
Efficient Implementation of Hierarchical Resource Control for

Multi-agent Systems

A Thesis Submitted to the College of

Graduate Studies and Research

in Partial Fulfillment of the Requirements

For the Degree of Master of Science

in the Department of Computer Science

University of Saskatchewan

Saskatoon, Saskatchewan

by

Xinghui Zhao

c© Copyright Xinghui Zhao, October 2005. All rights reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Saskatchewan's Research Archive

https://core.ac.uk/display/226142444?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Permission To Use

In presenting this thesis in partial fulfillment of the requirements for a Post-

graduate degree from the University of Saskatchewan, I agree that the Libraries of

this University may make it freely available for inspection. I further agree that per-

mission for copying of this thesis in any manner, in whole or in part, for scholarly

purposes may be granted by the professor or professors who supervised my thesis

work or, in their absence, by the Head of the Department or the Dean of the College

in which my thesis work was done. It is understood that any copying or publication

or use of this thesis or parts thereof for financial gain shall not be allowed without

my written permission. It is also understood that due recognition shall be given to

me and to the University of Saskatchewan in any scholarly use which may be made

of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis

in whole or part should be addressed to:

Head of the Department of Computer Science

University of Saskatchewan

Saskatoon, Saskatchewan, Canada

S7N 5C9

i

Abstract

Development of the World Wide Web makes it possible for multiple computers to
work together in order to solve problems and make the most efficient use of resources.
A distributed system is composed of such computers which are separately located and
connected with each other through a network. One paradigm for computation using
distributed systems is the multi-agent systems, in which many autonomous agents
interact with each other to solve problems. The agents in a multi-agent system
may be distributed on different computers (or nodes), where each computer owns
its resources1. Although the resources in a multi-agent system are connected by a
network through which mobile agents can migrate for accessing sufficient resources,
how to share these independently owned resources in both an effective and an efficient
way is not fully understood. A key challenge in multi-agent systems is how to account
for and control the resources which are located on individual nodes.

The CyberOrgs model offers one approach to manage resources among competi-
tive or collaborative agents by organizing computations and resources in a hierarchy.
A cyberorg encapsulates agents and resources in a boundary and distributes the re-
sources available to it within this boundary. A cyberorg contained in another cyberorg
has a contract with the outer cyberorg, according to which it receives resource that
it may use. A cyberorg also encapsulates an amount of the eCash, which is the cur-
rency for purchasing resources from its host cyberorg. Therefore, cyberorgs have a
hierarchical structure, where the resources flow down from the root to the leaves of
this hierarchy and the eCash flows up from the leaves to the root of this hierarchy.
However, the hierarchical structure of the CyberOrgs model presents challenges in
scalability. As a result, efficiency is an important concern in the implementation of
CyberOrgs.

In this thesis, an efficient implementation of the CyberOrgs model is described.
System design, APIs of the implementation, example applications, experimental re-
sults, and future directions are presented.

1Here by “resources,” we mean computational processor time, memory, resources such as net-
work bandwidth.

ii

Acknowledgements

I would like to express my sincere appreciation to my supervisor, Professor

Nadeem Jamali, for his invaluable guidance, suggestions, and encouragement. Pro-

fessor Jamali offered tremendous help in my research work and during the whole

writing process of my thesis. This thesis would be impossible without his knowl-

edge, support, and patience. Professor Jamali is not only a good researcher, but

also a considerate person that I always feel comfortable to talk with whenever I

encounter any difficulties in my personal life. I really had a great time working

with him. What I have learned from him will definitely keep benefiting my whole

academic career.

Many thanks go to Professor Raymond Spiteri and Professor Kevin Schneider,

the two professors in my thesis committee. Professor Spiteri managed to have meet-

ings with me when he was very busy, and he shared his insightful ideas and advices

with me. He made me realize that the application part of my research work could

be very interesting, and worth putting more effort on. Professor Schneider provided

very helpful comments and feedback which improved the quality of my thesis.

I would like to thank Professor Michael Bradley, for his willingness to be the

external examiner in my thesis committee.

Department of Computer Science at University of Saskatchewan offers a friendly

environment and sufficient utilities for the graduate students. I am very thankful

that I could work in this wonderful environment. Special thanks go to our office

staff, especially Ms. Jan Thompson, who offers mother-like love to all graduate

students in our department, which makes our life much easier.

I would like to thank my colleague and friend, Chen Liu, for her help. She

read my thesis and gave me useful suggestions, and she also helped me improve my

sometimes precarious grammar.

I express my gratitude to my parents. My father always encourages me to make

effort for achieving my goals, and he is not only a very thoughtful and supportive

father, but also a good friend of mine. My mother taught me how to be an honest

iii

and faithful person. I always feel her love and blessing, although she is no longer

with us.

Finally, my deepest appreciation goes to my husband, Dr. Jian Wu, who is

willing to offer his unconditional support to me at anytime and anywhere. He

encourages me to conduct my research, even if we have to live separately in two

different countries for a long time. He manages to accommodate my studies without

any complaint ever. I would not be able to concentrate on my research if it was not

for his unwavering love and belief in me.

