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Abstract

Single event effects have been an issue in microelectronic devices and circuits for some

time, especially those used in radiation-intense environments such as space. Traditionally,

devices have been tested using particle accelerator facilities for evaluation of the various

single event effects phenomena. However, testing at these facilities can be prohibitive to

many research groups due to costs and time availability. As a result, pulsed laser testing

has evolved to become a standard, additional testing methodology for evaluating single

event effects. Not only do pulsed laser facilities generally offer more flexibility in terms of

cost, but it is also possible to gain additional information about the spatial and temporal

nature of single event effect generation in sensitive areas of a device.

To meet the needs of the radiation effects community, pulsed laser facilities have contin-

ued to be set up around the world. One of these includes the facility at the Saskatchewan

Structural Sciences Centre. An earlier iteration of the facility previously existed which

utilized a different equipment set and did not have the two photon absorption capabilities

that the current version does. In this thesis, a sample of the work performed at the facility

using both the single and two photon absorption capabilities are provided to demonstrate

its capabilities; the devices tested for single event effect response included two Hall effect

sensors and a Xilinx Virtex-5 FPGA. Additionally, a description of the main features of

the facility in its current form is given. Through this work, the feasibility of the facility

to provide results to users, both academic and industrial, is demonstrated.
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Chapter 1

Introduction

In his 1965 paper Cramming more components onto integrated circuits, Gordon Moore

predicted that the number of components that could fit into a microelectronic device or

integrated circuit (IC) would double every year [5]. Ten years later, Moore revised the

time scale to every two years. This prediction of exponential growth came to be known

as Moore’s law. While not an actual physical or natural law, Moore’s law has been

observed to largely hold true over the past forty years. The advancements resulting from

this trend have ushered in a digital revolution leading to widespread use of numerous

electronic devices in all areas of society. Moore’s law has been of particular interest to the

semiconductor industry as it has provided an outline for the evolution of the feature size

of the transistor. In 1971, the semiconductor process achieved was 10 µm. Today it is

14 nm, according to the International Technology Roadmap for Semiconductors (ITRS).

In terms of transistor count, ICs created in the early 1970s contained several thousand

transistors; those developed today have several billion. While the rate of scaling has

continued relatively unabated, it is believed that Moore’s law has begun to slow and will

continue to decelerate as the next feature sizes are realized.

Moore’s law has led to many advancements in IC design by reducing power consump-

tion, area, and cost while simultaneously increasing computational ability. However, with

this downscaling in feature size the devices used in radiation-intensive environments such

as space have exhibited an increased susceptibility to a phenomenon known as single event

effects (SEEs).

A single event effect, or SEE, is fundamentally the result of an energetic, often ionized

particle interacting with a sensitive node of an electronic device. As the particle passes

through the device it will collide with atoms in the substrate, ionizing the material and
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generating a track of electron-hole pairs. If the excess charge is collected around the

depletion region of a p-n junction it can cause current and voltage variations, affecting

the behavior of the device. SEEs can cause a wide variety of effects, ranging from small

glitches in device output to complete failure of a whole system.

1.1 Motivation

Coupled with its random nature and the presence of a wide spectrum of energetic particles

in high-altitude and space environments, it is clear that SEEs pose a significant threat to

the normal, reliable operation of sensitive electronics in these areas.

The study of SEEs has been especially motivated by events observed on large-scale

projects such as the Voyager and Pioneer space probes as well as the Hubble space tele-

scope. Since the early 1970s, there have been approximately 4,500 known incidents in

space systems due to radiation effects [6]. As more data and research continue to be

produced, designers and manufacturers in the field of radiation-hardened electronics seek

to mitigate the effects of SEEs on their devices. To do so, models are constructed that

calculate the characteristics of the device, such as its electrical properties and charge col-

lection. Additionally, the radiation environment the device will be exposed to must also

be modelled and analyzed to predict the rates at which SEEs will occur. However, it is

not always possible to extract sufficient data to predict device behavior from modelling

alone. Therefore, testing in a laboratory setting is essential to the evaluation of the SEE

response of a device. The data obtained from these tests often form the basis for the error

rate prediction of a given device.

Conventional testing of SEEs has often been performed at particle accelerator facil-

ities that supply a range of particle types with various energies. This allows users to

expose their devices to similar radiation conditions as those found in ground and space

environments. However, these facilities have often been difficult to access due to factors

such as cost and availability. As a result, pulsed laser sources have been developed as

an additional method to test for SEEs. They provide several advantages over accelerator

facilities, which will be discussed further in other chapters. As pulsed laser sources have

matured as an SEE evaluation tool it has motivated research groups to create and develop
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their own facilities to allow for this type of testing.

1.2 Objectives

The primary objectives of this thesis are as follows:

• To describe the development and standard operating procedures of the SEE pulsed

laser facility at the Saskatchewan Structural Sciences Centre (SSSC) located at the

University of Saskatchewan (U of S).

• To demonstrate the utility and capabilities of the U of S pulsed laser facility to

evaluate the SEE response of microelectronics and ICs. This is done through a se-

lection of devices researched using the pulsed laser single and two photon absorption

techniques that the facility equipment is capable of providing.

1.3 Layout of Thesis

The remainder of this thesis is organized as follows. In Chapter 2 the background infor-

mation relevant to SEEs is presented and discussed. It starts by explaining what SEEs

are, then follows by describing some common types and the particles that cause them.

The chapter concludes with an overview of some of the accelerator facilities available for

SEE testing.

Chapter 3 presents the theory and information necessary to understand pulsed lasers

in the context of SEE testing. The chapter begins with a general introduction to lasers,

then compares the continuous wave and pulsed laser types. Ultrafast pulsed lasers are also

described in this discussion. The main advantages that pulsed lasers have over particle

accelerators are also described. Next, the interaction of light with semiconductors and

the single and two photon absorption processes are presented. Both absorption processes

have advantages and disadvantages for SEE evaluation. The remainder of the chapter

is dedicated to discussing the testing parameters that must be taken into account when

performing pulsed laser testing on sensitive devices.
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The setup, equipment, and features of the SSSC pulsed laser facility for SEE testing

are presented in Chapter 4. As the facility and setup was quite new and previously had

not had any other full time users before this thesis, considerable work was performed

in learning how all the individual components interact and integrate with each other

and form the overall larger system. The results of this undertaking enabled a standard

operating procedure to be developed for users of the facility as well as ensuring that system

performance will remain consistent on a day-to-day basis.

Chapter 5 presents the results of testing two different models of Hall Effect sensors us-

ing the single photon absorption capabilities of the facility. Chapter 6 presents the results

of testing a Xilinx Virtex-5 FPGA using the facility’s two photon absorption capabilities.

Previous testing of the FPGA was performed at the laser facility, and the work presented

here is a continuation and confirmation of that work. Both of these chapters represent

the first devices tested using the SSSC pulsed laser facility.

A brief summary as well as some recommendations for future work at the SSSC laser

facility are given at the end of this thesis.
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Chapter 2

Background of Single Event Effects

In this chapter, the background information necessary to understand the single event

effects phenomena is provided. To accomplish this, a description of the interaction mech-

anisms of SEEs along with a brief overview of their history is given. Additionally, several

notable types of SEEs are explained. The types of radioactive particles that cause SEEs,

as well as their use at accelerator facilities are also described.

2.1 Description of Single Event Effects

The concept of SEEs was first predicted in a paper from 1962 by J.T. Wallmark and S.M.

Marcus [7]. In 1975, thirteen years later, Binder et al. reported anomalies in satellites

that were considered the first occurrences of single event upsets (SEUs) [8]. Unfortunately,

these papers were mostly ignored when published as SEEs were not considered a significant

threat to electronic systems at the time. However, more occurrences of SEEs started to

be observed. One of the first investigations that motivated further study of SEEs was

performed by May and Woods in 1979 [9]. In fact, their observances did not come from

space but rather in a dynamic random access memory (DRAM) on the ground. It was

found that the packaging materials contained trace amounts of thorium and uranium

which emitted alpha particles and caused SEUs in the ICs. Since then, more problems

caused by SEEs continued to be reported. The study of SEEs for space, avionics, and

military systems is essential to ensuring mission success.

As briefly mentioned in Chapter 1, an SEE is the result of an energetic particle pene-

trating into the sensitive nodes of a device, ionizing the material and generating a track

of electron-hole pairs. Often, the material is silicon due to its ubiquity in the IC industry.
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As the name suggests, SEEs are named as such because they are the result of a single par-

ticle acting on a device. This is in contrast to other radiation effects such as total ionizing

dose (TID) that describe the cumulative, longer term results of energy deposited within

a device by a large number of particles. TID is also of interest to the radiation effects

community as accumulated dose will degrade device performance and in sufficiently high

amounts can eventually cause components to cease normal operation entirely. Unlike TID

and other total dose radiation, which have global effects over the entire device, a single

event is localized to a specific area where the particle hits.

When an energetic particle enters a semiconductor it loses energy through Rutherford

scattering, which is a result of the Coulomb interaction. As the particle slows due to the

energy loss through interaction with the nuclei of the semiconductor lattice it generates an

ionization trail in its wake that produces unbound electron-hole (e-h) pairs. Since these e-

h pairs did not exist before the particle struck the device they act as excess mobile charge

carriers. Subsequently, this can lead to additional charge deposition in sensitive nodes,

causing unwanted changes in the voltage and current properties of the device. Figure 2.1

illustrates this process.

Figure 2.1: Illustration of a single event effect. Image Credit: COTS Journal.
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As can be seen in Figure 2.1, the potential of the depletion region is distorted by the

particle into a funnel shape. This is known as the field-funneling effect. The deposited

minority charge carriers are collected promptly, resulting in a large increase in charge

accumulation. After the funnel region recovers from the distortion, the majority charge

carriers will slowly diffuse into the depletion region.

There are four primary types of particles involved in SEEs and SEE testing: alpha

particles, heavy ions, protons, and neutrons. Depending on the type, they can generate

SEEs through both direct and indirect ionization. For the case of direct ionization, a

particle such as a heavy ion enters the device, deposits a track of ions along its trajectory

path, and then exits the device. Figure 2.1 is an example of direct ionization. In contrast,

indirect ionization occurs when a particle such as a proton undergoes a nuclear reaction

with the semiconductor material, producing a heavy ion that will deposit sufficient energy

to cause an SEE. The short range recoil of the collision produces the ionization path.

As the particle passes through a device, it loses energy to the electrons in the material.

The nuclear physics community describes this as the average energy loss per unit length,

or stopping power. While quite similar, the radiation effects community prefers to use

linear energy transfer (LET) to describe particle energy loss, and is given by

LET = −1
ρ

dE

dx
(2.1)

where ρ is the density of the material. The units of LET are often given in MeV·cm2/mg.

LET has the advantage that it includes the material density term so that the energy mea-

sured becomes independent of the material type.

Fundamental to the study of SEEs is the cross section concept. Similar to LET, it

has its origins in nuclear physics. The problem is essentially the measurement of what

happens when one group of particles is incident on another group of particles. Since the

area of the nuclei of both the incident and receiving particles are very small relative to

the spacing between them, there is a small probability of an incident particle hitting a

nucleus in its path. Therefore, the cross-sectional area measures the probability of a target

particle being hit and in general is given by
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σ = N

Θ (2.2)

where N is the number of SEEs observed and Θ is the fluence of the incident particles,

often given in particles/cm2. While there are some variations in how cross section can

be calculated depending on the system they all derive from this base assumption. For

example, sometimes it is desired to calculate the per-bit cross section which takes the

obtained value for the cross section and divides it by the number of memory elements

exposed to a radiation source.

2.2 Types of Single Event Effects

Single event effect is actually an umbrella term used to describe various types and subtypes

of effects. Additionally, these SEE types can also be classified as soft or hard errors.

Soft errors are those that disrupt the normal operation of a device or circuit but can

be corrected by using external stimuli such as a system reset, device reconfiguration, or

power cycle. Some types of soft error SEEs include single event upset (SEU), single event

transient (SET), and single event latchup (SEL). Hard errors, also known as permanent

errors, are the types of SEEs that cause physical damage to a system that cannot be

corrected. Examples of these SEE types include single event induced burnout (SEB) and

single event gate rupture (SEGR). Both hard and soft errors are important in the study

of SEEs. This work is more focused on the study of soft errors, and as such the SEU,

SET, and SEL types will briefly be discussed here.

