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Abstract

High single instruction multiple data (SIMD) efficiency and low power consumption

have made graphic processing units (GPUs) an ideal platform for many complex

computational applications. Thousands of threads can be created by programmers

and grouped into fixed-size SIMD batches, known as warps. High throughput is

then achieved by concurrently executing such warps with minimal control overhead.

However, if a branch instruction occurs, which assigns different paths to different

threads, this warp will be broken into multiple warps that have to be executed serially,

consequently reducing the efficiency advantage of SIMD.

In this thesis, the contemporary fixed-size warp design is abandoned and a hybrid

warp size (HWS) mechanism is proposed. Mixed-size warps are generated according

to HWS and are scheduled and issued flexibly. Once a branch divergence occurs, split

warps are squeezed according to the proposed algorithm, and warp sizes are down-

scaled wherever applicable. Based on updated warp sizes, warp schedulers calculate

the number of cycles the current warp needs and issue the next warp accordingly. As

a result, hybrid warps are pushed into pipelines as soon as possible and more pipeline

stages are overlapped. The simulation results show that this mechanism yields an

average speedup of 1.20 over the baseline architecture for a wide variety of general

purpose GPU applications.

This work also integrates HWS with dynamic warp formation (DWF), which is

a well-known branch handling mechanism aimed at improving SIMD utilization by

forming new warps out of split warps in real time. The warp forming policy is modified

to better tolerate warp conflicts. Also, squeeze operations are added before a warp

merges with other warps. The simulation shows that the combination of DWF and

HWS generates an average speedup of 1.27 over the DWF-only platform for the same

set of GPU benchmarks.
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1. Introduction

Although Moore’s law has continued to drive smaller semiconductor devices, the

difficulty of clock rate scaling and the limitation of uniprocessor performance scaling

have forced the computing industry to switch to parallel hardware and software [1].

This migration is further fueled by rapidly growing computing demand. To date, the

parallel computing landscape has been greatly extended, including various architec-

tures with a range of core counts and various optimized memory systems.

The transition to parallel computing has coincided with the evolution of graph-

ics processing units (GPUs) from special purpose devices to general purpose pro-

grammable cores [2]. Furthermore, driven by graphics applications’ enormous require-

ment for computation and bandwidth, GPUs have grown as the dominant parallel

architecture available for many computational applications.

To leverage the huge development cost of parallelizing general purpose application-

s, several new programming models have been created such as CUDA [3], OpenCL [4]

and a growing set of familiar programming tools. These languages implement the sin-

gle instruction multiple thread (SIMT) model and specify enormous parallel threads

running on SIMD cores, which allow programmers to perform fine grained code level

design by explicitly specifying thread behaviors.

For applications which can be greatly parallelized, containing only simple control

structures and few dependency hazards (like graphics applications, for example), the

performance is maximized since most threads take the same path during the program,

and the SIMD cores can be fully utilized. However, for many other applications

which have a considerable number of branch instructions and irregular memory access
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patterns, threads in a warp will take different paths and induce branch divergence

problem, which will significantly affect SIMD performance.

This thesis proposes and evaluates a novel branch handling mechanism, hybrid

warp size (HWS), aiming to tackle the branch divergence problem and further improve

SIMD control flow efficiency. Although the implementation is based on NVIDIA GPU

devices, it is correspondingly applicable to other SIMD architectures.

The rest of this chapter describes the motivation behind this thesis, the contribu-

tions of this work and gives the outline of the remaining chapters.

1.1 Motivation

Thread level parallelism (TLP) when compared with instruction level parallelism

(ILP) is becoming the dominant technique to satisfy increasing computation demand,

as single thread performance improvement slows. Intel’s Larrabee [5], IBM’s Pow-

er7 [6], NVIDIA’s Tesla GPU [7] and AMD’s Fusion APU [8] all employ TLP in

various ways. These devices typically implement TLP within graphic processing u-

nits (GPUs). GPUs have become the dominant parallel architecture in these devices

because of GPUs’ significant computational power, large bandwidth and high energy

efficiency.

GPUs are characterized by numerous simple yet energy-efficient computation-

al cores, thousands of simultaneously active fine-grained threads and large off-chip

memory bandwidth [1]. Thousands of threads created by programmers are grouped

into fixed-size single instruction multiple data (SIMD) batches, known as warps. Gen-

erally, warp size is equal to or a multiple of SIMD width. Correlated threads within a

warp execute the same instruction in sequence on different registers in parallel. This

organization amortizes the overhead of instruction fetch and decode, and therefore,

more processing units can be integrated onto a single chip. Contemporary GPUs

employ the fine-grained multithreading organization, to hide stalls that arise from

long-latency operations. When any thread within a warp experiences a long-latency
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operation or a data hazard, the entire warp is stalled. However, other warps that

are ready to be executed will be issued to the pipelines. Multiple warps will occupy

pipelines concurrently and the throughput loss will be reduced. For example, for

NVIDIA’s GPUs, the latency of read-after-write dependencies is approximately 24

cycles. If there are more than 192 active threads (8 GPU cores per multiprocessor ×

24 cycles of latency = 192 active threads, or 6 interweaved active warps of size 32),

the latency can be completely hidden through this multithreading technique [9].

GPUs have tremendously accelerated many applications. For example, up to

February 2012, NVIDIA had listed 1287 GPU applications with 214 of these appli-

cations obtaining a speedup of 50 or more and 135 of the 214 obtaining a speedup

of 100 or more [10]. However, there are many applications that can achieve only

limited performance improvement or no improvement at all. One major barrier to

performance improvement is branch divergence.

The SIMD organization saves control overhead and increases computation density.

However, when a branch instruction is executed within a warp resulting in different

paths for different threads, this warp will be broken into multiple warps which have to

be executed serially. Meanwhile, warp occupancy will be decreased and throughput

will be reduced significantly. Figure 1.1 shows warp occupancy for a set of general

purpose applications. The weight of the branch instructions is also shown. The warp

size here is set to 32. Each stacked bar represents an application. Within each bar,

every block indicates the percentage of cycles corresponding to a certain number of

active threads. The figure shows that benchmarks BFS [11], NN [12], MUM [13],

LPS [14] and NQU [15] (see table 5.2 on page 48) have relatively higher numbers

of under-filled warps. Meanwhile, they all have comparatively more control flow

instructions. This indicates that control flow intensive applications will more likely

suffer from branch divergence leading to more idle computation resources.
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Figure 1.1 Warp occupancy and percentage of control flow.

1.2 Contributions

This thesis makes the following contributions:

1. It proposes a novel mechanism to overcome throughput loss due to branch

divergence. It abandons current fixed-size warp design and introduces a hybrid

warp size (HWS) mechanism. Warp size is set dynamically by hardware with

the aim of achieving as high a throughput as possible.

2. It combines HWS and dynamic warp formation (DWF), a well-known technique

that deals with the GPU control flow issues. Unlike DWF, it introduces a new

squeeze algorithm to make individual warps denser before combining them with

other warps. Meanwhile, it modifies the pattern of warp formation to better

tolerate warp conflicts.

3. It gives a theoretical method to estimate throughput loss due to low warp

occupancy and, furthermore, approximates the potential room for performance

improvement.

4. It analyzes the relationship between the performance improvement brought by

HWS and the branch instruction weight of the application.
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1.3 Thesis Outline

The remainder of this thesis is organized as follows: Chapter 2 discusses related

work done by other researchers. Chapter 3 provides the essential concepts of parallel

processor organizations and the baseline GPU microarchitecture. Chapter 4 describes

the proposed hybrid warp size mechanism and outlines the integration with DWF.

Chapter 5 describes the methodology of this work, including the simulator used,

system configurations and benchmark properties. Chapter 6 describes the simulation

results. Chapter 7 summarizes this thesis and suggests possible future work.
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2. Related Work

This chapter discusses earlier work done by other researchers that is related to

this thesis. Section 2.1 discusses the conventional hardware and software methods to

deal with the SIMD control flow issue. Section 2.2 compares some recent proposals

that involve warp optimizations.

2.1 SIMD Control Flow Handling

This section discusses the conventional methods that are used to overcome the

SIMD control flow issue. Branch predication, the first method discussed below, is a

basic and widely used mechanism found in almost every modern GPU device. Recon-

vergence mechanisms, the second topic of discussion, are used to improve performance

by merging split branches whenever possible. Of the several variations of reconver-

gence mechanisms, two are examined. One of them inserts a JOIN instruction into

the original program based on the control flow analysis and merges the split branches

at the point of the inserted instruction. Another dynamically creates new kernels

according to the branch condition and manages the sub kernels by an interprocessor.

Branch divergence elimination, the third topic discussed, is an alternative approach

that prevents any occurrence of branch divergence.

Branch Predication

The most popular method used to overcome the control flow issue is a technique

called branch predication. It derives from guarded instruction [16] and exists in most

modern GPUs [3, 17]. When a branch instruction is applied to SIMD cores, a set of
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predications or masks are used to manage the multiple branches. When using branch

predication, none of the instructions whose execution depends on the evaluation con-

dition gets skipped [3]. Each thread is associated with a condition code or predicate

that depends on the evaluation of the controlling condition. Every instruction is

scheduled, but only those with true predicates are actually executed. Instructions

with false predicates do not evaluate memory addresses or read operands, and no re-

sults are written back [3]. For subroutine calls, branch predication works in a similar

way. It is worth noting that these predicates are organized into stacks so that nested

branches can work. This mechanism dynamically controls the different branches, but

it is not efficient. If there is a single path which no threads execute, SIMD cores

will still schedule the instructions of that path and finish them, a procedure which

yields nothing and wastes hardware resources, especially for those programs with long

branch paths.