iv

Table Of Contents

Permission To Use i

Abstract ii

Acknowledgements iii

Table Of Contents v

List of Tables ix

List of Figures x

List of Acronyms xiii

1 Introduction 1

1.1 Multi-agent Systems . 1

1.2 Resources in Multi-agent Systems . 2

1.3 Approach . 2

1.4 Contribution of this thesis . 3

1.5 Outline . 4

2 Related Work 5

2.1 Introduction . 5

2.2 Models of Concurrency . 5

2.2.1 Actors . 6

2.2.2 Actor Systems . 7

2.2.2.1 Actor Foundry . 7

2.2.2.2 Actor Architecture 9

2.3 Resource Management . 10

2.3.1 Language Approaches . 10

2.3.1.1 JRes . 10

v

2.3.1.2 JSeal2 . 11

2.3.1.3 NOMADS . 12

2.3.1.4 Java Resource Management API 13

2.3.2 Resource Management Models 13

2.3.2.1 Quantum . 14

2.3.2.2 CyberOrgs . 14

2.4 CPU Resource Allocation . 17

2.5 Chapter Summary . 19

3 CyberOrgs Implementation 20

3.1 Introduction . 20

3.2 Actor Architecture . 20

3.3 CyberOrgs System Design . 22

3.3.1 Cyberorgs . 23

3.3.1.1 Actors . 23

3.3.1.2 Facilitator . 24

3.3.1.3 eCash . 25

3.3.1.4 Resource . 25

3.3.1.5 Client Cyberorgs . 25

3.3.2 CyberOrgs Primitives . 25

3.3.3 CyberOrg Manager . 25

3.3.3.1 Maintaining Cyberorgs Structure 26

3.3.3.2 Handling CyberOrgs Primitives 26

3.3.3.3 Interacting with Scheduler Manager 28

3.3.4 Scheduler Manager . 28

3.4 Scheduling CyberOrgs . 30

3.4.1 Overhead Analysis . 32

3.4.1.1 Overhead Vs. Number of Threads 32

3.4.1.2 Overhead Vs. CyberOrgs Structure 35

3.4.1.3 Overhead Vs. Smallest Time Slice 37

vi

3.4.2 Overhead Control . 38

3.4.2.1 Overhead Control by Time Slice Constrains 38

3.4.2.2 Overhead Control by Adjusting Granularity 39

3.5 Distributing CyberOrgs . 40

3.5.1 Distributed Scheduler . 40

3.5.2 Distributed CyberOrgs . 42

3.5.3 Overhead Analysis . 43

3.6 Scenarios of Using CyberOrgs . 46

3.6.1 Multiple Tasks with Time Constrains 46

3.6.2 Mobile Computations . 46

3.7 Chapter Summary . 47

4 Interface of CyberOrgs Implementation 48

4.1 Introduction . 48

4.2 APIs . 48

4.2.1 APIs for Creation . 48

4.2.2 APIs for CyberOrgs Primitives 49

4.2.3 Negotiation . 50

4.3 Examples . 51

4.3.1 System Triggers . 51

4.3.2 Distributed Weather Forecasting System 52

4.3.3 Adaptive Quadrature . 55

4.3.3.1 Introduction to Adaptive Quadrature 55

4.3.3.2 Application Actors for Adaptive Quadrature 56

4.3.3.3 Resource Allocation According to Computing Work-

load . 57

4.4 Chapter Summary . 61

5 Experimental Results 62

5.1 Introduction . 62

5.2 Performance Analysis . 62

vii

5.2.1 Experiment Design . 62

5.2.2 Context Switching Using Suspend/Resume 63

5.2.3 Context Switching Using Priority 66

5.3 Application Experimental Results . 68

5.4 Network Delay Experimental Results 70

5.5 Chapter Summary . 71

6 Future Work 72

6.1 Introduction . 72

6.2 Internally Distributed CyberOrgs . 72

6.2.1 Cyberorg . 72

6.2.2 CyberOrg Manager . 76

6.2.3 Scheduler Manager . 76

6.2.4 Overhead Analysis . 76

6.3 Network Resource Control . 79

6.4 Chapter Summary . 80

7 Conclusion 81

References 83

Appendix A: Code for Adaptive Quadrature 86

viii

List of Tables

3.1 Linear Regression for the Overhead of Different CyberOrgs Structures

(No Layer, Wide Tree, and Deep Tree) 36

5.1 Performance Comparison of Scheduling Choices in Scheduler Which

Uses Suspend/Resume: Time is in Milliseconds; Cyberorgs is the Fi-

nal Number of Cyberorgs in the System; Height is the Final Height

of the Cyberorgs Tree . 65

5.2 Performance Comparison of Scheduling Choices in Scheduler Which

Uses Priority: Time is in Milliseconds; Cyberorgs is the Final Num-

ber of Cyberorgs in the System; Height is the Final Height of the

Cyberorgs Tree . 67

5.3 Experimental Results for the Adaptive Quadrature Example 69

5.4 Network Delay of Migrating the Example Cyberorg 70

6.1 Comparison of the Overhead in Two Implementation Approaches for

Internally Distributed CyberOrgs . 75

ix

List of Figures

2.1 Actor Structure . 6

2.2 Actor Foundry Node Structure ([4]) 8

2.3 Hierarchical Structure of a Cyberorg 15

2.4 CyberOrgs Primitive Operations: Isolate & Assimilate 16

2.5 CyberOrgs Primitive Operations: Migrate 17

3.1 AA Platform Structure ([22]) . 21

3.2 CyberOrgs System Design . 23

3.3 CyberOrgs Platform Structure . 24

3.4 Algorithm of Scheduler Manager in CyberOrgs System 29

3.5 Comparison of Hierarchical Scheduler and Flat Scheduler of CyberOrgs

Implementation . 31

3.6 Overhead of the Flat Scheduler (number of threads in the system:

5-100) . 33

3.7 Overhead of the Flat Scheduler (number of threads in the system:

100-1000) . 34

3.8 CyberOrgs Structure I: One Layer . 35

3.9 CyberOrgs Structure II: Wide Tree 35

3.10 CyberOrgs Structure III: Deep Tree 36

3.11 Overhead Comparison for Different CyberOrgs Structures (No Layer,

Wide Tree, and Deep Tree) . 36

3.12 Overhead Vs. Time Slice: Overhead can be controlled by increasing

the minimum time slice that is allowed in the system 37

3.13 Structure of Distributed Scheduler in CyberOrgs System 41

x

4.1 Facilitator Actor’s Method for Triggering Primitives: If the number

of actors in the cyberorg is above a threshold (30), isolate is in-

voked; if the number of actors in the cyberorg is below a threshold

(3), assimilate is invoked; if the available resource is less than the

requirement, migrate is invoked . 51

4.2 Methods in the Facilitator Actor of a WeatherSys Cyberorg: If the

weather system affects the region, funds are isolated to a new cyberorg

(FundsCyberOrg), and the new cyberorg is migrated to the affected

regional cyberorg (reg) . 53

4.3 Method checkStatus in the Facilitator Actor of a Regional Cy-

berorg: If it is necessary to delegate, a new cyberorg is created for

the sub-region with sufficient funds; when the delegation is no longer

needed, the new cyberorg assimilates; if the available resource is not

enough for the region, it can migrate to a host which can satisfy its

resource requirement . 54

4.4 Adaptive Quadrature Problem . 56

4.5 Application Actors’ quadrature and result Methods in the Adap-

tive Quadrature Example . 58

4.6 Method resourceAllocate in the Facilitator Actor of the Cyberorg

in the Adaptive Quadrature Example (Resource Allocation Policy) . . 59

4.7 Method resourceAllocate in Facilitator Actor of the cyberorg in

the Adaptive Quadrature Example (Multiple Cyberorgs) 60

5.1 Performance Comparison of Scheduling Choices in Flat Scheduler

Which Uses Suspend/Resume . 64

5.2 Performance Comparison of Scheduling Choices in Flat Scheduler

Which Uses Priority . 66

5.3 Experimental Results for the Adaptive Quadrature Example 69

5.4 The Structure of the Migrating Cyberorg 70

xi

6.1 Internally Distributed Cyberorg Implementation : Approach 1 (One

Facilitator per Cyberorg) . 73

6.2 Internally Distributed Cyberorg Implementation : Approach 2 (Mul-

tiple Facilitators) . 74

xii

List of Acronyms

MAS – Multi-Agent System

RPC – Remote Procedure Call

CCS – Calculus of Communicating Systems

AA – Actor Architecture

API – Application Program Interface

RM API – Java Resource Management Application Program Interface

JVM – Java Virtual Machine

RMS – Rate Monotonic Scheduling

EDF – Earliest Deadline First Scheduling

LOF – List of Figures

LOT – List of Tables

xiii

Chapter 1

Introduction

The field of multi-agent systems is a relatively new research area in computer science

with most advances happening in the last 20 years. In this period, coordination

among multiple agents has emerged as a key challenge in exploiting the possibilities

presented by massive open distributed systems [6].

In a multi-agent system, the computations which are carried out by the agents

are fueled by resources, but inadequate resource control may adversely affect the

progress of computations in the system. Therefore, resource management is an

important part of the coordination challenge.

1.1 Multi-agent Systems

An open system [16] is a system which is open to interaction with the environment.

Computing entities may arrive at or leave an open system at any point of time; they

may have different computing objectives, and the only requirement for those com-

puting entities is the ability to communicate with each other. The concept of open

systems has become increasingly relevant since when it was developed, because it is

becoming ever more necessary for separately and independently developed systems

to communicate in order to cooperate with each other.

Multi-agent systems [41] offer a natural programming abstraction for realizing

open systems. A multi-agent system is composed of multiple interacting computing

entities, know as agents, which are active objects that can migrate across machines.

1

There is no universally accepted definition of the term agent. In this thesis, we

use the definition presented in [42]: An agent is a computer system that is situated

in some environment, and that is capable of autonomous action in order to meet

its design objectives. There are two key characteristics of agents. First, agents are

autonomous [17], which means agents can decide for themselves what they need to

do in order to achieve their goals. Second, agents are capable of communication [9],

through which they may cooperate with each other so that it is possible to solve

problems that are beyond the capabilities of an individual agent.

1.2 Resources in Multi-agent Systems

Multi-agent systems require different types of computational resources while pur-

suing their computation objectives, such as processor time, memory, and network

bandwidth. Although resources are located on individual machines, when those ma-

chines are connected by a network, it is possible for agents to access the distributed

resources. In order to get enough resources for a computation, agents may migrate

from machine to machine, and obtain resources they require to achieve their goals.

In this thesis, we focus on resource bounded multi-agent systems, where resources

are limited. A resource bounded multi-agent system can be viewed as executing in

a space, and there are limited resources existing in this space. The computations

carried out by the agents are executed in the space and share the resources in it. The

fact that available resources are bounded results in competition among the agents,

which may lead to uncertainty in the system [36], potentially threatening optimal

execution of computations. Hence, it is critical to account for resource usage and

coordinate resource access by agents.

1.3 Approach

Many approaches have been used for managing resources among competing or col-

laborating agents. In this thesis, we focus on hierarchical resource control approach

2

based on the CyberOrgs model [19], and its implementation which provides de-

centralized resource control in multi-agent systems. Conceptually, in CyberOrgs,

distributed resources and agents are organized in a hierarchy. The components of

this hierarchy are cyberorgs, which serve as encapsulations of computations and

available resources. The root cyberorg of this hierarchy possesses all available re-

sources, and each of the other cyberorgs obtains resources from its host cyberorg;

each cyberorg divides its available resources between its own agents and its client

cyberorgs according to a local resource allocation policy and the contracts with the

clients. Resources eventually arrive at their destination cyberorgs, where they are

consumed by the agents in order to support their computations.

Hierarchical control presents challenges in scalability. Imagine a large scale multi-

agent system, where there might be thousands of agents working concurrently. The

resource control hierarchy of this system may be extremely deep, and if so, the

overhead caused by the hierarchical control would be prohibitive. To illustrate that,

we use processor time control as an example. In a large scale multi-agent system,

if we implement the processor time resource control using a hierarchy, we have to

traverse the entire path from the root cyberorg to the leaf cyberorg in order to

schedule a computation agent which is in that leaf cyberorg, and this traversal

results in a very high overhead. Therefore, although hierarchical structure is an

expressive format for resource control, it is difficult to implement it efficiently.

1.4 Contribution of this thesis

The approach that is presented in this thesis provides a scalable and efficient mecha-

nism for implementing hierarchical resource control. We enforce hierarchical control

using a physically flat implementation of the schedule with exactly the same control

specification as the hierarchical one. In this way, we avoid the high overhead in

implementing hierarchical control.

Our implementation of CyberOrgs extends Actor Architecture [25], which is a

Java-based framework implementing the Actor [1] model of concurrency. We only fo-

3

cus on the processor time control in this thesis, but this approach can be generalized

to control some other types of resources.

1.5 Outline

The rest of this thesis is organized as follows.

Existing work in related areas is reviewed in Chapter 2. System design and

specific implementation issues are described in Chapter 3. In Chapter 4, we describe

the application program interfaces (APIs) developed for the CyberOrgs model as

well as some sample application programs which illustrate how to use the APIs.

Experimental results are presented in Chapter 5. We present future directions in

Chapter 6. Finally, conclusion is presented in Chapter 7.

4

Chapter 2

Related Work

2.1 Introduction

In this Chapter, the existing research work in related areas is reviewed. Section 2.2

presents the background work in object-oriented concurrency, especially Actor the-

ory. Because resource management is the area that this research focuses on, ap-

proaches in resource management are reviewed in Section 2.3. Previous work in

CPU resource allocation is reviewed in Section 2.4.

2.2 Models of Concurrency

Models of concurrency are used to formalizing concurrent computations in open

systems. In this section, background knowledge about models of concurrency is

reviewed.

π−calculus [33] is a calculus for expressing processes with changing structures.

π−calculus was extended from the process algebra CCS (Calculus of Communicating

Systems) [32]. The Actor model [1] is another model of concurrency for modeling

concurrent and asynchronous processes.

We focus on the Actor model, because it offers a natural programming frame-

work for implementing object-oriented distributed systems. In this section, con-

cepts about the Actor model are presented, and some specific implementations of

the model are reviewed.

5

2.2.1 Actors

Carl E. Hewitt first used the term “actor” in his early work for PLANNER [14], and

he proposed the concept of actors in his paper [15] in 1977. Irene Grief developed

an abstract model [13] for actors, and afterwards William D. Clinger developed

the semantics for actors in his thesis [5]. Gul A. Agha extended actors to both a

programming language [1, 3] and a data abstraction [2] for concurrent open systems.

Actors are autonomous computational entities which communicate with each

other using buffered, asynchronous, and point-to-point messages. An actor encap-

sulates a state, a number of methods (which can change the state of the actor), and

a thread of control. Actors are distributed over time and space. Every actor has a

globally unique mail address, and it maintains a queue of unprocessed messages it

has received. Figure 2.1 shows the structure of an actor.

Messages

...

method

method

method

method

Thread
State

...

Figure 2.1: Actor Structure

The messages in an actor’s message queue are processed one by one according

to the order of arriving. While processing a message, three types of actor primitives

may occur:

• Create finite number of new actors with some predefined behaviors. The cre-

6

ator actor knows the addresses of the new actors.

• Send messages to other actors. An actor can send message to another actor

only when it knows the mail address of the destination actor.

• Change the actor’s own state and be ready to process the next message.

The messages that are sent by actors eventually arrive at the destination actors,

but there is no guarantee about the specific order of arriving.

2.2.2 Actor Systems

There are several implementations of Actors. Here we present two of them: Actor

Foundry [24] and Actor Architecture [25].

2.2.2.1 Actor Foundry

Actor Foundry is a Java-based framework for the Actor model. An instance of the

Actor Foundry run-time system is a foundry node, and there can be many actor

instances in one foundry node. Asynchronous messages can be sent from one actor

to another, and the message delivery in Actor Foundry is weakly fair1. The behavior

of actors in Actor Foundry can be defined by programmers.

The structure of a foundry node is shown in Figure 2.2. Each foundry node

consists of seven interacting functional units:

• Actor Manager:

Actor manager is the central unit for every foundry node, and it is responsible

for all inter-node communications. It is also responsible for carrying out the

actions necessary to create an actor and begin scheduling it.

• Actor Implementation:

An actor implementation represents an instance of the actor class. It transfers

method calls to the actor manager which is in charge of the local actor actions.

1Here by “weakly fair,” we mean that once a message is sent, it will eventually be delivered.
Moreover, once a message arrives, it will eventually be processed

7

Scheduler

Name
Service

Transport
Layer

Request
Handler

Actor
Manager Service Service

Actor
Implementation

Actor
Implementation

Figure 2.2: Actor Foundry Node Structure ([4])

• Service:

The Service module provides additional services to local actors through the

Actor Manager class. In order to access these additional services, an actor

must communicate with the Actor Manager class.