2.2.1 Single Event Upset

A single event upset (SEU) is the result of an incoming particle changing the initial

state of a circuit component, such as a latch or bit in a static random access memory

(SRAM). Essentially, an SEU overwrites previous information in the device. As previously

mentioned, some of the first SEUs observed were from alpha particles in the packaging

materials of DRAMs.

There are many methods of correcting for SEUs, such as adding redundancy and opti-
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mizing of current designs. Numerous types of error detection and correction (EDAC) also

exist. Still, SEUs can be problematic if especially critical nodes are hit, such as a configu-

ration memory bit in a field-programmable gate array (FPGA). Additionally, multiple-bit

upsets (MBUs) are also possible. Caused by a single particle upsetting multiple bits si-

multaneously, MBUs are especially detrimental as they can defeat several methods of SEU

mitigation.

2.2.2 Single Event Transient

Single event transient (SET) refers to the generation of an erroneous signal pulse due to

an incoming particle. They can occur in both analog and digital circuits. Asynchronous

in nature, SETs are problematic as they can propagate through circuit paths and reach

components such as latches or flip-flops. If they pass as legitimate signals then the system

operation can be compromised. If one is lucky, the timing of an SET will be such that it

is overwhelmed by the real synchronous signals of the system. However, for example, if its

pulse duration is on the order of the setup and hold times of a sequential logic component

then it is much more likely an SET will be processed. Newer systems are also increasingly

susceptible to SETs as their clock rates increase.

The amplitude and duration of an SET pulse are important in characterizing the

device response as they indicate the charge collection of the component that experienced

the particle strike.

2.2.3 Single Event Latchup

Single event latchup (SEL) is the condition that results from an incoming particle inducing

a device into a high current state, effectively shorting the circuit and causing the device

to lose functionality. If not corrected for by a power cycle or other means, SEL can

introduce many unwanted effects into a device. Generally, if a latchup condition is not

removed relatively quickly a system can fail completely. This is often due to melting from

excessive heat caused by the induced current flow. Therefore, SELs can be classified as

both hard and soft errors.
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2.3 Particles Used in Single Event Effect Testing

Designers and engineers in the radiation effects community utilize accelerator facilities

around the world that provide particle beams relevant to their SEE evaluations. There

are four primary types of particles responsible for SEEs in sensitive systems. They include

alpha particles, protons, neutrons, and heavy ions. This section will briefly describe each

of these.

2.3.1 Alpha Particles

An alpha particle is a helium nucleus, consisting of two protons and two neutrons. Due to

its relatively large mass and strong interaction with matter, the range of alpha particles

in a medium can be quite small, from less than a tenth of a millimeter in silicon or tissue

to only a few centimeters in air [10]. Therefore, most of the dangers posed by alpha

particles do not come from external sources but rather from impurities present in the IC

packaging material. As mentioned earlier, some of the first observed SEEs were caused

by alpha particles from packaging material impurities. Trace amounts of uranium and

thorium isotopes in the packaging are the most common alpha particle sources. As they

are embedded in the material itself they may be sufficiently close to sensitive nodes that

an alpha particle can reach. Fortunately, IC manufacturing processes have improved in

removing impurities from the final device, reducing the risk of an upset occurring from

an alpha particle. At the same time, dedicated alpha particle sources can be useful for

studying SEEs. Americium-241, which is also found in household smoke detectors, is one

example.

2.3.2 Protons

A proton is a subatomic particle with a positive elementary charge +q. The number

of protons within an atomic nucleus defines the element type of that atom. A single

proton on its own is a positively charged hydrogen atom. Due to their ubiquity in space

environments protons are of high interest to SEE studies. In the proton belts around

Earth there is a flux between 107 and 109 protons/cm2 per day with energies greater
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than 30 MeV, which is approximately the minimum energy a proton needs to penetrate a

spacecraft and cause upsets in components [11].

Protons are capable of causing upset through both direct and indirect ionization. If

a proton exceeds the energy threshold of a device it will directly ionize the medium and

generate an upset. As well, if its energy is sufficiently high a proton will collide with

an atom in the material and cause a nuclear reaction. The action of the recoil from the

generated heavy ion causes the SEE. Approximately 1 in every 105 protons will undergo

a nuclear reaction in a silicon device [7].

2.3.3 Heavy Ions

Heavy ions are defined as any atomic nucleus with a mass greater than an alpha particle

and a net electric charge. Effectively, this means any nucleus with an atomic number

greater than 2 can be considered a heavy ion. As many of them originate from outside

the solar system, they can also be considered a galactic cosmic ray. They are found

everywhere in interplanetary space, though protons compose the majority of particles in

many space environments.

Heavy ions cause SEEs via direct ionization in the materials they pass through. They

are highly energetic with particle energies on the order of several GeV and up. This makes

them extremely difficult if not impossible to stop with any practical amount of shielding.

The background heavy ion flux in space is approximately 1-10 particles/cm2 per second

[2]. It is clear that heavy ions pose a threat to the reliability of space electronics.

2.3.4 Neutrons

Neutrons are an electrically neutral subatomic particle. Due to this, they are quite difficult

to stop. As they do not experience attraction or repulsion to ionized particles, neutrons

indirectly ionize materials through collisions with nuclei. In fact, some of the most effective

shielding comes from materials with low atomic numbers, especially those that contain

hydrogen [2].

Neutron-induced upsets are notably problematic in avionics systems used in high alti-

tude atmospheric environments. As well, SEEs due to neutrons at the ground level have
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also been observed and reported.

2.4 Particle Accelerator Facilities

Ideally, the SEE response of a device could be measured simply by placing it in a space

environment. However, this is often unfeasible for many reasons. Instead, particle accel-

erator facilities around the world that supply protons and heavy ions are often used, and

some of the most well known are listed here. Both total dose and SEE testing can be

accomplished at these facilities. While accelerators serve a wide variety of academic and

industrial interests, some of the most notable proton facilities used for SEE testing include

the Crocker Nuclear Laboratory at the University of California Davis campus, Michigan

State University Cyclotron Laboratory, and until recently (December 2014) the Indiana

University Cyclotron Facility. As a source of Canadian pride, TRIUMF at the University

of British Columbia in Vancouver houses a world-class proton irradiation facility utilized

by the radiation effects community as well as many other research groups.

Heavy ion facilities used most commonly for SEE testing include Brookhaven National

Laboratory, Texas A & M, Lawrence Berkeley Labs, Michigan State University’s National

Superconducting Cyclotron Laboratory, and the Heavy Ion Facility at UCL in Belgium.

Many of these facilities are capable of offering either single ion beams or ”cocktail” beams

consisting of several ion types to cover a broader LET range and partially simulate a

space environment. Unfortunately Canada does not currently have any heavy ion facilities

capable of serving the radiation effects community. Due to most facilities being located

in the United States, most heavy ion SEE testing is performed there.
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Chapter 3

Ultrafast Pulsed Lasers, Single Photon Ab-

sorption, and Two Photon Absorption: Back-

ground and Theory

This chapter aims to outline the background and theory of pulsed lasers as they relate

to SEE evaluation. To do so, firstly a brief general introduction to lasers is given. Next,

the concepts and principles necessary for pulsed laser operations are described, followed by

their applications to SEE testing in microelectronic devices. Afterwards, the description

of the single and two photon absorption phenomena in the context of SEE evaluation is

provided. Finally, the testing parameters that must be taken into consideration when

using a pulsed laser are presented.

3.1 Introduction to Lasers

Firstly, what is a laser? The name itself is actually an acronym for ”Light Amplification

by Stimulated Emission of Radiation.” Based on the initial work by Charles Townes and

Arthur Schawlow, the first laser was constructed in 1960 by Theodore Maiman. Around

the time of its invention, the laser was referred to as, ”A solution in search of a problem

[12].” Since then, lasers have certainly been used to solve many problems. Today, lasers

are ubiquitous; from high end research labs to medical tools and consumer electronics,

lasers continue to find use in a very diverse range of fields.

In general, a laser is any device that emits light due to an optical amplification process

via stimulated emission of electromagnetic radiation. This criterion separates lasers from

other light sources. In addition, lasers are defined by their ability to emit spatially and

13



temporally coherent light. The meaning of stimulated emission and coherence will be

explained here.

From quantum mechanics comes the famous Planck-Einstein formula that shows the

relation between the energy and wavelength of a photon and is given by

E = hν = hc

λ
(3.1)

where h is Planck’s constant, c is the speed of light, and ν/λ are the frequency/wavelength

of the photon, respectively. As well, from quantum mechanics it is also known that elec-

trons in an atom occupy discrete energy levels. The electronic structures of different

atoms can vary considerably and can be quite complex. If an electron occupies an energy

level E1 it can be excited into a higher energy state E2 through absorption of a photon

with energy equivalent to the difference between the two states. That is, if hν = E2 −E1

then the electron will be induced into the state with E2 [13]. This change in the elec-

tron configuration of the atom induces it into an excited state. In a symmetrical process,

when the electron transitions back down to E1 it will emit a photon with energy hν. The

downward transition can occur spontaneously or can be stimulated to do so.

In spontaneous emission the electron falls down to E1 from E2 provided the state

E1 is unoccupied by another electron, and then emits a photon in a random direction.

Stimulated emission, by contrast, involves an incoming photon with energy hν = E2 −E1

inducing the electron in E2 to transition down to E1. In this situation, the emitted photon

has the same properties as the incoming photon, including energy, direction, phase, and

polarization. This is a fundamental principle in laser physics as it forms the basis for

optical amplification. To obtain an overall net positive amplification, the incident photons

should not be absorbed by the electrons at E1. Rather, the majority of the electrons must

be at E1. When this happens the result is a population inversion. However, under normal

equilibrium conditions, due to Boltzmann statistics a system with only two energy states

will never be able to produce a population inversion as the incoming photons will produce

as many upward transitions as downward stimulated emissions [13]. Therefore, in general

there must be 3 or more electronic states to sustain a laser system. It is noted that the

energy structures of different lasers can be considerably complex and generally include
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more than 3 states when all accounted for.

To build a laser, three main components are required: a pump source, gain medium,

and optical resonator/cavity, which are listed here [14].

• A pump source supplies the energy required to excite the atoms in the gain medium

to the necessary energy level(s). Methods of optically pumping a medium include us-

ing an intense lamp, gas discharge, the current in a semiconductor or semiconductor

heterostructure, and even another laser, among others.

• The gain medium is the material in which the optical amplification via stimulated

emission takes place. Often it is located inside the resonator and can either partially

or completely occupy the space contained within. The medium can be composed of

many different material types in all states of matter.

• An optical resonator, or cavity, is required in order to output the lasing emission.

The resonator also has the task of storing the coherent electromagnetic (EM) field

and enabling its interaction with the gain medium. Fundamentally, a resonator

consists of two mirrors with reflectances R1 and R2. R1 has a reflectance close to 1

(almost all of the light is reflected by this mirror) while R2 generally has a smaller

value to serve as an output coupler so that the laser beam can be transmitted out

of the resonator. The EM wave oscillations within the resonator build up in power

with each pass between the mirrors at a rate faster than the losses accumulated due

to transmission and diffraction.

With these three components many different types of lasers and laser systems have

been designed. With advances in numerous scientific fields many different gain media

have been utilized to produce stimulated lasing emissions. The original laser used a

ruby crystal as the gain medium. Shortly after, the now famous helium-neon (HeNe)

laser was invented, which used a mixture of helium and neon gases. As technologies in

the semiconductor industry advanced, diode-based lasers became feasible, a trend which

continues today.

What separates a laser from a light bulb? Coherence. In a laser system, the output

resulting from stimulated emission provides the conditions necessary for the output beam
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to be coherent both spatially and temporally. The white light spectrum of a light bulb is

inherently incoherent. If the phase of any part of an EM wave can be predicted from any

other part of the wave, the radiation is said to be perfectly coherent in the spatial and

time domains. A classic example of perfect coherence is a pure sine wave. Of course, in

any practical system a real wave can only exist over a given length and time, which for a

laser are referred to as the coherence length and coherence time, respectively. As might

be expected, the coherence length and time of a laser beam can vary considerably based

on the design.

3.2 Continuous Wave and Pulsed Lasers

Lasers can be characterized by the period of time over which they emit power. In this

classification there are two main types: continuous wave (CW) and pulsed. A CW laser

outputs a stable average beam power and therefore its intensity does not vary by an

appreciable amount over time. Pulsed lasers, on the other hand, emit their energy in a

train of discrete, repetitive, periodic pulses. That is, they essentially cycle their lasing

emission on and off with some frequency. In laser physics this frequency is often referred

to as the repetition rate and is measured in Hz. Again, depending on the design, a pulsed

laser can have a repetition rate less than 1 Hz or greater than 100 GHz [15]. Additionally,

each pulse in the train exists over a certain period of time. The literature variously refers

to this value as the pulse duration, length, or width. Figure 3.1 illustrates the difference

between CW and pulsed lasers.

