
Formal Model and Simulation of the Gene Assembly

Process in Ciliates

A Thesis Submitted to the

College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the degree of Master of Science

in the Department of Computer Science

University of Saskatchewan

Saskatoon

By

MD. Sowgat Ibne Mahmud

c©MD. Sowgat Ibne Mahmud, November/2013. All rights reserved.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Saskatchewan's Research Archive

https://core.ac.uk/display/226142713?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the

University of Saskatchewan, I agree that the Libraries of this University may make it freely available for

inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for

scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their

absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is

understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not

be allowed without my written permission. It is also understood that due recognition shall be given to me

and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or part should

be addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5C9

i

Abstract

The construction process of the functional macronucleus in certain types of ciliates is known as the

ciliate gene assembly process. It consists of a massive amount of DNA excision from the micronucleus and

the rearrangement of the rest of the DNA sequences (in the case of stichotrichous ciliates). While several

computational models have tried to represent certain parts of the gene assembly process, the real process

remains not completely understood. In this research, a new formal model called the Computational 2JLP

model is introduced based on the recent biological 2JLP model.

For justifying the formal model, a simulation is created and tested with real data. Several parameters are

introduced in the model that are used to test ambiguities or edge cases of the biological model. Parameters

are systematically tested from the simulation to try to find their optimal values. Interestingly, a negative

correlation is found between a parameter (which is used to filter out scnRNAs that are similar to IES specific

sequences from the macronucleus) and the outcome of the simulation. It indicates that if a scnRNA consists

of both an MDS and IES, then from the perspective of maximizing the outcome of the simulation, it is

desirable to filter out this scnRNA.

The simulator successfully performs the gene assembly process whether the inputs are scrambled or

unscrambled DNA sequences. It is desirable for this model to serve as a foundation for future computational

and mathematical study, and to help inform and refine the biological model.

ii

Acknowledgements

I am heartily grateful to my supervisor Dr. Ian McQuillan. It is an honour for me to work on this research

with his great supervision and support. I have learned from him attitudes towards work as a good researcher

and how to be a great mentor, which will be a priceless treasure for the rest of my life.

I would like to express my sincere gratitude to my valuable committee members Dr. Anthony J. Kusalik

and Dr. Mark Keil.

Thanks to my friends for helping me during the work.

Thanks to my parents and my lovely wife, for everything.

iii

Contents

Permission to Use i

Abstract ii

Acknowledgements iii

Contents iv

List of Tables vi

List of Figures vii

List of Abbreviations viii

1 Introduction 1

2 Background 5
2.1 Biological models . 5

2.1.1 Scan RNA model . 5
2.1.2 Template guided model . 7
2.1.3 2JLP model . 7

2.2 Computational models . 11
2.2.1 Intermolecular model . 11
2.2.2 Intramolecular model . 12
2.2.3 Template guided recombination . 14

3 Computational 2JLP model 18
3.1 ScnRNAs . 18
3.2 Finding putative IESs . 19
3.3 Construction process of the new macronucleus . 20

3.3.1 Iterated deletion of IESs using scnRNAs . 20
3.3.2 Additional IES excision and MDS rearrangment by using templates 22

4 Algorithm 25
4.1 Important parameters . 26
4.2 Implemented algorithms . 27

4.2.1 The scnRNA function . 29
4.2.2 IES function . 29
4.2.3 The IES deletion function . 31
4.2.4 The rearrangement function . 34
4.2.5 The correction function . 38

5 Result Analysis 45
5.1 Accuracy . 45
5.2 Data . 46
5.3 General analyses . 46
5.4 Other findings . 53

5.4.1 Improvement of accuracy in each stage . 53
5.4.2 Relationship between accuracy and threshold MDS . 54
5.4.3 Relationship between accuracy and threshold IES . 55

iv

5.4.4 Relationship between accuracy and neighbourhood . 55

6 Conclusions, Discussions and Future Work 58
6.1 Conclusions . 58
6.2 Discussions . 59

6.2.1 Biological importance . 59
6.2.2 Computational importance . 60

6.3 Future Work . 60

References 61

v

List of Tables

4.1 List of the important parameters . 27

5.1 Simulation output on real data for the optimal parameters . 48
5.2 The average accuracies while varying threshold MDS . 50
5.3 The average accuracies while varying threshold IES . 51
5.4 The average accuracies while varying neighbourhoods (nh) . 52
5.5 The highest acc2 value for each of the 13 gene pairs . 52
5.6 An example for gene pair number 1, highlighting the relationship between neighbourhood (nh)

and accuracy, when there is a high value of threshold MDS. 57

vi

List of Figures

1.1 Conjugation in stichotrichs . 2
1.2 A diagram of gene assembly . 3

2.1 The scan (scn) RNA model . 6
2.2 Examples of template guided model . 8
2.3 The 2JLP model . 9
2.4 An example of the 2JLP model based on artificial data. 10
2.5 Unary intramolecular operation of DNA recombination . 12
2.6 First binary intermolecular operation . 13
2.7 Second binary intermolecular operation . 14
2.8 Hairpin recombination . 15
2.9 Double-loop recombination . 16
2.10 Template guided recombination . 17

3.1 Definition of ScnRNAs . 19
3.2 Definition of Finding putative IESs . 20
3.3 Definition of IES Deletion . 21
3.4 Definition of Rearrangement . 24

4.1 Flow diagram of the simulator . 26
4.2 An example of the scnRNA function . 30
4.3 An example of the IES function . 31
4.4 An example of the IES deletion function . 33
4.5 Process of finding MDSs in dev mac1 . 38
4.6 Process of development of dev mac2 . 43
4.7 An example of the correction function. 44

5.1 Accuracy value after the IES deletion function . 47
5.2 Accuracy value after the rearrangement function . 48
5.3 Accuracy value after the correction function . 49
5.4 Bar graph for showing accuracy improvement for all 13 input pairs 53
5.5 Relationship between threshold MDS and accuracy . 54
5.6 Relationship between threshold IES and accuracy . 55
5.7 Relationship between neighbourhood and accuracy . 56

vii

List of Abbreviations

MDS Macronuclear Destined DNA Sequence
IES Internal Eliminated Sequence
mac Macronucleus Sequence
mic Micronucleus Sequence
scnRNA Scan RNA / Small RNA
bp Base Pair
2JLP 2 Jönsson Lipps Postberg

viii

Chapter 1

Introduction

Ciliates are a group of protozoans characterized by the presence of hair-like organelles called cilia and by

the presence of two nuclei in the same cell, called the micronucleus and the macronucleus [20]. Worldwide,

4,500 different species of ciliates are known and there are more that are unknown [3]. The macronucleus

produces all the RNA needed for cell operations, and the micronucleus remains silent. The inert micronucleus

is activated during the period of sexual reproduction. By mixing ciliates of two different mating types, sexual

reproduction can occur. A schematic presentation of mating for the case of stichotrichs (a group of ciliates)

is shown in Figure 1.1. At first, the two cell membranes are fused and a connecting channel is formed in

the area of sticking. Then the diploid micronuclei in each cell undergoes meiosis and creates four haploid

micronuclei. In the case of stichotrichs, it has two diploid micronuclei and two macronuclei [8], and after

meiotic division it has eight haploid micronuclei. The two cells then interchange one haploid micronucleus

through the cytoplasmic channel. The interchanged haploid micronucleus then fuses with a resident haploid

micronucleus forming a new diploid micronucleus. After that, the two cells detach from each other and heal

their cell membranes. The remaining six unused haploid micronuclei and the two macronuclei in each cell

begin to degenerate. At the same time the new diploid micronucleus in each cell divides by mitosis without

an accompanying division of the cell, creating two daughter micronuclei. One of them remains as the new

diploid micronucleus and the other develops into a new polyploid macronucleus during the next three days.

During that period the unused haploid micronuclei and the old macronuclei completely disappear. At the

completion of the development, the new micronucleus and macronucleus divide (without cell division) and

creates two micronuclei and two macronuclei, which is the end mark of the mating.

Here, the structure of the micronucleus gene is introduced and the construction process of macronuclei

is discussed. The micronucleus has two classes of specific DNA sequences— the non-coding DNA segments

known as IESs (internal eliminated sequences) and the gene segments known as MDSs (macronuclear destined

DNA sequences). A functional macronucleus can be constructed by deleting IESs and merging MDSs from

the micronucleus. The process of converting the micronucleus into a macronucleus is known as the gene

assembly process in ciliates. Different ciliates perform the gene assembly process in different ways. In the

case of two genera of ciliates Tetrahymena and Euplotes, the MDSs of the micronucleus are interrupted by

IESs but the MDSs occur in the same order as in the macronucleus. In these genera, only removing IESs and

splicing the rest of the sequences from the micronucleus can generate a functional macronuclear gene. But in

1

Figure 1.1: Conjugation in stichotrichs. (I) A stichotrich with two macronuclei and two micronu-
clei. (II) Two stichotrichs attach and form a cytoplasmic channel. The two diploid micronuclei form
eight haploid micronuclei. (III) The two cells exchange one haploid micronucleus, and the two sti-
chotrichs separate from each other. The exchanged haploid micronucleus fuses with a host haploid
micronucleus forming a new diploid micronucleus (half green and half black). (IV) The new diploid
micronucleus divides by mitosis and creates two daughter micronuclei, and the unused six haploid mi-
cronuclei and the two macronuclei degenerate. (V) One of the new daughter micronuclei develops into
a new macronucleus and another one remains same as the new micronucleus. The unused six haploid
micronuclei and the two old macronuclei disappear from the cell. (VI) At the end the conjugation, the
new micronucleus and macronucleus divide (without cell division), resulting in two micronuclei and
two macronuclei.

the case of stichotrichs, the MDSs are not only interrupted by IESs, but the MDSs also occur in a scrambled

order. It is believed that approximately 30% of the micronuclear genes are scrambled. That is why the gene

assembly requires a massive quantity of DNA excision and rearrangement from the micronucleus [19, 11, 13].

Figure 1.2 shows a diagram of the gene assembly process.

The DNA of the micronucleus consists of extremely long molecules typical of eukaryotic chromosomes.

The number of chromosomes per micronucleus of stichotrichous ciliates has been calculated to be over 100

[1] with estimated chromosome sizes between 2 − 50 Mbp [20]. It is already known that the micronuclear

DNA contains both IESs and MDSs, and after removing all the IESs it converts into a macronucleus which

only contains 2−4% of the micronuclear DNA sequences [1]. Generally the size of each IES is between 5 and

100 bp, and they are AT-rich. In stichotrichous ciliates IESs are flanked by repeat sequences called pointers

[27]. These pointers are 2 − 20 bp in size with one copy of the pointer at the 3′ -end of one MDS and the

other copy at the 5′ -end of the next MDS (next MDS according to the correct ordering in the macronucleus)

[21, 24]. IESs are excised at the boundary between two adjacent MDSs along with one copy of the pointer.

2

Figure 1.2: A diagram of gene assembly. During macronuclear development, IESs are excised from
the micronucleus and the MDSs are joined in the correct order to yield a macronuclear gene.

There are a variety of biological models and hypotheses that have been created to model the gene assembly

process in ciliates, such as the intramolecular model [23], the intermolecular model [12], the scnRNA model

[15], the template guided model [24], and the 2JLP model [10] (many of which are described in Chapter 2).

And from a number of those, computational models have been created in an attempt to formally capture

the biological models. All the existing models of the gene assembly appear to capture at least part of the

gene assembly process, even though these models have some experimentally verified limitations [16] such as

(discussed further in Chapter 2):

• the scnRNA model does not address MDS reordering,

• the template-guided model can not explain the imprecise IES excision (too many or too few base pairs

excised) in the micronucleus during rearrangement of MDSs which is known to occur,

• both intermolecular and intramolecular models are based on predetermined pointers, but these models

do not address the method of pointer identification.

A more recent biological model named the 2JLP model [10] was created as a solution to the gene assembly

process by overcoming the above mentioned shortcomings. This model considers a combination of the scnRNA

model for excising IESs from the micronucleus, and the template-guided model for removing the remaining

IESs, for rearranging MDSs, and for a proofreading process.

Although the 2JLP model is generated by combining many of the previous models together that may

have some computational models, there is not any computational model for this new biological model. It is

desirable to create a computational model which attempts to do the following:

• tries to accurately capture the biological model,

• determine if it is consistent with real data or not,

• build simulations to test the feasibility of the model,

• use the simulation to test ambiguities or edge cases of biological models through systematic variation

of parameters.

3

This work starts by reviewing relevant literature, previous biological models and computational models

in Chapter 2. Then, a formal model is defined based on this 2JLP model called the Computational 2JLP

model. This model is described in Chapter 3 of this thesis. Then, a simulation is developed with the required

algorithms to demonstrate the proposed model. The implemented algorithms are provided and discussed in

Chapter 4. In Chapter 5, the outcome of the simulation is discussed based on its use with real micronuclear

and macronuclear genes. From the simulation outputs, it is evident that the model is suitable for all cases

(regardless of whether they are scrambled or unscrambled DNA sequences). In the simulator, some important

parameters are considered such as the minimum value needed for sufficient similarity between scnRNAs (small

RNAs) and MDSs, and the minimum value to classify IES specific sequences from the new micronucleus,

among others. These parameters are used to deal with ambiguities in the biological model and to determine

optimal values according to the simulation. Finally in Chapter 6, conclusions, discussions and some future

works are mentioned.

4

Chapter 2

Background

Researchers have been trying to resolve the mystery of the gene assembly process in stichotrichous ciliates

for many years. Both computer scientists and biologists are working on this problem. A variety of biological

and computational models have emerged that attempt to explain different parts of the process. In this

chapter, some of the more recent models are described from both a computational and biological perspective,

and presented them in a chronological fashion.

2.1 Biological models

In 1996, David M. Prescott and Michelle L. DuBois mentioned that recombination of identical pointer se-

quences seems to be one of the major operations of the gene assembly process [22]. Initially, it was thought

that pointers may play a role in identifying and removing IESs from the micronucleus at the time of recom-

bination. But after considering the length of pointers (2 − 20bp), it was determined that the possibility of

multiple occurrences of the same pointer within an adjacent IES would make pointer alignment on its own

insufficient [21]. Indeed, any segment of length 2 can occur at random every 22 = 4 nucleotides. Thus,

a repeat sequence does not provide enough information to identify IESs perfectly. Prescott suggested that

pointers could be used to ligate the ends of MDSs left by IES removal, rather than used for identification

and removal of IESs from the micronucleus. He also mentioned as a hypothesis that the old macronucleus

might guide the IES removal procedure.