• Request Handler:

The Request Handler module plays the role of a connection medium between

the local actor manager and actor managers on other foundry nodes. It pro-

vides remote procedure calls (RPCs) which are either synchronous or asyn-

chronous, and it also provides access to the Name Service.

• Name Service:

Every actor has a globally unique name, and all the names are generated by

the Name Service module. A name is bound to the corresponding actor, and

the Request Handler delivers the remote procedure calls according to these

bindings.

• Transport Layer:

The Transport Layer provides low level communication protocols. Messages

8

of any size can be transported and delivered.

• Scheduler:

The Scheduler module is responsible for scheduling all the threads in a foundry

node, and all threads are scheduled fairly.

2.2.2.2 Actor Architecture

Actor Architecture is another Java-based middleware system which provides an actor

execution environment. An instance of Actor Architecture run time system is called

an Actor Architecture platform (AA platform). Each AA platform consists of four

service layers:

• Message Transport Service:

The Message Transport Service is the communication interface of an AA plat-

form. All messages that are sent to or received from another AA platform pass

through the Message Transport Service layer.

• Message Delivery Service:

The Message Delivery Service layer is responsible for handling all the local

messages in the AA platform.

• Actor Management Service:

The Actor Management Service manages the states of all actors and all the

migrations on the AA platform.

• Advanced Service:

The Advanced Service layer provides middle actor services, such as match-

making and brokering.

The distributed resource management system that we present in this thesis has

been developed by extending Actor Architecture. We chose Actor Architecture

because all basic actor primitives are already implemented, and the structure of

Actor Architecture is explicit, making it is easy to extend.

9

2.3 Resource Management

A multi-agent system can be constructed using the concurrent computation models

we reviewed in Section 2.2. Resource management in a multi-agent system is critical,

and it presents challenges in scalability and efficiency. In this section, several types

of resource management approaches are reviewed.

2.3.1 Language Approaches

Ether [23] was one of the earliest languages to address resource allocation among

concurrent components. In Ether, every process needs a sponsor that is assigned

to it to support computations. Later on, ACORE [31], a concurrent programming

language based on the actor model, incorporated the idea of Ether. There are

sponsor actors in ACORE. The sponsor actors can process requests, and ticks are

required in the process. A similar idea was used in Telescript [10], in which the

computational resources are abstracted as teleclicks, and processes need teleclicks to

accomplish computations.

Java [12] is a language which supports distributed applications by addressing

portability, but Java does not provide adequate support for resource management.

Many approaches towards resource management try to address Java’s deficiency,

such as JRes [8], JSeal2 [40], and Java Resource Management API [7].

2.3.1.1 JRes

JRes [8] provides an interface for accounting and limiting access to different types of

resources, such as CPU time, network bandwidth, and main memory. JRes was im-

plemented using both Java bytecode editing and native code to account for resources

without changing the Java Virtual Machine [28].

CPU time is controlled in JRes through a mixture of bytecode editing and native

code. When a new thread is created in the system, a native code routine is invoked

so that an operating system level handle can be generated for this new thread in

order to query the information about CPU usage in the system. A special thread as

10

part of the CPU accounting module uses the handle to query the operating system

about resource consumption. As a result, the accounting for CPU time usage in

JRes relies on the underlying operating system. Accounting heap memory usage

in JRes is based on bytecode rewriting. The code of every method is modified by

inserting appropriate bytecode before the instructions of allocating every object in

the original code. Specially, for an array object, a native method is still necessary to

be inserted after the allocating of array object in order to detect the deallocation of

the array. For controlling network bandwidth resource, JRes relies on native code.

Because in Java the methods that can access network resources are located in the

java.net package, and these methods are protected or private so that they cannot be

called outside java.net package. The author of JRes changed the java.net package to

their own in order to keep track of the amount of data transferred by every thread.

The unit for resource control in JRes is the individual thread. However, using

threads as the resource management units makes the accounting more difficult, be-

cause threads may access multiple program components and the resources obtained

by one thread may be consumed by another thread. Therefore, the limitation of

JRes is that it cannot handle object sharing between threads.

2.3.1.2 JSeal2

JSeal2 [40] also focuses on resource accounting like JRes, and the API of JSeal2

is similar with JRes too. The developers of JSeal2 were influenced by research on

resource bounded actors [20], which was the early work of CyberOrgs.

In JSeal2, the basic unit of resource management is a Seal, instead of an indi-

vidual thread. A seal may be either a mobile object or a service component, and

each seal executes in a protected domain and shares no state with other seals. Seals

in JSeal2 are organized in a hierarchy as the cyberorgs in CyberOrgs model. When

the system starts up, the first domain, RootSeal, possesses all of resources that were

obtained by Java Virtual Machine from the underlying operating system. Whenever

a new child seal is created, the creator seal assigns some part of its own resource to

the new seal, which generates a hierarchy of resource allocation: basically all of the

11

resources are owned by the rootseal, and a parent seal is responsible for distributing

resources among its sub-seals.

The most important feature of JSeal2 is complete portability, which is because

bytecode transformation technique is used for both CPU time and memory resource

controlling, instead of modified Java run time systems. Before being loaded by

the JVM, bytecode is modified in order to account for resources. For the memory

resource, before every memory allocation instruction, code for accounting is inserted.

CPU time accounting in JSeal2 is based on measuring the number of executed

bytecode instructions, so code for CPU accounting is inserted to every basic block

of code.

2.3.1.3 NOMADS

NOMADS [38] is a mobile agent system which has the ability to control the resources

consumed by each agent. The NOMADS execution environment is based on a special

virtual machine, which is called the Aroma Virtual Machine [37]. For every agent

in the NOMADS system, there is an underlying Aroma VM running. Aroma VM

is designed for capturing execution state of threads. It is implemented using C++

and includes the VM library and the native code library. The VM library can be

linked to other application programs, and the native code library implements native

methods in the Java API and it will be loaded by the VM library automatically.

Using a special virtual machine to control resource consumption has both ad-

vantages and disadvantages. Having a special virtual machine can support strong

mobility of mobile agents, even when multiple concurrent threads coexist together,

and it also provides a way to control resource dynamically on a fine-grained level.

But it is quite difficult to design a new VM with both compatibility and good per-

formance. Furthermore, in NOMADS, one instance of Aroma VM for each agent

causes a very high overhead.

12

2.3.1.4 Java Resource Management API

Java Resource Management API [7] was proposed to be a widely applicable resource

management interface for Java platform. It was recently developed by Java in collab-

oration with JSeal2’s developers, in order to extend resource management support

in Java.

The unit of resource management in Java Resource Management API is an Iso-

late, which is an encapsulation of a Java program. Isolates do not share state with

each other. Resources in the RM API are represented by a set of resource attributes.

A dispenser isolate is responsible for monitoring available resources and it serves as

the connection between the resource implementation and the RM API. Resource

consuming policies are encapsulated by resource domains, which may specify the

reservations of resources and actions that should be executed upon certain events.

Implementation of RM API has been prototyped on top of the Isolate API.

One of the most important features of RM API is the wide applicability. Besides

the traditional resource such as CPU processor time, heap memory, RM API makes

it possible for users to control their own resource by defining the resource attributes.

Java RM API is an extension developed by Java, so the code is portable across

Java implementations. It is different from JSeal2 and JRes, which modify Java

bytecode.

2.3.2 Resource Management Models

In this section, two theoretical models for resource management are reviewed: Quan-

tum [34] and CyberOrgs [19]. Both of these models have hierarchical structures.

However, there are significant differences in how resource delivery is modeled. Addi-

tionally, CyberOrgs model the notion of eCash separately from resources, enabling

dynamic pricing, which is not supported in the Quantum model.

13

2.3.2.1 Quantum

Quantum, proposed by Luc Moreau and Christian Queinnec, is a theoretical model

for resource management.

The semantics of Quantum was proposed in 1997 and later it was extended [35]

in order to handle distributed and multi-type resources. In Quantum, the resource

that computations need to execute is represented by energy. The basic resource

control unit in Quantum is called a group. A group hosts a set of computations, and

it also serves as a tank of energy.

In the Quantum model, a group can create new groups, so a hierarchy structure

is generated. Each new group is assigned an amount of energy when it is created,

and the energy is used for sponsoring the computations in this group. Computations

consume energy from the sponsoring group, and if a computation needs more energy

than what is available in the group, an energy exhaustion primitive is invoked to

signal that the current group has run out of energy; if all the computations complete

in one group which does not sponsor any sub-groups, the event group termination

is signaled, and all the remaining energy is returned to the parent group.

Group creation, energy exhaustion, and group termination allow flow of energy

between a group and its sub-groups, but energy may also flow between groups inde-

pendently of the group hierarchy using another two primitives: pause and awake.

Pause forces a group and all its sub-groups to be exhausted, and all the energy

in this whole hierarchy is transferred to the group which called and sponsored the

pause operation. Similarly, a group may also transfer energy to an exhausted group

in order to make it awake, the group which calls awake sponsors the execution of

the awake primitive.

2.3.2.2 CyberOrgs

CyberOrgs is a model for hierarchical coordination of resource usage by multi-agent

applications in a network of peer-owned resources. Each cyberorg encapsulates a

set of computations which are executed concurrently, and an amount of resource. A

14

concurrent computation consumes resource, which is allocated to it by its containing

cyberorg. A cyberorg has a contractual relationship with its containing cyberorg,

and it may purchase resources from its containing cyberorg according to the signed

contract. The currency that flows among cyberorgs is called eCash.

CyberOrgs organizes resources and computations as a tree. Each cyberorg ex-

cept the root cyberorg is contained inside another cyberorg. Figure 2.3 shows the

hierarchical structure of a cyberorg. Black dots represent computations and ellipses

represent cyberorgs. A cyberorg hosted by another cyberorg purchases resources it

needs from the host cyberorg, according to a pre-negotiated contract. This contract,

which must be signed between two cyberorgs before one is hosted by the other, stip-

ulates the types and quantities of resources which will be available to the hosted

cyberorg as well as their costs. After satisfying its contractual obligations, a cy-

berorg distributes the remaining resources available to it among the computations

it is managing according to its own local resource distribution strategy.

Figure 2.3: Hierarchical Structure of a Cyberorg

CyberOrgs distribute resources through several primitives. In this section, the

resource control primitives in CyberOrgs model are reviewed.

• Isolate:

As shown in Figure 2.4 (a), one cyberorg may create another cyberorg inside

it using the isolate primitive. A number of actors (computations), messages,

and some eCash are encapsulated by the new local client cyberorg. There is

a contract between the new cyberorg and its host cyberorg, which is used to

determine the trade of resources.

• Assimilate:

As shown in Figure 2.4 (b), a local cyberorg is assimilated inside its host cy-

15

eCash

$

$
$

$
$$

$

$
$

$
$

$
$$

$

Isolate Assimilate

 a) Isolation b) Assimilation

$

Actor

Message

$

Figure 2.4: CyberOrgs Primitive Operations: Isolate & Assimilate

berorg through the assimilate primitive. All the contents of the assimilating

cyberorg (actors, eCash, and messages) become contents of the host cyberorg

after the assimilation. Furthermore, the contract between the assimilating

cyberorg and its host ceases to exist.

