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Abstract

Cloud gaming is an application deployment scenario which runs an interactive gaming application remotely

in a cloud according to the commands received from a thin client and streams the scenes as a video sequence

back to the client over the Internet, and it is of interest to both research community and industry. The

academic community has developed some open-source cloud gaming systems such as GamingAnywhere for

research study, while some industrial pioneers such as Onlive and Gaikai have succeeded in gaining a large

user base in the cloud gaming market.

Graphical Processing Unit (GPU) virtualization plays an important role in such an environment as it is

a critical component that allows virtual machines to run 3D applications with performance guarantees. Cur-

rently, GPU pass-through and GPU sharing are the two main techniques of GPU virtualization. The former

enables a single virtual machine to access a physical GPU directly and exclusively, while the latter makes a

physical GPU shareable by multiple virtual machines. VMware Inc., one of the most popular virtualization

solution vendors, has provided concrete implementations of GPU pass-through and GPU sharing. In partic-

ular, it provides a GPU pass-through solution called Virtual Dedicated Graphics Acceleration (vDGA) and a

GPU-sharing solution called Virtual Shared Graphics Acceleration (vSGA). Moreover, VMware Inc. recently

claimed it realized another GPU sharing solution called vGPU. Nevertheless, the feasibility and performance

of these solutions in cloud gaming has not been studied yet.

In this work, an experimental study is conducted to evaluate the feasibility and performance of GPU

pass-through and GPU sharing solutions offered by VMware in cloud gaming scenarios. The primary results

confirm that vDGA and vGPU techniques can fit the demands of cloud gaming. In particular, these two

solutions achieved good performance in the tested graphics card benchmarks, and gained acceptable image

quality and response delay for the tested games.
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Chapter 1

Introduction

1.1 Virtualization

Virtualization is a technology which combines or divides computing resources to present one or many oper-

ating environments, using methodologies like hardware and software partitioning or aggregation, partial or

complete machine simulation, emulation, time-sharing, and others” [33]. A virtualization layer is an essen-

tial component in virtualization as it provides the capability of using hardware resources to create multiple

virtual machines with isolation and performance guarantees. Sometimes, such a virtualization layer is also

called hypervisor or Virtual Machine Monitor (VMM) [33]. A virtual machine is defined as an emulation of

a computer that provides environments for supporting the operating system (OS).

Today, most computer resources, particularly Central Processing Unit (CPU), have been able to be

well-virtualized with performance guarantees by using software-based virtualization techniques such as full

virtualization and para-virtualization [14]. In addition, some hardware features like Intel VT-d [1] and AMD-

V1 were introduced for better virtualization support. Moreover, the virtualization of some hardware such as

GPUs, which was a problem before, now is being resolved with a variety of strategies.

Modern CPUs perform multi-taking well, but GPUs have been notably bad at multi-tasking with multiple

graphics-intensive applications. In addition, as GPU designers typically were secretive about the specifications

regarding the design and implementation of GPU products, there was only limited accessible documentation.

Moreover, as GPU architectures varied a lot across generations and the generational cycle was relatively

short compared to the CPU and other devices, it was normally unrealistic to specify a virtual device for each

modern GPU [14]. These issues, however, now are being solved by industry and the research community as

many rich GPU applications are presenting rising demand for full GPU virtualization [14][42]. For instance,

recent hardware advances have allowed virtualization systems to do one-to-one mapping between a virtual

machine and a physical GPU [14].

GPU sharing, where multiple virtual GPUs share a physical GPU, is emerging as an attractive research

area [42]. Not only software-based solutions like device emulation, but hardware techniques are also intro-

duced to realize GPU sharing with the guarantee of higher performance and lower overheads.2 In particular,

1AMD-V Introduction. Website: http://www.amd.com/en-us/solutions/servers/virtualization. Accessed: Oct 12, 2015.
2Overview of Virtual GPU Technology. Website: http://www.nvidia.ca/object/virtual-gpus.html. Accessed: Oct 12, 2015.
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VMware Inc.,3 one of the most successful virtualization solution vendors, has developed solutions to support

GPU pass-through and GPU sharing in their hypervisor products. Those techniques are discussed in Section

2.2.

1.2 Cloud Gaming

In traditional client-server online games, a player sends regular updates about the state of the game to the

server, and receives updates about other players in the game from the server. Nevertheless, as game logic

is processed at the client instead of the server, a player may not be able to play high-end games due to

the processing power of any single machine used to play games. Recently, both industry and the research

community have been actively exploring the solutions to resolving this problem through cloud computing

techniques.

Through utilization of elastic hardware resources4 and widely deployed data centers, cloud computing has

brought new business models for the IT industry. Specifically, it turns the idea of cloud gaming into a reality.

”Cloud Gaming, in its simplest form, renders an interactive gaming application remotely in a cloud and

streams scenes as a video sequence back to a thin client over the Internet” [37]. The thin client is responsible

for collecting/sending a player’s commands to the cloud and displaying game scenes received from the cloud.

Figure 1.1 shows a deployment scenario of cloud gaming systems. A player first logs into the system via

a portal server, which offers a list of available cloud games. Then the player selects a game and makes a

request to play the game. Upon the receipt of a playing request, the portal server executes the selected game

on an available gaming server and returns the game server’s IP address to the player. Finally, the player

connects to the gaming server and starts to play the selected game. With the help of virtualization, the portal

server and gaming server may be able to be deployed on virtual machines, thus significantly improving the

utilization of hardware resources. For instance, a high-end server can run hundreds of games concurrently

with performance guarantee through virtualization.

Today, cloud gaming is showing tremendous market potential for game developers. A recent market

research study5 breaks current game market growth into three categories: boxed games, games sold online

and cloud games. In particular, the market of cloud gaming is expected to expand the most: 9 times over

the period of 2011 to 2016, at which time it is forecast to reach 81 billion US dollars.6 Industry now is

making the effort to develop cloud gaming systems as the market potential of cloud gaming is tremendous.

The pioneers of cloud gaming, Onlive7 and Gaikai8 both have seen success with multi-million user bases.

3VMware Official Site. Website: http://www.vmware.com/. Accessed: Oct 12, 2015.
4Elastic hardware resources are the resources that are dynamically used to cope with dynamic workloads.
5Distribution and Monetization Strategies to Increase Revenues From Cloud Gaming. Website:

http://www.cgconfusa.com/report/documents/cloudgaming report brochure.pdf. Accessed: Oct 12, 2015.
6Online Sales Expected to Pass Retail Software Sales in 2013. Website:http://www.neogaf.com/forum/showthread.php?t=444009.

Accessed: Oct 12, 2015.
7Onlive Official Site. Website: https://www.onlive.com/. Accessed: Oct 12, 2015.
8Gaikai Official Site. Website: https://www.gaikai.com/. Accessed: Oct 12, 2015.
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Figure 1.1: A Deployment Scenario for Cloud Gaming Systems [24]

Recently, the research community is also actively exploring the potential of cloud gaming. An open source

cloud gaming system called GamingAnywhere (GA), which is developed by Huang et al. [23], now has become

useful study material for people who want to explore cloud gaming. GA is a cross-platform which is available

on Windows, Linux, OS X, and can be ported to Android and iPhone. In addition, thanks to the openness,

various algorithms, standards, protocols, and system parameters can be evaluated and reviewed using GA.

Moreover, GamingAnywhere is designed to be efficient, an experiment conducted on a middle-range machine

with the Intel i7 Processor shows that GamingAnywhere delivers real-time 720p videos at 35 fps, which equals

to 28.6 ms of processing time for each video frame, with a video quality higher than existing cloud gaming

systems [23]. The architecture of GamingAnywhere is explained in Section 2.3.3.

1.3 Thesis Motivation

GPUs were originally for accelerating graphics computing, such as in gaming and video playback. Neverthe-

less, as modern GPUs draw more power, contain more transistors and provide at least an order of magnitude

more computational performance than CPUs, GPU acceleration has extended to the basic windowing sys-

tems of operating systems and non-graphical high performance computing, such as image processing, weather

forecasting and protein folding.

Recently, the demand for full GPU virtualization is increasingly raised by more and more applications.

For instance, modern desktop virtualization requires GPU virtualization to support native graphical user

experience in a VM. Meanwhile, cloud service vendors have started to build GPU-accelerated virtual instances

for some application scenarios like cloud gaming. Only full GPU virtualization can fit the diverse requirements

in those usages.
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Recent hardware and software advances have realized the GPU pass-through technique, which allows

a virtual machine to access a physical GPU directly and exclusively. Additionally, both industry and the

research community are engaged in utilizing various strategies to implement GPU sharing, which supports

multiple virtual machines to share a physical GPU with performance guarantee. VMware Inc., one of the

most successful virtualization solutions vendors, has integrated GPU pass-through and two GPU sharing

solutions in their hypervisor products. The performance and feasibility of these solutions in cloud gaming,

however, has not been systematically characterized. Therefore, one of the primary motivations of this work is

to evaluate the performance and feasibility of these solutions offered by VMware in cloud gaming scenarios,

by capturing performance metrics using standard tools under various game play and virtualization scenarios.

Another motivation of this work is is to perform an analysis of the hardware resource usages of these GPU

virtualization solutions to find the main bottlenecks causing performance degradation.

1.4 Thesis Contributions

This thesis explores GPU pass-through and two GPU sharing virtualization solutions provided by VMware

in cloud gaming scenarios, and analyses their hardware resource usages. It makes the following contributions:

• This thesis is the first systematic study to evaluate VMware’s GPU virtualization solutions in cloud gaming.

Firstly, the performance of each solution is measured via some graphics card benchmarks. Secondly, three

cloud games are used to evaluate whether these solutions can guarantee acceptable image quality and

tolerable response delay for different categories of games. Thirdly, the potential scalability of these solutions

is evaluated by running two instances at the same time.

• The analysis of the hardware resource consumption of each GPU virtualization solution is also done in this

thesis. Additionally, this thesis also analyzes the hardware resource consumption of the physical machine

while launching each type of GPU virtualization instance.

1.5 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 describes the background and related work. Chapter

3 presents the experiments which are conducted. Chapter 4 discusses the experimental results and Chapter

5 is the conclusions.
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Chapter 2

Background and Related Work

2.1 Virtualization Overview

The terminology virtualization was introduced in the 1960s to refer to a virtual machine in an experimental

IBM M44/44X system. A layer of software is placed between the hardware layer and the operating system

layer which allows the computer to support multiple different operating systems at the same time. This

approach has several advantages. For instance, each virtual machine has strong isolation so that a failure

in one virtual machine does not bring down any others. Additionally, check-pointing and migrating virtual

machines (e.g., for load balancing across multiple servers) is much easier than migrating processes running

on a normal operating system. Moreover, having fewer physical machines saves money on hardware and

electricity, and takes up less rack space [41].

A virtualization layer is an essential component in virtualization as it provides the capability of using

hardware resources to create multiple virtual machines with isolation and performance guarantees. As de-

picted in Figure 2.1, there are two types of virtualization approaches according to the implementation of

the virtualization layer: the bare-metal method and the host-based approach. Figure 2.1(a) illustrates the

bare-metal approach, in which a hypervisor1 is responsible for providing hardware abstraction for the guest

operating system. The hypervisor is independent of operating system, and runs on the host machine directly.

Xen,2 VMware ESXi3 and Microsoft Hyper-V4 are typical solutions that adopt the bare-metal approach. As

shown in Figure 2.1(b), the host-based approach also utilizes the hypervisor to provide and manage virtualiza-

tion. Nevertheless, the hypervisor in the host-based approach runs in a layer between host operating system

and virtual machine. VMware workstation and Oracle VirtualBox are typical examples of implementations

of this type.

1This software is also called virtual machine monitor (VMM), these two terminologies will be used interchangeably in the
thesis.

2Xen Introduction Page. Website: http://www.xenproject.org/. Accessed: Oct 20, 2015.
3VMware ESXi Introduction Page. Website: http://www.vmware.com/ca/en/products/vsphere-hypervisor. Accessed: Oct

20, 2015.
4Hyper-V Main Page. Website: http://www.microsoft.com/en-us/server-cloud/solutions/virtualization.aspx Accessed: Oct

20, 2015.
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(a) Bare-metal hypervisor

(b) Host-based hypervisor

Figure 2.1: Bare-metal Hypervisor versus Host-based Hypervisor

2.1.1 CPU Virtualization

The x86 architecure refers to a family of backward-compatible instruction set architectures based on the

Intel 8086 CPU [41]. Now it has become a standard architecture for 32-bit micro-processors, and many

additions and extensions have been added to the x86 instruction set over the years, almost consistently

with full backward compatibility. The x86 architecture has been widely adopted in processors from Intel,

AMD and other companies.5 Therefore, the history of x86 virtualization basically is the history of CPU

virtualization. Figure 2.2 shows four privilege levels provided by the x86 architecture. Typically, user-level

applications run in Ring 3, and the operating system runs in Ring 0 (the highest privilege) as it has to

access the hardware resources directly. In order to virtualize the x86 architecture, a virtualization layer is

required to be placed under the operating system for creating and managing virtual machine and hardware

resources. In pure virtualization, the operating system is moved to Ring 1 or Ring 2 with higher privileges than

user-level applications but less privilege than the hypervisor in Ring 0. However, without special hardware

support it is not possible to trap all privileged and sensitive x86 instructions6 issued by the operating system

at runtime, which makes pure x86 virtualization using the classical trap-and-emulate technique impossible

5Introduction to x86 architecture. Website: http://en.wikipedia.org/wiki/X86. Accessed: Oct 20, 2015.
6Privileged instructions are instructions that can only be executed in the highest level (Ring 0), and sensitive instructions

are instructions that behave differently when executed in different levels.
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without hardware modifications [4]. For instance, certain instructions issued by the guest operating system

outside Ring 0 can return a value which indicates the current privilege level. Therefore, the guest operating

system can determine that it is not running in Ring 0 in this way, causing a problem known as ring aliasing.

With the development of hardware-assisted virtualization implementations such as Intel VT-d [1] and AMD-

V, however, these issues now have been resolved [32]. The basic idea of these techniques is to create a container

in which virtual machines can be deployed and executed. When the guest operating system is started up in a

container, it continues to run there until it causes an exception and traps to the hypervisor, for example, by

executing an I/O instruction. The set of operations that cause a trap is controlled by a hardware bitmap set

by the hypervisor. With these extensions, the classical trap-and-emulate virtual machine approach becomes

possible [41]. Hardware-assisted virtualization is not the only possible approach, and currently there exist

three main CPU virtualization techniques for the x86 architecture:

• Full Virtualization Using Binary Translation,

• Para-virtualization, and

• Hardware-assisted Virtualization.

Figure 2.2: Privilege Levels of x86 Architecture Without Virtualization

Full virtualization [32] virtualizes the x86 operating system using a combination of direct execution

technique and binary translation. As shown in Figure 2.3(a), with the binary translation technique the

VMM is run in Ring 0 and the guest OS in Ring 1. Using binary translation, all privileged instructions

issued by the guest OS now are translated by the hypervisor and non-virtualizable instructions are replaced

with new sequences of instructions (emulated version of these instructions). Full virtualization makes the

guest OS fully separated from the underlying hardware through a virtualization layer. The guest operating

system has no idea it is being virtualized, which means no modification is required. Figure 2.4(a) shows

the simplified architecture of full virtualization. Although there are some performance overheads caused by

binary translation, full virtualization provides good isolation and security for virtual machines, as well as

simplified live migration of virtual machines.
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(a) Privilege-level View of Full Virtualization (b) Privilege-level View of Para-virtualization

(c) Privilege-level View of Hardware-assisted Virtualization

Figure 2.3: Full Virtualization versus Para-virtualization versus Hardware-assisted Virtualization

Para-virtualization [32] is another approach to virtualizing the x86 CPU. The guest OS in para-virtualization

is aware of the occurrence of virtualization, which makes the OS modification necessary. As shown in Fig-

ure 2.3(b), the VMM is runs in Ring 0, while the guest OS runs in Ring 1.7 In para-virtualization, non-

virtualizable instructions in the guest OS now are replaced with hypercalls that are used to communicate with

the hypervisor. In one approach to para-virtualization shown in Figure 2.4(b), a unique host OS running in

a special domain (Domain 0)8 is responsible for managing hardware drivers and interacting with the hyper-

visor. Domain 0 is parallel with other domains used to run the guest OSs. Each guest OS accesses hardware

resources by issuing hypercalls to the hypervisor. Then the hypervisor handles these hyper-calls by calling

7In para-virtualization, the guest OS runs either in Ring 1 or Ring 2.
8A domains in para-virtualization is a running instance of a virtual machine, while Domain 0 is a special virtual machine

that runs a para-virtualized operating system which is used to manage virtualization.
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corresponding hardware drivers in Domain 0. Finally, all requests are processed by corresponding hardware

drivers. Para-virtualization ensures lower virtualization overheads than full virtualization. Its compatibility

and maintainability, however, is poor as it only supports modified operating systems.

Hardware-assisted virtualization makes use of those hardware features provided by hardware vendors for

simplifying CPU virtualization. In 2006, Intel and AMD provided Intel Virtualization Technology (VT-d)

and AMD-V respectively, to simplify virtualization. Take AMD-V as example, the VMM and the guest OS

in hardware-assisted virtualization run on the same privilege level but in different modes as illustrated in

Figure 2.3(c). The VMM runs in the host mode that refers to previously architected x86 execution environ-

ment, while the guest OS runs in a new, less privileged execution mode called guest mode. Additionally, a

new instruction, vmrun, is introduced to transfer from the host mode to the guest mode. Although the first

generation of hardware-assisted virtualization fails to offer performance advantages over full virtualization

and para-virtualization, it is considered a promising technique that may be able to significantly improve CPU

virtualization performance one day.

(a) Full Virtualization

(b) Para-virtualization

Figure 2.4: Full Virtualization versus Para-virtualization [32]

2.1.2 Memory Virtualization

Memory is another critical hardware resource to be virtualized. Memory virtualization refers to dynamically

allocating physical memory to virtual machines and managing the mapping between virtual pages in virtual

machines and physical pages. Modern x86 CPUs use a memory management unit (MMU) and a translation

look-aside buffer (TLB) to implement virtual memory address translation. In virtual memory systems, an
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application is assigned a virtual address space that is organized as a set of virtual pages, while the mappings

between these virtual pages and physical pages are under the control of the operating system. Memory

virtualization for virtual machines is similar to the virtual memory sub-system in modern operating systems.

As shown in Figure 2.5, a guest OS provides a virtual memory sub-system for the processes running on top

of it, and the MMU must be virtualized so that the guest OS’s physical memory can be mapped to actual

machine memory. To avoid two levels of mapping on every access, the VMM utilizes TLB hardware to map

virtual memory directly to machine memory. In addition, shadow page tables are used on TLB misses. A

shadow page table is maintained for each process of each VM. These shadow page tables control which pages

of machine memory are assigned to each process of each VM. When the guest OS updates one of its page

tables, the VMM updates its corresponding shadow page table. Although MMU virtualization introduces

some virtualization overhead, it is an area that the second generation hardware-assisted virtualization focuses

on.

