones in our bug-proneness analysis. Moreover, we compare

the bug-proneness of different types of code clones from different perspectives. None of the existing studies

do such comparisons.

6.5 Experimental Results and Analysis

We present and analyze our experimental results in the following subsections in order to answer the research

questions mentioned in Table 6.1.

RQ 1: Which clone types have a higher possibility of experiencing bug fixing

changes?

Rationale. It is important to know which types of clones have a higher probability of experiencing bug-fix

changes compared to the others. The code clones exhibiting higher bug-proneness should be given higher

priorities when making clone management decisions (such as refactoring and tracking). Refactoring or track-

ing of such clone fragments (i.e., highly bug-prone clones) could help us minimize the probability of the

occurrences of bugs or inconsistencies in these fragments in the future. In a previous study [158] we found

Type 1 and Type 2 clones to be more unstable (i.e., change-prone) than Type 3 clones. However, there is

no empirical study on the correlation between change-proneness and bug-proneness of code clones. Thus, we

should not infer the bug-proneness of clone types from their change-proneness. A comparative study on the

bug-proneness of different types of code clones is important. We perform our investigations for answering

RQ 1 in the following two ways.

� Investigation 1: Investigation regarding the proportion of bug-fix changes experienced by the code

clones.

� Investigation 2: Investigation regarding the proportion of code clones experiencing bug-fix changes.
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Table 6.3: Percentage of Changes Related to Bug-fix

Type 1 Type 2 Type 3

Systems TNC PCB TNC PCB TNC PCB

Ctags 40 10% 84 11.90% 161 14.29%

Camellia 21 9.52% 20 0% 259 14.67%

BRL-Cad 322 0.93% 41 19.51% 215 7.9%

Freecol 134 20.89% 126 21.43% 766 30.42%

jEdit 1594 25.91% 145 47.59% 1265 43.08%

Carol 245 14.69% 279 21.86% 1123 23.15%

Jabref 304 4.27% 244 6.56% 1164 6.44%

TNC = Total Number of Changes that occurred to the Clones

PCB = Percentage of Changes related to a Bug-fix.

Investigation 1. Investigating what proportion of the changes that occurred to the clone fragments of

different clone-types are related to a bug-fix.

Considering the code clones of a particular clone-type of a particular subject system, we first determine

how many changes occurred to the code clones during the period of evolution (consisting of the revisions

mentioned in Table 6.2). Then we identify which of these changes were related to a bug-fix. Finally, we

calculate the percentage of changes related to a bug-fix considering each clone-type of each of the candidate

systems using Eq. 6.1.

PCB = NBC ∗ 100 / TNC (6.1)

In Eq. 6.1, TNC is the total number of changes that occurred to the code clones of a particular clone type of

a particular subject system, NBC is the number of bug-fix changes that occurred to those code clones, and

lastly, PCB denotes the percentage of changes related to a bug-fix with respect to all the changes (TNC )

that occurred to those code clones. Table 6.3 shows the TNC and PCB for each clone-type of each of the

subject systems. We also plot the percentages (PCB) in Fig. 6.1 to get a visual understanding regarding

their comparison.

From Fig. 6.1 we see that for six out of seven subject systems (i.e., except Camellia) the percentage of

bug-fix changes is the lowest for the Type 1 case. For four systems (Ctags, Camellia, Freecol, and Carol) the

percentage regarding the Type 3 case is the highest among the three cases (Type 1, Type 2, and Type 3).

For the remaining three systems, the percentage regarding the Type 2 case is the highest. The figure also

shows the overall percentages (i.e., measured over all the subject systems) for the three clone-types. We see

that the percentage of bug-fix changes is the highest in Type 3 case. The overall percentages regarding the

other two cases (Type 1, and Type 2) are almost the same. We calculate the overall percentages using the

following equation.
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Figure 6.1: Comparison regarding the percentage of bug-fix changes that occurred to the clone
fragments.
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Figure 6.2: Comparison regarding the percentage of clone fragments that experienced bug-fixing
changes.

OPType i =
100 ∗∑for all systemsNBCType i

∑for all systems TNCType i
(6.2)

OPType i is the overall percentage of bug-fix changes occurred to the Type i clones. NBCType i is the

number of bug-fix changes to the Type i clones of a particular subject system. TNCType i is the total number

of changes that occurred to the Type i clones of a subject system.

Investigation 2. Investigating what proportion of the clone fragments in different clone-types are related

to bug-fix changes?

We mentioned (in Section 6.4) that we determine the genealogies of the detected clone fragments. Consid-

ering each clone-type of each of the subject systems we determine how many clone genealogies were created

during the evolution and how many of these experienced a bug-fix. From these two values we determine the
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Table 6.4: Percentage of Clones Related to Bug-fix

Type 1 Type 2 Type 3

Systems TNCG PCGB TNCG PCGB TNCG PCGB

Ctags 52 7.69% 88 4.55% 155 9.03%

Camellia 300 0.67% 48 0% 177 6.21%

BRL-Cad 136 2.2% 28 7.14% 127 7.87%

Freecol 239 5.86% 162 7.41% 752 14.23%

jEdit 7398 0.99% 399 5.01% 2688 6.85%

Carol 415 7.47% 211 15.17% 682 19.65%

Jabref 483 1.66% 228 6.14% 1363 2.27%

TNCG = Total Number of Clone Genealogies created during evolution.

PCGB = Percentage of Clone Genealogies related to a Bug-fix.

percentage of clone genealogies that experienced bug-fixing changes using a similar equation to Eq. 1. Table

6.4 shows the total number of clone genealogies (the column TNCG) as well as the percentage of bug-fix

clone genealogies (the column PCGB) for each clone-type of each of the candidate systems. We also plot

the percentages (PCGB) in the graph of Fig. 6.2 for easily understanding the comparison of bug-proneness

among the three clone-types. The figure also shows the overall percentages of clone genealogies related bug-fix

for each clone-type. Overall percentages were calculated using a similar equation to Eq. 2.

From Fig. 6.2 we see that for all of the subject systems except Jabref, the percentage of clones related

to bug-fix is the highest in the Type 3 case. Also, the percentage of bug-fix clones is the lowest in the Type

1 case for most of the systems except Ctags, and Camellia. The overall percentages of the bug-fix clones in

the three clone-types provide such implications. Finally, the graph in Fig. 6.2 implies that Type 3 clones

generally have a much higher tendency of experiencing bug-fixing changes compared to the clone fragments

of the other two clone-types.

Statistical Significance Tests. We were also interested to investigate whether Type 3 clones have a

significantly higher tendency of experiencing bug-fixing changes compared to the clones of the other two

types. We performed Mann-Whitney-Wilcoxon (MWW) tests [3, 4] considering the percentages of the bug-

fix clone genealogies of the three cases (Type 1, Type 2, and Type 3) as recorded in Table 6.4. We first

determine whether the percentages regarding the Type 3 case are significantly higher than those of the Type

1 case. Our MWW test result implies that the percentages regarding Type 3 case are significantly higher

than the percentages regarding Type 1 case with a p-value of 0.026 (for two tailed test) which is less than

0.05. However, we observe that the percentages for the Type 3 case are not significantly higher than those

of the Type 2 case. The MWW test is non-parametric and does not require the samples to be normally

distributed [3]. This test can be applied to both small and large sample sizes [3]. In our research, we perform
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this test considering a significance level of 5%. Finally, it appears that the percentage of Type 3 clones that

experience bug-fixing changes is significantly higher than the percentage of bug-fix clones in the Type 1 case.

Answer to RQ 1. From our investigations we can state that while Type 3 clones have a higher bug-

proneness compared to the other two clone-types in general, the bug-proneness of Type 1 clones is the lowest

for most of our subject systems. Our statistical significance test results indicate that Type 3 clones have a

significantly higher bug-proneness compared to Type 1 clones.

In general, the total number of Type 3 clones in a software system is higher compared to the other two

clone-types as is evident in Table 6.4 (except Camellia, jEdit, and BRL-Cad). Also, our investigation results

indicate that Type 3 clones have the highest possibility of introducing bugs. Finally, our findings imply that

possibly Type 3 clones should be managed (i.e., refactored or tracked) with the highest priority.

A possible reason behind why Type 3 clones exhibit the highest bug-proneness is that these are gapped

clones (i.e., there are some non-clone lines in the Type 3 clone fragments). Thus, copy-pasting and consistently

changing a Type 3 clone fragment is not as straight forward as in the cases of Type 1 and Type 2 clones. Also,

because of the gaps in the Type 3 clones, refactoring of such clones might sometimes be difficult, and it causes

an increased number of Type 3 clones in the software systems (i.e., as can be seen from our experimental

results). Because of the existence of the gaps, possibly tracking is the best suitable management technique

for Type 3 clones.

RQ 2: Do the clone fragments from the same clone class co-change (i.e., change

together) consistently during a bug-fix?

Rationale. From our answer to RQ 1, we understand that code clones of each clone-type have a tendency of

experiencing bug-fixing changes, and Type 3 clones have the highest tendency. However, it is also important

to know whether two or more clone fragments from the same clone class co-changed (i.e., changed together)

consistently (i.e., the clone fragments were modified in the same way) during bug-fixes. Such clones are

more important for clone management than those clones that did not experience consistent co-change during

bug-fixes for the following reasons.

(1) If more than one clone fragments from the same clone class are changed together consistently during

a bug-fix, then it is an implication that those clone fragments contained the same bug and fixing of

that bug required those clone fragments to be modified together consistently. Unification of these clone

fragments (i.e., that co-changed consistently during bug-fixes) into a single one through refactoring can

possibly help us fix future bugs or inconsistencies with reduced effort, because in that case the bug-fixing

changes will require to be implemented in a single code fragment rather than implementing/propagating

the same changes to multiple similar code fragments.

(2) If only a single clone fragment from a particular clone class is modified for fixing a bug leaving the other

fragments in that class as they are, then it is an implication that this particular clone fragment does
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not require to maintain consistency with the other clone fragments in its class, and it has a tendency of

evolving independently. Such a fragment might not be regarded as a member of the class if it continues

to evolve independently, and in that case it should not be considered for clone management.

For this research question we investigate whether clone fragments from the same clone class have a

tendency of co-changing consistently during a bug-fix, and if so, how this tendency differs across the clone-

types. The clone-type with a higher tendency should be given a higher priority for management.

Methodology. In a previous study [163] we showed that if two or more clone fragments from the same

clone class experience a similarity preserving co-change (we define it in the next paragraph) in a particular

commit operation, then it is an implication that they co-changed consistently (i.e., they were changed in

the same way) in that commit. Considering this fact we answer this research question by automatically

examining the bug-fix commits and determining whether two or more clone fragments from the same clone

class experienced similarity preserving co-changes in these commits. If such clone fragments really exist, then

these should be given higher priorities for management as we have just discussed.

Similarity Preserving Co-change. Let us consider that two code fragments CF1 and CF2 are clones

of each other in revision R. A commit operation C was applied on this revision and both of these two

code fragments were changed (i.e., the clone fragments were co-changed) in this commit. If in revision R+1

(created because of the commit operation C) these two code fragments are again considered as clones of

each other (i.e., if they preserve their similarity), then we say that CF1 and CF2 experienced a similarity

preserving co-change in the commit operation C.

Considering each clone-type of each of the subject systems we determine which clone fragments experi-

enced bug-fix commits and which of these clone fragments received similarity preserving co-changes in the

bug-fix commits. Finally, we determine the percentage of clone fragments that received similarity preserving

co-changes in the bug-fix commits with respect to all clone fragments related to bug-fix. Table 6.5 shows

the total number of clones related to bug-fix and the percentage of bug-fix clones that experienced similarity

preserving co-changes during bug-fix commits. We also show these percentages in Fig. 6.3 to do a visual

comparison of the percentages regarding different clone-types.

From Fig. 6.3 we see that there are no vertical bars for Type 2 and Type 3 cases of Ctags, and also,

for Type 2 case of Camellia. The reason is that the number of bug-fix clones that experienced similarity

preserving co-changes is zero for each of these cases. This is also evident from Table 6.5. From the overall

percentages we see that bug-fix clones of Type 3 have the overall highest tendency of experiencing similarity

preserving co-changes in the bug-fix commits. The tendency for Type 2 case is also very near to that of

the Type 3 case. Bug-fix clones of Type 1 have the lowest tendency of experiencing similarity preserving

co-changes during bug-fix.

We also manually analyzed all the similarity preserving co-changes that occurred to the bug-fix clones

of each clone-type of Freecol during the bug-fix commits to see whether the clone fragments were really

modified consistently (i.e., whether the clone fragments were modified in the same way). According to our
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Table 6.5: Percentage of Bug-fix Clones that Experienced Similarity Preserving Co-change in the
Bug-fix Commits

Type 1 Type 2 Type 3

Systems CGBF BFCS CGBF BFCS CGBF BFCS

Ctags 4 50% 4 0% 14 0%

Camellia 2 100% 0 0% 11 45.45%

BRL-Cad 3 66.67% 2 100% 10 60%

Freecol 14 57.14% 12 50% 107 51.4%

jEdit 73 8.21% 20 30% 184 24.45%

Carol 31 38.7% 32 50% 134 50.74%

Jabref 8 25% 14 28.57% 31 67.74%

CGBF = Number of Clone Genealogies related to a Bug-fix.

BFCS = Percentage of Bug-fix Clone genealogies that experienced

similarity preserving co-change in bug-fix commits.
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commits (Type 1 case)

% of bug-fix clone fragments that experienced similarity preserving co-changes (BFCS) in bug-fix
commits (Type 2 case)

% of bug-fix clone fragments that experienced similarity preserving co-changes (BFCS) in bug-fix
commits (Type 3 case)

Figure 6.3: Comparison regarding the percentage of bug-fix clones that experienced similarity pre-
serving co-changes during bug-fix commits.
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Figure 6.4: An example of a similarity preserving co-change of two Type 3 clone fragments (i.e.,
Clone Fragment 1, and Clone Fragment 2) of Freecol in a bug-fix commit operation applied to revision
1075. Each of these two clone fragments is a method clone (i.e., the whole method is a clone fragment).
The figure shows that they were changed consistently in the bug-fix commit and were again considered
as Type 3 clones of each other in revision 1076.

manual analysis in each case of similarity preserving co-change, the clone fragments were changed together

consistently. Fig. 6.4 shows an example of similarity preserving co-change of two Type 3 clone fragments in

the bug-fix commit operation applied to revision 1075 of Freecol. We show the instances of these two clone

fragments in revisions 1075 and 1076 and highlight the changes that occurred to them. We see that the

clone fragments changed together consistently (i.e., in the same way) in the bug-fix commit operation. The

commit log as stated by the programmer is “Fixes a bug relating to giving units equipment while onboard a

carrier in Europe”. We see that the bug-description is relevant to the context. Fig. 6.4 shows that both the

clone fragments contained the same bug and were fixed in the same way. The example reveals the fact that

unification of these two clone fragments into a single one could help us fix future bugs with reduced effort.

During our manual investigation of the bug-fixes that occurred to code clones, the categories of bug-fixes

that appeared frequently are as follows: fixing the same semantically incorrect implementation in multiple

clone fragments from the same class, addition of the same missing implementations in multiple clone fragments

of the same class, and fixing the same GUI related error in multiple clone fragments.

Answer to RQ 2. Our investigation results show that clone fragments from the same clone class

have a tendency of co-changing (i.e., changing together) consistently during the bug-fix commit operations.

Consdering all the subject systems, bug-fix clones of Type 1 exhibit the lowest tendency. The tendencies

regarding both Type 2 and Type 3 cases are higher compared to Type 1 case. Thus, we should possibly

prioritize Type 3 and Type 2 clones over Type 1 clones when making clone refactoring or tracking decisions.
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Through our investigation of this research question (RQ 2 ) we suggest to consider higher priorities for

managing those clones that experienced similarity preserving co-changes during bug-fixes. Our findings are

important for ranking clones for both refactoring and tracking. However, we require further investigations of

the evolution histories of the bug-fix clones because of the following two issues.

Issue 1. The clone fragments that experienced similarity preserving co-changes in bug-fix commits

might evolve independently afterwards. In that case we should possibly not consider these clone fragments

important for management.

Issue 2. A clone fragment that was changed in a bug-fix commit without experiencing a similarity

preserving co-change might co-evolve consistently with the other fragments in its class afterwards. In that

case this clone fragments should be considered important for management.

In order to address these two issues, we need to investigate the entire evolution histories of the bug-fix

clones to analyze whether they co-evolved with the other clone fragments in their respective clone classes

following a similarity preserving change pattern which we called SPCP in our previous studies [162,163]. We

perform such an investigation in RQ 3.

RQ 3: What proportion of the clone fragments that experienced bug-fixing

changes are SPCP clones?
Rationale. From our discussion at the end of RQ 2 we realize that it is important to analyze whether

the clone fragments that experienced bug-fixes also have the tendencies of evolving following a similarity

preserving change pattern called SPCP (defined in Section 6.2). As the bug-fix clones have tendencies

of experiencing similarity preserving co-changes (revealed from RQ 2 ), we suspect that they might have

tendencies of following SPCP too. In other words, bug-fix clones might also be regarded as SPCP clones.

In our previous studies [162, 163] we empirically showed that SPCP clones are important candidates for

refactoring or tracking. The clone fragments that do not follow SPCP either evolve independently or are

rarely changed during evolution. Thus, the non-SPCP clones should not be considered important for clone

management.

To address research question we investigate which of the bug-fix clones are also SPCP clones. Such

clone fragments (i.e., the SPCP clones that experienced bug-fixes) should be given the highest priorities for

management. In our previous studies [162, 163] we ranked the SPCP clones on the basis of their co-change

tendencies. We did not consider the bug-proneness of the SPCP clones. We believe that bug-proneness

should also be considered for ranking the SPCP clones. However, ranking of SPCP clones considering both

bug-proneness and co-change tendencies is not our main focus in this research. We focus on investigating

whether bug-fix clones also have the possibility of following an SPCP, and if so, how this possibility differs

across different clone-types.