• Migrate:

A cyberorg may realize that its resource requirement has exceeded what is

offered by its contract with the host cyberorg. This triggers its attempts

to migrate, as shown in Figure 2.5. A cyberorg may migrate from one host

cyberorg to another. However, this must be preceded by negotiation of the

terms under which the client may be hosted. The tasks required for a cyberorg

to migrate are as follows:

1. Search:

Before migration, the cyberorg searches for a potential host which can

provide sufficient resources.

2. Negotiate:

After searching, the migrating cyberorg negotiates with the potential host

16

in order to sign a new contract with it.

3. Migrate:

Once the negotiation succeeds and a new contract is agreed, the cyberorg

can migrate to the selected host, receive an amount of resources, and pay

an amount of eCash according to the contract.

Migrate

$
$

$

$
$

$

$ $

$ $

$

$

Figure 2.5: CyberOrgs Primitive Operations: Migrate

In the CyberOrgs model, resources can be controlled using the above primitives.

Resources flow from the root to the leaves of the cyberorgs hierarchy, and the eCash

flows in the opposite direction. Through migration, a cyberorg can obtain resources

from any cyberorg as long as a contract has been negotiated.

2.4 CPU Resource Allocation

We focus on CPU time resource as the resource to be controlled in our CyberOrgs

implementation, and the most important component of a system for controlling

CPU time is the scheduler. Existing research work on scheduling CPU resource is

reviewed in this section.

CPU resource allocation is extensively studied and many approaches have been

proposed in the form of scheduling algorithms or scheduling schemes.

17

A scheduling algorithm specifies a set of rules that determine which process is

to be executed at any particular moment. Some widely used scheduling algorithms

are reviewed as follows:

• Round Robin Scheduling [39]: The round-robin scheduling is a scheduling al-

gorithm which prevents starvation. In round-robin scheduling, every process is

put in a queue and given the same amount of CPU time to be executed until

it is finished. Once a process completes, it is removed from the scheduler’s

queue.

• Rate Monotonic Scheduling (RMS) [27]: The rate-monotonic scheduling algo-

rithm assigns fixed priorities to processes . It is a preemptive and priority

driven algorithm, which means that whenever there is a request for a task

with higher priority than the one currently being executing, the executing one

will be interrupted, and the newly requested task with higher priority will be

executed instead. In RMS, the priority assigned to a task has a monotonic

relation to the request rate of that task, which means the shorter the period

of a task, the higher its priority.

• Earliest Deadline First Scheduling (EDF) [29]: The earliest-deadline-first schedul-

ing is a dynamic scheduling algorithm. All processes are maintained in a pri-

ority queue. At the end of time-slice of a process, it is put at the end of the

queue, the queue will be searched for the process which is closest to its deadline,

and this process will be scheduled next. By using the dynamic priority, the

performance of earliest-deadline-first scheduling is better than rate-monotonic

scheduling which uses the static priority for each process.

A scheduling scheme is a way of combining different scheduling algorithms for a

set of applications with different constraints for CPU time. For instance, in CPU in-

heritance scheduling [11], scheduling based on EDF is combined with multi-priority-

based round robin algorithm for scheduling a mix of real time and interactive appli-

cations. In a paper by Manoj Lal and Raju Pandey [26], a CPU resource allocation

18

scheduling scheme is presented, which combines three scheduling algorithms for

scheduling both real time and non-real time mobile programs.

2.5 Chapter Summary

Work in several related areas was reviewed in this chapter, including models of

concurrency, resource management approaches, as well as CPU resource allocation

algorithms. The Actor model is one of the formal models for concurrent computa-

tion. CyberOrgs is a theoretical model for resource management, which organizes

resources and multi-agents’ computations in a hierarchy. Several scheduling schemes

for CPU resources were reviewed in this chapter.

19

Chapter 3

CyberOrgs Implementation

3.1 Introduction

An implementation of CyberOrgs has been developed by extending Actor Architec-

ture [25], which is a Java library and run-time system for supporting actors. In

our CyberOrgs implementation, each actor needs processor time resource to carry

out its computation, and the resource is distributed to each individual actor by the

cyberorg which hosts it according to a local resource allocation policy. Furthermore,

the hierarchical scheduling for processor time in CyberOrgs has been implemented

scalably by converting the hierarchical schedule into an equivalent flat schedule on

the fly. Implementation details are discussed in this chapter, including the Actor Ar-

chitecture framework, CyberOrgs system design, and our scheduling scheme as well

as its performance analysis. The flat scheduling scheme can be generalized for dis-

tributed processor time control, and the implementation of distributed CyberOrgs

as well as its overhead analysis are presented. The chapter ends with description of

specific scenarios of using CyberOrgs.

3.2 Actor Architecture

Actor Architecture (AA) is a middleware system architecture that provides an ex-

ecution environment for actors. An instance of the AA run-time system is called

a platform. Each platform has four layers with eight components as shown in Fig-

20

ure 3.1.

AA Platform

Actor

Directory
Manager

Actor
Manager

Actor Migration
Manager

Manager
Delayed Message

Message
Manager

Transport
Receiver

Transport
Manager

Transport
Sender

Transport Transport
Manager

Transport
ReceiverSender

AA Platform

Advanced
Service

Actor
Management
Service

Message
Delivery
Service

Message
Transport
Service

Message
Transport
Service

Figure 3.1: AA Platform Structure ([22])

• Message Manager (MM):

MM handles all messages in a AA platform. Every message passes through

at least one message manager. If the destination actor of a message is on

the current AA platform, the MM delivers the message directly, otherwise it

delivers the message to the MM on the AA platform where the destination

actor is located.

• Transport Manager (TM):

TM forms the central part of the message transport service layer, which is an

AA platform’s interface with other AA platforms.

• Transport Sender (TS):

TS is responsible for receiving messages from the MM of the current AA plat-

21

form and sending each of these messages to the Transport Receiver (described

below) of the destination AA platform, provided there is a connection between

these two AA platforms. If there is no connection, TS communicates with the

TM on the destination platform to open a connection for message delivery.

• Transport Receiver (TR):

TR delivers the messages it receives to the destination actors on the current

AA platform.

• Delayed Message Manager (DMM):

Actors may migrate at any time, causing delivery of messages intended for

such actors to be delayed. DMM is responsible for holding these messages

temporarily, and delivering them when it is possible.

• Actor Manager (AM):

AM manages states of all mobile agents on the AA platform.

• Actor Migration Manager (AMM):

AMM manages all migrations that happen on the AA platform.

• Directory Manager (DM):

DM provides advanced services, such as matchmaking and brokering.

3.3 CyberOrgs System Design

Actor Architecture provides an execution environment for actors and it supports ac-

tor primitives, such as sending/receiving messages, creating new actors, and chang-

ing local state. In Actor Architecture, resource allocation relies on the underlying

Java Virtual Machine (JVM). We extend AA to support CyberOrgs, making the

resource control visible to programmers.

Figure 3.2 shows the design of the CyberOrgs implementation. We extend Actor

Architecture by adding two key components: CyberOrg Manager and Scheduler

Manager. CyberOrg Manager is the central component of each CyberOrgs platform.

22

All resource control operations are carried out by the CyberOrg Manager. The

results of such operations are sent to Scheduler Manager, which schedules all actors

in the platform according to these results.

CyberOrgs Platform

Actors
SchedulerManager

CyberOrgManager

AA Platform

Figure 3.2: CyberOrgs System Design

Two service layers, CyberOrg Service and Scheduler Service, are built on top

of the original AA platform to extend it to a CyberOrgs platform. The detailed

structure of the CyberOrgs platform is shown in Figure 3.3. Each actor in the

platform is encapsulated by some cyberorg. Resource acquisition and control is

achieved by programmers using CyberOrgs primitives. The features and functions

of individual components in a CyberOrgs platform are described in the following

sections.

3.3.1 Cyberorgs

A cyberorg is the basic unit of resource acquisition and control in a CyberOrgs

platform. Actors, messages, and eCash are encapsulated in a cyberorg. Cyberorgs

are organized as a hierarchy in the platform. Each cyberorg holds a list of actors,

some units of eCash, an amount of resource, and a list of client cyberorgs. The

contents of a cyberorg are described as follows.

3.3.1.1 Actors

Actors in a CyberOrgs platform represent concurrent computations. An actor carries

out computational tasks and requires resources to perform its tasks. Each actor is

23

CyberOrgs Platform

Actor

CyberOrg

Scheduler
Manager

CyberOrg
Manager

Directory
Manager

Actor
Manager

Actor Migration
Manager

Delayed Message
Manager

Message
Manager

Transport
Receiver

Transport
Manager

Transport
Sender

Scheduler
Service

CyberOrg
Service

Advanced
Service

Actor
Management
Service

Message
Delivery
Service

Message
Transport
Service

Figure 3.3: CyberOrgs Platform Structure

contained in a cyberorg and obtains resources from it.

3.3.1.2 Facilitator

Facilitator is a special actor which facilitates the execution of the application actors

(which carry out functional computations) in a cyberorg. It receives an amount of

resource from its host cyberorg to support its actions just as the application actors

do, but it is different from application actors, because the messages it processes are

requests for CyberOrgs primitives. Every request for a primitive cyberorg operation

eventually arrives at the corresponding facilitator of the specific cyberorg as a mes-

sage. While processing the message, the facilitator invokes the requested primitive

of the host cyberorg.

24

3.3.1.3 eCash

CyberOrgs trade in a market of resources, and eCash is the currency in this market.

Each cyberorg holds certain amount of eCash, and the cyberorg uses its eCash to

buy resources from its host cyberorg in order to support its computations.

3.3.1.4 Resource

In our CyberOrgs implementation, we only deal with processor time resource. Ini-

tially all resources in the system belong to the root cyberorg, and other cyberorgs

can purchase resources from their respective host cyberorgs over the course of time.

3.3.1.5 Client Cyberorgs

Cyberorgs are organized as a hierarchy in the system. Each cyberorg maintains a

list of client cyberorgs. There is a contract between a host cyberorg and each of

its client cyberorgs. For each client, this contract specifies the amount of resource

that the client cyberorg can obtain from the host cyberorg, as well as the amount of

eCash it would pay for the resource. According to the contract, the client cyberorg

purchases resource in order to support the computations which are carried out by

its actors.

3.3.2 CyberOrgs Primitives

The primitive operations of CyberOrgs are implemented as methods of the CyberOrg

class. These methods are called by the facilitator in a cyberorg. Through the

primitives, a cyberorg may change its own state. For example, when the Isolate

primitive is invoked, the cyberorg modifies its list of actors, and the list of client

cyberorgs according to the parameters of the isolation.