Reconvergence Mechanisms

Although branch predication solves the branch divergence problem, it is not ef-

ficient. It works well with short paths, but creates significant performance loss for

long branches. Also, it cannot eliminate input dependent loops. Once branches are

generated, they will never be merged even if they have a chance to converge. Lorie

and Strong [18] invented a method to converge the split branches back based on the

control flow analysis during the compile period. They introduced two instructions

that could be inserted into the original program to facilitate convergence: JOIN ,

ELSE. The execution of JOIN causes all processors waiting for the current block

execution to be activated, while the execution of ELSE results in the change to the

current block order to be minimized [18]. By enforcing the priority ordering, the

program will converge the split branches at the point where the JOIN instruction is

inserted.

Another similar technique called conditional streams is described in [19]. A

conditional stream is a data stream that is accessed conditionally based on a case
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value. It can create multiple kernels from a single kernel according to the branch

condition. The generated kernels communicate with each other through inter-kernels

managed by an interprocessor. Once each generated kernel is executed by SIMD

cores, they will be combined into a single data stream. This method requires an

interprocessor to manage conditional switching and load-balancing, and a number of

buffering registers are needed for the inter-partition communications. The overhead

of creating extra kernels is also unavoidable.

Branch Divergence Elimination

In some cases, branch divergence can be eliminated in a relatively simple way to

reduce performance loss. In their ray processing unit, Woop et al. [20] introduced

a compound branch instruction which pairs a regular branch instruction with an

arithmetic instruction. The compound branch instruction uses a mask to select a

subset of the results of all the processing elements and performs an and or or operation

to derive the final branch condition. Since each branch has the same outcome, no

branch divergence exists anymore. This reduces the occurrence of jumps and fits for

ray processing. However, this does not fit the most general purpose applications.

Another method was introduced by Krashinsky et al. [21]. They proposed a

vector-thread architecture, which is characterized by two fetch units within each

virtual processor (VP): vector-fetch and thread-fetch. A vector-fetch command

can issue atomic instruction blocks (AIBs) to all VPs in a similar way used by

conventional vector machines. On the other hand, a thread-fetch command allows

a VP to request its own AIBs and thereby branch to its specific path. All VPs

work concurrently. As a result, no branch divergence exists in this organization.

However, the instruction bandwidth will be decreased because of the increased number

of instructions. In addition, each VP requires an extra control logic and two fetch

units, which will significantly raise the complexity of the entire system and require

more hardware resources.

In general, branch predication and reconvergence mechanisms are fundamental
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techniques and employed widely, but the throughput loss between the divide point

and the merge point is still a problem, especially for control-intensive applications.

By integrating with HWS, they can eliminate the idle cycles during that period and

improve the entire performance. Branch divergence elimination only works under lim-

ited circumstances or demands a considerable hardware overhead. Complete branch

divergence elimination is challenging, but further reducing the undesirable impact of

branch divergence is achievable.

2.2 Warp Involved Methods

Recent work on GPU branch divergence has focused on mapping threads to warps.

Among the proposed methods, dynamic warp formation (DWF) is the most popular

one. Thread block compaction is the evolved version of DWF, aiming to solve the

increased memory access issue and the starvation eddy [22] problem. Dynamic warp

subdivision is another method that is orthogonal to DWF and focuses on memory level

parallelism. Simultaneous branch and warp interweaving is a recent issued mechanism

that enables dual instruction issuing within each SM. Veynu et al. [23] proposed large

warps microarchitecture (LWM) and suggest fewer larger warps with dynamic sub-

warp scheduling. All of them improve SIMD efficiency in some respect, but at the

same time introduce related side effects.

DWF

DWF aims to address the under-utilization of the SIMD resources caused by

branch divergence. It increases the throughput by regrouping threads with the same

PC and filling the holes in the split warps. However, it also brings additional memory

divergence since DWF regroups threads into new warps which no longer contain

consecutive threads. In addition, SIMD resources are still under utilized due to idle

quarter-warps. HWS addresses this by downscaling the warp size before issuing and

pushes only the effective quarter-warps into the pipelines. Therefore, throughput

loss due to idle quarter-warps is eliminated. Another disadvantage of DWF is the

9



relatively high warp conflict rate. According to DWF, two warps are able to merge

only if none of the 32 lanes conflicts. This condition is strict but can be loosened.

HWS proposes that as long as the total number of the threads in each lane is less

than 4, the two warps can be merged. In all, HWS is orthogonal to DWF and these

two methods can be combined and yield better SIMD efficiency.

Thread Block Compaction

Thread Block Compaction (TBC) [22] evolves from DWF and aims to address two

pathologies of DWF. The first is the increased memory divergence, as mentioned in

the last paragraph. The second is called starvation eddy [22]. It occurs when two

branches from a single node acquire uneven workloads and the faster one executes

through the merge point without waiting for another branch. This is universal for

most applications. TBC enables warps within a thread block (the measurement u-

nit of threads issued to SMs) to share a block-wide reconvergence stack for branch

divergence handling instead of separate per-warp stacks. With this more flexible

thread compaction mechanism, control flow locality can be explored fully, and there-

fore, additional memory accesses due to DWF can be reduced. With the use of the

block-wide reconvergence stack, all the warps that will eventually arrive at the re-

convergence point will be recorded and synchronized using a warp barrier, and, as a

result, starvation eddy will be eliminated. On the other hand, the extended over-

head of regrouping threads due to TBC is a problem, especially for applications with

a large number of divergent threads. This may counteract the benefit of TBC and

increase the execution time for the entire block. Furthermore, idle quarter-warps still

take a considerable weight of the entire executed warps according to the simulation

results of TBC. HWS offers a solution by dynamically scaling warp size for TBC as it

does for DWF. Also, the modification of the merge pattern to DWF could be applied

here and produce fewer and denser warps.
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Dynamic Warp Subdivision

DynamicWarp Subdivision (DWS) [24] focuses on memory level parallelism (MLP).

Compared to current GPU architecture, DWS allows a single warp to occupy more

than one slot in the scheduler. Upon branch divergence, a warp will be divided into

two warp-splits. Conventionally these two warp-splits have to be executed serially

due to the per-warp reconvergence stack, while for DWS, these two warp-splits can

be issued concurrently by two scheduler slots. Consequently, memory latency can be

hidden. It works in a similar way for memory divergence. One split-warp represents

threads that are not stalled by memory latency, while the other one represents the

threads that are still stalled. The former one can run ahead and potentially prefetch

data that may also be needed by the slower threads. To support DWS, the stack

based reconvergence implementation has to be modified. Upon warp subdivision,

the reconvergence stack remains untouched to avoid enforcing certain execution or-

ders to the branches. As a result, no current and future nested branch information is

recorded by the stack. Instead, this information is stored in an additional structure

called a warp-split table (WST). Each entry in the table represents a warp-split and

includes multiple zones recording the warp-split’s parent warp ID, the next PC, the

active mask and the status. The multiple scheduler slots select warp-splits according

to the WSTs and interweave the execution of them (the next warp-split will be issued

once the current one is stalled). Even though DWS improves the memory latency

hiding, it does not increase the SIMD pipeline utilization. In addition, the hardware

overhead due to the extra scheduler slots and WSTs has to be carefully measured

against the performance gained through DWS. HWS is another method of warp in-

terweaving which pushes another warp during the idle cycles of the current warp.

HWS increases the SIMD utilization by filling the holes in current cycle, while DWS

only issues another warp-split after the current warp-split is stalled for some reason.
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Simultaneous Branch and Warp Interweaving

Simultaneous branch and warp interweaving was proposed by Nicolas et al. [25]

very recently. The main advantage is to allow two distinct instructions to be issued

to disjointed subsets of the same row of SIMD cores instead of one single instruction,

while carefully considering hardware overhead has to be considered carefully. They

proposed two complementary techniques: simultaneous branch interweaving (SBI)

and simultaneous warp interweaving (SWI). Similar to DWS, SBI enables an instruc-

tion scheduler to interweave the execution of instructions from different branches.

However, SBI eliminates the constraint that only one instruction is issued and exe-

cuted at any time. To support this, stack based reconvergence is not feasible any-

more; instead, thread frontier based reconvergence [2] is adopted. It works by always

scheduling the warp-split of the minimal PC. Even though thread frontier based re-

convergence serializes the execution of divergent branches, it is amenable to parallel

execution by relaxing the scheduling constraints [2]. SBI doubles the warp size to

64 and duplicates the instruction buffer, instruction decoder and register file. More

importantly, a secondary instruction scheduler is added to enable the issuing of dual

instructions. SWI complements SBI by scheduling other warps in the gaps left by

the first scheduled warp. The secondary scheduler will feed instructions from another

warp to the first issued warp as long as no lane conflict exists. In other words, the

active masks of the two scheduler have no overlap. These two mechanisms work in

two levels and can be integrated to extend the instruction throughput as much as

possible, however a number of issues still need to be considered carefully. The first

one is the hardware overhead. The architecture is similar to the multiple-issue SIMD

organization. The control logic is nearly doubled for each SM. Additional memory

spaces are also a considerable factor. The second issue is the cooperation pattern be-

tween the primary scheduler and the secondary scheduler, for example in the dynamic

selection between the branch-level parallelism and the warp-level parallelism.

