
Scalable Resource and QoS Brokering

Mechanisms for Massively Multiplayer

Online Games

A Thesis Submitted to the

College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the degree of Master of Science

in the Department of Computer Science

University of Saskatchewan

Saskatoon

By

Mehadi Hasan

c©Mehadi Hasan, May/2012. All rights reserved.

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgrad-

uate degree from the University of Saskatchewan, I agree that the Libraries of this

University may make it freely available for inspection. I further agree that permission

for copying of this thesis in any manner, in whole or in part, for scholarly purposes

may be granted by the professor or professors who supervised my thesis work or, in

their absence, by the Head of the Department or the Dean of the College in which

my thesis work was done. It is understood that any copying or publication or use of

this thesis or parts thereof for financial gain shall not be allowed without my written

permission. It is also understood that due recognition shall be given to me and to the

University of Saskatchewan in any scholarly use which may be made of any material

in my thesis.

Requests for permission to copy or to make other use of material in this thesis in

whole or part should be addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5C9

i

Abstract

Multiplayer online games have become an increasingly integral part of online en-

tertainment. With advances in social media, the number of players of these games is

increasing at a very rapid rate, which in some cases has been observed to be exponen-

tial. This is when resource1 becomes a concern. In this thesis, I investigated several

challenges in developing and maintaining multiplayer games such as hotspots, genre-

specific limitations, unpredictable quality of service and rigidity in resource availabil-

ity. I showed that these issues can be solved by adopting mechanisms for separation

of resource concerns from functional concerns and coordination of resources. To sup-

port resource coordination, I divided the ownership of resources among three parties-

game owner, resource owner and game player. I developed the CyberOrgs-MMOG

API, which supports Massively Multiplayer Online Game (MMOG) platforms ca-

pable of resource sharing among multiple peers, through mechanisms for acquiring

these resources dynamically. I showed that dynamic acquisition of resources can

solve the resource questions mentioned above. The API was evaluated using a 2D

game with up to 250 simulated players. I also showed, how the game’s responsiveness

can be dynamically adjusted in a scalable way. This thesis presents the design and

implementation of the CyberOrgs-MMOG API, interfaces provided to the interact-

ing agents representing different parties. I integrated a 2D multiplayer game with

the API and evaluated the mechanisms supported by the API.

1Here by “resource,” I mean computational processor time, memory, network bandwidth, etc.

ii

Acknowledgements

I would like to acknowledge my supervisor Dr. Nadeem Jamali for his suggestions

and valuable comments to my research. He not only enlightened me with new ideas

but also encouraged me throughout my research work. His friendly supervision and

guidance made this challenging research work possible. His views on different areas

helped me to carry out my research work successfully as well as helped me gain

insight on real life matters.

Many thanks go to Professor Dwight Makaroff and Professor Chanchal Roy, the

two professors in my thesis committee, who provided me with valuable feedback.

Professor Roy took the time to meet with me a number of times and provided valu-

able advice before my thesis defence. I would like to thank Professor Ramakrishna

Gokaraju, for serving as the external examiner on my thesis committee, and offering

very useful feedback at the defense.

Also thanks go to Xinghui Zhao, one of the PhD students in our lab for her ideas

and clarifications on CyberOrgs API. I really appreciate the time she spent on me

and the knowledge she shared. She always provided valuable feedbacks in the group

meetings about my research. I am really grateful to her for her selfless contributions.

I also would like to express my appreciation to my family, specially my parents,

who always keep me motivated at every stage of my life. Without their encourage-

ment it would be very difficult for me to complete my research successfully.

Finally, I would like to acknowledge the generous financial support in the form of

a Graduate Teaching Fellowship and a Faculty Scholarship from Professor Jamali’s

NSERC Discovery Grant.

iii

Contents

Permission to Use i

Abstract ii

Acknowledgements iii

Contents iv

List of Tables vi

List of Figures vii

List of Abbreviations viii

1 Introduction 1
1.1 MMOG . 1

1.1.1 Genres . 2
1.1.2 Growth of MMOG . 3

1.2 Motivations . 5
1.3 Contributions . 7
1.4 Organization . 8

2 Related Work 9
2.1 Actors . 9
2.2 Actor Implementations . 11

2.2.1 Actor Architecture . 11
2.2.2 Actor Foundry . 12
2.2.3 SALSA . 14

2.3 CyberOrgs . 14
2.4 Spatial Scaling of MMOG . 17

2.4.1 Zoning, Mirroring and Instancing 18
2.4.2 Interest Management and Zonal Migration 19

2.5 Genre specific limitations . 20
2.6 Dynamic Resource Provisioning . 23

2.6.1 Hotspots . 23
2.6.2 Dynamic load balancing . 24

2.7 Chapter Summary . 25

3 Design and Implementation 26
3.1 Actor Architecture . 26
3.2 CyberOrgs-MMOG platform . 30

iv

3.2.1 CyberOrgs Platform . 32
3.2.2 Zone Manager . 34
3.2.3 Load Manager . 37

3.3 Broker . 38
3.4 Directory Manager . 39
3.5 Dynamic Resource Coordination Mechanisms 41
3.6 Chapter Summary . 42

4 Application Programming Interface 43
4.1 APIs for cyberorgs creation and primitives 43
4.2 API for Resource Owner . 46
4.3 API for Game Owner . 46
4.4 API for Game Player . 47
4.5 APIs for Zone Division and Load Management 48
4.6 Configuration File . 49

5 Experimental setup 51
5.1 Software Platform . 51

5.1.1 Actor Architecture . 51
5.1.2 CyberOrgs API . 52
5.1.3 Marauroa Game Engine . 52
5.1.4 Jmapacman . 53

5.2 System Configuration . 54
5.3 Simulation . 55

6 Experimental results 57
6.1 CyberOrgs-MMOG API . 57
6.2 Experiment Design . 58
6.3 Controlling QoS Parameters . 59

6.3.1 Average Response Time . 59
6.3.2 Average Outgoing Bandwidth 61

6.4 Performance Analysis . 65
6.4.1 Overhead Analysis . 65
6.4.2 Analysis of resource coordination mechanisms 67

6.5 Chapter Summary . 69

7 Conclusion 71
7.1 Limitations . 72
7.2 Future Directions . 72

References 74

A Sample Dataset 78

v

List of Tables

6.1 Time taken to execute resource coordination mechanisms. 70

A.1 Resource added in response to increase in number of players 79
A.2 Resource added in response to increase in number of players 80
A.3 Resource added in response to increase in number of players 81
A.4 Resource added in response to increase in number of players 82
A.5 Resource released in response to decrease in average outgoing bandwidth 83
A.6 Resource released in response to decrease in average outgoing bandwidth 84
A.7 Resource released in response to decrease in average outgoing bandwidth 85
A.8 Resource released in response to decrease in average outgoing bandwidth 86
A.9 Comparison of average outgoing bandwidth with or without the API 87

vi

List of Figures

1.1 Subscriptions and Active Accounts with a peak between 1,000,000 and
12,000,000 [3] . 6

1.2 Total MMORPG subscriptions and Active Accounts [3] 6

2.1 Structure of an actor. 10
2.2 Actor Foundry Node Structure [9]. 12
2.3 Structure of a cyberorg. 15
2.4 Isolation and Assimilation. 16
2.5 Migration. 17
2.6 Zoning and Mirroring. 17
2.7 Zonal migration . 21
2.8 Screenshots of non-MMO and MMO 22

3.1 Structure of the AA platform [34]. 27
3.2 Snapshot of interactions during MMOG game sessions using CyberOrgs-

MMOG API . 31
3.3 Components of the CyberOrgs-MMOG platform, broker and Direc-

tory Manager . 31
3.4 A CyberOrgs plaftorm . 33
3.5 Seamless migration between zones . 36
3.6 Flow diagrams . 40

5.1 Screenshot taken from JMaPacman [1] 54

6.1 Resource added in response to increase in number of players. 60
6.2 Resource released in response to decrease in number of players. 60
6.3 Resource added in response to increase in response time. 62
6.4 Resource released in response to decrease in response time. 62
6.5 Resource added in response to increase in number of players. 63
6.6 Resource released in response to decrease in number of players. 64
6.7 Resource added in response to increase in outgoing bandwidth. 64
6.8 Resource released in response to decrease in outgoing bandwidth. . . 65
6.9 Effects on average response time of using CyberOrgs-MMOG API. . . 66
6.10 Effects on outgoing bandwidth of using CyberOrgs-MMOG API. . . . 67
6.11 Time taken to execute resource coordination mechanisms. 68

vii

List of Abbreviations

AA Actor Architecture
AOI Area of Interest
API Application Programming Interface
CDM Cyberorg Directory Manager
FPS First-Person Shooter
fps Frames per second
GDM Game Directory Manager
GPU Graphics Processing Unit
MMOFPS Massively Multiplayer Online First-Person Shooter
MMOG Massively Multiplayer Online Game
MMORPG Massively Multiplayer Online Role-Playing Game
MMORTS Massively Multiplayer Online Real-Time Strategy
NPC Non-Player Character
QOS Quality of Service
SALSA Simple Actor Language System and Architecture

viii

Chapter 1

Introduction

Online gaming has recently become a widely used form of entertainment. In

many online multiplayer games, people play in a persistent world. In contrast with

computer simulated players (also known as NPC or Non-Player Character), the real

time in-game interactions among players combined with the social communications

involving these players has made multiplayer games more popular than most other

types of games [39]. Currently, many multiplayer games are being supported by a

wide range of devices from PCs to dedicated consoles and smartphones. To support

such a large number of players, multiplayer games require a lot of resources. These

resources could be processor cycles, network or storage; however, little effort has so

far been invested for encapsulation and control of these resources. My work aims to

fill this gap: I develop solutions motivated by the CyberOrgs model [23], to improve

upon the largely manual management of resources in multiplayer games, with specific

goals of greater flexibility and scalability. The rest of this chapter is organized as

follows: Section 1.1 presents brief introduction to multiplayer games, especially

online games with a massive number of players. In this section, online game types

(genres) and the growth of popular games is discussed. Section 1.2 and 1.3 present

thesis motivations and contributions respectively.

1.1 MMOG

A Massively Multiplayer Online Game, also known as MMOG or MMO, is a video

game that involves interactions between a large number of players and hence, need

the ability to support a large number of players simultaneously. Most multiplayer

1

games feature at least one persistent world where the game state continues to evolve.

To play an online multiplayer game, one requires an Internet connection as well as

a device capable of rendering and displaying graphical content. These devices include

personal computers, game consoles such as the Sony PlayStation 3, Microsoft Xbox

360, Nintendo DS and Wii as well as Android, iOS and Windows Mobile operating

systems based mobile devices and smartphones. Additionally, MMO game developers

are creating multi-platform games for even greater reach. Web-based multiplayer

games such as Zynga Poker1 can also be accessed from Android and iOS operating

system based smartphones.

1.1.1 Genres

MMOGs enable players to cooperate and compete with each other in a large scale

virtual world, and allows them to socially interact with people around the world.

These games belong in a variety of video game genres. This subsection describes

some of the most popular multiplayer online game genres.

Massively multiplayer online role-playing games, widely known as MMORPGs,

are a very common variant of MMOG. In a role-playing game, each player assumes

the role of a character often represented by an avatar and takes the control of the

character’s actions. Usually, an MMORPG contains at least one persistent world

that continues to evolve even if a player is offline. Like most other genres, these

games are basically designed for thin clients to allow more players to join in a game

session: a thin client like a web browser provides cross-platform access to the game.

This approach reduces cost and provides a more flexible way to play these games.

However, due to the limitation of rendering capability, browser-based games are not

always an option for MMORPGs.

Another popular genre is First-Person Shooter (FPS), which emphasizes on

player’s skill on aiming and tactical thinking [36]. Unlike role-playing games, this

does not depend heavily on in-game bonuses; rather skill is rewarded. Although

1http://www.zynga.com/games/zynga-poker.php, access date = 12/12/2011

2

there are many FPS games, online FPS games are typically not “massive” in their

scale. Popular games such as half-life 2, Battlefield 1943 can support only a few

players, in most cases up to 50 players. Neocron is probably the first of the FPS

games that was targeted at a massive number of players.2 However, some say that

it is a first-person shooter combined with role-playing mechanics.3 PlanetSide, pub-

lished by Sony Online Entertainment Inc. in 2003, is the first MMOFPS claiming to

support thousands of players simultaneously.4

Massively multiplayer online real-time strategy game, also known as MMORTS,

is another popular MMO genre where players usually take the role of a leader - often

as a king or a general, who leads an army. The virtual resources required by this

army often are acquired and maintained by the player. MMORTS usually consists of

one or more persistent worlds where the player can gather resources and fight even

when offline. Examples of this kind of game include Starcraft and Age of Empires.5

A variation on real-time strategy is turn-based strategy, where players play based on

turns or ticks. Ultracorps, published by Microsoft,6 is one example of this kind of a

game.

These are the most common genres for MMOG. Other genres include simulation

games such as for racing and sports.

1.1.2 Growth of MMOG

The popularity of online multiplayer games is steadily increasing. These games are

now widely used for both entertainment and educational purposes. The reasons for

the increasing popularity of MMOGs include social interactions with other people,

portability, co-operation and group-based gameplay, and above all, playing against

human beings rather than non-human characters [33]. Most MMOGs provide some

interfaces allowing communication with other players in the form of text or even

2http://rpgvaultarchive.ign.com/features/previews/neocron.shtml, access date=12/12/2011
3http://www.gamespot.com/neocron/previews/neocron-preview-2844808, access

date=12/12/2011
4http://games.ign.com/articles/400/400835p1.html, access date=12/12/2011
5http://pc.ign.com/articles/700/700747p1.html, access date=12/12/2011
6http://pc.ign.com/objects/663/663003.html, access date=12/12/2011

3

voice. The widespread popularity of smartphones also provides opportunities to

build MMOGs that run on these devices.

