
SchedMail: Sender-Assisted Message Delivery

Scheduling to Reduce Time-Fragmentation

A Thesis Submitted to the

College of Graduate and Postdoctoral Studies

in Partial Fulfillment of the Requirements

for the degree of Master of Science

in the Department of Computer Science

University of Saskatchewan

Saskatoon

By

Dezhong Wang

©Dezhong Wang, April/2019. All rights reserved.

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the

University of Saskatchewan, I agree that the Libraries of this University may make it freely available for

inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for

scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their

absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is

understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not

be allowed without my written permission. It is also understood that due recognition shall be given to me

and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or part should

be addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5C9

Or

Dean

College of Graduate and Postdoctoral Studies

University of Saskatchewan

116 Thorvaldson Building, 110 Science Place

Saskatoon, Saskatchewan S7N 5C9

Canada

i

Abstract

Although early efforts aimed at dealing with large amounts of emails focused on filtering out spam, there is

growing interest in prioritizing non-spam emails, with the objective of reducing information overload and time

fragmentation experienced by recipients. However, most existing approaches place the burden of classifying

emails exclusively on the recipients’ side, either directly or through recipients’ email service mechanisms.

This disregards the fact that senders typically know more about the nature of the contents of outgoing

messages before the messages are read by recipients. This thesis presents mechanisms collectively called

SchedMail which can be added to popular email clients, to shift a part of the user efforts and computational

resources required for email prioritization to the senders’ side. Particularly, senders declare the urgency of

their messages, and recipients specify policies about when different types of messages should be delivered.

Recipients also judge the accuracy of sender-side urgency, which becomes the basis for learned reputations of

senders; these reputations are then used to interpret urgency declarations from the recipients’ perspectives. In

order to experimentally evaluate the proposed mechanisms, a proof-of-concept prototype was implemented

based on a popular open source email client K-9 Mail. By comparing the amount of email interruptions

experienced by recipients, with and without SchedMail, the thesis concludes that SchedMail can effectively

reduce recipients’ time fragmentation, without placing demands on email protocols or adding significant

computational overhead.

ii

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Prof. Nadeem Jamali for the continuous

support during my Master’s study. Without his understanding and help, it would not have been possible for

me to complete this thesis. While to many people, getting a degree is a big deal in their lives, to me knowing

someone that can be my mentor and friend is bigger.

Besides my supervisor, I would like to thank the rest of my thesis committee: Prof. Ian McQuillan,

Prof. Debajyoti Mondal, and Prof. Steven Prime, for their encouragement, insightful comments, and hard

questions.

Last but not the least, I would like to thank my parents, Xiangen Wang and Ailian Chen, for supporting

me spiritually throughout my life.

iii

Contents

Permission to Use i

Abstract ii

Acknowledgements iii

Contents iv

List of Tables vi

List of Figures vii

List of Equations viii

1 Introduction 1

2 Related Work 3
2.1 Research on Email . 3

2.1.1 Email Filtering . 3
2.1.2 Email Prioritization . 5

2.2 Emails in Industry . 8
2.3 Discussion . 10

3 SchedMail 11
3.1 Core Mechanisms . 11

3.1.1 User-Assisted Prioritization . 11
3.1.2 Sender-Reputation Calculation . 16
3.1.3 Urgency-Based Scheduling . 22
3.1.4 Non-Participant Interactions . 23

3.2 Feedback-Based Incentive Mechanism . 24
3.2.1 Managing Trusted Senders . 24
3.2.2 Managing Semi-Trusted Senders . 25

3.3 Discussion . 26

4 Implementation 28
4.1 User-Assisted Prioritization . 28

4.1.1 Configurations . 28
4.1.2 Assigning Urgency . 28

4.2 Urgency-Based Scheduling . 29
4.2.1 Configurations . 29
4.2.2 Assessing Urgency . 30
4.2.3 Message Delivery . 32

4.3 Discussion . 32

5 Evaluation 34
5.1 Features . 34
5.2 Overhead . 36

5.2.1 User Effort . 36
5.2.2 Computational Cost . 36

5.3 Effectiveness . 36

iv

5.3.1 Experiment . 37
5.3.2 Analysis . 38

5.4 Discussion . 40

6 Conclusion and Future Work 41

References 43

v

List of Tables

2.1 Software Products Which Provide Email Prioritization Related Features 9

3.1 Urgency-Related Email Header Fields . 13

5.1 Comparison with Prioritization Approaches . 35
5.2 Email Delivery Policies . 38
5.3 Effectiveness of SchedMail . 40

vi

List of Figures

2.1 Email Filtering Methods . 4
2.2 Email Filtering Strategies . 5
2.3 Email Prioritization Methods . 6

3.1 SchedMail Design . 12
3.2 User-Assisted Prioritization . 14
3.3 Urgency Interpretation and Delivery Scheduling . 15
3.4 Responsiveness of WMA with Different Sizes of Moving Windows 19
3.5 Responsiveness of SES with Different Smoothing Factors . 20
3.6 Rigid Reputation Score Mapping . 21
3.7 Flexible Reputation Score Mapping . 22
3.8 Feedback-Based Incentive Mechanism . 25

4.1 Prioritization Configurations . 29
4.2 Assign The Urgency of a Message . 30
4.3 Scheduling Configurations . 31
4.4 Assess The Urgency of a Message . 32

5.1 Daily Email Distribution . 39

vii

List of Equations

3.1 Simplified Urgency Interpretation Function . 14
3.2 General Reputation Function . 15
3.3 Map Vote to Reputation Score . 17
3.4 WMA Reputation Function . 17
3.5 Reputation Function Coefficients . 17
3.6 LWMA Reputation Function . 18
3.7 LWMA Reputation Variation . 18
3.8 SES Reputation Function . 19
3.9 Bootstrapped SES Reputation Function . 20
3.10 SES Reputation Variation . 21
3.11 Feedback Based Urgency Interpretation Function . 24
3.12 Semi-Trusted Urgency Interpretation Function . 26

5.1 Number of Interruptions . 37
5.2 Frequency of Interruptions . 37
5.3 SchedMail Effectiveness Ratio . 37

viii

1 Introduction

According to a recent report [8] from McKinsey Global Institute, people in workplaces spend an average

of 28 percent of their workweeks reading and answering emails. Another report from SaneBox [21] suggests

that only 38 percent of the emails in the average inbox are relevant and important; the remaining 62 percent

are not important and can be processed in bulk. Meanwhile, with the popularization of smart phones and

tablets, an even larger proportion of emails are opened on the go, and the shifting of email communications

from desktop to mobile is expected to grow [14]. While enjoying a more convenient and efficient platform of

communication, people also have to put up with more frequent interruptions caused by the high volume of

email notifications. This has led to a need for effective mechanisms for automated filtering and prioritization

of messages to reduce the information overload and time fragmentation experienced by email users.

Spam filtering, as defined in [10], is “an automated technique to identify spam for the purpose of preventing

its delivery”. Most approaches to spam filtering in the existing literature can be classified into four categories:

content-based solutions, reputation-based solutions, network-based solutions, and economic solutions [26]. In

practice, email systems usually combine more than one approach to filter out spam emails. Integrated solutions

therefore aim to provide flexible frameworks which enable most of the existing techniques to be applied in

concert [26]. Some researchers also have examined existing approaches from a higher level, emphasizing

the strategic goals (i.e., what to do) more than the specific methods (i.e. how to do) of handling spam.

For example, Cormack et al. [10] summarized the filtering approaches in two main categories: hand-crafted

classifiers and machine learning methods. Similar classifications can also be found in [4, 6].

Non-spam prioritization can be viewed as a generalization of filtering. Where the goal of filtering is

to determine whether particular email messages are legitimate or not, the purpose of prioritization is to

determine the importance of messages to a recipient at a finer grain. Consequently, some of the filtering

solutions (especially network-based and economic solutions) can also be used for prioritization. There are

mainly two different levels of prioritization discussed in literature, tagging (or “foldering”) and ranking.

The idea of tagging is to classify emails with similar attributes into groups, making it easier for users to

handle messages of the same type, and very likely also the similar level of importance, all in the same place

[12, 30, 16]. In contrast, email ranking is a finer way of prioritizing which requires each incoming email

message to be assigned a numeric value according to its importance [35]. Most existing approaches to email

ranking are based on social network analysis [7, 23, 40, 35, 46, 44], with the assumption that important

messages are usually from the people who have been contacted frequently, which is not always true. Some

other approaches are based on machine learning. For example, Yoo et al. presented a method to model

1

http://www.sanebox.com/

and predict personal email priorities with two machine learning algorithms: ordinal regression and classifier

cascades [45].

There remain many open issues in email filtering and prioritization. One issue which is of particular

interest to us is that most of the existing solutions tend to place the burden of filtering or prioritization

entirely on the recipients’ side [1], which is ironic considering that, before messages are read by recipients,

senders typically know more about the nature of the contents of their outgoing messages. Although the

importance of a message to a recipient is ultimately determined by what the recipient wants to happen, the

recipient gets to know about the content of a message only after it has been read by them. Especially, senders

who have some type of a relationship with a recipient may often have intimate knowledge of the recipients

priorities, even if they do not know the recipients personal schedule (such as whether they are currently in a

meeting). In such cases, short of the recipient making the filtering or prioritization decisions themselves, a

sender’s involvement could be the best input into the process in advance of message delivery.

This thesis presents a set of mechanisms that we call SchedMail, which can be added to traditional email

clients, to support scheduling of email delivery, and consequently reduce fragmentation of email users’ time.

This is achieved by shifting a part of the responsibility of email filtering and prioritization from the recipients’

side to the senders’ side, without placing demands on email protocols or compromising privacy. We have

developed specific mechanisms for senders to provide urgency values for their messages, and for recipients

to automatically interpret sender-specified urgency values using sender reputations. In addition, there is a

mechanism by which recipients can encourage cooperative senders to improve their prioritizing of messages.

Finally, in order to experimentally evaluate the mechanisms, we implemented a prototype based on a popular

email app K-9 Mail. A preliminary study involving a particular use case showed that SchedMail reduced

email interruptions to the recipient by about one third.

The rest of the thesis is organized as follow: Chapter 2 presents an overview of some representative

studies and products related to email filtering and prioritization; Chapter 3 introduces the detailed design

of SchedMail; Chapter 4 presents the implementation of the prototype app as well as some configuration

details; Chapter 5 evaluates SchedMail along three dimensions: features, overhead, and effectiveness; finally,

Chapter 6 concludes the thesis and raises some questions for potential future work.

2

2 Related Work

In order to reduce information overload and time fragmentation experienced by email users, both academia

and industry have been putting significant efforts into improving existing email systems and developing new

email management tools. This chapter presents an overview of some representative works related to email

filtering and prioritization, and then briefly discusses the open issues.

2.1 Research on Email

Researchers’ early efforts aimed at dealing with large amounts of emails focused mainly on spam filtering,

and then they were extended to non-spam prioritization as the amount of email communication traffic over

the Internet expanded. During the past years, many efforts have contributed solutions for email filtering and

prioritization by targeting different aspects of emails.

2.1.1 Email Filtering

Depending on the different angle of view, the approaches to email filtering in the existing literature can be

categorized in various ways. For instance, based on the filtering methods applied, Kaushik et al. [26] classified

the prevalent approaches into four categories (see Figure 2.1). Content-based solutions decide whether an

email is legitimate or unsolicited by checking the content of the email to see if the content matches some

predefined patterns [27, 41, 33]. Reputation-based solutions determine whether email senders are spammers

based on the reputation of the senders, the senders’ domains, or the senders’ IP addresses, etc. [15, 37, 2, 42];

some approaches also rely on the reputation of spam reporters [47]. Network-based solutions are based on the

idea that the emails sent by someone within the recipient’s social network are highly likely to be non-spam

messages [7, 46, 44]. Economic solutions try to address the question of who should pay the cost of dealing

with spam and how, discouraging spammers by raising the cost of sending spam emails, in terms of human

effort, computational cost, virtual currency, etc. [32, 22, 13]. In practice, email systems usually combine

more than one of the approaches described above in order to filter out spam emails. Integrated solutions

provide flexible frameworks which allow most of the existing techniques to be applied in concert [26].

Some researchers have examined existing approaches from a higher level, emphasizing what more than

how things have been, or can be in handling spam. For example, Cormack et al. [10] summarized the

filtering approaches into two main categories (see Figure 2.2): hand-crafted classifiers, which introduce a

3

Email

Filtering

Methods

Integrated

Solutions

Content-

Based

Solutions

Reputation-

Based

Solutions

Network-

Based

Solutions

Economic

Solutions

Figure 2.1: Email Filtering Methods

set of manually constructed rules for identifying spam emails; and machine learning methods (see also [4]),

which try to replace much of the manual work by automatic machine learning. A certain strategic goal can

usually be achieved with the support of different above-mentioned filtering methods (e.g., blacklists can be

constructed in various ways, such as by email content analysis, sender reputation management, or social

network analysis, etc.).