3.3.3 CyberOrg Manager

An important component in a CyberOrgs platform is the CyberOrg Manager. Most

computations about resource acquisition and control are carried out by the CyberOrg

25

Manager, and this is where the CyberOrg primitives are eventually carried out.

It interacts with the Scheduler Manager (described in Section 3.3.4) in order to

implement processor time control. In this section, we describe the functions of

CyberOrg Manager in detail.

3.3.3.1 Maintaining Cyberorgs Structure

The CyberOrg Manager maintains the hierarchical structure of the cyberorgs on

a CyberOrgs platform. When a CyberOrgs primitive is invoked, the CyberOrg

Manager is responsible for modifying the hierarchy to reflect the change in the

cyberorgs structure. CyberOrg Manager is the only component on the platform

which knows the global structure of the cyberorgs hierarchy.

3.3.3.2 Handling CyberOrgs Primitives

The CyberOrg Manager handles all of the CyberOrgs primitives that are invoked in

a platform. The requests for CyberOrgs primitives come from the facilitators which

represent corresponding cyberorgs. According to the parameters of a request, the

CyberOrg Manager computes the amount of resource for each actor that is involved,

and coordinates with the Scheduler Manager in order to allocate CPU resource based

on the results.

• Isolate:

When isolate is invoked in a cyberorg, a new client cyberorg is created

in it, and some of its actors are isolated to the new client. The CyberOrg

Manager is responsible for calculating the updated amounts of resource which

are to be given to these actors according to the new contract between the

client cyberorg and the host cyberorg. Consequently, some fields in the host

cyberorg are changed and need to be updated, such as the eCash, the list of

client cyberorgs, and so on.

• Assimilate:

A client cyberorg disappears as a result of the assimilate primitive, and all

26

of its contents are released to its host cyberorg. According to the local policy

of the host cyberorg, the CyberOrg Manager calculates how much resource

to give to the actors of the assimilating cyberorg. In the meantime, because

there are contents which are coming into the host cyberorg, the corresponding

fields have to be modified.

• Migrate:

There are two types of migration in the CyberOrgs platform: intra-platform

migration and inter-platform migration. We use different ways to deal with

them.

– For the intra-platform migration, a cyberorg migrates from its original

host cyberorg to a new host cyberorg (with which a contract has already

been reached by negotiation) on the same platform as the old host. In

this case, no objects need to be moved across machines. What the Cy-

berOrg Manager needs to do is similar with what is done in isolation and

assimilation: it recalculates the CPU resource for the migrating actors

according to the new contract, and modifies the state for both the original

and the new host cyberorg.

– For the inter-platform migration, a cyberorg migrates from its original

host cyberorg to a new host cyberorg which is located on a different

CyberOrgs platform. In this case, the calculation and modification are

similar with what is described in the intra-platform migration. Besides,

actors which are hosted in the migrating cyberorg have to be migrated

across machines, and this can be done by interacting with the Actor

Migration Manager component of the AA platform. Furthermore, in-

formation related to the state of the migrating cyberorg is sent to the

destination platform as a message. The CyberOrg Manager in the desti-

nation platform takes this message, extracts the state information from

it, and creates a cyberorg locally with the same state as shown in the

message. This newly created cyberorg is put into the local Scheduler

27

Manager in order to be assigned an amount of resource according to the

contract that the migrating cyberorg signed with the new host cyberorg.

After the creation of the new cyberorg on the destination platform, the

old cyberorg which invoked the migration is destroyed on its platform.

3.3.3.3 Interacting with Scheduler Manager

After computing resource allocations, the CyberOrg Manager interacts with the

local Scheduler Manager which enforces processor time allocations on the actors.

Each primitive operation changes the resource allocation, and it is the CyberOrg

Manager that translates these changes for the Scheduler Manager, which eventually

makes changes in the schedule.

3.3.4 Scheduler Manager

Scheduler Manager is a round-robin-like thread scheduler which uses Java’s suspend

and resume primitives to schedule actor threads in a flat queue. Each actor is

scheduled for an amount of time which is calculated and updated for each thread

dynamically by the CyberOrg Manager.

An important objective of our scheduling scheme is to decrease the overhead of

scheduling. A hierarchical implementation of the scheduler would result in very high

overhead, as shown by the analysis in [19]. Based on the concern of efficiency, the

Scheduler Manager does not perform any computations other than the scheduling

of threads. Specifically, the Scheduler Manager should not be aware of cyberorgs

structure, and it should only deal with actor threads.

In our implementation, the Scheduler Manager module is responsible for schedul-

ing all actor threads in the system in a round-robin fashion. It uses a queue to

maintain the actor threads to be scheduled, and it also has a hash table to match

each thread to a certain amount of CPU time which is allocated to it. The main

body of a Scheduler Manager is an infinite loop. It gets a thread from the head of

queue, schedules it for certain amount of time, and then puts it back at the tail of

28

the thread queue (if it is still alive). The algorithm of the scheduler is shown in

Figure 3.4.

1. begin schedule

2. while (true)

3. if the Queue is not empty;

4. get the first thread in the Queue;

5. get the certain time slice for the thread from hash table;

6. schedule the thread for time slice;

7. if the thread is alive;

8. put it to the tail of Queue;

9. go to 3;

10. else sleep for some time

11. end while;

12. end schedule

Figure 3.4: Algorithm of Scheduler Manager in CyberOrgs System

Alternatively, there is another approach which uses thread priority instead of

suspend/resume to schedule actor threads. The thread for the Scheduler Manager

itself has the highest priority in the system, and actor threads have relative low

priorities. Whenever an actor thread is to be scheduled, the scheduler assigns a

higher priority to the actor thread than other actors and goes to sleep, so that the

actor thread with higher priority can get a chance to execute. After certain amount

of time, the Scheduler Manager wakes up, decreases the priority of this thread, and

schedules the next thread in the queue.

Experiments based on both approaches have been carried out and the results

are presented in Chapter 5. However, because we use Java to implement the whole

system, and the thread priority enforcement in Java is not precisely specified, the

suspend/resume approach is more reliable. Although suspend and resume are

deprecated in Java in order to avoid deadlock, they are safe to use on actors because

multiple threads do not access the same object.

29

3.4 Scheduling CyberOrgs

In the previous sections we have described the CyberOrgs system design. One

important concern is the scheduling scheme. Note that we only have one scheduler

for each platform, instead of a hierarchy of schedulers conforming to the structure

of cyberorgs. In this section, we discuss our flat scheduling approach [21] in detail,

and present experimental results which show that the approach is efficient.

The hierarchical structure of CyberOrgs poses a challenge for efficient scheduling

of cyberorgs. Intuitively, to implement a hierarchy, we can use a tree of schedulers

which have exactly the same structure as the cyberorgs. Figure 3.5(a) shows a

cyberorg structure, and Figure 3.5(b) shows a hierarchical scheduler for scheduling

the cyberorgs. Every cyberorg in the hierarchy has its own scheduler (represented

by the circle), which is responsible for scheduling all actors (represented by the

black dots) as well as the schedulers of for its client cyberorgs. In the hierarchical

implementation, the number of scheduler threads is the same as the number of

cyberorgs. In order to switch from one scheduler thread to another, we have to

use suspend/resume primitives which are very costly. Furthermore, whenever one

scheduler thread is suspended/resumed, all threads which are scheduled under it

have to be suspended/resumed down to the leaf. For instance, in Figure 3.5(b), if

scheduler Sb is suspended, scheduler Sc and actor thread c1 are also going to be

suspended.

An overhead analysis has been carried out for the multi-layer scheduler scheme

in [19]. Suppose o is the overhead resulting from a single suspend/resume. Let

us consider the case that every scheduler in the hierarchy schedules a leaf thread

or a scheduler thread under it for a fixed time slice t. A scheduler has to suspend

all running threads down to the leaf in order to suspend a thread under it. In any

time period t, there would be h suspend overheads for a scheduler at each height

h, amounting to (h2 − h) × o/2 overheads, and the overhead resulting from resum-

ing a thread would be similar. Therefore, the overhead caused by suspend/resume

increases when the height of the scheduler hierarchy increases, and it could be pro-

30

1

A

B

C

D

a

a

d

c

b

a) Hierarchy of cyberorgs

a a

b

c

d

a a c d

S S

S

b) Hierachical Scheduler c) Flat Scheduler

SchedulerS

1

1

1

2

1

1

1

1

a

b d

c

2
1

b121 1

Figure 3.5: Comparison of Hierarchical Scheduler and Flat Scheduler of CyberOrgs
Implementation

hibitively heavy if h is large. As a result, enforcing a hierarchical coordination is

very costly [30].

A contribution of our implementation is in developing a mechanism for efficiently

converting a hierarchical scheduler to an equivalent flat one , and then enforcing it

to schedule all threads according to the same resource allocations as required by the

hierarchical schedule but without the heavy overhead.

The flat scheduler is shown in Figure 3.5(c). There is only one global scheduler

for the whole platform, and it is responsible for scheduling all threads in the plat-

form. The amount of resource allocated to each thread is calculated according to

the original hierarchical structure. This is possible because initially all available re-

sources are possessed by the root cyberorg, and all the actor threads hosted by it as

well as the client cyberorgs receive part of its resources, which can be represented by

a function of the amount of total available resource. Consequently, for every actor

thread, we can calculate the amount of resources allocated to it using its cyberorg’s

resources and the local distribution policy. Each cyberorg’s allocation is similarly a

known part of its host’s resources. After this calculation, all computation threads

31

can be scheduled directly by the global scheduler and multiple schedulers are no

longer necessary. Compared to the hierarchical scheduling, creating a flat sched-

uler is efficient because there is only one scheduler thread for the whole CyberOrgs

platform. The overhead analysis on our scheduling scheme is described in the next

section.

3.4.1 Overhead Analysis

There are two types of overhead in our flat scheduler. First, the round-robin schedul-

ing itself causes overhead when it is attempting to switch from one thread to another.

Apparently, this type of overhead is related to the number of threads in the system,

and the time slice of each thread being scheduled. Second, additional overhead re-

sults from the changes to be made on the schedule. When a CyberOrgs primitive

is invoked, the scheduler needs to be modified because there are certain changes on

the resource allocation. The overhead caused by the modifications is related to the

rate at which CyberOrgs primitives are called. However, this type of overhead is

also manageable, because the data related to resource allocation is maintained in a

hash table, and the number of changes in this hash table as a result of a primitive

operation is linearly related to the number of local actors involved in the primitive.

Compared with the first type of overhead, the second one is less frequently caused,

because the first type of overhead results from every switch in the entire schedule,

whereas the CyberOrgs primitives are invoked only when it is necessary to change

the resource allocation.

Experiments have been carried out to figure out the relationship between over-

head and a number of factors, including the number of threads, the structure of

cyberorgs, and the size of the time slice.

3.4.1.1 Overhead Vs. Number of Threads

For a flat scheduler, the main overhead comes from the schedule construction and

the switching from one thread to another. So the overhead increases when the length

32

of thread queue increases. Assuming o is the overhead, n is the number of threads

in the system, then

o ∼ n

We carried out our experiments in the following way:

• Create a number (n) of threads which carry out identical simple computational

tasks.