MMOG started gaining popularity in the late 1990s with the debuts of Meridian

59, The Realm Online, Ultima Online and EverQuest. The growth rate was faster

than expected. In 1991, Neverwinter Nights was developed with a capability of 50

simultaneous players, a number that grew to 500 by 1995. In 2000, some MMOGs

started to serve more than thousands of simultaneous players. In June 2010, Eve

Online achieved a new record with 60,453 concurrent accounts logged on to the same

server.7 Most recently, in 2011, Chinese MMO ZT Online 2 claimed to reach 435,000

concurrent users.8

Before the arrival of the sixth-generation game consoles, which came with the

Internet access, the reach of MMOGs was limited to personal computers. Since then,

there have been a number of MMOGs developed for game consoles such as EverQuest

Online Adventures for the Sony PlayStation 2 and Final Fantasy XI supported by

multiple consoles.

Recently, MMOGs started to break into more personal devices like mobile phones

and smartphones. These devices allow gamers to play almost anywhere with the

Internet connectivity. Among the first of these is Samurai Romanesque, released in

2001 on NIT DoCoMo’s iMode network in Japan.9 SmartCell Technology developed

Shadow of Legend, one of the first MMORPGs, which allows gamers to continue their

game on their mobile device when away from their PC. Today, many multiplayer

games can be played from more sophisticated mobile devices such as the iPhone or

Android-based phones.

In 2003, a study by Castronova et al. estimated the monetary value of virtual

property in EverQuest, the largest MMOG at that time, at a per-capita GDP of 2,266

USD, which is somewhere between Russia and Bulgaria, and higher than China and

India [11]. Currently, World of Warcraft is the most popular MMOG in the world

with more than 60% of the subscribing player base and about 11-12 million monthly

7http://www.eveonline.com/news.asp?a=single&nid=3934&tid=1, access date=12/12/2011
8http://www.gamasutra.com/view/news/37470, access date=12/12/2011
9http://www.japaninc.com/article.php?articleID=59, access date=12/12/2011

4

subscribers worldwide.11 According to a recent survey made by newzoo10 in the US,

there are 145 million active gamers and among them, 43% spends money on games.

This report also claims, everyday a total of 25M hours are being spent on MMO

games, which is 29% of the total Internet-time spent. According to the same report,

2.6 billion US dollars are spent on MMO games.

The graph in Figure 1.1 presents the growth of some of the mostly played

MMOGs.

1.2 Motivations

We believe online gaming has a great potential for both education and entertain-

ment. In most cases, the consumers do not need to have any expertise and are ready

to pay for this kind of service. As we can see from Figure 1.2, one key requirement

of MMOG is the scalability. The total number of MMOG subscriptions has been

increasing at a very fast rate. In some games, exponential growth has been observed

[15]. Recent MMOGs are connected to different social networks, which facilitates

their growth. On the other hand, developers want to keep as much control over the

game as they can. The result is low utilization and less flexibility over computational

resources. Additionally, developers are responsible for maintaining their hardware

as well. There has not been a lot of research in the area of resource encapsulation

for MMOGs. This thesis addresses the tight binding of resource concerns with the

functional concerns of MMOG. Separating resource concerns would allow game de-

velopers to concentrate only on the functional concerns of the game. I show that

a loose coupling of resource and functional concerns provides greater flexibility in

scalable game design and execution.

This thesis also investigates variability of resource use in an MMOG session.

These variable loads are often referred as dynamic hotspots [12]. MMOG researchers

have been trying to characterize hotspots and offered different approaches [12]. These

dynamic loads are often very tricky to determine in advance because of the variability

10http://www.newzoo.com/ENG/1589-Infograph US.html, access date=12/12/2011

5

Figure 1.1: Subscriptions and Active Accounts with a peak between 1,000,000
and 12,000,000 [3]

Figure 1.2: Total MMORPG subscriptions and Active Accounts [3]

6

of players’ geographic location, life style, work time etc. Additionally, some multi-

player games allow players to make customized tournaments, which may result in

an unexpected load. The random behaviour of hotspots can often affect the over-

all game performance. Dynamic allocation of resources as needed would maintain

the performance as well as it would facilitate better utilization of resources. In this

thesis, a novel approach is developed to deal with hotspots by acquiring resources

dynamically based on the game’s performance parameters.

Another motivation of this research is to investigate the possibility of fine-grained

resource control. Although this has not been addressed for MMOGs, work in other

domains has delivered some promising results [40]. We believe that players are

interested in having greater control over the quality of game experience they receive.

For example, a player may like to play in a bigger world with more enemies and new

types of missions. This, however, may require more resources, which the player may

be happy to pay for. On the other hand, other players may want to stick with the

smaller version of the world as this is more affordable for them. Visual experience

of the players is a similar concern. In this thesis, I have developed API support to

integrate fine-grained resource control with an MMOG.

1.3 Contributions

This thesis addresses resource issues specific to Massively Multiplayer Online Games.

The main contributions of this thesis are as follows:

• Development of mechanisms that supports separation of functional concerns

from resource concerns and, thus, allows encapsulation of computation in

MMOGs. The game developers do not need to be concerned about the re-

sources and can focus on the game development.

• Development of mechanisms to directly control game performance by setting

performance thresholds at which more resources are automatically added or

released. These mechanisms allow game developers having greater control over

the resources and flexibility in managing them.

7

• Investigation on variability in resource use and development of scalable method-

ology to deal with load unpredictability by dynamic allocation or release of

resources based on pre-defined parameters. Methodology observed in previous

studies are adopted to support seamless migration.

• Development of an API that supports the mechanisms mentioned above. A

2D multiplayer game is used to demonstrate the mechanisms supported by the

CyberOrgs-MMOG API. The API is evaluated using this demo game, which

suggests that the mechanisms can be integrated within a game with negligible

impact on the performance of the game.

1.4 Organization

The rest of the thesis is organized as follows. Chapter 2 describes related work pro-

viding background knowledge about resource abstraction, control and dynamic load

balancing for multiplayer games. Chapter 3 discusses the design and implementa-

tion of different components of the system. In Chapter 4, application programming

interfaces are provided. Chapter 5 describes hardware and software platform used

in the implementation and their limitations. Chapter 6 presents the results on the

game performance affected by the API developed and finally, Chapter 7 summarizes

the thesis and discusses some possible future directions.

8

Chapter 2

Related Work

In this Chapter, the existing research work in related areas is reviewed. Section

2.1 presents the Actor model for object-oriented concurrency, which has been used

in this work. Actors offer a natural programming framework for implementation of

open distributed systems. In Section 2.2, a number of Actor implementations are

reviewed. Section 2.3 introduces the CyberOrgs, a model that provides mechanisms

for coordinating resources among self-interested peers. Section 2.4 summarizes re-

lated work in spatial distribution of game space to build scalable multiplayer games.

Works related to genre specific limitations of MMOGs are presented in Section 2.5.

In Section 2.6, research related to crowding and different resource provisioning ap-

proaches to deal with crowding are reviewed.

2.1 Actors

The concept of Actors was first introduced by Hewitt [19] in his work for PLANNER,

a language for proving theorems in Robots. Later, Hewitt et al. formalized the Actor

model in [20, 18]. His work was carried on by Grief, who developed an abstract model

for actors [17] and Clinger, who developed the semantics for actors [13]. Afterwards,

Agha extended actors to programming languages [6, 7]. He is also the pioneer in

modelling Actors for data abstraction [5] in open distributed systems.

Figure 2.1 shows the structure of an actor. Actors are autonomous computational

entities. An actor consists of a state, set of behaviours (methods) and a thread of

control. Actors communicate with each other using asynchronous, point-to-point

messages. Each actor has a globally unique name, which is used by other Actors to

9

Figure 2.1: Structure of an actor.

send messages. As Actors represent computations they can be distributed over time

and space. In other words, it is possible to enable an actor for a specific time at a

specific location. Actors store unprocessed messages in a queue and process them one

by one according to the order of arrival. The processing of messages, however, solely

depends on the scheduling strategy implemented in the underlying Actor System.

Three types of actor primitives may occur during the processing of a message:

• An actor can send messages to another actor. The name of the destination

actor must be known to the sender actor. The messages sent by Actors are

guaranteed to eventually be delivered to the destination actors, but the order

of arrival is not guaranteed.

• New actors can be created with predefined characteristics. The creator actor

knows the name of the newly created actor.

• An actor can change its own state.

10

2.2 Actor Implementations

There are several implementations of Actors. In this section, we review some of the

existing Actor Systems: Actor Architecture [34] , Actor Foundry [26] and SALSA.1

2.2.1 Actor Architecture

Actor Architecture is an actor-based framework implemented in Java. Actor Ar-

chitecture consists of AA platforms that provide execution environments for actors

as well as API support to develop actors. These platforms also allow Actors across

distributed systems to execute and communicate with each other through message

passing. Each AA platform consists of four service layers:

• Actor Management Service:

The Actor Management Service layer manages the states of the actors and

manages all the migrations between the AA platforms.

• Message Delivery Service:

The Message Delivery Service layer handles transportation of all the local mes-

sages in the AA platform.

• Message Transport Service:

The Message Transport Service layer provides an interface to communicate

between actors of other AA platforms. All messages that are sent to or received

from another AA platform pass through the Message Transport Service layer.

• Advanced Service:

The Advanced Service layer provides middleware services, such as matchmak-

ing and brokering, which facilitates look up services to search for a particular

actor.

1http://www.cs.rpi.edu/research/groups/wwc/salsa/index.html

11

Figure 2.2: Actor Foundry Node Structure [9].

The distributed resource management system that is presented in this thesis has

been developed by extending Actor Architecture and the CyberOrgs model. The

CyberOrgs [23] model, discussed in Section 2.3 is developed using Actor Architecture.

2.2.2 Actor Foundry

Actor Foundry is another implementation of Actor model developed using Java.

Each instance of the Actor Foundry run-time system is called a foundry node. Each

foundry node can employ many actor instances and these actors may communi-

cate with each other using asynchronous messages. The message delivery in Actor

Foundry is weakly fair; that is, messages are guaranteed to be delivered eventually

at the destination. Like Actor Architecture, Actor Foundry also allows programmers

to define behaviour of actors through the programming interface provided.

Figure 2.2 shows the structure of a foundry node. As we can see from the figure,

each foundry node consists of seven basic components:

• Actor Manager:

The Actor Manager carries out the operations required for actor creation and

12

begin scheduling. It is also responsible for all intra-node communication and

carries out requests from other actors to the request handler.

• Actor Implementation:

Each actor instance is represented by an Actor Implementation. It transfers

messages to the Actor Manager, which handles local communication inside a

node.

• Service:

The Service Modules provide additional platform specific services to the local

actors. Actors communicate with the Actor Manager to access these services.

• Request Handler:

The Request Handler module bridges a local Actor Manager to another Actor

Manager on a different foundry node. It provides an interface to communicate

other Actor Managers through synchronous or asynchronous remote procedure

calls (RPCs). The low-level detail of the message transport services is encapsu-

lated by the Transport Layer. The request handler also provides Name Service

to identify an Actor.

• Name Service:

Each actor in the Actor Foundry is given an unique name. This name is

generated by the Name Service module. Request Handler, using this module

can setup appropriate Remote Procedure Calls.

• Transport Layer:

The Transport Layer deals with the low-level communication protocols. Mes-

sages of any size are guaranteed to be transported eventually.

• Scheduler:

The Scheduler module schedules all the threads in a foundry node. Actor

Foundry employs fair scheduling strategies.

13

2.2.3 SALSA

Simple Actor Language System and Architecture (SALSA) is an actor-based pro-

gramming language designed for developing dynamically reconfigurable open dis-

tributed applications. SALSA supports all basic actor primitives such as asyn-

chronous message passing, unbounded concurrency and state encapsulation. Ad-

ditionally, SALSA provides universal naming, remote communication and migra-

tion services to support distributed computing over the Internet [38]. Furthermore,

SALSA provides high-level abstractions such as token passing, join and first-class

continuations to facilitate concurrent operations.

SALSA syntax is very similar to Java. SALSA compiler translates a SALSA

source code to a Java source and then Java compiler produces the final Java byte-

code. This facilitates portability across various Java-supported platforms.

2.3 CyberOrgs

The CyberOrgs model [22], introduced by Jamali et al. is a model for hierarchi-

cal resource coordination between multiple self-interested peers over a network of

peer-owned resources. A cyberorg encapsulates an amount of resource as well as

a set of computations executed by concurrent actors. Additionally, a cyberorg can

host another cyberorg and there exists a contractual relationship between the child

cyberorg and the parent cyberorg, potentially the host of a child cyberorg. The

resource required by a concurrent activity, executed by an actor is allocated by the

containing cyberorg. The contractual relationship between cyberorgs is analogous

to a buyer-seller relationship. The virtual currency that flows among cyberorgs is

called eCash.

Figure 2.3 shows the structure of a cyberorg. In this figure, each ellipse rep-

resents a cyberorg and each curved line represents a computation. Each cyberorg

contains actors, eCash, messages and may contain one or more cyberorgs. In this

model, actors represent computations and a cyberorg can use its eCash to buy re-

14

Figure 2.3: Structure of a cyberorg.

sources required for these computations. Actors in the cyberorg communicate using

asynchronous message passing. A cyberorg organizes its resources and computations

in a hierarchical fashion. A cyberorg can purchase additional resources from another

cyberorg according to a contract. This contract is made through a successful negoti-

ation between these two cyberorgs. The contract specifies the types and quantities of

resources that will be delivered to the hosted cyberorg. The cost of the resources is

also specified in the contract. A cyberorg distributes its resources among the hosted

cyberorgs and the local computations according to its own local resource distribution

policy.

The CyberOrgs model defines resources (computational and communication for

example) in terms of time and space. A resource expires at a particular point in time

at a particular location; if it is not used by some computation. In the CyberOrgs,

ticks are defined as the unit of consumable resource and defined in time and space.

For example- a resource R at location L has N ticks available from time T1 to time

T2. Every computation requires a certain number of ticks to complete.

CyberOrgs Primitives

In the CyberOrgs model, three primitive operations are defined.

• Isolation: A cyberorg can create a new cyberorg by using Isolate primitive.

This mechanism allows a cyberorg to collect some of its actors, eCash and

15

Figure 2.4: Isolation and Assimilation.

allows this new cyberorg to be hosted locally. A contract is also formed between

the host cyberorg and the newly created one.