Another similar example of categorization can be found in [6], in which Caruana et al. also discussed two

major types of filtering strategies: machine learning and SMTP-based techniques. While the former is similar

to the machine learning methods in [10], the latter apply the same approaches as covered by the hand-crafted

classifiers [10], but from a different angle. Where hand-crafted classifiers focus mainly on identifying the key

concepts in various classification mechanisms, SMTP-based techniques place greater importance in how those

mechanisms are applied to the different phases of SMTP sessions.

Although research on email filtering techniques has become relatively mature over the years, some chal-

lenges continue to exist: text obfuscation and Bayesian poisoning are two well-known types of attacks that

can degrade the effectiveness of content-based solutions [3]; reputation-based solutions involve the extra bur-

den of keeping the reputation databases like blacklists and whitelists up-to-date; network-based solutions

can suffer from low effectiveness if the number of voters (i.e., the participants who run the algorithms of the

solutions) in the network is not sufficient [7]; economic solutions as well as some SMTP-based techniques

require changes to underlying network protocols which effectively makes them incompatible with the existing

4

Hand-

Crafted

Classifiers

Machine

Learning

Methods

· Manual Filtering

· Ad Hoc Filtering

· Rule-Based Filtering

· Whitelists

· Blacklists

· Collaborative Spam Filtering

· Challenge–Response

· Greylisting

· Supervised Learning

· Semi-Supervised Learning

· Transductive Learning

· Unsupervised Learning

· Active Learning

· On-line Learning

Email

Filtering

Strategies

Figure 2.2: Email Filtering Strategies

network infrastructure. Because individual solutions cannot always guarantee satisfactory results, in practice,

multiple solutions are usually combined together, or applied in parallel in order to complement each other.

2.1.2 Email Prioritization

Broadly speaking, email prioritization can be considered as an extended form of email filtering. While

filtering gives coarse-grained answers about whether a given email message is legitimate or not, prioritization

determines the finer-grained degree of importance (or urgency) of each message (spam messages would now

have the lowest degree). In a narrow sense, the primary task of filtering is to distinguish spam and non-spam,

whereas prioritization works mainly on identifying the importance of non-spam. This difference in points of

focus implies that the technical details of filtering and prioritization can differ considerably; however, some

of the filtering methods can also be used for prioritization. Like email filtering, prioritization rules can be

created either manually or automatically. Typically, email systems with manual prioritization allow users to

define a set of personalized rules, based on which the users’ incoming messages can be organized according

to their preferences. The techniques involved are quite similar to those for rule-based filtering. Since manual

prioritization is rarely discussed separately in the literature, the approaches reviewed in this section are

mostly related to automatic prioritization.

As shown in Figure 2.3, basically two different types of prioritization can be found in the literature:

tagging (or “foldering”) and ranking. The idea of tagging is to classify emails with similar attributes into

the same groups (e.g., work, social, news), which makes it easier for users to handle messages of the same

5

Tagging

Ranking

Email

Prioritization

Methods

· Text Categorization

· Data Mining

· Social Network Analysis

(Unsupervised Learning)

· Semi-supervised Learning

Figure 2.3: Email Prioritization Methods

type, and very likely also the similar level of importance, all in the same place. In early systems, email

tagging was treated as a special case of text categorization [9]. However, since most of such approaches are

individual-based, an inevitable concern is that an automatic text-based email system may perform well on

some users but badly on others. For this reason, Koprinska et al. [29] say that the problem of email tagging

is quite different from the standard text categorization problem. In order to decrease potential bias, Koren et

al. [30] proposed to exploit the inboxes of the overall population of users (i.e., practically, a massive number

of users), and find out some of the most popular tags which work for the general population. A shortcoming

of this approach is that, as pointed out in [16], several thousands of commonly used tags can be extracted

based on a large-scale corpus, so that the level of abstraction of the results may be not high enough for

practical purposes; furthermore, a low level of abstraction also increases the probability of tag-overlapping,

i.e., a certain email message can be bound with more than one tag (e.g., as both Facebook and social network).

Grbovic et al. [16] hence suggested giving preference to fewer but consistent classes for a more user-friendly

experience. They proposed six latent categories, one for human- and five for machine-generated messages,

in view of the fact that the latter ones nowadays take up a large proportion of the commercial webmail

traffic. Although experiments showed that the recommended categories covered nearly 90% of the messages

in a massive email corpus, an obvious drawback of their approach is the lack of ability to classify human-

generated messages. In contrast, Dredze et al.’s [12] idea of classifying email into activities focuses mainly

on human-generated messages, and therefore, can be applied together with that of Grbovic et al.’s [16]. The

approach is conceptually similar to automated tagging but in a more dynamical way: not only because the

set of activities (tags) can grow over time, but also because the participants and their specific roles (instead

of only the content of the messages) are also taken into account.

In comparison with tagging, email ranking is a finer way of prioritization which typically requires each

6

incoming email message to be assigned with a numeric value based on its importance [35]. Most approaches

to email ranking in the existing literature are based on social network analysis (SNA). For example, Chirita

et al. [7] proposed a so-called MailRank scheme that exploits the social communication network created via

email interactions, in order to identify spam and then build up a ranking among the filtered non-spam. For

each email address, MailRank maintains a public reputation score which is shared across the email system

(Basic MailRank), as well as some personalized scores for all the connected MailRank users (Personalized

MailRank). Experiments showed that MailRank performed well even in sparse networks, where only a small

set of peers take part in the ranking of email addresses. The results generated by MailRank can be sometimes

biased as it mainly analyzes only the flow of communication for clustering users and predicting importance.

To increase accuracy, other researchers have tried to introduce more metrics during the SNA process. For

instance, Johansen et al.’s approach [23] based on communities of interest is similar to Basic MailRank,

but also takes the frequency of communication into account. Since the user clusters in [23] were induced

from a community network rather than personalized networks, the approach works well only for a coarse

level of prioritization (i.e., identifying incoming messages as either important or non-important). Yoo et

al. [46, 44] tried to overcome this limitation by clustering users based on personalized networks instead

(like Personalized MailRank), however using more metrics for measuring the social importance of users than

Personalized MailRank did. Moreover, [46, 44] moved another step forward by propagating a set of pre-

collected email data with user-annotated importance levels in the network, so that the importance of new

messages can be predicted more accurately based on the communication history. More studies of prioritizing

email messages by SNA can be found in [40, 35], and the basic principles behind them are similar: first,

clustering users based on their historical social interactions, and identifying the social importance of the

users based on the flow and/or frequency of the interactions; second, predicting the importance of messages

according to the social importance of the senders, either in a public network or in the personalized networks

of the recipients. Besides, various metrics can be added during the SNA process to refine the accuracy of

results.

An inherent limitation of the existing tagging or ranking approaches to email prioritization is that messages

from the same clusters (of either topics or users) are not always of the same importance, and the differences are

sometimes nontrivial. Taking email tagging for example, a message tagged with “financial” can be important

if it is a bank statement, but it can also be a sales promotion letter which is unimportant to most recipients.

As mentioned above, trying to refine the tags does not help the situation because the email systems may end

up with too many tags. The problems of SNA-based approaches to email ranking are similar, i.e., classifying

emails solely by traffic patterns such as sender, quantity, frequency, etc., cannot capture the priorities of

emails all the time [23]. For instance, a message from the manager of a company (i.e., an “important”

person) can be an urgent meeting request, whereas it can also be a general holiday greeting. Furthermore,

the structures of social communication networks are usually not sharable among different public email service

providers due to privacy concerns, which makes it difficult to apply such approaches in public domains.

7

2.2 Emails in Industry

Email Filtering and prioritization are not only subjects of scientific research, but also wide fields of software

development in industry. Blanzieri et al. presented a summary of both commercial and non-commercial

software solutions for email filtering in [4], showing that in practice different filtering techniques are usu-

ally combined in order to achieve optimal results (as also discussed in Section 2.1.1). In comparison with

filtering, email prioritization is still not a well-established industry field, partly because the importance of

email messages is mostly user-dependent and thus is difficult to capture or predict. This section presents a

brief overview of some market products, which provide email prioritization services, from the functionality

perspective.

Gmail, as one of the most influential public email services, has been putting a lot of efforts into improving

its webmail interface. The Inbox Tabs functionality was launched in 2013, aiming to classify users’ incoming

messages into categories such as Promotions, Social, Updates, etc. These categories make it easy for users

to focus on messages that are important to them and read messages of the same type all in the same place

[18]. Users can also choose different views for their inboxes, such as Important First, Starred First, Priority

Inbox, etc. Especially, to predict which of the incoming messages are important, Gmail automatically takes

into account a number of characteristics, including users’ frequent contacts, users’ topics of interest, recent

use of stars, archive and delete, and so forth [19]. Similarly, Yahoo! Mail provides a so-called Smart

Views function to its webmail clients, classifying machine-generated messages automatically into a fixed

set of categories including Social, Travel, Shopping, Finance, etc. However, all human-generated messages

are put into one category named People, which may not be able to satisfy the requirements of users who

have intensive communications with real people. Although Outlook.com (previously Hotmail) webmail

also provides an interface for users to sort their incoming messages into different categories, the purpose is

mainly for archiving and searching instead of prioritization, as the classification can only be done manually.

Outlook.com allows users to assign importance to outgoing messages as we do in SchedMail; nevertheless,

the importance values are not used at the recipient-side for scheduling email receiving, and no means are

provided for reconciling the conflicting interests of priorities between senders and recipients.

Other than server-side solutions, some software products attempt to prioritize incoming messages through

client-side analysis (e.g., text categorization, communication-flow statistics, user-action logging). EmailTray

analyzes user actions such as read, respond, delete, forward, etc., as well as interconnections between email

senders, to rank incoming messages by importance as belonging in one of four different levels: top priority,

low priority, no priority, and spam. EmailTray allows user-training by tuning the priorities of messages

manually; however, since the priorities are sender-based rather than message-based, changing the priority

of a message also changes the priorities of all the messages from the same sender. SaneBox prioritizes

important messages and summarizes the rest mainly based on users’ communication histories. It provides a

8

http://www.emailtray.com/
http://www.sanebox.com/

function named Snooze Folders, which allows users to temporarily archive selected messages, move them out

of the inbox, and return them to the top when it’s more convenient for the users to deal with them. A similar

Snooze function is also built in Gmail. Although Snooze and SchedMail both work on scheduling incoming

messages to be handled at an appropriate time in the future, based on the importance levels, the main

difference is that SchedMail schedules the messages automatically on recipients’ side while Snooze requires

manual actions by recipients. Boomerang is a web app built on top of Gmail which allows a user to write

a message and schedule it to be sent automatically at a selected time in the future. This potentially provides

a sender-side mechanism for coping with email overload. For example, senders who do not want to disturb

their recipients with non-urgent messages can schedule the messages to be sent later in the day. However,

since this “sender-side scheduling” grants no control to the recipients, it works fundamentally differently from

SchedMail.

Table 2.1: Software Products Which Provide Email Prioritization Related Features

Type Product Name Tagging Ranking Snoozing
Sender-Side

Scheduling
Training

Server

Side

Solutions

Gmail X* X X × ×

Yahoo! Mail X × × × ×

Outlook.com � × × × ×

Client

Side

Solutions

EmailTray × X × × X

SaneBox × X X × X

Boomerang × × X X ×

Mailstrom X × X × ×

Newton � × X X ×

Superhuman � X X X ×
* X– supported; ×– unsupported; � – manually supported.

There are also many other commercial products which offer limited supports of email prioritization, such

as Mailstrom, Newton, Superhuman, just to name a few. Table 2.1 summarizes the prioritization-related

features of above-mentioned software products.1 The main principle behind these tools or services is quite

similar: from the space angle, classifying messages into different categories and/or prioritizing them according

to their importance; from the time angle, scheduling the delivery, receiving, and/or response of messages;

moreover, user assistance sometimes is also expected (e.g., Gmail, Yahoo! Mail, and Outlook.com all allow

users to report spam through a one-click action).

1The purpose of the table is for summarization rather than comparison, which means the products that support more features
do not necessarily function better than the ones that support less.