A clone fragment that experienced a bug-fix (whether through a similarity preserving co-change or not)

might not evolve following an SPCP afterwards (related to Issue 1 stated in RQ 2 ). In this case we

understand that the particular clone fragment evolved independently and thus, is not important from the
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Table 6.6: No. of Bug-fix Clones that Evolved by Following an SPCP (Similarity Preserving Change
Pattern)

Type 1 Type 2 Type 3

Systems CGBF CGSPCP CGBFSPCP CGBFSPCPL CGBF CGSPCP CGBFSPCP CGBFSPCPL CGBF CGSPCP CGBFSPCP CGBFSPCPL

Ctags 4 20 4 2 4 27 0 0 14 85 6 1

Camellia 2 4 2 2 0 2 0 0 11 36 10 0

BRL-Cad 3 42 2 2 2 8 2 2 10 41 8 4

Freecol 14 43 9 3 12 49 10 2 107 331 80 10

jEdit 73 50 0 0 20 63 11 2 184 614 157 96

Carol 31 82 16 0 32 73 20 3 134 325 117 22

Jabref 8 104 5 2 14 51 11 0 31 293 25 10

CGBF = Total number of Clone Genealogies (i.e., clones) that are related to a Bug-fix.

CGSPCP = Total number of Clone Genealogies that followed an SPCP (Similarity Preserving Change Pattern).

CGBFSPCP = Total number of bug-fix clones (i.e., the clones that were changed in bug-fix commits) that followed an SPCP.

CGBFSPCPL = Total number of bug-fix clones that followed an SPCP and are also alive in the last revision.

perspectives of clone management.

Methodology. Considering each clone-type of each of the subject systems we determine the SPCP clones

using SPCP-Miner [170]. We also determine those clone fragments that experienced bug-fixes following the

procedure described in Section 6.4. Then we identify which of these bug-fix clones also appear in the list

of SPCP clones. Finally, we determine the percentage of bug-fix clones that have also been selected as the

SPCP clones. We determine the following four measures for each clone-type of each candidate system and

show these measures in Table 6.6.

� Measure 1: The total number of bug-fix clones (The column CGBF in Table 6.6).

� Measure 2: The total number of SPCP clones (The column CGSPCP in Table 6.6).

� Measure 3: The total number of bug-fix clones which have also been selected as SPCP clones (The

column CGBFSPCP in Table 6.6).

� Measure 4: The total number of bug-fix clones which have been selected as SPCP clones and are

alive in the last revision (The column CGBFSPCPL in Table 6.6). We determine and present this

measure because while making refactoring or tracking decisions we are primarily concerned with those

clone fragments that are alive in the last revision (i.e., the most recent revision) of the system.

It might be the case that only a single clone fragment from a clone class got changed in a bug-fix commit

operation however, the clone fragment later co-evolved with the other clone fragments in its class by preserving

similarity and thus, can be selected as an SPCP clone fragment (related to Issue 2 stated in RQ 2 ). Such

examples are evident in Type 3 case of Ctags. From Table 6.5 we see that the bug-fix clone fragments (14

in total) of Type 3 case of Ctags did not experience similarity preserving co-changes. However, Table 6.6

shows that some of these clone fragments (6 in total) evolved following SPCPs (similarity preserving change

patterns). If we compare Table 6.5 and 6.6 we can discover some other examples of such cases.

We also determine the following two percentages from the above four measures considering each clone-type

of each of the candidate system.

(1) The percentage of the bug-fix clones that are selected as SPCP clones. This percentage (Measure 3

* 100 / Measure 1) is shown in Fig 6.5.
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Figure 6.5: Comparison regarding the percentage of clone fragments that have experienced bug-fixes
and have also been selected as SPCP clones.

(2) The percentage of the bug-fix clones that have been selected as SPCP clones and are also present in

the last revision with respect to all bug-fix clones. This percentage (Measure 4 * 100 / Measure 1) is shown

in Fig. 6.6.

From Fig. 6.5 we see that for most of the subject systems except Ctags and Camellia, the percentages

regarding Type 2 and Type 3 cases are higher compared to the percentage regarding Type 1 case. The

overall percentages for the three clone-types also reflect this. From these overall percentages we can see that

the bug-fix clones of the Type 3 case have the highest possibility of evolving following an SPCP (Similarity

Preserving Change Pattern). The possibility regarding the Type 1 case is the lowest among the three cases.

Such an overall scenario can also be observed in Fig. 6.6.

Answer to RQ 3. From our investigations we can state that a considerable proportion of the clone

fragments that experienced bug-fixing changes have a tendency of evolving by following a similarity preserving

change pattern (SPCP) and thus, are the important candidates for refactoring or tracking. We also observe

that the bug-fix clones of the Type 3 case generally have the highest probability of following an SPCP. Thus,

we again infer that Type 3 clones should be given the highest priority for management.

Our findings from Fig. 6.6 also imply that for most of the subject systems a considerable proportion of

the bug-fix clones that evolve following a similarity preserving change pattern remain alive in the last revision

(i.e., the most recent revision) of the subject systems. Such clones should be given the highest importance

for management, because programmers are mostly concerned with the last revision of the code-base (i.e., the

working copy). The findings from this research question and also, from the previous one are important for

ranking clones considering their bug-proneness. In the future, on the basis of these findings we would like

to propose a clone ranking mechanism considering both the co-change tendencies and bug-proneness of code

clones.
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Figure 6.6: Comparison regarding the percentage of bug-fix clones that have been selected as SPCP
clones and are also present in the last revision.

6.6 Threats to Validity

We used the NiCad clone detector [48] for detecting clones. For different settings of NiCad, the statistics that

we obtain might be different. Wang et al. [254] defined this problem as the confounding configuration choice

problem and conducted an empirical study to ameliorate the effects of the problem. However, the settings

that we have used for NiCad are considered standard [196] and with these settings NiCad can detect clones

with high precision and recall [198,201,231]. Thus, we believe that our findings on the bug-proneness of code

clones are of significant importance.

Our research involves the detection of bug-fix commits. The way we detect such commits is similar to

the technique followed by Barbour et al. [30]. Such a technique proposed by Mocus and Votta [153] can

sometimes select a non-bug-fix commit as a bug-fix commit mistakenly. However, Barbour et al. [30] showed

that this probability is very low. According to their investigation, the technique has an accuracy of 87% in

detecting bug-fix commits.

In our experiment we did not study enough subject systems to be able to generalize our findings regarding

the comparative bug-proneness of clone-types. However, our candidate systems were of diverse variety in

terms of application domains, sizes and revisions. Thus, we believe that our findings are important from

the perspectives of clone management and can help us in better ranking of code clones for refactoring and

tracking.

94



6.7 Related Work

Bug-proneness of code clones has already been investigated by a number of studies. Li and Ernst [141]

performed an empirical study on the bug-proneness of clones by investigating four software systems and

developed a tool called CBCD on the basis of their findings. CBCD can detect clones of a given piece of

buggy code. Li et al. [142] developed a tool called CP-Miner which is capable of detecting bugs related to

inconsistencies in copy-paste activities. Steidl and Göde [51] investigated on finding instances of incompletely

fixed bugs in near-miss code clones by investigating a broad range of features of such clones involving machine

learning. Göde and Koschke [78] investigated the occurrences of unintentional inconsistencies to the code

clones of three mature software systems and found that around 14.8% of all changes occurred to the code

clones are unintentionally inconsistent. Chatterji et al. [44] performed a user study to investigate how clone

information can help programmers localize bugs in software systems. Jiang et al. [97] performed a study on

the context based inconsistencies related to clones. They developed an algorithm to mine such inconsistencies

for the purpose of locating bugs. Using their algorithm they could detect previously unknown bugs from two

open-source subject systems. Inoue et al. [91] developed a tool called ‘CloneInspector’ in order to identify bugs

related to inconsistent changes to the identifiers in the clone fragments. They applied their tool on a mobile

software system and found a number of instances of such bugs. Xie et al. [263] investigated fault-proneness

of Type 3 clones in three open-source software systems. They investigated two evolutionary phenomena on

clones: (1) mutation of the type of a clone fragment during evolution, and (2) migration of clone fragments

across repositories and found that mutation of clone fragments to Type 2 or Type 3 clones is risky.

Rahman et al. [183] found that bug-proneness of cloned code is less than that of non-cloned code on

the basis of their investigation on the evolution history of four subject systems using DECKARD [96] clone

detector. However, they considered monthly snap-shots (i.e., revisions) of their systems and thus, they have

the possibility of missing buggy commits. In our study, we consider all the snap-shots/revisions (i.e., without

discarding any revisions) of a subject system as mentioned in Table 6.2 from the beginning one. Thus, we

believe that we are not missing any bug-fix commits. Moreover, our goal in this study is different. We

compare the bug-proneness of different types of code clones.

Selim et al. [220] used Cox hazard models in order to assess the impacts of cloned code on software

defects. They found that defect-proneness of code clones is system dependent. However, they considered

only method clones in their study. We consider block clones in our study. While they investigated only

two subject systems, we consider seven diverse subject systems in our investigation. Also, we compare the

bug-proneness of different types of clones. Selim et al. [220] did not perform a type centric analysis in their

study.

A number of studies have also been done on the late propagation in clones and its relationships with bugs.

Aversano et al. [19] investigated clone evolution in two subject systems and reported that late propagation in

clones is directly related to bugs. Barbour et al. [29] investigated eight different patterns of late propagation
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considering Type 1 and Type 2 clones of three subject systems and identified those patterns that are likely

to introduce bugs and inconsistencies to the code-base.

We see that different studies have investigated clone related bugs in different ways and have developed

different bug detection tools. However, none of these studies make a comparison of the bug-proneness of

different types of code clones. Comparing the bug-proneness of different clone-types is important from the

perspectives of clone management. The clone-type with a higher bug-proneness can be given a higher priority

when making clone management decisions. Focusing on this issue we make a comparison of the bug-proneness

of the major types (Type 1, Type 2, Type 3) of clones from different perspectives and identify which types

of clones have a higher bug-proneness and thus, should be given a higher priority for management. None of

the existing studies made such a comparison. Our study also provides useful implications regarding ranking

of code clones for refactoring and tracking.

6.8 Summary

In Chapter 6 we present an empirical study on the comparative bug-proneness of different types of code

clones. According to our investigation on the major types of code clones: Type 1 (Exact clones), Type 2

(Near-miss clones), and Type 3 (Near-miss clones) in thousands of revisions of seven diverse subject systems

written in two different programming languages (C, and Java) we can state that:

(1) Type 3 clones exhibit the highest bug-proneness among the three clone-types. The bug-proneness of

Type 3 clones is significantly higher than that of Type 1 clones.

(2) Also, Type 3 clones have the highest likeliness of co-changing (i.e., changing together) consistently during

the bug-fixing changes.

(3) Moreover, the bug-fix clones of Type 3 exhibit the highest tendencies of evolving following a similarity

preserving change pattern (SPCP). The existing studies [162, 163] show that the SPCP clones (i.e., the

clone fragments that evolve following a similarity preserving change pattern) are important for refactoring

and tracking.

Our experimental results imply that Type 3 clones should be given the highest priority when making

clone management decisions. Our findings regarding the consistent co-change of bug-prone clones and also,

regarding their tendencies of following SPCP can be considered for ranking code clones for management.

While our investigation in Chapter 6 involves comparing bug-proneness of different clone-types, there is a

common belief that bug-proneness of code clones is primarily caused by a particular clone evolution pattern

called late propagation. Thus, late propagation in code clones should also be considered when prioritizing

them for refactoring or tracking. In Chapter 7 we present our comparative study on the late propagation

tendencies of different types of code clones.
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Chapter 7

A Comparative Study on the Intensity and Harmful-

ness of Late Propagation in Near-Miss Code Clones

In Chapter 6 we investigated bug-proneness of different types of code clones with the goal of prioritizing

clone-types for management on the basis of their bug-proneness. It is suspected that bug-proneness of code

clones is often related to a particular clone evolution pattern called late propagation. Existing studies [29,30]

show that this particular evolution pattern of code clones may introduce bugs and inconsistencies in the

code-base. In Chapter 7 we compare the intensities of late propagation in different types of code clones

with a goal of prioritizing clone-types for management considering their late propagation tendencies. We

also analyze whether we can minimize late propagation in code clones by considering the SPCP clones (code

clones that evolved following a Similarity Preserving Change Pattern called SPCP defined in Chapter 3) for

management such as refactoring and tracking.

The rest of the chapter is organized as follows. Section 7.2 describes the related terminology, Section 7.3

elaborates on the detection of late propagation in clones, the experimental results are presented and analyzed

to answer the research questions in Section 7.4, Section 7.5 discusses the related work, Section 7.6 mentions

possible threats to validity and finally, we conclude this chapter by mentioning future work in Section 7.7.

7.1 Introduction and Motivation

There are strong empirical evidences [19, 30, 241] that late propagation is related to bugs [19, 241] and

inconsistencies [30] in the code-base. Researchers have investigated different specific patterns [30] of late

propagation and identified which patterns are more related to bugs, faults, and inconsistencies. However, the

existing studies regarding late propagation in clones have the following limitations.

(1) None of the studies investigate the intensities of late propagation in different types of clones separately.

Such a study is important because, if late propagation is observed to be more intense in a particular

clone type compared to the others, we might consider being more conscious while changing clones of that

particular type. Also, we might want to refactor clones of that particular type with higher priority.

(2) None of the existing studies investigate the bug-proneness of late propagation in different types of clones

separately. Such an investigation is also very important for understanding the comparative harmfulness

of late propagation in different clone-types.
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Table 7.1: Research Questions

Serial No. Research Question

1 What percentage of late propagations in Type 3 clones occur only because of the changes

in the non-cloned portions of the participating clone fragments?

2 Are the intensities of late propagation different in different types of clones?

3 Late propagations in which types of clones are more related to bugs?

4 Clones of which clone-type(s) have higher possibilities of experiencing bug-fixing changes at

the time of convergence?

5 Do the participating clone fragments in a clone pair that experience late propagation gen-

erally remain in different files?

6 Do block clones or method clones exhibit higher intensity of late propagation?

7 Do late propagations mainly occur to the SPCP clones or non-SPCP clones?

Focusing on these issues, we investigate late propagation in three types of clones (Type 1, Type 2, and

Type 3) separately and answer seven important research questions presented in Table 7.1. According to

our experimental results on thousands of revisions of eight diverse subject systems written in two different

programming languages we can state that:

� The percentage of late propagations in Type 3 clones occurred only because of the changes in the non-

matched (i.e., non-cloned) portions of the clone fragments is very low (less than one) for most of our

candidate systems. However, this proportion can sometimes be considerable (for example our subject

system jEdit). Such late propagations should be ignored when making clone management decisions.

Our implemented system can automatically detect such ignorable late propagations. We perform our

investigations related to research questions RQ 2 to RQ 7 (Table 7.1) by disregarding these ignorable

late propagations.

� The intensity of late propagations in Type 3 clones is higher compared to the other two clone-types.

� Type 3 clones have a higher possibility of experiencing buggy late propagations compared to the clone

fragments of the other two clone-types.

� Almost all of the clone fragments that experience late propagations are block clones. According to

our statistical significance tests, the percentage of block clones that experience late propagations is

significantly higher than the corresponding percentage of method clones. It seems that creating block

clones is more risky than creating method clones.

� Around 89% of the late propagations involve SPCP clones [163] (i.e., the clone fragments that evolved

following a Similarity Preserving Change Pattern called SPCP). In other words, late propagations
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mainly occur to the SPCP clones. By refactoring and tracking SPCP-clones we can possibly minimize

future occurrences of late propagations considerably.

The research work presented in this chapter is a significant extension of our earlier work [166]. In

our previous study [166] we detected late propagations in three types of clones separately and answered

three research questions (Table 7.1): RQ 2, RQ 5, and RQ 6. We extend this work with a number of

investigations: (1) investigating which proportion of late propagations in Type 3 clones occurred only because

of the changes in the non-cloned portions of the participating clone fragments, (2) analyzing and comparing

the bug-proneness of the late propagations in three types of clones, and (3) investigating late propagation in

SPCP clones. We perform these investigations for answering the four new research questions: RQ 1, RQ 3,

RQ 4, and RQ 7.

7.2 Terminology

We conduct our experiment regarding late propagation considering exact (Type 1) and near-miss clones

(Type 2 and Type 3 clones). Chapter 2 defines these clone-types.

7.2.1 Late Propagation in a Clone Pair

Let us consider a pair of clone fragments. We say that this clone pair has experienced late propagation if it

receives a diverging change followed by a converging change [30].

� Diverging Change. Let us assume a particular commit Ci where one or both of these two clone

fragments were changed. Because of this change, the fragments were not considered as clones of each

other. In other words, the clone fragments diverged. Such a change is called a diverging change for the

clone pair.

� Converging Change. Let us assume a later commit Ci+n (n >= 1) where one or both of these

fragments were changed, and because of this change, the fragments were again considered as clones of

each other. In other words, the fragments converged. The change for which the fragments converged is

termed as a converging change.

A particular clone pair may experience late propagation more than once during evolution. Fig. 7.1 shows

a possible example of late propagation experienced by a clone pair (CF1, CF2 ). The commit Ci applied on

revision Ri modified CF1 and as a result, CF1 and CF2 diverged. However, in commit Ci+2, the fragment

CF2 changed and CF1 and CF2 again became clones of each other in Ri+3.

7.2.2 SPCP Clones

In a previous study [163] we empirically showed that SPCP clones are important for refactoring or tracking.

SPCP-Clones are those clone fragments that evolved following a particular change pattern called Similarity
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Figure 7.1: A possible example of late propagation

Preserving Change Pattern (SPCP). A Similarity Preserving Change Pattern consists of only Similarity

Preserving Change and/or Re-synchronizing Change.

Similarity Preserving Change. Let us consider two code fragments that are clones of each other in a

particular revision of a subject system. A commit operation was applied on this revision, and any one or both

of these code fragments (i.e., clone fragments) received some changes. However, in the next revision (created

because of the commit operation) if these two code fragments are again considered as clones of each other

(i.e., the code fragments preserve their similarity), then we say that the code fragments received Similarity

Preserving Change in the commit operation.

Re-synchronizing Change. Let us consider two code fragments that are clones of each other in a

particular revision. If these two clone fragments experience a diverging change followed by a converging

change, then we say that they experienced a re-synchronizing change. A re-synchronizing change can also be

termed as a late propagation.