• Assimilation: Using Assimilate primitive a cyberorg can relinquish all of its

computations, resources, eCash and control to its host cyberorg and disappear.

Figure 2.4 shows the isolation and assimilation operation.

• Migration: Migration is a little more complex than the two other primitives

and plays a very important role in the CyberOrgs model. A cyberorg may

realize that its resource requirement has exceeded according to the contract.

If the cyberorg requiring resources has enough eCash, it attempts to migrate

to another cyberorg where it can buy more resources and process its compu-

tations. Before migration, a cyberorg searches for potential hosts that have

enough resources available for purchase. Each migration is initiated with a

contract between two cyberorgs. A cyberorg that requires resources for the

computations it holds can offer other cyberorgs to trade resources for eCash.

Both cyberorgs can negotiate about the terms of the contract. When the ne-

gotiation is successful and a contract is signed, the new host allows the other

cyberorg to migrate and use its resources.

As shown in Figure 2.5, cyberorg C3, hosted by cyberorg C2 migrates to

cyberorg C1 after a successful negotiation.

16

Figure 2.5: Migration.

Figure 2.6: Zoning and Mirroring.

2.4 Spatial Scaling of MMOG

This section reviews some of the ideas that are already being used in some MMOGs.

In Subsection 2.4.1, three different techniques for spatial scaling are discussed: zon-

ing, mirroring and instancing. Additionally, works related to these techniques are

also reviewed. In Subsection 2.4.2, area-of-interest (AOI), a concept being used heav-

ily in MMOGs to reduce communication burden is discussed. This subsection also

presents some strategies that facilitate seamless zonal migration.

17

2.4.1 Zoning, Mirroring and Instancing

Zoning [10] technique used in many games, is based on concepts from data local-

ity in scientific parallel processing. Zones are created to partition the game world

into smaller areas. Each zone is handled by a separate host/server. The host is

responsible for processing all interactions and requests from the clients that reside in

the respective zone. Depending on the implementation of the game, hosts can com-

municate with each other to share updates and may allow players to migrate form

one zone to another. However, this approach alone does not offer much flexibility

and scalability in game design nor does it provide any fine-grained control over the

resources. Zoning is currently being used in some online adventure games, namely

MMORPGs [8].

Another technique called mirroring [30] is used for parallelizing game sessions

for densely populated zones and allows users to see only the objects within their

area-of-interest. These densely populated areas are also referred as hotspots [35].

This novel approach provides distribution of load by replicating the same game zone

over multiple hosts. Each host processes a set of entities called active entities for

that host. Other entities that are not processed are called shadow entities. Shadow

entities are processed in another host where they are considered as active entities.

This approach highly scales because the amount of resource required for data transfer

as well as computation for an update of a shadow entity is much less than that of

transferring and computing the whole game state. Figure 2.6 shows how zoning and

mirroring are used. In the right figure, dark characters represent active entities and

grey characters represent shadow entities.

Instancing [29] offers another approach to scale a multiplayer game by distributing

the load by creating multiple independent instances of the same zone. Sub-areas that

have a very high frequency of access are considered for instancing. Each host respon-

sible for processing a sub-area is called an instance server. The difference between

mirroring and instancing is that each instance server processes entities completely

independent of each other.

18

Based on these three techniques, Real-Time Framework (RTF) [16], a Grid-based

middleware is developed to scale game sessions. RTF is a multilayered service-

oriented architecture that uses the potential of grid computing to provide access to

unbounded amount of resources. Based on RTF, a model for computing load for

MMOGs is developed [35]. This model also offers opportunities to predict load in

advance and necessary steps can be taken to balance the load by real time provi-

sioning of resources. Another load balancing approach is proposed by utilizing the

semantics of the simulation executed by the server [14]. In [37], a communication

architecture is developed for Networked Virtual Environments that takes advantage

of unstructured peer-to-peer (P2P) overlay networks for the distribution of messages.

Some of the above ideas are employed in some MMORPGs. However, MMORPG

is a specific genre that allows a slow-paced gaming experience than other online gen-

res like First Person Shooter (FPS) games. A highly interactive, fast-paced game

requires a lot more processing to update a player’s state than any MMORPG. Also

there are no approaches developed yet to provide fine-grained control over the re-

sources for the gamer community. Motivated by above approaches and CyberOrg

model, this thesis aims to build a scalable online gaming framework with more fine-

grained control over the resources and more flexibility in acquiring resources.

2.4.2 Interest Management and Zonal Migration

Scalability is a critical issue when developing MMOGs or multi-user simulation en-

vironments. In most modern MMOGs, scalability is achieved through interest man-

agement; in other words by dividing the virtual world into smaller areas or zones

where each zone is managed by one server [24]. However, due to the unpredictable

nature of hotspot creation in a zone, the zoning approach, alone does not always

offer the performance and scalability as required. Besides, a static distribution of

these areas makes it hard for clients to migrate from one region to another. In some

games, this is done using portals. Portals are gateways used to transport a player

from one region to another and manages the lag by presenting the user a loading

screen or special effect that does not necessarily require any interaction with the

19

server. However, this is not often the case for most games and many developers

might want to avoid this kind of solution. This approach provides a discrete view to

the users as they can not see objects beyond the zonal boundaries. Some MMOGs

might need a vast open world without these gateways and require to migrate a gamer

from one zone to another seamlessly.

In [27], Lu et al. presented a model that facilitates communication among players

based on the player behaviour and interactions. In this paper, the author defined

the concept of aura, an area enclosed by a sphere for interest management. This

behavioural modelling is dynamic in nature and is based on the altitude and viewer

range of view. In a nutshell, this model only enables the server to deal with the

entities that are in the view radius of the player. Knutsson et al.’s P2P Support for

Massively Multiplayer Games [25] and Iimura et al.’s Zoned Federation of Games

Servers [21] proposed a discrete view of the zones; all computation in a zone is

handled by a server and has a discrete view of the world.

Figure 2.7a shows distribution of game space into several hexagonal shaped zones.

How an entity moves from one zone to another is illustrated by Figure 2.7b. These

approaches independently might provide some level of scalability. However, to offer

a gamer with the seamless experience of a huge virtual world, a different approach to

zonal migration is required. This thesis investigates these approaches, adopts some

of these ideas and combines them to offer a continuous seamless experience to the

gamer community without compromising game performance and scalability.

2.5 Genre specific limitations

Most studies and experimental works so far have focused on the design aspects limited

to a special category of games, role-playing-games (RPGs) [16]. The other online

genres like first-person-shooter (FPS) do not allow “massive” number of players to

play at the same time. This could be due to the higher interactivity and fast-paced

game-play of an FPS than that of an RPG.

A study by Abdelkhalek et al. [4] showed some interesting analysis and presented

20

(a) Distribution of computation among zones

(b) Migration of an entity from A to B

Figure 2.7: Zonal migration

21

(a) Screenshot taken from Halflife 2 (non-
MMO).

(b) Screenshot taken from WoW Cata-
clysm (MMORPG).

Figure 2.8: Screenshots of non-MMO and MMO

some attempts to improve the number of concurrent players in Quake 2, an online

FPS game. Quake 2 is an open source 3D first person shooter game developed and

distributed by id software.2 Quake multiplayer mode follows client-server architec-

ture. All physics simulations, updating state inconsistencies originated from network

delays, hardware issues as well as propagation of updated states to clients are han-

dled by a single, centralized server. The first version of Quake allows 32 players to

play simultaneously. This study was able to increase the player limit from 32 to 90

simultaneous players. Their experiment concluded that the bottleneck is caused by

the lack of CPU resource rather than network bandwidth. In most cases, incoming

bandwidth is constant and low. Some parallelization methods were implemented

using task decomposition and synchronization techniques to increase the number of

simultaneous players.

However, there has not been any significant research in improving the scalability

of FPS games. Recent online games like Counter Strike, Half-Life 2 or Battlefield

1942 do not allow more than few tens of players. Another FPS, Battlefield: Bad

Company (2008) supports up to 24 simultaneous players 3. Figure 2.8 presents

screenshots of an online FPS, Halflife 2 and an MMORPG titled WoW Cataclysm.

2http://www.idsoftware.com/
3http://badcompany.ea.com/about/

22

It is noticeable from the screenshots, that the FPS graphics is much more detail

than MMORPG one. In this thesis, this question is addressed in terms of resource

coordination and sharing. Novel approaches for resource encapsulation, coordination

and sharing for MMOGs are developed. This allows a developer to build online games

with potentially unbounded resources, of course, as long as the developer pays and

thus, can meet the desired QoS and scalability requirement.

2.6 Dynamic Resource Provisioning

This section reviews load variability and approaches that can be used to balance the

consequences on resource usage. Subsection 2.6.1 discusses how hotspots are created

and their behaviour. In Subsection 2.6.2, different approaches to model loads and

some strategies to provision resources dynamically are presented.

2.6.1 Hotspots

Crowding happens when many players move in to the same zone. As each zone has

limited resources, it makes the game server perform poorly if the population gets too

high for the server to handle. Crowding violates the quality of service and affects

gaming performance. The simple distribution model of resources among zones may

not work when crowding happens. Therefore, only even distribution of resources

among zones may not be the best approach for balancing the load. In most cases,

the population distribution caused by crowding is very random in nature and can

not be predicted in advance.

In [12], Chen et al. pointed out that when many players move into the same zone,

the result is “flocking”, an MMOG pattern that can not be ignored. The reason

behind this could be the zone is more interesting for its rich content. Some games

like real-time strategy games and war games may be scheduled for special battles

at specific times. Moreover, people are more likely to play at their leisure time.

Therefore, games could be less overloaded during work hours and more overloaded

during weekends and times when people do not work. Obviously, this also depends

23

on the timezones and the number of players from those timezones as well.

2.6.2 Dynamic load balancing

To deal with transient crowding problem Chen et al. proposed a locality aware dy-

namic partitioning algorithm. This, decentralized algorithm is based on a heuristic

approach that allows the game to i) shed load from an overloaded host considering

the locality of the game-entities and ii) merge hosts in normal load condition for

reducing excessive inter-server communication due to the partitioning of the hosts.

Load shedding is constrained by achieving the safe load target without exceeding

the safe load threshold on any nodes to which the overloaded node sheds load. This

approach is also aimed at preserving the locality, i.e., the number of strongly con-

nected components must have to be same as before load shedding. Additionally,

this strategy also has an optimization goal to keep the number of region migrations

incurred due to load shedding minimal.

Another part of Chen et al ’s work was to aggregate hosts when the quality of

service degrades due to excessive inter-server communication instead of high client

load. They presented a heuristic graph merging algorithm to merge servers and

improve the quality of service.

According to Nae et al. [32, 35], current MMOG industry practice is to over-

provision resources due to the high variability of resource demand and lack of flexi-

bility in resource renting policies from third parties. This kind of over-provisioning

of resources only enables the big companies to enter the MMOG industry. They

addressed the issue of high entry and operational costs and proposed a new dynamic

resource provisioning method for MMOGs using third party data centers to enable

the developers a low cost solution. In this study, Nae et al. attempted to identify the

type of interactions that cause short-term load variability, which complements the

long-term load variability because of the population increase. Based on the player

interaction type and the size of the population, a combined processor, network and

memory model is presented. This model estimates the MMOG resource demands

dynamically and thus, provides opportunities for dynamic resource provisioning.

24

2.7 Chapter Summary

In this chapter, work in several related areas is reviewed including the CyberOrgs,

a model for resource coordination along with Actor Systems and some actor imple-

mentations. Some resource distribution approaches such as zoning, mirroring and

instancing are briefly discussed. Zonal migration, genre specific limitations as well

as load variability issues are addressed as resource coordination problems.

25

Chapter 3

Design and Implementation

This chapter discusses the methodology used in implementing the CyberOrgs-

MMOG platform. The CyberOrgs-MMOG API is extended from the CyberOrgs

API, a prototype of the CyberOrgs model [22] implemented by Zhao et al. [23].

This implementation builds upon Actor Architecture [31], an implementation of the

Actor model [6]; therefore, it is important to understand the structure of the Actor

Architecture as well. Section 3.1 summarizes the design and implementation of the

Actor Architecture. In Section 3.2, design details of the CyberOrgs-MMOG platform

are presented. This section also describes the structure of the CyberOrgs-MMOG

platform along with different components of the system, particularly implementation

details of support for maintaining resource ownership and coordination, as well as

support for zones. Strategies used for incorporating seamless zone migration and load

management are also discussed in this section. Design and implementation of the

broker and ownerships are discussed in Section 3.3. In Section 3.4, implementation

details of Directory Manager, another component of the system, is presented. Section

3.5 summarizes the mechanisms developed to support dynamic resource coordination.

3.1 Actor Architecture

The Actor Architecture (AA) is a middleware system that allows actors (previously

introduced in chapter 2) to communicate with each other within a platform and

provides actors an execution environment. Each instance of the AA run-time, po-

tentially executing on a separate node, is called a platform. An AA platform has

eight components divided into four service layers. Figure 3.1 shows an AA platform

26

Figure 3.1: Structure of the AA platform [34].

27

along with its components. The rest of this section discusses different components

of an AA platform.

• Message Transport Service

The Message Transport Service layer is responsible for transportation of mes-

sages from one AA platform to another. This service layer consists of three

components.

– Transport Manager : The Transport Manager is the central component

of the transport service layer. It provides the AA platform an interface

with other AA platforms. Basically, the Transport Manager creates a

communication channel between one or more Transport Managers located

in other AA platforms.

– Transport Receiver : The Transport Receiver receives messages from other

AA platforms and delivers those messages to the Message Manager of the

current AA platform. The Message Manager delivers the message to the

destination actor.

– Transport Sender : The Transport Sender receives messages form the Mes-

sage Manager of the current AA platform and is responsible for sending

each of these messages to the Transport Receiver of the destination AA

platform. This message sending service must be initiated by a communica-

tion channel created by the Transport Manager. If there is no connection

available, Transport Sender requests the destination Transport Manager

to open up a connection.

• Message Delivery Service

The Message Delivery Service layer provides services to deliver a message to

the destination actor. This layer consists of two components.