• Run the threads allowing Java thread scheduler to schedule them, and calculate

the time t1 it takes to finish all threads.

• Run the same threads in our scheduler, and invoke isolate primitives on a

random number of threads to create a hierarchy of cyberorgs, and calculate

the time t2 in which all the threads complete.

• Calculate the additional overhead of scheduling n threads organized in a hier-

archy of cyberorgs, which is t2 − t1

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60 70 80 90 100

O
v
e

rh
e

a
d

(m
s
)

Number of threads

Overhead
y=1.29878*x-2.4449

Figure 3.6: Overhead of the Flat Scheduler (number of threads in the system: 5-100)

Figure 3.6 and Figure 3.7 show the results of our experiments. Figure 3.6 displays

15 samples, and each of them represents the overhead of scheduling certain number

33

 100

 150

 200

 250

 300

 350

 400

 450

 500

 100 200 300 400 500 600 700 800 900 1000

O
v
e

rh
e

a
d

(m
s
)

Number of threads

Overhead
y=0.39558x+88.73333

Figure 3.7: Overhead of the Flat Scheduler (number of threads in the system: 100-
1000)

of threads (the number is between 5 and 100) using our flat scheduler. Similarly,in

Figure 3.7, 10 samples are shown, and the data for these 10 samples are collected

from the scheduler when it schedules from 100 to 1000 threads. The value of each

point in the figures is the average of five repeated experiments to guarantee the

accuracy of the results, because there are many other factors that will influence the

calculation time such as the stability of the computer, background workload, and so

on.

Least-square linear regression [18] is used to fit the sample points by straight

lines as shown in the two figures. The correlation coefficients (R) are 0.99433 and

0.99464 respectively, and the standard deviations of the regressions are 4.265 and

13.2 respectively, which indicate that the regressions are are acceptable. Therefore,

the overhead of our scheduler has a linear relation with the number of threads in

the system.

Another interesting point to note is: we notice that the slopes of the two lines

are different. In Figure 3.7, which ranges from 100 to 1000 threads, the slope is

much less than that of Figure 3.6.

34

3.4.1.2 Overhead Vs. CyberOrgs Structure

The previous experiments showed that the overhead increases when the number

of threads increases, but does the structure of cyberorgs influence the overhead?

Experiments were carried out to studying the relationship between the overhead

and the cyberorgs structure when using the flat scheduler.

Three types of extreme structures of cyberorgs were investigated in these exper-

iments: one layer, wide tree, and deep tree.

One Layer : In Figure 3.8, all threads are held by one cyberorg, which does not

have any client cyberorg. This structure has only one layer.

......

Figure 3.8: CyberOrgs Structure I: One Layer

Wide Tree: In Figure 3.9, the root cyberorg has a number of client cyberorgs

which do not have any client cyberorgs of their own, and the whole structure is like

a very wide tree.

......

Figure 3.9: CyberOrgs Structure II: Wide Tree

Deep Tree: In Figure 3.10, each cyberorg has only one client cyberorg except the

one on the leaf. This structure represents a very deep tree.

In the following experiments, we assign 10 milliseconds of time slice to each

thread in one scheduling cycle, and schedule them in the above three kinds of struc-

tures respectively. The results are shown in Figure 3.11. Each value of the points

35

in the figure is the average of five identical experiments in order to minimize the

influences from external factors that may exist.

......

Figure 3.10: CyberOrgs Structure III: Deep Tree

 1650

 1700

 1750

 1800

 1850

 1900

 1950

 2000

 2050

 2100

 0 5 10 15 20 25 30 35

E
x
e

c
u

ti
n

g
 T

im
e

(m
s
)

Number of Threads

no layer
wide tree
deep tree

Figure 3.11: Overhead Comparison for Different CyberOrgs Structures (No Layer,
Wide Tree, and Deep Tree)

CyberOrgs Structures No Layer Wide Tree Deep Tree
Slope 13.04 13.21 13.12

Intercept 1619.25 1620.22 1624.07
Standard Deviation 17.50 17.32 16.42

Table 3.1: Linear Regression for the Overhead of Different CyberOrgs Structures
(No Layer, Wide Tree, and Deep Tree)

36

Table 3.1 shows the parameters of linear regressions for the overhead from dif-

ferent types of cyberorgs structures. We conclude that the overhead in the three

cyberorg structures has no significant difference, because the regressions illustrate

that the sample points from the three experiments are close to similar straight lines.

It means that the height or width of the tree structure of cyberorgs has insignificant

influence on the overhead. 1

3.4.1.3 Overhead Vs. Smallest Time Slice

Figure 3.12 shows the relationship between the overhead and the smallest time slice

for which a thread may be scheduled 2. In the experiments, we scheduled 100 threads

which carried out identical computations in our scheduler, and varied the time slice

from 3 to 40.

 9.5

 10

 10.5

 11

 11.5

 12

 12.5

 13

 0 5 10 15 20 25 30 35 40

O
v
e

rh
e

a
d

(%
)

Time Slice(ms)

Figure 3.12: Overhead Vs. Time Slice: Overhead can be controlled by increasing
the minimum time slice that is allowed in the system

In Figure 3.12, it is shown that increasing the smallest time slice can reduce

the overhead of the scheduler, because when the smallest time slice is increased,

1We use these three extreme cases to test our scheduler, but cyberorg structure does not have
to be any one of them. Cyberorgs may construct any type of tree.

2All threads are not scheduled for identical time slices in a cyberorg system.

37

the number of switches between threads in a fixed time period is reduced. Some

opportunities for managing the overhead arising from this observation are examined

in the next section.

3.4.2 Overhead Control

In the previous section, we have analyzed the overhead of the flat scheduler, and it

turns out to be linear with respect number of switches between threads. This fact

could be used to control overhead in the system.

3.4.2.1 Overhead Control by Time Slice Constrains

Considering we schedule a number of threads in a time cycle, say T, and each thread

threadi will get a certain time slice ti to execute in T . Let o be the overhead that

results from switching from one thread to another. Because the majority of the

overhead of a flat schedule comes from switching between threads, reducing the

number of these switches can reduce the overhead. In order to control the overhead

within an acceptable range (e.g. 3%), we can constrain the time slice and the

time cycle. We present some examples of constraint calculation according to the

distribution of time slice.

• Constant Time Slice:

In this case, ti = t. So in each time cycle of T , the number of switches is: T
t
.

If we want the overall overhead to be within p percent of T , we should have:

(T
t
) × o < pT . The constraint for constant time slice is:

o

t
< p

which can be satisfied by ensuring: t > o
p

• Binary Time Slice:

In this case, when we add a new thread to the schedule, it gets half of the

remaining time in T . That is: ti = (1
2
)i × T . Let n be the number of threads

38

that could be handled in T , then we have n × o < p × T , i.e. n < pT

o
. So the

inequality for time slice would be

ti > (
1

2
)(pT

o
) × T

• Some Percentage of Remaining time in T :

We extend the previous distribution to a common case; that is, every added

thread gets a certain percentage x of remaining time, i.e., ti = x × (1 −
∑i−1

j=1 tj) × T . Because the number of switching should be kept within pT

o
as

the previous case, the inequality for time slice would be

ti > x × (1 −

pT

o
−1∑

j=1

tj) × T

• Random Time Slice:

In this case, ti is a random integer number. This is the most common one. We

can guarantee that the percentage of overhead is less than p by keeping every

random time slice ti > o
p

as in the first case. Although it is sufficient, it is not

a necessary condition.

3.4.2.2 Overhead Control by Adjusting Granularity

Another opportunity for overhead control is by adjusting the granularity of control.

We set two parameters for the scheduler: SmallestTimeSlice and LargestTimeSlice

to help manage overhead.

The SmallestTimeSlice specifies the smallest time slice that the CyberOrgs sys-

tem is allowed to accept. On the contrary, the LargestTimeSlice puts a limit on how

large a time slice could be. These two parameters together constrain all time slices

in the system.

As for requests which are asking for time slices smaller than the SmallestTimeS-

lice, they are not discarded right away. When such a request comes, we scale up

39

all of the time slices in the system (including the small request) in order to make

the request acceptable. This strategy makes the resource control more coarse, but

time slice requests that are smaller than SmallestTimeSlice can be entertained in

the system.

If we do not put a limit on the scale-up, the resource control will become increas-

ingly coarse. Therefore, we have the LargestTimeSlice which eventually limits the

total amount of scale-up. The LargestTimeSlice specifies the upper limit of a time

slice in the system. In the scale-up process, the system keeps track of the largest

time slice. If the largest time slice becomes larger than LargestTimeSlice, as the

system is attempting to accept a request for a small time slice, it rejects the request.

3.5 Distributing CyberOrgs

On the basis of the single-node CyberOrgs system, a distributed version has been

developed. Distributed CyberOrgs can be used to control resources which are located

on computers distributed over a network. In this Section, we describe the design of

our distributed CyberOrgs system.

3.5.1 Distributed Scheduler

A single-node CyberOrgs scheduler with flat structure has been described in Sec-

tion 3.4, and it converts the hierarchical structure of the cyberorgs on a single node

into a flat schedule for threads which is consistent with the resource allocation de-

cisions made by cyberorgs in the hierarchy.

One challenge in implementing a distributed CyberOrgs system is developing a

distributed scheduler, which is able to enforce a distributed schedule on a network

of nodes.

Our design of the distributed scheduler is shown in Figure 3.13.

There are two characteristics of our distributed scheduler:

40

Node 3

Actor

Scheduler

CyberOrg Manager

Coordination

Node 1 Node 2

Figure 3.13: Structure of Distributed Scheduler in CyberOrgs System

• One sub-scheduler per node

There is one sub-scheduler for each node of the CyberOrgs system. Every

sub-scheduler has the flat structure (as described in Section 3.4); it schedules

all actors on the local node on the fly and it is in charge of all the resources

which are available to the corresponding node.

• Coordination between sub-schedulers

The sub-schedulers in the distributed CyberOrgs system are located and man-

age resources on separate nodes, but they also cooperate with each other when

necessary.

As shown in Figure 3.13, the communication between two sub-schedulers has

to pass through the CyberOrg Managers on their respective nodes. The Cy-

berOrg Manager is an active component on any node: it receives messages

from the environment, carries out calculations for resource allocation, and

sends the results of calculations to the scheduler on the local node to invoke

41

the corresponding changes to resource allocation.

3.5.2 Distributed CyberOrgs

If each cyberorg must entirely locate on a single machine, we call the system a

system of distributed CyberOrgs. In a distributed CyberOrgs system composed of

multiple nodes, there is one CyberOrgs platform running on each individual node

in order to deliver the local resources to the actors on that node. A cyberorg can

migrate from one node to another in its entirety and is not allowed to be located

separately on more than one node.

The components of a distributed CyberOrgs system are as follows.

• Cyberorg

A cyberorg is created on one node and exists in its entirety on that node. It

may migrate to another node after negotiation, but all of its contents have to

be migrated together.