9

http://www.boomeranggmail.com/
https://mailstrom.co/
https://newtonhq.com/
https://superhuman.com/

2.3 Discussion

Email filtering and prioritization are active fields in both academic research and industry. However, work

on filtering started earlier and is better-established than that on prioritization, partly because prioritization

did not draw much attention from researchers until recently when information overload became a matter of

concern. In addition, the importance of email messages is mostly user-dependent (e.g., messages that are

important to some users may be unimportant to others), with the result that the research on prioritization is

usually confronted with the difficulties of collecting private data for analysis and evaluation purposes [44, 45].

For similar reasons, prioritization-related functions implemented by the existing commercial products

are still in preliminary stages. Prioritization is realized mostly by way of tagging or coarse-grained ranking

(i.e., identifying email messages as either important or unimportant). Especially, there is still no satisfactory

solution for classifying or ranking human-generated messages. However, to users who frequently receive a

high-volume of emails from family members, friends, coworkers, etc., automatic fine-grained ranking is not

only just useful but also essential. Although many email clients allow users to define rules manually for

classifying incoming messages (i.e., rule-based solutions), the approach fails when the sources and/or content

of the messages cannot be predicted in advance. Besides, the efforts involved in maintaining the rules can be

overwhelming as the number and variety of messages increase.

Furthermore, a common deficiency of the existing approaches to email prioritization is that sender-side

participation is barely involved, even though senders typically know more about the nature of the content

of their outgoing messages. Some email clients such as Outlook.com do allow senders to assign importance

to outgoing messages, however, there is no way for the recipient side to interpret the sender-side importance

levels according to the recipients’ preferences. This is important because recipients and senders often have

different interests in determining the importance (or urgency) of a message: even when the sender is trying

to be considerate, only the recipient knows their local schedule.

SchedMail focuses mainly on email prioritization, considering that prioritization is a less-explored area.

It is not meant to replace the existing filtering or prioritization techniques, but to work as a complementary

mechanism. SchedMail utilizes similar techniques to what have been reviewed in this chapter, i.e., prior-

itization, scheduling, user-assistance, etc., to address the time fragmentation issue. However, what makes

SchedMail unique is that senders are significantly involved in the process of recipient-side email ranking.

Scheduling of email reception thus is informed by a fine-grained ranking of messages, balancing recipients’

interests with those of senders.

10

3 SchedMail

This chapter presents the detailed design of SchedMail. Section 3.1 describes the core mechanisms of

SchedMail, i.e., how urgency values of messages are specified by the senders, interpreted by the recipients’

email clients, and eventually used for scheduling the delivery of messages to the recipients. Section 3.2

presents some complementary mechanisms for managing the senders who are supposed to be amenable to

the recipients’ urgency interpretation.

3.1 Core Mechanisms

Figure 3.1 illustrates the core mechanisms involved in SchedMail. Message senders assign urgency values

to their messages, which are recorded in the messages. All messages flow through the email servers to the

recipients’ side. Once on the recipients’ side, each message goes through two steps. The first step interprets

the sender-specified urgency1 value by applying the sender’s reputation to the value in order to determine

corresponding recipient-focused urgency. The second step makes a delivery scheduling decision about the

message based on a recipient-provided policy, which essentially maps various message urgency values to

recipient-selected message delivery time.

3.1.1 User-Assisted Prioritization

Urgency (or importance, priority, which are interchangeable in this thesis) is not a new attribute for email

messages introduced by SchedMail. Table 3.1 shows some commonly used header fields [39] that are related

to message urgency. The values of these header fields are usually chosen by email senders from the user

interfaces of their email clients. Considering that senders typically know more about the nature of the

contents of messages, sender-specified urgency values can be very useful input parameters for the email

ranking process on the recipients’ side. However, in practice, the sender-specified urgency values have been

used only in limited ways: most email clients display different indicators alongside messages according to

their urgency levels; some others may go further, allowing users to sort messages by urgency levels. On the

senders’ side, for example, an outgoing message can be marked as important but there is no guarantee that

it will appear prominently in the target mailboxes; on the recipients’ side, there is no effective way to keep

users from being interrupted frequently by notifications of message arrivals, while still helping them keep

1More specifically, it is the sender-side estimation of the urgency to the recipient.

11

Urgency-Assigned

Messages

消息传递

消息传递

消息传递

Server

Incoming

Messages

消息传递
Scheduled

Messages

会话Recipient

Email

Client

会话Sender

Email

Client

会话Sender

Email

Client

收件人策略

Apply:

1. Urgency Interpretation

2. Scheduling Policies

Figure 3.1: SchedMail Design

track of important messages. To make the situation worse, the senders may abuse urgency values (e.g., by

assigning the highest urgency value all the time), while the recipients have no way to prevent or even report

such improper behavior, such as giving feedback to the senders, reporting to their own email clients or some

central authority.

Prioritization is essential to SchedMail, because incoming messages to recipients are scheduled based on

their urgency levels. As mentioned above, the original sender-specified urgency values cannot be used directly

on recipients’ side for deciding delivery time, because senders and recipients have inherently independent

interests in when messages should be read. SchedMail introduces the idea of user-assisted prioritization,

which benefits from cooperation between senders and recipients, and attempts to balance their interests. As

shown in Figure 3.2, user-assisted prioritization in SchedMail consists of three main steps: assigning urgency,

interpreting urgency, and assessing urgency.

Assigning Urgency

To communicate the urgency assigned by a message’s sender, either a new header field needs to be added,

or one of the existing commonly used headers shown in Table 3.1 can be utilized. SchedMail adopts the

X-Priority header field along with its options [20], mainly for two reasons. First, the 5-point rating scale

(also known as Likert Scale [31]) used by X-Priority is in line with the ranking scheme used by popular

online markets such as Google’s Play Store, Apple’s App Store, Amazon.com etc. A coarser scale would not

be able to sufficiently differentiate between messages to effectively inform a meaningful range of choices of

message delivery times; and, a finer scale would create more options than may be meaningful to senders, and

12

https://play.google.com/store
http://www.apple.com/appstore
http://www.amazon.com/

Table 3.1: Urgency-Related Email Header Fields

Header Field Options Remarks

Importance [28]

High

Normal

Low

A hint from the originator to the recipients about

how important a message is (not used to control

transmission speed).

Priority [28]

Normal

Urgent

Non-urgent

The value of this field may influence transmission

speed and delivery.

X-Priority [20]

1 (Highest)

2 (High)

3 (Normal)

4 (Low)

5 (Lowest)

This header field is non-standard but widely used.

may even lead to decidophobia.2 Second, reusing an existing header field leads to greater compatibility when

SchedMail (or more generally, SchedMail-supported email clients) is used to communicate with people using

other email agents (servers or clients) which may use the same existing header field.

Each outgoing message composed by SchedMail is assigned with one of the five predefined urgency values.

The urgency can be either explicitly selected by the sender through SchedMail’s user interface, or implicitly

assigned by SchedMail with a default value.

Interpreting Urgency

As previously discussed, message recipients often have different priorities, preferences and interests from

senders. As a result, the urgency value specified by a sender for a message may not match what the recipient

of the message would assign it. For this reason, a mechanism is required for interpreting sender-specified

urgency values from the recipient’s perspective. As shown in Figure 3.3, a urgency interpretation function

is used to do this. The function is initialized to an identity function, and is subsequently learned based on

recipient’s assessment of sender-specified urgency values.

Let s be a sender, r be a recipient, ps be a urgency value specified by the sender, and prs be the corre-

sponding recipient-focused urgency. The urgency interpretation function can then be denoted by furgency,

which takes two arguments: ps, the sender-assigned urgency, and ers, which denotes the sender’s reputation

from the particular recipient’s perspective. A general form of the interpretation function is as below:

prs = furgency(ps, e
r
s)

2Decidophobia, introduced by Kaufmann in his 1973 book Without Guilt and Justice: From Decidophobia to Autonomy, is
the fear of making decisions [25].

13

Write

Message

Assign Urgency

to an Outgoing

Message

Urgency

Assigned?

Assign Default

Urgency to the

Message

Interpret

Urgency of the

Incoming

Message

Assess the

Interpreted

Urgency

Urgency

Assessed?

Assess the

Urgency by

Default

Sender-

Reputation

Database

Sender’s Client

Y

N

Y

Recipient’s Client

Recipient’s Client

N

Read

Message

 Assigning Urgency Interpreting Urgency Assessing Urgency

 Sender-Side Recipient-Side

Work Flow

Data Flow
Sender Recipient

Figure 3.2: User-Assisted Prioritization

In the simplest scenario, ers can be an offset value to the original sender-specified urgency. It may also take

different forms depending on implementation, but should always be able to be converted to an offset value.

furgency therefore can be rewritten as below:

prs = ps + δ(ers) (3.1)

where δ is a function for converting reputation scores to urgency offset values.3 A detailed deduction of

ers and δ is presented in Section 3.1.2.

Assessing Urgency

As part of the user-assisted prioritization process, SchedMail allows recipients to assess sender-specified

urgency values. Since urgency itself is a fuzzy variable (e.g., it is often hard to tell that the urgency level of

a message is not the “lowest” but just “low”), recipients are not asked to assess the original urgency values

directly. Instead, recipients have a feedback option as part of the message reading interface, allowing them

to pick whether they would have liked to see the message earlier or later. The email client takes a recipient’s

3Note that from the definition of X-Priority, lower values represent higher urgency levels. So, the sign before δ may need to
be reversed accordingly in practice.

14

Urgency

Interpretation

Immediately

In the Evening

At the Weekend

Never

Sender-Specified

Urgency

Delivery

Scheduling

Delivery TimeHighest

High

Normal

Low

Lowest Blocked

Highest

High

Normal

Low

Lowest

Recipient-Focused

Urgency

Figure 3.3: Urgency Interpretation and Delivery Scheduling

feedback input, if any, as a type of vote on the message’s sender. For each incoming message, choosing

earlier or later casts a positive or negative vote, respectively. If there is no assessment input received from

the recipient (which possibly means the urgency of the message is just right, i.e., prs = ps), the email client

counts a neutral vote automatically.

All these votes could be collected and stored in local databases which are maintained by the email clients.

When a subsequent message is received, the recorded votes on the sender of the message are retrieved, and

used for calculating the sender’s reputation (i.e., ers, see the previous subsection) in order to interpret the

message’s urgency. The interpreted urgency, again, can be assessed by the recipient. This iteration continues

until the learning process reaches a relatively stable state. In practice, in order to reduce storage footprint

and computational overhead, an optimized algorithm could store only the aggregates derived from the votes,

and calculate ers in an incremental way.

Let
+
v
r

s,
−
v
r

s, and
∼
v
r

s denote positive, negative, and neutral votes from recipient r to sender s.
+

V
r

s,
−
V

r

s, and
∼
V

r

s are collections of these votes, respectively. V r
s =

+

V
r

s ∪
−
V

r

s ∪
∼
V

r

s is the complete sequence of votes from r to

s sorted in chronological order. Based on the discussion above, a general form of the function for calculating

ers is written as below:

ers = frep(
+

V
r

s,
−
V

r

s,
∼
V

r

s) = frep(V r
s) (3.2)

In the function, frep depends on the voting time because typically recent votes predict senders’ behaviors

and reflect recipients’ preferences more accurately, especially in considering that the senders may adjust their

behaviors when the feedback-based incentive mechanism is applied (see Section 3.2). On the other hand, the

content of V r
s stays the same until a new vote is cast for s by r or r’s email clients, regardless of how much

time has elapsed since the last vote was received. Put another way, it is not actually the physical time of the

15

votes matters, but the relative time, i.e., the chronological orders of the votes in V r
s .

Let |V r
s | denote the cardinality of V r

s (i.e., the total number of votes from r to s), and similarly we have

|
+

V
r

s|, |
−
V

r

s|, and |
∼
V

r

s|. Intuitively, the sender’s reputation ers should go up as |
+

V
r

s| and |
∼
V

r

s| grow, and go

down as |
−
V

r

s| grows. The recipient-focused urgency prs thus is adjusted accordingly based on the definition of

Function (3.1). This is meaningful as it addresses the conflicts of interests in when messages should be read

between senders and recipients. To be specific, both senders’ expectations and recipients’ preferences are

taken into account by the prioritization process. The senders hurt their own reputation if they keep abusing

high urgency values, and consequently, the urgency of their messages are interpreted as low on the recipients’

side. Moreover, user-assisted prioritization does not only help senders and recipients to focus on important

messages, but also provides a means for those “considerate senders”who do not want to interrupt people with

non-urgent messages.