– Message Manager : Each AA platform contains at least one Message Man-

ager. The Message Manager is responsible for handling all messages in

the corresponding AA platform. If the destination actor of a particular

28

message is inside the local AA platform, the message is delivered to the

local actor. On the other hand, if the destination actor is located in a

different AA platform, the local Message Manager delivers the message to

the Message Manager of the destination AA platform using the Message

Transport Services. The remote Message Manager eventually delivers the

message to the destination actor.

– Delayed Message Manager : Due to various reasons, such as, actor migra-

tions, network delay or network interruption etc. a message intended for

an actor could be delayed for delivery. The Delayed Message Manager

is responsible for buffering these messages temporarily and delivers them

whenever the destination actor is ready to receive the messages.

• Actor Management Service

The Actor Management Service layer provides services to manage the actors

in the AA platform. This service layer has two components.

– Actor Manager : The Actor Manager manages states of all actors in the re-

spective AA platform. It also deals with actor operations, such as sending

or receiving a message using the Message Delivery Services.

– Actor Migration Manager : The Actor Migration Manager is responsible

for the services that allow an actor to migrate from one platform to an-

other. Migrations are also performed using the Message Delivery Services.

• Advanced Service

The Advanced Service layer consists of only the Directory Manager.

– Directory Manager :

The Directory Manager provides the actor naming services as well as other

services such as matchmaking and brokering.

29

3.2 CyberOrgs-MMOG platform

Figure 3.2 shows a snapshot of the system with the components interacting with each

other during an MMOG game session. There are four types of agents in the system:

resource owner, game owner, broker and game player. These are discussed in more

detail in Section 3.3. A resource owner can own one or more resources, which can be

registered to the Directory Manager as available resources through the broker. There

can be multiple brokers each encapsulated by a cyberorg. Same is the case with the

Directory Managers. As we can see in Figure 3.2, each resource (a CPU for example)

hosts a CyberOrgs-MMOG platform, which allows resource coordination and hosting

of computations on the fly. The CyberOrgs-MMOG platform is also responsible for

monitoring the server load in real time and for making load balancing decisions.

A CyberOrgs-MMOG platform provides a programming interface to developers to

build MMOGs in a modular fashion with clear separation of resource concerns from

computational concerns. Figure 3.3 shows the core components of a CyberOrgs-

MMOG platform with the interactions between the components. A CyberOrgs plat-

form, implemented by Xinghui Zhao [41] manages the underlying low-level details

of resource coordination mechanisms. The Zone Manager keeps track of the hosted

game zones of a specific game instance and facilitates migration of a zone from one

host to another for that particular instance. The Zone Manager also provides feed-

back to the Load Manager about the population of a zone. The Load Manager is

responsible for monitoring the game load and providing feedback to the Zone Man-

ager. There are dedicated Zone Managers and Load Managers for every instance of

a game; a CyberOrgs-MMOG platform can host multiple game instances. A broker

provides interfaces to players and game/resource owners allowing them to interact

with the system. The broker also keeps track of the resources and available games

using the Directory Manager, and thus, provides relevant information to the inter-

acting users. Different components of the CyberOrgs-MMOG platform have been

discussed in the following subsections.

30

Figure 3.2: Snapshot of interactions during MMOG game sessions using
CyberOrgs-MMOG API

Figure 3.3: Components of the CyberOrgs-MMOG platform, broker and Di-
rectory Manager

31

3.2.1 CyberOrgs Platform

The CyberOrgs API provides programmers with more flexibility in resource acqui-

sition by separating the concerns between computations and resources. Figure 3.4

shows the components of the CyberOrgs implementation. Each CyberOrgs platform

contains two additional components along with the Actor Architecture implementa-

tion: CyberOrg Manager and Scheduler Manager. The CyberOrgs implementation

[41] deals with processor resource allocation and coordination. This work has been

modified to support acquisition, coordination and control of resources specific to

multiplayer games. The rest of this subsection discusses different services provided

by CyberOrg Manager and Scheduler Manager in detail.

• CyberOrg Manager

CyberOrg manager encapsulates computations using actors where each actor

represents a computation. The entity that encapsulates a set of computations

(using actors) in a resource boundary is called a cyberorg.

Each cyberorg in a CyberOrgs platform is the basic entity of resource acquisi-

tion and control. A cyberorg consists of a set of actors, some units of eCash,

an amount of resource and a list of hosted cyberorgs. Cyberorgs are orga-

nized as a hierarchy in the platform. Actors in the CyberOrgs platform rely on

their encapsulating cyberorgs for resource acquisition. Cyberorgs coordinate

and exchange resources in a market of resources where eCash is the currency

for acquiring these resources. A cyberorg can use its eCash to buy additional

resources from its host cyberorg in order to support all of its computational

tasks.

Zhao’s CyberOrgs implementation [41] deals with processor time resource. Ini-

tially, all resources in the system belong to the root cyberorg of the platform.

Other cyberorgs can be created or migrated and hosted at this root cyberorg

in a hierarchical fashion. A cyberorg maintains a list of hosted cyberorgs and

there exists a contract for each of them. A contract specifies the amount of

32

Figure 3.4: A CyberOrgs plaftorm

resource a client cyberorg can own and a certain units of eCash that will be

consumed for each allocation of resources.

The CyberOrg Manager is responsible for managing the structural integrity of

the cyberorgs as well as supporting execution of CyberOrgs primitives. The

CyberOrg Manager interacts with the Scheduler Manager in order to control

processor time for each cyberorg. Following are the functions of the CyberOrg

Manager:

1. Maintaining the organization of the cyberorgs hierarchy

One of the responsibilities of the CyberOrg Manager is to maintain the

hierarchical structure of the cyberorgs. The CyberOrg Manager modifies

the hierarchy to reflect the change in the structure if a change is required

by the invocation of a CyberOrgs primitive.

2. Carrying out CyberOrgs Primitives

The CyberOrg Manager is responsible for carrying out the necessary steps

for primitive operations: Isolate, Assimilate and Migrate. Each cyberorg

contains a special actor called facilitator to invoke administrative opera-

tions such as the primitives.

3. Interacting with Scheduler Manager

33

Once the CyberOrg Manager has computed the allocation of resources, it

interacts with the Scheduler Manager to schedule the computations. The

CyberOrg Manager translates the change in allocation of resources as a

result of execution of a primitive operation, and updates the Scheduler

Manager, which eventually reschedules the cyberorgs.

• Scheduler Manager

The Scheduler Manager schedules threads in a round-robin fashion using Java’s

suspend and resume primitives. For efficiency reasons, the CyberOrgs imple-

mentation [23] uses a flat queue. Each computation is scheduled for a time slice

calculated by the CyberOrg Manager according to the contract with the host

cyberorg. The CyberOrgs API only deals with processor resource allocation.

3.2.2 Zone Manager

The Zone Manager manages the distribution of zones. A zone is a part of the game

world created by spatial subdivision of the game world. This spatial subdivision is

required to allow distribution of computation over multiple hosts. In the CyberOrgs-

MMOG implementation, zones are abstracted from the hosts. This is facilitated by

allowing a cyberorg entity to encapsulate one or more zones. The Zone Manager

keeps track of the hosts that are being used for a zone. Like cyberorgs, zones also

follow a hierarchical structure. A zone can be divided into multiple sub-zones and

the parent zone keeps track of how the division is made. Whenever a game player

tries to play in a particular zone, the Zone Manager of the corresponding zone finds

the appropriate sub-zone where the player can start playing. The Zone Manager is

also responsible for keeping consistent states between zones and allows a gamer to

seamlessly migrate from one zone to another.

To facilitate seamless experience, when a gamer moves from one zone to another

each zone boundary is extended. As we can see from Figure 3.5a, the extended

boundaries allow multiple zones to replicate the same region as well as entities that

fall inside that region. In this figure, the thick dotted lines represent the start of

34

the replication process, black continuous lines are the actual boundary of a zone and

light dotted lines are the extended boundary of a zone. Zone A and zone B are

encapsulated by cyberorg A and cyberorg B, respectively. The computational tasks

required for these zones are executed by the hosts of the encapsulating cyberorgs.

The Zone Manager is also responsible for exchanging information between the zones

and keeping the events inside the shared region synchronized. To separate the entities

in the shared region, each entity is tagged either as an active entity or a shadow

entity. Basically, a shadow entity is a replica of an active entity. Whenever a player

or an entity navigates through the shared region, it becomes an active entity to the

new zone and becomes a shadow entity in the old zone. During this migration, the

connection between a game player and a host is also transferred to the host of the

new zone.

A game player only receives the updates he can see. This is defined by the

area of interest (AOI), the visible region around the entity. The AOI contributes

to the outgoing bandwidth of a host, in other words, network resource. Therefore,

by controlling the size of the visible area around, a game player can control the

consumed network resource.

Figure 3.5b illustrates a typical migration of an entity from zone A to zone

B. For a smooth transition from one zone to another the area near the boundaries

are replicated on both servers and mostly created with static, non-movable objects.

Following steps are taken to facilitate a seamless zone migration.

• Step 1: The entity within zone A moves into the overlap region and is replicated

as a shadow entity on zone B. Here, zone A and B are encapsulated by cyberorgs

A and B, respectively. The handoff process starts as soon as the entity’s area

of interest falls into the overlapped region.

• Step 2: After the entity passes the half way of the overlap, cyberorg A au-

tomatically changes its status in A from active to shadow and vice versa for

cyberorg B.

• Step 3: As soon as the entity leaves the overlap and enters completely into

35

(a) Zones with associated resources

(b) Migration of an entity from zone A to B

Figure 3.5: Seamless migration between zones

36

zone B, cyberorg A removes the entity from zone A.

If the entity is a player’s avatar, the connection between the player and the host of

cyberorg A is transferred to the host of cyberorg B during step 2. In the CyberOrgs-

MMOG implementation, the width of the overlapping zone is equal to the diameter

of the area of interest (the view range surrounding the player in 2D case) of the

player. This allows the involving zones to have enough time for a seamless zone mi-

gration. The width of the shared region and a player’s area of interest are adjustable

system parameters and game owners can adjust these parameters according to their

quality of service requirement. The seamless migration can be further facilitated

by incorporating caching mechanisms on game client during the connection transfer

phase.

3.2.3 Load Manager

The Load Manager is responsible for monitoring the load and makes load balancing

decisions. Based on the decisions made by the Load Manager, the Zone Manager

divides the zones into sub-zones and takes appropriate actions to keep the load

balanced. To facilitate load management, each zone is monitored using an actor that

keeps track of the size of the zone, population, total number of interacting entities

and the average server response time. Based on the information the monitoring agent

provides, the Load Manager points out the location and shape of a possible hotspot

(previously mentioned in Chapter 2). The Zone Manager, using the feedback from

the Load Manager divides the zone into sub-zones. Performance parameters such as

response time, average outgoing bandwidth etc. can be predefined, which allows the

Load Manager to make decisions on when to look for new resources. Each of the

sub-zones are encapsulated by one or more cyberorgs. CyberOrgs’ isolate primitive

is used for this purpose.

On the other hand, an underloaded zone can be aggregated with another under-

loaded zone. The aggregated zones do not necessarily have to be neighbours as this

is not a spatial aggregation. In both cases, the parent zone must be informed about

37

any kind of division or aggregation.

3.3 Broker

The broker provides resource coordination services to game players, resource owners

and game owners, and hence, allows them to buy and sell resources in an open

market. The broker is also responsible for providing separate graphical interfaces to

the interacting participants for any game instance. Each of these participants is a

software client working on behalf of the users. These participating users are divided

into three categories based on the ownership of resources and computations:

1. Resource owner

2. Game owner

3. Game player

A resource owner registers its resources through the broker and the information

about available resources is stored in the Directory Manager (discussed in the follow-

ing section). Both the broker and the Directory Manager are distributed components.

A broker can search in multiple Directory Managers and a Directory Manager can

provide information to multiple brokers. A game owner registers its game following

the same procedure. It can also search for available resources and can negotiate for

acquiring resources, which is done through the broker. Both a resource owner and

a game owner can negotiate on the terms of the contract. Once both parties agree

on the contract, resource is allocated for the game and a certain amount of eCash is

consumed by a resource owner according to the terms of the contract. A game owner

can start the server on the allocated host according to the terms of the contract.

The services provided by the broker include registering and search services for the

resource and game owner, payment methods, default policies for resource allocation,

customization options and storing policies to a repository etc. The broker interacts

with the Directory Manager to search for available resources, and helps a game owner

to find out appropriate resources to accomplish his goals.

38

A game player can look for available games or different versions of the same game.

Different versions of the same game can be made available by a game owner at varying

costs, because they may involve varying resource consumption. Therefore, a player

also gets a certain level of resource control. In other words, a game player controls

their game experience by controlling the payment it makes. Once a game player

decides on a particular game and pays for it, he can connect with the appropriate

host and a game session is started. It should be mentioned that after joining a game

session all in-game communication is done between the host and a game player.

Figure 3.6a and 3.6b show the step-by-step flow of information among different

parties. One crucial part of these communications is to maintain a consistent game

state for multiple hosts. This is the case that might appear when the game world

becomes large and population increases to a point where a single server can not

serve the purpose. We adopt a combination of zoning and replication [16, 28, 29]

and exploit the advantages of limited visibility (Area of Interest) to keep the game

servers consistent. The approaches used for consistency management are discussed

in one of the following sections.

3.4 Directory Manager

The Directory Manager provides yellow pages services to the broker. These services

are mostly in response to the requests for available resources, games and hosts. The

responses are processed and forwarded to the appropriate individuals in a presentable

format. The Directory Manager is divided into two sub-components: Cyberorg Di-

rectory Manager (CDM) and Game Directory Manager (GDM).

The CDM keeps track of the available resources and contracts associated with

them. Each of the available resources is encapsulated by a cyberorg entity. The

CDM stores the name and location of the cyberorgs along with the hosting cost.

On the other hand, the GDM stores information on the available games, available

hosts along with the final contracts between a resource owner and a game owner.

This sub-component stores the name of the games as well as the name and location

39

(a) Flow diagram for buy/sell of resources

(b) Flow diagram of a game session start-up

Figure 3.6: Flow diagrams

40

of the cyberorgs hosting these games.