12



Large Warps Microarchitecture

Veynu et al. [23] suggest forming fewer but correspondingly larger warps and

dynamically creating packed SIMD-width sized sub-warps from the active threads in

a large warp. This leads to improved SIMD resource utilization in the presence of

branch divergence. Similar to TBC, LWM relies on coarser scheduling units and a

wider regrouping range. Sub-warp formation always occurs during the entire process,

even for warps with no divergence, so LWM may degrade the speed of applications

with few branch instructions. In addition, large warps may contain more branches

and exacerbate idle periods imposed by branch divergence [26].

2.3 Summary

This chapter discusses earlier work done by other researchers on the branch di-

vergence issue. The conventional methods such as branch predication make branch

instructions viable on SIMD cores. The subsequent mechanisms further improve the

performance by converging paths back together or eliminating divergence with extra

hardware support. Warp related methods have been getting more and more attention

in recent years and several methods have been proposed. This chapter analyzes some

of these methods and discusses the advantages and disadvantages of them. Overall,

HWS is orthogonal to the most recent and popular mechanisms and can be integrated

with them to yield better SIMD efficiency without any modifications to the original

programs.
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3. Baseline GPU Architecture

This chapter provides the background of this work, including the essential concepts

of parallel processor organizations, the difference between ILP and TLP, GPU com-

puting model and streaming multiprocessor architecture. In addition, conventional

branch divergence handling methods and DWF are also discussed.

3.1 Parallel Processor Organizations

Traditionally, the processor has been viewed as a sequential engine. Most program-

ming languages specify algorithms as sequences of instructions. Processors execute

machine instructions in a sequence one at a time. [27]. However, this view has nev-

er been completely true. As early as 1985 [28], the processors had already started

to employ pipelining to overlap the execution of instructions, which is one of the

techniques referred to as instruction-level parallelism (ILP). As computer technology

evolved, many parallel architectures were developed. Based on Flynn’s taxonomy [29],

all parallel processor systems are classified into four categories, as shown in Figure

3.1:

1. Single instruction single data (SISD): a single processor executes a sin-

gle instruction on data stored in a single memory. The typical example is a

uniprocessor.

2. Single instruction multiple data (SIMD): a number of processing units

execute the same instruction simultaneously on different sets of data stored

in multiple processor associated memories. The typical example is a vector

processor.
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3. Multiple instruction single data (MISD): multiple processing units simul-

taneously execute different instructions on the same set of data. This organiza-

tion has not been implemented, thus not appears in the figure.

4. Multiple instruction multiple data (MIMD): a set of processors simul-

taneously execute independent instructions on separate data sets. The typical

example is a symmetric multiprocessors (SMP).
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Figure 3.1 Parallel processor organizations.

SISD is the most conventional organization used. Machines with this architecture

have only one instruction stream and only one data stream as shown in Figure 3.1(a).

Another very common structure is MIMD. In recent years, multiprocessors have dom-

inated the personal computer market. The organization they adopt is MIMD, which

generally has multiple instruction streams and multiple data streams, as shown in

Figures 3.1(c) and 3.1(d). Based on the memory structure, MIMD can be further

divided into two categories [30]. The first uses shared memory among all process-

ing units like Figure 3.1(c). The second omits shared memory, but locates a local
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memory for each processing unit called distributed-memory MIMD organization, as

shown in Figure 3.1(d). All MIMD architectures have a common feature: they all

build multiple control units associated with every processing unit. However, control

units take a lot of room in a chip. This is one of the reasons that a multiprocessor

with MIMD organization is not capable of integrating many processing units onto a

single chip. To solve this problem, SIMD is introduced. The virtue of SIMD is that

all parallel processing units share a single instruction stream but operate on different

registers, as shown in Figure 3.1(b). For example, a single SIMD instruction may

accomplish a vector addition of two sets of numbers within one execution cycle. The

key advantage of SIMD is the reduction in the number of control units. This makes

the integration of thousands of cores possible.

The most common variation of SIMD exists in almost every microprocessor today,

and is based on the hundreds of multimedia extensions (MMX) and streaming SIMD

extensions (SSE) of the x86 microprocessor [31]. The main reason is to improve

performance of multimedia programs. These instructions are compiled to run on

many ALUs simultaneously or on many narrower ALUs partitioned from a single

wide ALU. For example, a 64-bit ALU can be divided into two 32-bit ALUs or four

16-bit ALUs or eight 8-bit ALUs as the extended SIMD instructions require.

Another variation of SIMD, which was also the first use of SIMD, is the vector

architecture. It was popularized by Cray Computers [32], which built the fastest

computers at the time. The vector architecture is featured in vector instructions,

which are fetched and decoded by a shared unit, but operate on multiple ALUs

with different vector elements. Other than scalar instructions, vector instructions use

data-level parallelism extensively and greatly reduce the instruction fetch and decode

bandwidth. The use of memory is also more efficient due to the predeterminable

memory access pattern.

The GPU architecture is another major variation of SIMD organization. By e-

quipping a computer with a GPU card, the graphics fraction of programs can be

delivered to the GPU. As we know, the basic element of graphics processing is the
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pixel, and each pixel can be processed independently. To utilize this feature, the GPU

has evolved to execute many threads corresponding to certain pixels in parallel. In

recent years, GPUs have been improved enormously, especially driven by the rapidly

growing game market. Even non-graphic applications have started to explore GPUs

in order to accelerate processing. Many languages aiming to increase programma-

bility have been invented, such as Brook [33], a streaming language for GPUs, and

NVIDIA’s CUDA, which enables programmers to write C programs on GPUs. The

detailed GPU organization will be covered in 3.3 and 3.4.

3.2 Instruction-Level Parallelism and Thread-Level Paral-

lelism

Instruction-level parallelism (ILP) is a method that overlaps instruction executions

to improve the performance of a processor [28]. Many techniques exploiting ILP are

employed in contemporary processors. The most common one is pipelining, but other

techniques include branch prediction, out-of-order execution and data forwarding.

In the last century, ILP was the key to achieve rapid performance improvements.

However, the limitations of ILP have been getting more and more obvious in recent

years. Designers have switched to the higher-level parallelism strategy: thread-level

parallelism (TLP). A thread is a separate process with its own instructions and data.

Each thread has all the program context to allow it to execute. Unlike ILP, which

exploits implicit parallel operations within code sequence, TLP explicitly makes use

of multiple threads of execution which are inherently parallel [28]. Furthermore,

ILP and TLP can be employed at the same time, a technique called multithreading.

Multithreading overlaps the execution of multiple threads on the sharing function

units of a single processor. It can be divided into two classes. The first is fine-grained

multithreading. In every cycle, threads that suffer from short or long stalls can switch

to other free-to-go threads. This is efficient when threads frequently experience stalls.

The baseline GPU architecture used in this work adopts this technique. The second

class is coarse-grained multithreading, which switches threads only on long stalls.

Since its performance is quite limited due to the frequent occurrence of short stalls,
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not many processors use it.

3.3 GPU Computing Model

Because of the wide use of NVIDIA’s GPU devices in the general purpose com-

puting field, this work adopts a similar computing model based on NVIDIA’s CUDA

programming model [3], as shown in Figure 3.2.

GPU Parallel Code

CPU Serial Code

Timeline

Figure 3.2 GPU computing model.

First, the program will be loaded into the CPU (also called the host). For CPU

serial codes, the host will execute instructions in the traditional way. Once the GPU

parallel codes are reached, the host will invoke the GPU (also called the device) and

pass the parallel section to it. In the CUDA programming model, this parallel section

is signaled by a kernel function. As an illustration, the following sample code performs

vector addition [3]:

// Kernel d e f i n i t i o n

g l o b a l void VecAdd( f loat ∗ A, f loat ∗ B, f loat ∗ C)

{

int i = threadIdx . x ;

C[ i ] = A[ i ] + B[ i ] ;
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}

int main ( )

{

. . .

// Kernel invoca t i on wi th N threads

VecAdd<<<1, N>>>(A, B, C) ;

. . .

}

Every kernel function consists of an array of threads in a hierarchical pattern, as

shown in Figure 3.3 [3]. Every kernel is mapped to a grid, which consists of multiple

blocks organized as a maximum three-dimension array. Furthermore, each block is

made up of a bunch of threads, which are also organized as an array with a maximum

dimension of three.

Figure 3.3 Thread hierarchy.
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To facilitate a thread index, a built-in variable is introduced threadIdx. It is a 3-

component vector and can be easily used to identify one-dimensional, two-dimensional

or three-dimensional threads. In the example above, the kernel function V ecAdd is

configured with N threads. These threads execute the same instruction: addition, but

with different operands that are differentiated by the built-in variable threadIdx.x.

Source.cpp Source.cu

run.exe

host C code source.ptx

cubin.bin

libcuda.a

C++ 

compiler

C compiler

cudafe nvcc

ptxas

Figure 3.4 CUDA compute flow from the compilation view.

Figure 3.4 [34] describes the GPU compute flow from the compilation view. For d-

ifferent source codes, multiple compilers are used. The Source.cu is a CUDA specified

source file, which contains host C codes, as well as device C codes running in parallel

on the GPU. These two groups of codes can be distinguished by cudafe. Then the

host C code is compiled in the traditional way and device codes are compiled by nvcc

into parallel thread execution (PTX) assembly codes. Next, the PTX assembler com-
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piles the PTX codes into GPU binary (labelled as ”cubin.bin” in Figure 3.4). Finally,

all the host fragments and device portions, as well as the CUDA library (labeled as

”libcuda.a” in Figure 3.4), are lined together into a final executable program [3].