Figure 2.5: Memory Virtualization

2.1.3 I/O Virtualization

I/O virtualization involves managing the mapping of I/O requests between virtual devices and the shared

physical hardware. There are four approaches to virtualize I/O devices:

• Full Virtualization,

• Para-Virtualization,

• Device Emulation, and

• I/O Pass-through.

Full virtualization for I/O virtualization is similar to that for CPU virtualization. The hypervisor multi-

plexes physical I/O devices, and provides virtual device interfaces for virtual machines. All I/O instructions

issued by the guest OS are trapped and handled by the hypervisor, which drives corresponding devices to com-

plete these I/O requests. I/O para-virtualization also follows the basic principles in CPU para-virtualization.

In the context of the approach to para-virtualization discussed previously for CPU virtualization, a back-end
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driver (a physical driver) is installed in Domain 0 to access the physical device, and a front-end driver is in-

stalled in the guest OS, which handles and passes the guest OS’s I/O requests to the back-end driver through

the hypervisor. Upon receipt of the guest OS’s I/O requests, the back-end driver accesses corresponding

devices to handle the requests and sends the results back to the corresponding virtual machine.

Device emulation is a general solution which has been widely used to virtualize different devices. It is

normally adopted in host-based hypervisors. As shown in Figure 2.6(a), I/O requests issued by the guest

OS are intercepted by the hypervisor and passed to a process in the host OS, which invokes system calls to

handle received I/O requests. The main overhead in such an approach is the context switches which occur

between the guest OS and the VMM, kernel space and the user space, and between the emulation application

and the host OS kernel. Therefore, the main optimization in this method is to reduce context switches.

Figure 2.6(b) shows a simplified framework of direct I/O pass-through. Unlike the three approaches

described above, virtual machines in direct I/O virtualization can access hardware devices directly without

going through the hypervisor. The idea of I/O pass-through is introduced by Liu et al. [31]. The device is still

controlled by a physical driver in Domain 0, but the guest OS is allowed to access it directly. Although this

approach improves performance and enables the guest OS to take full advantages of all hardware functionality,

its use requires addressing two main issues. First, the hypervisor should ensure isolation so that a virtual

machine cannot access memory allocated to other VMs. Second, the I/O device being virtualized must

provide the ability and interfaces to allow multiple guest OSs to access it concurrently.

(a) I/O Device Emulation (b) Direct I/O Pass-through

Figure 2.6: I/O Device Emulation and Direct I/O Pass-through

2.1.4 GPU Virtualization

Although most computer resources have been well virtualized, difficulties remain in full virtualization of the

GPU. GPUs are bad at handling multiple GPU-intensive applications concurrently, even when run on a bare-
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metal system. Traditionally, multi-tasking on CPUs have been well supported with reasonable preemption

latency and through overhead through context switching. Nevertheless, the same multi-tasking strategy on

GPUs incurs higher overheads compared to CPUs, due to the large context in GPUs [34]. During the context

switch, a GPU has to save and restore up to 256 KB of resgiter file and 48 KB of on-chip scratch-pad memory

per GPU core, which can take up to 44 us in the latest NVIDIA GPU architecture, Kepler GK 1109, assuming

the peak memory. It is a high overhead compared to the context switch time of less than 1 us on modern

CPUs. Not only the OS kernel has to suffer from a long preemption latency, the GPUs also waste execution

resources during the process of context switching [40]. Additionally, GPU memory is used in gaming and

graphics applications to store textures and shadow maps, as well as the frame buffer and the depth buffer for

rendering a frame. This is completely different for each gaming application, so no resources can be shared.

Recent hardware advances have allowed virtualization systems to implement one-to-one mapping between

a virtual machine and a physical GPU. In addition, GPU sharing (which can create multiple virtual GPUs)

is emerging as a popular research area. Current GPU virtualization solutions can be roughly separated into

two major classes, namely, front-end virtualization and back-end virtualization. The former is based on the

device emulation technique [3] or API remoting [39], while the latter relies on PCI pass-through [13].

Front-end Virtualization

Front-end virtualization requires no GPU vendor- or model-specific requirements as it realizes GPU virtual-

ization at a relatively high level and runs the graphics drivers on the host. In Front-end virtualizaiton, the

guest OS does not have the direct access to physical GPUs. Instead, the VM’s accesses to physical GPUs

are totally mediated through provided drivers on the host OS. Multiplexing is easily implemented with such

a technique because it is based on software and multiple “contexts” for applications are allowed by current

GPUs. However, since the virtualization overhead of such a solution is relatively high compared to the

bare-metal system, it might not be suitable to apply such a technique in some graphics-sensitive application

scenarios, such as virtual desktop and cloud gaming.

Front-end virtualization solutions typically are based on device emulation or API remoting. Device

emulation technology emulates the GPU and the virtual GPU synthesizes host graphics operations by guest

device drivers, while API remoting employs a front-end driver to forward the high level API calls from VMs

to the host OS. Device emulation fails to fit today’s requirements as it is very complex and has extremely

low performance, while API remoting faces the challenge of supporting full features due to the complexity

of the modification of the guest graphics software stack. Moreover, the performance of API remoting largely

depends on the applications and how well API remoting is implemented. Bandwidth-intensive and latency-

sensitive applications may suffer from more serious performance degradation than the computation-intensive

applications. When regarded as computing resources, however, a modern GPU equipped with thousands

9NVIDIA Kepler GK 110: Nextgeneration CUDA Compute Architecture Website:
https://www.nvidia.com/content/PDF/kepler/NV DS Tesla KCompute Arch May 2012 LR.pdf. Accessed: March 21,
2016.
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of processing elements is more effective than general-purpose CPUs in many application scenarios like high

performance computing (HPC), image processing and weather forecasting. Therefore, API remoting is able

to play a key role in such scenarios as it brings significant GPU acceleration in these areas.

There have been some approaches that realize the virtualization of CUDA10 runtime APIs for VMs

including rCUDA [15], vCUDA [38], gVirtuS [18] and GViM [19]. These solutions typically comprise two

components: front-end middleware and back-end middleware. The front-end middleware is installed on

the VM and the back-end middleware with direct access to the hardware is installed inside the hypervisor.

Remote API calls are forwarded from the front-end middleware to the back-end middleware. Upon the receipt

of remote API calls, the back-end middleware drives physical GPUs to process them and sends results back.

As shown in Figure 2.7(a), the rCUDA framework can be split into two software modules: client middle-

ware and server middleware. The client middleware consists of a collection of wrappers that forward CUDA

API calls to the server middleware and retrieve results back. The server middleware acts as a service and

runs on a computer equipped with a physical GPU. It receives remote API calls, executes them locally, and

then sends results back to the client middleware. In addition, TCP sockets are utilized to let the client

middleware and the server middleware communicate with each other [15].

Like the rCUDA framework, vCUDA also adopts a client/server architecture. As depicted in Figure 2.7(b),

vCUDA consists of three components: vCUDA library, virtual GPU and vCUDA stub in the host OS. The

vCUDA library is in charge of intercepting and redirecting API calls from applications to a vCUDA stub. The

virtual GPU is represented as a database maintained by the vCUDA library, and it provides GPU contexts

and a complete view of underlying hardware for CUDA applications. The vCUDA stub is responsible for

receiving and accomplishing remote API calls, and returning results back [38].

Figure 2.7(c) shows the architecture of gVirtuS, in which the front-end module (a wrapper CUDA library)

residing in the guest OS intercepts CUDA calls issued by applications and forwards them to the back-end

module. The back-end unpacks library functions, maps memory pointers, executes functions on the host’s

GPU, and returns results to the front-end module. The architecture of gVirtuS is similar to rCUDA’s except

for its communicator. It is designed to work with a pluggable communication component independent of the

hypervisor. Therefore, an efficient communicator can reduce the overheads of remote execution of CUDA

calls.

GViM is a system designed for managing resources of a general purpose system accelerated by graphics

processors. It uses Xen-specific mechanisms for the communication between the front-end and the back-end

middleware. A GPGPU platform virtualized by GViM enables consolidation of graphics processors. The

evaluation [19] with a Xen-based implementation of GViM shows efficiency and flexibility in system usage

with only small performance degradation for virtualized vs. non-virtualized solutions.

In addition to improving GPU acceleration in general purpose computing, some front-end solutions also

make an attempt to realize GPU virtualization for leveraging hardware rendering acceleration. Lagar-Cavilla

10CUDA is a programming model proposed by Nvidia that exposes the Nvidia GPU hardware for GPGPU computing.
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(a) The Framework of rCUDA [15]

(b) The Framework of vCUDA [38] (c) The Framework of gVirtuS [18]

Figure 2.7: rCUDA versus vCUDA versus gVirtuS

et al. [28] proposed VMGL, a cross-platform OpenGL virtualization solution which is both VMM and

GPU independent. Unlike CUDA-enabled virtualization solutions which aim to make remote CUDA API

calls realistic, VMGL pursues the virtualization of the OpenGL library. It enables multiple applications in

multiple VMs to utilize hardware rendering acceleration, alleviating the problem of limited virtualization

capability of a growing class of graphics-intensive applications. Additionally, it also offers suspending and

resuming capabilities for applications. Figure 2.8 shows the architecture of VMGL, in which the VMGL

library, VMGL stub and VMGL X server extension are three main components. The VMGL library inside

the guest OS works as a replacement for standard or vendor-specific OpenGL implementations. When an

OpenGL application inside a VM starts, the VMGL library creates a VMGL stub on the host to perform as

a sink for OpenGL commands. The VMGL stub acts on the behalf of the virtualized application to obtain

direct rendering capabilities. Once an application issues an OpenGL command, the VMGL library forwards

the command to the VMGL stub via a network transport. In this case, each application owns a unique

VMGL stub, and each stub runs as a separate process, providing graphics rendering capability for multiple

applications concurrently. The Blink system proposed by Hansen [20] is a similar system to VMGL, which

multiplexes sophisticated graphical contents from multiple virtual machines onto a shared GPU. The Blink
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display server is a user-level application that runs inside a Linux guest VM. It accesses graphics hardware

using commercially developed device drivers. The client inside the guest VM accesses the physical GPU by

communicating with this server. Moreover, The Blink extends the display list abstraction11 into more general

and flexible BlinkGL stored procedures. These stored procedures are able to handle simple user interactions

like redrawing the mouse cursor or highlighting a pushbutton in response to a mouse rollover. Moreover,

Blink server contains a just-in-time (JIT) compiler that can convert BlinkGL into machine code, reducing

the translation costs.

Figure 2.8: The Architecture of VMGL [28]

Back-end Virtualization

The back-end virtualization technique is another solution that can achieve higher GPU virtualization per-

formance than front-end technology [14]. Back-end technology executes a graphics driver inside a virtual

machine with virtualization boundary between the driver stack and a physical GPU. Through the back-end

method, a virtual machine can directly interact with a physical GPU. This technique gains higher perfor-

mance than front-end virtualization, as direct access to native physical GPUs is excellent for achieving good

fidelity: a VM can utilize full features of GPU abilities. Its multiplexing, however, is a serious challenge.

As modern GPUs normally are bad at multi-tasking graphics-intensive applications, there remains difficul-

ties in realizing multiplexing with the back-end technique to enable multiple VMs to share a physical GPU

concurrently with isolation and performance guarantees.

One back-end virtualization technique that has been adopted in industry is fixed pass-through, which

dedicates a physical GPU to a single VM and offers full features and the best performance [42]. Recent chipset

features, like Intel’s VT-d and AMD-Vi, make it realistic to realize fixed pass-through without requiring any

special requirement of the GPU’s programming interfaces. Recently, many virtualization solution vendors

have proposed their fixed pass-through techniques in their hypervisor products. For instance, VMware Inc.12

11Display list abstractions are macro sequences of OpenGL commands.
12VMware Official Site. Website: http://www.vmware.com/. Accessed: Oct 20, 2015.

15



developed a technique called vDGA to enable a physical GPU to be mapped to a single VM. XenServer

has also incorporated a similar technique into its hypervisor product to support fixed GPU pass-through.

Although it provides the best performance, fixed pass-through is an expensive solution as it completely gives

up multiplexing.

Another back-end solution is mediated pass-through, which just dedicates a context to a virtual machine

rather than an entire GPU. This solution offers full features and multiplexing capability with good perfor-

mance. But there are still two challenges that need to be resolved. First, GPU hardware must be designed

and implemented in a way that can manage multiple contexts, and so that the contexts can be mapped into

different virtual machines with low overheads. Second, the host/hypervisor must be able to allocate and

manage multiple GPU contexts using graphics drivers. Currently, mediated pass-through is rarely adopted

as difficulties remain. From an extensive literature search, it appears that gVirt developed by Tian et al.

[42] is the first commercial GPU virtualization implementation with 1) full GPU virtualization which runs a

native graphics driver in the guest OS, and 2) mediated pass-through that ensures good GPU performance

and fidelity for each VM. Figure 2.9 illustrates the overall gVirt architecture based on Xen hypervisor. Each

VM runs a native graphics driver to access the physical GPU resources directly. gVirt Mediator in Domain

0 is responsible for allocating and managing virtual GPUs for VMs, and using hypercalls to access physical

GPU. This mediator also manages a GPU scheduler, which is parallel with the CPU scheduler in Xen, to

schedule the execution of virtual GPUs. The gVirt stub module is in charge of trapping and forwarding

guest access of certain GPU resources. All the trapped GPU accesses are forwarded to the mediator. Then

it invokes hypercalls to access physical GPU resources.

Figure 2.9: The Architecture of gVirt [42]
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Performance Studies of GPU Virtualization

Recently the potential and performance of existing GPU virtualization solutions in high performance com-

puting have been studied in the literature. Duato et al. [16] modeled rCUDA over a series of high throughput

networks for assessing the influence of the underlying network on the performance of rCUDA in high per-

formance clusters, by analyzing the traces of two different case studies over two different networks (1 Gbps

Ethernet and 40 Gbps InfiniBand networks). Through the study, they found rCUDA performed almost as

efficiently as a local GPU when using high performance interconnects like 40 Gbps Infiniband networks.

Vinaya et al. [43] presented a detailed evaluation of GPU acceleration in rCUDA, gVirtuS and Xen.

They utilized a subset of CUDA SDK examples which provide a comprehensive coverage of CUDA APIs that

compromise simple and complex benchmarks, to compare the three frameworks in terms of their performance,

and characteristics of fidelity13, interposition14 and multiplexing. Their experimental results showed that

although Xen with GPU pass-through enabled lost the ability to multiplex, it provided maximum fidelity

and performance compared to the other two solutions. Moreover, rCUDA shows greater fidelity but lower

performance than gVirtuS. Furthermore, none of these solutions provide desirable interposition features.

Walters et al. [44] characterized the performance of the GPU pass-through mode provided by VMware

ESXi, KVM, Xen and Linux Containers for CUDA and OpenCL applications. Through the utilization of

a series of micro-benchmarks as well as scientific and big data applications, they demonstrated that GPU

pass-through achieved near-native performance in high performance computing across four major hypervisors.

The performance study conducted by Shea et al. [36] evaluated the performance of real world gaming and

ray-tracing applications in a VM with GPU pass-through for both Xen and KVM. They found that although

the VMs were accelerated with dedicated physical GPUs, gaming applications performed poorly when virtu-

alized as compared to the non-virtualized bare-metal baseline. Moreover, their detailed performance analysis

on KVM revealed that a memory bottleneck was the main cause for the performance degradation.

2.2 VMware’s GPU Virtualization Solutions

Rich applications are presenting rising demands for full GPU virtualization with good performance, full

features, and sharing capability. Generally, the use cases in these rich applications can be divided into three

categories as the following [26]:

• Knowledge Workers: Knowledge Workers include office workers and executives, typically using less

graphics-intensive applications such as Microsoft Office, web browser and other non-specialized end-user

experience applications. The key areas of importance for this type of user are office productivity applica-

13In scientific modeling and simulation, fidelity is the degree to which a model or simulation reproduces the behaviour and
state of a real world object, feature or condition. Here the fidelity denotes how closely a virtual machine is implemented to a
real machine.

14Interposition concerns the abstraction which is used to deliver secure isolation, resource management, virtual machine
portability and many other features by separating the guest from physical hardware dependencies.
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tions, rich web experience, and fluid video playback. They expect a similar smooth and fluid experience

that can be achieved natively on today’s graphic accelerated devices such as desktop PCs.

• Power Users: Power Users are those users who need to run more graphics-intensive applications,

including image editing software such as Adobe Photoshop,15 and mainstream computer-aided design

(CAD) applications such as Autodesk AutoCAD.16 Those applications require more GPU resources with

full support for graphics APIs such as OpenGL and DirectX.

• Designers: Designers are those users with the need to run highly graphic-intensive applications such as

high-end CAD modeling software, for example Autodesk Inventor.17 Traditionally designers utilize desktop

workstations and it is difficult to incorporate applications in this category into virtual deployments due to

the need for high-end graphics and certification requirement of those applications.

As one of the most successful virtualization solution vendors in the world, VMware Inc. has been making

great effort to improve GPU virtualization and has provided four solutions for satisfying various demands of

GPU virtualization in its product. The default GPU virtualization solution in VMware ESXi is called Soft 3D,

which is a software-based virtualization method implemented via device emulation. VMware also provides

a light-weight GPU-sharing solution called Virtual Shared Graphics Acceleration (vSGA) using front-end

virtualization technology, and a fixed GPU pass-through solution called Virtual Dedicated Graphics Accel-

eration (vDGA). Moreover, it recently realized dedicated GPU pass-through by introducing Nvidia’s vGPU

technology into its products. All these three solutions are available in VMware ESXi and all GPU features

brought by these solutions can be utilized through VMware Horizon View,18 a virtual desktop infrastruc-

ture that provides end users access to virtual desktops and applications created by VMware virtualization

platforms.

Soft 3D is the default GPU virtualization solution that VMware offers. It is a software-based method that

does not requires any physical GPUs to be installed on the VMware ESXi host. This solution only requires an

emulated graphics driver automatically installed on virtual machines. It provides support for DirectX 9c and

OpenGL 2.1 and supports both software 2D and 3D rendering in Windows 7 virtual desktops. Nevertheless,

Soft 3D is not suitable for running applications that need 3D features as the performance of device emulation

is not good while running this type of application. Therefore, it is only suitable for running applications that

fall into the use case of Knowledge Workers.

vSGA is the first GPU sharing solution introduced with VMware Horizon View 5.2. It is differentiated

from Soft 3D in that it is a hardware-based solution that provides hardware-accelerated 3D graphics by en-

abling multiple virtual machines to share a physical GPU installed in the ESXi host. As shown in Figure 2.10,

a physical GPU and its driver need to be installed in the VMware ESXi host. Each virtual machine installs

15Adobe Photoshop Family. Website: http://www.adobe.com/products/photoshopfamily.html. Accessed: Dec 02, 2015.
16Autodesk AutoCAD Official Website: http://www.autodesk.com/products/autocad/overview. Accessed: Dec 02, 2015.
17Autodesk Inventor Official Website. Website: http://www.autodesk.com/products/inventor/features/all. Accessed: Dec

02, 2015.
18This software is also known as VMware View, these two terminologies will be used interchangeably in the thesis.
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and utilizes a proprietary VMware vSGA 3D driver that communicates with the physical graphics driver in

the VMware ESXi host. VMware vSGA can improve performance for the use case of Knowledge Workers by

providing high levels of consolidation of users across a physical GPU. Nevertheless, it mostly limited to this

use case since it does not provide a wide range of graphics API support.