Here, we should clarify that two clone fragments (i.e., a clone-pair) might experience late propagation

(i.e., re-synchronizing change) a number of times during evolution, however they might not be regarded as

SPCP clones. Let us consider that two clone fragments experienced late propagation(s) during evolution. It

might be the case that after the last occurrence of late propagation they again diverged, but did not converge

again. In such a case, these two fragments will not be regarded as SPCP clones, because they did not preserve

their similarity lastly. As they did not preserve their similarity, their evolution pattern is not a Similarity

Preserving Change Pattern (i.e., is not an SPCP). Examples of such cases are evident from our answer to

RQ 7.

We performed an empirical study [162] on SPCP clones where we separated all the SPCP clones in a

software system into two disjoint groups. The clone fragments in one group are important for refactoring

whereas, the clone fragments in the other group are important for tracking. The clone fragments that do

not follow SPCP either evolve independently or are rarely changed during evolution. Thus, these non-SPCP

clone fragments should not be considered important for management.

100



7.2.3 Granularity of Late Propagation

We should note that we conduct our late propagation study considering the granularity of clone pairs as was

done by each of the previous studies. While it would be good to conduct such a study considering clone classes,

consideration of clone classes might cause the loss of important information regarding late propagation. Let

us assume a clone class consisting of six clone fragments in revision Ri. The subsequent commits might affect

only two of these six clone fragments leaving the other four fragments as they are. There is a possibility that

these two clone fragments (that are getting changed) will experience a late propagation (i.e., the changes

occurred in one clone fragment will propagate to the other one with some delay) in future evolution. However,

the other four clone fragments might not require to be changed during the whole period of evolution. In other

words, the changes occurred to the two clone fragments might not ever need to be propagated to the other

four clone fragments. In such a situation, consideration of all these six clone fragments for late propagation

is not reasonable. While pairs of clone fragments in a particular class might experience late propagation,

the whole class might not. Thus, we believe that investigating late propagation considering clone pairs is

reasonable.

7.3 Detection of Late Propagation

We detect and experiment late propagations from eight subject systems listed in Table 7.2. We downloaded

the revisions of each of these systems from an open-source SVN repository SourceForge1. For each of the

subject systems we considered each of the revisions beginning from the first one. We select these systems

in our research focusing on the diversity of their application domains (i.e., the systems belong to seven

application domains), sizes (i.e., the subject systems are of different sizes, from very small to large), and

the number of revisions. Thus, we believe that our reported experimental results are not affected by these

parameters.

7.3.1 Preliminary Steps

Detection of late propagation by mining the revisions of a particular subject system requires the following

preliminary steps to be done sequentially - (i) Extraction of methods from each of the revisions, (ii) Detection

of method genealogies, (iii) Extraction of clones from each of the revisions, (iv) Locating these clones to

the already detected methods, (v) Extraction of changes between every two consecutive revisions, and (vi)

Reflecting these changes to the already detected methods and clones residing in these methods.

We extract methods using Ctags2. For detecting method genealogies we follow the procedure proposed

by Lozano and Wermelinger [145]. The genealogy of a particular method helps us to understand how a

1Sourceforge: http://www.sourceforge.net
2Ctags: http://sourceforge.net/projects/ctags/?source=directory
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Table 7.2: Subject Systems

Systems Language Application Domains LOC Revisions

Ctags C Code Def. Generator 33,270 774

Camellia C Image Processing Library 89,063 207

BRL-CAD C 3D Modeling 40,941 735

jEdit Java Text Editor 191,804 4000

Freecol Java Game 91,626 1950

Carol Java Game 25,091 1700

Jabref Java Reference Management 45,515 1545

Java-ML Java Java Machine Learning Library 16,428 1200

particular method evolved during software evolution. As we detect method genealogies, we also detect clone

genealogies by locating the propagation of the clone fragments through the methods.

Clone Genealogy. By the term clone genealogy we mean the genealogy of a particular code fragment

which is also regarded as a clone fragment by the clone detector. By detecting the genealogy of a particular

clone fragment we can easily determine how that fragment was changed during the evolution. A particular

clone class may contain two or more clone fragments. We determine a separate genealogy for each of these

clone fragments.

We use NiCad clone detector for detecting and extracting clones from each revision of a subject system.

The main purpose of choosing NiCad is that it can detect clones of different clone-types separately including

Type 3 with high precision and recall [198, 201]. For detecting Type 3 clones, we considered a dissimilarity

threshold of 20% with blind renaming of identifiers. Here, we should note that before using the NiCad outputs

for Type-2 and Type-3 cases, we pre-processed them in the following way.

(1) Every Type-2 clone class that exactly matched any Type-1 clone class was excluded from Type-2

outputs.

(2) Every Type-3 clone class that exactly matched any Type-1 or Type-2 class was excluded from Type-3

outputs.

We performed these because we wanted to investigate each of the three types of clones separately. The

above two pre-processing steps ensure that the set of Type 2 clone classes that we investigate does not contain

any Type 1 clone class. Also, the set of our investigated Type 3 clone classes does not contain any Type 1 or

Type 2 clone classes. The detection mechanism of late propagation clone-pairs is described in the following

subsection.
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7.3.2 Detection of Clone-Pairs that Experienced Late Propagation

After completing the preliminary steps described above we automatically mine the late propagation clone-

pairs. At the very beginning, we assume a global list of clone pairs each of which has the potential of

experiencing late propagation. We call such a clone pair a CPLP (Clone Pair having the potential of experi-

encing Late Propagation). We call this list the Global List.

Clone Pair having the potential of experiencing Late Propagation (CPLP). We consider a pair

of code fragments, (CF1 and CF2 ), which are clones of each other in revision Ri. A commit operation Ci

was applied on Ri and one or both of these fragments changed. However, because of this change, CF1 and

CF2 were not considered as clones of each other in revision Ri+1. In other words, the change in Ci is a

diverging change for the pair (CF1, CF2 ). This pair is considered as a CPLP because, there is a possibility

that in a future commit operation, the fragments CF1 and CF2 will converge (i.e., CF1 and CF2 will again

be considered as clones of each other).

The Global List remains empty initially. We examine the commit operations sequentially from the very

beginning one. We only consider those commits where there were changes to one or more clone fragments of

a particular clone type. As we examine the commit operations, we update the Global List and mark some

clones pairs (i.e., some CPLPs) in this list as the late propagation clone pairs. Suppose, Ci is such a commit

which was applied on revision Ri and the immediate next revision Ri+1 was created as a result. We perform

the following steps sequentially considering Ci.

Step 1. Determining the list of affected clone fragments. We identify the list of clone fragments

(in revision Ri) that received some changes during Ci. We call this list the List of Affected Clone

Fragments.

Step 2. Determining the list of affected clone pairs. We make a list of clone pairs that involve

one or more clone fragments in the List of Affected Clone Fragments. We denote this list of clone

pairs as the List of Affected Clone Pairs.

Step 3. Updating the Global List using the List of Affected Clone Fragments. We identify

those clone pairs in the Global List each of which involves any of the clone fragments in the List of

Affected Clone Fragments. There is a possibility that such a clone pair in the Global List has

converged. In order to check this we determine whether the fragments in such a pair are considered as clones

of each other in revision Ri+1 which was created because of commit Ci. If this is true, then we understand

that this clone pair in the Global List has experienced late propagation. We mark this clone pair as a late

propagation pair.

Step 4. Updating the Global List using the List of Affected Clone Pairs. If any pair in the

List of Affected Clone Pairs already appears in the Global List, we do not need to consider this

pair because, this has already been handled in the previous step. Considering the remaining pairs (in the

List of Affected Clone Pairs), we determine the CPLPs (i.e., the clone pairs that have the potential
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of experiencing late propagation). If the two fragments in a remaining pair are not considered as clones of

each other in revision Ri+1, then this pair is a CPLP. We include the CPLPs in the Global List.

For each of the commit operations we follow the above four steps, update the Global List and mark

some CPLPs in this list as the late propagation pairs if they converge. After examining all the commit

operations we get all the late propagation clone pairs of a particular clone type.

Now, let us assume that a particular pair in the Global List has been marked as a late propagation pair

during the examination of the commit operation Ci. This pair has the following three possibilities during

future evolution.

� The pair may again experience late propagation. In our experiment we detect each of the occurrences

of late propagations a particular clone pair experienced during evolution.

� The fragments in the pair may evolve independently. However, independent evolution of such fragments

without any convergence is not our concern in this research work.

� One or both fragments may form new pair(s) with other fragments of the same or other clone types. In

this case, our implementation considers the new pairs in calculation because they can experience late

propagation.

Detection of late propagation considering an individual clone-type. Suppose we are detecting

late propagation considering the clones of Type j where j = 1, 2, or 3. The clone fragments CF1 and CF2

are clones of this type in revision Ri. Because of the commit Ci on revision Ri, the fragments CF1 and CF2

diverged. Let us assume that in commit Ci+n, the fragments converged and they were again considered as

clones of Type j. Then, we consider this late propagation as a late propagation of Type j. It might be the

case that after converging, CF1 and CF2 were not considered as clones of Type j. They were considered as

clones of Type k where k= 1, 2, or 3 and j ≠ k. In this case we do not consider a late propagation, because the

fragments changed their types. While detecting late propagation in the clones of Type k, the fragments CF1

and CF2 are considered to determine whether they experienced a late propagation of Type k. However, we

plan to investigate the intensity of such mixed type late propagations (i.e., where the participating fragments

were considered of one clone type before divergence but of another clone type after convergence) as a future

work.

An example of late propagation in Type 3 clones. We present an example of late propagation that

occurred to a Type 3 clone pair of our subject system jEdit. We automatically detect this late propagation

by applying our late propagation detection tool. We present Fig. 7.2 for describing the late propagation

example.

In Fig. 7.2 we see a Type 3 clone pair in revision 3865 of our candidate system jEdit. As we can see, the

participating clone fragments (denoted as Clone Fragment 1 and Clone Fragment 2 ) are two if-blocks. NiCad

detects these Type 3 clones by considering a dissimilarity threshold of 20% and applying blind renaming of
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Figure 7.2: An example of late propagation in a Type 3 clone pair from subject system jEdit
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identifiers. These two clone fragments belong to two different source code files3 4. The names of the container

methods of these two clone fragments are removePosition and getScreenLineForOffset in revision 3865 . The

commit operation applied on revision 3865 changed the clone fragment at the right hand side (i.e., Clone

Fragment 2). Because of this change they were not considered as a clone pair in revision 3866. Thus, this

change is a diverging change for the clone pair. However, the commit operation applied on revision 3866

again changed the fragment at the right hand side and the fragments converged (i.e., became a clone pair)

in revision 3867. Thus, this clone pair experienced a late propagation.

7.4 Experimental Results and Discussion

We applied our implementation on each of the eight subject systems in Table 7.2 and identified the clone

pairs that experienced late propagation considering each of the three clone types (Type 1, Type 2, Type 3).

In the following subsections, we answer the research questions mentioned in the introduction by presenting

and analyzing our experimental results. In our previous study [166] we did not consider late propagation

between clone fragments remaining in the same method. We consider such late propagations in this extended

study. Also, during the period of divergence of a particular late propagation, any one or both of the two

participating code fragments (i.e., the code fragments that were considered as a clone-pair before divergence)

might become non-clone fragments or be considered as clone fragments of different clone classes. We identify

late propagations considering both of these cases in this extended research work.

7.4.1 RQ 1: What Percentage of Late Propagations in Type 3 Clones Mainly

Occur Because of the Changes in the Non-matched Portions of the Par-

ticipating Clone Fragments?

Rationale. We know that Type 3 clones have both cloned and non-cloned portions. If a late propagation

in Type 3 clones occur because of the changes in the non-matched (i.e., non-cloned) portions only, then this

late propagation might not be important from the perspective of clone management. If it is observed that a

significant portion of the late propagations in Type 3 clones occur because of the changes in the non-matched

portions, then it is important to identify and discard these late propagations while doing investigations

regarding clone management. We answer RQ 1 in the following way.

Methodology. Let us consider that a pair of Type 3 clone fragments has experienced a late propagation.

If the matched portions of none of these two clone fragments were modified during the diverging and con-

verging change, and also, during the period of divergence, then we decide that this late propagation can be

ignored when making clone management decisions. We at first detect all the occurrences of late propagations

in Type 3 clones, and then determine which late propagations occurred only because of the changes in the

non-matched portions. A particular clone pair can experience late propagation more than once. We detect

3Source code file for Clone Fragment 1: trunk/org/gjt/sp/jedit/buffer/OffsetManager.java
4Source code file for Clone Fragment 2: trunk/org/gjt/sp/jedit/textarea/ChunkCache.java
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and check all those for our investigation regarding RQ 1. We automatically check a late propagation in the

following way.

Let us assume that two code fragments CF1 and CF2 are Type 3 clones of each other. They experienced

a late propagation where the diverging change occurred in commit Ci and the converging change occurred in

commit Cj (Cj > Ci). We check all these commits from Ci to Cj to determine whether any one or both of

CF1 and CF2 changed in these commits and whether the changes occurred in the matched or non-matched

portions of the fragments. Suppose, we are going to check the commit operation C where Ci <= C <=

Cj . We extract the two instances of the two code fragments CF1 and CF2 before this commit. Let us

assume that these instances are CF1before and CF2before respectively. We also determine the two instances,

CF1after and CF2after, after the commit. We blind-rename the instances CF1before and CF2before and then

find the differences of these blind-renamed instances using diff command. From diff output we determine

the matched and non-matched portions of CF1before and CF2before. We then determine the differences

between CF1before and CF1after using diff command to identify the changes occurred to CF1before in

terms of additions, deletions, and modifications. We determine whether these changes occurred to matched

or non-matched portions of CF1before using the line numbers of the changes. In the same way we determine

whether any changes occurred to the matched or non-matched portions of CF2before. If in each of the commit

operations from Ci to Cj the two code fragments CF1 and CF2 received changes only in their non-matched

portions, then we consider this late propagation as an ignorable one.

Considering the late propagations occurred to the Type 3 clones of each of the subject systems we

determine what proportion of late propagations occurred only because of the changes in the non-matched

portions and thus, are ignorable. Table 7.3 shows these proportions for our subject systems. We see that in

case of five subject systems (Ctags, BRL-CAD, Freecol, Carol, and Java-ML) this percentage is zero. For

the remaining three subject systems: Camellia, jEdit, and Jabref these percentages are 0.14%, 7.22%, and

0.07% respectively.

Answer to RQ 1: According to our experimental results, the percentage of late propagations in Type 3

clones occurred only because of the changes in the non-matched portions of the participating clone fragments is

very low (i.e., less than one) in most of the subject systems (i.e., seven out of eight systems) we have studied.

However, our analysis is based on only eight subject systems which are not enough to generalize our findings.

The percentage of ignorable late propagations can be considerable for some systems (for example, 7.22% in

case of our subject system jEdit). We should ignore these late propagations when making clone management

decisions. Our implemented prototype tool can automatically detect such ignorable late propagations so that

we can discard them from considerations. For answering the remaining research questions we ignore these

ignorable late propagations occurred in Type 3 clones.
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Table 7.3: Late Propagations in Type 3 Clones

Ctags Camellia BRL-CAD Freecol jEdit Carol Jabref Java-ML

LP 5 728 1593 1062 83 644 3028 65

LPNM 0 1 0 0 6 0 2 0

PLPNM 0% 0.14% 0% 0% 7.22% 0% 0.07% 0%

LP = Total number of late propagations in Type 3 clones

LPNM = Number of late propagations in Type 3 clones occurred only

because of the changes in the non-matched portions

PLPNM = Percentage of late propagations in Type 3 clones occurred only

because of the changes in the non-matched portions

Table 7.4: Statistics Regarding Late Propagations in Different Clone-types

Type 1 Type 2 Type 3

System CG CPL LG LP CG CPL LG LP CG CPL LG LP

Ctags 146 0 0 0 170 0 0 0 549 5 6 5

Camellia 584 9 10 61 189 84 30 476 571 230 89 727

BRL-CAD 343 0 0 0 171 0 0 0 586 324 31 1593

Freecol 6593 232 47 3498 675 177 54 8903 4748 272 133 1062

jEdit 42778 14 21 14 1536 0 0 0 9756 50 68 77

Carol 1969 12 8 12 751 1 2 2 3022 225 133 644

Jabref 4262 7 9 7 895 3 4 3 5849 601 280 3026

Java-ML 429 4 5 4 404 33 19 110 1103 33 23 65

CG = Total number of clone genealogies

CPL = Total number of clone-pairs that experienced late propagation

LG = Number of distinct clone genealogies that experienced late propagation

LP = Total number of late propagations (discarding the ignorable ones in Type 3 case)
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7.4.2 RQ 2: Are the Intensities of Late Propagation Different in Different Types

of Clones?

Rationale. If it is observed that late propagation in a particular clone-type is more intense compared to the

other clone-types, then it is an implication that clones of that particular clone type have a higher probability

of introducing bugs and inconsistencies to the code-base compared to the other types. Thus, it would be

beneficial if we could refactor clones of that particular type with higher priority. By minimizing these clones

we can minimize the possibility of faults and inconsistencies to the code-base.

Methodology. For answering this research question we applied our prototype tool on each of the

candidate systems and determine the following measures considering each of the three types of clones of each

of the subject systems.

� The total number of clone genealogies

� The number of clone-pairs (i.e., pair of clone genealogies) that experienced late propagation

� The number of distinct clone genealogies that experienced late propagation

� The total number of late propagations occurred to the clone fragments. A particular pair of clone

genealogies can experience late propagation more than once. We determine all of the occurrences of

late propagations experienced by each clone pair.

We show these measures in Table 7.4. We investigate the intensity of late propagations in different clone

types in the following two ways.

� Investigation 1: By determining and comparing the probability that a clone genealogy of a particular

clone type will experience a late propagation.

� Investigation 2: By determining and comparing how often a pair of clone genealogies of a particular

clone type experienced a late propagation.

Investigation 1: Comparison of the probability that a clone genealogy of a particular clone type will

experience a late propagation.

We calculate probability as percentage. Considering each clone-type of each of the subject systems we

determine the percentage of clone genealogies that experienced late propagation. These percentages are

shown in Table 7.5. We calculate these percentages from Table 7.4.