On the hardware side, the GPU is connected to the CPU through one or two

PCI-E slots. Within the GPU, hundreds of processing cores are organized into a

hierarchy. At the top level, the GPU is composed of an array of processors referred to

as streaming multiprocessors (SMs) [3]. All SMs are connected to multiple memory

modules through an interconnect network, as shown in Figure 3.5. The range of this

work is within the scope of SM, which is further discussed in the next section.

SM SM SM SM

Interconnect Network

Memory

Controller

Memory

Controller

Memory

Controller

DRAM DRAM DRAM

Figure 3.5 Baseline GPU architecture.

3.4 Streaming Multiprocessor Architecture

Figure 3.6 shows a single SM architecture [35]. It is mainly composed of a shared

instruction fetch unit, an instruction decode unit, a highly banked register file and

multiple ALUs. Before execution, individual threads are grouped into fixed-size warps

[3], which are the granularity used for scheduling inside a SM. In the fetch stage, the

scheduler selects a warp from the scheduling pool using a round-robin policy. Then
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the instruction cache is accessed and the instruction decode is performed. Next,

multiple register values are read synchronously and then fed into the ALUs, where

computation is finished in parallel. Once a warp reaches the final stage of the pipeline,

it will be committed and put into the scheduling pool again for future scheduling.

However, if any threads in a warp encounter a long latency operation (such as a

DRAM access), the warp will be taken out of the scheduling pool until the warp is

committed, and meanwhile other warps will be issued. As a result, long latency can

be hidden and throughput loss can be reduced.

I-Fetch

Decode

Register Read

ALUs

D-Cache

Writeback

Thread Warp 6

Thread Warp 1

Thread Warp 2

Thread Warp 5

Thread Warp 3

Thread Warp 8

Thread Warp 7

Thread Warp 4

Threads available

for scheduling

Threads accessing

memory hierarchy

All hit?
Data

Miss?

Figure 3.6 Streaming multiprocessor architecture.
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3.5 Branch Divergence Handling

Branch divergence is a key issue for general purpose GPU applications. It occurs

when threads within a warp take different paths. For equal length paths, an if-else

branch instruction loses 50% efficiency. To facilitate user programming, contemporary

GPUs allow threads to branch and execute independently, and therefore, threads with

different paths can be directly serialized, as shown in Figure 3.7(a).

A

B C

D

W0:A W1:A W0:A-B W1:A-B W0:A-C W1:A-C W0:A-B-D W1:A-B-D W0:A-C-D W1:A-C-D

(a) Serialization

(b) Reconvergence mechanism
(c) Example program

W0:A W1:A W0:A-B W1:A-B W0:A-C W1:A-C
W0:A-

B/C-D

W1:A-

B/C-D

Figure 3.7 Conventional branch divergence handling.

Figure 3.7(c) gives the corresponding example program. Once the divergent point

A is reached, the two warps W0,W1 are split into four fragments W0 : A− B,W0 :

A− C,W1 : A−B,W1 : A− C. Next, the four segments continue executing till the

end of the program, even though they have opportunities to converge (merge point

D).

The serialization method is simple to implement, but not very efficient, thus most

recent GPUs employ reconvergence mechanisms, as shown in Figure 3.7(b). The

reconvergence pointD is analyzed during the compilation period. Once code segments

B and C finish, the threads in the fragmented warps go back to their original warps

and carry on executing the rest of the instructions until another branch instruction is

reached. This mechanism can be implemented by utilizing a branch synchronization
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stack which is used to manage independent threads that diverge and converge [27].

It should be noted that this reconvergence mechanism only functions within a warp.

Different warps are independent in terms of branch handling.

The choice of the reconvergence point affects the overall performance. In this

work, the immediate post-dominator [36] is chosen in the baseline GPU architecture

according to standard practice. In graph theory, a node d dominates a node i if every

path from the start node to i must go through d, written as d dom i. A node p is said

to post-dominate a node i if all paths to the exit node starting at i must go through p.

Similarly, the immediate post-dominator of a node i is the post-dominator of i that

does not strictly post-dominate any other post-dominators of i. According to this

definition, in the example program above, node D is the immediate post-dominator

of A. It should be noted that the immediate post-dominators can be analyzed during

compilation time.

With careful examination of the reconvergence process in Figure 3.7(b), further

improvement can be made by noting that W0 : A− B and W1 : A− B execute the

same program segment, and they both take half of the SIMD pipelines. Therefore,

it is possible to merge them together and form a full warp, further saving execution

time. This concept is the basic principle of a well-known branch handling method:

dynamic warp formation (DWF).

3.6 Dynamic Warp Formation

Dynamic warp formation (DWF) is a well-known technique to improve GPU SIMD

efficiency by forming new warps out of split warps in real time. During each schedule

cycle, the thread scheduler will analyze all of the ready warps in the warp pool and

try to form new warps. To combine two diverged warps, the following conditions

must be satisfied: first, the two split warps must have an identical program counter,

and second, no warp conflict can exist between the two warps. This occurs when

two threads from different warps occupy the same scalar pipeline or lane. Since

the register file is highly banked and every lane accesses one bank, if two threads
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access the same bank of the register file, bank conflict will occur and the two access

operations must be serialized, which introduces a significant performance penalty.

Figure 3.8 compares the warp structure under the PDOM mechanism and the DWF

mechanism for the same example program. Figure 3.8(b) shows that W0 : A − B

and W1 : A− B satisfy the two conditions discussed previously, and therefore, they

are integrated into a new warp W2 : B. Similarly, W0 : A − C and W1 : A − C

are combined into W3 : C. As a result, the throughput loss is eliminated for this

example program.

W0:A W1:A W2:B W3:C

W0:A W1:A W0:A-B W1:A-B W0:A-C W1:A-C

(a) PDOM

(b) DWF

W0:A-

B/C-D

W1:A-

B/C-D

W0:A-

B/C-D

W1:A-

B/C-D

Figure 3.8 Comparison of PDOM and DWF.

DWF’s use of the complementary scalar pipelines of two diverged warps intro-

duces the following concern. Without DWF, thread IDs within a warp are logically

consecutive. In other words, the difference between the smallest ID and the largest

ID is less than warp size. Therefore, each thread’s registers are at the same offset

within the bank, and thus, one address decoder is sufficient. After introducing DWF,

threads within a warp may come from different split warps, so the thread IDs cannot

be guaranteed to be consecutive anymore. The offsets for different threads will vary.

The register file has to be changed and equipped with multiple decoders for each
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bank.

The efficiency of DWF heavily depends on the number of threads with the same

PC value. Suppose there are N threads with N different PCs, then the only warp

structure is one active thread in each warp. DWF loses functionality in such a situa-

tion. To avoid this, all threads should have a similar rate of progress [35]. Thus, the

warp scheduling policy needs to be carefully designed. According to [37], majority

scheduling policy is the best one compared to other policies such as minority, time s-

tamp, post-dominator priority or program counter priority. The majority policy tries

to pick up the warps which have the most common PC in the warp pool and will

continue to issue warps at this PC before switching to the second most common PC.

Further discussion about DWF’s performance will be presented in Chapter 4.

3.7 Summary

In this chapter, the GPU baseline architecture is described based on NVIDIA

devices of compute capability 1.x. However, the method discussed in this thesis can

be extended to other SIMD architectures. This chapter also describes the streaming

multiprocessor architecture and explains how ILP and TLP are employed through

fine-grained multithreading. Then conventional branch handling methods are dis-

cussed, emphasising reconvergence mechanisms. Finally, we introduce another ad-

vanced method, DWF, and explain how performance is improved by forming new

warps.
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4. Hybrid Warp Size Mechanism

The PDOM reconvergence mechanism ensures that resources are fully utilized af-

ter the reconvergence point, but the SIMD pipelines are still under-utilized between

the divergence point and the reconvergence point. In this chapter, the HWS mecha-

nism proposed to deal with this issue is described.

A contemporary SM creates, manages, schedules and executes threads in groups

of 32 parallel threads called a warp. This fixed-size warp design simplifies hardware

design, especially the warp scheduler. Every 4 cycles (32 threads ÷ 8 SIMD pipelines

= 4 cycles), a warp that is ready for execution is selected by the warp scheduler and is-

sued to the SIMD pipelines using a round-robin policy. This keeps the SIMD pipelines

running at a uniform pace. However, when a warp meets a branch instruction and

diverges into two separate warps, warp occupancy will deteriorate, as indicated in

Figure 4.1(a). In the figure, each number represents an active thread within a warp,

each letter represents a warp and each column represents an execution cycle. Figure

4.1(c) describes the corresponding program with branch divergence. For this example

program, half of SIMD efficiency is lost due to this branch instruction.

The basis of the HWS mechanism is the dynamic adjustment of the warp size

resulting in smaller warps to take fewer execution cycles. In this way, SIMD pipelines

may start the next warp earlier and the throughput loss due to idle threads is reduced.

This approach is shown in Figure 4.1(b), where the size of warp B is reduced to 8

threads, and the size of warp C is reduced to 24 threads. In this example, there are

no resources wasted on idle threads and thus four execution cycles are saved.