Figure 2.10: VMware vSGA [26]

vDGA is a fixed GPU pass-through solution introduced with VMware Horizon View 5.3. It is a graphics-

acceleration capability that delivers high-end workstation graphics for use cases where a dedicated GPU is

required. This method dedicates a single GPU to a single virtual machine for high performance. An example

of using VMware vDGA is illustrated in Figure 2.11. In this case, an Nvidia GRID K2 equipped with two

high-end Kepler GPUs is installed in the ESXi host. No physical graphics driver is needed in the ESXi

host. To enable graphics acceleration, an appropriate physical Nvidia GRID driver needs to be installed on

a virtual machine. With this configuration, the virtual machine can have direct and exclusive access to the

physical GPU. Although this technology offers a user fully dedicated access to a single GPU, it sacrifices

the consolidation as the physical GPU occupied by the vDGA VM cannot be accessed by other VMs. For

instance, in this case, since the Nvidia GRID K2 has two physical GPUs, only two virtual machines can

utilize vDGA technology. Overall, this technology meets the needs in all use cases and offers the highest
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level of performance for users with the most intensive graphics computing needs. Moreover, the wide range

of API support such as OpenGL 4.4, Microsoft DirectX 9, 10, or 11, and Nvidia CUDA 5.0, makes it able to

run high-end 3D applications.

Figure 2.11: Vmware vDGA [26]

Another GPU sharing solution, vGPU technology, is supported and introduced in VMware Horizon View

6.0 and VMware ESXi 6.0. Like vDGA, vGPU brings the benefit of wide API support and native graphics

performance but greater scalability. vGPU is essentially a dedicated GPU pass-through solution based on

hardware acceleration. Figure 2.12 shows an instance that utilizes vGPU to realize GPU sharing. An Nvidia

GRID K2 is installed in the ESXi host, and a vGPU manager is also required to be installed in the ESXi host

to manage the states of each virtual GPU. Like vDGA, an appropriate Nvidia GRID graphics driver needs

to be installed in the virtual machine, so that all graphics commands can be passed directly to the physical

GPUs without any translation help from the ESXi host. Figure 2.13 illustrates the internal architecture of

Nvidia GRID vGPU, from which we can see that each vGPU obtains its own frame buffer allocated out of

the physical GPU frame buffer at the time it is created. The vGPU frame buffer is managed by the Nvidia

vGPU manager installed in the ESXi host. Each vGPU retains exclusive use of its vGPU frame buffer until

it is destroyed. Additionally, all vGPUs within the same physical GPU share access to the GPU engines,

20



including the graphics (3D), and video decode and encode engines.

vGPU technology has better performance than vSGA and higher consolidation ratios than vDGA. Addi-

tionally, it fits the demands in the use cases of Knowledge Workers, Power Users and even Designers. One

drawback of this technology, however, is that high-end applications might need to obtain certification from

Nvidia Inc. before running on any vGPU instances.

Figure 2.12: VMware Horizon View with Nvidia GRID vGPU [26]

vGPU technology is only available on specific Nvidia graphics cards, namely, Nvidia GRID K1 and GRID

K2. Table 2.1 shows the main specifications for GRID K1 and K2. K1 consists of four entry-level Kepler

GPUs, each of which is equipped with 192 CUDA cores and 4 GB DDR3 as video memory. K2 has two

high-end Kepler GPUs, and each of them is configured with 1526 CUDA cores and 4 GB DDR5 as video

memory. Additionally, K1 and K2 have a wide range of API support. Both of them support the latest version

of OpenGL, Microsoft DirectX and Nvidia CUDA. K1 and K2 can support several vGPU profiles as shown

in Table 2.2. Each vGPU profile has a fixed amount of video memory, number of supported displays per

user, and maximum resolution per user. In addition, the vGPU profiles exhibit great flexibility as they are

targeted at different classes of use case.
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Table 2.1: Main Specifications for Nvidia GRID K1 and K2 [29]

Product Name GRID K1 GRID K2

Number of GPUs 4 GK107 GPUs 2 GK104 GPUs

CUDA Cores 768 (192 / GPU) 3072 (1536 / GPU)

Memory Size 16 GB DDR3 (4GB / GPU) 8 GB DDR5 (4GB / GPU)

OpenGL 4.x 4.x

Microsoft DirectX Up to 11 Up to 11

Table 2.2: vGPU Profiles [29]

Graphics

Board

Virtual

GPU

Profile

Graphics

Memory

(MB)

Maximum

Displays

Per User

Maximum

Resolu-

tion Per

User

Maximum

Users Per

Graphics

Board

Use Case

Nvidia GRID

K1

K180Q 4,096 4 2560x1600 4 Entry Designer

K160Q 2,048 4 2560x1600 8 Power User

K140Q 1,024 2 2560x1600 16 Power User

K120Q 512 2 2560x1600 32 Power User

Nvidia GRID

K2

K280Q 4,096 4 2560x1600 2 Advanced Designer

or Engineer

K260Q 2,048 4 2560x1600 4 Designer, Engineer

or Power User

K240Q 1,024 2 2560x1600 8 Designer, Engineer

or Power User

K220Q 512 2 2560x1600 16 Designer or Power

User
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Figure 2.13: Nvidia GRID vGPU Internal Architecture [29]

2.3 Cloud Gaming

2.3.1 Overview of Cloud Gaming

Cloud computing has drastically changed existing operations and business models of IT industry because of

its unparalleled scalability and reduced costs of capital and equipment maintenance. Existing applications,

from document sharing to media streaming, have experienced a great benefit from cloud computing platforms,

in terms of system efficiency and usability. Recently, the advances of cloud computing technology have made

it realistic to offload complex tasks like graphics-intensive 3D rendering to the cloud, which turns the idea of

cloud gaming into a reality and significantly facilitates its development.

As shown in Figure 2.14, a cloud gaming platform can be split into several modules. The thin client

interaction module is used to receive the players’ commands. The commands are converted into appropriate

in-gaming actions by the game logic. Graphics rendering is responsible for processing game world changes

into rendered scenes. The rendered scenes are encoded and compressed as a video stream by the video encoder

module and streamed back to the thin client via a real-time streaming module. Finally, the video stream is

decoded and rendered by the video decoder in the thin client.

Compared to traditional gaming platforms, cloud gaming systems have several significant advantages that

attract both game players and developers. In particular, cloud gaming frees players from upgrading their

hardware for the latest games since computational hardware is offered by cloud gaming providers, which

makes it realistic that a machine with a low-end GPU is able to play graphics-intensive games. Moreover,

it allows users to play a game on different platforms, including PCs, laptops, tablets and smart-phones. In
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Figure 2.14: The Framework of Cloud Gaming [9]

addition, game developers also benefit from cloud gaming in several aspects. Firstly, cloud gaming offers

game developers better digital rights management as the code of cloud games is not directly executed on

the player’s local device. This eliminates the copyright infringement issues. Secondly, cloud gaming helps

game developers solve hardware/software incompatibility issues. Normally, it requires significant effort and

resources for developers to achieve compatibility with different operating systems and platforms for the games

they developed. Additionally, developers are often required to maintain older versions of games they released,

which also consumes a lot of time and resources. Cloud gaming has the advantage of solving compatibility

and maintenance issues as game vendors only need to maintain the game software at cloud servers, which

requires less resources and makes development of games more cost effective. Thirdly, cloud gaming offers

tremendous market potential to game developers. In fact, the cloud gaming market has been the fastest

growth component of the game market. Market research predicts that the market of cloud gaming is going

to grow to $81 billion by 2017.19 Additionally, Onlive and Gaikai, two industrial pioneers of cloud gaming

systems, have succeeded in gaining multiple millions of users.

2.3.2 Issues and Challenges of Cloud Gaming

Although cloud gaming shows great advantages for both game developers and players, it is still in the early

stage as some significant challenges remain regarding the widespread deployment. As low-latency live video

streaming and high-performance 3D rendering are key factors to ensure the success of cloud gaming, two

performance characteristics, low response delay and high video quality must be ensured in cloud gaming.

While running cloud games, a cloud gaming system has to collect commands from players, process them,

19Online Sales Expected to Pass Retail Software Sales in 2013. Website:http://www.neogaf.com/forum/showthread.php?t=444009.
Accessed: Dec 02, 2015.
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then encode, compress and stream results (game scenes) back to players. To ensure the interactivity, all

of these operations must be finished within hundreds of milliseconds [10]. The latency caused by these

operations is called response delay, which can be separated into three components:

• Processing Delay (PD): the time required for the game server to receive a player’s command, process it,

and send corresponding encoding scenes back to the player.

• Playout delay (OD): The time required for a client to receive, decode and render a frame on the screen.

• Network Delay (ND): The time required for a round of data exchange between the server and client. It

is usually referred to as the network round-trip time (RTT).

Studies of traditional gaming systems have concluded that different game genres have different thresholds

of response delay [10]. Table 2.3 summarizes the maximum delays that a player can tolerate for three popular

game categories. Although the traditional server/client gaming platform’s response delay tolerance is very

similar to cloud gaming’s, there is a critical distinction between these two types of game platforms. Traditional

online gaming systems often reduce response delay by pre-rendering an action partially on the player’s local

system before a corresponding command is processed on the game server. However, a thin client in cloud

gaming is unable to reduce response delay by adopting such a technique since none of the commands can be

handled by the client.

Table 2.3: The Summary of Response Delay on Cloud Games [10]

Model Examples Genres Sensitivity Thresholds (ms)

Avatar - First Person First Person Shooter

(FPS), Racing

High 100

Avatar - Third Person Sports, Role Playing

Games (RPG)

Medium 500

Omnipresent Real Time Strategy (RTS) Low 1,000

Another key performance characteristic of cloud gaming is image quality, which refers to the measurement

of perceived video degradation at the client side, compared to the original game at the server side. As gaming

scenes are encoded/compressed and decoded/uncompressed at the game server and thin client respectively,

there might be some loss of data caused by encoder/decoder and network packet loss, which degrades image

quality. It is critical to select an excellent video encoder/decoder for cloud gaming as it must quickly

encode/compress incoming image frames and distribute them to end users. Currently, the H.264/MPEG-

4 AVC [35] encoder is adopted by two main cloud gaming vendors, Onlive and Gaikai, as it has a high

compression ratio and can work well with stringent real-time demands. Cloud gaming must consider network

conditions while handling video streaming and encoding since some network factors, including delay, jitter,

packet loss and packet re-ordering might affect image quality. All these factors might result in video frames

not being rendered in time. These factors must be considered while developing a cloud gaming platform.
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2.3.3 Existing Cloud Gaming Systems

Cloud gaming has gained a great deal of interest from the industry and several companies have provided or

claimed to offer cloud gaming services. Gaikai,20 which was founded in 2008 and acquired by Sony Computer

Entertainment in 2012, is one of the earliest pioneers to offer cloud gaming services. It has developed a

high quality, fast interactive cloud-streaming platform, which is capable of quickly delivering games and

other interactive content to customers throughout the Internet. One drawback of Gaikai, however, is it

does not support use of devices like digital TVs or tablets as client devices. Onlive Game Service,21 which

was released by Onlive corporation in June 2010, is another commercial cloud gaming product. It makes

graphics-rich interactive applications available across connected devices such as PCs, laptops and tablets.

Additionally, the H.264 encoder is configured to be capable of grabbing the high resolution video frames

from each GPU running on their servers. Moreover, it utilizes virtual machines on custom-made servers with

GPUs to offer two streams, the live stream and the media stream for each game. The live stream is optimized

for real-world game-play, while the media stream is used by players to record and review sequences of their

games. StreamMyGame22 is a similar system to Onlive. It is a software-only game streaming solution which

enables Microsoft Windows-based games to be played remotely on Windows and Linux devices. Both these

systems have gained success with multiple millions of users. Nevertheless, as they are both closed systems,

the architecture and design of these systems are not available to be studied.

Instead of developing commercial cloud gaming platforms, Nvidia released two cloud gaming graphics

boards, GRID K340 and 520, and a software development kit called GRID SDK to help build cloud gaming

systems. GRID SDK enables fast capture and compression of desktop display or render targets from Nvidia

cloud gaming graphics cards or virtual GPUs. As shown in Figure 2.15, GRID SDK mainly consists of two

components, NVIFR and NVFBC. NVIFR captures and optionally H.264 encodes from a specific render

target, while NVFBC captures and optionally H.264 encodes the entire visible desktop. All generated frames

are sent back to remote applications in raw format or H.264 format. As shown in Table 2.4, the K340 is

equipped with four entry-level Kepler GPUs, each of which has 384 CUDA cores and 1 GB DDR-5 video

memory, while the K520 is configured with two high-end Kepler GPUs, each of which has 1536 CUDA cores

and 4 GB of video memory. Both of these GPUs are used to stream consumer games. The GRID K340

is designed for high-density gaming scenarios, and supports the maximum number of concurrent users with

high performance of simultaneous encoding. The GRID K520 is designed to be a high performance GPU for

high-performance gaming scenarios. The GRID K520 has been chosen as a standard component in Amazon

EC223 G2 instances, which are Amazon Elastic Compute Cloud (EC2) instances designed for applications

that require 3D graphics capabilities. A customized cloud gaming platform can be built using this instance

type and the GRID SDK.

20Gaikai Official Site. Website: https://www.gaikai.com/. Accessed: Dec 03, 2015.
21Onlive Official Site. Website: https://www.onlive.com/. Accessed: Dec 03, 2015.
22StreamMyGame Official Site. Website: http://streammygame.com/. Accessed: Dec 03, 2015.
23Amazon EC2 Official Site. Website: http://aws.amazon.com/ec2/. Accessed: Dec 03, 2015.
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Table 2.4: Main Specifications for Nvidia GRID K340 and K520 [12]

Product Name GRID K340 GRID K520

Target Market High-Density Gaming High-Performance Gaming

Concurrent # Users 4 - 24 2 - 16

Number of GPUs 4 GK107 GPUs 2 GK104 GPUs

CUDA Cores 1536 (384/GPU) 3072 (1536 / GPU)

Memory Size 4 GB GDDR5 (1 GB / GPU) 8 GB GDDR5 (4 GB / GPU)

Cloud gaming has also been well studied in the literature, and some open-source cloud gaming systems

have been proposed. These systems can be divided into three categories: (1) 3D graphics streaming, (2) file

streaming, and (3) video streaming. The main difference between these three approaches is how they allocate

workload for the game server and the thin client.

The early attempts at cloud gaming systems [17] [27] adopted a 3D graphics streaming approach for

delivering data between the game server and thin client. With this approach, the cloud game server is only

responsible for intercepting, compressing and sending graphics commands to the thin client, while the thin

client has to render game scenes using local GPU resources. Therefore, the physical GPU in the thin client

must be powerful enough to render game scenes with the guarantee of high quality and real-time. This

approach allows the game server to handle more clients as it only has a lightweight workload. Nevertheless,

as such a method assigns almost all workload to the thin client, it is less suitable for low-scale devices and

less attractive to users.

Similar to 3D graphics streaming, the thin client also has to run games locally in the file streaming

approach. Once a game has been selected, a small portion of code is downloaded onto the local device, which

allows the player to begin playing the game immediately. Then, the rest of the code is downloaded quickly

while the game is being played. Additionally, compute-intensive tasks can be offloaded to the cloud for

providing smooth game-play. Recently, file steaming services are becoming popular due to their scalability

and affordability. For example, Kalydo gaming Cloud24 provides smart and extensible toolkits for end users

to customize their gaming environment, and has served 50 million sessions in over fifteen countries.

In the video streaming approach, the cloud server processes game commands received from thin clients,

makes changed game scenes into 2D videos, encodes and compresses the videos, and streams them to the thin

client. The thin client in such an approach only needs to decode, uncompress and display video streams. This

approach is ideal for resource-constrained devices and frees users from computation-intensive 3D graphics

rendering. Moreover, as video streaming is independent of GPU, the thin client can be easily ported to

different platforms, including those with low-capability GPUs such as tablets and smart-phones. One repre-

sentative cloud gaming system developed by the research community is GamingAnywhere [23] [24], with the

24Kalydo Official Site. Website: http://kalydo.com/. Accessed: Dec 05, 2015.
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Figure 2.15: The Architecture of GRID SDK [12]

architecture depicted in Figure 2.16. There are two types of flows in GamingAnywhere: data flow and control

flow. Data flow is used to stream audio and video frames from game servers to thin clients, while control flow

is used to send player actions from thin clients to game servers. Upon the receipt of control messages from

a user, the game server represents the user to play a game according to the received commands, and then

streams game scenes back. In this case, the GA server is responsible for handling all graphics transactions,

while the GA client only has to render game scenes generated by the GA server. GamingAnywhere is an

open-source cloud gaming platform with characteristics of high extensibility, portability and reconfigurability.

Currently, it supports Windows, Linux, and OS X, and can be ported to iPhone and Android. Thanks to its

openness, service vendors and researchers can customize GamingAnywhere to meet their special needs.

2.3.4 Performance Studies of Cloud Gaming

Recently, the potential and performance of cloud gaming has been studied in the literature. Lee et al. [30]

examined the feasibility of three popular game categories, namely, first person shooter (FPS), role playing

games (RPG) and action games in cloud gaming systems. The evaluation they conducted showed some game

genres, like FPS, which require stringently low response delay, are not realistic to be deployed in current

cloud gaming systems. The survey paper conducted by Shea [37] summarized framework design, issues and

challenges of cloud gaming. They also measured the performance of Onlive with different types of games in
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Figure 2.16: A Modular View of GamingAnywhere [24]

terms of interaction delay and streaming quality. The results revealed the potential of cloud gaming, as well

as critical challenges regarding the widespread deployment. In particular, they found that the Onlive system

managed to keep its interaction delay below 200 ms when network delay was 50 ms. However, when network

latency exceeded 50 ms, interaction latency might hinder the user experience. Additionally, image quality

dropped sharply when network download bandwidth was below 10 Mb/s. Claypool [11] presented a detailed

study of network characteristics of Onlive. They accurately measured Onlive game traffic for several game

genres. They analyzed the bitrates, packet sizes and inter-packet times for both upstream and downstream

game traffic, and compared them with traditional games and streaming videos. Results showed that down-

stream and upstream game traffic of Onlive were significantly different that of live videos and traditional

game’ respectively. Such results are helpful to build effective traffic models for cloud gaming. Cheng et al.

[5] presented a methodology for quantifying the performance of thin clients in cloud gaming. A demonstra-

tion study was performed in this work by using three popular thin-clients, LogMeIn,25 TeamViewer26 and

UltraVNC27 to run a classic game, Ms. Pac-Man.28 The corresponding results showed that display frame

rate and frame distortion were both important to games, and different thin-clients showed different levels of

robustness against network impairments. Jarschel et al. [25] presented a subjective user study to measure

user-perceived quality of experience (QoE) in cloud gaming. They defined a set of tests for users to obtain

QoE and derived key influence factors and influences of game contents from those QoE results. They deter-

mined that user-perceived game experience is not only affected by network delay and packet loss, but also is

related to game contents. In particular, the slower the game-play gets, the better QoE is obtained. According

to the measurement results, omnipresent perspective games (slow-paced game-play) and third perspective

games (medium-paced game-play) are able to gain better QoE than FPS games (fast-paced game-play).