3.1.2 Sender-Reputation Calculation

As discussed in Section 3.1.1, a sender s’s reputation in the eyes of a recipient r, i.e., ers, is calculated from

r’s assessments of the urgency of prior messages received from s. ers is used to adjust the sender-specified

urgency values to the corresponding recipient-focused urgency values. Although Function (3.2) illustrates a

way of calculating ers in general, the question about how raw reputation scores can be converted to urgency

offset values in Function (3.1) remains to be answered.

Email networks are constructed under a typical client/server architecture. However, the user-assisted

prioritization introduced by SchedMail is carried out in a peer-to-peer (P2P) manner. There are several

existing solutions available for reputation management in P2P networks (such as [24, 17, 43]), but they

cannot be adopted directly by SchedMail. For example, [17] utilizes a centralized reputation computation

agent to prevent malicious peers from altering reputation scores for their own benefits, which is incompatible

with the current email infrastructure. [24] requires collaboration among peers, which works well in content

delivery networks, but raises privacy concerns for email networks. It is not only that senders’ reputation scores

cannot be exchanged anonymously, but also that the communication overhead for transferring the scores is

not insignificant. Moreover, in typical P2P reputation problems, peers are ranked by their reputation scores;

whereas in SchedMail, an email message is ranked based on the sender’s reputation from the recipient’s

perspective, and the sender’s indication of message urgency.

This section introduces two types of algorithms for calculating and normalizing senders’ reputation scores,

and then shows how the scores can be tuned for interpreting sender-specified urgency values.

Weighted Moving Average

In the field of data analysis, Weighted Moving Average (WMA) is a time series forecasting model that places

more emphasis on recent changes in data. Each data point is multiplied by a weight, with the weighting

16

determined by the number of data points selected. The characteristics of the model provide us a convenient

way of verifying what has been discussed earlier in Section 3.1.1, i.e., the latest votes usually reflect senders’

behaviors and recipients’ preferences more accurately than the older ones.

Let m denote the total number of votes from recipient r to sender s (i.e., m = |V r
s |), and V r

s (i) be the

ith vote in V r
s . {V r

s (i) | 1 ≤ N ≤ m, m−N + 1 ≤ i ≤ m }, therefore, is a subsequence of V r
s that contains

the latest N votes. If the temporal factor is ignored, a function that maps the three types of votes to the

corresponding reputation scores is given as below:

fscore(v
r
s) =


+
c vrs ∈

+

V
r

s

−−c vrs ∈
−
V

r

s

∼
c vrs ∈

∼
V

r

s

(3.3)

which says that sender s gains a reputation score
+
c from a positive vote cast by r, loses

−
c from a

negative vote, and gains
∼
c from a neutral vote. Let w(i)4 be a monotonically non-decreasing function of

i (i = 1, 2, ..., N), whose value is the weight of the reputation score contributed by V r
s (m −N + i). Based

on the WMA model, a function for calculating the reputation score of s, denoted by ers(m), can be defined

as below:

ers(m) =

N∑
i = 1

(w(i) ∗ fscore(V r
s (m−N + i))) (3.4)

where ers(m) is undefined when 0 < m < N , and typically, we should have
∑N

i=1 w(i) = 1.

As
+
c ,
−
c , and

∼
c are all non-negative real numbers, from Function (3.3) and (3.4), the minimum value of

ers is −−c and the maximum value is max(
+
c,
∼
c). Normally, a positive vote should contribute more reputation

score than a neutral vote, which means
+
c is no less than

∼
c and the maximum value of ers is therefore

+
c . On

the other hand, the X-Priority header field uses a 5-point rating scale to prioritize messages, which means the

range of δ(ers) in Function (3.1) can be limited to [−4, 4] so that it is possible for any value of X-Priority to

be adjusted to the lowest or highest level. By mapping [−4, 4] linearly to the value range of ers, i.e., [−−c, +
c],

we can get one set of coefficients for Function (3.3), i.e.,

fscore(v
r
s) =


4 vrs ∈

+

V
r

s

−4 vrs ∈
−
V

r

s

0 vrs ∈
∼
V

r

s

(3.5)

In general WMA analysis, it is usually up to the data analyst’s experience to come up with a weight

function w(i) which works for a specific application field. In other words, there is no formally correct way of

4Note the notation of w(i) implies that it does not vary from different senders or recipients.

17

choosing a w(i) that works the best for all cases. Here for the proof-of-concept purpose, a limiting yet widely-

used form of w(i) is adopted: w(i) = i
1 + 2 + ... + N . By substituting the weight function into Function (3.4),

it gives:

ers(m) =

N∑
i=1

i ∗ fscore(V r
s (m−N + i))

1 + 2 + ... + N
(3.6)

where the weight of each vote decreases in arithmetical progression. This specific version of WMA is also

known as Linearly Weighted Moving Average (LWMA) [11].

The last remaining question for WMA is how to select a suitable value of N . Let ∆ers denote the variation

of ers along with each individual input vote V r
s (i), which can be calculated based on Function (3.6):

∆ers = ers(i)− ers(i− 1) =
N ∗ fscore(V r

s (i)) −
∑N−1

j=0 (fscore(V
r
s (i− j − 1)))

1 + 2 + ... + N

From Function (3.5) we know that ∆ers achieves the minimal value when V r
s (i) is a negative vote and

V r
s (i − 1), V r

s (i − 2), ..., V r
s (i − N) are all positive votes; similarly, ∆ers achieves the maximal value when

V r
s (i) is a positive vote and the rest are all negative votes. Therefore, the range of ∆ers is:

min(∆ers) =
N ∗ (−−c) − N ∗ +

c

N ∗ (N + 1) / 2
=
−16

N + 1

max(∆ers) =
N ∗ +

c − N ∗ (−−c)

N ∗ (N + 1) / 2
=

16

N + 1

(3.7)

Function (3.7) indicates that the larger the value of N , the less responsive is ers to the latest votes. For

example, if we want to control the variation of ers so that it changes no more than one urgency level for every

single input vote, we have to set the size of the moving window to be at least 15 (i.e., N ≥ 15). Figure 3.4

shows some examples of the responsiveness of WMA to a consecutive series of positive votes, with different

choices of N .

Simple Exponential Smoothing

In WMA we can give more weight to recent votes, but we are limited to the last N votes. Simple Exponential

Smoothing (SES, a.k.a. exponentially weighted moving average) [5, 36], as a rule of thumb time series

forecasting model, improves on WMA by taking all previous votes into account, while still favoring the most

recent votes. SES offers the flexibility of either giving more weight to recent changes in data, or having a

stronger smoothing effect by being less responsive to recent changes. The characteristics of the model provide

us a convenient way of studying the trend of senders’ changing their behaviors over time, which serves the

purpose of determining whether recent votes should be assigned higher or lower weight.

Let V r
s (i) be the ith vote cast by recipient r for sender s, and ers(i) be s’s reputation from r’s perspective

right after V r
s (i) is received. Based on the SES model, a function for calculating the sender’s reputation can

18

-5

-4

-3

-2

-1

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

S
e
n

d
er

-R
ep

u
ta

ti
o
n

Number of Positive Votes

N = 10 N = 15 N = 20

Figure 3.4: Responsiveness of WMA with Different Sizes of Moving Windows

be defined recursively as below:

ers(i) =

 fscore(V
r
s (1)) i = 1

α ∗ fscore(V r
s (i)) + (1− α) ∗ ers(i− 1) i > 1

(3.8)

where α (0 < α < 1) is the smoothing factor, and fscore is defined in Function (3.3). The range of ers

calculated by Function (3.8) is [−−c, +c], which is the same as the reputation range derived with WMA model.

For the same reason, the fscore defined in Function (3.5) can also be applied in SES model.

In Function (3.8), ers(1) plays an important role in computing all the subsequent reputation scores.

Specially, the smaller the value of α, the more important is the selection of the initial reputation score

[34, 36]. Although setting ers(1) to fscore(V
r
s (1)) is one method of initialization in theory, it would be too

radical to apply the calculated reputation scores directly during the early stage (e.g., V r
s (1) =

+
v
r

s means the

second email from s to r is going to be raised to the highest urgency level regardless based on Function (3.5)).

This general drawback of SES in practice is usually addressed by allowing the process to evolve for a

reasonable number of observations, and using the average of those observations as the initial forecast. In

other words, we could bootstrap the initial reputation score by collecting a certain number (e.g., K) of initial

votes from r to s and calculating the average score of them. Function (3.8) then can be refined as below:

ers(i) =


∑K

j=1(fscore(V
r
s (j)))

K i = K

α ∗ fscore(V r
s (i)) + (1− α) ∗ ers(i− 1) i > K

(3.9)

19

where the value of ers(i) is undefined when 0 < i < K.

Another question about Function (3.8) and (3.9) is the choice of the smoothing factor α. Figure 3.5

shows some examples of the responsiveness of SES to a consecutive series of positive votes, with different

values of α. In general, α can be any value between 0 and 1. Values of α close to one give greater weight to

recently collected votes, while values of α closer to zero are less responsive to recent votes. Although there is

no formally correct procedure for choosing α, one commonly adopted approach is to identify values of α that

minimize a measure of forecast error like Mean Absolute Deviation (MAD) or Mean Squared Error (MSE)

([38, 36]). For example, in Function (3.9), the initial votes (i.e., V r
s (1), V r

s (2), ..., V r
s (K)) could be utilized

to find an optimized value of α which results in the smallest MSE.

-5

-4

-3

-2

-1

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536

S
e
n

d
er

-R
ep

u
ta

ti
o
n

Number of Positive Votes

α = 0.1 α = 0.2 α = 0.5

Figure 3.5: Responsiveness of SES with Different Smoothing Factors

Once we get all the required constants settled, including
+
c ,
−
c ,
∼
c , ers(K) and α, we can calculate the

variation of ers along with each individual input vote V r
s (i) (i > K) based on Function (3.9):

∆ers = ers(i) − ers(i− 1) = α ∗ (fscore(V
r
s (i)) − ers(i− 1))

where if V r
s (i) is a positive vote (i.e.,

+
v
r

s), we should have ∆ers = α ∗ (4 − ers(i− 1)) based on Function (3.5).

Since ers(i− 1)) ⊆ [−−c, +
c] = [−4, 4], we get the range of ∆ers which is [0, 8α]. Similarly, for a negative

vote the range of ∆ers is [−8α, 0], while for a neutral vote the range is [−4α, 4α]. Therefore, for any type

of input vote the overall range of ∆ers is:

∆ers ⊆ [−8α, 8α] (3.10)

20

Function (3.10) indicates the responsiveness of Function (3.8) and (3.9) to recent votes only depends on

the choice of α. For example, if we want to limit the variation of ers so that it can change at most one urgency

level for every single input vote, we have to choose a value of α from (0, 0.125] instead of (0, 1). However,

in practice, if we choose a higher α but still want the variation of ers to below a certain value, e.g., ∆max, we

could put this restriction on Function (3.9) so that when ∆ers > ∆max, let ers(i) = ers(i− 1) + ∆max.

Fine Tuning

Although the previous subsections showed how raw reputation scores calculated by Function (3.6) and (3.9)

can be normalized to fit the value range of the urgency offsets, the outputs are still not ready to be used to

adjust sender-specified urgency values directly. First, the reputation scores, which are floating-point numbers,

must be rounded up or down to integers. Below we show two examples about how such conversion could be

performed.

2 31

I1: [1, 2) I2: [2, 3) [3, 4)(-1, 1)

i-θ1 i+θ2

0 3δ2: 2δ1: 1Urgency

Offset

Reputation

Score

i

Figure 3.6: Rigid Reputation Score Mapping

Figure 3.6 illustrates a rigid mapping from reputation scores to urgency offsets. The value range of the

reputation scores is divided into disjoint intervals. Each of the intervals is mapped to one and only one

urgency offset value, and so is any reputation score within the interval. In a simulation we carried out, we

learned that this type of rigid mapping could suffer from a problem which we call “urgency-bounce.” As

shown in the figure, i is the boundary of two adjacent intervals I1 and I2; i− θ1 ∈ I1, i+ θ2 ∈ I2. Consider

the following scenario:

a) The current reputation score of a sender s in the eyes of a recipient r, ers, is i−θ1, and the corresponding

urgency offset is δ1;

b) r receives a new message from s, and then casts a positive vote for s; ers becomes i+θ2, and the urgency

offset becomes δ2 (δ2 = δ1 + 1);

c) r receives another new message from s, but this time casts a negative vote; ers changes back to i− θ1,

and the urgency offset changes back, too.

21

As the communication between r and s continues, a) – c) may repeat a bunch of times. Consequently, the

urgency offset, which is used for adjusting urgency values of the messages from s, bounces between δ1 and

δ2 during the same communication period.