Since then, various biological models have been proposed to explain the gene assembly process; including

the scnRNA model, the template guided model, and the 2JLP model [10, 14]. Among these, both the scnRNA

and the template guided models have some experimental validation over different species. However, these

two models are individually not enough to predict the entire gene assembly process. In this section all of

these three models are described while addressing how they function, their experimental support, and their

limitations.

2.1.1 Scan RNA model

A model for the gene assembly process was proposed by Mochizuki et al. in 2002 based on small RNAs

and they named it the scan RNA (scnRNA) model (Figure 2.1) [15]. They proposed that during the early

5

conjugation period a RNAi-related pathway starts with a bi-directional transcription of the micronucleus.

From that genetic material, it generates small RNAs of size 28 − 29 bp. They are also known as scnRNAs

because they are used to identify IESs from the micronuclear genome. These scnRNAs are sent to the

parental macronucleus for localization. Then all scnRNAs that are similar to some segment of the parental

macronucleus degrades. The rest of the scnRNAs that fail to degrade are largely similar to IES-specific

sequences. Then these IES-specific scnRNAs travel to the developing macronucleus where they eliminate

subsequences that are similar. Upon completion, this generates the new macronucleus.

Figure 2.1: The scan (scn) RNA model. During the early conjugation period, the genome of the
micronucleus gets transcribed bi-directionally and the resulting transcripts generate double-stranded
RNAs (dsRNA) molecules. The dsRNAs are processed into small RNAs (scnRNAs). The scnRNAs
travel to the parental macronucleus and any scnRNAs similar to DNA sequences in the parental
macronucleus degrade. In late conjugation stages, the rest of the scnRNAs (similar to IESs) transfer
to the developing macronucleus, where they target and identify IESs to be eliminated by base pairing.

One of the key points of this model is that it seems to address the case of DNA sequences without

scrambling (where the MDSs in the micronucleus are in the correct order), however this model does not

address MDS reordering. This is why this model is not sufficient for ciliate species that have scrambled

MDSs. Moreover, the model does not easily explain IES removal for cases where IESs are smaller than

scnRNAs.

Another limitation of the scnRNA model can be seen by examining the notion of cryptic pointers, which

are direct repeats of length 1-8 that are in close proximity to real pointers. In fact, despite not being the real

pointers, ciliates sometimes use cryptic pointers for splicing. It was observed in an experiment [16] that IESs

are deleted randomly and sometimes imprecisely (when IESs are removed based on cryptic pointers) at the

middle-late stage of macronuclear development. It was also observed that if multiple repeats (either cryptic

or real pointers) are available near MDS-IES junction then the IES deletion may favour longer repeats. This

6

may cause inaccurate excision of IESs from the new micronucleus. If cryptic pointers are used instead of real

pointers, then ultimately they get corrected later in macronuclear development (which is discussed further

in Section 2.1.3).

2.1.2 Template guided model

In a key experiment on the ciliate Paramecium tetraurelia (that does not have scrambling, but does have

IESs), an IES was injected into a macronucleus before mating (so that a portion of the macronuclear gene

“looked like” the micronuclear version, with two MDSs separated by an IES). Then, the ciliate was allowed

to traverse into the sexual cycle [21]. At the end of this experiment it was found that the particular IES was

present in the structure of the new macronucleus. As a result of this experiment, it was thought that some

sequence-specific information must be transferred from the parental macronucleus to the new macronucleus.

Hence, a biological model of gene assembly was introduced by Prescott et al. in 2003 and is known as the

template guided model (Figure 2.2) [24]. In this model a long macronuclear molecule (later determined to be

RNA in [18]) which has been generated from the parental macronucleus is used as a template to guide both

IES removal and MDS reordering in the developing macronucleus (Figure 2.2a). During early conjugation,

these template RNAs are produced by telemore-to-telemore transcription of the short gene-sized macronuclear

chromosomes (Figure 2.2a). As further support of this model, Nowacki et al. [18] performed an experiment

by injecting mutated artificial sequences into the template RNAs, which eventually changed the order of

MDSs in the new macronucleus (Figure 2.2b).

2.1.3 2JLP model

According to the previous two models, there is some evidence that the scnRNA model filters out IESs from

the new micronucleus. There is also other evidence that some parts of the template model must also be true,

with template molecules being present, and influencing the resulting macronucleus. Based on this idea, a

more recent biological model of gene assembly was proposed by Jönsson et al. in 2009 [10]. It is known as

the 2JLP model, and it largely combines together portions of all the previous models, which all occur within

a temporal procedure (Figure 2.3).

Definition 1 (2JLP Model). This model can be defined by the following steps:

1. During the early period after conjugation the scnRNA model generates scnRNAs. Here, the genome of

the micronucleus is transcribed bi-directionally and the resulting transcripts generate double-stranded

RNA molecules which are eventually processed into scnRNAs.

2. These scnRNAs travel to the parental macronucleus and any scnRNAs similar to DNA sequences in

the parental macronucleus are degraded.

3. In the late conjugation stages, the remaining portion of the scnRNAs (that are similar to IESs) are

7

(a) The template guided mobel based on the template generated from the old macronucleus

(b) The template guided mobel based on the injected template

Figure 2.2: Examples of template guided model. (a) The template RNAs (shaded rectangles) are
produced by telemore-to-telemore transcription of short gene-sized macronuclear chromosomes. During
macronuclear development these template RNAs act as scaffolds to guide DNA unscrambling. (b)
Microinjection of artificial templates (in this example, RNA having aMDS2−MDS1−MDS3−MDS4
sequence) alters the order of the DNA unscrambling pattern in the new macronucleus.

transferred to the developing new macronucleus, where they target and identify IESs to be eliminated

by base pairing.

4. At the same time, the template guided model generates template RNAs from the parental macronucleus

to guide the alignment of MDSs and their pointer sequences, and produces the new macronucleus.

5. In the case of scrambled genes, the template RNAs perform unscrambling of MDSs according to their

order in the macronuclear chromosomes. Homologous recombination between the aligned pointers splice

out IESs. For IES excision, if cryptic pointers are used instead of real pointers, a proofreading mech-

anism guided by the template ensures the missing sequences are filled in and the extra sequences are

removed to create full-length chromosomes.

Both scnRNA and template guided models seem to tell a part of the story. By combining both of these

well known models, it is possible to get a more complete understanding of the gene assembly process. An

example of the 2JLP model based on artificial data is shown in Figure 2.4.

8

Figure 2.3: The 2JLP model combines aspects from the scanRNA model and the template-guided
model to explain gene assembly in ciliates. The whole micronuclear genome is transcribed early in
macronuclear development into long double-stranded transcripts, which are processed into small RNAs
(scnRNAs). These complexes invade the old macronucleus. There, scnRNAs similar to macronuclear
sequences (dark blue) are localized. The rest of the scnRNAs (red) are sent to the new micronucleus
for marking and excision of IESs by recruiting chromatin-modifying proteins to the micronuclear-
specific sequences. IESs are small in stichotrichous ciliates and cryptic pointers may be used instead
of real pointers, which cause imprecise excision. Imprecisely processed sequences will be corrected by
a proofreading mechanism that is guided by template RNAs (gray). These template RNAs originate
from the old macronucleus. In scrambled genes the template RNAs guide alignment of micronuclear
MDSs into the correct order, creating a new macronucleus.

9

Figure 2.4: An example of the 2JLP model based on artificial data.

10

2.2 Computational models

There have been various computational models of the gene assembly process based on the above discussed

biological models. Among these models the intermolecular model, intramolecular model and template guided

recombination [12, 23, 9, 7] are described here. All of these models are designed on string operations.

2.2.1 Intermolecular model

The first primary theoretical model for gene assembly was proposed by Laura F. Landweber and Lila Kari

in 1999 [12] and it consists of one unary intramolecular and two binary intermolecular operations of DNA

recombination on pointers. The whole model is known as the intermolecular model because two of these

three operations are intermolecular operations.

For the intramolecular recombination operation (Figure 2.5), the input is a linear molecule of the form

cρxρd where c, ρ, x, d are subsequences of a DNA strand with c, d representing MDSs and ρ representing

a pointer sequence. In this operation ρ guides the homologous recombination. After ρ finds its second

occurrence in the input linear molecule (cρxρd), then it recombines and leads to the formation of two new

molecules: a linear DNA molecule cρd and a circular molecule [ρx]. Here brackets are used to represent a

circular molecule.

The first binary intermolecular operation (Figure 2.6) of the model is the inverse operation of the in-

tramolecular recombination. In this operation, two DNA molecules are needed to take as inputs. One of

them is a linear DNA molecule of the form cρd, where c, ρ, d are subsequences of a DNA strand. Another one

is a circular DNA molecule of the form [ρx], where ρ, x are subsequences of a DNA strand. This operation

is accomplished by inserting ρx or xρ in the linear molecule cρd. The output of this operation is the linear

DNA molecule of the form cρxρd.

The second binary intermolecular operation (Figure 2.7) of the model performs homologous DNA recom-

bination over two linear DNA molecules of the form cρd and uρv where c, ρ, d, u, v are subsequences of a

DNA strand with c, d, u, v representing MDSs and ρ representing a pointer sequence. In this operation the

molecules undergo a homologous recombination in ρ and generates two new linear DNA molecules of the

form: cρv and uρd.

The basic idea of the above explained operations is to do homologous recombination at ρ and to create

the longer, composite MDS by merging two MDSs together. The intermolecular model is reversible and

that is why the authors of this paper expected that the macronucleus is generated from the micronucleus

by using these three operations iteratively. If we closely observe these three operations, we can see that the

intermolecular model is very much related with the biological concept given by David M. Prescott [21] where

he mentioned that the recombination of pointers as one of the major operations of the gene assembly process.

Moreover, all of these operations are based on predetermined pointers. There is no information in the model

regarding the mechanism of pointer identification from the DNA molecule.

11

Figure 2.5: Unary intramolecular operation of DNA recombination. At the beginning, it takes a
linear molecule of the form cρxρd as input. Then it aligns two occurrences of ρ in parallel and the
molecule forms a loop. It performs DNA recombination operation at repeat ρ. Finally it generates
one linear and one circular DNA molecule. In the figure, black rectangles are used to represent MDSs,
blue rectangles are used for pointers, red lines are used for IESs and transparent blue lines are used
for homologous recombination.

2.2.2 Intramolecular model

Another primary theoretical model for gene assembly was introduced by Prescott et al. [23] and Ehrenfeucht

et al. [9] in 2001. It consists of three unary molecular operations based on pointers. All of these operations

take one linear DNA molecule as the input and that is why the model is referred to as the intramolecular

model.

The first operation is called loop recombination or in short, ld. This operation is exactly the same as

the previously discussed intramolecular DNA recombination (Figure 2.5). In this operation, the pair of

repeat sequences (pointers) of the input align in proximity of each other. Then it performs homologous DNA

recombination and generates one linear molecule and one circular molecule.

The second operation is called hairpin recombination or in short, hi (Figure 2.8). This operation is

applicable to a portion of a scrambled DNA molecule where it has a pair of pointers such that one occurrence

is an inversion of the other one. To define the operation, let Σ = {A,C, T,G} be the alphabet of DNA

nucleotides, Σ∗ the set of words over Σ, and Σ+ the set of non-empty words over Σ. If ρ = a1a2a3...an−1an is

a pointer in Σ+ where ai ∈ Σ∗, and 1 ≤ i ≤ n, then an inverse pointer is ρ = anan−1...a3a2a1 [6]. Assume a

12

Figure 2.6: First binary intermolecular operation takes two inputs: a linear molecule of the form cρd
and a circular molecule of the form ρx. Then, it performs DNA recombination operation on ρ of these
two input molecules. Finally it generates one linear DNA molecule. In the figure, black rectangles
are used to represent MDSs, blue rectangles are used for pointers, red lines are used for IESs and
transparent blue lines are used for homologous recombination.

DNA molecule of the form dρ′x′cρ′x′′ where ρ′ and ρ′ are a pointer and its inverse respectively, and d, x′, c, x′′

are subsequences of a DNA strand. In this operation the molecule folds in such way that it brings two pointers

with the same polarity together and form a structure of a hairpin. Then homologous recombination between

pointers generates a new linear and unscrambled DNA molecule of the form x′′ρ′x′cρ′d.

The third operation is called double-loop recombination or in short, dlad (Figure 2.9). This operation

is applicable to a portion of a scrambled DNA molecule having two pairs of pointers in which one pair of

pointers overlaps the area covered by the other pair of pointers. Assume that the molecule has the form

cρx1ρ
′eρx2ρ

′d, where ρ, ρ′ are pointers and c, d, e, x1, x2 are subsequences of a DNA strand. In this operation

the molecule aligns similar pointers where one copy of similar pointer creates the first loop and another copy

of similar pointer creates the second loop. Then, it performs double homologous recombination between

pointers and produces a new linear, unscrambled DNA molecule of the form cρx2ρ
′eρx1ρ

′d.

It is important to note that the loop recombination process generates a circular molecule and if this

circular molecule contains an MDS then it cannot be spliced again by performing any one of these three

operations. Moreover, all three operations are based on the recombination of pointers described by Prescott

[21]. However, one limitation of these models is that they do not discuss the process of pointer identification

in their model. All of these three operations then represent only a step of the gene assembly rather than the

whole.

13

Figure 2.7: Second binary intermolecular operation takes two linear DNA molecules as input of the
form cρd and uρv. Then, it performs a homologous recombination in ρ of these two input molecules.
Finally it generates two linear DNA molecules. In the figure, black and purple rectangles are used
to represent MDSs, blue rectangles are used for pointers, and transparent blue lines are used for
homologous recombination.

2.2.3 Template guided recombination

A generalized version of the template guided model [24] was proposed by Daley and McQuillan in 2004 [7]

and is known as the template guided recombination operation. Previously, it has been discussed that both

intermolecular and intramolecular gene assembly models are based on a process whereby pointers are already

known. Both the inter- and intramolecular models are unable to deal with the identification mechanism of

pointers which is necessary for arranging all MDSs in the correct order, and even for removing IESs from

unscrambled genes. The template guided recombination operation resolves this issue of finding the pointer

positions in the micronucleus. In this model, the assembled gene from the old pre-conjugation macronucleus

is used as the template for finding the correct order of MDSs as well as corresponding pointers.