SIMT GPUs are dramatically more efficient and flexible on control-intensive pro-
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Figure 4.1 Branch divergence handling. (a) Conventional mechanism; (b) Hybrid
warp size mechanism; (c) An example program. The numbers represent
active thread IDs. The letters represent warp IDs.
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grams than earlier GPUs, as their warps are much narrower than the SIMD width of

prior GPUs [27]. The reason that HWS can bring performance improvement is the

downsizing of the warp size on average. A suitable algorithm is needed to reduce the

warp size and in this paper a squeeze algorithm is proposed, which is described in

Section 4.1. The HWS warp scaling is discussed in Section 4.2. The variable warp

size requiring a varying number of execution cycles must be handled by the warp

scheduler and this is discussed in Section 4.3. The integration of HWS and DWF to

yield better performance is discussed in Section 4.4.

4.1 Squeeze Algorithm

The main purpose of the proposed squeeze algorithm is to generate dense and

small warps. In Figure 4.1, threads 12-15 are squeezed into the first quarter-warp,

and therefore, the size of warp B is reduced to 8 threads. Similarly, warp C is reduced

to 24 threads. The squeeze algorithm was designed with the following three objectives

in mind:

1. Keep each thread in the same lane (represented by a row in Figure 4.1) to avoid

bank conflicts when accessing the register file.

2. Make the modified warp as dense as possible.

3. Minimize movements to decrease the extra overhead and reduce additional mem-

ory divergence.

Based on these criteria, this work develops a squeeze algorithm, as shown in Fig-

ure 4.2. To minimize thread movement, the algorithm sorts in descending order the

four quarter-warps by the number of active threads. Here the sorting operation is

performed logically, not physically. No real thread movement is involved in this phase.

The program just gives a quarter-warp ID to the proper quarter-warp according to

the number of its active threads. For clarity, the IDs which the algorithm physical-

ly assigns to the four quarters are a, b, c and d. The next step is to take active
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threads in quarter 3 (the one with the fewest active threads) to feed corresponding

holes (inactive thread places in the same lane) in quarter 0, then quarters 1 and 2.

Next, the same operations are applied to quarter 1 and quarter 2. Even though sort

operations increase the warp scheduler’s complexity, they will reduce the amount of

thread movements. In addition, they will ease the warp scaling operation, which is

elaborated in Section 4.2. The conditional judgment in the diagram ensures no bank

conflicts are generated due to squeezing. Therefore, all three criteria are satisfied.

Calculate the amount of active threads for each

quarter-warp

Sort four quarter-warps by the number of active

threads in descending order

For (int i=0; i<3; ...)

For (int j=0; j<8; ...)

For (int k=3; k>i; ...)

jth thread in kth quarter-warp

is active & jth thread in ith quarter-warp is not

active

Swap jth thread between kth quarter-warp and ith

quarter-warp

k--

j++

i++

Yes

No

Figure 4.2 Flow chart of the proposed squeeze algorithm.
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Figure 4.3 describes how the squeeze algorithm compresses a warp step-by-step.

1) Sort the quarter-warps according to the number of active threads and label

them #0, #1, #2 and #3, as shown in Figure 4.3.

2) Take the active threads from quarter-warp #3 to fill the holes in quarter-warp

#0 making sure the threads are placed into a corresponding lane.

3) Similarly, take the active threads from quarter-warps #2 and #1 and move

them to quarter-warp #0.

4) Repeat steps 2 and 3 using quarter-warp #1 as the recipient and then quarter-

warp #2 as the recipient, if applicable.

In this example, the densest status was achieved after the second cycle. All of the

active threads were squeezed into quarter-warps #0 and #1, and consequently, the

next step, warp scaling can be simplified.

#0#3 #2 #1

1

2 3

#0#3 #2 #1

4

5

#0#3 #2 #1

Active thread Idle thread
Order

Figure 4.3 An example of the squeeze algorithm.
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4.2 Warp Scaling

The squeeze algorithm compresses each warp, and therefore, increase the chance

to downscale the warp size. The updated warp size has to be recorded to inform the

issue logic about the length of the issue window. The following describes the detailed

steps of this phase:

1) Create a quarter-warp mask word that contains four bits to indicate the status

of each quarter-warp. A 1 indicates that the corresponding quarter-warp has

at least one active thread, and a 0 corresponds to an idle quarter-warp. For

the example in Figure 4.3, the mask is set to 0011, since quarter-warp #3 and

quarter-warp #2 contain no active threads and quarter-warp #0 and quarter-

warp #1 contain active threads. In this case, the warp size is set to 16 instead

of 32.

2) Push the updated warp along with the quarter-warp mask into the correspond-

ing entry in the warp pool.

3) Pick up the largest warp size among the 28 standby warps from each SM and

assign the new warp size to them.

Step 3 forces a synchronization of all the SMs. This requirement illustrates one

limitation of the simulator we are using. For example, in this work 28 SMs are

configured. If 27 of them have a warp size of 8 while the remaining one has a warp

size of 32, the ultimate warp size for all the 28 warps will have to be set to 32. This

disadvantage may be addressed in a future work.

Even though the hybrid warp size mechanism rearranges threads within a warp,

it does not affect convergence at the merge point because the converged warp always

has consecutive thread IDs.

4.3 Issue and Execution

Figure 4.4 compares the original pipeline with the HWS pipeline.
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Warp 6

(a) Original 24-stage superpipeline

(b) HWS 24-stage superpipeline

Warp 0
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Warp 4
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Issue instruction 2
4 Cycles

24 Cycles

Decode instruction 1

Issue instruction 1

Issue instruction 2

Decode instruction 1

Warp 0

Warp 1

Warp 2

Warp 3

Warp 4

Warp 5

Figure 4.4 Comparison of the original 24-stage superpipeline and the HWS 24-

stage superpipeline.

In this work, the pipeline of each SM is modeled as six logical stages (fetch, decode,

execute, pre-memory, memory, write-back) with superpipelining of degree 4, as shown

in the figure. Each warp is issued through four cycles, assuming the warp size is 32

and the SIMD width is 8. In Figure 4.4(a), the vertical arrows highlight a cycle

when the issue is idle. This is due to the fixed warp size design. Conversely, HWS

breaks the four-cycle rule and enables the scheduler to issue instructions even if the

fourth issue cycle of the previous warp is not reached. This flexible issue mechanism

guarantees that the instructions will enter into the pipelines as soon as possible, as

shown in Figure 4.4(b). Except for the very first four cycles, the fetch stage and

decode stage are both active for the subsequent cycles. Similar situations occur in
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the remaining four pipeline stages.

The read-after-write latency is 24 cycles, and 6 interweaved active warps (or 192

active threads) are needed to keep pipelines busy all the time, as specified in Chapter

1. In the example of Figure 4.4(a), the number of the active threads is 168 since

3 issue cycles are idle. HWS fills the gap by issuing the same instruction from the

next warp, and therefore, when all of the instructions from warp 5 are issued, the

24-cycle latency is still not fully covered. HWS then issues another warp (indicated

by the red arrow at the bottom). As a result, the pipeline is fully occupied by the 192

active threads from 7 warps. In all, three cycles are saved for the first instruction.

In summary, for the HWS mechanism, the warp scheduler must extract the warp size

information and calculate the next issue time, which varies between 1 and 4 cycles.

Eliminating the fixed warp size will require extra hardware overhead.

4.4 Integration of DWF and HWS

DWF assigns a thread to a warp only if that warp does not contain another thread

in the same lane. However, each lane can hold a maximum of 4 threads for every

warp (warp size 32 ÷ SIMD width 8). This work modifies the DWF algorithm and

assigns a thread to a warp as long as the number of active threads in that lane is less

than four, as shown in Figure 4.5.

In Figure 4.5, even though threads 20-23 and threads 52-55 conflict, the threads

20-23 can be assigned to other quarter-warps of warp 0. The following describes the

enhanced DWF algorithm, called en-DWF. For clarity, warp 1 is the incoming warp

waiting to be regrouped with other warps and is called the male warp, while warp 0

is the selected warp from the warp pool offering the opportunity for combination and

is called the female warp.

1) Starting from the first lane, scan each position to check if lane conflict exists

(more than one active thread occupies the same position). Once a lane conflict

is found, continue to the next step. For this example, there is no lane conflict
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for the first three lanes. In the fourth lane, thread 27 and thread 59 are found

in conflict.

Figure 4.5 An example of en-DWF.

2) Within the conflict lane, check if any position in the four quarter-warps is

available. Here, availability is defined as no active threads existing in the male
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or female warp. If any available position is found, go to the next step. In this

example, the first position satisfies the condition and offers a chance for thread

59 to eliminate lane conflict.

3) Switch the contents of the available position with the conflict position. Thus,

thread 59 is moved to the first quarter and leaves a hole in the previous location.

4) Repeat the steps above until the eighth lane is finished.

This method increases the possibility of warp integration. En-DWF performs the

same as DWF if there is no lane conflict. If there are no available holes in the conflict

lane, warp combination cannot be achieved. The male warp will be located in the warp

pool as a new entry. Even though DWF and HWS both rely on rearranging threads

to increase warp density and further improve SIMD efficiency, they are orthogonal

methods and can be combined (called en-DWF&HWS here), as shown in Figure 4.6.

The step-by-step operations are listed below:

1) Apply the squeeze algorithm to the male warp. In Figure 4.6, the same warp

as in Figure 4.3 is used, so we directly get the resulting warp.