Measuring response delay for thin client games also has been the subject of research. Claypool et al.

25LogMeIn Official Site. Website: https://secure.logmein.com/. Accessed: Dec 05, 2015.
26TeamViewer Official Site. Website: http://www.teamviewer.com/. Accessed: Oct 17, 2014.
27UltraVNC Official Site. Website: http://www.uvnc.com/. Accessed: Oct 17, 2014.
28Pac-Man Official Site. Website.: http://www.freepacman.org/welcome.php. Accessed: Dec 05, 2015.
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[10] performed a study to clarify the impact of Internet latency on different online games. They considered

three popular game genres (Avatar Model - First Person, Avatar Model - Third Person and Omnipresent

Model) and chose two games for each genre and measured the performance of these games under different

Internet latencies. Then they summarized the performance degradation for different classes of online games

by depicting an exponential curve fit to the measured data. Based on the summary, they summarized the

thresholds of response delay that can be tolerated in three popular game genres. As shown in Table 2.3,

the maximum response delay for those games that adopt the Avatar-First Person model like FPS games and

racing games is 100 ms. Those games based on the Avatar-Third Person model, like RPGs, normally can

tolerate at most 500 ms. Those that use the Omnipresent model such as RTS games, are not strict with

response delay, so the maximum response delay that they can tolerate is 1000 ms. Choy [8] performed a

measurement study on cloud in terms of end-user latency. In particular, they performed a large-scale latency

measurement study from their lab and Amazon EC2 to more than 2500 end-users in the US to determine the

percentage of users who can receive tolerable latency while playing cloud games. They found Amazon EC2

was unable to provide acceptable latency for many end-users. Further investigation indicated that the user

coverage significantly increased when servers located near the end-users were deployed.

Chen et al. [7] proposed a method to measure response delay in cloud gaming systems. The proposed

method was based on the fact that most games support a hot key to access the main menu. The key is usually

the ESC key for computer games and the START button for console games. Based on the assumption that

the ESC key is the hot key for invoking the main menu, the time difference between pressing the ESC key and

rendering the first frame of the main menu at the server side is the response delay. Therefore, they utilized

a hooking mechanism in the Windows operating system to capture the “ESC pressed” event and monitored

the game screen to obtain the time when the main menu was on display. The proposed methodology can be

widely applied as it does not require openness of systems and thus can be plugged into any closed systems.

Additionally, two well-known cloud gaming systems, Onlive and StreamMyGame, were evaluated using this

proposed method. The experimental results showed that Onlive achieved acceptable response delay, whereas

StreamMyGame suffered from a high response delay that players could not tolerate. Based on this work,

Chen et al. [6] further proposed a suite of measurement techniques to evaluate the quality of service (QoS)

of cloud gaming systems including response delay measurement, game delay measurement, network traffic

analysis and image quality measurement under real-world network conditions. Then they used their methods

to compare two commercial cloud gaming systems: Onlive and StreamMyGame. The measurement results

showed that compared to StreamMyGame, Onlive provided adaptable frame rates, better image quality, and

shorter server game processing delays, but consumed less network bandwidth.

There also has been some research work related to measuring video quality in cloud computing. Wang

et al. [45] surveyed the existing proposals for measuring video quality including Peak-Signal-to-Noise-Ratio

(PSNR) [46] and Structural Similarity Index (SSIM) [47], with respect to their advantages and disadvantages.

A PSNR value over 40 decibels (dB) typically indicates an excellent image that is very close to the original
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one [46], thus proving that the reconstructed game video is very good. A value between 30 to 40 dB means

a good image, between 20 and 30 dB is quite poor. Additionally, a value lower than 20 dB is unacceptable.

In SSIM, the value closer to 1 is regarded as a better result.

The research community is also actively resolving the issues of virtualized GPU isolation and scheduling in

cloud gaming. Yu et al. [48] proposeed VGRIS, a scheduling framework for virtualized GPU resource isolation

and scheduling, which enables a single GPU to be shared efficiently by different VMs composed of VMware

and virtualBox in cloud gaming. It adopted an API interception library to manage underlying resource

scheduling for multiple VMs. Only a few binaries within the intercepted library need to be modified. Based

on the VGRIS framework, they implemented three scheduling algorithms for addressing various performance

requirements: high performance of Service-level Agreement29 (SLA) proportional resource scheduling, and

performance and fairness trade-off. Their experimental results showed that the overhead of the VGRIS

framework (extra execution time of testing benchmarks) was limited to 3.59%, and that this framework

could effectively schedule GPU resources on more than one virtualization platform simultaneously. Similarly,

Zhang et al. [49] presented VGASA, an adaptive scheduling algorithm for virtualized GPU resources in cloud

gaming. VGASA is realized by leveraging vSGA technology in VMware and API interception technology. The

basic idea of VGASA is to collect feedback from each VM and schedule GPU resources based on the scheduling

algorithms they realized. They implemented three algorithms for achieving different goals. More specifically,

SLA-Aware aimed to achieve the SLA requirement for each VM, Fair SLA-Aware aimed to maximize the

usage of GPU resources by reallocating GPU resources from VMs with higher frame rates to those who

do not meet SLA requirements, while Enhanced SLA-Aware balanced the gaming performance and number

of users on a single GPU. Compared to VGRIS, one benefit of VGASA is that the scheduling algorithms

they realized are adaptive in response to uncertainties of running time. Meanwhile, their experimental results

showed that the GPU performance overhead of VGASA is limited to 5-12% of the benchmark execution time.

Hong et al. [21] conducted measurement studies to derive the game-dependent parameters for QoE and for

a performance model. Based on these factors, they proposed a heuristic algorithm, called quality-driven

heuristic (QDH). QDH is able to consolidate more VMs on a server as long as the user-specified maximal

tolerable QoE degradation is not exceeded. They utilized GamingAnywhere and VMware ESXi 5.1 to build

a prototype implementation, to evaluate the efficiency of the proposed algorithm. Their simulation results

indicated that QDH resulted in close-to optimal performance. Additionally, they also found that QDH was

able to scale to large cloud gaming services with 20,000 servers and more than 40,000 gamers. Hong et al.

[22] conducted detailed experiments using modern GPUs and GamingAnywhere to answer the question: are

modern GPUs ready for cloud gaming? In particular, they compared the performance of GPU pass-through

and vGPU technology, running the same benchmarks on GPU pass-through VM instances and vGPU VM

instances. Through the experiments, they found that 1) virtualized GPUs outperformed pass-through GPUs

29A service-level agreement is a contract between a service provider and its customers that documents what services the
provider will furnish and with what performance guarantees.
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in some benchmarks, especially 2D-intensive benchmarks and games, while pass-through GPUs produced

better results in 3D-intensive benchmarks than virtualized GPUs, and 2) shared virtualized GPUs were

reasonably scalable with respect to the number of VMs and were able to achieve stable performance.
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Chapter 3

Experimental Setup

This chapter describes the context of the evaluation, the experimental design as well as the general

and specific approach to measurement and comparison of tested GPU virtualization techniques. Section

3.1 describes the graphics card benchmarks, gaming applications and performance monitoring tools used to

evaluate the GPU virtualization performance. Section 3.2 contains the description of the performance metrics

that are used in the experiments, while Section 3.3 discusses the tested scenarios and hardware configuration

in the experiments. Additionally, descriptions of the measurement techniques are provided in Section 3.4.

3.1 Experimental Tools

This section introduces all of the experimental tools used in the experiments, including the graphics card

benchmarks, gaming applications, VMware Horizon View, GamingAnywhere, and performance monitor-

ing tools. The graphics card benchmarks and gaming applications run on both virtualization and non-

virtualization environments for evaluating performance of each tested configuration. VMware Horizon View

is used as a cloud gaming platform, while GamingAnywhere is used to capture system times and images

which are used to calculate response delay and image quality. Performance monitoring tools are responsible

for capturing time stamps of hardware events invoked by benchmarks and gaming applications.

3.1.1 Graphics Card Benchmarks

Graphics card benchmarks run a set of GPU-intensive programs to evaluate the performance of a given GPU.

They can be used objectively to measure many aspects of GPU performance such as capability in terms of

frames per second. Graphics card benchmarks focus on the application-level performance. Additionally,

graphics card testing includes synthetic tests and real-world tests. Synthetic tests are purely designed for

stressing the hardware to its fullest potential. Although it is not demonstrative of real-world scenarios, a

synthetic test is usually the most useful in determining the maximum possible performance of a graphics card

(its workload capacity in terms of frames per second). Unlike a synthetic test, a real-world test is based on

real games and used to evaluate GPU performance in real-world scenarios. For evaluating GPU performance

in each tested configuration, several graphics card benchmarks, including two synthetic tests and a real-world

gaming test, are used in the experiments. Those benchmarks are the following and their features are shown

33



in Table 3.1.

• Unigine Sanctuary Benchmark1 is a GPU-intensive benchmark for GPU stress testing, which stresses

a graphics card to its limits. It adopts Unigine Engine to provide rich graphics by leveraging the most

advanced capabilities of graphics APIs (DirectX/OpenGL). While running the benchmark, it renders a

gothic chapel with still statues lit by the light of torches. This tool can be effectively used to determine

the stability of a GPU under extremely stressful conditions. It provides objective results and generates

in-game rendering workloads across all platforms, including Windows, Linux and Mac OS X.

• PassMark PerformanceTest2 is a tool that can provide objective benchmark results on a PC using a

variety of different speed tests, including the tests for CPU, memory, hard disk and graphics card. In terms

of graphics card tests, it provides a series of basic 2D tests which draw lines, bitmaps, fonts, text, and

GUI elements to evaluate the 2D features of a graphics card, including simple vector, complex vector, fonts

and text rendering, image filtering functionality, image rendering and DirectX 2D computing capability. It

also provides an advanced 3D graphics card test to benchmark how well a graphics card performs by using

the most common features of DirectX. The test renders different scenes in windowed or full screen mode

according to the selected DirectX API. For instance, it will render a scene with three fighter planes flying

over several sea islands if you choose DirectX 9 as rendering API. In addition, it also offers a point-based

ranking system to help users compare their graphics cards’ performance.

• Doom 33 is a horror first person shooter computer game released in 2005. It utilizes DirectX 9 to provide

high-quality graphics features. Moreover, it provides a time demo benchmark to help users measure frame

rate (in frames per second) that graphics cards can generate in Doom 3. This time demo benchmark

mainly renders preset frames, in which a person used guns to fight against lots of monsters, to test how

fast a graphics card can handle those frames.

3.1.2 Performance Monitoring Tools

Although we can gain performance insights though simple performance metrics, such as frames per second

(fps), from graphics card benchmarks, it is still necessary to make further resource utilization analysis to

determine the main bottleneck. Therefore, the following two performance monitoring tools are chosen to

keep track of hardware resource utilization of each graphics card benchmark. These tools are the following:

• MSI Afterburner4 is a free utility which is compatible with almost all graphics cards. It enables users to

monitor all kinds of critical hardware resource information such as CPU usage, GPU usage, and graphics

memory usage in real time. Additionally, it also provides logging functionality that enables users to record

all hardware resource utilization periodically. Therefore, running graphics card benchmarks or gaming

1Unigine Sanctuary Benchmark Official Site. Website: https://unigine.com/products/sanctuary/. Accessed: Dec 10, 2015.
2PassMark PerformanceTest Official Site. Website: http://www.passmark.com/products/pt.htm. Accessed: Dec 10, 2015.
3Doom 3 Official Site. Website: http://bethsoft.com/en-us/games/doom 3 bfg. Accessed: Dec 10, 2015.
4MSI Afterburner Download Official Site. Website: http://event.msi.com/vga/afterburner/. Accessed: Dec 10, 2015.
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Table 3.1: The Features of the Tested Benchmarks

Benchmarks Features

Unigine Sacntuary DirectX benchmark;

Extreme hardware stability testing;

Multi-Platform support for Windows, Linux and Mac OS X;

Support for DirectX 9, DirectX 11 and OpenGL 4.0;

Highly customizable configuration.

PassMark PerformanceTest DirectX benchmark;

Comprehensive test for GPU in terms of 2D and 3D capability;

Support for DirectX 9 and higher;

Has a point-based ranking system.

Doom 3 DirectX benchmark;

Provides real gaming scenarios tests;

Support for DirectX 9 and higher.

applications alongside this tool makes it easy to do the full analysis of GPU utilization and other hardware

resource usages.

• GPU-Z5 is a lightweight system utility designed to provide vital information of graphics cards. This tool

displays all the important information, such as graphics memory type, memory size, bus bandwidth and

supported computing type. It also provides monitoring functionality to monitor GPU resource usages in

real time.

3.1.3 VMware Horizon View

VMware Horizon View is a desktop virtualization solution that delivers virtual Windows desktops and appli-

cations to end users so they can work anytime, anywhere, on any device. With the help of VMware Horizon

View, you can simplify and automate the management of virtual desktops, and support users with access

to all their Windows desktops and online resources through a unified workspace [2]. Moreover, VMware

Horizon View enables end users to utilize VMware’s GPU virtualization techniques, including vSGA, vDGA

and vGPU in their virtual desktops. VMware Horizon View includes six main components, and they are

briefly introduced as follows:

• View Connection Server simplifies the management and deployment of virtual desktops. Administrators

can centrally manage their virtual desktops through a single console provided by this server, while end

users access their personalized virtual desktops through this server.

5GPU-Z Official Introduction Site. Website: https://www.techpowerup.com/gpuz/. Accessed: Dec 10, 2015.
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• View Security Server is a server that adds an additional layer of security between your internal network

and the Internet. With this server, users can only access the virtual desktops for which they are authorized.

• View Composer Server provides a service to create clone desktops, by creating master images that share

a common virtual disk. These images are one or more copies of the image of a parent virtual machine.

They operate as individual virtual machines but share the virtual disks of the parent.

• Horizon Client provides the connection to remote virtual desktops from end users’ devices. VMware

Horizon Client is available now for Windows, Ubuntu Linux, Mac, iPhone and Android.

• View Persona Management is an optional component that provides dynamic user profiles across user

sessions on different desktops. With this component, end users can use and maintain their designated

settings between sessions.

• View Agent takes charge of the communication between virtual machines and VMware Horizon View

Client. This component must be installed on all virtual machines so that View Connection Server can

communicate with them. This component also provides some useful features such as connection monitoring,

virtual printing and access to locally connected USB devices. Additionally, VMware Inc. provides a plug-in

component called View Agent Direct-Connection for any Horizon Client to connect directly to a virtual

desktop without using View Connection Server. This plug-in component provides the flexibility of directly

accessing virtual desktops without installing the components described above.

Figure 3.1 illustrates the VM setup with VMware Horizon View for deploying/running graphics card

benchmarks and cloud games. Refer to Table 3.3 for descriptions of the experimental machines and to

Figure 3.3 for the network topology. View Agent Direct-Connection is used in the experiments so that

physical machines (Machine 2 or Machine 3) can directly launch VMware’s virtual desktops with vSGA,

vDGA or vGPU enabled, through Horizon Client without using View Connection Server. Tested graphics

card benchmarks and cloud games run on virtual desktops. GA client triggers the game events and GA

Server captures system times and frame samples during the execution of tested games.

3.1.4 GamingAnywhere

GamingAnywhere [23] is an open-source cloud gaming platform that can be used to deploy cloud games

and study cloud gaming due to its openness. Figure 3.2 illustrates a sample cloud gaming service based

on GA. A player creates commands from the mouse, keyboard and touch input and submits them to a

game server. The game server uses the received commands to play the game and streams encoded frames of

game screens to the client. Finally, the game client receives, decodes and renders game frames to the local

console. In the experiments, however, as VMware Horizon View has already acted as cloud gaming platform,

GamingAnywhere is not utilized to deploy cloud games but to capture system times and images, which are

then used to calculate response delay and image quality respectively. The concrete methods of measuring

response delay and image quality are explained in Section 3.4.
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Figure 3.1: VM Setup with VMware Horizon View

Figure 3.2: A Cloud Gaming Service Using GamingAnywhere[24]

3.1.5 Cloud Games in the Experiments

Since the performance of cloud gaming systems may be game-dependent, it is necessary to measure each

game category’s impact. Three game categories are considered in the experiments [10]: Avatar-First person,

Avatar-Third person and Omnipresent. A representative game for each category is selected, and they are

briefly introduced as follows.

• AssaultCube6 is a free, multi-player, first person shooter (FPS) game. Combat scenarios in the game

are designed to be as close to those in real scenes as possible. It is a small game with size of only about 40

MB and is available for Windows, Mac and Linux.

• LEGO Batman 2: Super Hero7 is an action-adventure game developed by Travellers Tales in 2008

that follows the mode of Avatar-Third person. It also can be viewed as a role playing game (RPG). In this

game, all interactive objects are made of LEGO bricks, and a player controls his character to fight against

enemies from a third person perspective.

6AssaultCube Website. Website: http://assault.cubers.net/. Accessed: Dec 10, 2015.
7LEGO Batman: The Videogame. Website: http://games.kidswb.com/official-site/lego-batman/. Accessed: Dec 10, 2015.
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• Warhammer 40,000: Dawn of War II8 is a real-time strategy (RTS) game developed by Relic Enter-

tainment in 2009 that adopts the Omnipresent model. In the game, a player controls his squad to fight

against enemies and destroy the enemies’ buildings in order to get the victory.

3.1.6 Discussion About Experimental Tools

Unused Virtualization Techniques

In the initial experimental design, the virtualization solutions provided by another GPU virtualization prod-

uct, Citrix’s Xenserver, were also going to be evaluated in the experiments. Nevertheless, these solutions

were abandoned for the following reason: In XenServer, a license server is utilized to manage the license in-

formation for all XenServer products. This server is required provided you want to use advanced features of

XenServer such as vGPU technology. In the experiments, a VM is created to act as license server. However,

this server cannot be connected and communicated to even though several methods to fix this issue have

been tried. Consequently, the advanced features of XenServer such as vGPU technology cannot be accessed

as the license of XenServer cannot be updated to the license server. Therefore, the plan of evaluating GPU

virtualization techniques in Citrix’s XenServer was abandoned.

The Usage of GamingAnywhere

As well, GamingAnywhere was intended to be utilized as a cloud gaming platform for deploying cloud games.

Nevertheless, in the experiments, GA is only utilized to capture frame samples and system times to measure

image quality and response delay. This change is made for the following reason: In the experiments, VMware

Horizon View is used to launch GPU virtualization instances. When cloud games run on these instances,

VMware Horizon View actually acts as a cloud gaming platform. Therefore, it is not necessary to use GA

as a cloud gaming platform. Additionally, while running as a cloud gaming platform, GamingAnywhere

introduces extra hardware consumption. This is because the GA server must be launched in a physical

machine and the GA client runs on another physical machine. In contrast, when utilizing VMware Horizon

View as a cloud platform, only one physical machine is required. For these reasons, GamingAnywhere is used

as an assistant program to capture frame samples and system times, instead of as a cloud gaming platform.