2 31

I1: [1-Δ3, 2+Δ2] I2: [2-Δ1, 3+Δ6] [3-Δ7, 4+Δ8][-1-Δ5, 1+Δ4]

i-θ1 i+θ2

0 3δ2: 2δ1: 1Urgency

Offset

Reputation

Score

i-Δ1 i+Δ2 i

i-θ3 i+θ4

Figure 3.7: Flexible Reputation Score Mapping

In order to cope with the urgency-bounce issue, Figure 3.7 introduces flexible mapping. As in rigid

mapping, the value range of the reputation scores is also divided into several intervals, and each of the

intervals is mapped to one and only one urgency offset value. However, in flexible mapping, there is a non-

empty intersection between every pair of adjacent intervals. As shown in the figure, I1 and I2 are two adjacent

intervals; I ′ = I1 ∩ I2 = [i−∆1, i+ ∆2]; i− θ1 ∈ I ′, i+ θ2 ∈ I ′, i− θ3 ∈ I1− I ′, i+ θ4 ∈ I2− I ′. Suppose the

reputation score of a sender s in the eyes of a recipient r, ers, is i− θ3, and the corresponding urgency offset

is δ1. As the communication between r and s goes on, ers may fluctuate up and down. However, the urgency

offset remains at δ1 as long as ers does not go beyond the range of I1, in spite of the possibility that ers may

fall into I ′ at some point. Similarly, if the current ers is i + θ4, the urgency offset remains at δ2 unless ers

changes out of the range of I2. To see how flexible mapping addresses the urgency-bounce problem exactly,

let’s go through the above sample scenario again:

a) The current ers is i− θ1, and the urgency offset is δ1;

b) r receives a new message from s, and then casts a positive vote for s; ers becomes i+ θ2, however, the

urgency offset remains at δ1 instead of changing to δ2;

c) r receives another new message from s, but this time casts a negative vote; ers changes back to i− θ1,

and the urgency offset is still δ1.

3.1.3 Urgency-Based Scheduling

The purpose of email prioritization in SchedMail is for supporting urgency-based scheduling of message

delivery. As shown in Figure 3.3, the delivery scheduler takes the delivery policy specified by a recipient,

and uses it to map the recipient-focused urgency value of a message to the time when the message should

be delivered to the recipient. More specifically, the message is received by the email client, but kept hidden

22

from the recipient, until the appropriate delivery time, with the purpose of reducing the recipient’s time

fragmentation. The mapping function is generated automatically from the user-specified policy, which itself

is created by the recipient through a policy specification interface.

Let P denote a collection of the five urgency levels defined by the X-Priority header field, and D denote

a set of predefined delivery-time options, such as immediately, in the evening, at the weekend, etc. The

user-specified policy is simply a mapping function from P to D which can be denoted as fdelivery : P → D,

and the mapping relations of fdelivery is manually configured by the users from their email clients. Since the

options in D are relative time rather than absolute (it is not feasible to use absolute time, either), in order to

make delivery decision of a new message, the delivery scheduler should check not only the recipient-focused

urgency (i.e., prs, and prs ∈ P) of the message, but also the sending time. Below gives a formal definition of

the delivery scheduling mechanism first, and then makes a simple example to explain how it works.

Let T be the set of physical times. The delivery scheduling mechanism of SchedMail is a mapping function

from P ×T to D, denoted as fschedule : P ×T → D. A value from the domain of fschedule, denoted as (prs, t),

indicates the recipient-focused urgency as well as sending time of a message. For example, a recipient would

like all low -urgency messages to be delivered in the evening. Supposing evening starts at 7:00 p.m. (which

should also be configurable in practice), the time window for delivering low -urgency messages to the recipient,

therefore, is from the same day as when the messages were sent, at 7:00 p.m., to any time later. If a low -

urgency message is sent at 4:00 p.m. one day, but the recipient does not get a chance to check his emails until

8:00 a.m. the second day, the message should be delivered immediately instead of waiting until the evening

of that day.

Although more different types of policies can be designed for convenience of the users, they should all

work similarly to the above example. In practice, it would also be helpful to allow the users to configure

multiple sets of policies, from which one could be selected to serve the current needs of the users the best.

For example, a user can have two sets of policies named default and vacation. While default is configured for

daily use, vacation postpones all the incoming messages to the end of vacation.

3.1.4 Non-Participant Interactions

It is not meaningful to use SchedMail to help recipients who do not use the mechanisms described above

(other than by explicit verbal communication). However, if a sender does not use SchedMail, the mechanisms

naturally convert into a coarser-grained sender-reputation based mechanism, which assigns the same urgency

value to every message coming from the same sender. In other words, all messages coming from a sender

without sender-side urgency values assigned, could be treated as having normal urgency, and then interpreted

using the learned reputation of the sender.

Two short-cut mechanisms can also be developed to deal with non-participating senders directly, rather

than through a learning process. Blacklisting simply maps the urgency value of every message from a sender

23

to blocked ; whitelisting raises the urgency value of every message from a sender up to at least a certain

specified floor.

3.2 Feedback-Based Incentive Mechanism

The previous section presented how senders’ reputation can be learned at the recipients’ side, and used for

adjusting the urgency values of incoming messages for the recipients’ own interests. However, there could

be a potential drawback of this urgency adjusting mechanism, i.e., lowering senders’ reputation arbitrarily

could prevent the senders from sending really important messages in time. First, low reputation scores

do not necessarily mean that the corresponding senders are inconsiderate: the senders may simply have

a different understanding of the urgency scheme. Second, in some circumstances, senders, such as family

members, friends, and colleagues, may be amenable to be influenced by recipient preferences. Considering that

SchedMail relies on senders’ judgement of the urgency of outgoing messages anyway, there is an opportunity

to grant more control to those “trustworthy” senders, by allowing these senders to adjust their behaviors to

accommodate the preferences of the recipients, and eliminating the need for the recipients to second-guess

the urgency of the messages.

In order to achieve the goal, SchedMail classifies senders into three categories based on their trust-levels,

i.e., untrusted, semi-trusted, and trusted. SchedMail manages the untrusted senders using the default urgency

adjusting mechanism described in the previous section, while for the trusted senders it applies a so-called

feedback-based incentive mechanism. This section presents the details of this mechanism first, and then briefly

discusses how the two mechanisms can be combined to manage semi-trusted senders.

3.2.1 Managing Trusted Senders

As illustrated in Figure 3.8, for senders who are amenable to be influenced by recipient preferences, SchedMail

supports an option at the recipient end, for recipients to indicate their assessments of the urgency values of

incoming messages to the senders. This is intended to be an alternative to adjusting the senders’ reputation,

with the hope that the senders would accordingly adjust their urgency declarations in the future. In other

words, rather than applying senders’ reputation on recipients’ side, SchedMail lets the senders decide whether

or not to be subjected to the recipients’ adjustment.

As a result, Function (3.1) can be slightly changed as below:

prs = p′s (3.11a)

p′s = ps | ps + δ(ers) (3.11b)

The new variable p′s indicates the sender-side urgency value, which can be used directly on the recipient’s

side based on Function (3.11a). This ensures the senders’ ability of delivering important messages even when

24

Subject to

Recipient's

Adjustment

 pspr
 pspr

N

Y

消息传递
Server

消息传递

会话
Recipient (r)

会话
Sender (s) Regular

Message

Urgency

Adjustment

Request

消息传递

消息传递

 s δ(er)

 pspr
+ s δ(er)

Figure 3.8: Feedback-Based Incentive Mechanism

their reputation scores are low. Although Function (3.11b) means the senders now have the privilege of

choosing whether or not to respect the recipients’ preferences, the decision about to whom and when the

privilege is granted is totally up to the recipients. Especially, on the recipients’ side each incoming message

still flows through the urgency assessment process, so that the senders’ behaviors can be learned. If certain

senders are “suspected” to be uncooperative, the recipients could consider moving them into the semi-trusted

category.

A sender’s reputation ers in (3.11b) may be calculated on either side of the conversations. If ers is calculated

on the recipients’ side like in Function (3.1), the recipients only need to notify ers to the senders when the

value of δ(ers) is actually updated. Besides, the recipients may also send a warning message to the senders

prior to each urgency adjustment in order to improve user experience. In contrast, if ers is calculated on

the senders’ side, the recipients have to pass each and every urgency assessment to the senders.5 While the

former scheme can reduce a greater amount of communication, the latter may allow the senders to adjust

their behaviors in a finer level and a faster manner, depending on the specific choices of δ.

3.2.2 Managing Semi-Trusted Senders

In practice, it could be difficult for the recipients to decide whether certain senders should be trusted, or they

probably do not want to bother making such decisions at all, or even the trusted senders can be sometimes

uncooperative so that the incentive mechanism breaks. Therefore, other than trusted and untrusted, a more

5The senders and recipients mentioned here are not actually the email users but their email clients, i.e., SchedMail. The
users should be kept out from this type of low-level communication, not only for ensuring the usability of SchedMail, but also
for some privacy concerns (e.g., recipients would usually not want senders to know the details of urgency assessments).

25

flexible category semi-trusted is defined. The semi-trusted senders are managed the same way as the trusted

senders at the beginning. However, as communication goes on, if the senders’ reputation ers exceeds a

predefined scope (Emin, Emax), they will be managed as untrusted instead (Note both Emin and Emax are

global settings for a certain SchedMail client, and typically we should have Emin < 0 < Emax). Based on

Function (3.1) and (3.11), the urgency interpretation function for the semi-trusted senders can be defined as

below:

prs =

 p′s ers ∈ (Emin, Emax)

p′s + δ(ers) ers /∈ (Emin, Emax)

(3.12)

As a typical example, all contacts in a recipient’s address book can be categorized as semi-trusted senders

unless otherwise specified. Those senders by default are able to assign arbitrary urgency values to the

outgoing messages (when necessary), without worrying about the urgency values being reinterpreted on

the recipient’s side. However, if the senders abuse the privilege without respecting the recipient’s urgency

adjustment requests, their reputation would possibly go beyond the recipient’s tolerable range, in which case

the privilege is going to be revoked (i.e., the recipient’s email client will start to reinterpret urgency values

of the messages from the “punished” senders).

3.3 Discussion

It may appear that in SchedMail, non-cooperative senders would hurt their own reputations by abusing email

urgency values, and consequently get punished in a way that the urgency values of their messages would be

interpreted as low on the recipients’ side. However, rather than imposing restrictions on non-cooperative

senders, the main focus of SchedMail is to try to help people work cooperatively, i.e., enabling considerate

senders to help recipients manage their email notifications, and giving control to recipients to decide when

messages are delivered.

Although we use the term reputation in this discussion, what it measures is the gap between the sense

of urgency on the two sides of email communication (or, urgency gap in short). The goal is not to identify

unsolicited senders or to rank legitimate senders as in other email prioritization approaches. Accordingly, the

purpose of collecting and analyzing a recipient’s feedback is to learn if there is a consistency or pattern of the

urgency gap. In practice, this kind of consistency or pattern might not always exist, in which case it is not

meaningful for SchedMail to find it. As a typical example, a non-cooperative sender might assign random or

high urgency values to their messages all the time regardless of the actual urgency of the messages. In such

a case, SchedMail will struggle to learn a meaningful gap.

In a more comprehensive system, not only the senders’ but also the recipients’ behaviors can be taken

into consideration during the above-mentioned learning process. For instance, for a given incoming message,

if no direct feedback is received from the recipient, instead of always recording a neutral vote by default,

26

the email client may also be able to record a different vote depending on how the message is handled. For

example, a positive vote could be recorded if the recipient replies to a message instantly, whereas a negative

vote could be recorded if a message is deleted immediately after being opened.

The two algorithms presented in Section 3.1.2 for sender-reputation calculation are a proof of concept of

the approach. Iterative improvements would likely be needed before either can be deployed in a real email

system. Particularly, for example, both algorithms involve a variable (i.e., the size of the moving window

N of WMA, and the smoothing factor α of SES) which can be tuned to adjust the responsiveness of the

algorithms to recent recipient feedback. In practice, we might not want to pick the same N or α for all

senders, or even the same sender at all times. A reasonable value of N or α could be selected based on the

frequency of communication in the history. Roughly speaking, the output of the algorithms should reflect

older feedback more if the communication is sporadic, whereas it should take more of the latest feedback

into consideration if the communication is intensive. Although it is technically hard to identify the boundary

between sporadic and intensive, the bottom line is trying to learn the pattern of the urgency gap during a

certain period of time as quickly as possible, if such a pattern exists.