From Table 7.5 we see that for five out of eight subject systems (except Camellia, Freecol, and Java-ML)

Type 3 clones exhibit the highest intensity of late propagation in comparison with the other two clone types

(Type 1, and Type 2). For three systems (i.e., Camellia, Freecol, and Java-ML), Type 2 clones exhibit the

highest intensity.
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Table 7.5: Percentage of Clone Genealogies that Experienced Late Propagations from Different
Clone-types

System PCGLP - Type 1 PCGLP - Type 2 PCGLP - Type 3 CTHP

Ctags 0% 0% 1.09% Type 3

Camellia 1.71% 15.87% 15.59% Type 2

BRL-CAD 0% 0% 5.29% Type 3

Freecol 0.71% 8% 2.8% Type 2

jEdit 0.05% 0% 0.7% Type 3

Carol 0.4% 0.27% 4.4% Type 3

Jabref 0.21% 0.45% 4.79% Type 3

Java-ML 1.16% 4.7% 2.09% Type 2

PCGLP = Percentage of clone genealogies that experienced late propagations

CTHP = Clone-type with the highest percentage

Statistical significance test regarding the intensity of late propagation. We were also inter-

ested to investigate whether the intensity of late propagation in Type 3 clones is significantly higher than

the intensity of late propagation in Type 1 or Type 2 clones. We perform our investigation using Mann-

Whitney-Wilcoxon (MWW) tests [3,4]. We have already determined the percentage of clone genealogies that

experienced late propagation considering each clone type of each of the subject systems. These percentages

are shown in Table 7.5. Thus, for a particular clone-type we get eight percentages from eight subject systems.

We performed MWW tests [4] for each pair of clone-types. For example, in case of the pair (Type 1, Type

3), we determine whether the eight percentages regarding Type 1 are significantly different than the eight

percentages regarding Type 3. Here, we should note that MWW test is non-parametric and does not require

the samples to be normally distributed [3]. This test can be applied to both small and large sample sizes [3].

In our research, we perform this test considering a significance level of 5%.

According to our MWW test result, the percentages regarding Type 3 case are significantly higher than

the percentages regarding Type 1 case with p-value = 0.01 (approximately) for both one-tailed and two-tailed

tests, and with an effect size (r) of 0.71. We see that p-value < 0.05. Also, the effect size is large [1]. The

effect size calculation procedure for the MWW test is available on-line [69]. Finally, we can say that the

intensity of late propagation in Type 3 clones is significantly higher than the intensity of late propagation in

Type 1 clones. However, we did not get significant differences for any of the other two pairs: (Type 1, Type

2) and (Type 2, Type 3).

Investigation 2: Comparison of how often a clone-pair of a particular clone type will experience a late

propagation.
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Table 7.6: The Average Number of Times a Alone-pair Experienced Late Propagation from Different
Clone Types

System AT - Type 1 AT - Type 2 AT - Type 3 CTHAT

Ctags 0 0 1 Type 3

Camellia 6.77 5.66 3.16 Type 1

BRL-CAD 0 0 4.92 Type 3

Freecol 15.07 50.29 3.9 Type 2

jEdit 1 0 1.54 Type 3

Carol 1 2 2.86 Type 3

Jabref 1 1 5.03 Type 3

Java-ML 1 3.33 1.96 Type 2

AT = Average number of times a clone-pair experienced late propagations

CTHAT = Clone-type with the highest average number of times

We perform this investigation considering the clone-pairs that experienced late propagations. Considering

each clone-type of each of the subject systems we determine how many times a particular pair of clone

fragments experienced late propagation on an average. Table 7.6 shows this average value for each clone-type

of each of the subject systems. We see that for five out of eight subject systems (except Freecol, Camellia,

and Java-ML), the average number of late propagations received by a Type 3 clone-pair is higher than the

average number of late propagations experienced by a Type 1 or Type 2 clone-pair. For Camellia, Type 1

clone pairs exhibit the highest average. For both of the subject systems Freecol and Java-ML, the highest

average values are exhibited by the Type 2 clone pairs.

Answer to RQ 2. According to our investigation results, the intensity of late propagation in Type 3

clones is higher compared to the intensity of late propagation in the other two clone-types for five out of eight

candidate systems. Also, according to the MWW test results, Type 3 clones exhibit a significantly higher

intensity of late propagations than Type 1 clones. Thus, possibly Type 3 clones have a higher probability of

introducing faults and inconsistencies to a code-base than the clones of the other two clone-types.

7.4.3 RQ 3: Late Propagations in Which Types of Clones Are More Related to

Bugs?

Rationale. In a previous study Barbour et al. [29] found that late propagations in clones are related to bugs.

However, they studied only Type 1 and Type 2 clones. Moreover, they did not report bugs for these two cases

separately and thus, did not draw a comparative scenario between the bug-proneness of late propagations

in Type 1 and Type 2 clones. We believe that understanding the comparative bug-proneness of the late
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propagations in three types of clones is important. If it is observed that the late propagations in a particular

type of clones have a very low probability of being related to bugs compared to the other clone-types, then

the late propagations of that particular clone-type could be ignored. In our study we investigate the bug-

proneness of the late propagations in three types of clones (Type 1, Type 2, and Type 3) separately and show

a comparative scenario considering these clone types.

Methodology. Previously Barbour et al. [29] performed a similar kind of investigation. They at first

determined those clone pairs that experienced late propagations. Then, they determined whether any of

these pairs ever experienced a fault fix during evolution. We perform a more in-depth investigation where

we determine whether a fault fix occurred during the period of divergence of a particular late propagation.

We believe that a particular late propagation occurred to a particular clone pair can only be related to a

bug-fix if the bug-fix occurred during the late propagation period (i.e., the period of divergence). A pair of

clones that experienced a late propagation can also experience a bug-fix however, the bug-fix might not occur

during the period of late propagation. In this case we cannot relate this late propagation to the bug-fix.

We at first extract the SVN commit logs for each of the subject systems. The log contains the purpose

why each of the revisions was created. If a revision was created because of a bug-fix, the corresponding log

mentions it and generally includes the bug-ID. We identify the bug-fix commits from the commit log of a

subject system using the heuristic proposed by Mockus and Votta [153]. Barbour et al. [29] also used the

same heuristic in order to identify the bug-fix commits. As an example, if a commit message contains the

word ‘bug’, then we consider the commit as a bug-fix commit. However, such an heuristic might cause false

positives (i.e., identifying a commit as a bug-fix commit which was not actually done because of a bug-fix).

According to the investigation results of Barbour et al. [29], this heuristic can help us detect bug-fix commits

with a precision of 87%. We also perform manual investigations on the bug-fix commits detected from our

candidate systems using this heuristic. From our analysis on 400 bug-fix commits (the first 50 bug-fix commits

from each of the eight subject systems) we find that around 84% of these commits are true positives (i.e.,

are really bug-fix commits).

We detect late propagations considering each type of clones. A particular pair of clone fragments might

experience late propagation more than once. In this investigation we detect all the late propagations that a

particular clone pair experienced during evolution. A late propagation consists of a clone pair, a diverging

commit, and a converging commit. We identify a late propagation to be related to a bug-fix if the following

two conditions are satisfied: (1) at least one of the bug-fix commits (detected using our heuristic) occurred in

between the diverging and converging commits of the late propagation, and (2) at least one clone fragment

of the clone-pair was changed in this bug-fix commit. In this way we determine how many late propagations

were related to bug fix. Considering each type of clones we determine the number of late propagations that

were related to bug-fix. In case of Type 3 clones we disregard all those late propagations that occurred

because of the changes in the non-matched portions of the clones. We compare the intensity of buggy late

propagations in three types of clones in the following two ways.
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� Investigation 1: By determining and comparing the possibility that a late propagation occurred to a

clone-pair of a particular clone-type will be a buggy late propagation.

� Investigation 2: By determining and comparing the possibility that a clone fragment of a particular

clone-type will experience a buggy late propagation.

Investigation 1: Comparison of the possibility that a late propagation occurred to a clone-

pair of a particular clone-type will be a buggy late propagation.

Considering each clone-type of the each of the subject systems we determine the total number of late

propagations, and the number of late propagations that are related to bug-fix. The percentage of buggy

late propagations (i.e., the late propagations related to bug-fix) for each clone-type of each candidate system

is shown in Table 7.7. Here we should note that more than one late propagations might be related to the

same bug-fix. In case of Type 3 clones we consider only those late propagations that occurred because of the

changes in matched portions of the clone fragments.

From Table 7.7 we see that Type 1 and Type 2 clones of Ctags and BRL-CAD, and also, Type 2 clones of

jEdit did not experience any late propagations. In this table we also show the type of clones that experienced

the highest proportion of bug-fix late propagations. We see that for four systems (BRL-CAD, Carol, Jabref,

and Java-ML) out of eight subject systems, Type 3 clones experienced the highest proportion of buggy

late propagations. In case of two subject systems (Camellia, Freecol) of the remaining ones, Type 2 clones

experienced the highest proportion of bug-fix late propagations. In case of jEdit, Type 1 clones received the

highest percentage of buggy late propagations. Thus, we see that for most of the subject systems Type 3

clones experienced the highest percentage of buggy late propagations.

Investigation 2: Comparison of the possibility that a clone fragment of a particular clone-

type will experience a buggy late propagation.

Considering each type of clone of each of our candidates systems we determine the total number of clone

genealogies created during system evolution, and the number of clone genealogies that experienced a late

propagation related to a bug-fix. The percentage of these buggy late propagation genealogies with respect

to all clone genealogies in case of each clone-type of each of the candidates systems is shown Table 7.8. In

case of each of the subject systems, the table also shows the clone-type from which the highest proportion of

clone genealogies experienced buggy late propagations.

From Table 7.8 we see that none of the three clone-types in Ctags received late propagations that are

related to bug-fix. For most of the remaining subject systems (four systems out of seven), the proportion of

Type 3 clones that experienced buggy late propagations is the highest compared to the proportions regarding

the other two clone-types.

Statistical significance tests regarding the probability of experiencing buggy late propa-

gation. We also wanted to investigate whether Type 3 clones have a significantly higher probability of

experiencing buggy late propagations compared to Type 1 and Type 2 clones. Considering each clone type

for each of the candidate systems we determined the percentage of clone-genealogies that experienced buggy
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Table 7.7: Percentage of Late Propagations Related to Bug-fix

Type 1 Type 2 Type 3

System LP PLPBF LP PLPBF LP PLPBF TCHP

Ctags 0 0% 0 0% 5 0 n/a

Camellia 61 3.28% 476 22.9% 727 15.13% Type 2

BRL-CAD 0 0% 0 0% 1593 22.15% Type 3

Freecol 3498 35.79% 8903 40.08% 1062 39.64% Type 2

jEdit 14 71.43% 0 0% 77 70.13% Type 1

Carol 12 0% 2 0% 644 34.63% Type 3

Jabref 7 0% 3 0% 3026 41.21% Type 3

Java-ML 4 0% 110 29.09% 65 36.92% Type 3

LP = Total number of late propagation(s).

PLPBF = Percentage of late propagations that experienced bug-fix.

TCHP = The type of clones that experienced the highest proportion

of bug-fix late propagations.
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Table 7.8: Percentage of Clone Genealogies that Experienced Buggy Late Propagations

Type 1 Type 2 Type 3

System CG PGBL CG PGBL CG PGBL CTHP

Ctags 146 0% 170 0% 549 0% n/a

Camellia 584 0.51% 189 10.05% 571 8.58% Type 2

BRL-CAD 343 0% 171 0% 586 4.77% Type 3

Freecol 6593 0.71% 675 5.93% 4748 2.10% Type 2

jEdit 42778 0.04% 1536 0% 9756 0.56% Type 3

Carol 1969 0% 751 0% 3022 2.66% Type 3

Jabref 4262 0% 895 0% 5849 4.07% Type 3

Java-ML 429 0% 404 3.21% 1103 0.73% Type 2

CG = Total number of clone genealogies of a particular clone-type.

PGBL = Percentage of genealogies that experienced a buggy late propagation.

CTHP = The clone-type where the highest proportion of clone genealogies

experienced buggy late propagations.

late propagations. These percentages are recorded in Table 7.8. We perform MWW tests [4] to determine

whether the percentages regarding Type 3 case are significantly higher than the percentages regarding Type

1 and Type 2 cases. We perform the tests considering the significance level of 5%. According to our test

results, the percentages for Type 3 case are significantly higher than the percentages for Type 1 case with a

p-value < 0.01 for both two-tailed test and one-tailed test, and with an effect size of 0.67. We see that the

p-value is smaller than 0.05. Thus, we can say that Type 3 clones exhibit a significantly higher probability of

experiencing buggy late propagations compared to Type 1 clones. However, there is no significant difference

between probabilities regarding Type 2 and Type 3 clones and also, between the probabilities for Type 1 and

Type 2 clones.

Answer to RQ 3. From our investigations we can state that Type 3 clones have a higher possibility of

experiencing buggy late propagations compared to the clone fragments of the other two clone-types. Moreover,

the probability of experiencing buggy late propagations for Type 3 clones is significantly higher compared to

Type 1 clones.
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7.4.4 RQ 4: Clones of Which Clone-type(s) Have Higher Possibilities of Expe-

riencing Bug-fixing Changes at the time of Convergence?

In the previous research question we investigated those late propagations each of which experienced a bug-fix.

A bug-fix can occur at any commit operation during the period of late propagation. However, we believe

that it is important to know whether the bug-fix occurred at the time of convergence (i.e., at the converging

commit) or not. If a bug-fix commit affects two previously diverged clone fragments in such a way that they

converge together, then we can understand that for fixing of the bug it was necessary to ensure consistency

of the diverged clone fragments. Thus, these clone fragments might be considered for management with high

priority. If not refactorable, then these clone fragments should always be tracked to maintain their consistency.

The existing clone tracker CloneTracker [60, 61] does not automatically track all the clone fragments in a

subject system. It allows programmers to select a subset of clones for tracking. Moreover, CloneTracker

does not prioritize clones for tracking. Thus, a programmer is responsible to infer the more important clones

for tracking and let CloneTracker know about this. In such a situation automatic prioritization of clone

fragments for tracking can help programmers a lot. Our implemented system can automatically identify

those clone fragments that received bug-fixing changes at the converging commit operation. Possibly these

clone fragments can be prioritized for tracking. Here, we should note that in this research we only investigate

the past evolution history of the clone fragments. This might not be the case that a clone fragment that

experienced bug-fixing changes during a late propagation at past will also experience bugs in the future. We

would like to investigate the likeliness of occurrence of such a phenomenon as a future work. In RQ 4 we

investigate whether clone fragments experience bug-fixing changes at the time of convergence, and if so, how

the intensity of this phenomenon differs across clone-types. We answer RQ 4 in the following way.

Methodology. We at first select all those late propagations each of which experienced a bug-fix using

the methodology described in the previous research question. Then we automatically check each of these late

propagations to determine whether the bug-fix occurred at the converging commit (i.e., the commit operation

where two previously diverged clone fragments converged because of the changes in any one or both of the

fragments). We determine the number of clone fragments that experienced such late propagations. Table 7.9

shows the percentage of clone fragments that experienced this type of late propagations with respect to all

clone fragments in each clone-type of each of the candidate systems.

From Table 7.9 we see that in case of most of the subject systems disregarding Ctags, the proportion

of clones that experienced bug-fixing changes at the time of convergence is the highest in Type 3 case. We

disregard Ctags because none of the clone fragments in Ctags experienced bug-fixing changes.

Statistical significance test regarding the possibility of experiencing bug fixing changes at the

time of convergence. As we have done previously, we wanted to investigate whether Type 3 clones exhibit

a significantly higher possibility of experiencing bug-fixing changes at the time of convergence compared to

Type 1 and Type 2 clones. We perform MWW tests [4] to determine whether the percentages of Type 3
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clone-genealogies experiencing bug-fixing changes at the time of convergence are significantly different than

the corresponding percentages for Type 1 and Type 2 case. According to our tests considering a significance

level of 5%, the percentages regarding Type 3 case are significantly higher than the percentages regarding

Type 1 case with p-value < 0.01 for both one-tailed and two-tailed tests, and with an effect size of 0.68. We

see that the p-value is less than 0.05, and also, the effect size is large [69]. Thus, we can say that Type 3

clones exhibit a significantly higher possibility of experiencing bug-fixing changes at the time of convergence

compared to Type 1 clones. However, the difference between the percentages regarding the Type 2 and Type

3 cases is not statistically significant. The same is true for the Type 1 and Type 2 cases.

Answer to RQ 4: According to our investigation, Type 3 clones have higher possibilities of experiencing

bug-fixing changes at the time of converging compared to the clone fragments in each of the other two clone

types. Moreover, Type 3 clones exhibit a significantly higher probability of experiencing bug-fixing changes

at the converging commits compared to Type 1 clones. We have already discussed that the clone fragments

that experience bug-fixing changes at the time of convergence should be considered important for tracking.

Our implemented prototype tool can automatically identify such clone fragments by analyzing clone evolu-

tion history and thus, can help programmers identify the important tracking candidates while dealing with

CloneTracker.

7.4.5 RQ 5: Do the Participating Clone Fragments in a Clone Pair that Expe-

rience Late Propagation Generally Remain in Different Files?

Rationale. According to a number of studies [53,250], the program entities that often need to be changed

together (i.e., that often require corresponding changes) should remain in close proximity to each other so

that while changing a particular entity the developer does not miss to look at other entities that may require

corresponding changes. Considering this fact we suspect that possibly the clone fragments in a clone pair

that exhibit late propagation generally remain in two different files and as a result, the developers often forget

to make corresponding changes to these clone fragments. We investigate this matter in the following way.

Methodology. We have already said that considering each of the clone types of each of the subject

systems we identify the clone pairs that experienced late propagation. For each of these pairs we determined

whether the participating clone fragments remain in different files or in the same file. We determined two

percentages - (i) the percentage of the clone pairs having clone fragments from different source code files and

(ii) the percentage of clone pairs consisting of clone fragments from the same file. These percentages are

shown in Table 7.10.

Analysis. From Table 7.10 we see that for ten cases (for example Type 1 case of jEdit, Type 2 case

of Jabref) the percentage of late propagation clone pairs each having clone fragments from different files is

higher than the percentage of late propagation clone pairs each having clone fragments from the same file.