One of the most important methods of checking laser performance is by measuring

the power or energy output. A CW laser is fairly straightforward. However, for a pulsed

laser, it is important to discern the difference between its peak and average power output.

The amount of energy contained within each pulse also becomes an important factor. The

peak power of a pulsed laser is given by [16]

Ppeak = Epulse

t
(3.2)

where Epulse is the energy per pulse and t is the pulse duration. In contrast, a pulsed
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Figure 3.1: Light intensity output over time for a CW and pulsed laser. In this
example the pulsed laser has a period of 100 µs which corresponds to a repetition

rate of 10 kHz.

laser’s average power is described by

Pavg = Epulse · f (3.3)

where f is the repetition rate. Depending on the experimental requirements both the

peak and average power may be important to consider. In the field of SEE laser testing

the average energy per pulse is often used as the average power can be easily measured

using a power meter.

The pulse durations for laser systems can range over a considerable scale. Some laser

systems have pulse durations as long as several milliseconds (10−3) while in others the

duration can be as short as a few femtoseconds (10−15). Pulsed lasers with pulse durations

lower than 100 picoseconds belong to a class known as ultrafast lasers, also known as

ultrashort pulse lasers [17]. Sub-picosecond lasers may also be referred to as femtosecond

lasers. Often, these lasers make use of mode-locking to achieve their characteristic short,

intense pulses. Due to their very short pulse duration, ultrafast lasers can have extremely

high peak powers. For example, an ultrafast laser with a pulse energy of 100 nJ and

pulse duration of 100 fs would have a peak power of 1 MW. The peak power of almost all

ultrafast lasers is higher than the power provided by CW lasers which mostly top out in
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the kW range.

It should be noted that there are no other devices aside from femtosecond lasers that

are capable of producing events (pulses) on such a short time scale. For example, pulses in

the femtosecond range occur faster than the formation and dissociation of many chemical

bonds in molecular structures. As a result of the short pulse duration and high peak

power, femtosecond lasers have enabled a considerable body of research to be undertaken

in fields as diverse as femtochemistry and nonlinear microscopy. More specifically, much

of this work has been possible due to the nonlinear effects resulting from the properties

inherent in femtosecond lasers. One of these effects is the two photon absorption process

which is utilized to test for SEEs in microelectronics in the present day.

3.3 Pulsed Lasers in Single Event Effects Testing

For the past approximately 30 years, pulsed laser testing has been used by a number

of research groups primarily around the United States and Europe, with much of the

early motivation being to supplement the testing being performed at particle accelerator

facilities. The theoretical background of pulsed laser testing of SEEs actually dates back

to 1965, where Habing proposed that light from an unfocused pulsed laser source could

be used to simulate dose rate effects caused by electrons and gamma rays since both

photons and particles are capable of ionizing atoms by liberating electrons from them [18].

However, it was not until 1987 that the first use of focused pulsed lasers to specifically

evaluate SEEs was reported [19]. Since then, research groups have continued to report

the value of using pulsed lasers to investigate SEEs in various devices.

Pulsed laser sources have been increasingly used as a tool to study SEEs in sensitive

devices. There are several reasons for this advancement. Firstly, they offer experimental

advantages over accelerator-based testing. Pulsed laser irradiation provides spatial and

temporal information that assist in analyzing when and where a device experiences SEEs.

Additionally, compared to energetic particles, x-ray, and gamma ray sources, pulsed lasers

do not cause potential cumulative damage due to dose effects. Another significant factor

is the cost. Generally, use of accelerator facilities can be considerably expensive, often

costing upwards of several thousand dollars per hour. Clearly, this can be prohibitive,
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especially for smaller groups and companies that want to test their devices but may not

have the financial backing. Availability of accelerator facilities can also be fairly limited.

Therefore, pulsed lasers offer a few practical advantages over accelerators in addition to

the parametric advantages.

The mechanisms by which laser pulses and particles generate electron-hole pairs in

sensitive devices differ, thus resulting in different charge track profiles. Laser pulses are

composed of photons which are absorbed by the material to generate electron-hole pairs,

whereas particles primarily do so via the Coulomb interaction. For a Gaussian beam of

laser light the charge track profile decreases exponentially as a function of distance within

the material, but with heavy ions it increases gradually and reaches a maximum at the

Bragg peak before rapidly decreasing to zero. The differences in charge track profiles

have raised questions about whether pulsed lasers can accurately model and generate

the SEEs induced by ions in a radiation environment. However, the literature published

over time has consistently demonstrated the viability and applicability of pulsed lasers

to investigating SEEs [20]. A wide variety of devices in a wide variety of processes have

been studied. Some examples include bipolar circuits, CMOS technologies, memory cells,

and power devices. Thanks to considerable work done in this field, pulsed laser systems

have overcome many challenges to mature into the testing method widely accepted by the

radiation effects community today.

Broadly speaking, charge generation in materials via particles depends on the energy

and atomic number, while the charge generated by laser pulses depend on optical pa-

rameters such as wavelength, optical components used, photon density, and absorption

process. Each of these factors must be considered when evaluating SEE response and will

be discussed further in the chapter. Specifically, the single and two photon absorption

processes as they relate to SEE generation in semiconductor materials are of interest.
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3.4 Interaction of Light with Semiconductor Materi-

als

In semiconductor materials, the propagation and absorption of light are described by

the following differential equations in terms of the irradiance, phase, and charge carrier

density, respectively [21][22]:

dI(r, z, t)
dz

= −α(λ)I(r, z, t) − β2(λ)I(r, z, t)2 − σexN · I(r, z, t) (3.4)

dΦ(r, z, t)
dz

= β1I(r, z, t) − γ1N(r, z, t) (3.5)

dN(r, z, t)
dt

= α(λ)I(r, z, t)
hν

+ β2I(r, z, t)2

2hν (3.6)

where r and z are the radial and longitudinal positions, σex is the absorption cross-

section for photons by free electrons, γ1 is the refraction coefficient due to free carriers,

α is the linear single photon absorption coefficient, and β1 and β2 are the two photon

absorption coefficients that arise from the real and imaginary parts of the third order

nonlinear optical susceptibility, respectively [23]. As will be seen, these equations (espe-

cially 3.4) will be modified depending on if either the single or two photon absorption

process is exclusively used.

The two photon absorption coefficient β2 is given by [22]:

β2 =
K

√
Epf(2hν/Eg)
n2E3

g

(3.7)

where K is a material independent constant, n is the linear refractive index, and Eg

is the band gap energy. The form of the function f depends on the assumed electronic

band structure. Finally, Ep = 2P 2me/~2, where P is the Kane momentum and me is the

electron mass.

Equation 3.4 describes the change in irradiance of the incoming light as a function

of propagation distance into the material. Note that the terms higher than second order

have been omitted. The third term can indirectly affect a pulsed laser experiment by
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contributing to changes in the linear and nonlinear absorption properties, thus altering

the pulse propagation and charge carrier generation within the medium.

Semiconductor materials are characterized by their band gap, which is essentially the

minimum energy required to excite an electron in a bound state in the valence band to an

unbound state in the conduction band. While the following discussion can be generally

applied to many semiconductors it will be focused towards silicon due to its ubiquity in

electronic manufacturing industries. It is well known that pure silicon has an indirect

band gap of ∼1.11-1.12 eV at room temperature. Its absorption of light as a function of

wavelength is also well characterized, the spectrum of which is shown in Figure 3.2 [1].

With knowledge of these two properties combined with the propagation equations it is

possible to predict if light incident on a silicon surface will be absorbed by single or two

photon absorption.
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Figure 3.2: Absorption coefficient of pure silicon in cm−1 as a function of
wavelength at room temperature [1].

3.4.1 Single Photon Absorption

Photons with energies exceeding the band gap of the semiconductor will be directly ab-

sorbed to generate electron-hole pairs. This is known as single photon absorption (SPA),

or linear absorption. Equation 3.1 dictates the energy a photon will have as a function of

its wavelength. In silicon, the band gap is 1.11 eV which conveniently corresponds to a

photon with a wavelength of 1,100 nm. Therefore, to ensure nonlinear absorption effects

are negligible, a pulsed laser wavelength should be selected that is below approximately

1,100 nm. The wavelength range for SPA is generally considered to encompass the visible

and near-infrared up to 1,100 nm.

When the irradiance (often given as W/cm2) is sufficiently small and the nonlinear
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effects can be neglected, the solution to Equation 3.4 becomes

I(z) = I0exp(−α(λ)z) (3.8)

where I0 is the irradiance at the surface of the material and z is the depth below the

surface. This is a form of Beer’s Law which is well known and is the overwhelmingly

dominant absorption process for SPA. As the irradiance is a maximum at the surface the

density of charge generated is a maximum there as well.

3.4.2 Two Photon Absorption

For a photon with a wavelength longer than 1,100 nm, and thus insufficient energy to

overcome the band gap of silicon, the terms in Equation 3.4 describing the linear and

free carrier absorption can be neglected, whereas for SPA the nonlinear component was

neglected. In this case, the solution for Equation 3.4 becomes

I(z) = I0

1 + β2I0z
(3.9)

When the irradiance I0 is sufficiently low, light will pass through the silicon relatively

unabated. However, if I0 is sufficiently high then the term in the denominator will become

non-negligible and the light will be attenuated and absorbed by the silicon by a process

known as two photon absorption (TPA). Conceptually, the TPA process is fairly simple

to understand. After the conditions enabling TPA are met, two photons that are spa-

tially and temporally close will be simultaneously absorbed by the silicon and generate

one electron-hole pair. In another way of thinking, the silicon acts as if it ”sees” one

photon with twice the energy, or half the wavelength of the incoming two sub-band gap

photons. While TPA has been utilized in other confocal multi-photon microscopy fields,

its application to SEE testing in sensitive devices was first demonstrated to be feasible

approximately 15 years ago at the U.S. Naval Research Laboratory [2]. Since then, several

pulsed laser facilities around the world have been configured to test for SEEs using TPA,

including the lab at the Saskatchewan Structural Sciences Centre (SSSC).

For efficient charge generation via TPA, several important conditions need to be met.
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Figure 3.3: Charge density plot comparisons for an SPA process versus a TPA
process [2]. The SPA wavelength used was 590 nm, while 1260 nm was used for

TPA.

Firstly, the wavelength selected must be above 1,100 nm as previously mentioned. In

a practical setting it is useful to choose a wavelength at least slightly longer to ensure

no contributions from SPA arise. For example, the TPA wavelength used at the SSSC

is 1,200 nm. Secondly, the irradiance needs to be sufficiently high. To achieve this, the

spot size of the laser beam must be focused to a small area on the order of a few µm

and the pulse duration must be very short, on the order of several hundred femtoseconds

or less. Thus, an ultrafast pulsed laser is generally required if the TPA method is to be

used. Recall that ultrafast lasers can generate extremely high peak powers due to their

very short pulse duration.

According to Equation 3.9 the light is not attenuated at an exponential rate as it

passes through the medium as compared to Beer’s Law. As well, from Equation 3.6 the

charge carrier density depends on the square of the irradiance. With these two important

properties, by using TPA it is possible to inject charge at effectively any depth into the

substrate by changing the position of the objective lens while also limiting the injection to

the confocal region where the vast majority of the irradiance is concentrated. Figure 3.3

illustrates the differences between the charge density generation profiles between SPA and

TPA. The plots indicate that the charge density decreases with depth into the material for

SPA , while for TPA it is maximized at the focal point of the laser beam. The SPA and

TPA processes have their own particular advantages and as such both methods continue
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to be used today.

3.5 Testing Parameters Considered for SEE Evalua-

tion Using a Pulsed Laser System

In the previous section the interaction of light with silicon in terms of SPA and TPA

was described. In addition to the light absorption process in silicon there are additional

parameters that must be considered for pulsed laser of testing of SEEs. These include

additional properties of the pulsed laser source, optical components that affect the laser

beam, and also practical considerations such as deciding whether a device should be tested

using SPA or TPA. The goal of this section is therefore to discuss these primary remaining

factors that can alter a device?s SEE response to a pulsed laser.