2) Apply en-DWF to the male warp. Rearrange the threads of the male warp to

try to eliminate lane conflict.

3) Combine the two warps if all of the lane conflicts are gone.

4) Downscale the newly formed warp to reach the minimum size.

Compared to DWF, en-DWF&HWS increases the rate of warp formation, as well

as the warp occupancy. It benefits from the looser condition of warp integration and

has better tolerance of various warp sizes.

4.5 Summary

To this point, this thesis has discussed the various aspects of HWS, including

the squeeze algorithm, warp scaling operations and how to issue and execute hybrid
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Figure 4.6 An example of en-DWF&HWS.
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warps. This chapter also describes the implementation details of the enhancement to

DWF, as well as the integration of DWF and HWS.
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5. Methodology

This chapter describes the experiment method and specifies the system configu-

rations adopted in this work. Then, the properties of the benchmarks used are listed

to facilitate the result analysis and discussion.

5.1 GPGPU-Sim

A model of the mechanism proposed here is obtained by modifying a well-known

general purpose GPU simulator, GPGPU-Sim (Version 2.1.2b). This simulator cov-

ers various aspects of a massively parallel architecture with highly programmable

pipelines similar to those found in contemporary GPU architecture, such as CUD-

A [34], and can yield cycle-accurate performance statistics. In CUDA, the GPU device

is invoked by the operating system through a system call. In GPGPU-Sim, this proce-

dure is implemented by a spawn instruction, which signals the CPU host to launch a

parallel compute kernel with predetermined configurations on the simulator [37]. By

modifying the common.mk makefile used in the CUDA SDK, the simulator can make

an application link to the customized CUDA library instead of to the original version,

and execute parallel instructions according to the system configurations specified by

a file named gpgpusim.config.

GPGPU-Sim includes two components: functional simulation and timing simula-

tion. The functional model is designed for the parallel thread execution (PTX) codes,

which are based on the CUDA instruction set architecture. The timing model is used

to estimate how fast a program will run on the modeled platform. It contains the

timing for the SMs, cache latency, interconnection network, memory controllers and
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graphics DRAM. Timing for the CPU and the communication cost between the CPU

and GPU are not included. Although recent GPUs have enabled the concurrency

of CPU and GPU, GPGPU-Sim assumes the CPU to be idle when the GPU is pro-

cessing. Similar to other processor simulators, GPGPU-Sim separates the functional

simulation from the performance simulation to facilitate other developers to quickly

evaluate performance for novel ideas.

SimpleScalar

DRAM Model

Shader Core

Interconnection Network

shader

gpu-sim

gpu-cache

addrdec

batch_tracker

cballoc

crossbar

icnt_wrapper

crossbar_wrapper

delayqueue

dram
dram_sched

dynbatch

dynbhw

intersim

lock_cache

gpu-misc

gpgpusim
(sim-outorder)

Figure 5.1 The overview of GPGPU-Sim.

As shown in Figure 5.1 [37], GPGPU-Sim contains three main modules: shader

core (same as SM), interconnection network and DRAM. The SimpleScalar is used

for modeling the CPU. The interconnection network module is designed for relaying

messages between the SMs and the memory controllers. It models the traffic control

and the timing for each message through it regardless of the content or size of the mes-

sage. The DRAM module simulates the basic DRAM components such as the address

decoder and the DRAM request scheduler. Moreover, it provides the DRAM access

timing model, which is essential for developers to analyze performance bottlenecks.

Different modules could be configured at various frequencies. The communication
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between the adjacent modules is implemented through the clock crossing buffers that

are filled at the source domain’s clock rate and drained at the destination domain’s

clock rate.

The SM module is the key component of the simulator. It simulates the SIMD

pipeline in a similar way to the classic MIPS 5-stage in-order pipeline [27]. The

following section discusses further the software design of the SM module, as shown

in Figure 5.2 [37]. Note that these stages are simulated in reverse order to the

real hardware pipeline in order to eliminate the need for two copies of each pipeline

register. This is common among several processor simulators such as SimpleScalar

[37].

Fetch

The fetch stage is the key stage in this work because the thread scheduling, as

well as the thread issuing, is performed here. The thread schedule mechanism is vi-

tal to GPU performance since it crucially affects the SIMD throughput. At present,

there are four schedulers: No reconvergence, PDOM, DWF and MIMD. Develop-

ers can specify any one of them by the configuration file gpgpusim.config or the

command line. The first three mechanisms have been discussed in Chapter 3. The

fourth, the MIMD scheduler, can freely schedule threads into pipelines despite the

program counter values. In the software, these four schedulers are implemented by

four independent functions.

Issue policy is another important factor that contributes to final performance.

Chapter 3 discusses the related policies and gives a recommended option: the majority

policy, which picks up the warps with the most common PC and continues to issue

warps at this PC before switching to other PCs.

Once the threads (labeled by TIDs in Figure 5.2) are selected, their PC values

are transferred to the fetch unit, which reads the corresponding instruction from the

instruction cache. Meanwhile, the threads are locked until all of them have finished
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Figure 5.2 Pipeline stages of a SM.
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execution without any outstanding stores or pending writes to local registers and

have been committed during the last stage. The warp distribution information is also

recorded by the simulator in this stage. Then the fetched instruction is put into the

pipeline register of the decode stage.

Decode

In the classic MIPS pipeline, the decode stage mainly accomplishes the following

two tasks:

1. Classify the instruction. Memory instructions are directed to the memory

pipelines. Arithmetic instructions are processed in the default pattern. For

branch instructions, a per-warp stack is used to handle the multiple paths. For

our baseline architecture which employs the PDOM mechanism, at each diver-

gence point a new entry is pushed to the top of the stack. Each entry includes

the target branch PC, the active mask corresponding to the threads of that

branch and their immediate reconvergence point PC. When the reconvergence

point is reached, the stack pops the top entry.

2. Label the registers that will be used. A scoreboard is used here to label these

reserved registers and indicate that they are in use. In the final stage, the

reserved registers will be released.

In the GPGPU-Sim, the functional simulation is also performed in this stage.

PTX codes generated by the NVCC or OpenCL compiler are simulated by the separate

functional simulator. At the same time, much information is obtained such as memory

space, memory address and next PC value. These can be used to facilitate the

performance simulation.
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Register Access

The main task in this stage is to guarantee that the banked register file,∗ which is

shown in Figure 5.3, is read properly. The main issue is bank conflict. The register

file bank depends on the thread ID. For each warp, if there is more than one thread

accessing the same bank, then the multiple accesses will be serialized until each one

is finished.
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Figure 5.3 The banked register file.

Execute

The execute stage in the GPGPU-Sim is an empty stage since the functional

simulation has been finished in the decode stage. Each SM contains eight streaming

processors (SPs) and two special function units (SFUs), so it is a reasonable extension

to add the timing for these modules in a future performance model, especially for those

applications with many transcendental instructions.

∗According to [38] the banked register file is a single ported RAM, with the appearance of a mul-
tiported register file using multiple banks through a patented technique called ”operand collector”.
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Pre-Memory

The pre-memory is an optional stage designed to adjust the pipeline length. In

the baseline model, this stage is empty.

Memory

GPGPU-Sim supports multiple memory spaces, as shown in Figure 5.3. Each

thread owns a private data cache, which can be accessed in one cycle. Missed accesses

are inserted into a FIFO miss queue and are managed through Miss Status Holding

Registers (MSHR). A memory request is then added to the MSHR table and sent to

the interconnection network. In addition, bank conflict is checked among the multiple

data cache accesses within a warp.

The shared memory is a fast memory space that can be explicitly configured by

programmers. It is shared within a thread block. It is also highly banked, so bank

conflict is checked here. For NVIDIA GPUs, the shared memory has 16 banks with

16 KB per SM. Note that bank conflict is detected within each half-warp.

There are also two additional read-only memory spaces accessible to all threads:

the constant and the texture memory spaces [3]. They facilitate the use of constants

and some specific data types. However, once cache misses appear, the delay to access

the constant or texture memory spaces in DRAM will be significant.

Write back

The write back stage mainly accomplishes the following tasks:

1. Arbitrate write-back between the threads from the memory stage and the thread-

s from the return queue. In the GPGPU-Sim, the return queue has a higher

priority, a condition which may generate better results because different threads

can be balanced better and kept at a similar speed during the entire execution.

2. Update the registers using the output values and clear corresponding scoreboard
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entries to indicate that the registers can be safely accessed without concern for

dependency hazard.

3. Send the selected threads to the commit queue and unlock them to inform the

thread scheduler that these threads are available for scheduling again.

5.2 System Configurations

For this work, the system configurations are shown in Table 5.1.

Table 5.1 System configurations.

#Streaming multiprocessors 28

Warp size 32

SIMD width 8

#Registers per SM 16384

Shared memory per SM (KB) 16

Constant cache per SM (KB) 8

L1 cache None

L2 cache None

#Memory modules 8

Bandwidth per memory modules 8(Bytes per cycle)

Memory mode Perfect memory mode

Memory controller Out of order

Warp scheduling policy Majority + Round Robin

Branch divergence handling Immediate post dominator (PDOM)

Interconnect topology Mesh

To focus on the control flow issue, this work prevents the influence of the memory

access by setting the simulator to the perfect memory mode, which means zero

memory latency and no cache misses. The memory controller is mainly responsible

for the scheduling of the multiple DRAM requests. The out-of -order mode means

First-Ready F irst-Come First-Serve. It reorders the requests to prioritize those
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which access an already opened row [37]. This method takes advantage of the shared

open row and reduces the overhead required to activate a new single row. Warps

with different PCs are scheduled based on the majority policy. Warps with the same

PC are scheduled following the round-robin policy. Mesh is a simple interconnection

topology, even though the latency is relatively high.