3.5 Dynamic Resource Coordination Mechanisms

The mechanisms that are developed to support dynamic resource coordination can

be divided into three parts- Encapsulation of Zones, Load Detection and Migration.

• Encapsulation of Computation

In the CyberOrgs-MMOG platform, the computation is defined in terms of

zones. Previously, in Section 3.2.2 zones are introduced. The CyberOrgs-

MMOG platform encapsulates zones in cyberorg entities. A cyberorg hosting

a zone is responsible for carrying out all computation required by the players

or entities inside that zone.

• Load Detection

The CyberOrgs-MMOG platform monitors the number of players, average re-

sponse time experienced by the players and the average bandwidth among the

resources. Monitoring is done by a separate actor in the platform. The API

allows game developers to control load detection by defining thresholds for

these parameters. If one of these parameters goes beyond the defined limit

an overload condition is detected. This mechanism is carried out by the load

manager as discussed in Subsection 3.2.3.

• Migration

Migration of a zone happens when an over-load or under-load condition is

detected by the load manager. The CyberOrgs platform, discussed in 3.2.1

is responsible for carrying out the migration process in a seamless fashion.

The zone manager divides the over-loaded zone into two or more sub-zones by

identifying the load characteristics. These sub-zones are encapsulated within

new cyberorg entities and migrated to available resources. Similarly, when

under-load condition is detected zones may be merged to increase resource

utilization. Detail discussion on the CyberOrgs platform can be found in 3.2.1.

41

3.6 Chapter Summary

In this chapter, we described the implementation of the CyberOrgs-MMOG API.

The design of the system and implementation details are also presented. The im-

plementation is constructed on CyberOrgs API and Actor Architecture, which is an

implementation of Actors. This chapter also discusses other actors in the system

such as the broker and the Directory Manager along with their respective responsi-

bilities. This chapter also presents the flow of information among different clients.

Approaches used in the CyberOrgs-MMOG API to divide zones, support for seamless

migration of an entity and migration of an entire zone are also discussed thoroughly.

42

Chapter 4

Application Programming Interface

The CyberOrgs-MMOG implementation provides application programming in-

terfaces for creating cyberorgs, and allows encapsulation of resources and computa-

tions. Moreover, the API facilitates resource coordination between computations in

an open market of resources. The API offers an interface for the game developers to

customize load balancing operations and allows them to exercise fine-grained control

on the distribution of zones. In the following sections, these interfaces are discussed

in detail. Most of these interfaces, implemented as methods encapsulated in actors

can be accessed by sending messages to the appropriate actors. Actors can be ex-

tended to employ resource coordination mechanisms based on the game experience.

These are discussed in this chapter to demonstrate the flexibility CyberOrgs-MMOG

API offers for coordinating resources.

4.1 APIs for cyberorgs creation and primitives

Like a CyberOrgs platform, a CyberOrgs-MMOG platform supports two types of

creation: cyberorg creation and actor creation. The first cyberorg (root cyberorg)

is created at the startup of the platform. It can also be created using the avail-

able graphical user interface or from a user program. Subsequent cyberorg creations

result from invocation of the isolate primitive. Actor creation can be triggered by

other actors in a platform or a facilitator actor in case of a cyberorg. A facilitator

actor is a special actor that performs administrative tasks for a cyberorg [23]. The

administrative tasks include invoking CyberOrgs primitives such as creation of a

new cyberorg, migration of a cyberorg and assimilate to a parent cyberorg. Param-

43

eters that are used to make a load management decision- such as response time and

bandwidth- can be configured through a configuration file, which the developer may

use to enforce certain performance goals.

CyberOrg creation :

CyberOrg createCyberOrg(long ticks, long ticksrate, long eCash,

String facilitatorClass, Object[] args)

where ticksrate is the rate of processor time that the new cyberorg would receive

with respect to the cyberorg in one scheduling cycle; eCash is the number of eCash

units that are used for buying processor resource from host cyberorg; facilitatorClass

and args identify the facilitator actor class for the cyberorg and the arguments for

creating such a facilitator actor.

Actor creation:

Each actor in the CyberOrgs-MMOG platform represents a computation. Actors

can be created either by another actor or a cyberorg. Both of the variations are

discussed below:

• ActorName createActor(ActorName creator, String actorClass,

Object[] args)

where creator is the unique actor name of the creator; actorClass and args

specify the class of the actor being created and the arguments used in the

actor constructor. This method is used by one actor to create another actor.

• ActorName createActor(CyberOrg host, String facilitatorClass,

Object[] args)

where host identifies the creating cyberorg; facilitatorClass identifies the actor

class of the facilitator and args specify the arguments to be used in constructing

the facilitator actor. This is used by the cyberorg constructor at the time of

cyberorg creation.

44

CyberOrgs Primitives:

Primitive operations are called by the facilitator actor of a cyberorg.

• Isolation:

CyberOrg isolate(long eCash, ActorName[] actors, Contract newContract)

where eCash is the amount of eCash that is given to the newly created cyberorg;

actors is a list of existing actors that will be isolated into the new cyberorg;

newContract is the contract imposed on the new cyberorg and its host cyberorg,

which specifies the ticks, ticks rate of processor as well as total length of data

and data rate (for network resource control) that the new cyberorg receives, as

well as the cost of the resources in terms of eCash payments to be made.

• Assimilation:

CyberOrg assimilate()

This primitive will cause assimilation of the cyberorg into its host. Invocation

of this primitive results in releasing all resources, eCash and computations to

the parent cyberorg.

• Migration:

void migrate(ActorName facActorOfDestCyberOrg, Contract newContract)

where facActorofDestCyberOrg is the name of facilitator actor in the destina-

tion cyberorg, which serves as the cyberorg’s name; newContract is the nego-

tiated contract between the migrating cyberorg and the intended host.

Negotiation

Every migration starts with a negotiation between a cyberorg and a prospective

host cyberorg. The negotiation is invoked by the facilitator actor of the migrating

cyberorg.

45

Contract negotiate(ActorName destFacilitatorActor)

Here destFacilitatorActor is the facilitator actor of the prospective future host Cy-

berOrg. A Contract object holds 3 attributes -

• Ticks- The amount of resources that are given to the child cyberorg in one

scheduler cycle.

• Ticksrate- The rate of resources that the child cyberorg would get with respect

to the root cyberorg.

• Price- The virtual price of the resource in terms of eCash.

4.2 API for Resource Owner

The following invocations allow registering and deregistering of potential cyberorgs

that have available resources :

void register(CyberOrgTuple p_ctTuple)

void deregister(CyberOrgTuple p_ctTuple)

Here p ctTuple is an instance of CyberOrgTuple that encapsulates necessary infor-

mation such as the IP address, associated contract and the facilitator actor of a

cyberorg. A resource owner can send a request to register its resources to CyberOrg

Directory Manager through a broker. A Broker provides “registerToCDM” method

for this purpose.

void registerToCDM(CyberOrgTuple cyberOrgTuple, ActorName sender)

Here, sender is the name of the actor that sends the message on behalf of a resource

owner; cyberOrgTuple encapsulates the information required to access the resource.

4.3 API for Game Owner

Game owners are the publishers or developers of the game. Initially, a game owner

sends a request to a broker to find out what are the potential resources available.

46

the broker receives this request, in response it returns a list of cyberorgs that are

currently registered in CDM. Upon receiving this list, a game owner proposes a

contract to each of the cyberorg from the list and keeps doing this until a successful

negotiation is made. Once a contract is signed, the cyberorg is inserted into GDM and

removed from CDM. Following are the interfaces provided by a broker to facilitate

these services.

void getNewResource(Contract contract, String gameName,

ActorName sender)

Here, contract represents the search criteria for potential resources; gameName is the

name of the game and sender represents the actor responsible for making requests

on behalf of a game owner.

void negotiate(CyberOrgTuple cyberOrgTuple, Contract contract,

ActorName sender)

This method provides an interface to the negotiation process. Here, cyberOrgTuple

identifies the potential resource with a proposed contract.

void registerToGDM(CyberOrgTuple cyberOrgTuple)

This method registers a cyberorg, identified by cyberOrgTuple with additional game

related information into the GDM.

4.4 API for Game Player

A game player initially requests a broker for the available games that are provided

by different game owners. The broker then searches in the GDM for resource that

matches the price tag mentioned in the contract. This search result is presented

to the player as a list of games. Once a game is chosen, a list of available hosts

is presented. Now game player can select a particular host from this list and get

connected to the chosen host. During this connection phase, the player pays the

respective game owner. Following interfaces are provided to a player.

47

void getGameList(Contract contract, ActorName sender)

This method searches for appropriate games according to the contract where sender

represents the player actor. The contract object facilitates controlling of game ex-

perience by controlling the resources it consumes.

Object[] getServerList(String gameName, Contract contract)

This method returns a list of available servers for a particular gameName according

to the specified contract.

4.5 APIs for Zone Division and Load Manage-

ment

This part of the API provides interfaces to access and update zone related infor-

mation such as population of the zone, size of the zone etc. It also consists of an

algorithm to divide zones in smaller sub-zones. This algorithm currently creates rect-

angular zones. Developers can implement their own algorithm based on their needs.

These methods are implemented in a static class ZoneDivider. In this section, some

of these interfaces are discussed.

ZoneBox createZoneBox(String zoneName, String ip, int x, int y,

int width, int height)

This method creates a ZoneBox object, which stores metadata of a zone such as size,

IP address of the cyberorg encapsulating a zone. zoneName represents the name of

the zone, where x, y, width and height represents the rectangle that defines the size

of the zone. IP address can be obtained as an available resource by accessing broker

services. It should be noted that the ZoneBox class does not represent the actual

zone. It comprises of data and methods required by the zone division algorithm.

void incrementPopulation(RPObject rPObject)

48

This method allows updating the population of the zone and is called when a new

player joins a zone. This event is detected by an actor that keeps track of the changes

occurring in every turn. Here, rPObject is an instance of RPObject representing the

new player entity.

void divideZoneStrategy()

This method defines the zone division strategy. The cutoff performance paramenters

such as population limit, bandwidth and response time can be defined in the config-

uration file. In the following section the format of the configuration file is shown.

void resetPopulation()

The population of a zone can be reset to zero by invoking this method. This is

mostly used during a new zone creation.

Moreover, ZoneDivider class implements methods to detect if an entity repre-

senting a player is in the region shared by two zones, to define the extension of the

boundary of a zone that is replicated from another zone, to identify a player’s zone

etc. Load Manager detects a load condition by accessing these methods.

4.6 Configuration File

A file named “server.ini” provides easy access to configure the system-wide proper-

ties. Following is an example of a typical configuration file. The maximum number

of players for each zone can be specified in this file. The parallel connection limit

poses a restriction on how many simultaneous connections can be made from the

same client machine. For the purpose of simulation, the limit is set to 1000 as most

of the players are simulated clients from the same machine. In real world gaming,

this has to be set to a much smaller number to prevent flooding or cheating. Zone

size defines the number of players in a zone that initiates a load balancing task.

Same is the case with repose time cutoff and bandwidth cutoff. However, only one

of these parameters can be set.

49

server.ini

max_number_of_players=500

parallel_connection_limit=1000

zone_size=150

reponse_time_cutoff=60ms

bandwidth_cutoff=80KB/s

jdbc_url=jdbc:mysql://localhost:3306/marauroa

jdbc_class=com.mysql.jdbc.Driver

jdbc_user=root

jdbc_pwd=123

tcp_port=5555

turn_length=220

Other properties that can be set are the information to access the database,

length of each turn etc.

50

Chapter 5

Experimental setup

In this chapter, design and development of the simulation environment are dis-

cussed. Section 5.1 illustrates APIs and software used in the experiment. Section 5.2

presents specification of the hardware used for the experiment. Section 5.3 describes

the simulation environment along with its limitations.

5.1 Software Platform

In this section, Actor implementation such as Actor Architecture and resource co-

ordination API such as CyberOrgs API are summarized. Because both CyberOrgs

API and Actor Architecture are based on Java’s concurrency, it was preferred to

use a game developed in Java. JMaPacman [1], an open source multiplayer version

of the popular 2-D game Pacman is used to illustrate the mechanisms supported

by CyberOrgs-MMOG API. JMaPacman is developed using Marauroa [2], an open

source game engine for multiplayer games. In this section, both JMaPacman and

Marauroa are summarized.

5.1.1 Actor Architecture

Actor Architecture [7] is Java-based framework that enables a programmer to write

actor programs in popular Java syntax. It is actively being developed by the Open

Systems Laboratory at the University of Illinois.

Actor model of programming comprises of concurrent entities called actors. Ac-

tors can communicate with each other using asynchronous message-passing. An actor

does not share its state with other actors and therefore, the model is free from low-

51

level data races. Actor Architecture provides an execution environment for actors

and it supports actor primitives, such as sending and receiving messages, creating

new actors, and changing local state. An instance of Actor Architecture run-time

system is called an AA platform.

Actor Architecture uses fair scheduling techniques to schedule messages. It pro-

vides pattern-matching services to search and identify an actor that can be located

in a local platform or a remote platform.

5.1.2 CyberOrgs API

In Actor Architecture, resource allocation relies on the underlying Java Virtual Ma-

chine (JVM). To support resource coordination, Actor Architecture is extended to

CyberOrgs [23], which makes the resource control visible to the programmers.

CyberOrgs is developed by adding two key components to the Actor Architec-

ture: CyberOrg Manager and Scheduler Manager. Each instance of a CyberOrgs

platform comprises of entities called cyberorgs. A cyberorg encapsulates a set of

actors, resources (CPU cycles) and some eCash to buy more resources from another

cyberorg. CyberOrg Manager is the central component of each CyberOrgs platform.