3.5.1 Single Photon Absorption or Two Photon Absorption: Front

Side vs. Back Side Irradiation

As discussed, SPA and TPA differ in how the charge carrier generation occurs. As a

result, a user might be left wondering which technique should be used under the presented

conditions. As a general rule, SPA is often employed when the sensitive areas are located

on the top/front side of the chip where they can be directly exposed to the laser without

interference from packaging or metal interconnects. This is known as front side irradiation,

and should be used where possible. Front side irradiation via SPA is easier to compare

with heavy ion data as the calculation of charge deposited into the silicon can be much

simpler than the case for TPA.

However, if the top side of the device cannot be directly accessed then the laser must

be directed through the back in a process known as back side irradiation. While both

SPA and TPA can be used for back side irradiation, SPA is limited in effectiveness as

the wavelength selection is confined to a narrow region close to 1,100 nm due to the

absorption properties of silicon; shorter wavelengths generally cannot penetrate into the

substrate sufficiently far to reach the sensitive volume. As such it may be more beneficial

to use TPA in many of these cases.
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At the same time, the need for back side irradiation has increased as the feature size has

decreased. The ongoing trend of designing denser, highly scaled devices has led to greater

numbers of metal levels and interconnects that prevent laser pulses incident from the front

side from reaching sensitive regions within the silicon. As well, a non-negligible amount

of modern circuits are mounted using a flip chip configuration, thus preventing opening

up the device and gaining access from the top in the first place. Back side irradiation via

TPA allows circumvention of these issues in most cases. Figures 3.4 (a) and (b) illustrate

front side vs. back side irradiation when using SPA and TPA, respectively.

(a) Front side irradiation using SPA. (b) Back side irradiation using TPA.

Figure 3.4: Illustration of front side irradiation and back side irradiation.

Surface Preparation for Front and Back Side Irradiation

Preparing a sample for front side irradiation is usually straightforward, often requiring

nothing more than opening the package. On the other hand, preparing a sample for

back side irradiation is much more involved. To expose the substrate the back cover

must be removed and may require etching, grinding, chemical removal, or other processes

depending on the packaging. Next, once the substrate is exposed it must be highly
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polished to a mirror-like finish to ensure the beam quality is not degraded by a rough

surface. Additionally, it may be desired to thin the silicon substrate by some amount

so that the laser will adequately penetrate to the active areas. The time and resources

necessary to prepare samples for back side irradiation is non-trivial, and users wishing to

test their devices with this method must be aware of this.

3.5.2 Pulse Duration and Repetition Rate

The pulse duration of a laser can influence the SEE energy threshold of a device if it

approaches or is longer than its charge collection and response times. However, as long

as the pulse duration is reasonably shorter than the response time it will not have a

meaningful effect on an experiment [20]. Fortunately, sub-picosecond ultrafast lasers

generally do not have this complication as their pulse durations are much shorter than

the response times of even the fastest modern devices and ICs.

To achieve greater flexibility in probing a device’s SEE response the repetition rate

of a laser system should be configurable, either by changing the settings of the pulsed

laser itself or through external means. The purpose is essentially to vary the frequency at

which the device under test is hit by incoming laser pulses. This is important because if

a device is not able to relax to an equilibrium after being hit by a laser pulse before the

next one, the measurement may be compromised. An appropriate repetition rate is also

helpful in ensuring that the device being tested will receive a sufficient number of pulses

in the areas being irradiated by a laser.

3.5.3 Laser Spot Size

The response of a circuit depends at least partially on the spatial profile of the laser beam.

More specifically, the smallest area that can be probed on a device is dictated by the spot

size, which depends on the microscope objective lens and wavelength of light used. If the

laser is modelled as a Gaussian beam, then after being focused by the objective lens the

minimum spot size is given by [24].

w0 = 2λ
π ·NA

(3.10)
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where w0 is the beam waist at 1/e2 of the maximum intensity, λ is the wavelength of

light used, and NA is the numerical aperture of the lens. NA is defined as NA = d/2f :

the ratio of the diameter and focal length of the lens all multiplied by one half.

As can be seen, to achieve a smaller spot size, shorter wavelengths and lenses with

larger NAs should be used. Generally, a spot size as small as possible is desired so that

the features in devices such as highly-scaled memories can be specifically probed without

overlapping into other sensitive areas.

At the SSSC pulsed laser facility two primary objective lenses are used for testing: one

with a 10x magnification and NA of 0.3, and the other with a 50x magnification and NA

of 0.65. Using Equation 3.10, Table 3.1 illustrates the theoretical minimum spot sizes for

both lenses at wavelengths of 580 nm and 1200 nm.

Table 3.1: Spot size calculations for the objective lenses used at the laser facility
at wavelengths of 580 nm and 1200 nm.

Objective Lens Numerical Aperture Spot Size (580 nm) Spot Size (1200 nm)

Nikon 10x 0.3 1.23 µm 2.55 µm

Mitutoyo 50x 0.65 0.568 µm 1.18 µm
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Chapter 4

The Pulsed Laser Facility for SEE Testing

at the Saskatchewan Structural Sciences

Centre: Equipment and Setup

4.1 Background

Pulsed laser facilities have been set up around the globe to meet the needs of the radiation

effects community. Some of the most well known facilities include those maintained at

the United States Naval Research Laboratory (NRL), NASA’s Jet Propulsion Labora-

tory (JPL), the European Aeronautic Defense and Space Company (EADS), and IMS in

Bordeaux.

Over the past three years, through a collaborative effort between Dr. Li Chen and

the Saskatchewan Structural Sciences Centre (SSSC), a new pulsed laser facility for SEE

testing has been developed. Previously, Dr. Chen collaborated with the SSSC and had

developed an earlier iteration of the pulsed laser facility. However, no work during the

course of this thesis was performed on the old system. As well, the new setup consists

of different (though functionally similar) pieces of equipment, from the laser source to

the microscope. The end result has been a system that offers better spatial, temporal,

and parametric functionality for SEE testing. For example, the previous system was not

capable of supplying a wavelength necessary for two photon absorption.

In this chapter, the equipment setup and capabilities of the laser facility for SEE

testing at the SSSC are described. Currently the only facility of its kind in Canada

capable of serving the radiation effects community, the SSSC pulsed laser facility is a

custom-designed setup that offers a broad range of features and wavelengths. This allows

29



users to test the SEE response of their devices using both single (SPA) and two photon

absorption (TPA). As of the time of this writing the information presented here is up

to date, however it is anticipated that the facility will change over time both to receive

ongoing hardware and software upgrades as well as to meet the needs of the radiation

effects community.

4.2 Facility Equipment Setup

The SSSC laser facility is shown in Figure 4.1. Consisting of multiple pieces of equipment,

the system itself is divided into two main stages: an amplification stage which allows for

tuning of laser power, wavelength, and repetition rate, and a post-amplification stage

which includes the components of the system that manage and monitor how any devices

under test (DUTs) are irradiated. The overall layout of the SSSC laser equipment in

block diagram form is shown in Figure 4.2. The principles of operation of each piece of

equipment will be described here.

Figure 4.1: Photo of the SSSC SEE laser facility at the University of
Saskatchewan. The Verdi, Vitesse, RegA, and OPA units are shown and labelled.
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Figure 4.2: Block diagram of the SSSC SEE laser setup from a top-down view.
The arrows indicate the beam paths of the lasers used.

4.2.1 Amplification Stage

The amplification stage consists of a diode-pumped solid state Nd:YVO4 Verdi V-18 laser,

Vitesse-800 mode-locked titanium:sapphire laser, and a RegA 9000 regenerative amplifier,

all manufactured by Coherent, Inc. As the pump source of the RegA, the Verdi provides

a continuous wave 532 nm input with power up to 18 W. However, only a maximum of

14 W is used at any time.

Simultaneously, the Vitesse provides an 800 nm pulsed laser with a pulse width of 130

femtoseconds (fs) and 80 MHz repetition rate to act as the seed laser for the chirped pulse

amplification process within the RegA [25].

The chirped pulse amplification process in the RegA 9000 is relatively involved, and

as such a brief explanation is presented here. First, the pump input from the Verdi passes
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through a titanium:sapphire crystal in the RegA [26]. Simultaneously, the 800 nm seed

input from the Vitesse passes through a Faraday isolator, then to an acousto-optic cavity

dumper to inject single pulses into the remaining RegA optics. Amplified at a repetition

rate of 250 kHz, these pulses perform 20 to 30 round trips within the RegA laser cavity,

after which they return to the Faraday isolator and are once again extracted by the cavity

dumper. They are separated from the input beam via a polarizer. Since the amplification

process causes temporal broadening of the pulse duration to about 30 picoseconds, the

RegA contains compressor optics to re-narrow the beam down to a value of approximately

200 fs. The resultant output is an 800 nm beam 3 mm in diameter with a pulse duration on

the order of 200 fs [26]. The repetition rate of the RegA output is configurable between 10

kHz to 300 kHz which is adjusted by changing the settings in its accompanying electronic

controller. The repetition rate can be lowered further through the use of an external delay

generator. The RegA output can be directed via a set of flip mirrors into an OPA 9800,

OPA 9400, or used directly as a source laser (not pictured in Figure 4.2). The OPA 9800

is generally used for two photon absorption due to its primary output between 1,100 nm

and 1,600 nm, while the OPA 9400 is mostly used for single photon absorption.

The Optical Parametric Amplifier Model 9800 (OPA 9800) is an accessory parametric

amplifier to the RegA 9000 used to generate a wavelength-tunable output. The parametric

amplification starts by taking the 800 nm output RegA output and splitting it with a

75/25 beamsplitter. The beam containing 75% of the incident beam energy is sent to

a dichroic mirror, while the beam with the remaining 25% is sent to a sapphire crystal

which produces a whitelight continuum between 460 nm and 1600 nm [27]. The whitelight

passes through an optical delay known as the first pass delay on its way to combining

with the 75% energy beam at the dichroic mirror. Both beams then pass through a beta

barium borate (BBO) crystal for the first time. The resulting output is a residual 800 nm

beam as well as small amounts of signal and idler output. The signal output is separated

from the 800 nm beam through a second dichroic mirror and sent to a fixed optical delay.

At the same time, the 800 nm beam is sent to a second optical delay (second pass delay)

which is then recombined with the signal at the second dichroic mirror for a second pass

through the BBO crystal. The end results are a primary signal between 1,100 nm and
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1,600 nm, an idler signal between 1,600 nm and 2,400 nm, and the residual 800 nm signal.

The output wavelengths can be tuned by adjusting the external micrometers attached to

the BBO crystal mount and first and second pass delays. These change the angles of the

crystals upon which the beams are incident as well as the timing of their convergence

within the BBO crystal. The operation of the OPA 9400 is nearly identical, but contains

a second BBO crystal to frequency double the 800 nm input down to 400 nm.

4.2.2 Post-Amplification

After amplification of its power and parametric properties, the laser is passed through

two more significant apparatuses: the Pockels cell and the microscope. For simplicity,

in this section it is assumed that the primary output signal from the OPA 9800 is used.

However, the discussion is general and can be applied to the other beam outputs as well.

As shown in Figure 4.2, after exiting the OPA 9800 the beam is passed to a Conoptics

Model 360-40 electro-optic modulator, or Pockels cell. This model can take wavelengths

between 680 nm and 1300 nm. Thus, most of the wavelength range of the OPA 9400 is

cut off and cannot take advantage of the Pockels cell. As also shown in Figure 4.2, it can

be bypassed by using mirrors if desired. Interfacing with the microscope and software,

the Pockels cell provides the user with increased spatial and temporal selection over laser

irradiation parameters. It essentially acts as a high end switch to modulate the beam at

certain positions and time intervals to irradiate a sample under the microscope according

to the user-specified input.

After passing through the Pockels cell, the beam goes through an optic that sends

approximately 3% of the power to a ThorLabs DET10C fast photodiode connected to

an oscilloscope. This allows users to monitor changes in the laser pulse stability during

testing. From there the beam passes through a 90/10 beamsplitter, sending 90% of the

beam to the microscope and the remaining 10% to a Coherent OP-2 IR power meter which

measures the average power of the beam.

To measure the power of the pulsed laser directly at the stage, a handheld ThorLabs

S132C power meter is available. This model of power meter is slim, and as such the power

coming out of the objective lens can be measured by placing it between the lens and the
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sample. Care must be taken to ensure the user does not bump the sample during the

power measurement, but with a little bit of practice this procedure is relatively easy.