However, the opposite is true for nine cases (for example Type 1 case of Freecol, Type 1 case of Carol). The

clone fragments in the remaining five cases (Type 1 and Type 2 cases of Ctags and BRL-CAD, and Type 2

case of jEdit) did not experience any late propagations.
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Table 7.9: Percentage of Clone Genealogies that Experienced Bug-fixing Changes at the Time of
Convergence

Type 1 Type 2 Type 3

System CG PCGB CG PCGB CG PCGB CTHP

Ctags 146 0% 170 0% 549 0% n/a

Camellia 584 0% 189 9.52% 571 7.9% Type 2

BRL-CAD 343 0% 171 0% 586 3.92% Type 3

Freecol 6593 0.71% 675 4.59% 4748 1.58% Type 2

jEdit 42778 0.03% 1536 0% 9756 0.42% Type 3

Carol 1969 0% 751 0% 3022 1.16% Type 3

Jabref 4262 0% 895 0% 5849 3.54% Type 3

Java-ML 429 0% 404 3.21% 1103 0.73% Type 2

CG = Total number of clone genealogies of a particular clone-type.

PCGB = Percentage of clone genealogies that received bug-fixing changes

at the time of convergence.

CTHP = The clone-type where the highest proportion of clone genealogies

experienced bug-fixing changes at the time of convergence.
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Table 7.10: Percentage of Late Propagation Clone-pairs Each Having Clone Fragments from the
Same File or from Different Files

Type 1 Type 2 Type 3

System CPL SF DF MLP CPL SF DF MLP CPL SF DF MLP

Ctags 0 0% 0% n/a 0 0% 0% n/a 5 100% 0% S

Camellia 9 44.4% 55.6% D 84 19% 81% D 230 39.6% 60.4% D

BRL-CAD 0 0% 0% n/a 0 0% 0% n/a 324 100% 0% S

Freecol 232 94.8% 5.2% S 177 93.2% 6.8% S 272 46.3% 53.7% D

jEdit 14 14.3% 85.7% D 0 0% 0% n/a 50 14% 86% D

Carol 12 100% 0% S 1 100% 0% S 225 20.9% 79.1% D

Jabref 7 100% 0% S 3 0% 100% D 601 26.6% 73.4% D

Java-ML 4 0% 100% D 33 87.9% 12.1% S 33 81.8% 18.2% S

CPL = Total number of clone pairs that experienced late propagations.

SF = Percentage of late propagation pairs each having clone fragments from the same file

DF = Percentage of late propagation pairs each having clone fragments from different files

MLP = The situation that occurs for most of the late propagation pairs. This filed can

have either of the two values: ‘S’ or ‘D’

S = For most of the late propagations, the two clone fragments belong to the same file

D = For most of the late propagations, the two clone fragments belong to different files
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Answer to RQ 5. From our investigation we understand that whether the two participating clone

fragments in a particular clone pair remain in different files or in the same file, the clone pair can experience

late propagation. Proximity of the constituent clone fragments in a clone pair possibly does not have any

significant effect on the occurrence of late propagations to that pair.

7.4.6 RQ 6: Do Block Clones or Method Clones Exhibit Higher Intensity of

Late Propagation?

Rationale. Intuitively, copying a block of statements from one method and pasting that block to several other

methods is more difficult compared to copy-pasting a whole method. While pasting a block of statements into

a method, the variable names and data types in the block might need to be changed in accordance with the

variables and data types in that method. If there is a problem in making such correspondence and as a result,

the variables are not changed correctly, then this will create inconsistency in future evolution. If a number

of block clones (forming a clone class) are created with such inconsistencies, these inconsistencies in different

clone fragments will be discovered at different times during evolution and as a result, late propagation will

happen. Also, blocks might not have well defined boundaries as of methods. For this reason, keeping track

of block clones might seem to be more difficult compared to method clones to a programmer.

Methodology. We perform the following two investigations for answering this research question.

� Investigation 1: Investigating what proportions of the late propagations involve block-clones or method-

clones.

� Investigation 2: Investigating what proportions of the block-clones and method-clones experienced late

propagation.

Investigation 1: Investigating what proportions of the late propagations involve block-clones or method-

clones.

Considering each of the clone types of each of the subject systems, we at first determine those clone pairs

that exhibited late propagation and then we determine whether the clone fragments in such a pair are block

clones or method clones. We calculate: (i) the percentage of late propagation clone pairs each consisting of

at least one block clone, and (ii) the percentage of late propagation clone pairs consisting of method clones

only. These percentages regarding each clone-type of each subject system are shown in Table 7.11.

Analysis. From Table 7.11 we see that for almost all of the cases, the percentage of late propagation

clone pairs involving block clones is much higher (100 % in many cases such as Type 2 case of Freecol)

than the percentage of late propagation pairs consisting of only method clones. Although we determine the

percentage of late propagation clone pairs having at least one block clone, for most of the cases we observed

that both of the clones in such a pair are block clones. However, for a very few cases (such as Type 1 and

Type 2 cases of Ctags) we did not get any clone pair experiencing late propagation.

120



Table 7.11: Percentage of Late Propagation Clone-pairs Each Consisting of Method Clones or Block
Clones

Type 1 Type 2 Type 3

System CPL BC MC MLP CPL BC MC MLP CPL BC MC MLP

Ctags 0 0% 0% n/a 0 0% 0% n/a 5 100% 0% B

Camellia 9 100% 0% B 84 100% 0% B 230 99.1% 0.87% B

BRL-CAD 0 0% 0% n/a 0 0% 0% n/a 324 100% 0% B

Freecol 232 100% 0% B 177 100% 0% B 272 97.1% 2.9% B

jEdit 14 57.1%42.9% B 0 0% 0% n/a 50 90% 10% B

Carol 12 100% 0% B 1 100% 0% B 225 95.6% 4.4% B

Jabref 7 100% 0% B 3 0% 100% M 601 98.2% 1.8% B

Java-ML 4 0% 100% M 33 87.9% 12.1% B 33 90.9% 0.1% B

CPL = Total number of clone pairs that experienced late propagations.

BC = Percentage of late propagation pairs each consisting of at least one block clone

MC = Percentage of late propagation pairs each consisting of method clones only

MLP = The situation that occurs for most of the late propagation pairs. This filed can

have either of the two values: ‘B’ or ‘M’

B = For most of the late propagation pairs, at least one of the two clone fragments is a

block clone

M = For most of the late propagation pairs, both clone fragments are method clones
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Investigation 2: Investigating what proportions of the block-clones and method-clones experienced late

propagation.

Considering each clone-type of each of the subject systems we first identify all the clone genealogies

created during evolution, and then separate those into two disjoint subsets: (1) block clone genealogies, and

(2) method clone genealogies. We also determine which of these block clone genealogies as well as which of the

method clone genealogies experienced late propagations. Finally, we calculate the following two percentages:

� The percentage of block clones (i.e., block clone genealogies) that experienced late propagation with

respect to all block clones.

� The percentage of method clones that experienced late propagation with respect to all method clones.

Table 7.12 shows the following four measures considering each clone-type of each of the subject systems:

(1) the number of block clones, (2) the number of block clones that experienced late propagation, (3) the

number of method clones, and (4) the number of method clones that experienced late propagations during

evolution. Table 7.13 shows the percentages of block clones as well as method clones that experienced late

propagations with respect to all block clones and method clones respectively. The percentages in this table

were calculated from the values in Table 7.12. Table 7.13 shows that for most of the cases, the percentage

of method clones that experienced late propagations is smaller compared to the corresponding percentage of

block clones. We found only two cases (i.e., Type 1 case of Java-ML, and Type 2 case of Jabref) where the

percentage of method clones that experienced late propagations is higher than the corresponding percentage

of block clones.

Statistical Significance Tests. We wanted to determine whether the percentages of block clones that

experienced late propagations are significantly higher than the corresponding percentages of method clones.

Table 7.13 contains 24 cases (8 systems × 3 clone-types) in total. We perform Mann-Whitney-Wilcoxon

tests [3,4] to determine whether the percentages regarding block clones in these cases are significantly higher

compared to the percentages regarding method clones. We consider a significance level of 5%. According to

our test, the percentages of block clones that experienced late propagations are significantly higher than the

corresponding percentages of method clones with p-value = 0.02 for two-tailed test and 0.01 for one-tailed

test, and with an effect size of 0.32. We see that the p-values are smaller than 0.05, and thus, the percentages

of block clones that experienced late propagations are significantly higher than the corresponding percentages

of method clones.

Answer to RQ 6: The clone pairs that experience late propagation generally consist of block clones

instead of method clones. Our second investigation shows that block clones exhibit a significantly higher

tendency of experiencing late propagation than method clones. Such an observation implies that block clones

possibly have higher probability of introducing inconsistencies to a code-base compared to the method clones.

Thus, creating block clones is more risky than creating method clones. We should possibly consider refactoring

(if possible) block clones with higher priority.
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Table 7.12: The Number of Block Clones and Method Clones that Experienced Late Propagations

Type 1 Type 2 Type 3

System NB NBL NM NML NB NBL NM NML NB NBL NM NML

Ctags 85 0 61 0 99 0 71 0 336 6 213 0

Camellia 398 10 186 0 177 30 12 0 520 86 51 3

BRL-CAD 311 0 32 0 153 0 18 0 520 31 66 0

Freecol 5721 47 872 0 508 54 167 0 3545 116 1203 18

jEdit 16828 10 25950 11 767 0 769 0 6437 46 3319 22

Carol 907 8 1062 0 296 2 455 0 1728 112 1294 21

Jabref 2262 9 2000 0 640 0 255 4 3797 246 2052 36

Java-ML 224 0 205 5 240 13 164 6 553 18 550 5

NB = Number of block clone genealogies created during evolution.

NBL = Number of block clone genealogies that experienced late propagation.

NM = Number of method clone genealogies created during evolution.

NML = Number of method clone genealogies that experienced late propagation.

Table 7.13: Percentage of Block Clones and Method Clones that Experienced Late Propagations

Type 1 Type 2 Type 3

System PBC PMC HP PBC PMC HP PBC PMC HP

Ctags 0% 0% n/a 0% 0% n/a 1.79% 0% PBC

Camellia 2.51% 0% PBC 16.94% 0% PBC 16.53% 5.88% PBC

BRL-CAD 0% 0% n/a 0% 0% n/a 5.96% 0% PBC

Freecol 0.82% 0% PBC 10.62% 0% PBC 3.27% 1.49% PBC

jEdit 0.06% 0.04% PBC 0% 0% n/a 0.71% 0.66% PBC

Carol 0.88% 0% PBC 0.67% 0% PBC 6.48% 1.62% PBC

Jabref 0.39% 0% PBC 0% 1.56% PMC 6.47% 1.75% PBC

Java-ML 0% 2.43% PMC 5.42% 3.65% PBC 3.25% 0.91% PBC

PBC = Percentage of block clones that experienced late propagation.

PMC = Percentage of method clones that experienced late propagation.

HP = The larger one of the above two percentages. This field can have

either of the two values: PBC, and PMC.
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Table 7.14: Statistics Regarding SPCP clones and Late Propagations

Type 1 Type 2 Type 3

System SPCP LP LPSPCP SPCP LP LPSPCP SPCP LP LPSPCP

Ctags 26 0 n/a 16 0 n/a 118 5 3

Camellia 64 61 61 21 476 216 78 727 642

BRL-CAD 80 0 n/a 17 0 n/a 111 1593 1559

Freecol 143 3498 3498 94 8903 8885 180 1026 598

jEdit 486 14 14 21 0 n/a 128 77 25

Carol 84 12 12 110 2 2 498 644 336

Jabref 50 7 7 84 3 3 544 3026 2111

Java-ML 119 4 4 34 110 104 355 65 59

SPCP = The number of SPCP clone fragments.

LP = The total number of late propagations

LPISPCP = The number of late propagations involving SPCP clones

7.4.7 RQ 7: Do Late Propagations Mainly Occur to the SPCP Clones or Non-

SPCP Clones?

Rationale. In a previous study [163] we showed that SPCP (Similarity Preserving Change Pattern) clones

are the important ones from the perspectives of clone management (such as clone tracking or refactoring).

We suggested to mainly focus on managing SPCP clones when taking clone management decisions [162,163].

In this research question (i.e., RQ 7) we investigate whether late propagations mostly occur to the SPCP

clones. In such a case we can say that proper management of SPCP clones (i.e., through refactoring or

tracking) can help us minimize late propagations. We perform our investigation in the following two ways.

� Investigation 1: By investigating what proportions of late propagations occur to the SPCP clones.

� Investigation 2: By investigating the frequency of the occurrences of late propagations to the SPCP

clones and non-SPCP clones.

Investigation 1: Investigation on the proportion of late propagations occurred to the SPCP clones.

If it is observed that most of the late propagation occur to the SPCP clones rather than non-SPCP clones,

then we can decide that managing SPCP clones through refactoring and/or tracking can help us minimize

the occurrences of late propagations considerably. We investigate in the following way.

We at first determine the SPCP clones in the code-base by applying our detection mechanism elaborated

in our previous study [162]. Then, we determine all the occurrences of late propagations. We automatically
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Table 7.15: Percentage of Late Propagations Involving SPCP Clones

System PLS - Type 1 PLS - Type 2 PLS - Type 3

Ctags 0% 0% 60%

Camellia 100% 45.38% 88.31%

BRL-CAD 0% 0% 97.86%

Freecol 100% 99.8% 58.28%

jEdit 100% 0% 32.48%

Carol 100% 100% 52.17%

Jabref 100% 100% 69.76%

Java-ML 100% 94.54% 90.76%

PLS = Percentage of late propagations involving SPCP clones

OPPS = Overall percentage per system

check each of these late propagations and determine which late propagations involve SPCP clones (i.e., any of

the two participating clone fragments in the late propagation are SPCP clones). Considering each clone-type

of each of the candidate systems we determine how many of the corresponding late propagations involve

SPCP clones. Table 7.14 shows the total number of SPCP clones, total number of late propagations, and the

number of late propagations that involve SPCP clones. The percentage of late propagations involving SPCP

clones considering each clone-type of each of the candidate systems is shown in Table 7.15.

From Table 7.15 we see that the percentage of late propagations involving SPCP clones is zero for Type 1

and Type 2 cases of Ctags and BRL-CAD, and also, for Type 2 case of jEdit. The reason is that we did not

get any late propagations for these cases. This is also evident from Table 7.14. However, from this table (i.e.,

Table 7.14) we see that in each of these cases we found SPCP clones. Table 7.15 shows that in case of each of

the subject systems, all of the late propagations in Type 1 clones involved SPCP clones. The same is true for

Type 2 cases of most of the subject systems except Camellia. From Table 7.15 and 7.14 we understand that

a number of late propagations in Type 2 and Type 3 cases do not involve SPCP clones. In Section 7.2 we

explained that two clone fragments might experience late propagation(s), however, they will not be regarded

as SPCP clones if they finally diverge and do not converge again. The late propagations that do not involve

SPCP clones were experienced by such non-SPCP clone pairs.

Considering all clone types of all the candidate systems we found 20253 occurrences of late propagations

in total, and 18139 of these involved SPCP clones. Thus, around 89.56% of the total late propagations

involved SPCP clones. Such a finding implies that late propagations mainly occur to the SPCP clones. From

this we come to the decision that we can considerably minimize the future occurrences of late propagations

by managing the SPCP clones through refactoring and tracking.
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Table 7.16: Frequency of Late Propagations in SPCP and Non-SPCP Clones

Type 1 Type 2 Type 3

System FLS FLNS HF FLS FLNS HF FLS FLNS HF

Ctags 0 0 n/a 0 0 n/a 1 1 n/a

Camellia 6.78 0 FLS 2.27 6.87 FLNS 2.89 3.73 FLNS

BRL-CAD 0 0 n/a 0 0 n/a 4.87 8.5 FLNS

Freecol 15.07 0 FLS 54.18 1.38 FLS 5.43 2.86 FLS

jEdit 1 0 FLS 0 0 n/a 1.77 1.35 FLS

Carol 1 0 FLS 2 0 FLS 2.52 3.34 FLNS

Jabref 1 0 FLS 1 0 FLS 6.04 3.63 FLS

Java-ML 1 0 FLS 3.59 1.5 FLS 2.19 1 FLS

FLS = Frequency of late propagations in SPCP clones.

FLNS = Frequency of late propagations in non-SPCP clones.

HF = Higher Frequency. This field can have two values: FLS or FLNS

Investigation 2: Investigation on the frequency of the occurrences of late propagations to the SPCP

clones and non-SPCP clones.

From the previous investigation we understand that late propagations mainly occur to the SPCP clones

rather than the non-SPCP clones. In this investigation we determine whether late propagations are more

frequent to the SPCP clones or to the non-SPCP clones. If the frequency of late propagations to the SPCP

clones is higher compared to the frequency of late propagations to the non-SPCP clones, then we can again

decide that refactoring and tracking of SPCP clones can help us minimize late propagations. We perform

our investigation in the following way.

Considering each clone-type of each of the candidate systems we determine the following four measures:

� Measure 1: The number of distinct clone pairs that involve SPCP clones and experienced late prop-

agations,

� Measure 2: The number of distinct clone pairs that do not involve SPCP clones and experienced late

propagations,

� Measure 3: The total number of late propagations each involving SPCP clone(s), and

� Measure 4: The total number of late propagations involving only non-SPCP clones.

We then determine the following two frequencies from the above measures.
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� The frequency of late propagations in SPCP clones by dividing Measure 3 by Measure 1 .

� The frequency of late propagations in the non-SPCP clones by dividing the fourth measure (Measure

4) by the second one (Measure 2).

These frequencies for each clone-type of each of the subject systems are shown in Table 7.16. The table

shows that for most of the cases (i.e., except Type 2 and Type 3 cases of Camellia, Type 3 case of Carol, and

Type 3 case of BRL-CAD) the frequency of late propagations in SPCP clones is higher than the frequency

of late propagations in non-SPCP clones.