3.2 Performance Metrics

Table 3.2 shows the performance metrics that are used in each benchmark/gaming application used in the

experiments. As illustrated in this table, the benchmarks and gaming applications described above have

different associated performance metrics. There are several metrics that need to be considered:

8Warhammer 40,000; Dawn of War II. Website: http://www.dawnofwar2.com/. Accessed: Dec 10, 2015.
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Table 3.2: Performance Metrics Used in each Tested Benchmark/Gaming Application

Benchmarks/Gaming Applications Performance Metrics

Unigine Sanctuary Frame Rate (fps)

Passmark PerformanceTest Score

Frame Rate (fps)

Doom 3 Frame Rate (fps)

AssaultCube Image Quality (decibel (dB))

Response Delay (ms)

LEGO Batman 2: Super Hero Image Quality (decibel (dB))

Response Delay (ms)

Warhammer 40,000: Dawn of War II Image Quality (decibel (dB))

Response Delay (ms)

• Frame Rate, as measured by frames per second, is the frequency at which a graphics card produces unique

consecutive images, which to some degree, measures the throughput capability of the given graphics card.

As shown in Table 3.2, frame rate is used as a performance metric for PassMark PerformanceTest 3D

benchmark, Unigine’s Sanctuary benchmark and Doom 3 benchmark.

• Score is a simple form of performance metric used by the PassMark PerformanceTest 2D benchmark. The

score of a graphics card has no meaning unless being compared to other graphics cards’ scores. PassMark

PerformanceTest offers a point-based rank system that enables users to compare their benchmark results

with others.

• Image Quality is one of the most important metrics when evaluating the performance of cloud games.

It is the measurement of perceived image degradation at the client side, compared to the original game

frame at the server side. Relatively high image quality should be achieved since low image quality turns

players away from cloud games. In the experiments, image quality is quantified using the PSNR.

• Response Delay is another key metric of cloud gaming performance. It refers to the time difference

between when a player creates and submits a control command to a server and when the corresponding

frames are rendered on the screen. Different game genres have different requirements of response delay.

For instance, a FPS game requires the response delay to be less than 100 milliseconds [10]. Cloud Gaming

platforms should ensure that such requirements are met for each game genre.
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3.3 Hardware Configuration and Tested Configuration

3.3.1 Hardware Configuration

Table 3.3 shows the machines that are used in the experiments. A modern mid-range server (Machine 1), Dell

PowerEdge R730, is used to deploy VMware ESXi. All the VMs are created and managed by this server. It

is equipped with an Nvidia GRID K1 graphics card, that supports all VMware GPU virtualization solutions.

The graphics card consists of four entry-level Kepler GPUs configured with 192 CUDA cores and 4 GB DDR-

3 graphics memory. Machine 2 is used as bare-metal system 1 and VMware Horizon View Client 1. While

running as bare-metal system 1, all the results it produces are regarded as baseline results in the first group

of experiments. While running as VMware Horizon View Client 1, it launches each tested GPU virtualization

instance, including vDGA, vSGA and vGPU instances, and runs the tested graphics card benchmarks and

games remotely.9 Machine 3 is used in a similar way as Machine 2, which performs as bare-metal system 2

and VMware Horizon View Client 2. Machine 4 and Machine 5 act as client machines to run GA client 1

and GA client 2 respectively, which are used to trigger the events of capturing system times and frames for

calculating the response delay and image quality of each tested game.

From Table 3.3, we can see that Machine 2 has a faster CPU, more RAM and more hard disk space than

Machine 3. In particular, Machine 2 is equipped with a better GPU than Machine 3. Table 3.4 compares the

configurations of the GPUs in these two machines, from which we can see the Nvidia NVS 4200M in Machine

2 has higher number of cores and memory speed, and more memory space than Radeon X1300 in Machine

3. As we know, the higher a GPU’s core speed is, the faster it can run and produce better performance.

Therefore, when running as bare-metal systems, it is expected that bare-metal system 1 (Machine 2) achieves

better performance than bare-metal system 2 (Machine 3).

Table 3.5 shows the hardware configuration for each GPU virtualization solution. Each GPU virtualization

instance is equipped with 2GB RAM and 100 GB hard disk, but different GPU resources. vSGA VM

has only 12 GPU cores and 256 MB graphics memory, while GPU core and memory resources for vGPU

K120Q are twice that for vSGA. vGPU K140Q has 48 cores and 1 GB graphics memory, while both vGPU

K180Q and vDGA have exactly the same GPU resource. In the experiments, the instances that have more

GPU cores are expected to obtain the better results. The configuration of graphic memory for each tested

configuration should not affect the experimental results as none graphics -memory-intensive benchmark or

gaming application is used in the experiments. Therefore, even the vSGA instance that has only 256 MB of

graphics memory meet the requirement of graphics memory of each tested benchmark and gaming application.

Except for those parameters controlled by each benchmark, other parameters of the graphics card in the

experiments are set as shown in Table 3.6.10 Additionally, the parameters only available in some specific

9The tested benchmarks run directly on each tested GPU virtualization instance, while the tested games run on top of
GamingAnywhere, which is used to capture system times and image samples for calculating response delay and image quality.

10This configuration does not apply to the vSGA instance as it does not provide an interface for users to modify the configu-
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Table 3.3: Experimental Machines

Experimental

Machines

Machine 1 Machine 2 Machine 3 Machine 4 Machine 5

Machine Us-

age

VMware ESXi Bare-metal 1

& VMware

Horizon View

Client 1

Bare-metal 2

& VMware

Horizon View

Client 2

GA Client 1 GA Client 2

CPU Info 2 × 12 − core

Intel Xeon @

2.4GHz

1× dual− core

Intel Core i5-

2520M @ 2.5

GHz

1× dual− core

Intel Core

i5-6600 @ 2.4

GHz

1× dual− core

Intel Core i5-

E6550 @ 2.33

GHz

1 × 4 − core

Intel Core

i7-2860QM @

2.50GHz

GPU Info 1 Nvidia GRID

K1 / 4 GB

Memory

1 Intel Graph-

ics 3000 / 1

GB Memory &

1 Nvidia NVS

4200M / 1 GB

Memory

1 ATI Radeon

X1300 / 256

MB Memory

1 Intel Q35 /

256 MB Mem-

ory

1 Nvidia

GeForce GTX

970M / 3GB

Memory &

1 Intel HD

4600 / 1GB

Memory

RAM 16 GB DDR-4

@ 1867 MHz

4 GB DDR-3 @

1333 MHz

1 GB DDR2 @

800 MHz

1 GB DDR2 @

667 MHz

16 GB DDR-

3L @ 1.6 GHz

Hard Disk 2 TB 500 GB 250 GB 160 GB 1 TB

GPU virtualization instances are disabled for fair comparison.

Figure 3.3 shows the network topology in the experiments. Firstly, a VM is created and used to install

vCenter Server. All other VMs are managed via VMware vSphere Web Client in vCenter Server. Secondly,

another VM acts as an Active Directory Server, DNS and DHCP Server to manage a local domain and

a private network which is used to connect all experimental physical machines and VMs. In order to let

all experimental machines and VMs access the Internet, SmallWall, an open-source firewall, is installed on

another VM to act as a bridge between public and private network traffic. Furthermore, all the experimental

physical machines are joined by a physical switch to form a private network.

3.3.2 Tested Configuration

Figure 3.4 and Figure 3.5 summarize the tested scenarios and corresponding instances in the experiments,

and Table 3.5 shows the machine characteristics of each GPU virtualization solution. From the figures and

ration of the graphics card.
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Table 3.4: The Comparison of GPUs in Machine 2 and Machine 3

GPUs Nvidia NVS 4200M Radeon X1300

GPU Core Speed (MHz) 810 450

Graphics Memory Size (MB) 1024 DDR-3 256 DDR

Graphics Memory Speed (MHz) 800 250

Table 3.5: Hardware Resource Configuration for each GPU Virtualization Instance

GPU Types vSGA vGPU

K120Q

vGPU

K140Q

vGPU

K180Q

vDGA

Graphics Memory (MB) 256 512 1024 4096 4096

GPU Cores 12 24 48 192 192

RAM (GB) 2 2 2 2 2

Hard Disk (GB) 100 100 100 100 100

table we can see that all GPU virtualization solutions of VMware, including GPU pass-through (vDGA) and

GPU sharing (vSGA, vGPU) are evaluated in the experiments. In particular, as shown in Table 2.2, Nvidia

K1 provides multiple vGPU profiles for supporting various use cases. For fully analyzing the performance

of the vGPU solution, it is evaluated with three configurations, namely, vGPU K120Q, vGPU K140Q and

vGPU K180Q. These three configurations are respectively designed for low-end, medium-end and high-end

applications.

The experiments are conducted as follows. Firstly, the performance of the bare-metal system and each

instance of GPU virtualization solution is evaluated by running the graphics card benchmarks and cloud

games that are introduced in Section 3.1. Secondly, all the results produced by the bare-metal system are

treated as baseline data, then the performance improvement/degradation of each GPU virtualization solution

is calculated by comparing the results of each GPU virtualization solution with the baseline data. Thirdly,

as illustrated in Figure 3.4, in the first group of experiments, single instances of GPU pass-through and GPU

sharing solutions are evaluated to assess the performance of each GPU virtualization solution. Fourthly, as

shown in Figure 3.5, to evaluate the potential scalability of each solution, double instances of each solution

are evaluated in the second group of experiments.

3.4 Mesurement Techniques

3.4.1 Measuring GPU Performance

The graphics card benchmarks mentioned above are utilized to measure GPU performance for both 2D and

3D graphics. The Ungine Sanctuary benchmark runs in three configurations, as shown in Table 3.7, to
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Figure 3.3: Network Topology of Experiments

evaluate GPU performance under various stress conditions. DirectX 9 is selected as vSGA does not support

DirectX 10 or higher. The benchmark runs in windowed mode with the resolution 1280 × 800 as none of

the VM types can load it in full screen mode. Ambient occlusion, Shaders, Anisotropy and Anti-aliasing

are set differently in different configurations. Ambient occlusion adds realism to scenes via reducing the

intensity of ambient light on surfaces. It also enhances depth perception by offering a soft shadow effect for

objects. Shaders are used to calculate rendering effects on graphics hardware with a high degree of flexibility.

With Shaders, customized effects can be made. The position, saturation, brightness, and contrast of all

pixels, vertices, or texture used to construct a final image can be changed by Shaders. Anisotropy affects the

crispness of textures, while Anti-aliasing allows users to minimize the visible aliasing on the edges of images

with transparent textures.

The PassMark PerformanceTest benchmark is used to test 2D and 3D capability. The 2D tests run with

the default configuration to test 2D features of each GPU case in the experiments including simple vector,

complex vector, fonts and text rendering, window interface, image filtering, image rendering and DirectX 2D

computing. Table 3.8 shows the configurations that are used to run its 3D Simple and Complex tests. These

two 3D tests share the same configuration except test types. Anti-aliasing is disabled in this benchmark as

it is not supported in the vSGA instance. Vertical Sync can improve image quality by eliminating horizontal
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Table 3.6: Configurations of Graphics Card in the Experiments

Parameter Setting

Antialiasing - FXAA On

Antialiasing - Gamma correction On

Buffer - Flipping mode Use block buffer

Memory allocation policy Aggressive pre-allocation

Power management modes Prefer maximum performance

Threaded optimization On

Triple buffering On

Virtual Reality pre-rendered frames 4

Table 3.7: Configurations of Unigine Sanctuary Benchmark

Configurations Low Medium High

API DirectX 9 DirectX 9 DirectX 9

Ambient Occlusion No Yes Yes

Shaders Low Medium High

Anisotropy11 1 8 16

Anti-aliasing12 Off 4x 8x

Resolution 1280 × 800 1280 × 800 1280 × 800

tearing effects in the 3D image.

As for the Doom 3 benchmark, it runs with the default configuration in all environments. The settings

for the main parameters are shown in Table 3.9. The resolution for this benchmark is set to 1280 × 800,

while Anisotropy is set to 4. Anti-aliasing and Vertical Sync are disabled in this benchmark. Additionally,

this benchmark pre-caches textures to prevent stuttering/jerkiness and sets the image quality to medium.

3.4.2 Measuring Hardware Consumption

For further analysis of GPU virtualization performance, it is critical to record the usage of hardware resources

and GPU events during the execution of benchmarks/gaming applications. For recording hardware resource

consumption, MSI Afterburner is launched before the execution of benchmarks/gaming applications with

the following settings: 1) polling period of 1 second; 2) logging functionality enabled; and 3) record all

key events (such as GPU usage and graphics memory usage, etc.). Then MSI Afterburner is kept running

during the execution of benchmarks/gaming applications. Nevertheless, in this case, MSI Afterburner does

not just record the hardware resource consumption of the benchmarks/gaming applications, but also that

of system programs. For obtaining only the hardware resource consumption of each benchmark/gaming
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(a) Bare-metal System (b) vDGA

(c) vSGA (d) vGPU

Figure 3.4: Tested Scenarios: Single Instance

application, MSI Afterburner runs with no benchmark/gaming application for 60 seconds to obtain the

base hardware resource consumption of system programs. Then the hardware resource consumption of the

benchmark/gaming application is calculated using the total consumption minus the base consumption.

GPU-Z is used in a similar way to record GPU usage as MSI Afterburner fails to capture this piece of

information in vGPU environments. Therefore, GPU-Z is used to record GPU usage, while MSI Afterburner

is utilized to capture other resource usage.

3.4.3 Measuring Response Delay

For measuring the response delay of the tested games running on GamingAnywhere, the measurement method

proposed by Chen et al. [7] is adopted. Normally a hot key event is utilized in this method. For instance,

the ESC key is usually the hot key of invoking a game’s main screen. As illustrated in Figure 3.6, assuming

the ESC key is pressed at time t0 and the main menu screen at time t4, then the time difference (t4 -
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(a) Bare-metal System (b) vDGA

(c) vSGA (d) vGPU

Figure 3.5: Tested Scenarios: Double Instances
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Table 3.8: Configurations of Performance 3D Benchmark

Configurations Simple Complex

Test Type DirectX 9 - Simple DirectX 9 - Complex

Resolution 1024 × 768 1024 × 768

Anti-aliasing Off Off

Vertical Sync On On

Scene Detail 3 planes, 200 trees 3 planes, 200 trees

Test Duration (s) 60 60

Table 3.9: Configurations of Doom3 Benchmark

Resolution 1280 × 800

image useCache Pre-caches textures to eliminate jitter

com machineSpec Medium image quality

image anisotropy13 4

r multiSamples14 Off

r swapInterval 15 Off

t0 ) is the response delay of the ESC key. Nevertheless, the time of interest in the thesis experiments is

different. As the thesis focuses on the performance of each tested GPU virtualization solution. Therefore,

as illustrated in Figure 3.7, the time of interest is the time difference when the GA server receives the hot

key and when the first corresponding frame is rendered in the GA server. Combined with Figure 3.1, we

can see that, in the experiments, a physical machine runs VMware Horizon View Client to launch GPU

virtualization instances, while both tested games and the GamingAnywhere server runs on these instances.

When measuring the response delay of a tested game on a tested GPU virtualization solution, the GA server

receives the command of displaying the main menu from the GA client and lets the tested game handle this

command. Then the GA server renders new generated frames on the GPU virtualization instance, as well as

sends the results back to the GA client. In the experiments, however, the only time of interest is the time

difference between when the GA server receives the command of showing the main menu, and the time when

the tested game renders the first frame that corresponds to this command, which equals to the time difference

(t2 - t1 ) in Figure 3.6. Therefore, the processing delay of the server (t2 - t1 ) in Figure 3.6 is considered to

be the response delay in the experiments.

To determine the response delay, a function call to capture the system time is inserted into two places

at the server side. One place is where the key event is generated, the other one is the place where the

frames are rendered. The former one corresponds to t1, while the latter one corresponds to t2. Instead of

capturing the event of displaying the main menu, other key events in the tested games are utilized to measure

response delay, the shooting event, jumping event and moving event are used to evaluate the response of delay
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AssaultCube, LEGO Batmen 2 and Warhammer 40,000 respectively. For instance, the Figure 3.8 shows the

shooting event in AssaultCube. The time difference between when the shooting command is created (the

character holds the gun and stays still at this time as shown in Figure 3.8(a)) and when the character starts

shooting (as shown in Figure 3.8(b)) is considered the response delay of AssaultCube. In the experiments,

the response delay samples for these games are collected manually as the first frame that corresponds to the

tested key events cannot be found automatically.

Figure 3.6: The Main Events in the Measurement of the Response Delay of a Cloud Gaming Platform
by Invoking the Menu Screen [7]

Figure 3.7: The Time of Interest in the Experiments

3.4.4 Measuring Image Quality

A simple metric, the Peak-Signal-to-Noise-Ratio (PSNR) [45], is adopted to measure image quality. The

basic idea is to compute the PSNR metric for each of a number of frames captured at the client side, using
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(a) Before Shooting (b) Start Shooting

Figure 3.8: The Triggering Event Used to Record Response Delay in AssaultCube

the difference between it and the corresponding frame captured from the original game video at the server

side. In other words, the PSNR method quantifies the amount of error (noise) in the reconstructed video.

The PSNR is derived using the mean squared error (MSE) in relation to the maximum possible value of the

luminance (here the value is 255) as shown in equation (3.1) and equation (3.2). Here fi,j is the original signal

at pixel (i, j), Fi,j is the reconstructed signal, and M ×N is the picture size. The result is a single number

in decibels.

MSE =

N∑
j=1

(
M∑
i=1

(fi,j − Fi,j)
2

)
M×N

(3.1)

PSNR = 10 log
2552

MSE
(3.2)

In the experiments, the pre-rendered intro movie of LEGO Batman 2 is chosen to record with the resolution

1280×800 for calculating image quality. To obtain accurate samples for image quality, a function of capturing

frames is inserted in GamingAnywhere to capture a deterministic sequence of uncompressed frames from the

bare metal system and GPU virtualization instance. In the experiments, no compression is performed on

the captured frames for the sake of simplicity. Therefore, the original frames are captured and save as BMP

file format without any compression. The PSNR method is used in the experiments to calculate the image

quality. The video captured from the bare-metal system is considered the original video, while the one

captured from a GPU virtualization instance is considered the reconstructed video as the GPU virtualization

it adopts may cause the loss of the image quality. The PSNR values for image quality are calculated by

comparing the sequence captured from the bare-metal system and the one from a tested GPU virtualization

instance. The algorithm of calculating the image quality for each GPU virtualization solution is described

as follows.
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1. Play the pre-rendered introduction movie of LEGO Batman 2 on the bare-metal system and the tested

GPU virtualization instance (for example the vDGA instance) respectively.

2. Capture the generated frames during the play of the intro movie.

3. Automatically find the same frame from the bare-metal system and the tested GPU virtualization instance,

then obtain a PSNR value from these two frame.

4. Obtain 100 PSNR values by repeating the step 3 to process a deterministic sequence of uncompressed

frames that is captured from the bare-metal system and the tested GPU virtualization instance.