The microscope used by the laser facility is a ThorLabs MPM200-SGP paired with

a ThorLabs height-adjustable PHYS24-m stage. The setup is pictured in Figure 4.3. It

can be moved in all three directions using the knobs on its base. Until very recently,

the microscope was only motorized in the vertical z direction but with the addition of a

new controller the x and y directions are fully motorized as well. As a result, all three

directions can be adjusted in steps as fine as 0.1 µm using the ThorLabs software.

By design, the stage that the samples are mounted on is fixed. Instead, to achieve

movement in the x, y, and z directions, the microscope column is designed to vary its

position. This approach has several important advantages. It allows for fast scanning

over the entire sample, offers high resolution, and avoids problems arising from stage

hysteresis.
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Figure 4.3: Photo of the ThorLabs MPM200-SGP microscope and stage. The
50x objective lens is also visible in the picture.

To enter the microscope the beam first passes through a periscope then up to a beam-

splitter and into the galvanometer motorized mirror assembly (”galvos”) which is respon-

35



sible for scanning the position of the beam in the x and y directions within the field of

view. The following section will elaborate on this process further. After the galvos the

beam passes through a fisheye lens that expands the focused spot onto a mirror which

bounces the beam downwards onto the back of the objective lens. The overfilled lens

focuses the light into a tight beam spot (typically on the order of 1-3 µm in diameter

depending on the objective) on the sample for testing. The microscope is then connected

to a PC via a ThorLabs electronic control unit (ECU).

4.3 Laser Irradiation Procedures

In this section the various parameters that dictate how devices under test (DUTs) can be

exposed to laser irradiation are described, and a description of the software features are

also provided. Using the ThorImageLS program on the PC, the user is able to specify

various parameters the microscope uses when a sample is being irradiated.

A useful feature of the laser system is the ability for a user to view a DUT in real

time as the device is subjected to laser pulses. To accomplish this, a continuous wave

Mitsubishi ML725B8F 1310 nm imaging laser is connected to a port on the side of the

microscope. The imaging laser then travels along the same optical path as the pulsed laser

starting at the last beamsplitter within the microscope. Interfering non-destructively with

the sample, an image is collected using the back reflection as collected by the objective and

passed back through the galvos and dichroic to a ThorLabs PDA20CS detector. After

overlapping the two beams it is possible to accurately probe the desired test areas by

finding the region of interest on the sample based on the image provided by the software.

ThorImageLS displays and continuously updates this image for the user.

For the irradiation of a device, the most straightforward method is to perform a

continuous scan of the area within the field of view. In this mode, the microscope galvos

continuously sweep the pulsed laser across the field of view. The amount of time the galvos

spend idling on each pixel is known as the dwell time and can be changed in ThorImageLS.

It is also possible to digitally zoom in on the image if the user wants to only irradiate a

specific area. The galvos respond to a digital zoom by tightening their scan range so that

only the area seen in the image is still hit by the pulsed laser.

36



As the laser facility has received ongoing software and hardware upgrades, it is now

possible for the user to draw regions of interest (ROIs) on the image to irradiate specific

areas accordingly. The primary irradiation parameters of concern to the user include the

pixel density, dwell time for each pixel, scan pattern, and number of times to iterate the

scan over the ROI. While the user has some flexibility in creating a polygon shape of their

choice, the most useful types of ROIs to use for device testing are often the rectangular

and single point tools. These types are discussed here.

The user creates a rectangular ROI by simply selecting the appropriate tool in software,

then clicking and dragging to create a box with the desired dimensions. The galvos are

then programmed to scan through that area with the specified parameters. Working in

parallel with the galvos, the Pockels cell delivers the desired laser power inside the ROI

and drops the power to the minimum passable power when the galvos travel outside the

ROI. Figure 4.4 shows an image of the configuration memory of the Virtex-5 FPGA with

a rectangular ROI selected.

Figure 4.4: Screen capture of the ThorImageLS software version 2.3 with a
section of the Virtex-5 configuration memory being imaged by the imaging laser.

The yellow box is the rectangular ROI selected.

The single pixel ROI is used to select exactly one pixel on the image for irradiation.
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Represented by a colored crosshair, the single pixel, or point ROI is an especially powerful

tool as it allows users to inject exactly one or multiple laser pulses into their devices with

the spatial resolution only limited by the minimum beam spot size. Figure 4.5 depicts

a DUT with a point ROI. Additionally, note the red areas in Figure 4.5. These areas

represent oversaturation of the pixels on the detector receiving the signal from the imaging

laser; they do not represent hotspots sensitive to SEEs. Rather, this phenomena is often

caused by highly reflective components or areas on the device such as metals.

Figure 4.5: Point ROI on a DUT. The yellow crosshair indicates the sole location
where incoming laser pulses will be injected.

Overall, the new ability to draw ROIs on screen and specifiy the irradiation parameters

to a greater precision is a very useful addition to the system.
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Chapter 5

Response of Optek OMH3075 and Infineon

TLE4945 Hall Effect Sensors to Single Event

Effects Induced via Single Photon Absorp-

tion

5.1 Introduction

A Hall effect sensor (HES) is a type of transducer that responds to magnetic field strength

with a varying output voltage. They are used in applications for non-contact proximity

switching, positioning, speed detection, and current sensing, among others [28]. One ex-

ample is an electric motor tachometer. In fact, they also found application in space. HESs

manufactured by Micropac Indsutries, Inc. were used in mechanisms of the Mars Science

Lab Mission [29]. As well, one of the models studied here, the Infineon TLE 4945, is

proposed for use on the European Space Agency’s (ESA) ExoMars rover. The intended

use is as a component in the brushless DC motors for the rover’s drilling and sampling

mechanism [30]. Any HESs used on a Mars mission will be exposed to radiation environ-

ments both in space and on the Martian surface. Therefore, it is useful to characterize

their response to single event effects (SEEs) and total ionizing dose (TID).

Sanders et al. evaluated the TID and heavy ion SEE response of an Optek OMH3075

HES [31][32] while Phillips et al. evaluated the TID response of an Infineon TLE4945

HES [30]. As both of these HES models have been qualified as candidates for potential

use in space applications, a unit of each was procured by MDA Corporation for pulsed

laser testing at the University of Saskatchewan. The goal was to observe and compare
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the single event transient (SET) responses of these sensors, both with each other and the

available data.

As of the time of this writing and to the best of our knowledge SEE data is not

available for the Infineon HES and no laser SEE data is available for the Optek HES.

Further evaluation of the SEE response of these sensors is recommended. In this chapter,

single photon absorption (SPA) pulsed laser irradiation results for the Optek and Infineon

HESs are provided. The results show the locations of the SEE sensitive regions of each

sensor, compare laser SEE performance of each sensor, and are compared to the available

published heavy ion data [31][32]. Therefore, the results given here represent the first

evaluations by a pulsed laser of these HES models. They also represent the first use of

SPA to evaluate device response for the new laser setup at the SSSC pulsed laser facility.

5.2 Overview of Sensors

As previously mentioned, the HESs evaluated are the Optek OMH3075 and Infineon

TLE4945. Figures 5.1 and 5.2 show the block diagrams of the Infineon and Optek devices,

respectively. As can be seen, the Infineon model consists of a Hall generator, threshold

generator, operational amplifier, and Schmitt-trigger. If a magnetic field is applied, the

Hall probe will develop a voltage. This voltage is amplified and transferred to the output

pin through a Schmitt-trigger. The sensor has built-in temperature compensation circuitry

which allows for operation over a wide temperature range. The Optek sensor functionality

is similar. Included on both chips is a band gap voltage regulator that allows operation

over a wide range of supply voltages. Table 5.1 shows the extreme operating voltage

ranges of each device.

Table 5.1: Minimum and Maximum Operating Voltage of OMH3075 and
TLE4945 devices.

Model Vmin Vmax

Optek OMH3075 4.5 24

Infineon TLE4945 3.8 24
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Figure 5.1: Block Diagram of Infineon TLE4945 HES [3].

Figure 5.2: Block Diagram of Optek OMH3075 HES [4].
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5.3 Test Facility

Pulsed laser testing was conducted at the Saskatchewan Structural Sciences Centre (SSSC)

at the University of Saskatchewan; the equipment was previously described in Chapter 4.

The use of pulsed lasers has been adopted by the radiation effects community both

as an alternative and supplement to high energy particle irradiation. As discussed in

previous chapters, pulsed laser-based SEE testing maintains several advantages over broad

beam, high energy particle irradiation. Some of these include control over the timing

and location of the photoelectric interaction between the laser and the material, as well

as no accumulation of ionizing or displacement damage dose. However, microelectronic

devices are not impervious to laser-induced damage. Therefore, thermal degradation and

protection against the possibility of destructive latchup must still be considered [33].

5.4 Experiment Setup

As the active areas for both HESs can be exposed directly to the air after being de-lidded,

it was decided that the SEE sensitivity would be evaluated using the SPA mechanism.

By choosing an appropriate wavelength this was accomplished. Due to the front-facing

design, it was not necessary to focus through a substrate to observe the layout of the

device. The OPA 9400 was configured to give an output wavelength of 580 nm, and the

resulting output beam was aligned into the microscope. Table 5.2 lists the primary laser

and objective lens properties used during the testing of the HESs.

Table 5.2: Laser Irradiation Parameters for Hall Effect Sensor Studies.

Wavelength (nm) Objective Lens Repetition Rate (kHz) Pulse Width (fs)

580 10x with 0.3 NA 10 200

During our testing, a laser wavelength of 580 nm with a repetition rate of 10 kHz

was used, which is the lowest rate that the RegA 9000 can output natively. It was not

possible to use the Pockels cell for this experiment as the lowest wavelength it is rated

for is 680 nm while 580 nm was used. Therefore the Pockels cell was bypassed and the
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only irradiation method available was the continuous scan mode over the region within

the field of view in the ThorImageLS software. A dwell time of 5.2 µs per pixel was used.

To achieve the wavelength necessary, the output beam from the RegA was passed through

the OPA 9400.

The Optek and Infineon devices were mounted onto two separate prototype boards.

MDA Corporation in Brampton designed, soldered, and supplied these custom boards for

use for laser testing. MDA also properly de-lidded the sensors so that their front-facing

active areas could be directly exposed to the laser. The boards themselves are nearly

identical in their layout; both contain a solenoid to produce the required magnetic field.

Each board also provides five electrical connections: voltage supplies to the solenoid and

HES, as well as a signal output from the HES for connecting to an oscilloscope. A block

diagram of the test board is shown in Figure 5.3 and photos of the boards are given in

Figures 5.4 (a) and 5.4 (b).

To measure the power delivered to the devices at the stage, a Coherent OP-2 VIS

model sensor was available. To ensure optimal accuracy, all power measurements were

taken in as dark of an environment as possible by shutting off all the major light sources

in the room including fluorescent lighting, computer screens, etc.

Figure 5.3: Block diagram of the test board for the Optek and Infineon HESs.
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(a) Optek OMH3075 board.
(b) Infineon TLE4945 board.

Figure 5.4: Photos of the test boards for the Optek and Infineon HESs. The
device under test for (b) is indicated by the black marker lines around its area.

Both HES models are bipolar. Therefore, applying a magnetic south pole turns on a

device (logic level 0 or ”low”) while applying a magnetic north pole turns off the device

(logic level 1 or ”high”). However, to avoid potential confusion for the rest of the chapter,

the sensor states are described in terms of being in either a high or low output voltage

state. For the practical setup, applying a positive voltage to the solenoid creates an output

logic low state for the HES, while applying a negative voltage sets the sensor to an output

high state.

5.5 Test Conditions

Table 5.3 lists the four bias conditions under which each device was tested. 10 V was

applied to the sensor in all cases. ±10 V was applied to the solenoid in the first two cases,

while in the last two the magnetic field was removed after inducing the device into either a

high or low state. It is important to observe the output of the HES without the magnetic

field present to determine the variation in SEE/SET susceptibility. If the variation is

sufficiently large then reliable operation of the component providing the magnetic field is

also essential to mitigate against SEEs in the HES itself.
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Table 5.3: Test bias conditions.

Vsensor (V) Vsolenoid (V) Magnet Presence Sensor Output

10 10 Yes High

10 -10 Yes Low

10 0 No High

10 0 No Low

5.6 Test Objectives

The primary test objective was to determine the SET behavior of each HES with an SPA

pulsed laser while varying the laser power and to find the locations of the sensitive regions

of each sensor. As such, the active areas for both the Optek and Infineon sensors were

completely scanned by the pulsed laser source. In parallel with testing for SET response,

any observations of either device experiencing a latchup condition to a high current state

(SEL) were to be reported if found. The laser SEE results are then compared for each

device and with the available heavy ion data, providing correlation between heavy ion

and laser data. Recall that no SEE data is currently available for the Infineon model,

and so the only comparison in this case is with the laser SEE data for the Optek model.