While talking about improving existing algorithms for calculating senders’ reputation, or designing new

algorithms from scratch, one guideline we need to keep in mind is that there always should be a balance

between complexity and accuracy of such algorithms. The algorithms should be effective, but not so resource-

intensive or attention-demanding for users that it would contradict the design principle of SchedMail, i.e., to

shift a part of the burden of email filtering and prioritization from recipients to senders.

There is a potential problem with urgency-based scheduling mechanism presented in Section 3.1.3. Sup-

pose a message m1 with normal urgency is received at time t1 and scheduled for delivering in the evening

at te; and soon afterwards, another message m2 with high urgency is received and scheduled for delivering

immediately at t2 (t1 < t2 < te). If both m1 and m2 are from the same sender, and the topics of the two

messages are closely related, the recipient would possibly be confused by a broken message context while m2

is being read, but m1 is still waiting for delivery.

The problem can be solved implicitly if the sender could simply assign the same urgency level to the two

messages. Although the chances are relatively low for multiple messages to be related in this way while the

sender is giving them different urgency levels, in order to always present complete message contexts to a

recipient, a possible solution could be for the delivery scheduler has to apply an additional rule to guarantee

that messages from the same senders are delivered in the original time order: once a certain message is

delivered, all earlier pending messages from the same sender, if any, must also be delivered at the same time,

regardless of the previously scheduled delivery time. A more sophisticated solution could be by analyzing

more email parameters (e.g., titles, contents) to determine which earlier messages are relevant. This type of

analysis is beyond the scope of this work.

27

4 Implementation

In order to demonstrate how the core mechanisms of SchedMail can be applied to existing email clients,

a prototype app is implemented based on an open source project K-9 Mail .1 The app is developed using

Android Studio, and tested on Android 8.0 platform. For ease of description, the enhanced version of K-9

Mail is referred to as SchedMail App (or simply SchedMail).

As a modern email client, K-9 Mail is designed with various useful features like IMAP push email, multi-

folder sync, flagging, PGP (Pretty Good Privacy) encryption, etc. SchedMail extends it by adding two key

features: user-assisted prioritization and urgency-based scheduling. As prioritization is the prerequisite for

scheduling, the full mechanisms of SchedMail require close cooperations between senders and recipients in

order to achieve optimal outcomes. However, for individual users, these two features can be enabled and

used independently.

4.1 User-Assisted Prioritization

By means of user-assisted prioritization, users send messages with appropriate urgency values in the hope

that the messages can be scheduled fairly and in a timely manner for the recipients.

4.1.1 Configurations

As shown in Figure 4.1, Enable Prioritization is the overall switch for the prioritization functionality. Once

it is turned on, SchedMail inserts an X-Priority header field (see Table 3.1) to each of the outgoing messages.

The assigned value of the field is interpreted on the recipient’s side and then used to schedule the delivery of

the message.

Allow Urgency Adjustment by Default determines whether urgency values of outgoing messages should be

adjusted according to the recipients’ preferences by default. This option can be overridden per message in

the email composing page as shown in Figure 4.2.

4.1.2 Assigning Urgency

While composing a message (Figure 4.2), the sender can manually assign an urgency value to the message,

or leave the urgency as normal by default. If Subject to Recipient’s Adjustment is selected, SchedMail auto-

1 K-9 Mail: https://github.com/k9mail/k-9

28

https://github.com/k9mail/k-9
https://github.com/k9mail/k-9

Figure 4.1: Prioritization Configurations

matically adjusts the urgency value based on the sender’s reputation before sending the message, otherwise

the original urgency value is used.

SchedMail draws its value from those considerate senders who are willing to help recipients manage their

email notifications, which implies an application scenario that demands a high level of sender-side involvement.

With senders who do not use SchedMail, or do not put enough effort into assigning urgency values to their

outgoing messages, the overall effectiveness of SchedMail in terms of reducing time fragmentation may be

degraded on the recipient’s side.

4.2 Urgency-Based Scheduling

With the help of urgency-based scheduling, recipients attempt to schedule delivery of messages according to

their urgency.

4.2.1 Configurations

As shown in Figure 4.3, Enable Scheduling is the overall switch for the scheduling functionality. When it is

enabled, an incoming message is scheduled based on its urgency level calculated using the sender-assigned

urgency value and the sender’s reputation according to the recipient, as well as the delivery policies configured

by the recipient. In the prototype, there are four delivery options predefined for each urgency level, i.e,

immediately, in the evening, at the weekend, and never, however, these options are easily configurable.

Enable Urgency Assessment allows a recipient to judge the urgency values assigned by senders to the

received messages in the message reading interface (see next subsection). When it is disabled, the recipient

29

Figure 4.2: Assign The Urgency of a Message

does not judge urgency values assigned by senders, and SchedMail stops updating senders’ reputation scores.

This also means that if urgency assessment is disabled right after an email account is set up, there is

no attempt to judge a sender’s reputation, and the sender-specified urgency values are used directly for

scheduling incoming messages.

Enable Urgency Adjustment Requests controls whether or not recipients’ email clients should request

senders to adjust the urgency values of their future messages, which usually happens when the senders’

reputation scores are approaching certain thresholds where they would need to be second-guessed at the

recipient end. If this option is enabled, SchedMail sends adjustment requests to the corresponding senders

when appropriate, in the hope that the senders would make an effort to accommodate recipients’ preferences.

The requests are sent as regular emails but with a custom header field indicating the value of the urgency

offset. Since the format of the requests is known to the email clients on both sides, the email clients can easily

identify the requests, hide them from the users, and delete them automatically after processing, without

requiring any user interaction. This does not only save the users’ time and efforts, but also protects the

recipients’ privacy so that they would not have to expose their preferences of incoming messages.

4.2.2 Assessing Urgency

On the recipient’s side, as shown in Figure 4.4), the user can judge the urgency of an incoming message

by clicking the P ↓ or P ↑ button, to cast a negative or positive vote, respectively. If the user thinks that

the message has been delivered at about the right time, no action is required and the email client records a

neutral vote automatically at the back-end.

SchedMail chooses to implement an up-or-down voting interface instead of some other possible alternatives

30

Figure 4.3: Scheduling Configurations

(e.g., a drop-down list for recipients to pick arbitrary urgency values according to their perspective) mainly

because of two considerations. First, a minimalist user interface that requires only one user-click is more

likely to improve the level of user engagement. Although a more involved user interface can possibly gather

more accurate feedback, it may easily become disused because of its high demand of user effort. Second, the

recipient’s email client decides when to display an incoming message, based on not only the urgency value of

the message but also the delivery policy corresponding to that urgency value. The vote that the email client

tries to collect, therefore, is actually feedback to a composition of both the urgency value and the delivery

policy. Otherwise, for example, if the email client were to directly ask the recipient their perspective about

the urgency values, the recipient would have to think about what the urgency values mean to them before

taking actions, which would significantly increase the amount of attention required.

31

Figure 4.4: Assess The Urgency of a Message

4.2.3 Message Delivery

The inbox page of the email client is designed so that it only displays messages which satisfy the user-specified

delivery policies. If the users update the delivery policies at any time, all pending messages are reevaluated

so that new messages may show up in the inbox page immediately. In order to avoid messages being stuck at

a remote location while awaiting delivery (in the case of a network outage), messages are always downloaded

to local storage whenever available but kept hidden from the recipients until the appropriate delivery time.

4.3 Discussion

The overall development effort involved in adding SchedMail mechanisms to K-9 Mail was less than one

man-month. In the final working version that we used for experiment, five Java classes with approximately

1800 source lines of code (SLOC) were added. We think that the workload for adding SchedMail mechanisms

to other existing email clients should be comparable.

In the prototype, the feedback-based incentive mechanism (see Section 3.2) is implemented in a way that

both senders’ and recipients’ privacies are protected. For the recipient in the feedback loop, the only user-

specific data passed to the sender’s email client is the recipient’s urgency offset for that sender. However, the

urgency offset value sent to the sender is contextless, because the urgency of a message is only meaningful if

it is mapped to a specific delivery policy at the recipient end, and so is the urgency offset. For the sender

in a feedback loop, the decision on whether or not to apply the urgency offset requested by the recipient, is

totally up to the sender and transparent to the recipient.

32

Although the recipient’s privacy about the scheduling of email delivery is protected in the feedback loop,

their judgement of the sender-assigned urgency of the message is not fully hidden from the sender. It is still

technically possible for the sender to extract the urgency offset value from the local database of their email

client. An easy option could be letting the recipient decide to which senders do they want the feedback-based

incentive mechanism to be applied, i.e., who should be treated as “trusted” senders (see Section 3.2.1).

There are two levels of policies involved in SchedMail: system policies, such as the algorithms designed for

sender-reputation calculation, the rules defined for urgency-based scheduling of message delivery, etc.; and

user policies, such as senders’ decisions on whether or not to be subject to recipients’ urgency adjustment

requests, recipients’ preferences of mapping different urgency levels to the corresponding delivery options,

etc. While the performance of a specific implementation of SchedMail could vary because of different system

policies plugged in and user policies configured, the main focus as well as the main contribution of SchedMail

is coming up with the infrastructure where systems can customize their own policies for various application

scenarios. For example, when deployed in an enterprise email system, SchedMail can adopt reputation

management algorithms which are optimized specifically for users within private networks, whereas in a

public email system the choices of such algorithms should mostly consider a general population.

For these reasons, the prototype we presented in this chapter serves only a proof-of-concept purpose, i.e.,

to demonstrate a way of adding SchedMail mechanisms to an existing email client. In order to deploy the

mechanisms in an email system for wide use, the above-mentioned plug-in policies must be designed carefully

and refined iteratively.

33

5 Evaluation

The main contribution of this thesis is enabling use of explicit sender input in the decision-making of

when email messages are delivered. Considering urgency and schedule as two separation of concerns, the goal

is to have sender-recipient collaboration to decide the urgency of a message, and allow a recipient to have a

policy to translate urgency to time of delivery. Our primary way of evaluating this work is to confirm that

it is realizable, and that it can be implemented without placing significant additional demand on the users’

attention, or on the underlying email infrastructure. Section 5.1 addresses the first question by comparing

the features of our proof-of-concept prototype with comparable existing systems. Section 5.2 evaluates the

user-attention and computational resource cost of SchedMail by looking closely at the attention-demand of

every task to be carried out by the users, and computational cost of the functions required for supporting

SchedMail.

In addition, we also carried out a preliminary informal study to get some insights into possible effectiveness

of SchedMail in reducing users’ time fragmentation, as explained in Section 5.3. The effectiveness of this

approach is fundamentally limited by the stability of a gap between the perception of urgency of messages

on the two sides of email communication.

5.1 Features

We do a qualitative evaluation by comparing SchedMail with three of the most relevant approaches to email

prioritization: content-based solutions (mainly for tagging), network-based solutions and economic solutions

(mainly for ranking). Table 5.1 shows a summary of the comparison.

a) Sender-Side Contribution. SchedMail involves sender-side contribution for email prioritization. Al-

though economic solutions are able to do similar things in principle, they require changing of email

protocols. Other approaches like challenge-response [10] require sender effort to dissuade spammers,

but are only suitable for spam filtering.

b) Urgency-Based Scheduling. SchedMail schedules the delivery of messages based on recipients prefer-

ences. Message delivery scheduling in existing systems can only be done by senders manually, which

gives recipients no control over the delivery time.

c) Fine-Grained Interaction. SchedMail involves a feedback loop between senders and recipients, trying

to balance both senders and recipients interests when there is a mismatch of urgency assessments. The

34

Table 5.1: Comparison with Prioritization Approaches

Feature SchedMail

Content-

Based

Solutions

Network-

Based

Solutions

Economic

Solutions

a) Sender-Side Contribution X* × × X

b) Urgency-Based Scheduling X × � �

c) Fine-Grained Interaction X × × ×

d) Privacy Protection X × × X

e) Scalability X × × ×

f) Coexistence X X × ×
* X– supported; ×– unsupported; � – It is possible but has not been done before.

other solutions can do nothing more than just deleting unwanted messages at the recipient end.

d) Privacy Protection. The only user-specific data generated by SchedMail is the reputation value learned

at the recipient end. The data is only stored in the recipient’s email client. When the optional

mechanisms for sending feedback to the sender are enabled, the only extra data shared between the

two sides of the conversation is the recipient’s urgency offset value for the corresponding sender, which

is hidden from both users by their email clients. Even though it is technically possible for the sender

to extract the offset value from their local database, which means that, to some extent, the recipient’s

preferences of incoming messages could be exposed, the decision about with whom and when the

preferences are shared is entirely up to the recipient. Moreover, the recipient’s privacy about the

scheduling of email delivery is always protected, considering that the urgency-based scheduling polices

are still only stored on the recipient’s side. Other approaches like content-based solutions need to scan

the contents of messages, and network-based solutions need to analyze social relationship structures.

e) Scalability. SchedMail operates in a peer-to-peer manner without needing special support from email

servers, while most of the other approaches put the majority of work on recipients servers.

f) Coexistence. SchedMail can coexist with other email clients. Email scheduling at the recipient end

works even when senders do not use SchedMail. However, in this case, the effectiveness of SchedMail

would become limited to sender-level decision making because messages from the non-participating

senders are all treated as having normal urgency.