All resource coordination operations are carried out by the CyberOrg Manager. The

results of such operations are sent to Scheduler Manager, which schedules all actors

in the platform according to these results. The mechanisms provided by CyberOrgs

API includes creation of a new cyberorg entity (isolation), adds mobility to a cy-

berorg (migration) and merging of two cyberorgs (assimilation). CyberOrgs API can

be downloaded from.1

5.1.3 Marauroa Game Engine

Marauroa is an open source multiplayer game engine based on Arianne,2 an online

gaming framework. It consists of a multiplayer online game engine to develop turn

1Xinghui Zhao, http://agents.usask.ca/Agents Lab/Agents Lab - CyberOrgs.html, access
date=7/6/2012

2Arianne, http://arianne.sourceforge.net/, access date=7/6/2012

52

based and real time games, and the various games, which use it. Marauroa provides

perception based client-server communication, asynchronous database persistence

and handles object management.

Marauroa uses a multithreaded server architecture, TCP socket based communi-

cation and a MySQL or H2 based persistence engine. Marauroa, developed in Java

provides a flexible game system that allows the developers to extend and modify the

game engine. Game scripting can be done using either Java or Python.

Marauroa is based on a philosophy called Action/Perception, on each turn a

perception is sent to all clients connected to a server explaining the surroundings

(obstacles, entities, power-ups etc) around them. Clients can request the server to

do any action in their names. The result of an action may change the state of

the game, which is notified to the clients in the next turn. Marauroa is totally

game agnostic, i.e., it makes very little assumptions about the type of game under

development, allowing a great freedom in creating games of any genre. Further

details are available online [2].

5.1.4 Jmapacman

JMaPacman is a multiplayer remake of the popular classical game Pacman. Although

JMaPacman is a clone of the old arcade game Pacman, it is built on new game design

principles and features. JMaPacman supports multiplayer functionality and allows

developers to build customized maps. JMaPacman uses Marauroa game engine to

add multiplayer functionality and Java2D to render graphics. Figure 5.1 shows a

screen shot from the game.

Each JMaPacman instance consists of a game world. This game world com-

prises of a number of zones. The CyberOrgs-MMOG API assists the zones from the

same instance to be distributed over multiple servers by sharing the state of a zone.

Dynamic resource coordination is triggered when a particular area of a zone gets

over-populated or under-populated. Dynamic resource coordination mechanisms,

provided by CyberOrgs-MMOG API allows detection of these load conditions, di-

vision of the zones into smaller zones or merging into a larger zone and therefore,

53

Figure 5.1: Screenshot taken from JMaPacman [1]

distributes the computational load among multiple servers. Each of these zones

is encapsulated within a cyberorg entity allowing resource coordination with other

cyberorgs.

5.2 System Configuration

Detailed specification of the system used are discussed below:

Servers:

A cluster of 4 Apple XServers operated by Mac OSX servers each with 2 x 2.8 GHz

quad-core Intel Xeon processors and 8GB of RAM. All of these machines were used

as game servers (resources).

Client generators:

• 1 Mac OSX server with the same configuration as above

54

• 1 iMac with Mac OS X v10.5 Leopard, 3.06GHz Intel Core 2 Duo processor

and 4GB of RAM

• 1 MacAir with Mac OSX v 10.6.8 Snow Leopard, 1.8 GHz Intel Core 2 Duo

processor and 2 GB or RAM

All of these machines were used for creating simulated clients.

5.3 Simulation

There are three types of users who can access the CyberOrgs-MMOG platform -

resource owners, game owners and game players. For a particular game, there could

be multiple resource owners associated. Same is the case with game players. All of

these users connect with the CyberOrgs-MMOG platform through their respective

clients. However, this requires a large number of users to properly study the perfor-

mance of the API. Due to time constraints, instead of going through a user study, a

simulator is developed to automate the ownership and resource coordination process

(mechanisms supported to game owner and resource owner).

The simulator has two components - one for automating the resource coordination

(integrated with the server) and one to generate simulated clients (as a separate

application). Each client is a Java thread that sends random actions to the server and

receives perceptions. Each of these threads encapsulates a JMAPacman client. As

these clients do not need to render the game on a display device, they are simplified

from the original implementation of JMAPacman client. The clients are configured

only to send and receive data. Clients are generated with an interval of 0s to 20s

which is uniformly distributed. On the other hand, the server-side component collects

statistical data from the connected clients, which is used to evaluate the API.

Actions are to navigate the map, which can be any of up, down, left and right.

Perceptions are basically list of changes in attributes of entities in the player’s sur-

rounding. These entities include walls, power-ups, enemies and other players. Based

on the changes in these surrounding entities a simulated player can choose one of the

55

available actions. If there are multiple available actions that can be executed one of

them is chosen in a random fashion. This approach is taken to have the simulated

clients behave as close as to the real players. The interval between two consecutive

actions is also a random number generated using an uniform random distribution

with an interval between 0s to 10s.

56

Chapter 6

Experimental results

This chapter presents the experimental results of the simulation. All of the ex-

periments were performed using the simulator briefly discussed in Section 5.3. The

organization of this chapter is as follows: In Section 6.1 unique features provided by

the API are summarized. Section 6.2 discusses about the design of the experiment.

In Section 6.3, various QoS parameters such as response time and average outgoing

bandwidth are evaluated in respect of CyberOrgs-MMOG implementation. Mech-

anisms provided by CyberOrgs-MMOG API enables multiple peers to coordinate

resources. Section 6.4 presents the performance analysis of the API mechanisms.

6.1 CyberOrgs-MMOG API

CyberOrgs-MMOG API comes with a library that allows integrating resource control

mechanisms for Massively Multiplayer Online Games. Following are some of the

features come with the API.

• Improved programmability: The API allows game developers to integrate so-

phisticated functionalities, which adopts to existing proven models and ap-

proaches. By properly configuring the API developers can build scalable MMOGs

without compromising the game performance. However, when integrating the

API-supports to an existing MMOG, developers have to make sure that the

game design allows spatial distribution of the game world and provides enough

abstraction so that the API can encapsulate and control the distribution of

game computation.

57

• Resource coordination mechanisms: The API supports mechanisms that allows

acquisition of resources during a overload condition in a flexible and seamless

way. Similarly, mechanisms to release resources are also integrated within the

API. The addition and release of resources can dynamically control the game

performance even in case of hour-to-hour fluctuations. The results on the

evaluation of these API mechanisms are discussed later in this chapter.

6.2 Experiment Design

In order to demonstrate the mechanisms supported by the CyberOrgs-MMOG API,

the experiment is designed to show that the quality of service requirements can be

fulfilled without significant overhead. Two of these performance parameters are eval-

uated in this experiment - average response time and average outgoing bandwidth.

Response time represents the delay that a player experiences when sending a

request to a server. In short, response time is the time difference between a player’s

action and a server’s response to that action. It is expected that the average re-

sponse time meets the requirement of the game’s rendering rate. The game client

should be able to render in such a rate so that a player does not experience any

lag. The mechanisms supported by the CyberOrgs-MMOG API facilitates acquisi-

tion of resources whenever the response time goes beyond a certain limit and vice

versa. Similarly, average outgoing server bandwidth can be controlled. Usually, for a

multiplayer game server the outgoing data packets contain more data than incoming

requests from a game player. Therefore, outgoing bandwidth plays a vital role in

keeping a high-performance gameplay.

In the following section, these two performance parameters are evaluated to show

that these parameters can be used to control the game performance. The overhead

caused by these mechanisms are analyzed in Section 6.4. The overhead is observed

by comparing the average response time and outgoing server bandwidth with those of

a server not integrated with the CyberOrgs-MMOG API. Each of these experiments

was performed for up to 20 runs and averaged.

58

6.3 Controlling QoS Parameters

This section presents the evaluation of game performance parameters by coordi-

nating resources dynamically. The experiment is done with two parameters- average

response time and average outgoing bandwidth among servers. At first, each of these

parameters are evaluated based on the number of players. A new resource is added

or released to the game when the number of players reach a certain threshold. Then

we evaluate by defining a cut-off value for these parameters. Following subsections

present the results.

6.3.1 Average Response Time

Figure 6.1 and 6.2 show the change in response time against the number of players.

A new resource is added when the average number of players per server reaches 50,

in other words, when the total number of players reaches a multiple of 50. In these

figures, black marks represent addition or release of resource. In this experiment,

new players are distributed among the resources in an uniform fashion. From the

figure, we can see the response time rises up to 70ms and each time a new resource

is added an improvement in response time is observed. Moreover, we can observe

from the figure that the peak response times are not equal, though the average load

among all servers is the same. The reason behind this can be a resource is loaded by

other applications. Another reason can be the uneven distribution of players among

the servers as the simulated players can move from one zone to another during a

migration (resource addition). On the other hand, Figure 6.2 shows the release

of resources in response to decrease in number of players. The experiment starts

with 200 simulated players uniformly distributed among 4 resources. Similar to the

previous experiment, resources are released when the number of players decreased

to a multiple of 50. In this case, the minimum average response time observed is

approximately 20ms.

Figure 6.1 and 6.2 show addition or release of resources based on the number of

players. However, this approach does not keep the increase or decrease in response

59

Figure 6.1: Resource added in response to increase in number of players.

Figure 6.2: Resource released in response to decrease in number of players.

60

time under control. By controlling the response time a game developer can control

the quality of the gameplay. Figure 6.3 and 6.4 show the results of such control in

response time. In this experiment, a new resource is added or released only when the

response time reaches certain values (can be defined in the configuration file described

in 4.6), which in this case are 60ms and 20ms, respectively. These threshold values

are set based on the minimum time required to render a frame. According to some

studies,1 the required minimum frames per second is highly dependent on the type

of animation in concern. However, often 24fps (frames per second) is used as a

standard value in many computer games. This gives the Graphics Processing Unit

(GPU) around 42ms time to render and display a frame. Based on this observations,

the upper limit for response time is set to 60ms to detect an overload condition.

On the other hand, 20ms of response time is set as a minimum requirement while

releasing resources. We allowed this space in response time to avoid fluctuations

which often develops due to network delays. It is also observed that the number

of players may not be the same for every addition or release of resource. Another

observation is that the peaks do not happen when a resource is added rather after a

few more players are added. This is because the simulator application continuously

adds new players in a random time interval of 0s to 20s, which often may occur

before a migration (resource addition) process is complete.

6.3.2 Average Outgoing Bandwidth

Figure 6.5 and 6.6 show the change in average outgoing server bandwidth per

server against the number of players. As in Subsection 6.3.1, similar setup is used

in this experiment. A resource is added or released when the total number of players

reaches multiple of 50 and the change in average server bandwidth is observed. As

we can see from the Figure 6.5, the average bandwidth rises up to 110KB/s and

each time a new resource is added an immediate improvement in average server

bandwidth is observed. Figure 6.6 shows that the bandwidth goes down to 20KB/s

1http://www.grand-illusions.com/articles/persistence of vision/

61

Figure 6.3: Resource added in response to increase in response time.

Figure 6.4: Resource released in response to decrease in response time.

62

Figure 6.5: Resource added in response to increase in number of players.

while releasing the resources, We also observe that the peak bandwidths are not

equal, though the average load among all servers is the same. Similar reasoning as

discussed in Subsection 6.3.1 can also be applied to explain this observation.

To keep the bandwidth under control, cutoff values are set to 80KB/s and 30KB/s

and the results are shown in Figure 6.7 and 6.8, respectively. As the available

outgoing bandwidth is a network resource which can vary from one server to another,

these values are set based on the previous approximation of bandwidth requirement

when number of players were considered as a control parameter (Figure 6.5 and

6.6). This approach allows the resource coordination decisions to be made only

when the average bandwidth exceeds this threshold. By controlling the bandwidth,

a game owner can control the network delay experienced by a game player. Same as

the experiment with the response time, the threshold bandwidth can be set in the

configuration file discussed in Section 4.6.

It is possible to enforce cutoff values for both response time and bandwidth at

the same time. A game owner can choose to control one of these parameters or both.

63

Figure 6.6: Resource released in response to decrease in number of players.

Figure 6.7: Resource added in response to increase in outgoing bandwidth.

64

Figure 6.8: Resource released in response to decrease in outgoing bandwidth.

Moreover, other server controlled quality of service parameters can be defined with

some modification in the CyberOrgs-MMOG API.

6.4 Performance Analysis

Experiments have been carried out to look at the overhead of using the CyberOrgs-

MMOG API. Instead of adding new resources, we observe the change in average

response time with increase of players. The data observed are compared with a

similar setup without using the CyberOrgs-MMOG API. This section also presents

experimental results on the time the API takes to coordinate resources.

6.4.1 Overhead Analysis

Figure 6.9 shows the comparison of response times with or without the use of

CyberOrgs-MMOG resource coordination mechanisms. Two separate experiments

are carried out. Each of them are executed for 20 runs and averaged for more accurate

65

Figure 6.9: Effects on average response time of using CyberOrgs-MMOG
API.

results. For the experiment using CyberOrgs-MMOG API, all resource coordination

and acquisition mechanisms are enabled except that players were not allowed to

migrate. And then the result is compared with the response time provided by the

game itself. It is observed that the response times provided by both experiments are

very similar. The game with CyberOrgs-MMOG API is configured to make resource

decisions when the number of players is more than 30. This triggers the load manager

and the zone manager to look for additional resources.

Figure 6.10 presents the result of similar experiment on the outgoing bandwidth.

It is observed that the bandwidth requirement is little higher than the game without

using the API, specially when the number of players is more than 30. Same as

the previous experiment, the game with CyberOrgs-MMOG is configured to make

resource decisions and coordinations when the number of players reaches 30. The

higher bandwidth requirement is the result of coordination with other resources,

migration of computations and synchronization between the zone boundaries.

66

Figure 6.10: Effects on outgoing bandwidth of using CyberOrgs-MMOG API.

6.4.2 Analysis of resource coordination mechanisms

In this section, time taken to execute resource coordination mechanisms is analyzed.

These mechanisms include detection of an overload/under load condition, searching

for a suitable resource and migration of the computation (a part of the zone). The

experiment is done by configuring the game to enable migration for varying zone

sizes. Each of these migrations is performed 20 times and averaged.

Figure 6.11 shows the results of this experiment. Dynamic resource acquisition

process consists of three mechanisms provided by CyberOrgs-MMOG API. Mean

time and standard deviation for each of these mechanisms - Detection of a load

condition, Search for new resource and Migration to another resource are shown.

The number of players in the zone that is being migrated is also shown.