The suitability for space applications of these sensors will also be discussed. The available

energy per pulse range over which the devices were tested was between 15 pJ and 1.75 nJ

per pulse.

5.7 Experimental Results: Optek Hall Effect Sensor

After scanning the entire active area of the Optek HES, several SET hotspots were found.

Figures 5.5 (a) and (b) show the view under the microscope of the regions most sensitive

to laser pulses according to the state the HES was initially set to.
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(a) (b)

Figure 5.5: Optek HES sensitive areas for the output logic high and solenoid on.
(a) represents the areas most sensitive when the device started in the high states,

while (b) represents those most sensitive when started in the low states.

More specifically, the exact structures that were most sensitive to SET were able to

be pinpointed by zooming in and scanning over them. They are shown below in Figure

5.6 (a) and (b). 5.6 (a) is the band gap voltage reference structure for the Optek device

and 5.6 (b) shows the Schmitt trigger.

(a) Band gap structure. (b) Schmitt trigger.

Figure 5.6: Structures most sensitive to upset from the laser pulses. (a) is most
sensitive for the high state condition, while (b) is most sensitive for the low

condition.
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The following laser irradiation results presented are the worst-case results from each

of these structures.

5.7.1 Output Logic High and Solenoid On Test Condition

Starting the sensor in the high state with the magnetic field present, the laser threshold

energy was found to be 250 pJ per pulse. Figure 5.7 shows the typical response to

the laser-induced voltage output transient pulse observed. The rise and fall times are

approximately 700 ns and 86 ns, respectively. The full width at half maximum (FWHM)

transient pulse width is ∼900 ns, which was observed to vary slightly depending on the

laser energy and area hit.

Figure 5.7: Optek HES output transient pulse observed at 250 pJ for output
logic high and solenoid on.

5.7.2 Output Logic Low and Solenoid On Test Condition

Under these conditions, the output voltage is logic low. The laser was used on the sensitive

structure from Figure 5.6 (b). Compared to the previous conditions, it was found that

the laser pulse energy had a larger effect on the FWHM pulse width. SET output was
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first observed at 635 pJ per pulse, shown in Figure 5.8. In this case, the device did not

fully transition into the high state.

Figure 5.8: Optek HES output transient pulse observed at 250 pJ for output
logic high and solenoid on.

True upset into the high state was first found at 1.15 nJ per pulse and is shown in

Figure 5.9 Rise and fall times are approximately 760 ns and 60 ns, respectively. The

FWHM transient pulse width is approximately 10.2 µs.
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Figure 5.9: Optek HES output voltage transient observed at 1.15 nJ for output
logic low and solenoid on.

The duration over which the HES could be induced into the high state was observed

to increase with increasing laser pulse energy. Figure 5.10 shows the waveform at the

maximum available energy of 1.75 nJ per pulse. In this case, the FWHM increased to

∼11.9 µs and the rise and fall times increased slightly to 800 ns and 100 ns respectively.
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Figure 5.10: Optek HES output voltage transient observed at 1.75 nJ for output
logic low and solenoid on.

5.7.3 Output Logic High and Solenoid Off Test Condition

When the applied voltage (and thus the magnetic field) was removed from the solenoid,

the sensor output did not permanently stay at a logic low state when irradiated with the

laser. Instead, a toggling effect occurred as the states of the output altered between logic

low and high. As the results varied with some randomness, a sample waveform is shown

in Figure 5.11. The durations of the low and high state are not a constant. However,

they were found to always be a multiple number of the laser repetition rate of 10 kHz

which has a period of 100 µs. It indicates that the changing of the states was triggered

by the incoming laser pulses. Threshold for this upset was found to be 20 pJ per pulse.

Additionally, the device could not be induced into staying permanently in the low state

as the pulse energy was increased.
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Figure 5.11: HES output voltage observed at 20 pJ per pulse for the initial
output logic high without the applied magnetic field from the solenoid.

5.7.4 Output Logic Low and Solenoid Off Test Condition

Starting in the low state with no applied magnetic field, the sensor permanently remained

in the high state when irradiated with the laser, as illustrated in Figure 5.12. After the

magnetic field was reapplied without being irradiated by the laser, the sensor would return

to its original low state. Threshold for this occurred at ∼1.075 nJ per pulse.
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Figure 5.12: Optek HES output voltage observed at 1.075 nJ when the output
starts at a logic low state without the magnetic field applied.

5.8 Experimental Results: Infineon Hall Effect Sen-

sor

The Infineon HES was irradiated under the same conditions as the Optek HES described

in Table 5.3. The entire area of the sensor was also scanned to identify potential SET

hotspots. The view of the Infineon HES structure under the microscope is shown in Figure

5.13. Recalling the discussion from Chapter 4, note the red areas indicating oversaturation

of the pixels on the detector connected to the imaging laser, they do not represent hotspots

sensitive to SEEs.
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Figure 5.13: HES structure. The red areas indicate oversaturation of the image
detector pixels.

Only one sensitive area, located in the center of the device and shown in Figure 5.14,

was identified. Similar to the Optek HES, this structure was also concluded to be the

band gap voltage reference component of the circuit. Thus, testing for the Infineon device

was performed on this area.
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Figure 5.14: Infineon HES sensitive area.

5.8.1 Output Logic High and Solenoid On Test Condition

As can be seen from Figure 5.15, the laser threshold energy was found to be as low as 20

pJ per pulse. The transient pulse has rise and fall times of 750 and 25 ns, respectively,

with an FWHM transient pulse width of 820 ns. These values are comparable to those

found for the Optek HES.
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Figure 5.15: Infineon HES Output transient pulse observed at 20 pJ for the
output logic high and solenoid on.

5.8.2 Output Logic Low and Solenoid On Test Condition

With the Infineon HES initially set in the low state with the solenoid on, transient behavior

in the Infineon HES was observed as low as 20 pJ per pulse. However, the maximum

FWHM pulse width amplitude of 1.60 µs was not observed until a pulse energy of 415 pJ

was reached. This is shown in Figure 5.16. The rise and fall times were 800 ns and 25 ns,

respectively.
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Figure 5.16: HES output transient pulse at 415 pJ, for output logic low and
solenoid on.

5.8.3 Output Logic High and Low with the Solenoid Off Test

Condition

When the Infineon HES started in the high state and the magnetic field was removed, the

behavior was similar to the Optek HES in that the sensor output did not permanently

stay in the logic low state when irradiated with the laser. As before, the sensor toggled

between logic low and logic high as it was hit with laser pulses. The Infineon HES exhibited

identical behavior when starting in the logic low state, the waveform for which is shown in

Figure 5.17. Threshold for observing this upset occurred at a laser pulse energy of 20 pJ.

Unlike the Optek HES, the Infineon HES was not observed during testing to permanently

latch into a high state when the solenoid was off.
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Figure 5.17: Infineon HES output voltage transient at 20 pJ for logic low or high
with the solenoid off.

5.9 Discussion

With a magnetic field applied to the Optek HES, single event transient responses at

the sensor’s output were observed when irradiated with the laser. In both cases with

an applied magnetic field, the waveform shapes and profiles produced by the laser pulses

replicated those found in heavy ion testing by Sanders et al [31][32]. However, the FWHMs

of the transient waveforms between the laser and heavy ion results are different. The laser

results showed shorter FWHMs than the heavy ion results. For the sensor starting in the

high state, the FWHM was 0.9 µs for the laser while the heavy ion results showed an

FWHM of 6 µs [32]. For the low state the laser results gave an FWHM of 11.2 µs, and

the heavy ions gave 14 µs [32]. In this case the FWHM magnitudes are more comparable.

However, if more power from the laser was available at the time of testing it might have

been possible to achieve an FWHM closer to the heavy ion results.

The Optek HES would remain in the output logic high state after transitioning from

the logic low state with the solenoid off and no magnetic field present. This behavior

was not observed for the output logic high-to-low transition. Instead, the sensor rapidly
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switched between states. In comparison, the heavy ion findings observed a toggling of

states in both cases and that the magnetic field needed to be re-applied for the device to

recover from a transient event. This was also the case for the laser-induced transients.

It was also found that the pulse energy required for the output logic low transition

with the solenoid on was considerably higher than that required for the output logic high

transition, slightly larger than a factor of four. The difference was considerably higher

when comparing the results for the solenoid being off, where the low-to-high transition

threshold was 1.075 nJ per pulse and the high-to-low was 20 pJ per pulse. This represents

a difference in energy by a factor of about 53. The heavy ion test results reported that

the least amount of transient events occurred when the sensor was in the low state with

the applied magnetic field [31]. This is in qualitative agreement with the laser findings as

out of the four test conditions this state consistently had the highest energy threshold for

upset.

In terms of sensitivity to laser pulses, the Infineon HES was found to be more sensitive

than the Optek HES when the magnetic field was applied, demonstrating upset at a pulse

energy as low as 20 pJ. This is considerably less than the thresholds of 250 pJ and 1.15

nJ shown in Figures 5.7 and 5.9 for the Optek sensor. However, they both demonstrated

sensitivity with the field switched off at 20 pJ per pulse.

No single event latchup was observed for the laser power range applied for either sensor.

This also agrees with the heavy ion findings in [31][32] and is an important criterion for

judging a device’s applicability in space missions.

5.10 Conclusions

In comparison to the heavy ion FWHM observations, a lower FWHM for the transient

pulses was found for the laser tests. Overall, however, the pulsed laser results obtained for

the Optek HES are in good agreement with the data observed for the heavy ion testing.

The Infineon HES was more sensitive than the Optek HES when the magnetic field was

applied in both test cases, however as mentioned they both showed similar performance

when they had no applied magnetic field. This is important as it suggests that a reliable

magnet is essential to ensuring their robustness against SETs in a radiation-intensive
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environment; without a magnetic field the device may not be able to properly recover to

its initial state.

The information provided here on how these devices respond to stimuli when in a high

or low state with or without a magnetic field can be useful in the evaluation of their space

applicability. The results re-confirm heavy ion data, suggesting that with appropriate

mitigation schemes these types of Hall effect sensors can be used in space applications.

5.11 Summary

The Optek and Infineon HESs have been tested using an SPA laser for SEE response.

The regions sensitive to laser pulses on both devices were identified. Laser results for

the Optek HES have been compared with heavy ion data. As no SEE data was available

for the Infineon device the results were compared with the obtained data for the Optek

HES. The data obtained for the Optek HES re-confirmed the heavy ion results found

by Sanders et al., namely that it is a suitable candidate for space missions with some

mitigation schemes.

The results presented here represent the first data obtained for the new setup of the

pulsed laser facility at the SSSC using SPA. Thus, these results demonstrate the feasibility

of using the SPA method at the pulsed laser facility, as well as the ability to use pulsed

lasers to evaluate these types of devices.
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Chapter 6

Evaluation of a Xilinx Virtex-5 FPGA Us-

ing Two Photon Absorption

6.1 Introduction

Pulsed laser sources have become valuable tools to evaluate the single event effect (SEE)

response of electronic devices. In comparison to conventional proton and heavy ion testing,

pulsed lasers provide users with considerable spatial and temporal control over irradiation

of their devices.

If the incident photon energy of a specific wavelength exceeds the band gap of the

material they will be absorbed by single-photon absorption (SPA). While SPA has been

used to study SEEs for approximately the past two and a half decades, more recently

the study of SEEs via two-photon absorption (TPA) has been demonstrated to be an

effective method as well [2]. In TPA, the laser wavelength is specifically chosen so that

the photon energy is less than the band gap, thus no optical absorption of individual

photons occurs in the material. However, at sufficiently high laser intensities the material

can simultaneously absorb two photons and generate an electron-hole pair each time this

occurs. Due to its low absorption, TPA has the ability to inject charge at nearly any

volume within the device, and as such is useful for backside irradiation of circuits and

devices built on silicon wafers.

In this chapter, the results obtained for the single event upset (SEU) evaluation for a

commercial off-the-shelf (COTS) Xilinx Virtex-5 field-programmable gate array (FPGA)

using the TPA technique are given. Part of the motivation for study is that FPGAs have

found widespread applicability in space missions due to their versatility and robustness. In

60



particular, Xilinx has published several reports that verify the immunity of many Virtex-

series FPGAs to single event latchup (SEL) [34][35]. This has made them a preferred

choice for space applications.