SchedMail utilizes similar techniques for addressing the time fragmentation issue experienced by recip-

ients to those which have been presented in many existing approaches, e.g., user-assistance, prioritization,

scheduling. However, what makes SchedMail unique is that senders are significantly involved in the process

of recipient-side email ranking, and therefore, there is qualitatively richer interaction between senders and

35

recipients.

5.2 Overhead

Because a part of the goal of SchedMail is to tackle the email overload problem, it is important to keep the

extra efforts expected from the users, and the resources required, to the minimal.

5.2.1 User Effort

In order to make SchedMail operate effectively, there is only a constant amount of effort required of the

sender, i.e., the effort of clicking once to pick one of a selection of urgency values, for each message sent.

The situation is slightly more complex on the recipients’ side, but ultimately it requires less work. There

would be a constant amount of effort, which also involves one click to indicate “up” or “down” disagreement

with a sender-assigned urgency value. In addition, depending on the choices offered to a recipient in setting

the delivery scheduling policy, there would be an occasional effort involved in fine-tuning the policy.

5.2.2 Computational Cost

There is negligible additional processing cost at the sender end. At the recipient end, there is per-message-

received processing cost for interpreting the sender-specified urgency value, applying the scheduling policy,

and revising the sender’s reputation. The first two are simple mathematical function calls; the last involves

pulling the senders record from a local database, applying the revision function – which could be a simple

mathematical function – and storing the record back. Because of the relative infrequency of email arrivals,

this does not represent a significant cost to any modern computing device.

The only additional data transferred for the core mechanisms is the urgency value assigned by the sender,

which are sometimes already sent by existing popular email clients anyway. There is additional storage

required to maintain information about each sender’s reputation. However, for the simplest reputation

management system like SES, only one numeric value is stored per user, which is insignificant.

5.3 Effectiveness

The specific type of time fragmentation we address in this thesis is caused by interruptions from notifications

of email arrivals. As presented in Chapter 3, SchedMail tackles the issue by grouping non-urgent messages

and scheduling them to a later time slot for bulk processing. Intuitively, the extent of fragmentation should

be positively related to the number of interruptions. The question of how much SchedMail can help in

reducing the recipients’ time fragmentation is therefore equivalent to: to what extent can SchedMail lower

the frequency of interruptions. In order to answer the question, we need to come up with a formal way of

measuring the level of interruptions first.

36

For a recipient r, let mi be the ith message delivered to r at time ti. M
k
j (1 ≤ j ≤ k) is the sequence of

messages between j and k, i.e., (mj , mj+1, ..., mk). ε denotes a constant which is a relatively small period

of time. A function for calculating the number of interruptions introduced by Mk
j (denoted as Ikj) is defined

recursively as follows:

Ikj =


1 k = j

Ik−1j k > j, tk − tk−1 ≤ ε

Ik−1j + 1 k > j, tk − tk−1 > ε

(5.1)

The core implication of Function (5.1) is that, if the time interval between two consecutive messages mi

and mi+1 is below a preselected threshold ε, the arrival of mi+1 is not considered a new interruption to the

recipient. In practice, a proper value of ε can be set to the average amount of time for processing a single

message (e.g., ten minutes in our experiment).

From the definition of Function (5.1), a function for calculating the frequency of interruptions – number

of interruptions per message (denoted as F k
j) can be derived as follows:

F k
j =

Ikj
|Mk

j |
=

Ikj
k − j + 1

(5.2)

Now suppose M ′
k
j contains the same sequence of messages as Mk

j , but is scheduled with different delivery

times by SchedMail. I ′
k
j and F ′

k
j are the corresponding number and frequency of interruptions calculated

using Function (5.1) and (5.2), respectively. The effectiveness of SchedMail, in terms of reducing the

frequency of interruptions (or time fragmentation), could then be measured using the following:

φ = 1−
F ′

k
j

F k
j

= 1−
I′k

j

k−j+1

Ik
j

k−j+1

= 1−
I ′

k
j

Ikj
(5.3)

5.3.1 Experiment

A preliminary case study was carried out to get further insights into this. Experimental data was collected

from the email communications between the author and seven voluntary users during a three-month period.

The volunteers who usually would communicate with instant messengers, for the study of the thesis, were

asked to use emails instead. In order to take the non-participant interactions (see Section 3.1.4) into

consideration, the volunteers include not only five SchedMail users (identified as S1 ∼ S5), but also two

regular email client users (identified as R1, R2). The SchedMail users were asked to do their best to estimate

and assign the urgency values of their outgoing messages. Recipient-side urgency assessment and urgency-

based scheduling of message delivery, however, were only carried out on the author’s side (the volunteers

might also have tried the features but no data was recorded).

37

In the specific SchedMail prototype that was used for running the experiment, senders’ reputation scores

were calculated utilizing the SES model (see Function (3.9)): the smoothing factor α, which controls the

responsiveness of the model to recent votes, was set to 0.2 (see Figure 3.5); and the number of messages used

for bootstrapping the initial reputation scores, K, was set to 5. The message delivery policies were configured

as Table 5.2. Since all participants were trusted users, the policy “never” which was introduced for blocking

emails at certain urgency levels was never applied in the experiment.

Table 5.2: Email Delivery Policies

Recipient-Focused

Urgency
Delivery Policy Delivery Time

Highest
Immediately Right after the messages are received

High

Normal
In the Evening Between 19:00 ∼ 23:59

Low

Lowest At the Weekend Between Saturday 09:00 ∼ Sunday 23:59

The daily distribution of the emails delivered to the author’s email box during the experiment is shown in

Figure 5.1. The horizontal axis denotes the actual dates when the messages were sent, which were not always

the same as the dates when the messages were notified to the recipient due to the delivery policies applied.

The vertical axis denotes the total number of messages received from the volunteers on a daily basis. For

each message, the following attributes were recorded:

a) The sender and recipient of the message;

b) The time when the message was sent;

c) The urgency value of the message assigned by the sender or the sender’s email client;

d) The time when the message was received by the recipient’s email client;

e) The time when the message was notified to the recipient (not necessarily the same as the time when

the message was read);

f) The urgency assessment vote cast by the recipient, if any;

g) The immediate reputation score of the sender.

5.3.2 Analysis

As illustrated in Table 5.3, the experimental data has been analyzed in three steps. First, based on messages

from each individual sender, we calculated the following values that were relevant to the effectiveness of

SchedMail: the number and frequency of interruptions (denoted as I and F , respectively) that could have

38

0

2

4

6

8

10

12

14

16

18

20

06-01 06-08 06-15 06-22 06-29 07-06 07-13 07-20 07-27 08-03 08-10 08-17 08-24

N
u

m
b

er
 o

f
M

es
sa

g
es

Date

R2 77

R1 48

S5 116

S4 98

S3 61

S2 55

S1 51

TOTAL

Figure 5.1: Daily Email Distribution

been experienced by the recipient if SchedMail mechanisms had not been utilized; the actual number and

frequency of interruptions (denoted as I ′ and F ′, respectively) experienced by the recipient during the three-

month period, with SchedMail mechanisms applied; and the corresponding effectiveness ratio of SchedMail

according to Function (5.3). Second, we examined the same values as which had been calculated for individual

senders, but based on messages from two different groups of senders, respectively: the senders who used

SchedMail during the experiment (i.e., S1 ∼ S5), and the rest who did not (i.e., R1 and R2). Last, we

calculated the same group of effectiveness-relevant values based on all sampled messages.

In this particular case study, SchedMail achieved a promising overall effectiveness ratio at 34.0% with

all sampled messages. However, the different effectiveness ratios listed in Table 5.3 are for reference only,

rather than for comparison purpose. The effectiveness of SchedMail can be impacted by various factors,

e.g., the spread and significance of incoming messages, users’ understanding of the urgency schemes, and

the configurations of delivery policies. Most critically, it is impacted by the existence or absence of a stable

gap between the perception of urgency on the two sides of email communication. Therefore, it is not always

meaningful to compare the values of different effectiveness ratios. The goal of SchedMail is to enable a greater

balance between lowering time fragmentation and seeing messages at the right time. Otherwise, for example,

a recipient could just set an aggressive delivery policy to postpone all messages to the weekend, achieving

high effectiveness in reducing time fragmentation, but at the expense of missing urgent messages, which is

typically impractical.

39

Table 5.3: Effectiveness of SchedMail

Users Emails I F I ′ F ′ Effectiveness

R1 48 47 97.9% 44 91.7% 6.4%

R2 77 72 93.5% 44 57.1% 38.9%

S1 51 49 96.1% 44 86.3% 10.2%

S2 55 50 90.9% 40 72.7% 20.0%

S3 61 61 100% 43 70.5% 29.5%

S4 98 84 85.7% 56 57.1% 33.3%

S5 116 110 94.8% 79 68.1% 28.2%

R1 ∼ R2 125 117 93.6% 85 68.0% 27.4%

S1 ∼ S5 381 335 87.9% 235 61.7% 29.9%

All 506 438 86.6% 289 57.1% 34.0%

5.4 Discussion

There are two levels of focus during the evaluation of SchedMail: implementability, i.e., whether the strategic

mechanisms (e.g., user-assisted prioritization, urgency-based scheduling) can be implemented without placing

demands on email protocols, or adding significant computational overhead; and effectiveness, i.e., to what

extent the plugged-in policies (see Section 4.3) can help users reduce their time fragmentation. The mechanism

issues are the more important concern to us than the policy issues, because the mechanisms construct the

foundation of SchedMail, while the polices are substitutable for specific implementations.

40

6 Conclusion and Future Work

This thesis presented mechanisms we have developed to shift a part of the burden of email prioritization

from recipients to senders, with the objective of enabling recipients to decide which messages should be

delivered to them and when. Although there is already a large body of work on email ranking, what makes our

solution unique is that senders are significantly involved in the process of recipient-side ranking of messages.

Scheduling of email delivery thus is informed by a sender-assisted fine-grained ranking of messages, balancing

recipients’ interest to reduce interruptions with seeing messages at the right time.

A prototype, SchedMail, has been implemented by installing the core mechanisms required for this func-

tionality into a modern mobile app, K-9 Mail. SchedMail offers the ability to schedule delivery of messages

based on learned reputations of sender and sender-assigned urgency values for messages. The prototype

implements the mechanisms without requiring any change in email protocols, and without a significant com-

putational overhead.

The approach is evaluated primarily in terms of the novelty of features available in SchedMail, and the user

attention and computational resources required to support SchedMail. We showed that SchedMail involves a

set of original features which do not exist in other relevant approaches: user-assisted prioritization, urgency-

based scheduling, as well as fine-grained interactions between senders and recipients. SchedMail supports

these features without sacrificing user privacy, placing demands on email protocols, or adding significant

computational overhead. Additionally, an informal preliminary study was carried out to obtain insights

into the effectiveness of SchedMail in reducing time fragmentation. To this end, effectiveness was carefully

defined, and analysis showed that SchedMail reduced about one third of the recipient’s time fragmentation

in a particular use case.

There remain a number of opportunities for improving SchedMail. For example, we did not address the

problem of synchronizing users’ reputation databases across the number of devices that a user may consume

emails on. This could be addressed implicitly if the mechanisms are implemented in a webmail client, in

which case the reputation data is stored on the server side. Otherwise, if no direct support is provided

by the email service providers, some third-party cloud storage service could still be utilized for storing and

synchronizing the data.

There is a lack of adequate verification for the algorithms (i.e., WMA and SES) we presented for computing

senders’ reputation. The algorithms have been widely used in business analysis but not much for predicting

short-term peer-to-peer reputations. Although the purpose of introducing the algorithms into SchedMail

is just a proof of concept, different algorithms would probably generate different reputation schemes and

41

consequently impact the results of evaluation.

With the development of machine learning technologies, a lot more sophisticated algorithms which are

suitable for modeling the reputations for our needs could be designed. Nevertheless, one thing we need to

keep in mind is that the key objective of SchedMail is not to develop a perfect reputation management model.