A cyberorg has one and only one facilitator actor, and it also encapsulates

application actors, some amount of eCash, and resources on the local node.

• CyberOrg Manager

Every CyberOrgs platform needs a CyberOrg Manager, so in a distributed

CyberOrgs system, there is one CyberOrg Manager on each node. These

CyberOrg Managers are responsible for allocating resources on their own nodes

and they communicate for inter-node coordinations. For example, when a

cyberorg is about to migrate to another node, the local CyberOrg Manager

contacts the CyberOrg Manager on the node that the cyberorg is migrating to,

and sends the contract information to the remote CyberOrg Manager, which

sets up resource delivery for the cyberorg with the Scheduler Manager on that

node.

• Scheduler Manager

We use the distributed scheduler which was described in Section 3.5.1. There is

42

one sub-scheduler per node, and these sub-schedulers communicate with each

other though the CyberOrg Managers. A Scheduler Manager is responsible

for scheduling all actors on the local node according to the predefined resource

allocation policy. The allocation may be changed, and the changes are enforced

by the CyberOrg Manager on the same node.

For the distributed CyberOrgs system, we analyze CyberOrgs primitives as fol-

lows:

1. Isolation:

Because one cyberorg locates on one specific node in the distributed CyberOrgs

system, isolation can be handled by the single node scheduler on that node.

2. Assimilation:

Similar with isolation, assimilation is handled by the single node scheduler.

3. Migration:

There are two types of migration in a distributed CyberOrgs system: intra-

node migration and inter-node migration. In the former case, the new host

of the migrating cyberorg is on the same node as the one from which it is

migrating. The sub-scheduler on the current node does not need to interact

with any other sub-schedulers, because there are no actors which are moved

from one machine to another. In the latter case, the new host of the migrating

cyberorg is on a different node than the one from which it is migrating. The

sub-scheduler on the current node coordinates with the sub-scheduler on the

destination node. After migration, the cyberorg receives resources from the

new host according to the new contract between them, and its actors are

scheduled by the sub-scheduler.

3.5.3 Overhead Analysis

In this section, we analyze the overhead in the scheduler caused by invocation of

CyberOrgs primitives in the distributed version of CyberOrgs.

43

• Isolation

In a cyberorg CA, if n actors are isolated into a new client cyberorg CA′ , the

resource allocation for these actors has to be recalculated, and this results in

overhead in the scheduler. If cr is the time it takes to recalculate the resource

amount for one actor, and cv is the time it takes to change the value of a time

slice for one thread, then the overhead caused by isolation is

n × cr + n × cv = n × (cr + cv)

• Assimilation

Similar with isolation, assimilation in distributed CyberOrgs system incurs

overhead because of resource reallocation for the actors which are in the as-

similating cyberorg.

For a distributed cyberorg CA which has n actors, the overhead in the scheduler

caused by assimilation of CA is:

n × cr + n × cv = n × (cr + cv)

where cr and cv are respectively the times it takes to recalculate resource

allocation for an individual actor and change a value of a time slice in the

schedule.

• Local Migration

Local migration means no actor is migrated to a remote node, and we only

need to change the resource allocation for actors of the migrating cyberorg.

For a distributed cyberorg CA which has n actors, the overhead in the scheduler

caused by migrating CA to a local cyberorg is:

n × cr + n × cv = n × (cr + cv)

44

where cr and cv are respectively the time it takes to recalculate resource al-

location for one individual actor and change a value of a time slice in the

schedule.

• Remote Migration

Remote migration means the destination cyberorg (new host) of the migrating

cyberorg is at a different physical node, and the actors in the migrating cy-

berorg have to be moved to another CyberOrg platform, and be inserted into

the schedule there.

The steps to be carried out in a remote migration are as follows:

1. Remove n actors from the local scheduler;

2. Send cyberorg information and actors to the destination cyberorg;

3. Recalculate the amount of resource that each actor should receive accord-

ing to the new contract;

4. Insert n actors to the scheduler queue on the destination node.

The overhead caused by remote migration of a cyberorg is:

n × cd + n × cr + n × ci = n × (cd + cr + ci)

where n is the number of actors in the migrating cyberorg; cd is the time it

takes to delete an actor from the schedule; cr is the time it takes to recalculate

the amount of resource for one actor; and ci is the time it takes to insert an

actor into the schedule.

From the above analysis, we conclude that the overhead in the distributed sched-

uler caused by a CyberOrg primitive is linear in the number of local actors involved

in the primitive. Because we use a flat scheduler on every individual node, the

overhead caused by the switches between actors is linear too.

45

3.6 Scenarios of Using CyberOrgs

Our CyberOrgs implementation provides a dynamic control for CPU resource in

a multi-agent system. Because it enables resource management, it gains overhead

from the enabling mechanism. However, there are some scenarios in which we can

take advantage of using CyberOrgs. Two example scenarios are described as follows.

3.6.1 Multiple Tasks with Time Constrains

If there are multiple tasks in the system, and some of them need results from others

in order to proceed, CyberOrgs can be used for making efficient use of resources.

For example, consider a large computation and a small computation are executing

concurrently on one computer, and at some stage, the small computation needs the

results from the large one. Without resource control, the small computation will

likely have to wait for the results of the large computation to become available.

Using CyberOrgs, it is possible to allocate more resources to the large computation

in order to make it complete faster, so its results are available closer to the time

when the small computation requires them.

3.6.2 Mobile Computations

In an open system in which mobile computations are executing in a space of peer-

owned resources, remote computations may migrate in order to compete for re-

sources. However, resource competition results in unpredictable delay. By explicitly

modeling the ownership of resources, CyberOrgs offers a basis for resource trade.

Using CyberOrgs, we can encapsulate local resources and computations into a cy-

berorg, and any computations which are migrating into the cyberorg have to nego-

tiate with the cyberorg and sign a contract. Because resource trade is specified by

the contract, availability of resources is predictable.

46

3.7 Chapter Summary

In this chapter, we described the implementation of the CyberOrgs model. The

system design and implementation details were presented. Our implementation

is constructed on Actor Architecture, which is an implementation of Actors. We

developed a flat scheduling scheme for scheduling a CyberOrgs hierarchy, and this

scheme can be used not only on one node, but also for a distributed CyberOrgs

system. The overhead of this flat scheduler was analyzed for both a single node

system and a distributed system, and it turns out that the overhead of the scheduler

is linear with the number of local actors in the cyberorgs. Although there is certain

overhead in our CyberOrgs implementation, it is necessary and profitable to use in

some scenarios.

47

Chapter 4

Interface of CyberOrgs Implementation

4.1 Introduction

Our CyberOrgs implementation provides an application program interface for creat-

ing cyberorgs and actors, as well as invoking all the primitives of CyberOrgs. In this

Chapter, the API of the CyberOrgs implementation and some example application

programs are presented.

4.2 APIs

In this section, the APIs for both creation and CyberOrgs primitives (isolate, as-

similate and migrate) are discussed.

4.2.1 APIs for Creation

The implementation supports two types of creation: cyberorg creation and actor

creation. Cyberorg creation is called by the GUI or a user program in order to create

the first cyberorg in the system; later on, cyberorg creations happen as a result of

invocations of the isolate primitive. Actor creation is called by an existing actor

to create new actors, or by the cyberorg constructor in order to create a facilitator

actor.

48

• Cyberorg creation:

CyberOrg createCyberOrg(long eCash, Contract initialContract,

String facilitatorClass, Object[] args)

where eCash is the amount of eCash that is provided to the first cyberorg,

initialContract is the contract between the first cyberorg and the system,

which indicates the amount of resource that the cyberorg receives from the

system, and the price of the resource. facilitatorClass and ags specify the

facilitator actor class and the arguments for creating such a facilitator actor.

• Actor creation:

– ActorName createActor(ActorName creator, String actorClass,

Object[] args)

where creator is the unique name of the actor which invokes the creation;

actorClass and ags specify the class of the actor being created and the

arguments that are used in the actor constructor. This method is called

by one actor in order to create a new actor.

– ActorName createActor(CyberOrg myCyb, String facilitatorClass,

Object[] args)

this method is called by the cyberorg constructor to create a facilitator

actor. The myCyb identifies the cyberorg which invokes this creation;

facilitatorClass identifies the actor class of the facilitator and args

specifies the arguments to be used in constructing the facilitator actor.

4.2.2 APIs for CyberOrgs Primitives

CyberOrgs primitives are called by the facilitator actor of the cyberorg.

• Isolation:

CyberOrg Isolate(long eCash, ActorName[] actors, Contract newContract)

49

where eCash is the amount of eCash that is given to the new child cyberorg;

actors is an array of the existing actors that is isolated to the new child

cyberorg; newContract is the contract imposed on the new child cyberorg by

the host cyberorg. newContract specifies the amount of resource that the

child cyberorg is to receive, as well as the cost of the resource in terms of the

eCash payment to be made.

• Assimilation:

CyberOrg Assimilate()

this primitive causes assimilation of the cyberorg into its host cyberorg. All

contents (actors, resource, eCash) in the assimilating cyberorg are released to

the host cyberorg.

• Migration:

void Migrate(ActorName facActorOfdesCyberorg, Contract newContract)

where facActorOfdesCyberorg is the name of the facilitator actor in the desti-

nation cyberorg; newContract is the contract between the migrating cyberorg

and the destination cyberorg, reached as a result of negotiation.

4.2.3 Negotiation

Before migration, a cyberorg needs to negotiate with a potential host cyberorg in

order to generate a contract. Negotiation is invoked by the facilitator actor of the

cyberorg which is migrating.

• Contract negotiate(ActorName desFacActor)

desFacActor is the facilitator actor of the destination cyberorg which the

current cyberorg is migrating to.

We assume that there is a discovery service which finds a prospective host. Be-

cause resources discovery is not what we focus on, our implementation does not

provide an API for “search”.

50

4.3 Examples

Some examples are presented in this section to illustrate how to develop application

programs using the API provided by our CyberOrgs implementation. Users can

implement applications by extending the CyberOrg class and the FacilitatorActor

class.

4.3.1 System Triggers

This example shows the CyberOrgs primitives can be triggered automatically by

some conditions. By subclassing the FacilitatorActor class, users can define

their own facilitator actor which controls the CyberOrgs primitives according to

some specific requirements.

public void triggerPrimitives(){
if (actorList.size()>30)

triggerIsolation();

if (actorList.size()<3)

triggerAssimilation();

if (myTicks<minRequiredTicks)

triggerMigration();

}

Figure 4.1: Facilitator Actor’s Method for Triggering Primitives: If the number of
actors in the cyberorg is above a threshold (30), isolate is invoked; if the number
of actors in the cyberorg is below a threshold (3), assimilate is invoked; if the
available resource is less than the requirement, migrate is invoked

Figure 4.1 shows the method of triggerPrimitives which is defined in a facili-

tator actor of a cyberorg. It checks three conditions and triggers different CyberOrgs

primitives accordingly. When there are more than 30 actors in the cyberorg, iso-

lation is invoked; if the number of actors is less than 3, the cyberorg assimilates

into its host; when the cyberorg cannot get enough resource for its needs, it finds a

potential destination host cyberorg and migrates there to get more resource.