The primary objectives of this research were to reconfirm the tolerance of the FPGA

to SEUs from a pulsed laser source from results previously obtained on the same device

at the SSSC pulsed laser facility. This Virtex-5 represents the first device tested using

the new equipment setup of the SEE pulsed laser facility at the SSSC, and additionally

represents the first device to be tested using the TPA technique. The initial testing

was performed by Govindakrishnan Radhakrishnan [36], and the results presented here

represent a continuation of this work. The initial results determined the pulse energy

thresholds of the various functional blocks present within the FPGA structure, and also

determined the cross-section for the configuration memory functional block. Motivation

for further study was a result of the laser facility receiving additional upgrades, namely

the addition of the Pockels cell into the beamline. At the same time, the ThorImageLS

software was also upgraded to version 2.3 so that the Pockels cell could properly interface

with the microscope through the user input from the PC. The new features provided

by the Pockels cell give considerably more spatial and temporal control over the laser

irradiation of a device than was previously possible.

6.2 Device Overview

The device under test (DUT) was a Xilinx Virtex-5 model LX50T FPGA. As its name

suggests, the Virtex-5 is the fifth iteration of the Virtex series of FPGAs manufactured by

Xilinx, Inc. The Virtex-5 series is manufactured using a 65 nm process and operates with

an internal core logic supply voltage of 1.0 V [37]. In particular, the specific DUT tested

was mounted on a Digilent Genesys XC5VLX50T-FFG1136 (1C) development board. The

board is shown in Figure 6.1 with the Virtex-5 itself in the center.
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Figure 6.1: Genesys XC5VLX50T-FFG1136 (1C) development board. The
Virtex-5 is the component in the center of the board.

The board itself was procured by MDA Corporation in Brampton, Ontario. MDA

also supplied the register transfer level (RTL) codes written in the Very High Speed

Integrated Circuit hardware description language (VHDL) necessary to operate the various

functional blocks inside the FPGA. These codes were slightly modified at the University

of Saskatchewan for better suitability for laser testing [36].

As can be seen from Figure 6.1, the metal cover of the Virtex-5 has been etched away

in the center to expose the die directly to the pulsed laser. After etching, the silicon

surface of the die was polished to a high optical quality to ensure that any incident light

from the pulsed or imaging laser is not attenuated by blemishes or imperfections from

the etching process. As the Virtex-5 comes in a flip-chip package, this makes it especially

suitable for TPA as the backside of the die is exposed to the laser. As a result of the

selected wavelength the laser penetrates through the silicon substrate and causes upsets

directly via TPA in the diffusion regions of the device. The metal layers do not provide

an obstruction in this case as they are located past the substrate and active areas from
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the point of view of the laser.

The Virtex-5 die structure is composed of four primary functional blocks: the con-

figuration memory, configurable logic blocks (CLBs), digital signal processing blocks

(DSP48E), and block RAM (BRAM) sections. Each of these functional blocks has its

own .bit file that must be programmed into the FPGA before beginning any laser test in

that area for proper readout of any SEUs (i.e., configuration memory requires the config-

uration memory .bit file). They are of the most interest for testing of tolerance to SEUs,

and are briefly described in their respective experimental sections. The actual locations

of the functional blocks within the Virtex-5 were identified previously in [36] using the

Xilinx Floorplanner tool to map the information to the geometric layout of the FPGA.

6.3 Experiment Setup

Pulsed laser testing of the Virtex-5 was conducted at the SSSC. The equipment of the

facility was previously described in Chapter 4, and a photograph under the microscope

is provided in Figure 6.2. Table 6.1 lists the primary laser and equipment parameters

used as well as the parameters used in [36] for comparison. To generate the wavelength

necessary for TPA, the output beam from the RegA was sent to the OPA 9800. From there

the beam was aligned into the Pockels cell before going onwards to the microscope. The

ThorLabs PM100 power meter was used to measure the power from the 1200 nm beam

directly at the stage. All power measurements were taken in as dark of an environment

as possible, however it was noted that the PM100 meter was considerably less sensitive

to background light from the room compared to the OP-2 VIS meter used for the Hall

effect sensors.
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Figure 6.2: Picture of the Virtex-5 development board under the microscope.

Table 6.1: Current and previous laser irradiation parameters for Virtex-5 FPGA
studies.

Current Parameters Previous Parameters

Wavelength (nm) 1200 1200

Objective Lens 10x (NA 0.3), 50x (NA 0.65) 10x (NA 0.3)

Repetition Rate (kHz) 10 1

Pulse Width (fs) 200 200

The notable differences between these two parameter sets are the lenses and the rep-

etition rate. For the configuration memory tests both the 10x and 50x lenses were used

while only the 10x was used for the remainder. The repetition rate in the presented testing

was also increased to 10 kHz; due to the shorter period it is considerably more favorable

for the Pockels cell in terms of the memory required to generate the waveform pattern

for laser irradiation. It is also considerably less likely for the Pockels cell to miss pulses

due to the asynchronous external signal required by the RegA to reach a 1 kHz repetition

rate.

During testing, the Virtex-5 board was connected to a PC so that the FPGA could
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be re-programmed with the .bit files for the functional blocks as necessary. This is done

using the Xilinx iMPACT software. The board also requires its own power supply. When

the device is scanned by the pulsed laser, any disruptions in normal operation can be read

back through the JTAG or FPGA debug output lines using iMPACT.

6.4 Configuration Memory Results and Cross Sec-

tion Correlation with Proton Data

Configuration memory functional blocks compose the majority of the fabric of the Virtex-

5. The memory cells within the configuration memory are the fundamental units that

store the configuration data for the FPGA. As this data is responsible for determining the

functions and interconnects between other FPGA components, the configuration memory

functional blocks are often considered the most critical in ensuring the FPGA continues

operating normally. Depending on the model, the configuration memory cells of an FPGA

can be SRAM-based, flash-based, or antifuse-based [38]. The Virtex-5 is SRAM-based

with its memory cells utilizing a modified 6T design [36][39]. Figure 6.3 (a) shows a

standard 6T SRAM cell while (b) shows the modified version used in the Virtex-5.

(a) Standard 6T SRAM cell. (b) Modified 6T SRAM cell.

Figure 6.3: Standard and modified 6T SRAM cells.

The essential difference between the two is that (b) has added resistance between the

cross-coupled inverter connections to increase the feedback time of the cell, thus hardening
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it against SEUs to some extent. However, this is not without a drawback as the write time

will also increase. Thus this design is not particularly suitable for applications outside of

radiation-tolerant memories.

Figure 6.4 shows the view of the repetitive column structure of the configuration

memory under the microscope using the imaging laser. As described in Chapters 4 and 5,

once again recall that the red areas in the image do not represent sensitive hotspots, but

rather simply oversaturation of pixels on the detector connected to the imaging laser.

Figure 6.4: Picture of an area of the Virtex-5 configuration memory. The field of
view is 1440 µm × 1440 µm. The red regions indicate oversaturation of image

pixels on the detector.

For a configuration memory test, the associated .bit file is loaded into the FPGA using

iMPACT. The number of resulting errors after a laser irradiation event can be checked by

selecting the Verify command, which will read out the total number of errors registered
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by comparing the original .bit file with the current status.

As the structure of the configuration memory is quite repetitive, a random area was

chosen for testing. In this section, the 50x lens was used. Instead of continuously scanning

an area under the microscope, a region of interest (ROI) was chosen so that only the area

selected would be irradiated by the pulsed laser. The area chosen is shown in Figure 6.5

and parameters selected for the ROI are specified in Table 6.2.

Figure 6.5: Picture of an area of the Virtex-5 configuration memory with a
rectangular ROI.

In this configuration, the ROI is scanned along the rectangular boundary of the ROI

200 times. As the length and width dimensions of the ROI are 279 µm and 115.09 µm,

the ThorImageLS software converts this into 249 pixels × 103 pixels. A pixel density of

4 instructs the galvo mirrors to irradiate every 4th pixel in the pattern. The dwell time

per pixel is the amount of time the galvo mirrors spend scanning on the pixel. A time

of 100 µs is chosen as the repetition rate of the pulsed laser is 10 kHz, thus guaranteeing

that each pixel receives exactly one laser pulse. The pre- and post-idle times represent

the durations that the galvo mirrors spend on each pixel before and after sending a laser
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pulse. During these times the Pockels cell switches off.

Table 6.2: ROI parameters for configuration memory area scan.

Objective Lens 50x (NA 0.65)

Area 279.59 × 115.09 µm2

Conversion Factor 1.125 µm/pixel

Pixel Density 4

Dwell Time per Pixel 100 µs

Pre-Idle Time 1 ms

Post-Idle Time 1 ms

Number of Scans 200

Scan Mode Boundary Trace

Figure 6.6 shows the results obtained for the configuration memory. The rate of error

accumulation begins to decelerate at the higher pulse energies. This indicates that the

total area exposed to laser pulses is reaching saturation. In other words, the majority of

the available memory bits in the area have experienced an error. For this setup, an energy

threshold of 330 pJ per pulse was found. No errors below this energy were observed. The

energy threshold was previously found to be approximately 300 pJ per pulse [36]. The

parameters have been significantly changed between these two tests; as such the threshold

values obtained for the pulse energies are in reasonable agreement with the previous data.
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Figure 6.6: Errors experienced by the Virtex-5 configuration memory as a
function of laser pulse energy.

6.4.1 Cross Section Comparison with Proton Data

From the parameters used for the data obtained in Figure 6.6 the error cross-section per

bit for the configuration memory is calculated and given in Figure 6.7.

SEU response of a Virtex-5 XC5VLX50T model to irradiation by protons was previ-

ously evaluated by Hiemstra et al [40]. Using a proton beam with energies between 65-120

MeV at TRIUMF, the proton SEU cross section was found to be 1.95 × 10−14 cm2/bit for

the configuration memory of a Virtex-5. Additionally, Quinn et al. reported a maximum

configuration memory per-bit cross section of 8.61 × 10−14 when a Virtex-5 was exposed

to 200 MeV protons [41]. From the data given in Figure 6.7, the lowest obtained cross

section value at 330 pJ was found to be 1.74 × 10−12 cm2/bit. This differs from the

obtained proton data by slightly more than an order of magnitude.
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Figure 6.7: Cross section per bit as a function of laser pulse energy of the
configuration memory.

As such, it is difficult to quantitatively correlate them. However, while again differing

by several orders of magnitude, the trend of the pulsed laser results agrees with the overall

trend shown in heavy ion testing. Both methods show the early rapid increase in error

accumulation before hitting a saturation point [41].

6.5 Configurable Logic Blocks - Counters

The Virtex-5 contains a set of 456-bit counters distributed throughout the FPGA that use

the available configurable logic blocks (CLBs) composed of flip-flops, in contrast to the

configuration memory which is SRAM-based. Fortunately, a single counter occupies one

column in the FPGA which makes it easier to perform laser testing. Under the microscope

the structure looks nearly identical to the configuration memory blocks. However, by using

the Xilinx Floorplanner tool the counter locations could be obtained. Figure 6.8 shows

the view of the counters under the microscope located near the left edge of the chip.
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These were also the counters used for testing. Only 3 of the 4 columns visible in the figure

are counters; they are the ones located closest to the input-output block. CLBs are the

primary elements used to build combinational and sequential circuits within the FPGA,

thus implementing counters in CLBs is useful for SEU evaluation as they utilize the vast

majority of their functional logic.

Figure 6.8: The 3 456-bit counter columns as viewed under the microscope. On
the left is a BRAM column, while the right side is an input-output block.

For laser scanning, a single column was zoomed in on to ensure that only one column

would be hit by laser pulses. Error detection is indicated by any one of 8 green LEDs

present on the development board turning on. Specified by the VHDL code, 8 bits of each

counter within a section are sent to a comparator to verify their outputs. The output bit

from the comparator reports any discrepancies. While each counter contains 456 bits, the

7 least significant bits and most significant bits were chosen for comparison. This was also
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specified by the VHDL code, as continuously comparing all 456 bits would be intensive

and require a considerably larger comparator instantiation.

Figure 6.9 shows the area used for testing. A single counter was digitally zoomed in

to an area of 81 × 81 µm2. Two primary testing modes were used: continuous scanning

of the entire area with a dwell time of 5.2 µs per pixel and a single point ROI to inject

pulses into one specific area in the counter.

Figure 6.9: 81 x 81 µm2 view of a single counter column used for pulsed laser
testing.