The model (Figure 2.10) considers an iterated recombination based on the template. The model takes

two DNA segments and merges them together, if it matches with a portion of a template. Assume uαρd

and eργv are two DNA segments where u, v, α, ρ, d, e, γ are subsequences of a DNA segment in which α, γ

represent MDSs and ρ represents a pointer sequence. Now we need a portion of a template with the form

αργ for splicing these two DNA segments. If we compare two DNA segments with the template then αρ and

ργ are common portions from the first and second DNA segments consecutively. For splicing these two DNA

segments based on the template, at first we need to cleave and remove d and eρ or ρd and e from the first

14

Figure 2.8: Hairpin recombination. This operation takes one linear, scrambled DNA molecule having
reverse pointers as input, of the form dρ′x′cρ′x′′. Then, it folds in such a way that the two pointers
come into the same direction. After that, it performs a homologous recombination between pointers.
Finally it generates a linear and unscrambled DNA molecule. In the figure, black rectangles are used
to represent MDSs, blue rectangles are used for pointers, red lines are used for IESs and transparent
blue lines are used for homologous recombination.

and second segments consecutively. Then splice the rest of the portions (uαρ and γv or uα and ργv) of these

two DNA segments and generate uαργv as a product of a single iteration of template guided recombination.

After running this operation arbitrarily many times it can give a complete macronucleus.

In 2007, Angeleska et al. proposed a modification on this model by considering the template as a double-

stranded RNA molecule instead of a double-stranded DNA molecule [2]. In an experiment Möllenbeck et al.

[16] found that before MDS rearrangement a large number of IESs are excised from the micronucleus, and

often imprecisely excised with cryptic pointers. That means rearranging only based on the template RNA is

not the complete model of the gene assembly process. If all three biological models are combined then the

2JLP model (Figure 2.3) best describes the gene assembly process. There has not been any computational

model based on the 2JLP model where IESs are excised first based on scnRNAs and then MDSs are rearranged

based on templates generated from the old macronucleus.

15

Figure 2.9: Double-loop recombination. This operation takes as input one linear, scrambled DNA
molecule having two pairs of pointers in which one pair of pointers overlaps the area covered by the
other pair of pointers. This input is of the form cρx1ρ

′eρx2ρ
′d. Then, it folds the molecule in such a way

that the two pairs of pointers are aligned, creating a double loop. Then, it performs double homologous
recombination between pointers. Finally it generates a linear and unscrambled DNA molecule. In the
figure, unshaded rectangles are used to represent MDSs, shaded rectangles are used for pointers, red
lines are used for IESs and transparent blue lines are used for homologous recombination.

16

Figure 2.10: Template guided recombination. This operation takes as input two linear DNA seg-
ments (uαρd and eργv) having common pointers (ρ) and a segment of template (αργ) from the old
macronucleus. Then, it finds the common portion between the template and input DNA strands. After
that, it cleaves and removes extra molecules from both DNA strands based on the template. Finally,
it splices the rest of these molecules and generates the output DNA strand.

17

Chapter 3

Computational 2JLP model

This chapter formally models the 2JLP biological model. It is known as the Computational 2JLP model.

In Chapter 4, a simulation based on the computational 2JLP model is built.

In the previous chapter, Definition 1 (the biological 2JLP model) has 5 steps. The first step constructs

scnRNAs. The second step finds scnRNAs similar to IES specific sequences. The rest of the steps define

the construction process of the new macronucleus by deleting IESs from the new micronucleus, rearranging

MDSs and correcting the developing macronucleus based on the old macronucleus. This chapter formally

defines these individual steps. Connecting all these individual definitions yields the computational 2JLP

model. As the model is defined at the level of sets and strings, and the 2JLP is not described at that level,

some simplifying assumptions are necessary. They are stated prior to their use.

Throughout this entire chapter, Σ denotes the fixed alphabet of DNA nucleotides; that is, Σ = {A,C, T,G}.

Let Σ∗ be the set of all strings over the alphabet Σ, and let Σ+ be the set of non-empty strings over Σ. Let

ϕ ∈ Σ∗. Then the length of ϕ is written as |ϕ|. If n is a natural number, then Σn is the set of all strings over

Σ of length n, and Σ≤n is the set of all strings over Σ of length at most n.

3.1 ScnRNAs

In this section, the first step of the 2JLP model (Section 2.1.3) is defined. This step is the construction

mechanism of scnRNAs from the old micronucleus. In the model, the size of scnRNAs is assumed to be 28 bp

(which is consistent with biological evidence as discussed in Section 2.1.1) and the set of scnRNAs is generated

by taking each consecutive 28 nucleotides from the old micronucleus. Suppose the old micronucleus is a string

of the form a1a2a3 · · · an, then the first scnRNA is a1 · · · a28, the second scnRNA is a2 · · · a29 and in the same

way, the last scnRNA is an−28+1 · · · an. Although there is more than one micronuclear chromosome, the

micronucleus can be abstractly represented as a single string by concatenating distinct micronuclei together.

The formalism to turn a RNA into a DNA is briefly defined. Let ΣR = {A,C,U,G}. Let h be a

homomorphism from Σ∗ to ΣR
∗ that maps each character of Σ∗ to its correspondent RNA character (so A

maps to A, C to C, T to U and G to G). The formal definition of the set of scnRNAs is given below:

Definition 2 (ScnRNAs). Let ϕ ∈ Σ∗ be a string representing the old micronucleus, where ϕ = a1a2 · · · an, ai ∈

Σ, 1 ≤ i ≤ n. Then, γ28(ϕ) = {x | |x| = 28, ϕ = yxz, y, z ∈ Σ∗}, and h(γ28) is called the set of scnRNAs.

18

In the above expression, each string of γ28(ϕ) does not represent RNA; rather, it is a piece of a DNA

sequence. Then the set h(γ28(ϕ)) is the set of scnRNAs. Figure 3.1 illustrates the scnRNA definition.

Figure 3.1: Definition of ScnRNAs. Here, ϕ represents the old micronucleus, h(γ28(ϕ)) represents
the set of scnRNAs, and γ28(ϕ) is the set of scnRNAs changed to DNA. Red and black rectangles
consecutively represent IESs and MDSs from the old micronucleus, although at this stage, the model
does not discriminate between the two types.

3.2 Finding putative IESs

From the scnRNA model (Section 2.1.1), it is evident that after construction, the scnRNAs travel to the

parental macronucleus. The model dictates that if a scnRNA is similar to a portion of a chromosome in

the parental macronucleus, it gets filtered out while the remaining scnRNAs continue to the next stage of

the model (Figure 3.2). The notion of similarity for this filtering is not exactly known. For example, it is

unknown to what degree the strings need to be similar, both throughout the sequences and at the ends of

the scnRNAs (for example, if 25 of the first 28 nucleotides match, a scnRNA could still become filtered out).

For the computational model, a binary relation is used to discuss similarity. This will allow trial of different

binary relations in Chapter 4 as part of a simulation reflecting different notions of similarity.

The scnRNAs which are filtered out are largely similar to IES specific sequences. The formal definition

for finding the putative IES specific sequences is:

Definition 3 (Similarity, and determination of putative IESs). Let Ξ ⊆ Σ28 ×Σ∗ be a binary relation. This

will reflect the notion of similarity, whereby (w, y) ∈ Ξ if w is similar to y. Since we only consider scnRNAs

for the first component, it suffices that the first component be of length 28.

Let ϕ ∈ Σ∗. Also, let Q ⊆ Σ∗ be a finite set of strings representing the old macronucleus. Then,

β28(Q) = {w | w ∈ γ28(ϕ), for each π ∈ Q, and each x, y, z ∈ Σ∗ with π = xyz, then (w, y) /∈ Ξ}.

That is, if an element of γ28(ϕ) is similar (using the relation Ξ) to a subword of some π ∈ Q, then that

element is not in the set β28(Q). However, if some element w of γ28(ϕ) is not similar to any subword of any

π ∈ Q, then w ∈ β28(Q).

It can be seen from the definition that all scnRNAs (γ28(ϕ)) are checked against the old macronucleus

(Q) and all scnRNAs which are not matched according to the binary relation to any substrings of strings in

19

the old macronucleus are filtered out. For example, if Ξ = {(v, v) | v ∈ Σ28}, then the relation matches all

scnRNAs where there is an exact match with some subword of a macronuclear chromosome. In this case,

β28(Q) would match scnRNAs that are not subwords of any macronuclear chromosomes. Less strict relations

are considered for Ξ that allow for similarity as described above. In this case, the new set of scnRNAs

consists of sequences that are largely similar to IES specific sequences, and this set is called the putative IESs

(β28(Q)). This definition is able to successfully define the second step of the 2JLP model (Section 2.1.3).

Figure 3.2: This process finds putative IESs by comparing each string π from the old macronucleus
(Q) and the set of scnRNAs (γ28(ϕ)). Here, y is an element from the set of scnRNAs that is similar
to a subword of some string in the old macronucleus. Then, β28(Q) indicates the set of scnRNAs that
are not similar to the old macronucleus and are therefore putative IESs.

3.3 Construction process of the new macronucleus

In this section, the construction process of the new macronucleus from the new micronucleus is modeled by

using the putative IES specific sequences and the template (generated from the old macronucleus). This

section has two parts. The first part models the IES elimination by the putative IES specific sequences

(Figure 3.3) and the second part involves the modelling of the rearrangement and the correction (the IES

removal or the MDS insertion) of the developing macronucleus based on the template (Figure 3.4).

3.3.1 Iterated deletion of IESs using scnRNAs

From the third step of the 2JLP model (Section 2.1.3), it can be seen that the filtered scnRNAs (thought to

be similar to IES specific sequences) are transferred to the developing macronucleus. These scnRNAs target

and remove similar IESs from the new micronucleus which then generates the developing macronucleus.

To define this step, intuitively, each putative IES specific sequence (that is taken from the set β28(Q)) is

checked with the new micronucleus (ϕ0), and those sections of the strings are marked by using new barred

letters. Then, repeats are identified (which could be either pointers or cryptic pointers) within a certain

range (provided by a parameter called neighbourhood) at the beginning of a barred section (the section that

is similar to the putative IES sequences), and at the end of the barred section. If such repeats exist, then

one of the copies of the repeat along with the intermediate string between those repeats are removed. This

excision operation is iterated throughout the marked new micronuclues (ϕ0) and the developing macronucleus

(ϕ1) is generated.

20

Figure 3.3: Definition of IES Deletion from the new micronucleus (ϕ0). At first, all elements of
the set β28(Q) are compared with ϕ0 and these mark the IES specific sequences. Then, IES specific
sequences are removed based on pointers (represented with bars of the same colour) at the beginning
and the end of all individual marked sequences throughout ϕ0. Finally, the developing marconucleus
(ϕ1) is generated after removing all marked sequences between repeats (either real or cryptic pointers)
and one copy of each repeat.

Indeed, Möllenbeck et al. [16] observed deleted segments between repeats in close proximity to the real

MDS-IES junction. That is, sometimes cryptic pointers are used instead of real pointers if they are nearby.

But they did not mention any approximate range for defining this close proximity. In this model, this

proximity is called the neighbourhood and considered a parameter.

First the formalism to mark a character is briefly defined, which can be used to represent matching

between scnRNAs from β28(Q) before the deletion occurs.

Let Σ = {A,C, T,G,A,C, T ,G}. Let h be a homomorphism from Σ
∗

to Σ
∗

that maps each character of

Σ to its barred version (so for example, h(A) = h(A) = A). Also, let h be a homomorphism from Σ
∗

to Σ∗

that maps each letter to its unbarred version. And, let ν be a positive integer variable that represents the

size of the neighbourhood.

Definition 4 (IES marking). The first barring of characters is defined as follows:

• One iteration: Let u, v ∈ Σ
∗
. Then, u ⇒IES v, if u = zxy, v = zh(x)y, there exists w ∈ β28(Q), such

that (w, h(x)) ∈ Ξ.

• Multiple iterations: u ⇒∗IES v, if either u = v, or if u ⇒IES u1 ⇒IES u2 ⇒IES . . . ⇒IES um = v

where m ≥ 1, and u1, . . . , um ∈ Σ
∗
.

• Termination: u ⇒#
IES v, if u ⇒∗IES v, and v ⇒IES v implies v = v (in other words, there does not

exist any x ∈ β28(Q) that is not barred in v).

Let ϕ0 ∈ Σ∗ represent the new micronucleus. Then let ϕ0 be such that ϕ0 ⇒#
IES ϕ0. Then, ϕ0 ∈ Σ

∗

represents the micronucleus with marked IES specific sequences.

21

Definition 5 (IES deletion). IES deletion is defined as follows:

• One deletion: Let u ∈ Σ
∗
. Then, u→IES v, if u = zρxρy, v = zρy, 2 ≤ |ρ| ≤ 20, x ∈ Σ≤ν{A,C, T ,G}∗Σ≤ν ,

and if x starts with a letter from {A,C, T ,G}, then zρ ends with at most ν barred letters, and if x ends

with a letter from {A,C, T ,G}, then ρy starts with at most ν barred letters.

• Multiple deletions: u→∗IES v, if either u = v, or if u→IES u1 →IES u2 →IES . . .→IES um = v where

m ≥ 1, and u1, . . . , um ∈ Σ
∗
.

• Termination: u →#
IES v, if u →∗IES v, and there does not exist any y such that v →IES y (in other

words, it removes all barred characters possible between a beginning and an end repeat along with one

copy of the repeat).

Let ϕ0 be such that ϕ0 ⇒#
IES ϕ0, and so ϕ0 is the output of the termination phase of the previous operation.

Let ϕ1 be such that ϕ0 →#
IES ϕ1. Then, any barred letters that were not removed are no longer relevant.

Therefore, let ϕ1 = h(ϕ1), which represents the next stage of the developing macronucleus.