Statistical significance test regarding the frequency of late propagations in SPCP and non-

SPCP clones: We also wanted to investigate whether the frequency of late propagations in SPCP clones

is significantly higher than the frequency of late propagations in non-SPCP clones. If we consider all three

clone types of all eight candidate systems we get 24 cases (3 clone-types x 8 candidate systems) in total. We

have already mentioned that we did not get any late propagations for Type 1 and Type 2 cases of Ctags

and BRL-CAD, and Type 2 case of jEdit. Considering the remaining 19 cases we determine two sets of

frequencies. One set contains the frequencies of late propagations in SPCP clones in these 19 cases. The

other set contains the frequencies of late propagations in non-SPCP clones. We perform the Mann-Whitney-

Wilcoxon test [3,4] to determine whether the samples in these two sets are significantly different. We consider

a significance level of 5%. According to the test results, the difference between these two sets is significant

with p-value (probability value) = 0.04 (< 0.05) for two-tailed test and 0.02 for one-tailed test, and with an

effect size of 0.33. We see that the p-values are smaller than 0.05. Thus, we can say that the frequency of

late propagations in SPCP clones is significantly higher than the frequency of late propagations in non-SPCP

clones.

Answer to RQ 7: According to our investigations we can state that most of the late propagations (around

89.56%) involve SPCP clones. In other words, late propagations mainly occur to the SPCP clones. Also,

the frequency of the occurrence of late propagations in SPCP clones is significantly higher compared to non-

SPCP clones. These findings imply that by managing SPCP clones through refactoring and tracking we can

minimize the occurrences of late propagations considerably. Moreover, SPCP clones not only include those

clone fragments that experienced late propagations but also other clone fragments that are important to be

updated consistently [163]. Thus, we should primarily focus on managing the SPCP clones. Management of

SPCP clones through refactoring and tracking will not only help us minimize late propagations but also will

help us in better maintenance of software systems.

7.4.8 Discussion

In our research we answered seven research questions. In this section we mention and discuss our important

findings regarding late propagation from the answers to these research questions, and focus on the possible

reasons behind these findings.
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Finding 1: Type 3 clones have the highest possibility of experiencing late propagations among the three

clone-types: Type 1, Type 2, and Type 3.

From our investigations in RQ 2 we found that Type 3 clones exhibit the highest intensity of late prop-

agations among the three clone-types (Type 1, Type 2, and Type 3). A possible reason behind why Type 3

clones exhibit a higher tendency of late propagations is that Type 3 clones are gapped clones. Because of the

existence of these gaps (i.e., non-cloned lines) consistent changing of Type 3 clones is not always as straight

forward as of the other two clone-types. We suspect that higher percentage of inconsistencies as well as late

propagations in Type 3 clones are caused by the gaps. However, we do not have enough supporting evi-

dence for this. In future, we would like to investigate whether different levels of dissimilarities (i.e., different

dissimilarity thresholds) in Type 3 clones have effects on the intensity of late propagations in such clones.

Finding 2: Late propagations in Type 3 clones have the highest possibility of introducing bugs and

inconsistencies to the code-base compared to the late propagations in the other two clone-types: Type 1 and

Type 2.

From our answers to the research questions RQ 3 and RQ 4 we understand that the late propagations in

Type 3 clones have a higher tendency of introducing bugs and inconsistencies to a software system’s code-base

compared to the late propagations in each of the other two clone-types. We again suspect that the main

reason behind such a scenario is the existence of gaps in Type 3 clone fragments. However, we do not have

supporting evidence for this. We would like to investigate this in future.

Finding 3: Creating block clones is more risky than creating method clones because late propagations

mostly occur in block clones.

According to our analysis in RQ 6, the clone fragments that experience late propagations are mostly

block clones rather than method clones. Such a finding implies that creating block clones is more risky than

creating method clones. The reason behind why a significantly higher proportion of block clones experience

late propagations compared to method clones is that block clones do not have well defined boundaries as of

method clones. Thus, tracking as well as consistent updating of block clones without proper tool support

is intuitively much more difficult compared to method clones. Here, we should again note that an existing

tool called CloneTracker [61] provides support for tracking and simultaneous editing of clone fragments.

However, this tool tracks only the programmer selected clone fragments. Currently there is no tool for

automatic tracking of all clone fragments in a software system. Such a tool could help us minimize late

propagations in code clones considerably.

Finding 4: Managing SPCP clones can help us minimize the occurrences of late propagations consider-

ably.

From our investigation regarding RQ 7 we observe that late propagations mainly occur to SPCP clones

(i.e., the clones that evolve following a similarity preserving change pattern called SPCP). A previous study

[163] suggests us to mainly consider SPCP clones for refactoring and tracking. As late propagation clones

are mostly SPCP clones, we believe that managing of SPCP clones will help us minimize late propagations
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considerably. Moreover, from our findings we confirm that SPCP clones are the important candidates from

a clone management perspective. We also believe that a clone tracker with the capability of automatically

detecting and tracking of SPCP clones could help programmers efficiently manage code clones by minimizing

late propagations.

7.5 Related Work

A number of studies have already been done on clone evolution and late propagation in clones during evolution.

Kim et al. [119] studied clone evolution by defining and extracting clone genealogies from two Java systems

using CCFinder5 as the clone detector. Krinke [131] studied the consistent and inconsistent changes to the

Type 1 clones considering the evolutions of five open source subject systems using Simian6 clone detector.

He also studied the stability of clones [132] in comparison with non-cloned code. Göde et al [75,78] analyzed

clone evolution and its effect on software maintenance by enhancing Krinke’s study [132].

In a recent study, Barbour et al. [30] investigated eight different patterns of late propagation by studying

three open-source subject systems written in Java and identified two patterns that have higher likelihood

of introducing inconsistencies to a code-base. They used three clone detection tools NiCad, CCFinder, and

Simian in their study. However, Type 3 clones were not considered in this study. Aversano et al. [19]

investigated clone evolution on two subject systems to determine how clones are maintained. According

to their observation 18% of the clones experienced late propagation. They show that late propagation in

clones can directly be related to bugs and thus late propagation is risky. In another study Thummalapenta

et al. [241] investigate late propagation in clones considering four subject systems and reported that late

propagation is often related to faults and inconsistencies.

Bazrafshan [36] conducted an empirical study to investigate how differently the near-miss clones evolve

compared to the identical clones. He investigated the conversion of near-miss clones to identical clones, and

also, identical clones to near-miss clones. According to his findings, near-miss clones should be given a higher

priority than the identical clones when taking clone management decisions. Our study is different in the sense

that we investigate the intensity and harmfulness of late-propagation in three clone-types (Type 1, Type 2,

and Type 3) separately.

In a previous study [168] we investigated and compared the bug-proneness of code clones in different

clone-types. We did not investigate late propagation in that study. However, in our study presented in this

chapter we detect late propagation in different types of code clones, and investigate whether late propagation

in code clones are related to bugs. Thus, our contributions in this study are different than in our previous

study [168].

We see that while there are a number of great studies, none of these focus on the intensity and harmfulness

5CCFinder. http://www.ccfinder.net/ccfinderxos.html
6Simian. http://www.harukizaemon.com/simian/index.html.
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of late propagation separately in different types of clones. Also, the existing studies did not investigate the

tendency of late propagation in SPCP clones (i.e., the clone fragments that evolve following a Similarity

Preserving Change Pattern). In this study, we investigate these issues by answering seven research questions.

We believe that our findings are important and have the potential to help us in better clone maintenance.

7.6 Threats to Validity

The number as well as the percentage of clone genealogies that experienced late propagation may vary

because of the variation of the detection parameters of the clone detection tool (NiCad in our study). Wang

et al. [254] defined this problem as the confounding configuration choice problem and conducted an extensive

study considering six clone detectors to ameliorate the effects of the problem. However, the settings that we

have used for NiCad are considered standard and with these settings NiCad can detect clones with higher

precision and recall [198, 201]. Thus, the experimental results reported in this chapter are of significant

importance.

NiCad can detect three types of clones: Type 1 (identical), Type 2 (near-miss), and Type 3 (near-miss).

Any other near-miss clone detectors [231] could provide us with different experimental results as well as

different scenarios. However, Svajlenko and Roy [231] showed that NiCad is a very good clone detector for

detecting all three types of code clones in comparison with the other modern clone detectors. Also, NiCad

can report three types of clones (Type 1, Type 2, Type 3) separately. Thus, it helped us to investigate the

intensity of late propagation on these clone-types separately.

Our research involves the detection of bug-fix commits. The way we detect such commits is similar to

the technique followed by Barbour et al. [30]. Such a technique proposed by Mocus and Votta [153] can

sometimes select a non-bug-fix commit as a bug-fix commit mistakenly. Barbour et al. [30] showed that this

probability is very low. According to their investigation, the technique has an accuracy of 87% in detecting

bug-fix commits. We also perform manual investigations on the bug-fix commits detected from our subject

systems. As mentioned in Section 7.4.3, we confirmed that around 84% of these commits are true positives.

Thus, we believe that our reported results regarding the bug-proneness of different types of late propagations

in code clones are considerable.

In case of a Type 3 clone pair it might happen that one of the two clone fragments experienced particular

changes, however, the two fragments were still considered as clones. The particular changes experienced by

one fragment might later be propagated to the other fragment. Our late propagation detection mechanism

cannot identify such type of late propagation where the participating clone fragments always preserve their

similarity during the whole period of propagation.

Two clone fragments of a particular clone type might be regarded as clone fragments of another type after

experiencing the diverging period. Bazrafshan [36] previously investigated on such conversions of clone types.

Xie et al. [263] called it clone mutation and performed an in-depth investigation regarding this. According
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to their investigation on three subject systems, up to 60% of the clone genealogies can experience mutation.

In our research we were concerned about the late propagations in each of the three clone-types (Type 1,

Type 2, and Type 3) separately. We ignored type conversions (i.e., mutations) of code clones. However,

if a clone-pair is considered of different clone-types during different periods of evolution, we find the late

propagations experienced by the clone-pair considering each duration separately. Thus, our experimental

results regarding late propagation considering individual clone-type are not affected by the type-conversion

of code clones.

The difference between the number of clone genealogies in different clone-types might be a confounding

factor behind our finding regarding the comparative scenario of experiencing late propagations by different

clone-types. We wanted to investigate whether this is true. Our finding is that Type 3 clones have a higher

possibility of experiencing late propagations than Type 1 and Type 2 clones. We investigate whether this

finding has been affected by the number of clone genealogies in different clone-types. We first consider the

two clone-types: Type 1 and Type 3. From Table 7.4 we see that for five subject systems (Ctags, BRL-

CAD, Carol, Jabref, and Java-ML) the number of Type 3 clone genealogies is higher than the number of

Type 1 clone genealogies. For the remaining three systems (Camellia, jEdit, and Freecol), the number of

Type 1 clone genealogies is higher. However, from Table 7.5 we see that for each of these eight systems, the

percentage of clone genealogies that experienced late propagation is much higher in Type 3 case than in Type

1 case. Thus, it seems that the number of clone genealogies in Type 1 and Type 3 case does not impact the

comparative scenario of experiencing late propagations by the code clones of these two types. Now, we make

a comparison between the clone-types: Type 2 and Type 3. For each of our eight subject systems, the number

of Type 2 clone genealogies is much lower compared to Type 3 (c.f., Table 7.4). However, for three systems

(Camellia, Freecol, and Java-ML) the proportion of late propagation clone genealogies is higher in Type 2

case compared to Type 3 (c.f., Table 7.5). Thus, we again see that the total numbers of clone genealogies

in the two clone-types (Type 2, and Type 3) do not affect the comparative scenario of experiencing late

propagations by the code clones of these two types. Finally, we believe that our findings are not affected by

the number of clone-genealogies in different clone-types.

A clone pair which was created just before the last revision of our investigated evolution history of a

candidate system, and diverged at the last revision can converge in near future (i.e., shortly after the last

revision) which is unknown to us. The earliest possible revision of convergence can be the one which will be

created just after the last revision. However, as the future is unknown to us we consider this pair as a non-

SPCP clone pair in our experiment. We should also note that this pair has not yet completed experiencing

a late propagation according to the known evolution history. Thus, we believe that our decision about

considering this pair as a non-SPCP clone pair is reasonable and such a consideration has not affected our

findings.

The number of subject systems that we have used in our experiment is not sufficient to take a concrete

decision regarding the possible causes of late propagation. However, we selected our subject systems focusing
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on the diversity of sizes (from small to large) and application domains (five different application domains) to

generalize our findings. Thus, we believe that our findings are important and have the potential to minimize

late propagation in clones.

7.7 Summary

In this study, we investigate late propagation in three types of clones (Type 1, Type 2, and Type 3) sep-

arately. Through our experiment we tried to answer seven important research questions (mentioned in the

Introduction) regarding the intensity, and bug-proneness of late propagation. According to our study on

thousands of revisions of eight diverse subject systems written in two programming languages,

� The percentage of late propagations in Type 3 clones occurred only because of the changes in the non-

matched (i.e., non-cloned) portions of the clone fragments is very low (less than one) for most of our

candidate systems. However, this proportion can be considerable for some subject systems (for example

our subject system jEdit). Such late propagations should be ignored when making clone management

decisions. Our implemented system can automatically detect such ignorable late propagations so that

we can discard these from considerations while taking clone management decisions.

� The intensity of late propagation in Type 3 clones is higher compared to the other two clone-types

(Type 1, and Type 2).

� More importantly, Type 3 clones have higher possibilities of experiencing buggy late propagations than

the clone fragments in the other two types.

� Most of the clone fragments that experience late propagations are block clones. It seems that the

creation of block clones is more risky than the creation of method clones.

� Refactoring and tracking of SPCP-clones can possibly help us minimize the future occurrences of late

propagations considerably.

As a future work, we plan to investigate whether programming languages as well as application domains

of the subject systems can bias the intensity of late propagation. Considering Type 3 clones, we plan to

investigate different late propagation patterns, their frequencies and effects on software maintenance.
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Chapter 8

Automatic Mining of Important Clones (AMIC)

8.1 Introduction

In the last five chapters we described our studies on identifying and ranking code clones as well as prioritizing

clone types for the purpose of management such as refactoring and tracking. By accumulating all the

techniques and technologies in all of our studies we have developed an automatic system, AMIC (Automatic

Mining of Important Clones), for identifying and ranking important clones for refactoring and tracking. We

believe that AMIC has the potential to support clone management by pinpointing and prioritizing important

code clones for management from different perspectives such as evolution pattern, change-proneness, bug-

proneness, and late propagation tendencies of code clones. We develop AMIC using Java with MySQL as

the back-end database server. Chapter 8 presents a detailed description of AMIC.

The rest of the chapter is organized as follows. Section 8.2 discusses an example use case of AMIC, Section

8.3 describes the concept behind implementing AMIC, Section 8.4 elaborates on the working procedure of

AMIC, Section 8.5 focuses on the implementation, Section 8.6 describes the output generated by AMIC, and

Section 8.7 concludes this chapter by mentioning possible future work.

8.2 An Example Use Case of AMIC

Let us assume that a software system has been in the maintenance phase for a long time without clone

management. Recently, the client reported a bug saying that certain functionality in a certain module of

the software system is not working in the expected way. A developer was appointed to fix the bug. After

investigating the bug in the reported module she fixes it by modifying a piece of code in that module.

However, after some days the client again reports a similar bug in another module. The project manager

asks the developer to fix it and investigate why the same bug is being reported even after fixing. After

investigating, the programmer reports that there was a similar piece of buggy code in the newly reported

module. She also fixed it in the similar way. Then, the project manager suspects that the similar piece of

buggy code might even exist in some other places not yet reported. So, he asks the developer to search for

those in the whole code-base. The developer investigates and finds that some other similar pieces of code

with the same bug really exist in the code-base and these code fragments also need to be fixed.
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From this the project manager realizes that the code-base might have many other groups of similar code

fragments. He feels the necessity of refactoring each of these groups so that in order to fix such a bug in

future a developer does not need to change in too many places. He asks the developer to first detect code

clones in the software system using a clone detection tool and then, to refactor those clones.

The developer downloads the clone detection and refactoring tools. She applies a clone detector and

detects a large amount of clones grouped into different clone groups from the system. Then, she attempts

to apply a refactoring tool on the detected clones. However, she experiences that there are many situations

where the refactoring tools cannot refactor the clone fragments. She can manually refactor in some of these

situations. Also, during manual checking she understands that many clones might not be important to

be refactored and also many clones are not even refactorable. Moreover, while deciding to refactor some

clones she feels the necessity of understanding how they evolved in the past. She realizes that she should

primarily focus on those clones that are more change-prone and have a tendency of co-evolving preserving

their similarity. The clones that never changed in the past might be kept in the system as they are because

they have very low probability of getting changed in future. She also understands that some clone fragments

are eligible to be refactored on the basis of their syntactic structure however, they are closely related to their

surrounding non-clone fragments, and thus removal of these clone fragments through refactoring might not be

a wise decision. Removal of such clone fragments might negatively affect the future evolution of the related

non-clone fragments. Such clone fragments might be important for tracking using a clone tracker. However,

to consider all these things she needs to analyze the clone evolution history. She understands that deciding

important refactoring as well as tracking candidates by analyzing the evolution histories of a large set of

clones might even take several months to complete. She feels helpless and realizes the necessity of a tool that

can automatically analyze the clone evolution history and identify the important clones to be refactored or

tracked. We believe that our tool AMIC can be her best friend in this situation. AMIC automatically mines

and analyzes the evolution histories of the clone fragments and reports the important clones to be refactored

or tracked by ranking them according to the necessity of refactoring or tracking.

8.3 Concept behind AMIC

AMIC automatically analyzes the past evolution history of the clone fragments in a code-base and identifies

which clone fragments are SPCP clones (i.e., which clone fragments evolved by following a Similarity Pre-

serving Change Pattern called SPCP). A Similarity Preserving Change Pattern consists of only Similarity

Preserving Change and/or Re-synchronizing Change. We have discussed these terms in Chapter 3. Fig.

8.1 shows examples of similarity preserving change and re-synchronizing change. A re-synchronizing change

consists of a diverging change and a converging change.
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Figure 8.1: A similarity preserving change pattern followed by two clone fragments CF1 and CF2 is
presented in this figure. We see that CF1 and CF2 received similarity preserving changes in commits:
Ci and Ci+1. They received diverging change at commit Ci+3. However, they again converged after
the changes in commit Ci+5. Thus, the figure also shows a re-synchronizing change consisting of the
diverging change and converging change.