5. Measure the image quality for the tested GPU virtualization instance from these 100 PSNR values.
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Chapter 4

Experimental Results and Discussion

All the experimental results are discussed in this chapter. Section 4.1 provides the baseline configuration

resource usage. Section 4.2 describes the results of each single GPU virtualization instance, and Section

4.3 discusses the results of double GPU virtualization instances for the test of potential scalability. The

graphics card benchmarks are run fifteen times in each tested configuration, and the average and standard

deviation are calculated. As for cloud games, 50 response delay samples are collected for each tested game

in each tested configuration. Moreover, to calculate image quality, 100 frame samples are captured from the

pre-rendered intro movie of LEGO Batman in each tested configuration.

4.1 Baseline

As mentioned in the previous chapter, the pure hardware resource consumption of each graphics card bench-

mark is calculated using its total consumption minus the baseline. It is not reasonable to compare the

hardware consumption of bare-metal system with that of GPU virtualization instances as they are config-

ured with different hardware. Therefore, the hardware resource consumption is analyzed in two aspects.

Firstly, the hardware consumption of the physical machine (Machine 2) is recorded when it runs the same

graphics card benchmark locally (bare-metal system) and remotely on GPU virtualization instances via

VMware Horizon View (GPU virtualization instances). These results are compared to find the pattern of

hardware consumption of the physical machine for running each tested configuration. Secondly, the hardware

consumption of each GPU virtualization instance is also recorded. These results are compared and analyzed

to find the main bottleneck in each tested GPU virtualization instance. The expected pattern of hardware

consumption of each GPU virtualization instance is that the more hardware resource an instance consumes,

the better performance it should achieve.

Table 4.1 shows the baseline hardware resource consumption of each tested configuration. This baseline

data is calculated from three one-minute records of hardware consumption of each tested configuration (3×60

samples in total) when running no benchmark. This data is used to calculate pure hardware consumption of

each tested configuration. To ensure pure hardware consumption of each benchmark in each tested configura-

tion is objectively measured, the samples of baseline and the total hardware consumption of each benchmark

in each tested configuration are obtained in the same run.
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From the results, we can see that the hardware consumption in each tested configuration looks stable

except for the GPU usage of the bare-metal system and the CPU usage of the vSGA instance, where the

standard deviation is larger than the mean. This is because, in the bare-metal system, the GPU remains

almost idle all the time as no benchmark or tested game is running during the period of measuring the

baseline of the hardware consumption. Nevertheless, there are few samples which GPU is not idle, causing

the standard deviation higher than the mean. Similarly, the CPU usage of the vSGA instance remains

between 2% and 3% for the most of the time, but there are some samples which CPU usage is much higher

the average, causing the same problem.

Table 4.1: Base Hardware Resource Consumption of each Tested Configuration

Tested Configuration Bare-

metal

vSGA vGPU

K120Q

vGPU

K140Q

vGPU

K180Q

vDGA

GPU (%)
Mean 0.1 1.3 9.7 9.7 9.6 11.2

Std. Dev. 0.34 0.88 0.48 0.47 0.48 0.90

Graphics

Memory (MB)

Mean 99.1 199.9 156.3 188.3 380.3 143.3

Std. Dev. 0.03 0.35 0.00 0.00 0.00 0.00

CPU (%)
Mean 26.8 2.3 3.5 2.7 3.1 3.8

Std. Dev. 8.53 7.51 3.43 3.39 3.34 3.46

RAM (MB)
Mean 1,405.3 1035.1 852.0 919.6 866.9 1,002.5

Std. Dev. 17.47 10.09 11.80 8.34 14.62 8.68

4.2 The Results of the First Group of Experiments

4.2.1 The Results of Doom 3 Benchmark

Table 4.2 shows the frames per second results for the Doom 3 benchmark. We can see that the vSGA

instance performs extremely poor at this benchmark. It takes 778.7 seconds on average to run this test

and only performs at 2.9 frames per second. Secondly, all vGPU instances obtain good performance in

this benchmark. In particular, the more GPU resources a vGPU instance has, the better result it obtains.

Additionally, vGPU K180Q instance behaves a little better than the bare-metal system. Thirdly, the vDGA

instance gains the best performance among all tested configurations. Fourthly, the stability of all tested

configurations is good as the standard deviation of any results is less than 3 frames per second, and in all

cases, less than 5% of the mean frame rate.

Table 4.3 shows the hardware consumption of Machine 2 when it runs the Doom 3 benchmark locally

and remotely on GPU virtualization instances via VMware Horizon View. When run locally, the local GPU

resource usage is (not surprisingly) much higher than when run remotely. When using vSGA, the local GPU
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usage is only 1.3%, and it is less than 10% in the vDGA all vGPU instances. Moreover, all configurations

using remote GPU virtualization instances consume less than 13 MB of graphics memory. This is because

the main graphics calculations occur on GPU virtualization instances, and the physical machine only utilizes

GPU resources to render updated frames it receives from those GPU virtualization instances. Secondly, the

vDGA and all vGPU instances utilize more CPU and RAM resources than the bare-metal system. This

may be because the physical machine needs those extra CPU and RAM resources to decode and render

the received frames. Thirdly, the vSGA instance consumes very little CPU but a little more RAM resources

compared to the bare-metal system. This may be because the vSGA instance handles the Doom 3 benchmark

so slowly that physical machine does not need to use too many CPU resources to deal with updated frames.

Table 4.2: Doom 3 Benchmark

Tested Configuration Bare-

metal

vSGA vGPU

K120Q

vGPU

K140Q

vGPU

K180Q

vDGA

Frames Per

Second (fps)

Mean 55.4 2.9 50.2 51.4 56.4 58.9

Std. Dev. 0.13 0.04 1.06 0.9 2.06 0.71

Table 4.3: Machine 2 H/W Resource Consumption: Doom 3 Benchmark

Tested Configuration Bare-

metal

vSGA vGPU

K120Q

vGPU

K140Q

vGPU

K180Q

vDGA

GPU (%)
Mean 93.9 1.3 9.8 9.9 9.8 9.6

Std. Dev. 17.83 1.45 0.83 0.45 0.53 1.35

Graphics

Memory (MB)

Mean 243.4 10.7 12.4 11.6 11.6 11.6

Std. Dev. 0.97 0.04 0.00 0.03 0.03 0.00

CPU (%)
Mean 122.2 17.8 187.0 190.7 194.9 177.0

Std. Dev. 28.72 29.91 43.63 35.81 36.35 45.45

RAM (MB)
Mean 292.2 367.1 333.3 338.9 345.7 337.5

Std. Dev. 22.47 3.86 3.36 3.28 2.93 3.57

Pure hardware resource consumption of the Doom 3 benchmark in each GPU virtualization instance is

shown in Table 4.4. From the table, we can see that the vSGA instance uses 93.7% of the GPU resources

to handle Doom 3 benchmark but has extremely poor performance. Moreover, it consumes fewer graphics

memory, CPU and RAM resources than other GPU virtualization instances. This is because the vSGA’s

GPU is the bottleneck for running the Doom 3 benchmark, so that it does not need too many other hardware

resources to handle it. All in all, the result shows vSGA is unable to handle Doom 3 benchmark well.

The graphics memory usage, CPU usage and RAM usage of three vGPU instances are very similar.

Nevertheless, their GPU usages are different. Although both of them consume about 50% of the GPU
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resources to run the Doom 3 benchmark, the vGPU K180Q instance actually uses more GPU resources than

the vGPU K140Q and vGPU K120Q instances as it is equipped with a GPU that has more CUDA cores.

Similarly, the vGPU K140Q instance uses more GPU resources than the vGPU K120Q instance. Combined

with Table 3.5, we can see that the vGPU K120Q, vGPU K140Q and vGPU K180Q instances utilize about

12, 25 and 98 CUDA cores to run the Doom 3 benchmark respectively. The more GPU resources an instance

consumes, the better performance it achieves. This explains why the vGPU K180Q instance performs better

than the vGPU K140Q and the vGPU K120Q instances, and the vGPU K140Q instance behaves better than

the vGPU K120Q instance.

The vDGA instance consumes more GPU resources than the vGPU K180Q instance. This may be

because, unlike the vGPU K180Q instance where the graphics card driver still needs to communicate with

the physical GPU via a vGPU manager, the driver on the vDGA instance directly talks to the physical GPU.

Therefore, the vDGA instance is able to utilize the physical GPU in a more efficient way to produce better

result than the vGPU K180Q instance even though they have the same GPU resources. Additionally, the

vDGA instance consumes more CPU resources than the vGPU K180Q instance to help itself achieve better

performance. Moreover, the vDGA instance uses fewer graphics memory resources. This may be because the

Doom 3 benchmark in the vDGA instance is so fast that few graphics memory resources are needed.

Table 4.4: Hardware Resource Consumption of Doom 3 Benchmark

Tested Configuration vSGA vGPU

K120Q

vGPU

K140Q

vGPU

K180Q

vDGA

GPU (%)
Mean 93.7 48.6 51.2 51.0 56.8

Std. Dev. 12.96 19.64 14.59 13.21 14.96

Graphics

Memory (MB)

Mean 204.1 231.3 231.3 231.3 115.2

Std. Dev. 2.58 0.00 0.00 0.00 5.49

CPU (%)
Mean 30.0 102.4 104.2 111.3 173.8

Std. Dev. 16.02 13.50 16.00 13.46 19.44

RAM (MB)
Mean 103.4 275.6 254.5 256.2 282.7

Std. Dev. 31.43 10.76 37.05 36.39 11.56

4.2.2 PassMark PerformanceTest

The Results of PassMark PerformanceTest 2D Benchmark

Table 4.5 shows the results of the PassMark PerformanceTest 2D benchmark. From the results, we can see

that the bare-metal system behaves poorly compared to other tested configurations. It achieves a much lower

score than any GPU virtualization instance in all 2D benchmarks. Additionally, the vSGA instance performs

a little worse than the vDGA and all vGPU instances in Simple Vectors, Complex Vector, Image Filter,
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Image Rendering, and DirectX 2D, but gains the highest score in Fonts and Text and Window Interface. It

is possible this is because vSGA is mainly designed for Knowledge Workers, and used to handle less graphics-

intensive applications such as Microsoft Office, Web Browsers, etc. Therefore, it is not surprising that the

vSGA instance is good at handling text processing, even though it has fewer GPU resources than other GPU

virtualization instances. Moreover, the vDGA and all vGPU instances perform better than the bare-metal

system, but the results they achieve are very similar, which means the vGPU K140Q, vGPU K180Q and

vDGA instances do not fully leverage GPU resources they have to gain better results. Furthermore, each

tested configuration exhibits excellent stability while running this benchmark. Except for the results of 2D

Graphics Mark, Fonts and Text and Direct 2D in the vSGA instance, where the standard deviation values

are 4.1%, 6.0% and 20.1% of the mean values, respectively, the standard deviation values are less than 3.0%

of the corresponding mean values.

Table 4.5: PassMark PerformanceTest 2D Benchmark (Score)

Tested Configuration Bare-

metal

vSGA vGPU

K120Q

vGPU

K140Q

vGPU

K180Q

vDGA

2D Graphics Mark
Mean 167.3 555.1 641.1 648.4 665.5 642.1

Std. Dev. 0.95 22.97 3.24 3.91 4.72 5.47

Simple Vectors
Mean 6.4 30.1 33.9 33.0 34.1 33.6

Std. Dev. 0.06 0.54 0.71 0.61 0.72 0.67

Complex Vectors
Mean 32.3 97.2 142.4 138.2 141.4 131.9

Std. Dev. 0.36 1.67 1.13 1.24 1.57 1.82

Fonts and Text
Mean 49.4 174.6 157.3 153.9 158.3 161.0

Std. Dev. 0.55 10.58 1.28 2.37 1.09 1.56

Window Interface
Mean 29.1 103.6 83.7 81.2 83.5 82.6

Std. Dev. 0.39 0.94 1.26 1.17 1.09 1.48

Image Filter
Mean 164.6 683.5 691.2 688.5 691.1 697.8

Std. Dev. 1.75 21.99 3.03 3.96 2.64 2.57

Image Rendering
Mean 163.6 610.9 622.1 618.5 629.9 625.9

Std. Dev. 0.84 9.75 3.38 3.31 4.19 8.08

Direct 2D
Mean 4.9 11.7 23.6 23.6 24.3 20.2

Std. Dev. 0.01 2.25 0.37 0.43 0.38 0.27

The Results of PassMark PerformanceTest 3D Benchmarks

Table 4.6 and Table 4.7 show the results of the PassMark PerformanceTest 3D Simple and Complex Bench-

mark respectively. From the tables, we can see that the performance of the vSGA instance is close to that of

the bare-metal system in the simple version of benchmark, and it only loses a little performance compared
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to the bare-metal system in the complex version of benchmark. That is because, in the complex version of

benchmark, the vSGA instance takes a little more time to generate frames and suffers more jitter1 than the

bare-metal system.

All vGPU instances provide better results than the bare-metal system and the vSGA instance. Addition-

ally, like the results of the 2D benchmark, all vGPU instances achieve very close results in both simple and

complex versions of the benchmarks, in terms of frame rate, frame render time, jitter and jitter percentage.

This means the vGPU K140Q instance and the vGPU K180Q instance fail to fully utilize the additional

GPU resources they have.

As well, the vDGA instance gains the best performance among all the tested configurations in both simple

and complex version of benchmark. In the simple version, the vDGA instance uses less time to generate frames

than other GPU virtualization instances. In addition, there is less jitter in the result of vDGA compared to

that of other instances. These make the vDGA instance achieve better performance than other instances in

simple version. In the complex version, although the vDGA instance uses almost the same time to generate

the benchmark’s frames as that of all vGPU instances, there are lower jitter values in the vDGA’s result,

which makes it achieve a little better performance than vGPU instances. Like the results of the Doom 3

benchmark, all GPU virtualization instances show good stability as they all achieve predicatable frame rate

with low standard deviation less than 3% of the mean frame rate in all cases in both simple and complex

versions of the PassMark PerformanceTest 3D benchmarks.

Table 4.6: PassMark PerformanceTest 3D Simple Benchmark

Tested Configurations Bare-

metal

vSGA vGPU

K120Q

vGPU

K140Q

vGPU

K180Q

vDGA

Frames Per

Second (fps)

Mean 30.6 29.8 41.7 44.0 41.8 51

Std. Dev. 0.05 0.2 0.68 0.88 0.56 1.07

Frame Render

Time (ms)

Mean 32.7 33.5 24.0 22.8 23.8 19.6

Std. Dev. 0.05 0.23 0.4 0.45 0.32 0.44

Jitter (ms)
Mean 1.5 1.1 3.6 2.8 3.1 1.8

Std. Dev. 0.04 0.37 0.81 0.47 0.44 0.26

Jitter Percentage
Mean 4.7 3.3 14.0 12.4 13.0 9.0

Std. Dev. 0.14 1.09 3.5 2.17 1.81 1.12

Table 4.8 and Table 4.9 respectively show the hardware consumption of Machine 2 for running the

PassMark PerformanceTest 3D simple and complex benchmarks. Like the hardware consumption of Doom

3, all GPU virtualization instances consume fewer GPU resources and less graphics memory but more CPU

resources than the bare-metal system in both simple and complex benchmarks for the same reason: all the

1The jitter jitter in this context is the absolute deviation from the mean frame render time.
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Table 4.7: PassMark PerformanceTest 3D Complex Benchmark

Tested Configuration Bare-

metal

vSGA vGPU

K120Q

vGPU

K140Q

vGPU

K180Q

vDGA

Frames Per

Second (fps)

Mean 15.4 14.5 35.9 35.8 35.7 36.4

Std. Dev. 0.03 0.19 0.16 0.28 0.2 0.18

Frame Render

Time (ms)

Mean 64.8 69.2 27.9 27.9 28.0 27.4

Std. Dev. 0.15 0.89 0.12 0.22 0.16 0.13

Jitter (ms)
Mean 0.5 3.8 3.1 3.2 3.1 2.5

Std. Dev. 0.11 0.19 0.19 0.14 0.2 0.09

Jitter Percentage
Mean 0.8 5.5 11.1 11.6 11.1 9.1

Std. Dev. 0.16 0.23 0.71 0.52 0.72 0.29

graphics computing occurs on GPU virtualization instances instead of on the physical machine. Additionally,

the hardware consumption of Machine 2 varies according to the GPU virtualization it launches. For example,

the vSGA instance consumes more CPU but slightly less RAM than other GPU virtualization instances in

these two benchmarks. Another example is that the vDGA instance utilizes fewer CPU resources than other

GPU virtualization instances.

Table 4.8: Machine 2 H/W Resource Consumption: Performance 3D Simple Benchmark

Tested Configuration Bare-

metal

vSGA vGPU

K120Q

vGPU

K140Q

vGPU

K180Q

vDGA

GPU (%)
Mean 71.5 7.2 6.8 7.5 7.4 7.2

Std. Dev. 10.07 3.19 0.82 1.57 0.88 1.23

Graphics

Memory (MB)

Mean 106.1 10.8 12.4 11.6 11.6 11.7

Std. Dev. 2.92 0.03 0.03 0.03 0.00 0.00

CPU (%)
Mean 27.0 172.4 162.7 154.5 154.3 103.7

Std. Dev. 12.11 102.76 36.19 35.61 34.03 36.45

RAM (MB)
Mean 299.2 197.2 204.6 217.2 206.1 207.4

Std. Dev. 3.19 23.23 30.99 22.16 19.49 22.20

Table 4.10 contains the hardware resource consumption of the PassMark PerformanceTest 3D simple

benchmark in each GPU virtualization instance. Compared to other GPU virtualization instances, the

vSGA instance consumes fewer GPU but more CPU resources. This may be due to the fact that, unlike the

Doom 3 benchmark, which simply renders a preset number of frames as fast as it can, the PerformanceTest

3D benchmark also processes some game logic such as in-game physics. In this case, the vSGA instance may

not be good at dealing with benchmark’s logic and thus consumes more CPU. Moreover, with this restriction,
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Table 4.9: Machine 2 H/W Resource Consumption: Performance 3D Complex Benchmark

Tested Configuration Bare-

metal

vSGA vGPU

K120Q

vGPU

K140Q

vGPU

K180Q

vDGA

GPU (%)
Mean 55.9 7.2 6.9 6.0 7.0 7.0

Std. Dev. 2.66 3.18 0.89 0.80 0.70 0.58

Graphics

Memory (MB)

Mean 118.4 10.8 12.4 11.7 11.6 11.6

Std. Dev. 0.03 0.03 0.03 0.02 0.03 0.03

CPU (%)
Mean 53.9 173.3 131.4 132.5 132.7 112.0

Std. Dev. 10.98 99.72 32.06 28.30 26.26 27.85

RAM (MB)
Mean 267.8 198.4 326.8 329.6 304.7 304.1

Std. Dev. 20.00 21.82 18.53 5.28 24.87 23.99

its GPU cannot be fully used as it may have to wait until the CPU finishes handling the game logic. This

can also explain why the vSGA instance performs worse than other GPU virtualization instances.

All vGPU instances use very similar hardware resources in terms of graphics memory, CPU and RAM.

Nevertheless, the vGPU K140Q instance and the K180Q instance utilize more GPU resources but do not

gain better results than vGPU K120Q instance. Additionally, none of GPUs in vGPU cases is fully loaded.