3.3.2 Additional IES excision and MDS rearrangment by using templates

Next, the remaining two steps of the 2JLP model (Section 2.1.3) are defined. The fourth step of the 2JLP

model is based on the template guided model (Section 2.1.2). In this step, MDSs of a developing macronucleus

(after deleting IESs based on the scnRNA model) are rearranged based on the template RNAs generated from

the old macronucleus and produces the next iteration of the developing macronucleus. The final step of the

2JLP model is the proofreading which also involves the templates. In this step, a developing macronucleus

is compared with the template RNA, filling in missing nucleotides and removing extra nucleotides. This is

because IES removal precision is imprecise and there is a hypothesized proof-checking process needed before

generating the final macronucleus.

To define these two steps, it is necessary to define both intramolecular (occurring within a sting) and

intermolecular (occurring between strings) operations. They are performed together with a template, which

is a string from the old macronucleus Q. (Although in reality, the template is RNA derived from the old

macronucleus, from the perspective of the formal model, this will not make any difference.)

Here, the ‘≈’ symbol represents similarity.

Definition 6 (Intramolecular operation). Let y ∈ Σ∗ and Q ⊆ Σ∗ (the old macronucleus). Then y intra

{z, xρ}, where x, z ∈ Σ∗, π = ru′ρv′s ∈ Q, y = tuρxρvm, z = tuρvm, and m, r, s, t, u, u′, v, v′ρ ∈ Σ+, and

2 ≤ |ρ| ≤ 20, u ≈ u′, v ≈ v′.

This operation is used to rearrange two MDSs (likely u and v) via pointer ρ. These segments, uρv must

match (or be similar to) the template. The segment x in the middle (which could contain other MDSs if u

and v were scrambled) along with one copy of the pointer, is kept as a separate molecule (string).

22

Definition 7 (Intermolecular operation). Let y, x ∈ Σ∗ and Q ⊆ Σ∗ (the old macronucleus). Then

{y, x} inter {z, j, dρ} and {y, x} inter {z, ρj, d} where y = tuρj, x = dρvs, π = ru′ρv′j ∈ Q and

z = tuρvs, and j, r, s, t, u, u′, v, v′ρ ∈ Σ+, and 2 ≤ |ρ| ≤ 20, u ≈ u′, v ≈ v′.

This is essentially the same as Definition 6 except it will work if the two MDSs to be joined together next

are on separate strings. So, for example, after an application of Definition 6 bringing together two MDSs

with other MDSs in between, those middle MDSs get excised on a separate string. Those can then rejoin the

“main string” with an application of Definition 7.

Now, both the intramolecular and the intermolecular operations are applied arbitrarily over a developing

macronucleus (ϕ1) in the definition of the second last step of the 2JLP model which is as follows:

Definition 8 (Rearrangement). The rearrangement is defined as follows:

• Rearrangement of two consecutive MDSs with an IES excision or an MDS insertion: Let X1 = {ϕ1}.

This is the starting point. We iteratively construct a set Xi+1 from Xi until some stopping point. Then,

Xi → Xi+1 if either

– u ∈ Xi, u intra {v, x}, Xi+1 = Xi − {u} ∪ {v, x}.

– u, x ∈ Xi, {u, x} inter Z, Xi+1 = Xi − {u, x} ∪ Z.

• Multiple excision or insertion with rearrangement: X1 →∗ X ′, if either X1 = X ′, or if X1 → X2 →

. . .→ Xn = X ′ where n ≥ 1, and X1, . . . , Xn ⊆ Σ∗

• Termination: Let Q be the old macronucleus. Then, X1 →# X ′ if X1 →∗ X ′, and every string w ∈ Q

is similar to some string in X ′.

Let ϕ1 ∈ Σ∗ represents the developing macronucleus. Then, let ϕ2 be the longest string in X ′ such that

ϕ1 →# X ′.

The longest string is of primary interest as iterations of the rearrangement create (perhaps many) strings

containing primarily IESs that do not rejoin the “main string” as they do not match the template.

Then, to do the final proof correction stage, it is not necessary to formally model this step, but instead it

is algorithmically described. A pairwise alignment algorithm is used to align ϕ2 with each string of the old

macronucleus. For every gap along ϕ2, the sequence information from the string of Q is used instead. And

for every gap along the string of Q, the corresponding segment of ϕ2 is deleted. Thus, this simulates the final

removal and insertion of small segments of the developping macronucleus according to the template.

23

Figure 3.4: Definition of Rearrangement of the developing macronucleus (ϕ1) by using the old
macronucleus (π).

24

Chapter 4

Algorithm

This section describes implemented algorithms based on the Computational 2JLP model (Section 3.1),

a formal model of the biological 2JLP model (Section 2.1.3). These algorithms are built to demonstrate

each definition and to check the feasibility of the computational model. Another purpose of developing the

algorithms is to find out some important aspects about the gene assembly process by analysing the results

of the simulation with real data. These findings can be helpful for refining the 2JLP model. For example, in

the algorithm, certain values are parameterized that were left ambiguous or not described in the biological

model. Then, it can be tested which values for the parameters give better results.

This chapter is divided into two sections: Section 4.1 discusses important parameters, and Section 4.2

gives a detailed description of the implemented algorithms. Figure 4.1 shows the flow diagram of the pipeline

used to simulate the Computational 2JLP model.

In the algorithms for doing string comparison, global [17] , semi-global [4], and local [25] alignment

techniques are used. Knowledge of these algorithmic techniques is assumed in this thesis. For scoring

alignments a match scores 1, mismatch scores −1, and gap scores −2. These values are chosen for simplicity

since there are already many parameters being systematically varied for the simulation.

From Figure 4.1, it is evident that the simulator has five major functions (green shaded rectangles). These

are scnRNA, IES, IES deletion, rearrangement, and correction. Among these, the scnRNA function closely

demonstrates the mechanism of Definition 2. The IES function demonstrates the mechanism of Definition

3. The IES deletion function demonstrates the mechanism of Definition 4 and 5. For demonstrating the

mechanism of Definition 8, both the rearrangement and the correction functions are used.

25

Figure 4.1: Flow diagram of the simulator. Major functions of the simulator are represented by
green shaded rectangles. The parameters are explained in Table 4.1. Each part of the pipeline will be
explained in Section 4.2.

4.1 Important parameters

In the algorithm, some important parameters are considered. Figure 4.1 shows the use of these parameters

in the implemented algorithms. Table 4.1 shows the list of important parameters along with the possible

range of assigned values (some of which are a single constant value) and the reason for selecting these

values. The simulation systematically tries all integer values in the range of all parameters for every input

macronuclear/micronuclear gene pair. If eventually preferred values for these parameters are determined, it

could be possible to alter the simulation to only try those values, significantly speeding up the simulation.

These important parameters are explained further in Section 4.2.

26

Table 4.1: List of the important parameters

Parameter name (purpose) Assigned
Value

Reason for assigning this value

bp size (the size of scnRNAs) 28 From the Scan RNA model (Section 2.1.1), it is
known that the size of scnRNAs is 28 or 29 bp.

threshold MDS (the minimum score of
the semi-global alignment needed for
sufficient similarity between scnRNAs
and old mac)

1 to
bp size

There is no evidence known in the literature as to
what value might be appropriate for this variable, so
a brute force approach is taken and a large range for
this parameter is tested.

threshold IES (the minimum score of
the semi-global alignment needed for
sufficient similarity between filtered sc-
nRNAs and new mic)

1 to
bp size

There is no evidence known in the literature as to
what value might be appropriate for this variable, so
a brute force approach is taken and a large range for
this parameter is tested.

minP (the minimum size of a pointer) 2 In Chapter 1, it is mentioned that the minimum size
of a pointer is 2 bp [21].

maxP (the maximum size of a pointer) 20 In Chapter 1, it is mentioned that the maximum size
of a pointer is 20 bp [21].

diff (the minimum difference between
two consecutive IESs)

2 There is no evidence in the literature as to what value
might be appropriate for this variable, so a simplify-
ing assumption is made.

nh (the size of the neighbourhood, indi-
cates the area around where filtered sc-
nRNAs match the developing macronu-
cleus)

1 to 20 There is no evidence known in the literature as to
what value might be appropriate for this variable, so
a brute force approach is taken and a large range for
this parameter is tested.

window size (the initial length for
selecting a MDS from the variable
old mac)

5 There is no evidence in the literature as to what value
might be appropriate for this variable, so a simplify-
ing assumption is made.

4.2 Implemented algorithms

As discussed above, the major functions of the pipeline are the scnRNA, IES, IES deletion, rearrangement and

correction functions demonstrating the mechanisms of Definitions 1, 2, 3, 4 and 5 respectively. Each of these

functions are described individually from Subsection 4.2.1 to Subsection 4.2.5. The high-level pseudocode of

the simulation is given in Algorithm 1.

From Algorithm 1, it is evident that the implemented algorithm takes three input strings: old mic,

old mac, and new mic. Among these input strings, old mic and old mac are a single matching micronuclear

gene and macronuclear gene. And for lack of data, new mic is considered to be the same as the old mic,

though biologically they are slightly different, as the micronucleus is altered after mating. At the beginning

of the algorithm, some variables are initialized to hold intermediate results like scnRNAs and IESs which

are both one dimensional arrays of strings, and dev mac1, dev mac2, new mac as strings. Then, some

important parameters are assigned with desired values (see Table 4.1). The simulation systematically varies

all parameters in Table 4.1 in all possible combinations for every macronuclear and micronuclear gene pair,

and for each will calculate three outputs: acc1, acc2 and acc3. These values represent the similarity of the

old macronucleus to the developing macronucleus at three different stages and time orders: first after deleting

27

Algorithm 1 Implemented Algorithm (old mic, old mac, new mic)

1: INIT scnRNAs, IESs, dev mac1, dev mac2, new mac;
2: INIT acc1, acc2, acc3;
3: bp size← 28;
4: minP ← 2;
5: maxP ← 20;
6: diff ← 2;
7: window size← 5;
8: scnRNAs← scnRNA(old mic, bp size);
9: for i← 1 to bp size do

10: threshold MDS ← i;
11: IESs← IES(old mac, scnRNAs, threshold MDS, bp size);
12: for j ← 1 to bp size do
13: threshold IES ← j;
14: for nh← 1 to 20 do
15: dev mac1← IES deletion(new mic, IESs, threshold IES, bp size,minP,maxP, diff, nh);
16: acc1← global alignment(old mac, dev mac1);
17: dev mac2← rearrangement(dev mac1, old mac, window size);
18: acc2← global alignment(old mac, dev mac2);
19: new mac← correction(dev mac2, old mac);
20: acc3← global alignment(old mac, new mac);
21: printf(acc1,acc2,acc3);
22: end for
23: end for
24: end for

IESs from the micronucleus (dev mac1), second after rearrangement based on templates (dev mac2), and

third after proof checking (new mac). These three similarity values are discussed in further detail in Chapter

5.

The scnRNA function generates all possible scnRNAs through a “sliding window” technique. In the

scnRNA function, old mic is divided according to the bp size (28) variable to construct a set of scnRNAs.

This function is explained and justified in Subsection 4.2.1. After generating scnRNAs, a loop is used to

systematically change threshold MDS by increments of 1 (as there is no evidence that it is known in the

literature as to what value might be appropriate for this variable). Indeed, threshold MDS represents the

minimum score of the semi-global alignment needed for sufficient similarity between scnRNAs and old mac.

Within this loop, scnRNAs is taken along with old mac, bp size, and threshold MDS as inputs to the IES

function to generate IESs (IES specific sequences). The IES function is explained and justified in Subsection

4.2.2. Then, a nested loop is used to change threshold IES (as there is no evidence in the literature as to what

value might be appropriate for this variable). Indeed, threshold IES represents the minimum score of the semi-

global alignment needed for sufficient similarity between IESs and new mic. Within this nested loop, another

loop is run to change the size of neighbourhood (nh) as there is no evidence in the literature as to what value

might be appropriate for this variable. The size of neighbourhood indicates the area around where filtered

scnRNAs match the developing macronucleus. Within this loop, new mic, IESs, threshold IES, bp size, minP,

maxP, diff, nh are used as inputs to the IES deletion function to generate dev mac1. This function is explained

28

and justified in Subsection 4.2.3. Then, the similarity between old mac and dev mac1 is calculated by using

the global alignment function and the result is stored in acc1. After that, the rearrangement function is

used to generate the dev mac2 by taking dev mac1, old mac, and window size as inputs. The rearrangement

function is explained and justified in Subsection 4.2.4. Then, the similarity between old mac and dev mac2

is calculated by using the global alignment function and the result is stored in acc2. After that, the correction

function is applied to correct dev mac2 and the new mac is generated based on the template (old mac). The

correction function is explained and justified in Subsection 4.2.5. Then, the similarity between old mac and

new mac is calculated by using the global alignment function and the result is stored in acc3. Finally, the

values of acc1, acc2, and acc3 are displayed before ending the innermost nested loop. After finishing the

outermost loop (used to vary threshold MDS), acc1, acc2, and acc3 are printed for the specific values of

threshold MDS, threshold IES and nh.

4.2.1 The scnRNA function

The main objective of this function is to demonstrate the mechanism of Definition 2 which is the construction

of scnRNAs from the old micronucleus. Here, one of the input strings “old mic” is divided into strings of

a certain length based on the bp size variable and then those strings are stored in a one-dimensional array.

Algorithm 2 gives the pseudocode of the scnRNA function. It takes old mic and bp size as inputs. At the

very beginning of the algorithm, a variable called scnRNAs is initialized. Then, a loop is run from 0 to the

length of old mic minus bp size. After that, a variable (k) is declared to make each possible substring of

length bp size from old mic. Then, a inner loop is run from 0 to bp size and in this loop strings are stored

in scnRNAs from old mic. After finishing both loops the scnRNA function returns the variable scnRNAs to

its calling function. An example of this function is illustrated in Figure 4.2. The reverse complements are

not added yet to scnRNAs, as is done in the biological 2JLP model. For simplicity, the reverse complements

are considered in the rearrangement function.

Algorithm 2 scnRNA (old mic, bp size)

1: INIT scnRNAs;
2: for i← 0 to (length[old mic]− bp size) do
3: k ← i;
4: for j ← 0 to bp size do
5: scnRNAs[i][j]← old mic[k];
6: k ← k + 1;
7: end for
8: end for
9: return scnRNAs;

4.2.2 IES function

The IES function demonstrates the functionality of Definition 3 by comparing all elements of the variable

scnRNAs (output of the scnRNA function) with the input string old mac and filtering out a set of largely

29

Figure 4.2: An example of the scnRNA function. The example shows that the old mic is divided
into substrings (scnRNAs) based on the bp size variable.