5.3 Benchmarks

The same benchmarks in [34], listed in Table 5.2, are used here for comparison

purposes. All benchmark source codes are obtained from GPGPU-Sim release. These

benchmarks are developed and executed on GPU devices. Ali, et al. [34] then modified

these applications and mapped them onto GPGPU-Sim.

Breadth-First Search (BFS) [11] is a fundamental algorithm in the graph process-

ing field. It is an uninformed search method and searches all the nodes in a graph

without considering the goal until it finds the target. Branch instructions such as

if − else are inevitable, and therefore, BFS loses much performance due to branch

divergence. In our experiment, we test the BFS program on a random graph with

4096 nodes.

Black-Scholes (BS) [39] is a model that provides a partial differential equation for

the evolution of an option price under certain assumptions. NVIDIA implemented

it using CUDA. To allow for arbitrary numbers of options, each thread processes

more than one index as required. Due to the existence of a closed-form expression,

calculating option prices is not a difficult task. No branch instruction is involved here.

Neural Network (NN) [12] is a widely used pattern recognition method. In [12], it

is used to recognize handwritten digits. In our experiment, 28 digits from the Modified

National Institute of Standards Technology database of handwritten digits are tested

in parallel on GPGPU-Sim. It is worth noting that the last two kernels contain

blocks of only one thread each, a configuration which results in severe reduction of

warp occupancy [34].
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MUMmerGPU (MUM) is a GPGPU drop-in replacement for MUMmer, which

is a sequence alignment program widely used in genotyping, genome resequencing,

metagenomics and de novo genome assembly projects. It uses the GPUs to align

simultaneously multiple query sequences against a single reference sequence stored

as a suffix tree [13]. In our experiment, the first 140,000 characters of the Bacillus

anchracis str. Ames genomes (a special sequence of genes) are used as the reference

string. 50,000 25-character queries generated randomly using the complete genome

are used as the seed [34]. Similar to BFS, MUM is also a branch intensive application,

because both can carry out a large number of comparisons.

Table 5.2 Benchmark properties.

Benchmark Description Branch

divergence

intensity

BFS Breadth-first search on a graph High

BS Financial options pricing Low

NN Neural network algorithm for

recognizing handwritten digits

Medium

MUM Sequence alignment program High

RAY Rendering graphics with near

photo-realism

Medium

STO A library that accelerates

hashing-based primitives

Low

LPS 3D Laplace solver High

NQU N-Queen solver for a chess puzzle High

AES Advanced Encryption Standard

algorithm to encrypt and decrypt files

Low

LIB Monte Carlo simulations Low

Ray Tracing (RAY) is the core method of photorealistic rendering using global

illumination simulation [40]. In [40], each pixel is rendered by a scalar thread in
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CUDA. Since the rendering operation for each pixel depends on the objects it hits and

in real life these objects are always varied, branch divergence here is a considerable

problem. In our experiment, we render a 256×256 graph with up to 5 levels of

reflections and shadows.

StoreGPU (STO) is a library that accelerates a number of hashing based primitives

popular in distributed storage system implementations [41]. In our experiment, the

input size is set to 192KB. Sliding-window hashing is adopted based on the MD5

algorithm [41]. The main challenge of this application is memory management rather

than flow control. Branch divergence is barely involved here.

3D Laplace Solver (LPS) is an important mathematical tool since the Laplace

equation can describe the properties of electric, gravitational and fluid potentials. [14]

implemented it on CUDA with careful memory management, but branch divergence

still exists due to a complex and nested variable index. In our experiment, the grid

is set to 100×100×100 and one iteration is performed.

N-Queen Solver (NQU) tackles the classic puzzle of placing N queens on an N×N

chess board where no queen can capture another [15]. [15] uses a simple backtracking

algorithm to enumerate all possible solutions. The CPU is used to generate a large

number of configurations for upper rows and the GPU is responsible for the remaining

rows. In our experiment, N is set to 10. It is worth noting that for most of the time

only a single thread is active.

Advanced Encryption Standard (AES) is the most widely adopted modern sym-

metric key encryption standard [42]. [42] implemented it on CUDA with multiple

optimizations. In our experiment, we encrypt a 256×256 image with a 128-bit en-

cryption key.

LIBOR Monte Carlo (LIB) implemented a LIBOR market model and tested it

using the Monte Carlo method on CUDA [43]. The parallel random numbers are

generated by a Sobol’s quasi-random generator. Most of the processing time is spent

on computation and memory operations. Branch divergence is not a key issue here.
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We use the default inputs, 4096 paths for 15 options.

For further benchmark properties, such as grid/block dimensions, instruction

counts and memory utilization, refer to [34].
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6. Results

This chapter evaluates various aspects of our experimental results. First, the

potential performance improvement brought by HWS is theoretically estimated. Then

the effect of the squeeze algorithm is analyzed and the performance improvement

resulting from en-DWF over DWF is discussed. Next, the measured results on the

baseline architecture are described, with emphasis on the speedup of HWS. Also,

the simulation results are verified with the estimated results. Finally, this chapter

examines the DWF-enabled platform and discusses the performance after integrating

DWF and HWS.

6.1 Estimated Performance

The following factors need to be considered carefully to theoretically estimate the

HWS performance improvement. The first is the warp distribution which can be

obtained through the simulator. However, the detailed statistics of how threads are

distributed within each warp are not accessible. For example, suppose there is a warp

containing 24 threads. If all these threads are located in the first three quarters,

then one cycle can be saved by applying HWS. Conversely, if those four quarters all

contain at least one active thread, then no improvement can be achieved through

HWS. The second factor is the effect of the squeeze operations. Suppose those 24

threads spread across the four quarters. After the squeeze operations, they may be

compressed into three quarters and leave a quarter free. Or they may still occupy

all four quarters. For simplicity, it is assumed that threads are distributed optimally.

Thus, based on the warp distribution and the ideal speedup for each fraction, the
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following equation [28] can be applied to get the final estimated speedup.

Speedupoverall =
1

(1−
∑

i Fractioni
enhanced) +

∑
i

Fractioni
enhanced

Speedupienhanced

(6.1)

Here, i ranges from 0 to 2 and Fractioni
enhanced represents the percentage of warps

with 1, 2 and 3 active quarter-warps. The corresponding values of Speedupienhanced are

4, 2 and 1.33. This is a simple model, regardless of the problem discussed previously

and the change to the memory access pattern, and therefore, it is foreseeable that

estimated values are higher than simulation outcomes in some degree. Section 6.4

verifies this by comparing the estimated speedups for the ten benchmarks with the

experimental results. First, the contributions of different portions of HWS will be

evaluated.

6.2 Effects of the Squeeze Algorithm

The squeeze algorithm is the first step in the HWS. It makes warps denser and

facilitates the scaling operation, however it is not an indispensable part of it. Figure

6.1 shows the performance gain of the squeeze operations. Note that enhancement

to DWF is not included. On average, PDOM&HWS obtains 0.6% improvement and

DWF&HWS gets 2.2% gain. This verifies that the randomness of thread distribution

is raised by DWF. In other words, by dynamically forming new warps, threads spread

in a more irregular and random way. Therefore the squeeze operations function

better in this kind of organization. For benchmarks RAY and LPS under DWF,

instructions per cycle (IPC) are degraded, not improved. The reason is that after

applying squeeze operations, the merge conflict rate is increased for these benchmarks.

More under-filled warps cannot merge into new dense warps, and the performance

loss from this overtakes the advantage of the squeeze operations. It is suggested the

squeeze algorithm be combined with en-DWF to address this issue.
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Figure 6.1 Performance gain of the squeeze algorithm.

6.3 Effects of the Enhancement to DWF

The DWF algorithm was modified in Chapter 4 to produce the en-DWF algorithm.

Figure 6.2 shows the performance improvement due to this modification. On average

8.8% improvement is achieved, compared to the original DWF mechanism, and there

is no performance loss occurs for any applications. This is due to the increased merge

rate and the decreased number of combined warps for en-DWF. This also verifies that

thread distribution within an under-filled warp due to branch divergence is similar to

others’ distribution in some degree, and the modification to DWF produces a better

SIMD efficiency.
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Figure 6.2 Performance improvement of en-DWF.
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6.4 Measured Performance

Figure 6.3 compares the estimated speedup and the measured speedup that the

HWS mechanism contributes to the baseline architecture which employs the imme-

diate post-dominator (PDOM) branch divergence handling policy. The correlation

coefficient between them is 0.85. Since the squeeze algorithm is lane aware, it is im-

possible to obtain the expected speedup for every under filled warp. For example,

if there is a warp with 4 active threads, ideally, the warp size will be scaled to 8.

However, if two of the four threads are located in the same lane, the warp size will

be scaled to 16 instead of 8. As a result, the measured speedup will be less than

the estimated speedup, as shown in Figure 6.3. The only exception is the benchmark

NQU. Notice that the estimated speedup is calculated based on the assumption that

warps are assigned to all SMs evenly and the warp distribution within each SM is the

same. However, at the end of NQU, only one SM is employed and warp distribution

within this SM is shown in Table 6.1. From the last column we can see that a higher

speedup is generated based on the distribution of the last stage. This higher value

results in the final excess of the measured speedup over the estimated speedup.