Table 6.1 presents the time taken for the resource coordination mechanisms with

respective standard deviations. It is observed that the mean time taken for detecting

a load condition (over/under load) does not vary significantly with the size of the

67

Figure 6.11: Time taken to execute resource coordination mechanisms.

68

zone. Therefore, it may be safe to assume that the time taken for a detection is not

dependent on the number of players in the zone. We observe similar characteristics

for search operation. However, in this experiment, the directory manager is located

in the same network as the broker and game server. In a real world application,

where there can be thousands of available resources to search from and with much

greater geographical distances between brokers, resources and directory managers,

these values can rise quite significantly. On the other hand, time taken to migrate

a number of players along with other entities from one server to another increases

non-linearly with the increase of players. When a zone migrates, the CyberOrgs-

MMOG API allows migration of entities one by one. Therefore, it is quite evident

that the more the number of players and entities the more time it takes. This has

been done intentionally to reduce the time lag that occurs during migration. Besides,

the bigger the size of the game zone the more data needs to be synchronized between

the servers. While the other two operations do not show any correlation with the

number of players/entities, for migration, the time increases non-linearly with the

increase of players. One observation from the Table 6.1 is zones with sizes 125 and

150 have a smaller difference in migration times than other zone size differences.

There could be several reasons behind this. One reason is that when moving zones

from one host to another the number of surrounding entities could differ significantly

as entities such as the enemies can move in or out of the zone during a migration.

However, the actual migration time does not have any effect on the response time and

thus, does not affect the game performance. Though this may affect the bandwidth

requirement as during these migration periods servers have to be kept synchronized.

The analysis provided in this subsection can be used to decide on the minimum size

of the zones based on the availability of bandwidth.

6.5 Chapter Summary

In this chapter, experimental results in terms of quality of services are presented.

The effects on the game performance by the mechanisms provided by CyberOrgs-

69

of players Detection Search Migration Total

mean stddev mean stddev mean stddev

50 110 11.2 320 23.2 981 103.4 1411

75 105 13.7 344 14.8 2911 167.7 3360

100 123 6.6 325 22.5 5438 234.5 5886

125 118 9.2 336 19.6 9055 255.6 9509

150 125 12.7 328 15.5 9633 271.9 10086

175 112 9.7 334 16.7 15264 563.4 15710

200 125 5.5 338 20.2 28586 989.3 29049

Table 6.1: Time taken to execute resource coordination mechanisms.

MMOG API are also evaluated. We notice improvement in response time per player

as well as average outgoing bandwidth per server when resource is dynamically added

or released based on a cutoff value. This approach provides much more flexibility

and control over the game performance. It is also observed that supporting these

mechanisms do not cause a significant overhead compared to the performance of the

gameplay without the API. We also notice that the number of players do not affect

load detection and resource search operations though it has a non-linear correlation

with the migration operation.

70

Chapter 7

Conclusion

Online gaming has a great potential for both education and entertainment. The

number of players as well as multiplayer games are increasing. In some games, the

growth of population is observed to be exponential [15]. Supporting such a large

number of simultaneous players require a highly scalable system. Moreover, as the

number of players is limited for each server, appropriate resource coordination is

required for easy access to the resources. This thesis investigates how multiplayer

games can support a large number of players by acquiring resources on the fly.

Moreover, we believe ownership of hardware may not be always a desirable option

as ownership of hardware requires maintaining and upgrading frequently. Besides, a

massively multiplayer online game may require servers all around the world. Appro-

priate resource coordination allows easy access to such resources as processor cycles

and network resources without owning the hardware. This thesis also addresses the

issue of random hotspot creation and how dynamic resource acquisition can resolve

this issue. It is observed that most multiplayer games that are massively played are

specific to some genres. We show that coordinated resource use can meet the perfor-

mance goals required by any multiplayer online game of any genre to be a massively

played one.

This thesis presents the CyberOrgs-MMOG API, which supports encapsulation

of computations as well as mechanisms to coordinate resources among these com-

putations dynamically based on predefined criteria. The API incorporates three

mechanisms to achieve this - detection of a load condition, search for appropriate re-

sources if necessary and migrate a part of the computation to the available resource.

Methodology proposed by previous studies (discussed in Section 2.4) are adopted

71

to allow game players having seamless experience of gaming during migration.

This thesis also evaluates these mechanisms in Section 6.3. The effects on re-

sponse time and bandwidth caused by different API calls are investigated in Subsec-

tion 6.4.1. The time required by each of the mechanisms are evaluated in Subsection

6.4.2. The results show that the resource acquisition and release in real time can be

achieved without significant overhead or degradation in performance of the game.

Section 7.1 presents the limitations of the CyberOrgs-MMOG API along with the

limitations of the analysis made on the API. In Section 7.2, some future directions

are provided.

7.1 Limitations

The limitations of the CyberOrgs-MMOG API and the experiment are listed below:

• The API is demonstrated using a game with a random interactivity level of 0

to 10ms, whereas massively multiplayer online games have varying interaction

levels depending on the genre. It would be interesting to observe the game

performance provided by different genres with different levels of interactivity.

• The experimental results as discussed in Chapter 6 are based on a simulation.

The simulator generates the players for controlled experimentation and sim-

ulates the actions performed by a game player. Instead of simulation, which

relies on uniform random distribution, a study involving real player actions

that may not be uniform in nature would strengthen the results.

7.2 Future Directions

The CyberOrgs-MMOG API can control the quality of the services for all players in

a particular server. However, this can be extended to a more fine-grained approach

that allows a player to control its game experience by controlling the consumption

of resource. For example, a game player may choose to play a variation of the same

72

game where the experience is enhanced by better graphics or better response time.

These services may consume more resources and the player may agree to pay more

for these services. On the other hand, another game player may want to stick with

the lower quality version of the game.

Another possible future work can be incorporating network resource control along

with the processor cycles. I believe controlling network resource is also important as

the performance of a multiplayer game, specially a massively played one, is dependent

on the performance and efficiency of network resources. To support such control an

extension of the CyberOrgs-MMOG API can be developed.

73

References

[1] JMaPacman. http://arianne.sourceforge.net/game/jmapacman.html

[Last accessed: 2011-04-09].

[2] Marauroa Game Engine. http://arianne.sourceforge.net/engine/

marauroa.html [Last accessed: 2011-04-09].

[3] MMOData Charts. http://mmodata.net/ [Last accessed: 2011-12-12].

[4] Ahmed Abdelkhalek, Angelos Bilas, and Andreas Moshovos. Behavior and Per-
formance of Interactive Multi-Player Game Servers. Cluster Computing, 6:355–
366, October 2003.

[5] G. Agha, S. Frolund, W.Y. Kim, R. Panwar, A. Patterson, and D. Sturman.
Abstraction and Modularity Mechanisms for Concurrent Computing. Parallel
Distributed Technology: Systems and Applications, IEEE, 1:3–14, May 1993.

[6] Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge, Massachusetts, USA, 1986.

[7] Gul A. Agha, Ian A. Mason, Scott F. Smith, and Carolyn L. Talcott. A Foun-
dation for Actor Computation. Journal of Functional Programming, 7:1–72,
January 1997.

[8] Marios Assiotis and Velin Tzanov. A Distributed Architecture for MMORPG.
In Proceedings of the 5th ACM SIGCOMM Workshop on Network and System
Support for Games, NetGames ’06, New York, New York, USA, 2006. ACM.

[9] Mark Astley. The Actor Foundry. Manual of the Actor Foundry, version 0.2.0,
1999.

[10] Wentong Cai, Percival Xavier, Stephen J. Turner, and Bu-Sung Lee. A Scalable
Architecture for Supporting Interactive Games on the Internet. In Proceedings
of the 16th Workshop on Parallel and Distributed Simulation, PADS ’02, pages
60–67, Washington, D.C., USA, 2002. IEEE Computer Society.

[11] Edward Castronova. Virtual Worlds: A First-Hand Account of Market and
Society on the Cyberian Frontier. The Gruter Institute Working Papers on
Law, Economics, and Evolutionary Biology, 2(1), 2001.

74

http://arianne.sourceforge.net/game/jmapacman.html
http://arianne.sourceforge.net/engine/marauroa.html
http://arianne.sourceforge.net/engine/marauroa.html
http://mmodata.net/

[12] Jin Chen, Baohua Wu, Margaret Delap, Björn Knutsson, Honghui Lu, and
Cristiana Amza. Locality Aware Dynamic Load Management for Massively
Multiplayer Games. In Proceedings of the 10th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP ’05, pages 289–300,
New York, New York, USA, 2005. ACM.

[13] William D Clinger. Foundations of Actor Semantics. Technical report, Cam-
bridge, Massachusetts, USA, 1981.

[14] Daniel Cordeiro, Alfredo Goldman, and Dilma da Silva. Load balancing on an
interactive multiplayer game server. In Anne-Marie Kermarrec, Luc Bougé, and
Thierry Priol, editors, Euro-Par 2007 Parallel Processing, volume 4641 of Lec-
ture Notes in Computer Science, pages 184–194. Springer Berlin / Heidelberg,
2007. 10.1007/978-3-540-74466-5 21.

[15] Deloitte. The Collaboration Curve: Exponential Performance Improvement in
World of Warcraft. http://www.deloitte.com/assets/Dcom-UnitedStates/
Local%20Assets/Documents/us_tmt_WoW_082009.pdf [Last accessed: 2011-
12-12].

[16] Frank Glinka, Alexander Ploß, Jens Müller-lden, and Sergei Gorlatch. RTF:
a Real-Time Framework for Developing Scalable Multiplayer Online Games.
In Proceedings of the 6th ACM SIGCOMM Workshop on Network and System
Support for Games, NetGames ’07, pages 81–86, New York, New York, USA,
2007. ACM.

[17] I. Grief and Irene Greif. Semantics of Communicating Parallel Processes. Tech-
nical report, Cambridge, Massachusetts, USA, 1975.

[18] C. Hewitt. Viewing Control Structures as Patterns of Passing Messages. Arti-
ficial Intelligence, 8(3):323–364, June 1977.

[19] Carl Hewitt. PLANNER: A Language for Proving Theorems in Robots. In
Proceedings of the 1st International Joint Conference on Artificial Intelligence,
pages 295–301, San Francisco, California, USA, 1969. Morgan Kaufmann Pub-
lishers Inc.

[20] Carl Hewitt, Peter Bishop, and Richard Steiger. A Universal Modular ACTOR
Formalism for Artificial Intelligence. In Proceedings of the 3rd International
Joint Conference on Artificial Intelligence, pages 235–245, San Francisco, Cali-
fornia, USA, 1973. Morgan Kaufmann Publishers Inc.

[21] Takuji Iimura, Hiroaki Hazeyama, and Youki Kadobayashi. Zoned Federation of
Game Servers: a Peer-to-Peer Approach to Scalable Multi-Player Online Games.
In Proceedings of the 3rd ACM SIGCOMM Workshop on Network and System
Support for Games, NetGames ’04, pages 116–120, New York, New York, USA,
2004. ACM.

75

http://www.deloitte.com/assets/Dcom-UnitedStates/Local%20Assets/Documents/us_tmt_WoW_082009.pdf
http://www.deloitte.com/assets/Dcom-UnitedStates/Local%20Assets/Documents/us_tmt_WoW_082009.pdf

[22] Nadeem Jamali. CyberOrgs: A Model for Resource Bounded Complex Agents.
PhD thesis, Champaign, Illinois, USA, 2004. AAI3153330.

[23] Nadeem Jamali and Xinghui Zhao. Hierarchical Resource Usage Coordination
for Large-Scale Multi-agent Systems. In Toru Ishida, Les Gasser, and Hideyuki
Nakashima, editors, Massively Multi-Agent Systems I, volume 3446 of Lecture
Notes in Computer Science, pages 40–54. Springer Berlin / Heidelberg, 2005.
10.1007/11512073 4.

[24] Ihab Kazem, Dewan Tanvir Ahmed, and Shervin Shirmohammadi. A Visibility-
Driven Approach to Managing Interest in Distributed Simulations with Dynamic
Load Balancing. In Proceedings of the 11th IEEE International Symposium on
Distributed Simulation and Real-Time Applications, DS-RT ’07, pages 31–38,
Washington, D.C., USA, 2007. IEEE Computer Society.

[25] B. Knutsson, Honghui Lu, Wei Xu, and B. Hopkins. Peer-to-Peer Support for
Massively Multiplayer Games. In INFOCOM 2004. Twenty-third AnnualJoint
Conference of the IEEE Computer and Communications Societies, volume 1,
pages 4 vol. (xxxv+2866), March 2004.

[26] Open System Laboratory. The Actor Foundry. http://osl.cs.uiuc.edu/af/
[Last accessed: 2010-06-15].

[27] Fengyun Lu, Simon Parkin, and Graham Morgan. Load Balancing for Massively
Multiplayer Online Games. In Proceedings of the 5th ACM SIGCOMM Work-
shop on Network and System Support for Games, NetGames ’06, New York,
New York, USA, 2006. ACM.

[28] Michael R. Macedonia, Michael J. Zyda, David R. Pratt, Paul T. Barham, and
Steven Zeswitz. NPSNET: A Network Software Architecture for Large Scale
Virtual Environments. Presence, 3:265–287, 1994.

[29] Martin Mauve, Stefan Fischer, and Jörg Widmer. A Generic Proxy System for
Networked Computer Games. In Proceedings of the 1st Workshop on Network
and System Support for Games, NetGames ’02, pages 25–28, New York, New
York, USA, 2002. ACM.

[30] Jens Müller and Sergei Gorlatch. Rokkatan: Scaling an RTS Game Design to
the Massively Multiplayer Realm. Computers in Entertainment, 4(3), July 2006.

[31] Myeong-Wuk Jang and Amr Ahmed and Gul Agha. Efficient Communication in
Multi-Agent Systems. In Software Engineering for Scale Multi-Agent Systems
III, Lecture Notes in Computer Science 3390, Springer-Verlag, pp. 236-253,
2005.

[32] V. Nae, A. Iosup, and R. Prodan. Dynamic Resource Provisioning in Massively
Multiplayer Online Games. IEEE Transactions on Parallel and Distributed Sys-
tems, 22(3):380 –395, March 2011.