IES specific sequences (IESs). Algorithm 3 gives the pseudocode of this function. This function compares

each element from scnRNAs with old mac, and if there is a match that is “similar enough”, it gets filtered

out as it will largely be MDS specific, and the scnRNAs that remain are placed in the array IESs. To test

the similarity of an element from scnRNAs to the variable old mac, the semi global alignment function is

used and the result is compared with threshold MDS. If the result is greater than or equal to the value of

threshold MDS then that element is considered to be “similar enough” with old mac.

The semi-global alignment technique is used to find an element, if it exists, from the variable scnRNAs

where either the prefix or suffix is similar to a substring of the variable old mac. This function is also run

several times by changing the value of threshold MDS to do approximate string matching. Indeed, it is

known that allelic variation (an allele is a variant of a gene where the DNA sequence differs between two or

more variants) may occur in a biological sequence. Interestingly, some MDSs are less than 28 bp long. It

is desirable to know how the simulation works on those, and threshold MDS is the parameter that is giving

that information. Furthermore, the case where a scnRNA contains part of an MDS and part of an IES is

of interest. If this is the case, then a semi-global alignment between the scnRNA and old mac will give a

score similar to the length of the MDS portion. Then systematically varying this parameter is desirable.

This parameter is needed because it helps to filter out a set of largely IES specific sequences which plays a

significant role in IES deletion from the new micronucleus.

Algorithm 3 IES (old mac, scnRNAs, threshold MDS, bp size)

1: INIT IESs,max max;
2: j ← 0;
3: for i← 0 to no of [scnRNAs] do
4: max max← semi global alignment(old mac, scnRNAs[i]);
5: if max max < threshold MDS then
6: IESs[j]← scnRNAs[i];
7: j ← j + 1;
8: end if
9: end for

10: return IESs;

30

An example of the IES function is illustrated in Figure 4.3. The algorithm is accomplishing the main

task of Definition 3 in the formal model (using semi-global alignment to represent similarity).

Figure 4.3: An example of the IES function. The elements of scnRNAs are in green if the result of
the semi global alignment function is greater than or equal to the variable threshold MDS. Otherwise,
they are in red and considered largely similar to an IES specific sequence.

4.2.3 The IES deletion function

The IES deletion function mainly deletes IES specific sequences by comparing all strings of IESs (output of

the IES function) with the input string new mic. This function represents an algorithm inspired by both

Definition 4 and 5. This task is accomplished by breaking it into two main steps. The first step captures

Definition 4 by comparing all strings of IESs with the new mic and performs a marking (by keeping track

of the start and end positions in new mic where it matches the string of IESs). The second step captures

Definition 5 by removing substrings from the new mic if it has a repeated string (a potential pointer sequence,

or a cryptic pointer) of a certain length (≥ minP and ≤ maxP) close to the ends of the marked portion

(where “close to” means within the size of neighbourhood nh). The experimental result of Möllenbeck et al.

[16] shows that usually cryptic or real pointers are present around the MDS-IES junction and the chances of

considering longer repeats around the MDS-IES junction as a cryptic pointer is higher. Also, it is possible

that the repeated sequence is a part of an IES (which would result in a portion of the IES remaining after

deletion), but it is also possible that the repeated sequence could be part of an MDS as well (which would

result in part of that MDS being missing). That is why in the algorithm, a parameter named “Neighbourhood

(nh)” is taken to address the range of possible cryptic or real pointers in proximity to the marked portion

(which is likely close to the MDS-IES junction). All neighbourhood values only up to 20 are tested.

Algorithm 6 depicts the pseudocode of this function. From the pseudocode it is viewable that this function

takes eight inputs and gives one output. Inputs to this function are new mic, IESs, threshold IES, bp size,

minP, maxP, diff, and nh and the output is dev mac1. At the beginning of this function, five variables are

defined. Among these, dev mac1 represents a string for holding the final result string, st po, and end po

represents two array of integers consecutively for storing the start and end positions of the marked IES

specific sequences from the finding IES function. The variables cut point1 and cut point2 are also defined

31

as arrays of integers to store start and end positions of marked strings in new mic which is used later for

removing IES specific sequences. These two values are found by applying the selecting IES function. At

this point in the algorithm, the strings are needed to cut according to cut point1 and cut point2 from the

new mic and it is stored into the dev mac1 variable. At the end of this algorithm, the function returns the

variable dev mac1 to its calling function. An example of this function is illustrated in Figure 4.4.

During the calling of the finding IES function (Algorithm 4), three variables (new mic, IESs, thresh-

old IES) are given as parameters. In the function, four more new variables are defined: max vrow, max position,

start position, and end position. Then a loop is started for doing approximate string matching of all elements

of IESs with new mic by calling the function semi global alignment. Here the semi-global alignment technique

is chosen to find an element, if it exists, from the variable IESs that has a suffix or prefix similar to a substring

of the variable new mic. Each comparison result is stored in the variable max vrow and max position. The

variable max vrow stores the maximum alignment score and the variable max position stores a position from

the variable new mic which indicates the ending position of the maximum similar region with an element

of IESs. Then, it is checked whether the element of IESs is similar to a substring of the variable new mic

or not by comparing max vrow with threshold IES. Here, the parameter threshold IES is considered as the

comparing factor because of the allelic variation in the biological sequence. Interestingly, some IESs are less

than 28 bp long, and some scnRNAs contain part of an IES and part of an MDS. It is desirable to know

how the simulation works with such sequences. Indeed, threshold IES is the parameter which can adjust for

various amounts of similarity between the IESs and the scnRNAs. Now, if the value of max vrow is greater

than or equal to the value of threshold IES then the start and end positions of the marked IES specific

sequences are stored consecutively in the variable start position and end position. Finally after finishing the

loop, the algorithm returns the variables start position and end position to its calling function.

During the calling of the selecting IES function (Algorithm 5), nine variables (new mic, IESs, st po,

end po, diff, minP, maxP, bp size, nh) are used as parameters. At the beginning of this algorithm, eight

new variables are initialized. Among these, s IES and e IES are integer variables to hold the first and last

marked IESs array number, if there are multiple consecutive IESs array marked in the variable new mic.

Variable max max is an integer variable to store the score of the local alignment function between the start

and end selected portions based on the neighbourhood close to the ends of the marked IES specific sequences

in the variable new mic. Variable max row and max col are also integer variables to store consecutively the

end position of the first repeat from the selected portions, and the end position of the second repeat from

the selected portions. Two integer arrays cut point1 and cut point2 are also defined to hold initial and end

positions of an IES specific sequence in the variable new mic. Integer variable counter indicates the index

position of cut point1 and cut point2. After the declaration, a loop is started to go through all marked IES

specific sequences and to calculate cut point1, cut point2. Then, a nested loop is run for finding the first and

last marked IES numbers if there are consecutive marked IESs present in a portion of the variable new mic.

Here, the consecutiveness is measured based on the parameter diff. If the distance between two adjacent

32

elements of the marked IESs is less than the value of diff then they are classified as being from the same

IES specific sequence and the loop is continued. And if not then the loop is stopped and the first and last

marked IES numbers are stored. After getting the first and last marked IESs among consecutive marked

IESs, the start and the end positions of the first and last marked IES are collected respectively from the

variables st po, end po. Then, two strings (sWindow, eWindow) are initialized for storing the selected start

and end portions based on start and end positions with respect to the variable nh (neighbourhood). Two

individual loops are run for selecting start and end selected portions close to the ends of the marked IES

specific sequences. Then, the local alignment algorithm is applied over these two selected portions to find the

longest similar portion. This is done because it is known that longer repeats are favourable at the time of IES

deletion based on scnRNAs from the new micronucleus [16]. After performing the alignment operation, it is

checked whether or not the alignment score (max max) is between the minimum (minP) and the maximum

(maxP) pointer values. If it is, then cut point1 is calculated by adding the start position of the first marked

IES with max row (maximum score position of the first marked IES) and cut point2 is calculated by adding

the end position of the last marked IES with max col (maximum score position of the last marked IES). At

the end of the outermost loop, the function returns cut point1 and cut point2 to its calling function.

In the IES deletion function, initially the IES specific sequences are selected by using both the finding IES

and the selecting IES functions. Then those IES specific sequences are removed from the variable new mic.

As seen from Section 2.1.3, this accomplishes the third step of the 2JLP model.

Figure 4.4: An example of the IES deletion function. At the beginning, all elements of IESs are
aligned according to end po. In the figure, IESs[s IES] and IESs[e IES] are marked with blue rectangles
and pointers are marked as green characters. Then, IES specific sequences are considered from the
end of each starting pointer to the beginning of each ending pointer. After marking the IES specific
sequences, those sequences are removed from new mic and dev mac1 is constructed.

33

Algorithm 4 finding IES (new mic, IESs, threshold IES)

1: INIT max vrow,max position, start position, end position;
2: l← 0;
3: for i← 0 to no of [IESs] do
4: (max vrow,max position)← semi global alignment(new mic, IESs[i]);
5: if max vrow ≥ threshold IES then
6: end position[l]← max position;
7: start position[l]← end position[l]−max vrow;
8: l← l + 1;
9: end if

10: i← i+ 1;
11: end for
12: result[0]← end position;
13: result[1]← start position;
14: return result;

4.2.4 The rearrangement function

The main purpose of this function is to rearrange MDSs from dev mac1 based on the old macronucleus

(old mac) and to perform the fourth step of the 2JLP model (Section 2.1.3). It is beyond the scope of this

thesis (or current biological knowledge) to be able to predict the order in which MDSs descramble. Therefore,

MDSs are instead rearranged based on randomness. A substring of length window size is randomly selected

from the variable old mac. The parameter window size is used for selecting a certain substring (or template)

from the old macronucleus to search for a similar substring in dev mac1. Then, it is desirable to find

that portion in dev mac1 by performing the semi global alignment function. For finding a substring in a

string, the semi-global alignment technique is applied. If that substring is found then the tracking function

(discussed below) is applied. Otherwise, the reverse complement of that selected substring is taken and it

is desired to find it in the variable dev mac1. This reverse operation is done because sometimes MDSs can

be present in the new micronucleus in an inverted order as mentioned in Section 2.2.2. If that substring is

still not found, then a random new substring is again selected from the old macronucleus and an alignment

is performed. After finding the selected substring in dev mac1, the alignment is extended to the right and

left until there is a mismatch. When a mismatch is found in the left direction then the substring is marked

in old mac and the newly discovered substring’s start and end positions are stored from dev mac1 as a node

in a linked-list. Then, a substring is again randomly selected from the variable old mac which is unmarked

and the previously mentioned procedure is continued until there is no unmarked sequence left in the variable

old mac. For putting information regarding all discovered portions in the linked-list, a loop is run and two

functions named createNode and insertNodeBetween are applied. After that, all nodes of the linked-list

are rearranged based on old mac. Finally, characters from the variable dev mac1 are retrieved by applying

linked-list information and put into a new variable named dev mac2. Algorithm 10 describes the pseudocode

of this function.

At the time of rearrangement of the newly found portions from the variable dev mac1, the data structure

34

Algorithm 5 selecting IES (new mic, IESs, st po, end po, diff,minP,maxP, bp size, nh)

1: INIT sIES, eIES,max max,max row,max col;
2: INIT cut point1, cut point2, counter;
3: for j ← 0 to no of [IESs] do
4: flag ← TRUE;
5: sIES ← j;
6: while flag do
7: if ((end po[j + 1]− end po[j]) < diff)&&(j < no of [IESs]) then
8: j ← j + 1;
9: else

10: flag ← FALSE;
11: end if
12: end while
13: eIES ← j;
14: sInd← (st po[sIES]− nh);
15: sp← sInd;
16: eInd← (end po[eIES] + 1− nh);
17: ep← eInd;
18: INIT sWindow, eWindow;
19: for x← 0 to (nh ∗ 2)− 1 do
20: sWindow[x]← new mic[sInd];
21: sInd← sInd+ 1;
22: end for
23: for y ← 0 to (nh ∗ 2)− 1 do
24: eWindow[y]← new mic[eInd];
25: eInd← eInd+ 1;
26: end for
27: (max max,max row,max col)← local alignment(sWindow, eWindow);
28: if (max max ≥ minP)&&(max max ≤ maxP) then
29: cut point1[counter]← (sp+max row);
30: cut point2[counter]← (ep+max col);
31: counter ← counter + 1;
32: end if
33: j ← j + 1;
34: end for
35: result[0]← cut point1;
36: result[1]← cut point2;
37: return result;

35

Algorithm 6 IES deletion (new mic, IESs, threshold IES, bp size,minP,maxP, diff, nh)

1: INIT dev mac1, end po, st po;
2: INTI cut point1, cut point2;
3: (end po, st po)← finding IES(new mic, IESs, threshold IES);
4: (cut point1, cut point2)← selecting IES(new mic, IESs, st po, end po, diff,minP,maxP, bp size, nh);
5: for k ← 0 to length[cut point1] do
6: if (k + 1) < length[cut point1] then
7: if k == 0 then
8: for n← 0 to cut point1[k] do
9: dev mac1[n]← new mic[n];

10: end for
11: for m← cut point2[k] to cut point1[k + 1] do
12: dev mac1[n]← new mic[m];
13: n← n+ 1;
14: end for
15: else
16: for m← cut point2[k] to cut point1[k + 1] do
17: dev mac1[n]← new mic[m];
18: n← n+ 1;
19: end for
20: end if
21: else
22: for m← cut point2[k] to length[new mic] do
23: dev mac1[n]← new mic[m];
24: n← n+ 1;
25: end for
26: end if
27: end for
28: return dev mac1;

36

of a linked-list is applied instead of the intermolecular and intramolecular operations which are used in the

computational model (Definition 8). This is done because it is not known how a ciliate keeps track of its

MDSs in a developing macronucleus including which order they need to rearrange, how they determine which

portions are already arranged and which are not, and the parts that are rearranged in parallel. In the

algorithm, a single temporal order is not assumed for the rearrangement.

During the calling of the tracking function (Algorithm 7), six variables (po, m value, m po, window size,

old mac, dev mac1) are taken as parameters. At the beginning of the pseudocode, t old (for tracking pre-

viously visited substrings of old mac), t dev (for tracking previously visited substrings of dev mac1), end o

(array for storing the end positions of selected portions in old mac), start o (array for storing the start po-

sitions of selected portions in old mac), end n (array for storing end positions of newly found portions in

dev mac1), and start n (array for storing start positions of newly found portions in dev mac1) are defined.