Figure 6.3 Estimated versus measured speedup for PDOM&HWS.
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Table 6.1 Warp distribution of NQU.

Speedup for each fraction 4 2 1.33 0 Speedup

Warp distribution for all stages 0.062 0.026 0.006 0.906 1.065

Warp distribution at the last stage 0.058 0.068 0.067 0.807 1.104

Figures 6.4 and 6.5 show the performance for the ten benchmarks in terms of IPC

and speedup. In Figure 6.5, the weight of control flow instructions is also presented.

First we will discuss the benefit HWS brings to PDOM. For the ten applications,

a speedup of 1.20 is achieved on average. Benchmarks BFS, NN and NQU obtain

relatively more improvement. Figure 1.1 shows that these three applications all have

a considerable number of low occupancy warps, which means more throughput loss

can be retrieved by HWS. In Figure 6.5, notice that it is the large control flow

portion in BFS and NQU that leads to the low occupancy. For NN, although branch

instructions only occupy 6%, this program has large portions of the codes spent on

a single thread [34], which leads to 95% of warps having less than 4 active threads.

As a result, HWS takes advantage of these under-filled warps and yields a significant

speedup: 2.85. For benchmarks BS, STO, AES and LIB, because all warps have a

warp occupancy of 29-32, there is no space available to improve performance through

HWS.
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Figure 6.4 IPC comparison.
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Figure 6.5 Speedup comparison and the percentage of control flow. PDOM&HWS

represents the speedup HWS brings to PDOM; en-DWF&HWS repre-

sents the speedup HWS brings to DWF.

When integrated with DWF, HWS generates a speedup of 1.27 on average. For

each benchmark, HWS performs better when integrated with DWF than with PDOM.

Moreover, a benchmark that gains significant speedup with PDOM&HWS will very

likely be improved by en-DWF&HWS since warp occupancy mainly depends on the

properties of the application itself, not on the branch handling mechanism it adopts.

6.5 Summary

This chapter discusses the simulation results of the various aspects of HWS. It

calculates the theoretical improvement of HWS and verifies that it agrees with the

simulation results. The contribution of the squeeze algorithm is also evaluated. For

the baseline platform, 0.6% improvement is achieved with squeeze operations. This

value goes up to 2.2% when DWF is employed. Furthermore, en-DWF is shown

to be more efficient than DWF by 8.8% on average for the selected benchmarks.

Finally, the detailed performance metrics are listed for the four platforms: PDOM,

PDOM&HWS, DWF and en-DWF&HWS. There is an average speedup of 1.20 on

the baseline platform and 1.27 on the DWF-enabled architecture.
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7. Conclusions and Future Work

In this thesis, a novel technique is proposed for GPU SIMD control flow handling:

hybrid warp size mechanism which abandons the fixed-size warp design and allows

mixed-size warps to be scheduled and executed by hardware. When branch divergence

occurs, warps are squeezed with lane awareness, and then warp sizes are downscaled

wherever possible. Based on the updated warp sizes stored in the warp pool, the

warp scheduler calculates the number of cycles the current warp needs and issues the

next warp accordingly. As a result, hybrid warps are pushed into pipelines as soon

as possible and more pipeline stages are overlapped. The proposed technique was

evaluated using a modified version of the famous GPU simulator, GPGPU-Sim. The

estimated theoretical potential improvement was calculated for HWS and compared

with the simulation results. The correlation coefficient between them was 0.85. For

the baseline architecture, an average speedup of 1.20 was achieved for a set of general

purpose GPU applications.

The well-known branch handling mechanism, DWF, was analyzed and it was

found that the efficiency of warp formation could be further improved. The warp

formation pattern was modified to allow thread migration before integration and to

avoid conflicts as much as possible. Consequently, more warps could be combined

and fewer warps were scheduled, resulting in a better SIMD utilization. According

to the simulations, 8.8% improvement was obtained compared to the original DWF

method.

In addition, this work was compared with other previous methods and it was

found that they are orthogonal. Therefore, it is worthwhile to analyze further the
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advantages and disadvantages of these methods with the goal of combining them

in some useful way. As an example, a proposed implementation of the integration

of DWF and HWS was presented. For clarity, the next warp that is waiting for

regrouping with the other warps is defined as a male warp, and the selected warp

from the warp pool offering opportunity of combination is defined as a female warp.

Most operations including the squeeze operations and the en-DWF operations happen

on the male warp. The simulation shows that the set of benchmarks are accelerated

on average by a factor of 1.27.

Future work involves implementing HWS on hardware, including the squeezer,

warp size analyzer, and the modification to the warp pool and other modules. This

would provide a means to estimate the area overhead and the extra power consump-

tion.

The location of the squeeze algorithm is another issue which needs further explo-

ration. In this work, when integrating with DWF, HWS applied squeeze operations

to the male warp before trying to combine with the female warp. It also works if the

squeeze operations are performed on the updated warp (the combination of the male

and female warps). However, it might be difficult to prove which one is better.
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A. Squeeze Algorithm Codes

// I n i t i a l i z a t i o n

for (unsigned i =0; i <4; i++){

thd count quar [ i ]=0; //Record thread counts f o r each quar t e r

f l a g qua r [ i ]= i ; //Record quar t e r IDs f o r s o r t ope ra t i ons

}

// Ca l cu l a t e thread amount f o r each quar t e r

for (unsigned i =0; i <4; i++){

for (unsigned j =0; j <8; j++){

i f ( t i d o r i g i n a l [ i ∗8+ j ]!=−1)

thd count quar [ i ]++;

}

}

// Sort four qua r t e r s accord ing to thread amount

for (unsigned i =0; i <3; i++){

for (unsigned j=i +1; j <4; j++){

i f ( thd count quar [ i ]< thd count quar [ j ] ) {

int temp count ;

int temp f lag ;

temp count=thd count quar [ i ] ;

t emp f lag=f l a g qua r [ i ] ;
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thd count quar [ i ]= thd count quar [ j ] ;

f l a g qua r [ i ]= f l a g qua r [ j ] ;

thd count quar [ j ]=temp count ;

f l a g qua r [ j ]= temp f lag ;

}

}

}

for ( i =0; i<warp s i z e ; i++){ //Warp size e qua l s to 32

t i d s qu e e z [ i ]= t i d o r i g i n a l [ i ] ;

}

// S ta r t from the quar t e r wi th the most a c t i v e th reads

for (unsigned i =0; i <3; i++){

int l=f l a g qua r [ i ] ;

//No ho l e s can be f i l l e d in t h i s quar t e r

i f ( thd count quar [ l ]==8) continue ;

for (unsigned j =0; j <8; j++){

//Current p o s i t i o n a l r eady conta ins an a c t i v e thread

i f ( t i d o r i g i n a l [ l ∗8+ j ]!=−1) continue ;

//Scan from the quar t e r wi th the l e a s t a c t i v e th reads

for (unsigned k=3;k>i ; k−−){

int p=f l a g qua r [ k ] ;

//No thread cou ld be taken to f i l l t he ho l e

i f ( t i d o r i g i n a l [ p∗8+ j ]==−1) continue ;
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t i d s qu e e z [ l ∗8+ j ]= t i d s qu e e z [ p∗8+ j ] ;

t i d s qu e e z [ p∗8+ j ]=−1;

break ;

}

}

}
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B. en-DWF Codes

for (unsigned i =0; i <8; i++){ //Process 8 l ane s s e p a r a t e l y

for (unsigned j =0; j <4; j++){ //Process 4 ho l e s in each lane

unsigned t e s t p l a c e=j∗8+ i ;

//Only proces s c o n f l i c t p l a c e s

//m occ ext r ep r e s en t s the a c t i v e mask f o r the female warp

i f ( m occ ext [ t e s t p l a c e ]>0 && t i d squ e e z [ t e s t p l a c e ]>−1){

for (unsigned k=0;k<4;k++){

i f ( k!= j ){

unsigned s can p l a c e=k∗8+ i ;

//Check i f t h e r e i s a p l ace t ha t con ta ins

// ho l e s both in the male and female warps

i f ( m occ ext [ s c an p l a c e ]==0 && t id s qu e e z [ s c an p l a c e ]==−1){

t i d s qu e e z [ s c an p l a c e ]= t i d s qu e e z [ t e s t p l a c e ] ;

t i d s qu e e z [ t e s t p l a c e ]=−1;

break ;

}

}

}

}

}

}
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C. Warp Size Analyzer Codes

unsigned simd width=8;

unsigned wa rp s i z e t h i s s h ad e r =32;

for (unsigned i =0; i<warp s i z e / simd width ; i++) {

int hws f l ag =0;

for (unsigned j =0; j<simd width ; j++){

unsigned tem index=i ∗ simd width+j ;

i f ( t i d s qu e e z [ tem index ]<0) hws f l ag++;

}

//Current quar t e r con ta ins no a c t i v e th reads

i f ( hws f l ag==8) wa rp s i z e t h i s s had e r −=8;

}

//Force a synchron i za t i on to a l l the SMs

i f ( wa rp s i z e t h i s s had e r>warp s i z e ea ch l oop ) {

warp s i z e ea ch l oop=wa rp s i z e t h i s s h ad e r ;

}
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