This may be because the GPUs in vGPU instances are not the main bottleneck that stops the achievement

of higher performance in this benchmark.

The vDGA instance utilizes more GPU and more RAM resources to run the benchmark. More GPU

resources help it to process graphics computation much faster, while more RAM resources help it handle

the game logic much faster. Therefore, the vDGA instance gains the best performance among all tested

configurations in simple version of the PassMark PerformanceTest 3D benchmark.

Table 4.11 describes the hardware resource consumption of the PassMark PerformanceTest 3D complex

benchmark in each GPU virtualization instance. The vSGA instance uses almost an entire GPU to run the

benchmark but achieves poor results compared to other GPU virtualization instances, which means that the

GPU in the vSGA instance may be the primary bottleneck to run this benchmark.

Like the vSGA instance, all vGPU instances also use the entire GPU to run the benchmark. Nevertheless,

they achieve very similar results, which means the instance that has more GPU resources does not perform

better the one that has fewer GPU resources. Additionally, as all vGPU instances are equipped with the

same CPU and their CPU usages are similar, these vGPU instances may handle the benchmark’s logic at

the same speed, which may be the primary bottleneck that stops the vGPU instances that have more GPU

resources from achieving better results. However, as the assumption above is not proved, further analysis is

required to find the real cause for the difference.

Like all vGPU instances, the vDGA instance also uses almost the entire GPU to run the benchmark but

obtains a similar frame rate compared with all vGPU instances, which means the vDGA’s GPU is not the
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bottleneck that prevents the vDGA instance from achieving better results (higher frame rate). In addition,

the vDGA instance uses more CPU and RAM resources, which may be the reason why the vDGA instance

has lower jitter values than other GPU virtualization instances.

Table 4.10: Hardware Resource Consumption of PerformanceTest 3D Simple Benchmark

Tested Configuration vSGA vGPU

K120Q

vGPU

K140Q

vGPU

K180Q

vDGA

GPU (%)
Mean 63.6 71.9 71.4 71.3 86.3

Std. Dev. 9.34 13.82 12.66 15.52 5.06

Graphics

Memory (MB)

Mean 65.2 71.8 71.1 68.8 71.1

Std. Dev. 0.31 0.00 0.00 1.87 0.00

CPU (%)
Mean 94.6 64.3 62.5 64.1 65.9

Std. Dev. 40.65 6.97 10.95 6.27 13.97

RAM (MB)
Mean 136.3 125.8 110.1 118.6 195.9

Std. Dev. 11.97 2.56 4.13 3.70 10.40

Table 4.11: Hardware Resource Consumption of Performance 3D Complex Benchmark

Tested Configuration vSGA vGPU

K120Q

vGPU

K140Q

vGPU

K180Q

vDGA

GPU (%)
Mean 93.2 88.6 88.4 89.1 87.8

Std. Dev. 5.22 5.10 4.47 3.50 0.11

Graphics

Memory (MB)

Mean 89.3 86.3 85.5 83.4 85.5

Std. Dev. 0.06 0.00 0.03 0.01 0.00

CPU (%)
Mean 67.5 82.7 78.5 80.9 102.2

Std. Dev. 14.23 9.71 10.08 9.22 23.27

RAM (MB)
Mean 121.9 150.5 130.8 145.9 231.5

Std. Dev. 7.05 4.11 3.63 3.11 40.20

4.2.3 Unigine Sanctuary Benchmark

Table 4.12 shows the results of the Unigine Sanctuary benchmark tests. The bare-metal system performs

worse than all GPU virtualization instances in these configurations. The vSGA instance cannot run the

benchmark under the middle and high configurations as it does not support the features of multiple-sampling

and Anti-aliasing.2 Additionally, it performs at 29.3 frames per second in the low configuration, which is a

little better than the bare-metal system but about 10 fps fewer than the vDGA and all vGPU instances.

2These two features are used in the middle and high configurations of the Unigine Sanctuary benchmark.
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Except for the vGPU K120Q instance that performs a little worse than than the vDGA and other vGPU

instances in the low configuration, the performance of the vDGA and all vGPU instances are very close to

each other in these three configurations. This means the vGPU K140Q, vGPU K180Q and vDGA instances

fails to leverage the advantage of having more GPU resources to obtain better results.

Table 4.13 shows the hardware consumption of Machine 2 for running Unigine Sanctuary benchmark in

the low configuration. Like the hardware consumption of the physical machine for running Doom 3 and

PassMark 3D benchmarks, all GPU virtualization instances consume less GPU and graphics memory but

more CPU resources than the bare-metal system. It also shows that the hardware consumption of Machine

2 varies according to the GPU virtualization instance it launches. For instance, in this case, the vSGA

instance consumes more CPU and RAM than other GPU virtualization instances. The implementation of

these vGPU techniques may be the reason that causes these differences. For instance, combined with the

hardware consumption of Machine 2 when launching vGPU virtualization instances to run the Doom 3,

PassMark PerformanceTest 3D and Unigine benchmarks, the vDGA instance always consumes fewer CPU

resources than other GPU virtualization instances.

Like the results of the PassMark PerformanceTest 3D benchmarks, all GPU virtualization instances also

show the good stability in the Unigine benchmark under all configurations. The standard deviation of the

results of the bare-metal system and vSGA instance is between 2% and 5% of the mean frame rate, while it

is less than 2% of the mean frame rate in vDGA and all vGPU instances.

Table 4.12: Unigine Sanctuary Benchmark (Frames/Second)

Tested Configuration Bare-

metal

vSGA vGPU

K120Q

vGPU

K140Q

vGPU

K180Q

vDGA

Low Configuration
Mean 27.9 29.3 36.1 40.7 40.5 40.6

Std. Dev. 0.91 1.15 0.06 0.06 0.07 0.18

Medium Configuration
Mean 20.3 NA 31.2 31.3 31.1 31.3

Std. Dev. 0.34 NA 0.04 0.09 0.04 0.06

High Configuration
Mean 15.3 NA 24.5 24.6 24.6 24.6

Std. Dev. 0.63 NA 0.31 0.0 0.04 0.05

Tables 4.14, 4.15 and 4.16 show the hardware resource consumption of Unigine Sanctuary benchmark

in low, middle and high configuration respectively in each GPU virtualization instance. The vSGA instance

consumes 90.8% GPU and more CPU resources than other GPU virtualization instances in low configuration,

but does not gain the same good result as others. Nevertheless, this may be the best performance that vSGA

can produce, which further proves that the vSGA instance is not capable of running 3D applications.

The pattern of hardware resource consumption in the vGPU and vDGA instances is very similar under

those configurations. The GPU load in these instances is close to 100% and they utilize similar graphics

memory, CPU and RAM. Nevertheless, like the results of the PassMark PerformanceTest 3D complex bench-
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Table 4.13: Machine 2 H/W Resource Consumption: Unigine Sanctuary Benchmark in Low Config-
uration

Tested Configuration Bare-

metal

vSGA vGPU

K120Q

vGPU

K140Q

vGPU

K180Q

vDGA

GPU (%)
Mean 91.8 8.7 6.1 5.7 8.8 8.0

Std. Dev. 3.40 0.80 3.74 1.31 1.06 1.17

Graphics

Memory (MB)

Mean 189.8 10.8 12.4 11.7 11.6 7.5

Std. Dev. 0.23 0.03 0.05 0.02 0.03 0.03

CPU (%)
Mean 53.5 210.5 166.0 173.4 180.1 142.6

Std. Dev. 12.76 65.40 43.07 44.42 51.21 36.36

RAM (MB)
Mean 165.9 199.6 154.5 168.9 158.4 163.2

Std. Dev. 13.05 9.61 4.56 5.77 5.55 33.09

marks, the instances that have more GPU cores do not achieve better performance. One potential reason is

that, these instances handle the benchmark’s logic at the same speed as the CPUs in these instances are the

same and they consume the same CPU resources. This may be the reason that these instances obtain similar

results in this benchmark under all configurations. Nevertheless, as this is just an assumption, more detailed

knowledge of hardware resource consumption is required to figure out the reason that causes this problem.

Table 4.14: Hardware Resource Consumption of Unigine Sanctuary Benchmark: Low Configuration

Tested Configuration vSGA vGPU

K120Q

vGPU

K140Q

vGPU

K180Q

vDGA

GPU (%)
Mean 90.8 90.3 90.2 90.2 87.8

Std. Dev. 5.91 0.28 0.36 0.34 0.00

Graphics

Memory (MB)

Mean 158.7 154.0 154.3 154.4 153.5

Std. Dev. 13.34 14.78 13.73 13.49 3.18

CPU (%)
Mean 85.8 64.6 63.9 63.7 63.1

Std. Dev. 10.42 10.27 9.91 9.79 8.31

RAM (MB)
Mean 142.7 79.1 88.2 85.8 80.9

Std. Dev. 4.17 11.73 10.59 7.76 11.69

4.2.4 Extra Experiments

From the results of the PassMark PerformanceTest 3D complex benchmark and Unigine Sanctuary bench-

mark, we can see that the vDGA and all vGPU instances produce similar results. There must be some

bottleneck. One possible reason is the advanced features of graphics card which are enabled in the experi-
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Table 4.15: Hardware Resource Consumption of Unigine Sanctuary Benchmark: Middle Configura-
tion

Tested Configuration vGPU

K120Q

vGPU

K140Q

vGPU

K180Q

vDGA

GPU (%)
Mean 90.1 90.1 90.2 87.7

Std. Dev. 1.43 1.21 0.37 1.55

Graphics

Memory (MB)

Mean 186.5 186.5 186.4 188.4

Std. Dev. 16.02 16.81 15.78 3.71

CPU (%)
Mean 52.2 53.8 52.1 51.6

Std. Dev. 9.88 10.11 10.62 8.90

RAM (MB)
Mean 97.0 109.8 94.0 88.8

Std. Dev. 10.00 6.74 8.35 8.00

Table 4.16: Hardware Resource Consumption of Unigine Sanctuary Benchmark: High Configuration

Tested Configuration vGPU

K120Q

vGPU

K140Q

vGPU

K180Q

vDGA

GPU (%)
Mean 90.1 89.9 89.9 87.8

Std. Dev. 0.52 1.98 2.50 0.00

Graphics

Memory (MB)

Mean 219.5 219.6 219.6 221.5

Std. Dev. 18.05 18.33 18.33 3.69

CPU (%)
Mean 47.1 49.4 49.2 46.9

Std. Dev. 13.80 12.65 12.59 11.89

RAM (MB)
Mean 82.1 103.2 88.1 91.8

Std. Dev. 8.16 8.56 11.35 8.73
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ments as shown in Table 3.6. These features help the benchmarks produce better image quality, but utilize

more resources and degrade the frame rate performance. To explore whether these features are the main

reason that prevents performance enhancement, they are disabled and the PassMark PerformanceTest 3D

and Unigine Sanctuary benchmarks are run with the same configurations in the vDGA and each vGPU

virtualization instance.

Table 4.17 and Table 4.18 show the results of the PassMark PerformanceTest 3D simple and complex

benchmarks respectively that are re-run on the vDGA and vGPU instances without the features in Table 3.6.

The vDGA and all vGPU instances obtain better results without those features. Both of them take less time

to generate a frame and generate higher frame rates in both benchmarks. Additionally, the vDGA instance

achieves the best performance among all tested configurations, which further shows that vDGA performs

better than vGPU K180Q even through they are equipped with same GPU resources (Nvidia CUDA cores).

Moreover, all vGPU instances obtain similar results in these two benchmarks in terms of frame rate, frame

render time and jitter time. Therefore, those high features in Nvidia graphics cards are not the bottleneck

that prevents the vGPU instance that has additional GPU resources from achieving the better performance.

Table 4.19 shows the results of the Unigine Sanctuary benchmark which are re-run in the vDGA and all

vGPU instances. Like the results of the PerformanceTest 3D benchmark, the vDGA instance produces the

best performance under all three configurations, which means those features in Table 3.6 are potential reasons

that prevents vDGA from achieving better results. In addition, all vGPU instances also obtain similar results

in this benchmark in whatever configuration, which means those features in Nvidia graphics card are not the

bottleneck that limits the performance.

Table 4.17: PassMark PerformanceTest 3D Simple Benchmark

Tested Configurations vGPU

K120Q

vGPU

K140Q

vGPU

K180Q

vDGA

Frames Per

Second

Mean 57.8 58.0 58.7 60.7

Std. Dev. 0.43 0.58 0.45 0.28

Frame Render

Time (ms)

Mean 17.3 17.3 17.1 16.8

Std. Dev. 0.13 0.17 0.13 0.08

Jitter (ms)
Mean 1.5 1.8 1.7 0.3

Std. Dev. 0.18 0.13 0.17 0.12

Jitter Percentage
Mean 8.7 10.7 10.1 1.8

Std. Dev. 0.99 0.64 0.89 0.69
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Table 4.18: PassMark PerformanceTest 3D Complex Benchmark

Tested Configuration vGPU

K120Q

vGPU

K140Q

vGPU

K180Q

vDGA

Frames Per

Second (fps)

Mean 37.8 37.5 37.6 45.3

Std. Dev. 0.31 0.34 0.52 0.16

Frame Render

Time (ms)

Mean 26.5 26.7 26.6 22.1

Std. Dev. 0.21 0.24 0.36 0.08

Jitter (ms)
Mean 7.5 7.2 7.1 2.2

Std. Dev. 0.29 0.36 0.38 0.08

Jitter Percentage
Mean 28.3 26.9 26.7 10.1

Std. Dev. 1.24 1.58 1.75 0.36

Table 4.19: Unigine Sanctuary Benchmark: Frames Per Second

Tested Configuration vGPU

K120Q

vGPU

K140Q

vGPU

K180Q

vDGA

Low Configuration
Mean 59 59.6 59.5 65.2

Std. Dev. 0.13 0.15 0.32 0.04

Medium Configuration
Mean 40.6 41.1 40.9 43.6

Std. Dev. 0.32 0.23 0.32 0.12

High Configuration
Mean 30.1 30.3 30.1 31.8

Std. Dev. 0.08 0.17 0.13 0.04
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4.2.5 The Results of Cloud Games

Response Delay

Table 4.20 show the results of the response delay of the tested games in each tested configuration. The bare-

metal system performs poorly at AssaultCube. The result that the bare-metal system produces is totally

unacceptable as it is much higher than the threshold of FPS games (100 ms). Additionally, AssaultCube

sometimes fails to response to the keyboard and mouse input when it is running on the bare-metal sys-

tem, which significantly degrades the user experience. Although the bare-metal system achieves acceptable

response delay in the other two games, it performs worse than all GPU virtualization instances.

The response delay of the vSGA instance (125.2 ms on average) is a little higher the threshold of FPS

games, but AssaultCube in the vSGA instance always responses to the new game commands. Moreover, the

vSGA instance performs at 49.3 ms and 252.3 ms respectively in LEGO Batman and Warhammer 40,000,

which is better than that of the bare-metal system and much lower than the threshold of RPG games (500

ms) and RTS games (1000 ms).

All vGPU cases gain acceptable and similar results in all three games. Additionally, they perform better

than the vSGA instance and much better than the bare-metal system in both three games. For instance, the

average response delay of AssaultCube in all vGPU instances is below 35 ms, while the bare-metal system only

performs at 381.1 ms. Moreover, the vGPU K180Q instance does not achieve the best performance among the

three vGPU instances and the vGPU K140Q instance does not perform better than vGPU K120Q instance

either. This may be because the GPU resource configuration for vGPU K120Q instance is over provisioned

for running these three games.

The vDGA instance obtains similar results in AssaultCube and LEGO Batman that all vGPU instances

achieve, but it performs better in Warhammer 40,000 than all vGPU instances. This is further evidence

that vDGA technology performs better than vGPU technology when they have the same hardware resource

configuration.

Table 4.20: Response Delay of the Tested Games

Tested Configuration Bare-

metal

vSGA vGPU

K120Q

vGPU

K140Q

vGPU

K180Q

vDGA

AssaultCube

(ms)

Mean 381.1 125.2 32.2 28.9 27.8 30.1

Std. Dev. 52.26 25.44 16.27 11.82 10.83 13.12

LEGO Batman

(ms)

Mean 279.0 49.3 41.5 42.1 42.2 41.5

Std. Dev. 38.66 10.93 9.63 10.67 13.03 11.37

Warhammer

40,000 (ms)

Mean 309.3 252.3 209.2 192.8 213.8 165

Std. Dev. 90.63 57.3 47.34 42.98 58.91 27.18

For further investigating the reasons that cause the differences of the response delay of tested games
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in each tested configuration, number of frames that are rendered to start handling the game commands

used to measure the response delay, and the average frame render time of each tested game in each tested

configuration are calculated and shown in Table 4.21 and Table 4.22 respectively.

In AssaultCube, the bare-metal system has to generate more frames to start dealing with the game

command than other tested configurations, and the frame render time for this game is much higher than that

of other tested configurations. This is why the bare-metal system produces higher response delay (381.1 ms

on average) than other tested configurations for this game. The vSGA instance has to generate 3.3 frames

on average to start handling the game command used to measure the response delay and the average frame

generation time is 38.0 ms, each of which is a little more than the one in the vDGA and all vGPU instances.

The vDGA and all vGPU instances obtain similar results in these two performance metrics, which make

them achieve similar results in the response delay of AssaultCube.

Like the results of AssaultCube, in LEGO Batman, the bare-metal system has to render more frames

and its average frame generation time is higher than other tested configurations. This is why the bare-metal

system has the highest response delay (279.0 ms in average) among all tested configurations. In addition,

although the vSGA instance render almost the same number of frames as the vDGA and all vGPU instances

do, it uses a little more time to generate frames, which makes the vSGA instance has a little higher response

delay than the vDGA and all vGPU instances. Moreover, like the results of AssaultCube, the vDGA and

all vGPU instances have similar results in these performance metrics, making them obtain similar response

delays in this game.

In Warhammer 40,000, although the bare-metal system generates the fewest frames to start handling

the game command among all the tested configurations, the average frame generation time for this game

is highest among all the tested configurations, which makes it has higher response delay than other tested

configurations. Additionally, like the bare-metal system, the vSGA instance has fewer number of frames

but higher frame generation time than the vDGA and all vGPU instances, which makes it has the response

delay a little higher than the vDGA and all vGPU instances. Moreover, the frame generation time of the

vDGA and all vGPU instances are similar, but the fact that the vDGA processes fewer frames than all vGPU

instances enables it to obtain the lowest response delay among all tested configurations.

Table 4.23 shows the maximum response delay (the worst case) of the tested games in each tested con-

figuration. From the table, we can see that the worst case of the response delay of AssaultCube in the

bare-metal system is totally unaccepted. This is not surprising as the bare-metal system performs at 381.1

ms as average response delay for this game. Additionally, the maximum response delay of the other two

games in the bare-metal system are lower than the thresholds respectively. In spite of this, the bare-metal

system have the highest response delay for these three tested games among all the tested configurations.