After initialization, a loop is run as it may be possible to find multiple portions in the variable dev mac1.

This loop is run until all positions having the maximum score m value (from the previously performed semi-

global alignment) in the variable dev mac1 are checked. Then, it is checked whether or not the right adjacent

characters from both selected portions of old mac and the newly found portion of dev mac1 are the same

or not. If they are the same, then it keeps searching in the right direction, otherwise searching the adjacent

characters to the left until a mismatch is found. The final start and end positions of the selected portion

are stored from old mac into the variable start o and end o. The final start and end positions of the newly

found portion are stored from dev mac1 in the variables start n and end n. This extension to the right and

to the left is performed for all newly found portions of the variable dev mac1. Finally, the portion that is the

largest is selected and saved into the variables t old and t dev. After that, t old and t dev are returned to

its calling function. The main purpose of this function is to track all MDSs of the variable dev mac1 based

on the variable old mac and send it to the rearrangement function. Figure 4.5 and Figure 4.6 illustrate the

functionality of this function.

The linked list data structure used in the rearrangement function is briefly discussed. The data structure

of the linked-list is given below:

typedef struct dlist {

int element[2];

int position[2];

struct dlist *next;

struct dlist *prev;

} NODE;

A node of the linked-list stores six pieces of data. These are the start and end positions of the selected

portion in old mac, the start and end positions of the newly found portion in dev mac1, and the address of

the previous and next nodes.

For creating a node, a function called createNode (Algorithm 8) is used. During the calling of the

37

createNode function, the start and end positions of the selected portion in old mac (item), and the start

and end positions of the newly found portion in dev mac1 (pos) are given as parameters. Here, values are

assigned in element and position based on item and pos respectively.

Now for performing the rearrangement of all newly found portions from dev mac1, after creating a node

it has to connect with its previous and next nodes as the previous and next MDSs are connected. To ac-

complish this task, a function named insertNodeBetween (Algorithm 9) is introduced. During the calling of

the insertNodeBetween function, head (start node of the linked-list), item (the start and end positions of the

selected portion in old mac) and pos (the start and end positions of the newly found portion in dev mac1)

are used as parameters. At first, a new node is created by putting all current node information into the

createNode function. Then, the appropriate position of this node is searched by comparing the element value

of the new node with all element values of existing nodes. After finding the appropriate position of the new

node, the previous and next nodes of that node are updated accordingly.

Figure 4.5: Process of finding MDSs in dev mac1.

4.2.5 The correction function

The main purpose of this function is to demonstrate the fifth step (the proofreading step) of the 2JLP model

(Section 2.1.3). In this function, the final macronucleus (final mac) is generated by comparing dev mac2 and

old mac. Intuitively, based on old mac extra characters are removed from dev mac2 and missing characters

are inserted into dev mac2.

Algorithm 11 describes the pseudocode of this function. In this function, dev mac2 and old mac are

arguments. Initially, two variables: new mac (for holding the final macronucleus) and matrix are defined.

The global alignment function is applied for performing the pairwise sequence alignment between dev mac2

and old mac.

38

Algorithm 7 tracking (po,m value,m po,w size, old mac, d mac)

1: INIT t old, t dev;
2: INIT end o, start o, end n, start n;
3: count← 0;
4: temp← 0;
5: while all positions having m value are not checked do
6: max max← m value;
7: n← (po+ w size+ 1);
8: m← (m po[count] + 1);
9: while (old mac[n] == d mac[m])&&(n 6= length[old mac])&&(m 6= length[d mac]) do

10: n← n+ 1;
11: m← m+ 1;
12: max max← max max+ 1;
13: end while
14: end o[count]← n− 1;
15: end n[count]← m− 1;
16: n← (po− 1);
17: m← (m po[count]− (w size+ 1));
18: while (old mac[n] == d mac[m])&&(n ≥ 0)&&(m ≥ 0) do
19: n← n− 1;
20: m← m− 1;
21: max max← max max+ 1;
22: end while
23: start o[count]← n+ 1;
24: start n[count]← m+ 1;
25: if max max > temp then
26: temp← max max;
27: index← count;
28: end if
29: count← count+ 1;
30: end while
31: t old[0]← start o[index];
32: t old[1]← end o[index];
33: t dev[0]← start n[index];
34: t dev[1]← end n[index];
35: result[0]← t old;
36: result[1]← t dev;
37: return result;

Algorithm 8 createNode (item, pos)

1: NODE newNode← NULL;
2: (newNode→ element[0])← item[0];
3: (newNode→ element[1])← item[1];
4: (newNode→ position[0])← pos[0];
5: (newNode→ position[1])← pos[1];
6: (newNode→ next)← NULL;
7: (newNode→ prev)← NULL;
8: return newNode;

39

Algorithm 9 insertNodeBetween (head, item, pos)

1: NODE newNode← NULL;
2: NODE runNode← head;
3: newNode← createNode(item, pos);
4: if head == NULL then
5: return newNode;
6: else
7: while ((runNode→ next) 6= NULL)&&((runNode→ element[0]) ≤ item[0]) do
8: runNode← (runNode→ next);
9: end while

10: if ((runNode→ next) == NULL)&&((runNode→ element[0]) > item[0]) then
11: if ((runNode→ prev) 6= NULL) then
12: (newNode→ prev)← (runNode→ prev);
13: ((newNode→ prev)→ next)← newNode;
14: (newNode→ next)← runNode;
15: (newNode→ prev)← newNode;
16: else
17: (newNode→ next)← runNode;
18: (newNode→ prev)← newNode;
19: head← newNode;
20: end if
21: else if ((runNode→ next) == NULL)&&((runNode→ element[0]) < item[0]) then
22: (runNode→ next)← newNode;
23: (newNode→ prev)← runNode;
24: else
25: if ((runNode→ prev) == NULL) then
26: (runNode→ prev)← newNode;
27: (newNode→ next)← runNode;
28: head← newNode;
29: else
30: (newNode→ next)← runNode;
31: (newNode→ prev)← (runNode→ prev);
32: (runNode→ prev)← newNode;
33: ((newNode→ prev)→ next)← newNode;
34: end if
35: end if
36: end if
37: return head;

40

Algorithm 10 rearrangement (dev mac1, old mac, window size) [continued on the next page]

1: INIT dev mac2, track o, track n, is used;
2: INIT po,m value,m po;
3: ct← 0;
4: w size← window size;
5: d mac← dev mac1;
6: max← (length[old mac]− (w size));
7: while all elements of the old mac or the d mac are not traversed do
8: while randomly selected substring from old mac is marked do
9: po← GetRand(0,max, is used);

10: track o[ct][0]← po;
11: track o[ct][1]← (po+ w size);
12: end while
13: (m value,m po)← semi global alignment(d mac, old mac, track o[ct]);
14: if (m value == w size) then
15: (track o[ct], track n[ct])← tracking(po,m value,m po,w size, old mac, d mac);
16: for j ← track o[ct][0] to track o[ct][1] do
17: is used[j]← 1;
18: j ← j + 1;
19: end for
20: ct← ct+ 1;
21: else
22: Reverse the selected string and do the same operation of the previous If;
23: end if
24: end while
25: NODE head← NULL;
26: for i← 0 to ct− 1 do
27: if i == 0 then
28: head← createNode(track o[i], track n[i]);
29: else
30: head← insertNodeBetween(head, track o[i], track n[i]);
31: end if
32: end for

41

33: NODE runNode← head;
34: in← 0;
35: while runNode 6= NULL do
36: if runNode→ element[0] > runNode→ element[1] then
37: for s← (runNode→ position[1]) to (runNode→ position[0]) do
38: if d mac[s] == ‘A′ then
39: dev mac2[in]← ‘T ′;
40: else if d mac[s] == ‘T ′ then
41: dev mac2[in]← ‘A′;
42: else if d mac[s] == ‘C ′ then
43: dev mac2[in]← ‘G′;
44: else if d mac[s] == ‘G′ then
45: dev mac2[in]← ‘C ′;
46: end if
47: in← in+ 1;
48: s← s− 1;
49: end for
50: else
51: for s← (runNode→ position[0]) to (runNode→ position[1]) do
52: dev mac2[in]← d mac[s];
53: in← in+ 1;
54: s← s+ 1;
55: end for
56: end if
57: runNode← (runNode→ next);
58: end while
59: return dev mac2;

42

Figure 4.6: Process of development of dev mac2. Initially, exact positions of MDSs are traced out in
both old mac and dev mac1. Then, MDSs are rearranged and extra strings in dev mac1 are removed
on the basis of old mac. Finally, after rearranging MDSs of dev mac1, dev mac2 is generated.

When implementing global alignment, a matrix is created where cell [i][j] holds the score of an optimal

alignment of the first i characters of the first sequence with the first j of the other sequence. But also, for

the purposes of backtracking and actually finding an optimal alignment, some implementations also create a

second matrix where the value at cell [i][j] contains the information regarding the final position of an optimal

alignment of the first i characters of the first sequence with the first j of the other. Indeed, if this matrix

keeps track of whether such an alignment ends with a gap along one sequence, a gap along the other, or an

aligned character on both sequences, then backtracking to find an alignment is easy. It is assumed that the

global alignment function returns this matrix and stores it in the variable matrix. Then, the matrix contains

a 1 to indicate that there is an extra character in dev mac2, it contains a 2 to indicate that there is either

a correct or a mutated character in dev mac2, it contains a 3 to indicate that there is a gap in dev mac2,

and it contains a 0 to indicate cell [0][0]. Indeed, cell [0][0] indicates the end of backtracking operation. For

putting values in new mac based on the variable matrix, a loop (for doing the backtracking operation) is run

until 0 is found in matrix. After constructing new mac, it returns to its calling function.

43

Figure 4.7: An example of the correction function. Initially, missing and extra elements are found in
dev mac2. Then extra elements are removed, and missing elements are inserted into dev mac2. Finally,
the final output new mac is generated.

Algorithm 11 correction (dev mac2, old mac)

1: INIT new mac,matrix;
2: matrix← global alignment(dev mac2, old mac);
3: i← (length[dev mac2]− 1);
4: j ← (length[old mac]− 1);
5: k ← j;
6: while (k ≥ 0)&&(matrix[i][j] 6= 0) do
7: if matrix[i][j] == 2 then
8: new mac[k]← dev mac2[i− 1];
9: i← i− 1;

10: j ← j − 1;
11: k ← k − 1;
12: else if matrix[i][j] == 3 then
13: new mac[k]← old mac[j − 1];
14: j ← j − 1;
15: k ← k − 1;
16: else if matrix[i][j] == 1 then
17: i← i− 1; . k is not decremented, because the extra elements from dev mac2 are removed in here
18: end if
19: end while
20: return new mac;

44

Chapter 5

Result Analysis

In the simulation, results are calculated at three different stages to measure the change from the new

micronucleus to the new macronucleus. These three different stages are after the IES deletion function, after

the rearrangement function, and finally after the correction function. A term accuracy is defined to represent

the degree to which descrambling has occurred at the various stages. The following section describes how to

calculate accuracy and the findings from the simulation.

5.1 Accuracy

Accuracy is measured by calculating a pairwise sequence alignment between two input sequences. One of

these sequences is the old macronucleus. And the other one is the output sequence coming from any of the

following functions: the IES deletion function, the rearrangement function, and the correction function. Then

accuracy represents the similarity between the resultant sequence of the previously mentioned functions and

the old macronucleus. Equation (5.1) indicates the formula for calculating accuracy where alignment score

indicates the pairwise alignment score and old mac size indicates the size of the old macronucleus.

accuracy =
(alignment score× 100)

old mac size
(5.1)

In the case of performing pairwise sequence alignment the following scoring scheme is used:

match = 1

mismatch = -1

gap = - 2.

It should be noted that accuracy as calculated is not a percentage. However, if the sequence matches

perfectly, the resulting accuracy is 100. On the other hand, if the sequence matches badly, it is possible

to have a negative score. However, it is beneficial to use an alignment score instead of a measure such as

“percent identity” so that gaps and mismatches are properly taken into account.

45

5.2 Data

Input data are collected from the IES MDS Database [5]. From there, 13 real micronucleus and macronucleus

matching gene pairs of the ciliate Oxytricha trifallax are used by the simulation. Although this is a limited

number of pairs of genes, the micronuclear data contains 40,844 base pairs and the macronuclear data contains

32,770 base pairs.

Among these 13 input pairs, pair number 7 (the Actin I gene) has a smaller micronuclear sequence (989

bp) than its macronuclear sequence (1553 bp) due to incomplete data. This pair will indeed appear differently

in the results. There is a recent paper [26] on the sequencing and analysis of the macronuclear genome of

the ciliate Oxytricha trifallax. But, the micronuclear genome is still unavailable. After availability of the

micronuclear genome, it is possible to test the simulation with more data.

5.3 General analyses

This section presents accuracy values that are calculated in different stages of execution by the simulation.

At first, the accuracy value is calculated after finishing the IES deletion function (Algorithm 4). This

accuracy value is called acc1. Output of this function is dev mac1. Figure 5.1 shows the calculation of acc1

for an (fake) example. In the figure, the size of old mac is 46 and the score from the pairwise sequence

alignment is 5. This poor score is obtained because of the large number of gaps needed in every pairwise

alignment. After putting these values in Equation 5.1, an accuracy value of 11 is obtained.

Then, accuracy is calculated for the second time after executing the rearrangement function (Algorithm

10). Output of this function is dev mac2. After that, a pairwise sequence alignment is performed between

the output sequence and old mac. After getting the result from the sequence alignment, the accuracy value

is calculated by applying Equation 5.1. Figure 5.2 shows the pairwise sequence alignment score of 27 for the

above mentioned sequence pair and the accuracy value equals 87. This accuracy value is called acc2.

Finally, the accuracy after running the correction function is calculated. In this function, the proof

reading is performed over dev mac2 based on old mac. As described in Section 4.2.5, the function inserts

missing and removes extra characters from dev mac2 by comparing it with old mac. After executing this

operation, new mac is generated as output. Then, the pairwise sequence alignment is applied between the

resultant sequence and old mac. After obtaining the result of the sequence alignment, Equation 5.1 is applied

to generate the accuracy value. Figure 5.3 shows the pairwise sequence alignment score of 46 for the above

mentioned sequence pair and the accuracy value equals 100. This accuracy value is known acc3.