After loading the appropriate .bit file into the FPGA the counter is evaluated for the

SEU threshold. In comparison to the configuration memory, the analysis for the counters

is slightly more qualitative in that there is no error readout from iMPACT. Instead, the

user must monitor the LEDs on the FPGA board during laser irradiation. The instant

an LED turns on indicates the first detection of an SEU. Therefore, the metric used to
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determine the energy threshold was the time taken between exposing the area to the laser

and an LED turning on.

Table 6.3 lists the results of continuously scanning the laser over the area in Figure

6.9.

Table 6.3: Energy threshold test for counter using continuous laser scan mode.

Energy per Pulse (pJ) Time before LED Turns on

450 No light after 10 minute exposure

500 ∼3 minutes

600 40 seconds

800 Between 4-5 seconds

1000 Instantly

The counters have a higher energy threshold than the configuration memory, which

was found to be around 330 pJ per pulse. Here the first SEU indication occurred after

approximately 3 minutes at 500 pJ per pulse. The higher tolerance may be due to the

CLBs being composed of flip-flops rather than SRAM cells like the configuration memory.

Previous testing of the counters showed a threshold of approximately 700 pJ per pulse

[36]. However, the discrepancy may be due to the repetition rate of the laser being

increased to 10 kHz from 1 kHz, thus increasing the flux of pulses incident on an area and

affecting the charge deposition rate.

A single pulse ROI was also used to evaluate the SEU tolerance. The goal was to

observe how many laser pulses in a specific area would be required to generate an error

in the counter output. A single point was selected roughly in the center of Figure 6.9

for irradiation. Setting the pixel dwell time to the period of the repetition rate (100 µs)

and specifying the number of area scans effectively allows for a custom number of laser

pulses to be injected into a single area on the FPGA. Table 6.4 lists the results of using

the single point ROI.
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Table 6.4: Energy Threshold of CLB Counter for Single Point Region of Interest
(ROI) Laser Irradiation

Energy per Pulse (pJ) Number of Laser Pulses before LED Turns on

1000 90-100

1100 30-40

1200 10

Upset could not be generated under ∼1000 pJ per pulse for 100 pulses or less. Similar

to before, this may be due to the flux of the laser pulses. Continuous scanning irradiates

a localized area at a much higher rate relative to the single point ROI and therefore may

alter the overall charge deposition rate, affecting the probability of experiencing an SEU.

6.6 DSP48 - Multipliers

The Virtex-5 contains a total of 36 DSP48 blocks running in parallel in a single column

in the FPGA. Acting as the fundamental units for building multipliers, accumulators,

multiplexers, etc., the purpose of the DSP48 blocks is to implement the mathematical

functions necessary to perform various DSP (digital signal processing) operations. The

multiply and accumulate blocks are arranged in groups of two with each of these being

comprised of six DSP blocks chained together. Figure 6.10 shows the DSP48 column

located within the FPGA structure, while Figure 6.11 shows the 360 × 360 µm2 area used

for laser testing.
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Figure 6.10: DSP48 column located in the center between some configuration
memory columns.

Laser testing of the DSP block was quite similar to that of the counters. After pro-

gramming in the appropriate .bit file, the outputs of the two multiply and accumulate

blocks in a group were continuously compared to each other on every clock cycle. If the

results did not match, one of the onboard LEDs would turn on in a similar fashion to the

counters. Both a continuous scan and single point ROI were used to test the response of

the DSP blocks. Table 6.5 lists the results of continuously scanning the ROI in Figure

6.11.
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Figure 6.11: DSP48 column located in the center between some configuration
memory columns.

Table 6.5: Energy threshold test for DSP block using continuous laser scan mode.

Energy per Pulse (pJ) Time before LED Turns on

200 No light after 10 minute exposure

300 ∼3 minutes

350 20-25 seconds

400 3-6 seconds

450 Instantly-1 second

Table 6.6 lists the results of irradiating a single point on the DSP block with a single

point ROI. An area in the center of Figure 6.11 was used.
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Table 6.6: Energy threshold of DSP for single point ROI laser irradiation.

Energy per Pulse (pJ) Number of Laser Pulses before LED Turns on

450 60-65

600 30

700 25

800 20

900 15

Using the continuous scan mode the energy threshold was previously found to be

between 320-360 pJ per pulse [36]. For this testing it was found to be approximately

300 pJ per pulse. As with the counters, the discrepancy between these values might be

explained by the difference in repetition rate between the two experiments.

6.7 Block RAM

Block RAM (BRAM) is used as high density memory in the Virtex-5, composing several

columns within the structure distinct from the configuration memory. The VHDL code

written for the BRAM works in two modes: read and write. For laser scanning the BRAM

must be set to read mode. As data is retrieved from locations in memory additional error

detection circuits count the number of bit errors registered. The total errors are summed

and read out using the Xilinx ChipScope software, which can then be used to evaluate

the BRAM tolerance to SEUs from laser pulses.

Unfortunately, however, for this experiment the BRAM was unable to be tested as

the Virtex-5 was previously damaged by the laser as described in the following section.

Previous testing showed an energy threshold for the BRAM to be 325 pJ per pulse [36].

6.8 Damage to the Virtex-5

After testing the counter and DSP blocks the configuration memory was tested for single

point ROI evaluation. For the single point ROI, the intended goal was to attempt to

observe the response at the energy threshold, i.e., the number of detected errors, of the
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configuration memory when exposed to single pulses from the laser. Initially, each pulse

was generating between 10-20 errors. The average power measured was found to be 2,340

pJ per pulse, approximately twice the threshold of the energies used for previous point

ROI threshold testing.

Unfortunately, however, soon after problems were encountered. In an attempt to see if

an area of the configuration memory would saturate with errors, a significant permanent

error into the Virtex-5 was induced. A single spot in the configuration memory using the

point ROI was given a long exposure to the pulsed laser. Setting the software to irradiate

the spot for 100 cycles, the spot was exposed to approximately 100 laser pulses localized

into a single spot. Figure 6.12 also shows the location where this occurred. Every time the

board was reprogrammed and verified without being irradiated by the laser the console

would register anywhere from approximately 700 to 1300 errors. Repeated verifications

showed considerably inconsistent error messages despite not being exposed to any laser

irradiation. Thus, further testing via laser irradiation was compromised as the true errors

induced by laser pulses could not be sorted from those generated by an internal failure in

the Virtex-5.

Figure 6.12: Location of permanent damage caused by the laser. The affected
area is circled in blue.
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Hoping that the board might have recovered some functionality after being given a

rest period, re-testing the board several days later yielded the same results.

The permanent error did not only affect the configuration memory despite the error

being induced there. Testing for the counters and DSP blocks were also compromised.

According to previous testing of the Virtex-5 board, errors in the counter and DSP blocks

are indicated through LEDs on the board lighting up. When programming the counter

or DSP files into the iMPACT software, the LEDs permanently remained on and thus it

could not be seen if pulses from the laser were actually causing upsets in the counter/DSP

blocks.

It is unfortunate that while performing testing with the ROI that the permanent error

was induced into the Virtex-5 and certainly was not the intention. Care and caution must

be taken when testing devices, especially for those with memory cells that can be quite

sensitive to laser pulses.

6.9 Discussion

In terms of the pulse energy thresholds, the configuration memory and DSP blocks had

similar values of 330 pJ and 300 pJ respectively. However the DSP blocks required a

considerable amount of time to experience an upset at that energy as shown in Table 6.5,

whereas the configuration memory required only a relatively few scans on the selected

ROI. Therefore, the configuration memory blocks are likely to be the most sensitive to

SEU in the Virtex-5. This largely agrees with [36] which found the configuration memory

to be the most sensitive followed by the BRAM, DSP48, and CLBs/counters. Unfortu-

nately, the information gained when damaging the chip did not provide too useful of a

result other than as a future caution for other FPGAs to be tested at the laser facility.

As the pulsed laser facility for SEE testing has been set up and gone through several

iterations of upgrades, consistency in device testing results is important. With the addi-

tion of the Pockels cell and change in standard repetition rate to 10 kHz from 1 kHz, the

results obtained for this set of testing and the previous experiment are within acceptable

agreement of one another.

The cross section curve previously obtained in [36] for the configuration memory was
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shown to be within good agreement with the findings from the proton data in [40] and

[41]. However, for the current laser testing the obtained values for the per-bit cross section

differed by slightly more than an order of magnitude when compared to the proton data.

While this is not in direct agreement with the available data it is important to consider

the parameters used for laser irradiation. The high precision and ability to irradiate

very specific areas using the new ROI scanning features may affect the probability of

generating an error and thus the calculation of the cross section. Even more important

to consider is that pulsed lasers and energetic particles differ in their interactions with

semiconductor materials. Overall, the current and previous results suggest that the TPA

technique developed has potential to emulate the SEUs observed in microelectronics due

to particle strikes.

During the course of testing, no SEL was observed to occur on the Virtex-5. The

damaging of the chip was not observed to be a latchup event. While not explicitly specified,

SEL was not observed for previous testing. Therefore, the TPA laser results reconfirm the

assertions by Xilinx and also other groups that reported no observance of SEL in their

test setups due to protons and heavy ions.

6.10 Summary

Testing of a Xilinx Virtex-5 FPGA using two photon absorption at the SSSC pulsed laser

facility was performed. With the exception of the BRAM, the functional blocks of the

FPGA were evaluated for their SEU response. The results presented here were compared

to the previous testing performed on the same Virtex-5 to verify both the consistency of

the laser setup over time as well as the new upgrades received, namely the Pockels cell.

Through this work, the ability of the SSSC pulsed laser facility to test for SEEs using

TPA has been demonstrated. With this capability, the facility joins the ranks of a select

few locations around the world able to offer TPA laser testing to the radiation effects

community and the advantages it brings.
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Chapter 7

Summary

The work in this this thesis, the capabilities of the pulsed laser facility at the SSSC

to test for SEEs in sensitive devices were described. The testing results of the Hall effect

sensors and Virtex-5 FPGA demonstrate the capabilities of the facility to evaluate the

SEE response of various devices using both single and twp photon absorption in the same

laser setup. More specifically, this work is summarized as follows:

1. Background of single event effects and pulsed lasers.

• An introduction to single event effects was given, describing the various types

and the phenomena they cause in various devices. The particles that cause

SEEs, including protons, neutrons, alpha particles, and heavy ions were de-

scribed.

• In the succeeding chapter, a brief overview of the fundamentals of laser opera-

tions preceded the discussion of the application of pulsed lasers to SEE testing.

The phenomena of single and two photon absorption were then discussed and

compared in this context. The chapter was concluded with some important

parameters to consider when performing pulsed laser testing.

2. Description of the pulsed laser facility at the SSSC.

• The pulsed laser facility was introduced and described in terms of the equip-

ment used to generate the laser beams for SEE studies. As well, the interaction

of the hardware (namely the microscope and Pockels cell) and software com-

bination utilized to give the user even greater precision and control over the

spatial and temporal laser irradiation parameters was presented. As nearly
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every pulsed laser setup for SEE studies is different, the facility at the SSSC

stands to provide some features in unique ways to users wishing to utilize the

system.

3. Evaluation of the Hall effect sensors using single photon absorption.

• The Optek and Infineon Hall effect sensors were evaluated for their response

to single event transients using a 580 nm single photon absorption wavelength.

Using the laser under the microscope, the most sensitive areas were able to

be identified. The transient pulses and their profiles observed for laser testing

were in very good agreement with those observed for the available heavy ion

data. This testing demonstrated the ability of the pulsed laser facility to test

devices for SEEs using single photon absorption.

4. Evaluation of the Virtex-5 FPGA using two photon absorption.

• The various components of the Virtex-5 FPGA were tested for their response

to the 1200 nm two photon absorption wavelength. The goal was to recon-

firm previous laser results and compare with proton data on the same Virtex-5

using the new region of interest features available. The results were in good

agreement with the previous data with the notable exception of the cross sec-

tion for the configuration memory. This segment of testing demonstrated the

capabilities of the facility using the two photon absorption technique.

Overall, this work contributes to the radiation effects community in two main ways.

Firstly, the data obtained from testing the Hall effect sensors and FPGA adds to the

database of SEE data available for these devices, and also confirms and correlates within

reasonable agreement of available heavy ion and proton data. Secondly, as the SSSC

pulsed laser facility has been built up and demonstrated to be capable of evaluating SEEs

in different types of microelectronics, it is hoped that it will serve and continue to serve

as a location for academic and industrial users to bring their devices for evaluation into

the future.
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