While adopting an existing model, we also need to create a balance between its complexity and accuracy.

For example, if an accurate model consumes too many resources for reasoning about its inputs, it would

contradict the goal of SchedMail which is to shift a part of the resource demand for email prioritization to

the senders’ side.

Due to privacy concerns, it has been a common difficulty for researchers to gather email related data for

their research use. Therefore it is inherently difficult for relevant studies to be thoroughly evaluated. For

the same reason, the data we collected during the study covers only a very small portion of common use

cases, which could somewhat bias the conclusions we drew about the effectiveness of SchedMail in reducing

time fragmentation. However, for SchedMail specifically there is still room for improvement, since during the

process of evaluation it only requires some email metadata (e.g., delivery time, urgency offset values) instead

of message contents.

Finally, the approach we presented in this thesis is easily generalizable to SMS, instant messaging, and

various types of application-triggered notifications on personal devices. We are looking into possible challenges

in extending SchedMail to these communication mechanisms.

42

References

[1] Eric Allman. The Economics of Spam. Queue - Distributed Development, 1(9):78–80, December 2003.

[2] Dmitri Alperovitch, Paul Judge, and Sven Krasser. Taxonomy of Email Reputation Systems. In 27th
International Conference on Distributed Computing Systems Workshops, page 27, Toronto, Canada,
June 2007.

[3] Alexy Bhowmick and Shyamanta Hazarika. E-Mail Spam Filtering: A Review of Techniques and Trends.
Advances in Electronics, Communication and Computing, pages 583–590, January 2018.

[4] Enrico Blanzieri and Anton Bryl. A Survey of Learning-Based Techniques of Email Spam Filtering.
Artificial Intelligence Review, 29(1):63–92, March 2008.

[5] Robert Goodell Brown. Smoothing Forecasting and Prediction of Discrete Time Series. Englewood
Cliffs, NJ: Prentice-Hall, 1963.

[6] Godwin Caruana and Maozhen Li. A Survey of Emerging Approaches to Spam Filtering. ACM Com-
puting Surveys, 44(2), February 2012.

[7] Paul Alexandru Chirita, Jorg Diederich, and Wolfgang Nejdl. MailRank: Using Ranking For Spam
Detection. In Proceedings of The 14th ACM International Conference on Information and Knowledge
Management, pages 373–380, Bremen, Germany, November 2005.

[8] Michael Chui, James Manyika, Jacques Bughin, Richard Dobbs, Charles Roxburgh, Hugo Sarrazin,
Geoffrey Sands, and Magdalena Westergren. The Social Economy: Unblocking Value and Productivity
Through Social Technologies. McKinsey Global Institute, July 2012.

[9] William W. Cohen. Learning Rules that Classify E-Mail. In Proceedings of the 1996 AAAI Spring
Symposium on Machine Learning and Information Access, pages 18–25, March 1996.

[10] Gordon V. Cormack and David R. Cheriton. Email Spam Filtering: A Systematic Review. Foundations
and Trends in Information Retrieval, 1(9):335–455, April 2007.

[11] John Devcic. Weighted Moving Averages: The Basics. Online: https://www.investopedia.com/

articles/technical/060401.asp.

[12] Mark Dredze, Tessa Lau, and Nicholas Kushmerick. Automatically Classifying Emails into Activities. In
Proceedings of The 11th International Conference on Intelligent User Interfaces, pages 70–77, Sydney,
Australia, January 2006.

[13] B. Curtis Eaton, Ian A. MacDonald, and Laura Meriluoto. Filtering and Email Pricing As Solutions To
Spam. Canadian Journal of Economics, 46(3):881–899, August 2013.

[14] Lauren Fisher. Email Marketing Benchmarks: Key Data, Trends and Metrics. eMarketer, Inc., February
2013.

[15] Jennifer Golbeck and James Hendler. Reputation Network Analysis for Email Filtering. In Proceedings
of The First Conference on Email and Anti-Spam, Mountain View, California, USA, July 2004.

[16] Mihajlo Grbovic, Guy Halawi, Zohar Karnin, and Yoelle Maarek. How Many Folders Do You Really
Need?: Classifying Email into a Handful of Categories. In Proceedings of The 23rd ACM International
Conference on Information and Knowledge Management, pages 869–878, Shanghai, China, November
2014.

43

https://www.investopedia.com/articles/technical/060401.asp
https://www.investopedia.com/articles/technical/060401.asp

[17] Minaxi Gupta, Paul Judge, and Mostafa Ammar. A Reputation System for Peer-to-Peer Networks. In
Proceedings of the 13th International Workshop on Network and Operating Systems Support for Digital
Audio and Video, pages 144–152, California, USA, June 2003.

[18] Google Inc. Add or Remove Inbox Categories & Tabs in Gmail. Online: https://support.google.

com/mail/answer/3094499?hl=en&ref_topic=3394594.

[19] Google Inc. Importance Markers in Gmail. Online: https://support.google.com/mail/answer/

186543?hl=en&ref_topic=3394594.

[20] Qualcomm Inc. Eudora® Email 7.1 User Guide for Windows. Online: https://fossies.org/windows/
mail/eudora/Eudora_71_User_Manual.pdf, September 2006.

[21] SaneBox Inc. Email Overload in The Enterprise. Online: http://d1faw2u3edxi8l.cloudfront.net/

pdfs/Email%20Overload%20White%20Paper.pdf.

[22] Nadeem Jamali and Hongxing Geng. A Mailbox Ownership Based Mechanism for Curbing Spam.
Computer Communications, 31(15):3586–3593, September 2008.

[23] Lisa Johansen, Michael Rowell, Kevin Butler, and Patrick McDaniel. Email Communities of Interest. In
Proceedings of The 4th Conference on Email and Anti-Spam, Mountain View, California, USA, August
2007.

[24] Sepandar D. Kamvar, Mario T. Schlosser, and Hector GarciaMolina. The EigenTrust Algorithm for
Reputation Management in P2P Networks. In Proceedings of the 12th International Conference on
World Wide Web, pages 640–651, Budapest, Hungary, May 2003.

[25] Walter Arnold. Kaufmann. Without Guilt and Justice: From Decidophobia to Autonomy. David McKay,
April 1973.

[26] Saket Kaushik, William Winsborough, Duminda Wijesekera, and Paul Ammann. Email Feedback: A
Policy-Based Approach To Overcoming False Positives. In Proceedings of The 2005 ACM Workshop on
Formal Methods in Security Engineering, pages 73–82, Fairfax, Virginia, USA, November 2005.

[27] Ahmed Khorsi. An Overview of Content-Based Spam Filtering Techniques. Informatica, 31(3):269–277,
October 2007.

[28] Graham Klyne and Jacob Palme. RFC 4021: Registration of Mail and MIME Header Fields. Online:
https://tools.ietf.org/html/rfc4021, March 2005.

[29] Irena Koprinska, Josiah Poon, James Clark, and Jason Chan. Learning to Classify E-mail. Information
Sciences, 177(10):2167–2187, May 2007.

[30] Yehuda Koren, Edo Liberty, Yoelle Maarek, and Roman Sandler. Automatically Tagging Email by
Leveraging Other Users’ Folders. In Proceedings of The 17th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 913–921, San Diego, California, USA, August 2011.

[31] Rensis Likert. A Technique for the Measurement of Attitudes. Archives of Psychology, 22(140):5–55,
June 1932.

[32] Thede Loder, Marshall Van Alstyne, and Rick Wash. An Economic Solution to the Spam Problem. In
Proceedings of the ACM Conference on Electronic Commerce, pages 40–50, New York, USA, May 2004.

[33] Wanli Ma, Dat Tran, and Dharmendra Sharma. A Novel Spam Email Detection System Based on Nega-
tive Selection. In Fourth International Conference on Computer Sciences and Convergence Information
Technology, pages 987–992, Seoul, South Korea, November 2009.

[34] Steven Nahmias. Production and Operations Analysis. McGraw-Hill/Irwin, March 2008.

44

https://support.google.com/mail/answer/3094499?hl=en&ref_topic=3394594
https://support.google.com/mail/answer/3094499?hl=en&ref_topic=3394594
https://support.google.com/mail/answer/186543?hl=en&ref_topic=3394594
https://support.google.com/mail/answer/186543?hl=en&ref_topic=3394594
https://fossies.org/windows/mail/eudora/Eudora_71_User_Manual.pdf
https://fossies.org/windows/mail/eudora/Eudora_71_User_Manual.pdf
http://d1faw2u3edxi8l.cloudfront.net/pdfs/Email%20Overload%20White%20Paper.pdf
http://d1faw2u3edxi8l.cloudfront.net/pdfs/Email%20Overload%20White%20Paper.pdf
https://tools.ietf.org/html/rfc4021

[35] Ronald Nussbaum, Abdol-Hossein Esfahanian, and Pang-Ning Tan. History-Based Email Prioritization.
In International Conference on Advances in Social Network Analysis and Mining, pages 364–365, Athens,
Greece, July 2009.

[36] National Institute of Standards and Technology. NIST/SEMATECH e-Handbook of Statistical Methods,
6.4.3.1. Single Exponential Smoothing. Online: http://www.itl.nist.gov/div898/handbook/pmc/

section4/pmc431.htm, October 2013.

[37] Vipul Ved Prakash and Adam O’Donnell. Fighting Spam with Reputation Systems. ACM Queue -
Social Computing, 3(9):36–41, November 2005.

[38] Handanhal V. Ravinder. Determining The Optimal Values Of Exponential Smoothing Constants Does
Solver Really Work? American Journal of Business Education, 9(1):347–360, May 2013.

[39] Pete Resnick. RFC 5322: Internet Message Format. Online: https://tools.ietf.org/html/rfc5322,
October 2008.

[40] Ismael Rivera, Myriam Mencke, Juan Miguel Gomez, Giner Alor-Hernandez, and Angel Garcia-Crespo.
Collaborative OpenSocial Network Dataset Based Email Ranking and Filtering. In Third International
Conference on Systems, pages 241–246, Cancun, Mexico, April 2008.

[41] Chun Wei, Alan Sprague, Gary Warner, and Anthony Skjellum. Mining Spam Email to Identify Common
Origins For Forensic Application. In Proceedings of The 2008 ACM Symposium on Applied Computing,
pages 1433–1437, Fortaleza, Ceara, Brazil, March 2008.

[42] Mengjun Xie and Haining Wang. A Collaboration-based Autonomous Reputation System for Email
Services. In 30th IEEE International Conference on Computer Communications, pages 1–9, San Diego,
California, USA, March 2010.

[43] Li Xiong and Ling Liu. PeerTrust: Supporting Reputation-Based Trust for Peer-to-Peer Electronic
Communities. IEEE Transactions on Knowledge and Data Engineering, 16(7):843–857, July 2004.

[44] Yiming Yang, Shinjae Yoo, and Frank Lin. Personalized Email Prioritization Based on Content and
Social Network Analysis. IEEE Intelligent Systems, 25(4):12–18, August 2010.

[45] Shinjae Yoo, Yiming Yang, and Jaime Carbonell. Modeling Personalized Email Prioritization:
Classification-based and Regression-based Approaches. In Proceedings of The 20th ACM International
Conference on Information and Knowledge Management, pages 729–738, Glasgow, Scotland, UK, Octo-
ber 2011.

[46] Shinjae Yoo, Yiming Yang, Frank Lin, and Il-Chul Moon. Mining Social Networks For Personalized
Email Prioritization. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 967–976, Paris, France, July 2009.

[47] Elena Zheleva, Aleksander Kolcz, and Lise Getoor. Trusting Spam Reporters: A Reporter-Based Repu-
tation System for Email Filtering. ACM Transactions on Information Systems, 27(1):3:1–3:27, December
2008.

45

http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc431.htm
http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc431.htm
https://tools.ietf.org/html/rfc5322

	Permission to Use
	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Equations
	Introduction
	Related Work
	Research on Email
	Email Filtering
	Email Prioritization

	Emails in Industry
	Discussion

	SchedMail
	Core Mechanisms
	User-Assisted Prioritization
	Sender-Reputation Calculation
	Urgency-Based Scheduling
	Non-Participant Interactions

	Feedback-Based Incentive Mechanism
	Managing Trusted Senders
	Managing Semi-Trusted Senders

	Discussion

	Implementation
	User-Assisted Prioritization
	Configurations
	Assigning Urgency

	Urgency-Based Scheduling
	Configurations
	Assessing Urgency
	Message Delivery

	Discussion

	Evaluation
	Features
	Overhead
	User Effort
	Computational Cost

	Effectiveness
	Experiment
	Analysis

	Discussion

	Conclusion and Future Work
	References