In the case of real data, the simulation is run for each pair with the changing values of threshold MDS,

threshold IES, and neighbourhood (nh) in every possible way within a range for the parameters. Indeed, for

each input pair 15,680 different values of the parameters are tested, each generating a value for acc1, acc2,

and acc3. For every combination of the three parameters, the accuracies of the 13 gene pairs are added,

46

Figure 5.1: Accuracy value is calculated after the IES deletion function. After deleting IES specific
sequences from new mic, the function generates dev mac1. Then, a pairwise sequence alignment is
performed between dev mac1 and old mac for finding the similarity between these two sequences. In
this example, after performing the alignment it gives the score of 5, and the size of old mac is 46.
Then, the accuracy is (5 * 100) / 46 = 11.

after the rearrangement function has been applied. This allows to see which value of the three parameters

maximizes the accuracy. The scores are added, as this will end up containing exactly the same information

as taking the average since 13 values are always added. Also, the accuracy after the rearrangement function

is used because this function most accurately represents the success of the simulation. Indeed, using the

accuracy after the IES deletion function always gives low accuracies in the case of scrambled genes. And

taking the accuracies after the correction function often can fix otherwise bad alignments. Furthermore, it

seems that in the IES deletion function, use of cryptic pointers to incorrectly descramble genes occurs but

the cryptic pointers are relatively close to the real pointers. Thus, using the accuracy after the rearrangement

function seems to be the best way to calculate the optimal parameters.

The maximum summation of accuracy values, over all possible values of the three parameters is 906,

which occurs when the parameters of threshold MDS is 5, threshold IES is 9, and nh is 15. Indeed, these

values are considered as the optimal parameters of the simulation. Table 5.1 shows acc1, acc2, and acc3 of

all 13 input pairs for the optimal parameters.

Table 5.2 shows the average accuracies for each value of threshold MDS (from 1 to 28) where threshold IES

and neighbourhood (nh) are fixed with their optimal values. Here, average accuracy is calculated by adding

accuracies after the rearrangement function of all 13 input pairs with the selected set of parameters, and then

dividing the summation of the accuracies by 13. For example, 876 is found as the summation of accuracies

after the rearrangement function of all 13 input pairs where threshold MDS is 10, threshold IES is 9, and nh

is 15. Then, the average accuracy is (876/13) = 67. In the same way, the average accuracies are calculated for

Table 5.3 and Table 5.4. Table 5.3 shows the average accuracies for different values of threshold IES (from

1 to 28) where threshold MDS and neighbourhood (nh) are fixed with their optimal values. Also, Table

47

Figure 5.2: Here, accuracy is calculated after the rearrangement function. This function rearranges
MDSs of dev mac1 on the basis of old mac and produces dev mac2. After that, a pairwise sequence
alignment is performed between dev mac2 and old mac for finding the similarity between these two
sequences. After performing the alignment it gives the score of 40. As the size of old mac is 46, the
accuracy is (40 * 100) / 46 = 87.

5.4 shows the average accuracies for changing neighbourhood (nh) (from 1 to 20) where threshold MDS and

threshold IES are fixed with their optimal values. The average accuracies are calculated to find a relationship

between the accuracy and the parameters.

Table 5.5 shows the highest acc2 value for each gene pair, for any possible values of the parameters

(15,680 combinations). It also shows the values of the parameters (indexed by the second, third, and fourth

column) for which this highest acc2 is attained (indexed by the sixth column). Indeed, the values of the

three parameters are calculated here separately for each of the 13 gene pairs (rather than calculating one

global set of optimal parameters).

Table 5.1: For each gene pair (indexed by the first column), acc1, acc2, and acc3 are shown for the
optimal parameters. Here, optimal values for threshold MDS is 5, threshold IES is 9, and nh is 15.

pair no threshold MDS threshold IES nh acc1 acc2 acc3

1 5 9 15 55.45 73.38 96.12
2 5 9 15 79.31 85.28 99.99
3 5 9 15 18.17 45.82 97.35
4 5 9 15 38.44 80.67 99.43
5 5 9 15 31.71 63.42 99.41
6 5 9 15 60.49 81.67 99.43
7 5 9 15 47.62 45.32 99.21
8 5 9 15 18.25 66.95 98.12
9 5 9 15 52.15 78.02 99.93
10 5 9 15 62.04 87.00 99.01
11 5 9 15 41.81 69.48 99.42
12 5 9 15 35.00 82.34 99.43
13 5 9 15 21.93 52.52 92.44

48

Figure 5.3: Here, the accuracy is calculated after the correction function. This function removes
extra and inserts missing characters into dev mac2 by comparing it with old mac. At the end of
this function, new mac is generated as the outcome. After that, a pairwise sequence alignment is
performed between new mac and old mac for finding the similarity between these two sequences. In
this example, after performing the alignment it gives the score of 46, and the size of old mac is 46.
Then, the accuracy is (46 * 100) / 46 = 100.

49

Table 5.2: The average accuracies of the 13 pairs by varying threshold MDS (indexed by the first
column) where threshold IES and neighbourhood (nh) are fixed with their optimal values. Here,
average accuracy is calculated by adding accuracies after the rearrangement function of all 13 input
pairs with the selected set of parameters (indexed by the first three cells in each row), and then dividing
the summation of the accuracies by 13.

threshold MDS threshold IES nh average accuracy
1 9 15 66.77
2 9 15 67.85
3 9 15 66.85
4 9 15 65.77
5 9 15 69.69
6 9 15 67.77
7 9 15 65.00
8 9 15 64.08
9 9 15 65.46
10 9 15 67.38
11 9 15 58.46
12 9 15 50.23
13 9 15 46.46
14 9 15 46.31
15 9 15 46.08
16 9 15 42.69
17 9 15 38.31
18 9 15 38.23
19 9 15 34.62
20 9 15 33.85
21 9 15 32.00
22 9 15 31.23
23 9 15 29.62
24 9 15 24.85
25 9 15 20.69
26 9 15 17.00
27 9 15 10.38
28 9 15 10.54

50

Table 5.3: The average accuracies of the 13 pairs by varying threshold IES (indexed by the second
column) where threshold MDS and neighbourhood (nh) are fixed with their optimal values. Here, the
average accuracy is calculated by adding accuracies after the rearrangement function of all 13 input
pairs with the selected set of parameters (indexed by the first three cells in each row), and then dividing
the summation of the accuracies by 13.

threshold MDS threshold IES nh average accuracy
5 1 15 67.77
5 2 15 66.54
5 3 15 66.69
5 4 15 67.46
5 5 15 66.00
5 6 15 67.77
5 7 15 67.46
5 8 15 67.46
5 9 15 69.69
5 10 15 67.38
5 11 15 66.85
5 12 15 65.92
5 13 15 67.92
5 14 15 66.85
5 15 15 67.46
5 16 15 66.77
5 17 15 67.46
5 18 15 66.31
5 19 15 67.08
5 20 15 67.54
5 21 15 66.00
5 22 15 67.08
5 23 15 67.15
5 24 15 66.46
5 25 15 66.38
5 26 15 65.85
5 27 15 68.15
5 28 15 65.69

51

Table 5.4: The average accuracies of the 13 pairs by varying nh (indexed by the third column) where
threshold MDS (indexed by the first column) and threshold IES (indexed by the second column) are
fixed with their optimal values. After the rearrangement function, the average accuracy is calculated
by adding accuracies of all 13 input pairs with the selected set of parameters (indexed by the first
three cells in each row), and then dividing the summation of the accuracies by 13.

threshold MDS threshold IES nh average accuracy
5 9 1 67.77
5 9 2 68.46
5 9 3 65.69
5 9 4 67.00
5 9 5 65.85
5 9 6 65.38
5 9 7 68.46
5 9 8 66.69
5 9 9 66.00
5 9 10 66.92
5 9 11 67.54
5 9 12 66.54
5 9 13 65.38
5 9 14 66.15
5 9 15 69.69
5 9 16 67.31
5 9 17 66.15
5 9 18 66.23
5 9 19 66.85
5 9 20 66.69

Table 5.5: This table shows the highest value of acc2 (indexed by the sixth column) possible for each
gene pair, for any possible values of their parameters (15,680 combinations). It also shows the values
of the parameters (indexed by the second, third, and fourth column) for which this highest acc2 is
attained (the values of the parameters are calculated separately for each of the 13 gene pairs rather
than the global optimal values of the parameters).

pair no threshold MDS threshold IES nh acc1 acc2 acc3
1 16 2 2 54.29 85.71 98.02
2 2 8 6 79.31 89.33 99.35
3 9 7 9 18.03 53.21 97.29
4 8 8 16 34.21 85.00 99.55
5 12 17 2 27.35 73.16 99.31
6 12 14 19 59.62 89.03 99.10
7 2 17 3 47.31 50.24 99.91
8 2 17 11 18.71 78.62 99.28
9 11 15 4 56.00 86.05 99.33
10 14 11 3 55.22 93.21 99.23
11 6 16 18 41.18 75.78 99.03
12 20 18 2 39.93 89.37 99.44
13 9 9 16 21.20 70.65 97.36

52

5.4 Other findings

Some additional findings from the simulation are described in the subsections that follow.

5.4.1 Improvement of accuracy in each stage

From the 2JLP model (Section 2.1.3), it can be seen that the macronucleus is generated from the micronucleus

in a successive manner. Table 5.1 shows that acc2 is greater than acc1 and acc3 is greater than acc2 for

all input pairs except for pair No 7 where acc1 is greater than acc2. Indeed, the Computational 2JLP

model generates the macronucleus from the micronucleus in a successive manner. The exceptional accuracy

of pair No 7 is the pair with an incomplete micronuclear sequence. Biologically, the micronuclear sequence

should be longer than the macronuclear sequence, but pair No 7 has a smaller micronuclear sequence than

its macronuclear sequence.

Figure 5.4 shows a bar graph generated from Table 5.1 where the parameters are set with the optimal

values. As the optimal parameters are able to generate good accuracy, one could use these optimal values as

the default parameters of the simulation.

Figure 5.4: For all 13 input pairs, acc1, acc2, and acc3 are shown in a bar graph where the optimal
values are selected for the parameters. Here, optimal values for threshold MDS is 5, threshold IES is 9,
and nh is 15. Also, acc1, acc2, and acc3 represent consecutively accuracy values after the IES deletion
function, after the rearrangement function, and after the correction function.

53

5.4.2 Relationship between accuracy and threshold MDS

In Section 4.2.2, the significance of the parameter threshold MDS was discussed. In Figure 5.5, a scatter

plot is shown which shows the relationship between threshold MDS and average accuracy. These average

accuracies are selected from Table 5.2. The scatter plot is generated by plotting threshold MDSs in the

x-axis and average accuracies in the y-axis. From the figure it is visible that the trend-line equation as

y = −2.279x + 78.695 and the square of the correlation coefficient (R2) value as 0.9481. In the trend-line

equation, the slope value is negative which means that there is a negative correlation present in between

these two variables. If the value of threshold MDS is increased it eventually degrades the value of accuracy.

As the R2 value is 0.9481, that indicates approximately 95% of the variation in accuracy can be explained

by threshold MDS.

Figure 5.5 shows that a lower value of threshold MDS is good from the perspective of maximizing the

accuracy for the simulation. These lower scores for threshold MDS occur when shorter pieces of scnRNAs

are matched to the old macronucleus at the time of filtering, similar to IES specific sequences from the

set of scnRNAs. Thus, if a scnRNA contains part of an MDS and part of an IES, from the perspective of

maximizing the accuracy of the simulation, it is desirable to filter out this scnRNA. This is because if it does

not get filtered out then the simulation may discard the matching portion of that scnRNA from the new

micronucleus. This may result in an erroneous deletion of an MDS from the micronucleus.

Figure 5.5: Relationship between threshold MDS and average accuracy (after the rearrangement
function for all 13 input pairs). Here, threshold IES and nh are fixed with the optimal values. This
figure is generated by using Table 5.2.

54

5.4.3 Relationship between accuracy and threshold IES

Figure 5.6 shows a scatter plot where threshold IESs are plotted in the x-axis and average accuracies are

plotted in the y-axis. These average accuracies are selected from Table 5.3. The figure shows the trend-line

equation as y = −0.03x+67.476 and the square of the correlation coefficient (R2) value as 0.083. In the trend-

line equation, the slope value is near to zero which indicates that there is no positive or negative correlation

between threshold IES and average accuracy. Moreover, R2 value is 0.083, that means approximately 92%

of the variation in average accuracy cannot be explained by threshold IES.

Figure 5.6: Relationship between threshold IES and average accuracy (after the rearrangement func-
tion for all 13 input pairs). Here, threshold MDS and nh are fixed with the optimal values. This figure
is generated by using Table 5.3.

5.4.4 Relationship between accuracy and neighbourhood

Figure 5.7 shows a scatter plot where neighbourhood (nh) values are plotted in the x-axis and average

accuracies are plotted in the y-axis. These average accuracies are selected from Table 5.4. The figure shows

the trend-line equation as y = −0.0124x+ 66.968 and the square of the correlation coefficient (R2) value as

0.0043. In the trend-line equation, the slope value is near to zero which indicates that there is no positive

or negative correlation between neighbourhood and accuracy. Moreover, R2 value is 0.0043, that means

approximately 99.6% of the variation in average accuracy cannot be explained by neighbourhood.

Interestingly, a relationship among threshold MDS, neighbourhood, and accuracy after the rearrangement

function is observed. If the value of threshold MDS is greater than 20 then the simulation gives good accuracy

after the rearrangement function only if the value of nh is very small. Table 5.6 shows an example of this

situation. It also indicates that when more scnRNAs are considered as similar to IES specific sequences with

a high threshold MDS value, then at the time of finding repeats if the size of neighbourhood is increased

55

it may select a cryptic pointer instead of real pointer and cause erroneous deletion of the MDSs from the

micronucleus. This can generate poor accuracy.

Figure 5.7: Relationship between neighbourhood (nh) and average accuracy (after the rearrangement
function for all 13 input pairs). Here, threshold MDS and threshold IES are fixed with the optimal
values. This figure is generated by using Table 5.4.