8.3.1 Separating the SPCP Clones into Two Subsets

AMIC analyzes the evolutionary coupling of the SPCP clones, and separates these SPCP clones into two

disjoint subsets: (1) cross-boundary SPCP clones, and (2) non-cross-boundary SPCP clones on the basis of

this analysis. The SPCP clones in the first subset have evolutionary couplings (i.e., change couplings) with

other code fragments (non-clone fragments or clone fragments from other clone classes) beyond their class

boundaries. Thus, removal of such an SPCP clone fragment through refactoring might negatively affect the

future evolution of the related code fragments beyond its class boundary [162]. Our empirical study [162]

shows that cross-boundary SPCP clones are the most suitable ones for tracking. The details of how we detect

cross-boundary SPCP clones using association rules and constrained support and confidence values have been

presented in Chapter 5. Non-cross-boundary SPCP clones are the most suitable ones for refactoring. AMIC

also makes groups of the non-cross-boundary SPCP clones. We conducted an in-depth empirical study [162]

on the cross-boundary and non-cross-boundary SPCP clones. AMIC ranks the cross-boundary as well as non-

cross-boundary SPCP clones on the basis of the strengths of their evolutionary coupling and bug-proneness.

The ranking mechanisms have been elaborated in Chapters 3 and 5.

8.4 Description of AMIC

AMIC works on the output of a clone detector. Given the SVN repository URL of a subject system, it first

automatically extracts all the revisions of the system from the repository using export command of SVN,

and then applies the clone detector to detect clones from each of the revisions. The user only specifies the

SVN repository URL. The rest of the task is automatically done by AMIC. After detecting clones from each
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Figure 8.2: The steps in detecting SPCP clones. There are eight processing steps in detecting SPCP
clones. The rectangles in this figure indicate these steps.

of the extracted revisions AMIC performs eight sequential steps (c.f., Fig. 8.2) in order to detect the SPCP

clone fragments. These steps are:

� Method detection and extraction from each of the revisions using CTAGS1,

� Extraction of code clones for each revision from the clone detection results of the clone detector.

� Detection of changes between every two consecutive revisions using diff,

� Locating these changes to the already detected methods as well as clones of the corresponding revisions,

� Locating the code clones detected from each revision to the methods of that revision,

� Detection of method genealogies considering all revisions using the technique proposed by Lozano and

Wermelinger [145],

� Detection of clone genealogies by identifying the propagation of each clone fragment through a method

genealogy, and

� Detection of SPCP clone fragments by analyzing clone change patterns as described in Chapter 3.

AMIC considers clone fragments residing within methods. Before detecting SPCP clone fragments, AMIC

detects method genealogies and clone genealogies considering all the revisions of the subject system. Detecting

the genealogy for a particular method involves identifying each instance of that method in each of the

revisions where the method was alive. By detecting the genealogy of a method, we can determine how it

changed during evolution. We detect clone genealogies by locating the clones detected from each revision to

the already detected methods of that revision. The genealogy of a particular clone fragment also helps us

determine how it evolved through the commits. We assign unique IDs to the method genealogies and clone

genealogies to recognize them across revisions. As we detect changes between revisions and reflect these

changes to the methods as well as clones, we can examine how two clone fragments from a particular clone

1CTAGS: http://ctags.sourceforge.net/
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class changed during evolution by examining their genealogies. If these two clone fragments always received

similarity preserving changes and/or re-synchronizing changes during evolution, then these are considered as

a pair of SPCP clone fragments.

We determine all the SPCP clone pairs by examining all the clone genealogies. We merge these pairs to

determine SPCP clone groups. If two different SPCP clone pairs have a common SPCP clone fragment, then

we can say that the three clone fragments in these two pairs together followed a similarity preserving change

pattern and thus, we can merge these pairs to make a group of three SPCP clone fragments. This group can

also be merged with another pair or group if they share common SPCP clone fragments.

After detecting the SPCP clone groups, we analyze the evolutionary coupling of each of the SPCP clone

fragments in each of these groups. If one or more SPCP clone fragments in a group have cross-boundary

evolutionary couplings, then we consider this group for tracking. Otherwise, we consider it for refactoring.

8.5 Implementation and Data Storage

We implement AMIC using Java programming language. We use MySQL as the back-end database server.

While examining each revision of a subject system, AMIC extracts the methods and clones in that revision

and stores these in the database. The changes between every two consecutive revisions are also stored. For a

particular method we store the method name, signature, source file path, starting and ending line numbers,

class name (if any), and package name (if any). For each clone fragment we store the file path, starting and

ending line numbers, and the clone class ID. After detecting the method and clone genealogies we provide

unique IDs to the methods and clones. Here, we should note that we neither store the whole method body

nor the actual clone fragment in the files. As we have just described we store enough information for a

method or clone fragment so that we can get the corresponding code using the information. Currently AMIC

supports four programming languages: C, Java, C#, and Python.

8.6 Output of AMIC

By working on all revisions of a subject system AMIC generates: (1) An XML file containing the groups of

all SPCP clones, (2) An XML file containing the groups of non-cross-boundary SPCP clones, and (3) An

XML file containing the cross-boundary SPCP clones. The groups of non-cross-boundary SPCP clones are

important for refactoring. The cross-boundary SPCP clones are important for tracking.

8.7 Summary

In this chapter we present our automatic clone ranking system, AMIC, which is capable of automatically

identifying SPCP clones (i.e., the important clones from the perspectives of clone management) by examining

the clone evolution history of a software system. AMIC also analyzes the evolutionary couplings of the SPCP
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clones and separates these SPCP clones into two disjoint sets on the basis of these evolutionary couplings.

The clone fragments in one set are important for refactoring, and the clones in the other set are important

for tracking. AMIC also ranks the clones in these two sets on the basis of the necessity of refactoring and

tracking. AMIC is the pioneer in detecting important clones for refactoring and tracking. We believe that

AMIC can complement the existing clone detection, refactoring, and tracking tools and thus, can help us in

better management of code clones. AMIC is available on-line [174] for download. In Appendix B we present

a user manual for installing and using AMIC. We have also developed a website [173] for AMIC. The website

supports finding and ranking important clones of a given software system.
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Chapter 9

Conclusion

Code clones have both positive and negative impacts on the evolution and maintenance of software

systems. Focusing on the issues related to code clones software researchers suggest managing code clones

through refactoring and tracking. However, a software system may contain a huge number of code clones,

and it is impractical to consider all these code clones for refactoring or tracking. Clone refactoring is time

consuming, and it often requires interactions from expert programmers. Moreover, code clones might not

always be refactorable. We can track code clones where refactoring is impossible. However, clone tracking is

resource intensive. In such a situation, it is essential to identify code clones that are important for refactoring

or tracking from the huge number of code clones in a software system. Our research focuses on identifying

the important clones for refactoring and tracking.

The rest of this chapter is organized as follows. Section 9.1 contains the summary of our five studies

presented in the last five chapters, Section 9.2 describes our contribution to the state of the art in clone

management, and Section 9.3 discusses future research possibilities in clone refactoring and tracking.

9.1 Summary

In our first study (Chapter 3) we discover and investigate a particular clone change pattern called Similarity

Preserving Change Pattern (SPCP) such that code clones that evolve by following this pattern can be

considered important for refactoring. We rank SPCP clones (code clones that evolve by following an SPCP)

for refactoring by analyzing evolutionary coupling among them. The non-SPCP clones (code clones that do

not evolve by following an SPCP) either evolve independently or are rarely changed during system evolution.

Thus, non-SPCP clones should not be considered important for management.

Our second study (Chapter 4) focuses on clone tracking. The primary purpose of clone tracking is to

make programmers aware about the co-change candidates of clone fragments. When a programmer attempts

to make changes to a particular clone fragment in a clone class, the other clone fragments in that class are

considered the co-change candidates of that particular clone fragment. These other clone fragments (i.e., these

co-change candidates) might need to be changed together (i.e., co-changed) consistently with the particular

clone fragment that the programmer is going to change. However, each of these co-change candidates might

not be equally important to be co-changed. We mine evolutionary couplings among the clone fragments in
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a clone class, and analyze these couplings for ranking co-change candidates so that the candidates with high

possibilities of getting co-changed are given high ranks.

In our third study (Chapter 5) we we discover the cross-boundary evolutionary couplings (i.e., the evolu-

tionary couplings beyond the class boundary) of the SPCP clones. We analyze such couplings and find that

the SPCP clones having such couplings should not be considered for removal through refactoring. Removal

of cross-boundary SPCP clones might leave the beyond boundary code fragments that are related to it in

an inconsistent state. Thus, cross-boundary SPCP clones should be considered important for tracking. The

non-cross-boundary SPCP clones should be considered for refactoring. We ranked the cross-boundary SPCP

clones on the basis of the strength of their cross-boundary evolutionary coupling. For the non-cross-boundary

SPCP clones we suggest a ranking which is similar to the ranking technique that we used in our first study.

Although in our previous studies we have analyzed the evolutionary coupling of code clones for ranking

them for management (refactoring and tracking), we realize that bug-proneness of code clones should also be

considered for the purpose of ranking. Code clones with high bug-proneness should be given high priorities

for refactoring and tracking. Focusing on this we analyze and compare the bug-proneness of three major

types of code clones (Type 1, Type 2, and Type 3) in our fourth study (Chapter 6). We found that Type

3 clones have the highest bug-proneness among the three clone-types. We also found that bug-prone clones

of Type 3 have the highest possibility of evolving following a Similarity Preserving Change Pattern. Thus,

Type 3 clones should be given the highest priority for management.

In our last study (Chapter 7) we investigated late propagation in code clones. Late propagation is

commonly suspected to be the primary cause of bug-proneness in code clones. Studies [29] show that late

propagation is directly related to inconsistencies in the code-base. We should also consider late propagation

when prioritizing code clones for management. Clone-types with higher tendencies of experiencing late prop-

agations should be given a higher priority for management. We compared the intensities of late propagation

in different clone-types, and found that Type 3 clones have the highest intensity. We also found that late

propagation in code clones can be significantly minimized by refactoring or tracking the SPCP clones.

9.2 Contribution

Our research towards addressing the research problem of finding the important clones for management con-

tributes to the state of the art in clone management in the following way.

� Identifying code clones that are important for refactoring We discover a particular clone change

pattern called Similarity Preserving Change Pattern (SPCP) such that the clone fragments that

evolved following this pattern can be considered important for refactoring. Our work has been published

in an international software engineering conference CSMR-WCRE’2014 [163].

� Ranking co-change candidates of code clones When a programmer attempts to change a particular

clone fragment in a clone class, the other clone fragments in the class might also need to be co-changed

140



(changed together) consistently with that particular clone fragment. We perform a study on ranking

these co-change candidates so that the candidates with high possibilities of getting co-changed get high

ranks. Our study has been published in a major software engineering conference MSR’2014 [167].

� Identifying code clones that are important for tracking We analyze the evolutionary coupling

of SPCP clones (i.e., Code clones that evolved following a particular change pattern called SPCP)

and determine whether such clones have cross-boundary relationships (i.e., relationships beyond class

boundaries). We consider the cross-boundary SPCP clones to be the important candidates for track-

ing, and the non-cross-boundary ones to be the important candidates for refactoring. Our study was

published in a software engineering conference SCAM’2014 [162].

� Comparing bug-proneness of different types of code clones We compare the bug-proneness of

the three major clone-types: Type 1, Type 2, and Type 3 and find that Type 3 clones have the highest

possibility of containing bugs. We also find that the bug-fix clones of Type 3 have the highest possibility

of evolving following a similarity preserving change pattern (SPCP). We reported that Type 3 clones

should be given a higher priority for management compared to the other two clone-types. This work

was published in an international software engineering conference ICSME’2015 [168].

� Investigating late propagation in different types of code clones We investigated and compared

the intensities of late propagation in the major clone-types: Type 1, Type 2, and Type 3. We also

analyzed late propagations in which type of code clones have high possibilities of being related with

bugs. We finally investigate whether we can minimize the occurrences of late propagation by manag-

ing (refactoring or tracking) SPCP clones. This study was published in the journal called Software

Quality Journal in January, 2016 [171].

Beside these major contributions (described above) we have a number of related publications [92, 159–

161,164–166,169,170,172] in major software engineering venues from our research.

Automatic support for identifying the important clones for management

On the basis of our studies and findings we develop an automatic system, AMIC (Automatic Mining of

Important Clones), for identifying and ranking the important code clones for refactoring and tracking. Given

the repository link of a software system, AMIC can download the revisions of the system, detect code

clones in each of these revisions by applying the NiCad [48] clone detector, identify the SPCP clones, detect

the cross-boundary relationships of the SPCP clones, and rank the cross-boundary and non-cross-boundary

SPCP clones on the basis of their evolutionary couplings, bug-proneness, and tendencies of experiencing

late propagations. AMIC is available on-line [174]. Appendix B contains a user manual regarding installing

and using AMIC for identifying and ranking important clones. We have also developed a website [173] for

AMIC. A part of AMIC was published as a tool called SPCP-Miner in the international software engineering

conference SANER’2015 [170].
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9.3 Future Research Directions

From our analysis on the existing clone refactoring and tracking research we feel the necessity of further

research in the following directions:

Post-refactoring analysis on the effects of clone refactoring on system performance

Analyzing the effect of clone refactoring on system performance is important. Rajapakse and Jarzabek [187]

showed that clone refactoring negatively affects the performance of web applications written in PHP and

significantly increases the testing effort. Such studies should also be performed considering software systems

developed in other programming languages such as: Java, C, and C#. It is also important to investigate

whether clone refactoring affects energy consumptions of software systems. A recent study [143] shows that

small changes in the code-base can cause significant difference in the energy consumption of a software

system. Mahmoud and Niu [148] discovered that removal of code clones through refactoring can negatively

affect requirements to code traceability. We believe that clone refactoring should be investigated with a focus

on software requirements engineering. The particular types of refactoring that are likely to be harmful for

code traceability need to be identified so that software engineers can avoid such types of refactoring.

Increasing language support of the clone refactoring tools

Most of the existing clone refactoring tools support refactoring code clones from only one programming

language. However, some of these tools apply clone detectors that can detect clones from multiple languages.

For example, we consider the clone refactoring tool DCRA [67] that applies NiCad [48] clone detector for

detecting clones. While NiCad [48] supports Java, C, C#, and Python programming languages, DCRA

only supports clone refactoring in Java systems. We understand that different programming languages have

different constructs, designs, and coding styles. Thus, refactoring patterns should be different for different

programming languages. However, the same refactoring pattern might be applicable to multiple languages

that support similar coding style. Future research on which refactoring patterns can be commonly applicable

to which programming languages, and which are the language specific patterns can be much important for

clone management.

Refactoring Type 4 clones

By the definition [192, 203], Type 4 clones (i.e., semantically similar code fragments) do not have syntactic

similarity. Thus, the traditional refactoring tools cannot be used for refactoring semantic clones. However, if

two code fragments in two places of a code-base are detected as semantic clones, then their refactoring might

involve discarding one clone fragment and using the other one in both places possibly through method calls.

Deciding which clone fragment to remove and which one to use should depend on the run-time complexity,

coding standards, and code comprehensibility of the candidate Type 4 clone fragments. Intuitively, the clone
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fragment with lower run-time complexity should be more promising compared to the more complex one.

We believe that future investigations on automatically comparing the run-time complexity as well as the

comprehensibility of two semantically similar code fragments can add much to clone refactoring research.

Inter-project clone refactoring

The existing clone refactoring studies and techniques only deal with intra-project clone refactoring (i.e.,

refactoring of code clones in the same software system). However, different software systems that are written

in the same programming language may have common code fragments. These code fragments are known

as inter-project clones. It is important to detect and refactor inter-project code clones. A code fragment

(for example, a method) that has been used for implementing more than one software systems should be

given importance, because this code code fragment may again be used for implementing another project in

future. Thus, such code fragments, that is the inter-project clones, should be managed with equal importance.

Refactoring of inter-project clones can be done by developing a global library that will contain these clones

and calling appropriate methods in this library in place of the corresponding code clones. Inter-project clone

refactoring has not yet been emphasized by software researchers. Future investigations in this area can add

much to clone maintenance as well as software maintenance research.

Big-data clone refactoring

Inter-project clone detection and refactoring should be facilitated in a big-data environment empowered by

Hadoop-MapReduce framework. Let us consider a particular software company where programmers are

working on a number of projects. Also, a number of projects have already been developed in the company.

Programmers can get coding help for their on-going projects from these already developed projects through

inter-project clone detection and refactoring. Inter-connecting all the already developed as well as on-going

projects, parallel detection and refactoring of inter-project code clones from these projects can only be

facilitated in a big-data environment. Thus, future research on big-data clone refactoring has much potential

to advance the state-of-the-art of clone detection and refactoring.

Increasing language support of the clone tracking tools

Most of the clone tracking tools only support tracking of code clones in Java systems. The tool Simultaneous

Editing [152] also supports HTML. However, this tool cannot track code clones through evolution. The tool

gCad [210] supports Java, C, and C#. However, it cannot support simultaneous editing, and programmer

notification. Future research on enhancing clone trackers so that they can deal with code clones from different

programming languages such as: C, C++, C#, and Python can make an important contribution towards

clone management.
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Clone tracking in a big-data environment

An alternative of automatic tracking of all important code clones in a code-base is instant detection of code

clones in a time efficient manner. Let us assume a programmer is working on a piece of code. If we can detect

all the duplicate copies of this piece of code instantly, then it might obviate the necessity of clone tracking.

Clone tracking requires maintaining a clone database. Also, the evolution of each of the clone fragments need

to be tracked through different revisions. For this purpose we need a clone genealogy analyzer. However,

instant detection of code clones can possibly eliminate these necessities. In order to facilitate instant clone

detection, we possibly need a big-data environment empowered by Hadoop-MapReduce framework. In the

parallel computing environment of Hadoop we might be able to detect code clones instantly. Investigations

in this direction can be much important.