76

http://osl.cs.uiuc.edu/af/

[33] Bonnie Nardi and Justin Harris. Strangers and Friends: Collaborative Play
in World of Warcraft. In Proceedings of the 20th Anniversary Conference on
Computer Supported Cooperative Work, CSCW ’06, pages 149–158, New York,
New York, USA, 2006. ACM.

[34] Open System Laboratory. The Actor Architecture. http://osl.cs.uiuc.edu/
research.php?action=topic&topic=Actor+Systems [Last accessed: 2010-06-
15].

[35] Radu Prodan and Vlad Nae. Prediction-based Real-Time Resource Provisioning
for Massively Multiplayer Online Games. Future Generation Computer Systems,
25(7):785 – 793, 2009.

[36] Leon Ryan. Beyond the Looking Glass of MMOG’s. GameAxis Unwired, pages
22–31, 2007.

[37] Sandeep K. Singhal. Scalable Networked Virtual Environments Using Unstruc-
tured Overlays. In Proceedings of the 13th International Conference on Parallel
and Distributed Systems - Volume 02, ICPADS ’07, pages 1–8, Washington,
D.C., USA, 2007. IEEE Computer Society.

[38] Carlos Varela and Gul Agha. Programming dynamically reconfigurable open
systems with SALSA. SIGPLAN Notices, 36(12):20–34, December 2001.

[39] N. Yee (2007). Motivations of Play in Online Games. Journal of CyberPsychology
and Behavior, 9:772–775, 2007.

[40] Yue Zhang and Nadeem Jamali. Negotiating Multimedia Advertising with At-
tention Owners. In Proceedings of the International Conference on Multimedia,
MM ’10, pages 755–758, New York, New York, USA, 2010. ACM.

[41] Xinghui Zhao. CyberOrgs 1.0. http://agents.usask.ca/Agents_Lab/

Agents_Lab_-_CyberOrgs.html [Last accessed: 2011-03-29].

77

http://osl.cs.uiuc.edu/research.php?action=topic&topic=Actor+Systems
http://osl.cs.uiuc.edu/research.php?action=topic&topic=Actor+Systems
http://agents.usask.ca/Agents_Lab/Agents_Lab_-_CyberOrgs.html
http://agents.usask.ca/Agents_Lab/Agents_Lab_-_CyberOrgs.html

Appendix A

Sample Dataset

In this appendix, dataset used to draw Figure 6.1, 6.8, and 6.10 is presented.
Table A.1-A.4 show the data used in Figure 6.1, Table A.5-A.8 show the data used
in Figure 6.8, and Table A.9 is used in Figure 6.10.

78

Table A.1: Resource added in response to increase in number of players

Resources # Players Response time # Resources # Players Response time
1 1 25.27 1 26 19.28
1 2 25.22 1 27 19.02
1 3 26.05 1 28 19.93
1 4 25.60 1 29 21.58
1 5 25.33 1 30 22.22
1 6 26.19 1 31 22.91
1 7 26.13 1 32 22.94
1 8 25.92 1 33 23.55
1 9 25.37 1 34 25.23
1 10 24.80 1 35 27.39
1 11 24.78 1 36 29.21
1 12 24.18 1 37 30.43
1 13 23.83 1 38 31.28
1 14 23.60 1 39 32.28
1 15 22.21 1 40 34.26
1 16 20.72 1 41 37.60
1 17 20.50 1 42 41.84
1 18 20.36 1 43 46.12
1 19 20.13 1 44 48.60
1 20 19.90 1 45 47.92
1 21 19.21 1 46 48.33
1 22 19.08 1 47 51.88
1 23 18.83 1 48 56.02
1 24 18.47 1 49 57.46
1 25 18.87 1 50 57.45

79

Table A.2: Resource added in response to increase in number of players

Resources # Players Response time # Resources # Players Response time
2 51 57.12 2 76 31.73
2 52 45.25 2 77 33.30
2 53 35.46 2 78 34.27
2 54 25.31 2 79 34.36
2 55 25.46 2 80 33.56
2 56 24.95 2 81 34.17
2 57 23.52 2 82 34.76
2 58 22.38 2 83 34.47
2 59 22.11 2 84 34.54
2 60 22.35 2 85 34.56
2 61 22.42 2 86 33.92
2 62 21.87 2 87 32.80
2 63 20.85 2 88 33.80
2 64 20.31 2 89 36.92
2 65 19.84 2 90 38.49
2 66 19.68 2 91 37.86
2 67 20.89 2 92 36.93
2 68 22.28 2 93 38.33
2 69 22.89 2 94 41.92
2 70 24.46 2 95 44.91
2 71 25.71 2 96 47.25
2 72 26.57 2 97 50.13
2 73 27.95 2 98 51.86
2 74 28.75 2 99 52.90
2 75 29.86 2 100 55.44

80

Table A.3: Resource added in response to increase in number of players

Resources # Players Response time # Resources # Players Response time
3 101 59.38 3 126 23.86
3 102 64.42 3 127 23.65
3 103 67.48 3 128 22.14
3 104 69.08 3 129 21.96
3 105 70.98 3 130 22.25
3 106 31.48 3 131 22.49
3 107 31.41 3 132 25.12
3 108 32.86 3 133 25.86
3 109 34.77 3 134 26.54
3 110 36.02 3 135 27.44
3 111 35.09 3 136 29.50
3 112 32.52 3 137 31.81
3 113 30.81 3 138 33.25
3 114 29.53 3 139 34.48
3 115 28.50 3 140 34.95
3 116 27.25 3 141 34.42
3 117 26.64 3 142 32.63
3 118 25.70 3 143 32.09
3 119 24.37 3 144 33.43
3 120 23.17 3 145 33.88
3 121 22.25 3 146 32.99
3 122 22.68 3 147 32.94
3 123 23.77 3 148 33.20
3 124 24.35 3 149 33.17
3 125 24.08 3 150 36.34

81

Table A.4: Resource added in response to increase in number of players

Resources # Players Response time # Resources # Players Response time
4 151 41.73 4 176 22.12
4 152 46.27 4 177 23.71
4 153 50.87 4 178 22.14
4 154 54.04 4 179 21.56
4 155 55.32 4 180 23.44
4 156 56.48 4 181 23.81
4 157 49.70 4 182 23.84
4 158 38.67 4 183 22.89
4 159 27.45 4 184 23.55
4 160 26.77 4 185 24.10
4 161 25.94 4 186 24.25
4 162 26.08 4 187 24.67
4 163 27.64 4 188 24.89
4 164 29.29 4 189 24.30
4 165 29.91 4 190 24.70
4 166 29.16 4 191 25.74
4 167 28.36 4 192 26.45
4 168 28.53 4 193 27.88
4 169 28.38 4 194 30.52
4 170 27.58 4 195 31.22
4 171 27.00 4 196 30.09
4 172 25.91 4 197 29.92
4 173 24.00 4 198 30.83
4 174 21.31 4 199 33.66
4 175 22.94 4 200 35.53

82

Table A.5: Resource released in response to decrease in average outgoing
bandwidth

Resources # Players Response time # Resources # Players Response time
4 200 90.78 4 175 49.99
4 199 85.60 4 174 46.64
4 198 85.70 4 173 44.41
4 197 88.19 4 172 43.54
4 196 84.03 4 171 44.49
4 195 76.41 4 170 44.49
4 194 69.26 4 169 43.37
4 193 65.23 4 168 41.75
4 192 65.85 4 167 40.90
4 191 66.22 4 166 40.45
4 190 66.99 4 165 40.85
4 189 68.06 4 164 39.17
4 188 65.05 4 163 37.19
4 187 63.49 4 162 35.30
4 186 63.92 4 161 32.32
4 185 65.18 4 160 34.94
4 184 66.59 4 159 34.81
4 183 65.78 4 158 34.23
4 182 66.30 4 157 35.13
4 181 68.88 4 156 34.50
4 180 68.99 4 155 36.93
4 179 68.22 4 154 35.47
4 178 65.24 4 153 35.05
4 177 58.49 4 152 35.57
4 176 51.66 4 151 34.98

83

Table A.6: Resource released in response to decrease in average outgoing
bandwidth

Resources # Players Response time # Resources # Players Response time
4 150 34.27 3 125 50.83
4 149 33.51 3 124 48.47
4 148 32.74 3 123 44.96
4 147 31.95 3 122 40.90
4 146 32.53 3 121 40.13
3 145 28.46 3 120 41.03
3 144 71.88 3 119 37.05
3 143 80.04 3 118 32.78
3 142 82.21 3 117 32.59
3 141 75.75 3 116 31.27
3 140 73.26 3 115 31.57
3 139 69.99 2 114 29.12
3 138 67.15 2 113 29.78
3 137 66.61 2 112 28.89
3 136 63.29 2 111 28.80
3 135 63.35 2 110 28.91
3 134 63.00 2 109 29.46
3 133 61.27 2 108 29.20
3 132 61.95 2 107 29.54
3 131 60.84 2 106 30.10
3 130 61.58 2 105 30.96
3 129 57.21 2 104 32.01
3 128 53.50 2 103 33.21
3 127 55.98 2 102 34.36
3 126 52.48 2 101 35.25

84

Table A.7: Resource released in response to decrease in average outgoing
bandwidth

Resources # Players Response time # Resources # Players Response time
2 100 37.75 2 75 53.49
2 99 35.86 2 74 52.42
2 98 33.56 2 73 48.91
2 97 34.97 2 72 47.43
2 96 34.10 2 71 46.35
2 95 35.25 2 70 43.58
2 94 38.57 2 69 44.75
2 93 43.98 2 68 46.20
2 92 51.15 2 67 45.47
2 91 71.50 2 66 46.14
2 90 71.56 2 65 47.91
2 89 69.77 2 64 47.72
2 88 68.43 2 63 46.43
2 87 68.32 2 62 44.56
2 86 66.47 2 61 42.71
2 85 59.69 2 60 45.15
2 84 62.92 2 59 44.64
2 83 61.46 2 58 44.07
2 82 59.55 2 57 42.83
2 81 59.12 2 56 41.46
2 80 64.45 2 55 39.84
2 79 62.41 2 54 38.54
2 78 60.55 2 53 37.26
2 77 59.10 2 52 36.07
2 76 56.29 2 51 35.31

85

Table A.8: Resource released in response to decrease in average outgoing
bandwidth

Resources # Players Response time # Resources # Players Response time
2 50 34.74 1 25 71.99
2 49 33.29 1 24 73.27
2 48 34.04 1 23 66.39
2 47 33.70 1 22 68.05
2 46 31.67 1 21 65.35
2 45 33.42 1 20 62.72
2 44 33.07 1 19 56.06
2 43 31.99 1 18 59.48
2 42 30.38 1 17 53.55
1 41 28.62 1 16 51.89
1 40 33.80 1 15 48.57
1 39 38.19 1 14 44.10
1 38 42.68 1 13 43.30
1 37 47.27 1 12 39.75
1 36 76.77 1 11 41.15
1 35 74.12 1 10 34.94
1 34 71.99 1 9 36.78
1 33 69.62 1 8 38.27
1 32 68.49 1 7 35.28
1 31 68.31 1 6 31.99
1 30 68.02 1 5 29.96
1 29 67.88 1 4 27.19
1 28 68.44 1 3 26.78
1 27 70.11 1 2 29.21
1 26 74.75 1 1 28.41

86

Table A.9: Comparison of average outgoing bandwidth with or without the
API

player w/o API with API # Players w/o API with API
1 20.39 22.53 26 44.10 44.49
2 21.64 21.95 27 48.57 43.54
3 23.92 23.74 28 46.20 44.41
4 24.86 23.51 29 47.83 46.64
5 25.23 24.27 30 48.38 49.99
6 26.18 25.98 31 50.47 51.66
7 28.41 25.57 32 49.03 51.49
8 29.21 26.05 33 51.89 55.24
9 26.78 26.47 34 54.65 53.22
10 27.19 28.93 35 53.88 54.99
11 27.08 27.50 36 52.66 57.88
12 29.96 28.13 37 54.08 58.30
13 31.99 29.89 38 57.99 62.78
14 33.27 31.81 39 56.06 61.59
15 33.08 30.94 40 62.72 65.18
16 34.94 32.32 41 61.35 63.92
17 38.15 35.30 42 63.05 63.49
18 39.75 37.19 43 62.39 65.05
19 37.19 39.17 44 65.44 68.06
20 39.17 40.85 45 65.88 66.99
21 40.85 40.45 46 68.02 68.22
22 40.45 40.90 47 68.31 71.85
23 40.90 41.75 48 68.49 73.23
24 41.75 43.37 49 69.62 78.19
25 43.30 44.49 50 72.75 76.15

87

	Permission to Use
	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	MMOG
	Genres
	Growth of MMOG

	Motivations
	Contributions
	Organization

	Related Work
	Actors
	Actor Implementations
	Actor Architecture
	Actor Foundry
	SALSA

	CyberOrgs
	Spatial Scaling of MMOG
	Zoning, Mirroring and Instancing
	Interest Management and Zonal Migration

	Genre specific limitations
	Dynamic Resource Provisioning
	Hotspots
	Dynamic load balancing

	Chapter Summary

	Design and Implementation
	Actor Architecture
	CyberOrgs-MMOG platform
	CyberOrgs Platform
	Zone Manager
	Load Manager

	Broker
	Directory Manager
	Dynamic Resource Coordination Mechanisms
	Chapter Summary

	Application Programming Interface
	APIs for cyberorgs creation and primitives
	API for Resource Owner
	API for Game Owner
	API for Game Player
	APIs for Zone Division and Load Management
	Configuration File

	Experimental setup
	Software Platform
	Actor Architecture
	CyberOrgs API
	Marauroa Game Engine
	Jmapacman

	System Configuration
	Simulation

	Experimental results
	CyberOrgs-MMOG API
	Experiment Design
	Controlling QoS Parameters
	Average Response Time
	Average Outgoing Bandwidth

	Performance Analysis
	Overhead Analysis
	Analysis of resource coordination mechanisms

	Chapter Summary

	Conclusion
	Limitations
	Future Directions

	References
	Sample Dataset