56

Table 5.6: An example for gene pair number 1, highlighting the relationship between neighbourhood
(nh) and accuracy, when there is a high value of threshold MDS. The fourth and fifth columns show
that better values of acc2 are found when the value of nh is very small. It also indicates that when
more scnRNAs are considered as similar to IES specific sequences for the high threshold MDS value,
then at the time of finding repeats, if the size of neighbourhood (nh) is increased it may select a cryptic
pointer instead of a real pointer and cause the erroneous deletion of the MDSs from the micronucleus.
This can generate poor accuracy.

threshold MDS threshold IES nh acc1 acc2 acc3
26 12 1 55.25 64.48 99.91
26 12 2 39.03 67.59 97.34
26 12 3 20.28 24.32 99.13
26 12 4 13.33 11.11 98.36
26 12 5 10.00 12.91 97.12
26 12 6 11.24 13.33 99.21
26 12 7 11.61 14.21 99.94
26 12 8 11.52 13.33 99.23
26 12 9 11.33 13.03 99.01
26 12 10 11.24 13.05 99.05
26 12 11 11.13 10.22 99.91
26 12 12 11.13 12.56 99.14
26 12 13 11.04 11.73 99.28
26 12 14 11.26 16.16 99.09
26 12 15 11.05 12.22 99.92
26 12 16 12.22 13.53 99.99
26 12 17 12.32 16.01 99.95
26 12 18 12.21 16.28 99.93
26 12 19 13.04 13.39 99.92
26 12 20 13.13 22.00 99.02

57

Chapter 6

Conclusions, Discussions and Future Work

This chapter describes conclusions, discussions and future work of this research work.

6.1 Conclusions

Both computer scientists and biologists are trying to understand the gene assembly process of ciliates. The

scnRNA model partially revealed the mechanism of deleting IESs from the new micronucleus. The template

guided model helps to know the order of MDSs in the new macronucleus with the IESs. Moreover, templates

provide the necessary information for proof reading at the final stage. The template guided recombination

model helps pointer identification and the method of MDS rearrangement at the developing stage of the new

macronucleus. All of these models seem to be correct for some certain part of the gene assembly process.

As these models alone are not able to completely describe the gene assembly process, the 2JLP model was

created [10] to combine both the scnRNA and the template guided models.

This research describes a new formal model called the Computational 2JLP model which is based on the

2JLP model. A simulator is developed to check the feasibility of the computational model. The simulator

has been run by using real data. In the simulator, three parameters (threshold MDS, threshold IES, and

neighbourhood) are used to test edge cases of the computational model. The parameter threshold MDS

represents the minimum score of the semi-global alignment needed for sufficient similarity between scnRNAs

and the old macronucleus. The parameter threshold IES represents the minimum score of the semi-global

alignment needed for sufficient similarity between filtered scnRNAs and the new micronucleus. The parameter

neighbourhood (nh) represents the range of possible cryptic or real pointers in proximity to the marked IES

specific sequences in the new micronucleus (which is likely close to the MDS-IES junction). There are some

MDSs and IESs that are less than 28 bp long, and also there are scnRNAs that contain both a part of an

MDS and part of an IES. In both cases, it is interesting to see the simulation results as the parameters vary.

Indeed, threshold MDS and threshold IES are the parameters which gives that information.

In an analysis of the simulation results, three consecutive stages have been considered for calculating

the accuracy between the developing macronucleus and the old macronucleus. These stages are after IESs

deletion, after the rearrangement of MDSs, and after the proof reading of the developing macronucleus. The

results of the simulator have showed that for almost all cases higher accuracy is found from one stage to

58

another (with the exception of one gene pair that had incomplete data). More interestingly, for all cases after

proof reading, an accuracy between 92 and 100 is determined. This high accuracy may indicate that the

gene assembly process is correct. Indeed, it is expected to not reach 100 due to regular sequence variation.

From the result analysis, the optimal values for threshold MDS, threshold IES, and nh are determined to be

5, 9 and 15 respectively. A negative correlation is shown between the value of threshold MDS and accuracy

after the rearrangement of MDSs. That means that if a scnRNA consists of an MDS and IES, then from the

perspective of maximizing the accuracy of the simulation, it is desirable to filter out this scnRNA. Indeed, if

it does not get filtered out then the simulation may discard the matching portion of that scnRNA from the

new micronucleus by considering it as similar to an IES, which may cause an erroneous deletion of MDSs from

the micronucleus. This ultimately generates poor accuracy after the IES deletion function. An interesting

relationship among the variables threshold MDS, nh, and accuracy is found. If the value of threshold MDS

is increased then the simulation sends more scnRNAs to the macronucleus development stage by considering

them as similar to the IES specific sequences. After the marking of IES specific sequences in the micronucleus

based on those scnRNAs, if a large value is set for nh then the possibility of making erroneous deletions is

higher. This is because some of the marked sequences may contain MDSs which may influence the selection

of a cryptic pointer instead of a real pointer.

6.2 Discussions

This section describes the importance of the Computational 2JLP model by considering both the biological

and computational perspectives.

6.2.1 Biological importance

In the new micronucleus, MDSs can occur in the correct order or in some scrambled order. After gene

assembly, ciliates produce a macronucleus which has the MDSs in the correct order. In the simulation,

when a new micronuclear gene is taken with scrambled MDSs and both the IES deletion and rearrangement

functions are performed over the gene then the simulation unscrambles almost all MDSs.

It is known that the gene assembly process could lead to new combinations of MDSs by having a mistake

during the process of cutting, splicing, excision, and unscrambling [10]. Especially, as a consequence of

imprecise IES elimination at the borders of neighbouring MDSs and correction by removing extra or inserting

missing information based on the template, this may lead to new genetic combinations of chromosomes in

the macronucleus. From the simulation output, this phenomenon is often observed. Also, the variation of

the parameters give preferred values (in particular, low values of threshold MDS) indicating what is more

likely to occur especially when scnRNAs contain part of an IES and part of an MDS.

59

6.2.2 Computational importance

Gene assembly is done by performing extensive IES elimination and MDS rearrangement. Research shows

that a cell has to process its micronucleus into about 2 × 108 chromosomes in only a few hours implying

that there are over one million DNA rearrangements per second at the time of the gene assembly [10]. This

represents a large-scale method of computation in nature with a huge amount of parallelism. Indeed, the

alignment and determination of relevant MDSs, IESs and pointers between a micronuclear and macronuclear

gene pair is a known NP-Complete problem [11]. As ciliates “solve” (or at least are able to successfully

descramble) this problem easily then it is an interesting use of “natural computation” for computer science.

Thus, potentially other NP-Complete problems could benefit by applying the techniques of the gene assembly

process in ciliates as a heuristic.

In Section 6.1, it is mentioned that the simulation is able to perform the gene assembly process in ciliates

quite well. Indeed, all steps of the biological 2JLP model are used by the newly designed Computational 2JLP

model. This is a helpful step in understanding the nature of the gene assembly process more systematically.

6.3 Future Work

Some potential future extensions of this work are listed as follows:

• In the simulator, many parameters have been used in an attempt to determine new biological facts.

When selecting values for these parameters, due to a lack of evidence, values for some parameters like

threshold MDS, threshold IES, neighbourhood (nh), window size, diff, etc are assumed. Among these

assumed parameters only threshold MDS, threshold IES, and neighbourhood (nh) have been systemat-

ically varied in the simulator. An important future work is to analyse all of these assumed parameters

and find new biological facts.

• The simulator has been tested only for thirteen pairs of real genes. After the availability of more

micronuclear data, more conclusive analysis will be possible.

• One of the important future works is to perform a detailed complexity analysis of the simulation. The

simulation was run on an Intel Core i5-2430M with 6GB RAM running Windows 7 Home Premium

64-bit. The execution time for running the simulation once for every input pairs by using optimal

parameters is 29.97 minutes.

• Currently, no online simulator is available to perform the gene assembly process in ciliates. One of the

future works is to design an online simulator where biologists can easily perform the gene assembly

process by giving inputs and selecting parameters.

60

References

[1] Dieter Ammermann, Günther Steinbrück, Ludwig Berger, and Wolfgang Hennig. The development of
the macronucleus in the ciliated protozoan Stylonychia mytilus. Chromosoma, 45(4):401–429, 1974.

[2] Angela Angeleska, Nataŝa Jonoska, Masahico Saito, and Laura F. Landweber. RNA-guided DNA as-
sembly. Journal of Theoretical Biology, 248(4):706–720, 2007.

[3] John R. Bracht, Wenwen Fang, Aaron David Goldman, Egor Dolzhenko, Elizabeth M. Stein, and
Laura F. Landweber. Genomes on the edge: Programmed genome instability in ciliates. Cell, 152(3):406–
416, 2013.

[4] Michael Brudno, Sanket Malde, Alexander Poliakov, Chuong B. Do, Olivier Couronne, Inna Dubchak,
and Serafim Batzoglou. Glocal alignment: finding rearrangements during alignment. Bioinformatics,
19(suppl 1):i54–i62, 2003.

[5] Andre Cavalcanti. Ciliate nuclear dimorphism pages. http://oxytricha.princeton.edu/dimorphism/, July
2004.

[6] Mark Daley and Lila Kari. Some properties of ciliate bio-operations. In Proceedings of the 6th interna-
tional conference on Developments in language theory, DLT’02, pages 116–127, Berlin, Heidelberg, 2003.
Springer-Verlag.

[7] Mark Daley and Ian McQuillan. Template-guided DNA recombination. Theoretical Computer Science,
330(2):237–250, feb 2005.

[8] Andrzej Ehrenfeucht, Tero Harju, Ion Petre, David M. Prescott, and Grzegorz Rozenberg. Computation
in Living Cells – Gene Assembly in Ciliates. Springer Verlag, 2004.

[9] Andrzej Ehrenfeucht, David M. Prescott, and Grzegorz Rozenberg. Computational aspects of gene
(un)scrambling in ciliates. In Evolution as Computation, Natural Computing Series, pages 216–256.
Springer Berlin Heidelberg, 2002.

[10] Franziska Jönsson, Jan Postberg, and Hans J Lipps. The unusual way to make a genetically active
nucleus. DNA Cell Biol., 28(2):71–8, 2009.

[11] J. Mark Keil, Jing Liu, and Ian McQuillan. Algorithmic properties of ciliate sequence alignment. Theo-
retical Computer Science, 411(6):919–925, 2010.

[12] Laura F. Landweber and Lila Kari. The evolution of cellular computing: natures solution to a compu-
tational problem. Biosystems, 52:3–13, 1999.

[13] Laura F. Landweber, T. C. Kuo, and E. A. Curtis. Evolution and assembly of an extremely scrambled
gene. Proc Natl Acad Sci USA, 97(7):3298–3303, mar 2000.

[14] Kazufumi Mochizuki. DNA rearrangements directed by non-coding RNAs in ciliates. Wiley Interdisci-
plinary Reviews: RNA, 1(3):376–387, 2010.

[15] Kazufumi Mochizuki, Noah A. Fine, Toshitaka Fujisawa, and Martin A. Gorovsky. Analysis of a piwi-
related gene implicates small RNAs in genome rearrangement in Tetrahymena. Cell, 110(6):689–699,
2002.

61

[16] Matthias Möllenbeck, Yi Zhou, Andre R. O. Cavalcanti, Franziska Jönsson, Brian P. Higgins, Wei-Jen
Chang, Stefan Juranek, Thomas G. Doak, Grzegorz Rozenberg, Hans J. Lipps, and Laura F. Landweber.
The pathway to detangle a scrambled gene. PLoS ONE, 3(6):e2330, 06 2008.

[17] Saul B. Needleman and Christian D. Wunsch. A general method applicable to the search for similarities
in the amino acid sequence of two proteins. Journal of Molecular Biology, 48(3):443–453, 1970.

[18] Mariusz Nowacki, Vikram Vijayan, Yi Zhou, Klaas Schotanus, Thomas G. Doak, and Laura F. Landwe-
ber. RNA-mediated epigenetic programming of a genome-rearrangement pathway. Nature, 451:153–158,
01 2008.

[19] David M. Prescott. The unusual organization and processing of genomic DNA in hypotrichous ciliates.
Trends in Genetics, 8(12):439–445, 1992.

[20] David M. Prescott. The DNA of ciliated protozoa. Microbiol. Rev., 58(2):233–267, 1994.

[21] David M. Prescott. Genome gymnastics: unique modes of DNA evolution and processing in ciliates.
Nature reviews Genetics, 1(3):191–198, 2000.

[22] David M. Prescott and M.L. DuBois. Internal eliminated segments (IESs) of Oxytrichidae. J. Euk.
Microbiol., 43(6):432–441, 1996.

[23] David M. Prescott, Andrzej Ehrenfeucht, and Grzegorz Rozenberg. Molecular operations for DNA
processing in hypotrichous ciliates. European Journal of Protistology, 37(3):241–260, 2001.

[24] David M. Prescott, Andrzej Ehrenfeucht, and Grzegorz Rozenberg. Template-guided recombination for
IES elimination and unscrambling of genes in stichotrichous ciliates. Journal of Theoretical Biology,
222(3):323–330, 2003.

[25] T. F. Smith and M. S. Waterman. Identification of common molecular subsequences. Journal of Molecular
Biology, 147(1):195–197, 03 1981.

[26] Estienne C. Swart, John R. Bracht, Vincent Magrini, Patrick Minx, Xiao Chen, Yi Zhou, Jaspreet S.
Khurana, Aaron D. Goldman, Mariusz Nowacki, Klaas Schotanus, Seolkyoung Jung, Robert S. Fulton,
Amy Ly, Sean McGrath, Kevin Haub, Jessica L. Wiggins, Donna Storton, John C. Matese, Lance
Parsons, Wei-Jen Chang, Michael S. Bowen, Nicholas A. Stover, Thomas A. Jones, Sean R. Eddy,
Glenn A. Herrick, Thomas G. Doak, Richard K. Wilson, Elaine R. Mardis, and Laura F. Landweber. The
Oxytricha trifallax macronuclear genome: A complex eukaryotic genome with 16,000 tiny chromosomes.
PLoS Biol, 11(1):e1001473, 01 2013.

[27] Sergey Verlan, Artiom Alhazov, and Ion Petre. A sequence-based analysis of the pointer distribution of
stichotrichous ciliates. Biosystems, 101(2):109–116, 2010.

62