Comparing the benefits of clone tracking and refactoring

The clone fragments in a particular clone class can be refactored or tracked. Refactoring removes all instances

of the clone fragments by a single instance, whereas tracking does not remove any instance of clone fragments

but ensures consistent updates of the fragments. Refactoring is beneficial because it obviates the necessity

of implementing the same change to multiple clone fragments. Refactoring also reduces the size of the code-

base. Moreover, refactoring of a clone class might not always be possible, however, tracking of the class is

always possible. In such a situation it is important to perform a trade-off analysis of the benefits gained

from refactoring and tracking. We should perform this trade-off analysis in a way that is similar to the

investigation of Rajapakse et al. [187]. We should have two copies of the same software system. We should

refactor a number of clone classes in one copy, and those clone fragments in the other copy should tracked for

a certain period of evolution. Then we should analyze the evolution history considering the following points:

(1) time and effort required for refactoring, (2) time and effort for updating code fragments after refactoring,

(3) time and effort for updating clone fragments under tracking, (4) system performance after refactoring,

(5) system performance while tracking. We believe that investigations on comparing refactoring and tracking

benefits through evolution analysis can be much important for efficient software maintenance.
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Appendix B

User Manual for AMIC

Chapter 8 provides a conceptual description of AMIC (Automatic Mining of Important Clones). In
Appendix B, we describe how to install and use AMIC for identifying and ranking the important clones in
the code-base of a software system. AMIC can be used in two ways: (1) through its desktop implementation,
and (2) through its web-based implementation (AMIC website is now on-line [173]). We will describe these
two ways in the following sections.

B.1 Using AMIC through its Desktop Implementation

B.1.1 Installation

We have implemented AMIC using Java programming language. The JAR file for AMIC is available on-
line [174]. For executing this JAR file, we need to have the followings pre-installed:

� JDK 1.7.0 71 or later.

� MySQL 5.6.17 or later.

� Subversion (SlikSVN 1.8 or later for Windows platform).

We also need Java and MySQL connector (as a JAR file) version 5.1.15 or later for running AMIC. In
order to apply AMIC to a particular software system we need to create a database in MySQL server with
certain tables. The table creation script is available on-line [174]. We need to create a separate database for
each system we would like to investigate.

B.1.2 Executing AMIC

For executing AMIC we can perform the followings sequentially.

Providing the Input Parameters

After double clicking the JAR file of AMIC we get the dialog in Fig. B.1. We then input nine parameters
as follows: (1) operating system type, (2) subject system path, (3) programming language, (4) last revision
number of the subject system, (5) the name of the database that you have created for your subject system,
(6) the host name of the MySQL server, (7) database user id, (8) password for the database, and (9) the SVN
repository URL from where AMIC can download the revisions of the subject system. Fig. B.1 shows the
input parameters for a subject system called Ctags. After providing all the parameters we click the button
named ‘Save Parameters’. Once we have saved the parameters for a particular subject system, we can use
those for any execution of AMIC afterwards. The programming language field takes the following values: (1)
c for subject systems written in C, (2) java for systems written in Java, (3) cs for systems code in C#, and
(4) py for systems developed using Python.

Downloading Revisions of the Subject System

After storing the parameters we need to download the revisions of the subject system for analysis. For this
purpose we click the button called ‘Download Revisions’. We then get the dialog as shown in Fig. B.2.
This dialog prepopulates the followings: SVN repository link, starting revision number (i.e., from which
we need to begin download), and the ending revision number. We then click the ‘Download’ button for
downloading the revisions. If AMIC finds that the revisions were previously downloaded, it then notifies the
user about it as shown in Fig. B.3.
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Figure B.1: The first dialog of AMIC
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Figure B.2: The dialog for downloading revisions of a subject system

Figure B.3: Notifying users about the pre-existing revisions of the subject system
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Figure B.4: Extracting changes between revisions of the subject system

Figure B.5: Extracting and analyzing methods from each revision

Extracting Changes between Consecutive Revisions

After downloading the revisions we extract and store the changes between every two consecutive revisions.
For this purpose we click the link called ‘Show Modification Management Dialog’ at the bottom of the first
dialog as shown Fig. B.1. This is the first link among the four links (underlined with blue color) in Fig.
B.1. After clicking this link we get the dialog in Fig. B.4. This dialog prepopulates the starting and ending
revision numbers of the candidate system. It shows two buttons for extracting changes, and also, for deleting
the already extracted changes.

Extracting Methods from Each Revision

After extracting and storing changes between consecutive revisions of the subject system, we extract methods
from each revision. For this purpose we click the second link called ‘Show Method Analysis Dialog’ in Fig.
B.1. After clicking this link we get a dialog as shown in Fig. B.5. This dialog contains four buttons for
extracting methods, detecting method genealogies, storing methods to database, and mapping the already
extracted changes (the changes extracted in the previous step) to the methods. Each of these four buttons
work on all the revisions of the candidate system.
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Figure B.6: Extracting and analyzing code clones from each revision

Extracting and Analyzing Clones

After working on the methods, we can extract code clones from each of the revisions of the subject system
and can analyze those. For clone extraction and analysis we click the third link named ‘Show Clone Analysis
Dialog’ as shown in Fig. B.1. After clicking this link we a dialog as shown in Fig. B.6. We see that the
dialog in Fig. B.6 contains two sections named ‘Preliminary Tasks’ and ‘Clone Analysis Tasks’. We first do
the preliminary tasks before doing the analysis tasks.

Preliminary Tasks

There are six buttons in the section titled ‘Preliminary Tasks’. These buttons are used for detecting clones,
storing clones to the database, mapping clones to the already detected methods, detecting clone genealogies,
mapping the already detected changes to clones, and classifying clones (i.e., identifying the clone classes).
All these six tasks should be done sequentially. Before doing these tasks we specify the clone-type in the
text-field. The preliminary tasks are done for a particular clone-type. We can specify three numbers (1, 2,
or 3) for three clone-types (Type 1, Type 2, or Type 3). For detecting clones, AMIC applies the NiCad clone
detector [48]. The users might think of detecting clones by themselves using NiCad (i.e., not by using AMIC).
In that case, they do not need to click the ‘Detect Clones’ button in Fig. B.6. After doing the preliminary
tasks we can perform the clone analysis tasks.
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Figure B.7: Identifying and ranking important code clones for management

Clone Analysis Tasks

Clone analysis tasks mainly involves identifying and ranking important clones for refactoring and tracking.
In our previous chapters we described that SPCP clones (code clones that evolved by following a Similarity
Preserving Change Pattern called SPCP) are the important ones for refactoring or tracking. AMIC identifies
the SPCP clones and ranks them on the basis of their evolutionary coupling, bug-proneness, change-proneness,
and late propagation tendencies. AMIC also shows the non-SPCP clones residing in the system. For the
purpose of detecting and ranking important code clones we click on the link named ‘SPCP Clone Detection
and Ranking’ as shown in Fig. B.6, and we get the dialog in Fig. B.7.

Identifying and Ranking Important Clones

In Fig. B.7 we see that there is a section called ‘Preliminary Tasks’. The tasks in this section must be
done for identifying the important clones. These tasks need to be done before doing the ranking tasks. The
preliminary tasks should be done sequentially from left to right. After getting the clone pairs from the last
revision we detect the SPCP as well as cross-boundary SPCP clones by clicking the appropriate buttons.
Then we detect which clones experienced bugs by clicking the button called ‘Detect Bug-fix Clones’. By
clicking the button called ‘Detect Late Propagation Clones’ we identify which code clones experienced late
propagations during evolution. We finally determine the change-proneness of code clones using the button
called ‘Detect Change-proneness’. We can now perform the ranking tasks.

The dialog in Fig. B.7 contains a section called ‘Different Options for Ranking All Code Clones Residing
in the Last Revision’. The check boxes and button in this section allow us to rank code clones in different
ways. From the names of the check boxes it is easy to realize that we can rank code clones considering their
importance for refactoring and/or tracking, bug-proneness, change-proneness, and tendencies of experiencing
late propagation. We can choose any number of the given criteria for the purpose of ranking. For example,
Fig. B.8 shows that we have selected two check boxes for ranking. After selecting the check boxes we need to
press the ‘Show Results’ button for seeing the ranked results. The results appear in the table with caption
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Figure B.8: Ranking code clones using more than one criterion

‘Clone Search Results’. Each time we press the ‘Show Results’ button, AMIC also generates an XML file
containing the ranked clone-pairs. The XML file is named as ‘clonepairs.xml’ and it gets generated in the
same path where the JAR file of AMIC exists.

In Fig. B.8 we see that there is another section named ‘Searching Specific Clones’. This section contains
several buttons for getting clones with specific criteria. For example, the button called ‘Show Important
Clones for Refactoring’ will let us retrieve and see only the non-cross-boundary SPCP clones, because these
clones are considered important for refactoring [162]. In the same way, the button ‘Show Important Clones
for Tracking’ can show us only the cross-boundary SPCP clones, because such clones are important for
tracking [162]. We can see other buttons for retrieving the bug-prone clones, change-prone clones, and
clones having tendencies of late propagation. The section ‘Searching Specific Clones’ also contains a big
button called ‘Determine SPCP Clone Classes and Generate XML Files Containing These Classes’. If we
click this button, AMIC will first determine classes considering the SPCP clone pairs, and then, will gen-
erate three XML files. The first file contains all the SPCP clone classes, the second one contains only
those SPCP clone classes that are suitable for refactoring, and the third one contains SPCP clone classes
that are suitable for tracking. These files are ‘spcpgroups all.xml’, ‘spcpgroups noncrossboundary.xml’, and
‘spcpgroups crossboundary.xml’ respectively. We get these files in the folder where the JAR file of AMIC
exists.

Analyzing Clone Evolution

AMIC also helps us analyze the evolution of a clone fragment. Whenever the table ‘Clone Search Results’
in Fig. B.8 gets populated with clone pairs, we can see the evolution of any clone fragment by clicking the
corresponding row in the table. For example, if we click the first row in the table in Fig. B.8 we can see
another dialog as shown in Fig. B.9. The dialog has the title ‘Visualize the Evolution of a Clone Fragment’.
It helps us roam through a clone genealogy through three buttons called ‘Current’, ‘Previous’, and ‘Next’.
From Fig. B.9 we can see that the dialog contains four fields: code id, code type, current commit, and clone
type. Code id field shows the id of the clone fragment, and code type field makes us realize that we are
watching the evolution of a clone fragment. This dialog can also be used for watching the evolution of a
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Figure B.9: Visualizing clone evolution

method. In that case the code type will be ‘Method’. The field named ‘Current Commit’ shows the changes
occurred to a code fragment in a particular commit operation. In Fig. B.9, the current commit field contains
95. If we can see below the code fragments, we realize that these code fragments are the snapshots of the
same clone fragment in two different revisions: 95 and 96. The dialog also shows the differences between
the snapshots. In such a state of the dialog if we click the button called ‘Previous’, then we can visualize
whether there were any changes to the clone fragment in commit operation 94. In other words, we will see
the snapshots of the clone fragment in revisions 94 and 95. In the same way, the button called ‘Next’ lets
us approach through newer commit operations. We also see that the four fields: code id, code type, current
commit, and clone type can by modified by the user. We can choose to watch the evolution of a different
clone fragment in this dialog. In that case, we specify the clone fragment id, any commit number, and the
clone-type of the clone fragment in the corresponding fields, and then click the button called ‘Current’. The
dialog will show us the state of the specified clone fragment in the specified commit operation. We can even
want to watch the evolution of a method through this dialog. For watching method evolution, we specify a
particular method id in the code id field, the code type field should be changed to ‘Method’, and we specify
a particular commit number in the current commit field. The clone type field will be ignored in case of
watching the evolution of a method. After populating the three fields (except clone type filed), we click the
button named ‘Current’. We can then see the state of the method in the specified commit operation. By
clicking the ‘Previous’ and ‘Next’ buttons we can approach through the evolution history of the method.

Analyzing the Co-evolution of More than One Code Fragment

AMIC can also be used for visually analyzing the co-evolution of more than one code fragment (clone fragment
or method). Fig. B.10 demonstrates an example where we can see the evolution of three clone fragments
(the first three clone fragments in the clone search result). For analyzing the co-evolution of multiple clone
fragments we click the corresponding rows in the clone search results. We will see a separate dialog titled
‘Visualizing the Evolution of a Code Fragment’ for each of the clicked clone fragment.
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Figure B.10: Visualizing co-evolution of clone fragments

B.2 Using AMIC through its Web-based Implementation

AMIC can be used through its website [173]. The web-based implementation does not require the user to
install anything. AMIC website supports all the functionalities that we have already described in Section
B.1. A user needs to register before accessing the functionalities. Fig. B.11 shows a snap-shot of the website.
In the following subsections we describe how to access different functionalities available in AMIC.

B.2.1 User Registration

A new user can perform registration by clicking the link demonstrated in Fig. B.12. After clicking this link,
the user registration form (as shown in Fig. B.12) appears. After performing registration through this form,
a user can log in using the ‘User Log In’ section.

B.2.2 Subject System Initialization / Selection

After logging in, a user can work on a subject system by initializing it through the subject system initialization
form as shown in Fig. B.13. We can get this form by clicking the link in the red box at the left hand side of
the figure. Once a subject system is initialized, a folder dedicated for it is created in the server machine. A
separate database for the subject system is also created in the MySQL database management system. After
initializing a subject system, it appears in a table below the subject system initialization form as shown in
Fig. B.14. A user needs to select a subject system by clicking its underlined name in the first column of
the table. At the top right corner of this figure (Fig. B.14) we see that a user is currently logged in. It is
impossible to initialize a subject system or view the already initialized subject systems without logging in.
After clicking the name of a subject system, it appears in the section named ‘Selected Subject System’ as
shown in Fig. B.15. After selecting a subject system a user can work on it.

B.2.3 Downloading the Revisions of a Selected Subject System

After selecting a subject system, a user can download its revisions using a form as shown in Fig. B.16. We
get this form by clicking the link demonstrated at the left hand side.
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Figure B.11: Snap-shot of AMIC website

Figure B.12: User registration
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Figure B.13: Initializing subject system

Figure B.14: Viewing initialized subject systems
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Figure B.15: Subject system selection

Figure B.16: Downloading revisions of a subject system
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Figure B.17: Detecting changes between revisions of a subject system

B.2.4 Detecting Changes between Revisions

We can detect changes between revisions using the form as shown in fig. B.17. This form can be obtained
by clicking the demonstrated link at the left hand side.

B.2.5 Detecting and Managing Methods in Revisions

The web-page shown in Fig. B.18 helps us detect methods from each revision, extract method genealogies,
store methods to database, and map changes to methods. In the figure we see that there are separate buttons
for these tasks. The tasks should be done sequentially. We click the button demonstrated at the left hand
side for getting the method management page.

B.2.6 Detecting and Managing Clones in Revisions

Fig. B.19 shows a web-page that supports detecting and managing code clones in each revision of a subject
system. From the figure we can see that there are buttons for detecting and storing different types of clones,
mapping clones to methods, detecting clone genealogies, and mapping changes to clones. After performing
the clone management tasks a user can detect the important clones from different perspectives.

B.2.7 Detecting the Important Code Clones

Detection of important clones is facilitated by the web-page shown in Fig. B.20. This page contains sep-
arate buttons for detecting SPCP clones (i.e., code clones that evolved by following a similarity preserving
change pattern), detecting cross-boundary SPCP clones (SPCP clones that have relationships beyond their
class boundaries), detecting bug-prone clones, detecting code clones that experienced late propagations, and
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Figure B.18: Managing methods in revisions of a subject system

detecting code clones that exhibited change-proneness during evolution. These tasks should be done sequen-
tially. After performing all the tasks in this page, we can go to the clone ranking page for ranking clones
from different perspectives.

B.2.8 Ranking Code Clones

The web-page in Fig. B.21 facilitates ranking code clones from different perspectives. From the figure we
see that the top most red box contains different buttons and check boxes for ranking clones and showing the
ranking results. There are buttons for ranking code clones on the basis of their importance for refactoring,
tracking, their bug-proneness, change-proneness, and late propagation tendencies. The clone rank results
are shown in a table indicated by the biggest red box. We also see that the clone rank results can also be
downloaded. AMIC generates and shows XML files if we click the download link just above the clone rank
results table. At the bottom of the top most red box we see that there is a button for determining SPCP
clone classes and generating XML files. If we click this button, three XML files will be generated. One file
contains SPCP clone classes considering all the SPCP clones, the second one contains SPCP clone classes
considering all the non-cross-boundary SPCP clones (clones that are important for refactoring), and the third
file contains classes formed from all the cross-boundary SPCP clones (clones that are important for tracking).
We can download these XML files by clicking the three download links below the button.

B.2.9 Viewing Clone Evolution

AMIC website also facilitates visualizing clone evolution. The web-page in Fig. B.22 supports this facility.
In the figure we can see the changes to a clone fragment in commit operation 3. In the text fields we specify
the clone ID, clone type, and commit number and then click the button called ‘Current’ to see the changes
to the clone fragment (having the specified clone ID) in the specified commit operation. We can then click
the previous and next buttons to see the changes to the clone fragment in the previous or next commit
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Figure B.19: Managing clones in revisions of a subject system
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Figure B.20: Identifying the important clones of a subject system

operations. We can get the clone IDs from the clone rank results. If we look at Fig. B.21 we see that the
table containing the clone rank results has a field with caption ‘Clone Pair’. This field in each row contains
information about two clone fragments in a pair. The information for each clone fragment contains four
pieces of information: clone ID, clone file path, start line, and end line sequentially. We see that these four
pieces of information have been given by separating them by commas. We can get clone IDs from this ‘Clone
Pair’ field of the clone rank results table. If we further look at this table (Fig. B.21), we see that the fourth
row (Pair ID = 4) contains a clone pair. One clone fragment has a clone ID of 10, and the other fragment
has a ID of 1. Also, from the last column in this row we see that the change-proneness value for this pair
is 1. That means, any one of the two clone fragments in this clone pair changed once during evolution. We
checked both fragments using AMIC and found that the clone fragment with ID = 1 changed in the commit
operation applied on revision 3. This change has been demonstrated in Fig. B.22.

B.2.10 Viewing and Downloading Table Data from Database

AMIC facilitates viewing and downloading table data from the database. Fig. B.23 shows the web-page
responsible for this. In the top most red box we see that there are underlined table names. These tables exist
in the database. If we click each of these table names, the data from that table will be shown in the table
captioned ‘Table Data’ in this page. At the right side of the caption, there is a download link. By clicking
this link we can download table data.
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Figure B.21: Ranking code clones of a subject system
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Figure B.22: Visualizing clone evolution

Figure B.23: Viewing and downloading table data from database
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