The maximum response delay of AssaultCube in the vSGA instance is 197, which is almost twice the

threshold of FPS games. Combined with the fact that vSGA performs at 125.2 ms as average response

delay for this game, the vSGA instance cannot guarantee the acceptable response delay for AssaultCube.
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Table 4.21: Number of Frames that are Rendered to Start Handling the Game Commands Used to
Measure Response Delay of Tested Games

Tested Configuration Bare-

metal

vSGA vGPU

K120Q

vGPU

K140Q

vGPU

K180Q

vDGA

AssaultCube
Mean 6.0 3.3 2.1 2.2 2.0 2.1

Std. Dev. 0.94 0.46 0.51 0.47 0.49 0.44

LEGO Batman
Mean 6.6 2.1 2.2 2.1 2.1 2.2

Std. Dev. 0.84 0.33 0.37 0.33 0.33 0.39

Warhammer

40,000)

Mean 4.6 5.3 7.5 7.1 7.4 5.7

Std. Dev. 0.92 0.79 1.28 1.18 1.13 0.97

Table 4.22: Frame Generation Time of Tested Games

Tested Configuration Bare-

metal

vSGA vGPU

K120Q

vGPU

K140Q

vGPU

K180Q

vDGA

AssaultCube

(ms)

Mean 64.6 38.0 14.9 13.7 13.6 14.2

Std. Dev. 9.24 5.84 5.51 5.43 4.41 3.72

LEGO Batman

(ms)

Mean 42.8 23.6 19.4 20.1 19.7 19.5

Std. Dev. 4.97 5.76 4.01 5.20 4.38 6.24

Warhammer

40,000 (ms)

Mean 66.1 47.9 27.5 27.8 28.7 28.0

Std. Dev. 9.11 13.11 4.03 4.20 5.58 3.14
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In addition, the vSGA instance has 77 ms and 348 ms as the maximum response delay of LEGO Batman

and Warhammer 40,000, which is lower than those of the bare-metal system. This indicates that the vSGA

instance can handle these two games well.

The vDGA and all vGPU instances achieve very similar results in terms of the maximum response delay

of the tested games, each of which is lower than the corresponding threshold. This indicates that the vDGA

and all vGPU instances are able to process the tested games quickly even in the worst case.

Table 4.23: Maximum Response Delay of Tested Games

Tested Configu-

ration

Bare-

metal

vSGA vGPU

K120Q

vGPU

K140Q

vGPU

K180Q

vDGA

AssaultCube

(ms)

478 197 72 73 57 73

LEGO Batman

(ms)

374 78 77 77 77 78

Warhammer

40,000 (ms)

660 348 99 98 99 98

Image Quality

Table 4.24 shows the results of the image quality experiments for each GPU virtualization instance. The

average image quality in all GPU virtualization instances is between 40 and 42 dB, which is good when

compared to the threshold in PSNR that defines good image quality.3 Additionally, all GPU virtualization

cases obtain very similar results. This is because the same deterministic sequence of frame samples are

captured to calculate image quality samples in each GPU virtualization instance, and the algorithm to

calculate PSNR values always finds the frame that is the closest to the original one to produce the highest

PSNR value. Actually, the bare-metal system always generate fewer frames than all GPU virtualization

instances as it performs worse than all GPU virtualization instances when playing the intro movie of LEGO

Batman 2. Therefore, suppose the sequence of the generated frames in the bare-metal system is “A, B, C,

D”, then the sequence in the tested GPU virtualization instance will be something like “A, A1, A2, B, C, D”,

where “A1, A2” are the frames that resembles frame “A”. When handling these two sequences, frame “A” in

the bare-metal system and the tested GPU virtualization instance are used to generate a PSNR value. Then

the frames “A1” and “A2” in the tested GPU virtualization instance are abandoned as they resemble the

frame “A”. Finally, all the frames are processed in this way to obtain 100 PSNR values for the tested GPU

virtualization instance. With such an approach, the algorithm used in the experiments always generates the

PSNR values as high as possible.

3Values higher than 30 dB are considered good image quality in PSNR.
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The histograms of image quality samples in each GPU virtualization instance are shown in Figure 4.1.

From the results we can see the following: 1) The distribution of image quality samples in all instances

are very similar. Only very few frame samples lose image quality according to the results. For instance,

Figure 4.1(a) and Figure 4.1(c) show there is only one different PSNR sample between the PSNR samples of

the vSGA instance and that of the vGPU K140Q instance. The vSGA instance has one more sample which

is between 52 dB and 54 dB, while the vGPU K140Q instance moves it to the interval between 44 dB and

46 dB. 2) Most samples are higher than 36 dB. Although some samples in each GPU virtualization instance

fall into the interval between 32 dB and 34 dB, these samples are still considered good quality according

to definition of PSNR. Overall, those findings show that all GPU virtualization instances are able to render

game frames with good quality.

Table 4.24: Image Quality Comparison

Tested Configuration vSGA vGPU

K120Q

vGPU

K140Q

vGPU

K180Q

vDGA

PSNR (dB)
Mean 41.6 41.6 41.5 40.7 41.6

Std. Dev. 5.09 5.09 4.84 3.85 5.09

4.3 The Results of the Second Group of Experiments

4.3.1 Doom 3 Benchmark

Figure 4.2 shows the Doom 3 benchmark results in two occurrences of each tested configuration. The

performance of the two bare-metal systems varies significantly, due to the hardware differences between the

two physical machines. From Table 3.3 and Table 3.4, we can see that bare-metal system 1 has a faster

GPU, more RAM and more hard disk space than bare-metal system 2. Therefore, it is not surprising that

bare-metal system 1 performs at 55.35 fps in Doom3, while bare-metal 2 only performs at 19.77 fps on

average.

All vSGA instances achieve poor performance in the Doom 3 benchmark as each vSGA instance only

performs at about 3 fps on average. This indicates that vSGA’s GPU is not powerful enough to handle such

an benchmark.

The potential scalability of vDGA and all vGPU instances is excellent. Take the vDGA instances for

example, no matter if a single instance or the first double instance running on bare-metal system 1, or the

second double instance running on bare-metal system 2, all vDGA instances perform at between 58 fps and

61 fps with a standard deviation within the interval 0.71 to 2.15. Additionally, by comparing the results of

bare metal system 2 and results of the second double instances of vDGA and all vGPU tested configurations,

we can see that even a low-profile physical machine is able to gain high performance using vGPU or vDGA
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(a) vSGA

(b) vGPU K120Q (c) vGPU K140Q

(d) vGPU K180Q (e) vDGA

Figure 4.1: The Histograms of Image Quality
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(a) Bare-metal (b) vSGA

(c) vGPU K140Q (d) vDGA

Figure 4.2: Doom 3 Performance

technologies.

4.3.2 Unigine Sanctuary Benchmark

Unigine Sanctuary benchmark is also tested in the second group of experiments for further analyzing the

potential scalability of each GPU virtualization solution. Figure 4.3, Figure 4.4 and Figure 4.5 respectively

show the results of the Unigine Sanctuary benchmark in two occurrences of vSGA, vGPU K140 and vDGA.

From the results, we can see that, like the results of the Doom 3 benchmark in double instances, bare-metal

system 1 performs much better than bare-metal system 2 under all configurations. Additionally, all GPU

virtualization instances produce good scalability under all configurations. For instance, all vGPU K140Q

instances perform between 39 fps and 41 fps in low configurations, 30 fps to 32 fps in middle configuration,

and 24 fps to 25 fps in high configuration. This further shows that the potential scalability of these GPU
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virtualization instances is good.

Figure 4.3: Unigine Sanctuary Performance: the vSGA Instances

4.3.3 GamingAnywhere Results

Response Delay

Only AssaultCube is used to measure response delay as here only the potential scalability of each GPU

virtualization instance is the interest of the experiments. Another reason to use AssaultCube instead of the

other two games is because it is a delay-intensive game, such that the performance degradation will be more

obvious if these GPU virtualization instances are unstable. Figure 4.6 shows the results, from which we can

see that both bare-metal systems perform poorly at AssaultCube. In particular, bare-metal 2 performs at

4938.5 ms on average and is unable to run the game smoothly. Additionally, all GPU virtualization instances

perform stably in terms of AssaultCube’s response delay.

Image Quality

Figure 4.7 shows the results of image quality in double instances. Like the results of response delay of

AssaultCube, all GPU virtualization instances behave stably in terms of image quality. An interesting result

is that the first double instance of vDGA performs a little worse than the other two vDGA instances. This

may be because the frame sample generated in this instance has many samples that lose too much image

quality. Nevertheless, although it performs at 37.7 dB on average, which is little lower than those of two

vDGA instances, it is still considered as good image quality.
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Figure 4.4: Unigine Sanctuary Performance: the vGPU K140 Instances

4.4 Summary and Analysis of Results

Based on the experiments conducted in Section 4.2 and Section 4.3, the summary and analysis of results are

done and presented in this section. The followings are the main findings from the experiments.

• The experiments show the feasibility and advantage of GPU virtualization technology in cloud gaming.

Firstly, it makes low-end machines able to run the games they cannot run locally. For instance, bare-metal

system 2 is unable to play AssaultCube as it only produces 4938.5 ms on average as response delay for this

game. With the help of GPU virtualization like vGPU K140Q, however, it can play this game smoothly

with 32.7 ms on average as response delay. Secondly, while running the same application, physical machines

consume fewer GPU and graphics memory resources by running it remotely on GPU virtualization instances

than running it locally. For example, bare-metal system 1 consumes 93.9% of the GPU resources and 243.4

MB of graphics memory when running Doom 3 benchmark locally, but it only uses 9.9% of GPU and 11.6

MB of graphics memory when running it on vGPU K140Q instance. This turns low-end graphics cards on

local machine not to be the constraint of running high-end games.

• Overall, vSGA may not be a good choice for cloud gaming. Although it achieves acceptable results in

some benchmarks like the PassMark PerformanceTest 3D simple benchmark and gains good image quality

and excellent response delay in LEGO Batman and Warhammer 30,000, its terrible results at the Doom 3

benchmark and Performance 3D complex benchmark and the fact that it does not support certain GPU

features, like Anti-aliasing, significantly limit its performance in cloud gaming. Moreover, the fact that
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Figure 4.5: Unigine Sanctuary Performance: the vDGA Instances

it achieves the highest scores in the 2D benchmark of Fonts and Text among all tested configurations

indicates it is more suitable for handling the software that falls into the use case of Knowledge Workers.

• All vGPU instances perform well in all experiments. They all achieve better performance than bare-metal

system in all tests except the Doom 3 benchmark. In particular, they can gain much better results in

the tests which the bare-metal system fails to deal with. For instance, bare-metal system 1 can only

provide 381.1 ms on average as the response delay of AssaultCube (which is considered unacceptable),

while all vGPU instances offer less than 33 ms on average as the response delay of this game. All in all, the

results of all vGPU instances prove that vGPU technology is a promising technique for cloud gaming. In

particular, as it provides multiple vGPU profiles, vGPU technology can be dynamically configured to meet

the needs of various games. Nevertheless, the vGPU instance that has additional GPU resources does not

achieve better performance in the experiments. This needs further analysis to discover the bottleneck of

the performance degradation.

• vDGA achieves the best performance in all experiments. Additionally, it wins from the comparison be-

tween itself and vGPU K180Q. Although both of them are equipped with the same hardware resources,

including graphic memory, CPU and RAM resources, and the same Nvidia CUDA cores, only the vDGA

instance successfully utilizes them to gain better performance, especially when some advanced features of

the graphics card are disabled. For example, when running without the advanced features of graphics card

listed in Table 3.6, vDGA instance performs at 45.3 fps on average in the PassMark PerformanceTest 3D

complex benchmark, while the vGPU K180Q only performs at 37.6 fps on average. This may be because
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(a) Bare Metal (b) vSGA

(c) vGPU K140Q (d) vDGA

Figure 4.6: Response Delay of AssaultCube in Double Instances
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(a) vSGA

(b) vGPU K140Q (c) vDGA

Figure 4.7: Image Quality
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vGPU technology still needs to communicate with physical graphics card via vGPU manager, while vDGA

can directly talk to it, which reduces the overhead of communication. Nevertheless, although vDGA can

achieve the best performance in the experiments, the price of using this technique to realize cloud gaming

is expensive due to the fact that the GPU occupied by a vDGA instance cannot be shared by other VMs.

Therefore, it is more wise to utilize this technique to deploy high-end games.

• The stability and potential scalability of each GPU virtualization solution are good. Firstly, each tested

configuration in the experiments produce stable results (with low standard deviation) in all benchmarks.

Secondly, when testing the potential scalability of each GPU virtualization solution, no matter if a single

instance or the first double instance running on bare-metal system 1, or the second double instance running

on bare-metal system 2, they all produce similar and stable results in all tests.
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Chapter 5

Conclusions

VMware ESXi is one of the most popular virtualization platforms, and has been widely used in industry.

It provides three GPU virtualization solutions for satisfying increasing commercial demand for full virtualiza-

tion. Nevertheless, there is a lack of published work concerning the performance of these GPU virtualization

solutions in cloud gaming. This thesis helps in evaluating the performance of the GPU virtualization solutions

in VMware ESXi, including vSGA, vGPU and vDGA, by running graphics card benchmarks and measuring

response delay and image quality of real cloud games. This chapter summarizes the experimental results and

thesis contributions to the field of research, and possible future work.

5.1 Thesis Summary

There is no knowledge in the published literature about the performance of VMware GPU virtualization

solutions in cloud gaming. It is important to evaluate the performance of these solutions in cloud gaming.

Such evaluations can help cloud gaming vendors to know whether these solutions can fit the needs of cloud

gaming, and to understand the advantages and disadvantages of each solution in cloud gaming.

Three graphics card benchmarks, including Unigine Sanctuary, PassMark PerformanceTest and Doom

3 benchmark, are utilized in the experiments to objectively evaluate the GPU performance in each tested

configuration. There are several promising findings through the results. Firstly, the poor performance of

vSGA in the Doom 3 benchmark and PassMark PerformanceTest 3D benchmark, and the fact that it does

not support some high 3D features, such as Anti-aliasing, indicate vSGA may not be a good choice for cloud

gaming. Nevertheless, vSGA achieves the highest scores in the 2D benchmark of Fonts and Text and Window

Interface among all tested configurations, indicating vSGA is more suitable for handling the software which

falls into the use case of Knowledge Workers. Secondly, all vGPU instances (vGPU K120Q, vGPU K140Q

and vGPU K180Q) achieve better performance than the bare-metal system in the Unigine Sanctuary and

Passmark PerformanceTest benchmarks in each configuration. Additionally, there is an interesting finding

that all three vGPU instances achieve similar results in Unigine Sanctuary and Passmark PerformanceTest

benchmarks, which means that the vGPU K140Q and vGPU K180Q fail to utilize the additional GPU

resources they have. Thirdly, vDGA achieves the best performance among the three GPU virtualization

solutions in all benchmarks. In particular, it performs better than vGPU K180Q even through they are
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equipped with the same hardware resources, indicating that vDGA is the best GPU virtualization technology

among the three solutions. Fourthly, the results show that each tested solution produces predictable results

(with low standard deviation) in these benchmarks, which means the stability of each tested solution is

excellent.

Three games representing three popular game genres (Avatar-First person, Avatar-Third person and

Omnipresent) are utilized to measure whether these GPU virtualization solutions can produce acceptable

image quality and response delay in cloud games. The vDGA and all vGPU instances provide excellent

response delay for each tested game. Although vSGA produces unacceptable response delay in the game

which represents first person shooter games, it provides acceptable response delays for the other two games.

In addition, all three solutions achieve high image quality in the tested games.

For further assessing the potential scalability of each GPU virtualization solution, double instances of

each tested solution are also evaluated in the experiments. The results show that the potential scalability of

each tested solution is good. Regardless of whether a single-instance or double-instance scenario is deployed,

each solution produces similar results in each tested benchmark, as well as similar image quality and response

delay in each tested game.

Overall, the experiments performed in this thesis indicate that vGPU and vDGA are two promising GPU

virtualization solutions in cloud gaming. These two solutions achieve good performance in the tested graphics

card benchmarks, and provide excellent image quality and response delay in each tested game. The poor

results in some benchmarks such as the Doom 3 benchmark and the fact that some 3D features are not

supported in vSGA make it not suitable for cloud gaming scenarios.

5.2 Thesis Contributions

This thesis explores GPU pass-through and two GPU sharing virtualization solutions provided by VMware

in cloud gaming scenarios. It makes the following contributions:

• This thesis is the first systematic study to evaluate VMware’s GPU virtualization solutions in cloud gaming.

The performance of each solution is measured using some graphics card benchmarks. Second, three cloud

games are used to evaluate whether these solutions can guarantee acceptable image quality and tolerable

response delay for each category of games. Third, the potential scalability of these solutions is evaluated

by running two instances simultaneously.

• The analysis of the hardware resource consumption of each GPU virtualization solution is also performed.

Additionally, the experiment measures the pattern of hardware resource consumption while launching each

type of GPU virtualization instance.
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5.3 Future Work

Future work can be divided into four broad categories: Further analysis of the hardware resource consumption

of each GPU virtualization instance, further measurement of the potential scalability of each GPU virtual-

ization solution, the study about each GPU virtualization’s capability and performance regarding running

high-end games and network influence on cloud games.

5.3.1 Further Analysis of the Hardware Resource Consumption

Further analysis of the hardware resource consumption in each GPU virtualization instance is necessary,

as the work in this thesis only measures the consumption of four hardware resources and fails to find the

bottleneck that stops some GPU instances which have more GPU resources, such as the vGPU K180Q

and vDGA instances, from achieving better performance in some benchmark tests. The future work can

use other performance monitoring tools, like Intel VTune Amplifier,1 to gain more details of the hardware

resource consumption. Moreover, the hot-spots of benchmarks can also be found with these tools, which can

also help in finding the bottleneck of each GPU virtualization instance in each benchmark.

5.3.2 Further Measurement of the Potential Scalability

The potential scalability of each GPU virtualization technology requires further investigation since in the

experiments only two instances are launched simultaneously. To prove the scalability of each GPU virtual-

ization technology in large scale deployment, scenarios where more multiple simultaneous instances run the

same benchmark/cloud game need to be tested.

5.3.3 The Capability and Performance of Running High-end Games

Although the experiments prove that vGPU and vDGA provide excellent image quality and acceptable

response delay for all tested games, high-profile games were not tested. Future work can re-measure the

image quality and response delay with some high-profile games, like Resident Evil 4: Ultimate HD Edition,

which requires at least 2 GB of RAM and 15GB of hard disk space. Moreover, this game requires a GPU

whose core speed and memory speed should be at least 600 MHz and 800 MHz respectively. This game would

better stress the GPU virtualization instances.

5.3.4 Network Impact

In the experiments in this thesis, network conditions are essentially perfect as all the machines and VMs

are connected with a private network, in which the network delay is below 1 ms and the packet loss rate is

1Intel VTune Amplifier Official Site. Website:https://software.intel.com/en-us/intel-vtune-amplifier-xe. Accessed: Dec 15,
2015.
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close to 0%. Nevertheless, network delays and packet loss always exist in reality, which cause the increment

of response delay and the loss of image quality respectively, degrading the user experience. Therefore, it is

necessary to consider the impact of network conditions on each GPU virtualization solution. Future work

can run the same tests under different network conditions.
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