51

4.3.2 Distributed Weather Forecasting System

Here, we illustrate the use of our API with the help of an example. Consider

a distributed weather forecasting system which analyzes weather data, generates

alerts when a threatening weather system is entering a region, and takes appropriate

actions to address the threat. The computational resources available to such a

system may be focused on particular weather systems or population centers. As a

weather system moves from one region to another, resources available for analyzing

the weather system may need to become available to the regions which require

resources for assessing its impact on them.

Two classes of cyberorgs could be used for implementing the distributed weather

forecasting system: regional cyberorgs and weather system cyberorgs, both of which

are subclassed from the CyberOrg class.

• A regional cyberorg represents a physical area, and holds actors which an-

alyze and calculate the weather data, in order to develop weather forecasting

information for the region. Furthermore, a regional cyberorg manages re-

sources for supporting the weather data computations in it. In the event of

localized weather activity, a regional cyberorg would isolate parts of its compu-

tation and a sufficient amount of resource dedicated to the affected sub-region

to form a new cyberorg with independent control. After the weather threat

moves away from the sub-region, or all computations for the sub-region have

completed, the cyberorg for the sub-region may assimilate into the cyberorg

for the larger region, relinquishing independent control of the resource.

• A weatherSys cyberorg represents a weather system which moves between

regions, and it carries an amount of eCash dedicated to understanding the

weather system. A weather system cyberorg may migrate from one regional

cyberorg to another, taking the eCash with it to support the region which is

facing the weather system. Specifically, on arriving in a regional cyberorg, the

weather system cyberorg would isolate part of its eCash into a new cyberorg,

52

which would migrate out to the regional cyberorg for assimilation in order to

release the eCash.

public void actionOnArrival(){
if (theDisaster.effects(reg)) {
long toOffer=Needs(theDisaster, reg);

CyberOrg FundsCyberOrg=

isolate(toOffer,new ActorName[0],defChildContract);

ActorName facFund=

FundsCyberOrg.getFacActorName();

ActorName facReg=

reg.getFacActorName();

send(facFund,"triggerFundMigration",facReg);

}
}

public void triggerFundMigration

(ActorName destination){
Contract offerSupport=negotiateWith(destination);

if (offerSupport != null){
migrate(destination, offerSupport);

}
}

Figure 4.2: Methods in the Facilitator Actor of a WeatherSys Cyberorg: If
the weather system affects the region, funds are isolated to a new cyberorg
(FundsCyberOrg), and the new cyberorg is migrated to the affected regional cy-
berorg (reg)

Figure 4.2 shows two key methods in the facilitator actor of a WeatherSys cy-

berorg. Method actionOnArrival is invoked on the weather system cyberorg’s

arrival into a regional cyberorg. It checks if the region is under threat. If it is, the

region’s resource needs are assessed, and a sufficient amount of resource is isolated

into a new cyberorg (FundsCyberOrg), which is then asked to negotiate terms to

migrate to the regional cyberorg. Once a contract is negotiated, FundsCyberOrg mi-

grates to the regional cyberorg, and assimilates there to make the resource available

to the region.

53

public void checkStatus(){
if (needToDelegate){
//identify actors to isolate

//compute eCash to set aside

Contract defContract=

new Contract(ticksRate,eCash,ticks,getHost());

isolate(eCash,regActors,defContract);

}
if (!localControlRequired){
assimilate();

}
if (myContract.res<resNeed){
ActorName destination=

lookupYellowPageFor(resNeed);

Contract newContract=negotiateWith(destination);

if (newContract!=null) {
migrate(destination,newContract);

}
}

}

Figure 4.3: Method checkStatus in the Facilitator Actor of a Regional Cyberorg: If
it is necessary to delegate, a new cyberorg is created for the sub-region with sufficient
funds; when the delegation is no longer needed, the new cyberorg assimilates; if the
available resource is not enough for the region, it can migrate to a host which can
satisfy its resource requirement

Figure 4.3 shows checkStatus method in the facilitator actor of a regional

cyberorg. The checkStatus method checks whether the threat being faced cannot

be handled. If the regional cyberorg cannot handle the threat, sufficient resource

has to be set aside for delegated control for a sub-region which may represent a

population center. In this case, the original regional cyberorg isolates computational

actors along with the necessary amount of eCash to a new regional cyberorg, which

represents the sub-region. Once local control is no longer required (for example,

a weather system has passed the sub-region), the sub-regional cyberorg assimilates

into the cyberorg of the enclosing region. Furthermore, if the resource available

through the contract with the current host cyberorg is not sufficient, a regional

54

cyberorg may negotiate for a better contract with another cyberorg. In other words,

although the cyberorgs for sub-regions are created by the cyberorgs for larger regions,

the sub-regional cyberorgs are free to migrate somewhere else in order to receive more

resource.

4.3.3 Adaptive Quadrature

Adaptive Quadrature is a classic problem in mathematics. In this section we use

adaptive quadrature as an example to illustrate how to use CyberOrgs to perform

mathematics computing with dynamic resource control.

4.3.3.1 Introduction to Adaptive Quadrature

As shown in Figure 4.4, f(x) is a real-valued function of a real variable, and we seek

to compute the value of the integral on a finite interval a ≤ x ≤ b:

∫ b

a
f(x)dx

Physically, this value is the area which lies underneath the curve f(x) in the given

interval [a, b].

Adaptive quadrature is an elementary technique to estimate integral values, and

it is based on the fundamental additive property of definite integral:

∫ b

a
f(x)dx =

∫ c

a
f(x)dx +

∫ b

c
f(x)dx

where c is any point between a and b. The idea of adaptive quadrature is: approx-

imate the two integrals on the right of the above equation to within a predefined

tolerance, then the sum of these two integrals gives the desired result; if not, we

recursively apply the additive property to [a, c] and [c, b].

In this example, we use the trapezoid rule to calculate an integral: the integral

value of f(x) on the interval [a, b] can be estimated by the area of the trapezoid

55

c0 x

y

f(x)

a b

Figure 4.4: Adaptive Quadrature Problem

(a, b, f(b), f(a)), which is:

(b − a) ×
(f(a) + f(b))

2

4.3.3.2 Application Actors for Adaptive Quadrature

The first step of implementing an application is designing application actors which

carry out the given computation.

In this example, actors are used to calculate adaptive quadrature of a given

function f(x). In particular, in order to calculate the value of adaptive quadrature

of f(x) in the interval [a, b], we divide this interval at its midpoint m into two

subintervals: [a,m] and [m, b]. We create two actors to calculate the values of

integral on the two subintervals respectively. For instance, as for the subinterval

[a,m], we calculate the sum of integrals of its subintervals [a, n] and [n,m] (where n

is the midpoint of the interval [a,m]) and the value of integral of [a,m], then we get

the error e1 between these two values. Similarly, we calculate the error e2 for the

interval [m, b]. If the error is within a specified tolerance ε, the trapezoid area for the

56

corresponding subinterval is to be reported as an acceptable value of the integral. If

the error is greater than the tolerance, a new actor is created, and calculation for the

corresponding subinterval is delegated to this newly created actor, which will divide

this interval to smaller intervals and calculate the approximate integral values on

them.

The quadrature method and the result method of the application actors are

shown in Figure 4.5.

4.3.3.3 Resource Allocation According to Computing Workload

In order to take advantage of the resource management feature of CyberOrgs, we

need to put actors into cyberorgs which can allocate resources among them according

to their computing workload.

We assume that the actor which is delegated to an interval with higher error

needs more resource. We make this assumption because it is necessary to have a

criterion for resource management. Although this assumption may not always true,

actors which complete their tasks are destroyed right away and all the resource

assigned to them are returned to the system, therefore we do not need to worry

about assigning more resources to an actor than what are needed.

There are two different ways to allocate resource using CyberOrgs. First, the

resource can be distributed by the resource allocation policy inside one cyberorg.

Second, we can use multiple cyberorgs to control the resources by delegating resource

control to client cyberorgs when necessary.

• Resource allocation policy inside one cyberorg

In the CyberOrgs model, one cyberorg can have its own resource allocation

policy and distribute available resources to the actors inside it. In this example,

we put the application actors into one cyberorg which assigns resource to them

according to their workload.

Initially, we create a root cyberorg, and it receives all available resource in

the system. Within the root cyberorg, the first application actor is created

57

public void quadrature(double a, double b, ActorName client){
//get the midpoint of [a, b]: m

//calculate error for [a, m]: erroram

//calculate error for [m, b]: errormb

if (erroram > ε) { //create a new actor: newChildam

send(newChildam,"quadrature",a,m,newChildam);

} else {
result(trapezoid(a,m));

//report approximation of the integral on [a, m]
}
if (errormb > ε) {
//create a new actor: newChildmb

send(newChildmb,"quadrature",m,b,newChildmb);

} else {
result(trapezoid(m,b));

//report approximation of the integral on [m, b]
}

}

public void result(double reportValue){
(numResponses == 0){
numResponses++;

partialResponse = reportValue;

} else {
myResults = reportValue + partialResponse;

//report "myResult" to the actor which created this actor

destroy("task completed!"); //destroy current actor

}

Figure 4.5: Application Actors’ quadrature and result Methods in the Adaptive
Quadrature Example

for computing the adaptive quadrature. According to the algorithm which

is described in the previous section, new actors are created inside the root

cyberorg to pursue a final result which is accurate enough (the error is less

then the tolerance ε). At the time of creation of each new actor, certain

amount of resource is dedicated to it by the cyberorg.

A cyberorg has its own local resource allocation policy, and this policy is car-

58

ried out by the facilitator actor in this cyberorg. In this example, Facilitator

class is extended in order to asses the workload for each actor and assign re-

source to it.

Specifically, the facilitator keeps track of the average error of all the actors

in the system, as well as the average amount of resources assigned to the

actors. For the first application actor, the facilitator assigns it a predefined

percentage of resource (e.g. 10%). When a new actor is created, the facilitator

compares the new actor’s error with the average error, calculates the ratio and

distributes resource to the new actor according to the ratio.

Figure 4.6 shows the resourceAllocate method in the facilitator class, which

takes as parameters the name of the new actor, and the error of the integral

on the new actor’s interval. An amount of resource can be assigned to the

newly created actor by invoking this method.

If there are multiple instances of adaptive quadrature computation in the sys-

tem, we can use this approach to allocate resources to them by encapsulating

each instance to one cyberorg.

public void resourceAllocate(ActorName newActor, double error){
ratio = error/averageError;

//compute the ratio of error to

//the average error value of all actors

myTicks = averageTicks * ratio;

myTicksRate = averageTicksRate * ratio;

//calculate the amount of resources

that is assigned to the new actor

hostCyberOrg.resourceAllocate(newActor,myTicks,myTicksRate);

//tell host cyberorg to carry out resource allocation

/* update the value of averageError */

/* update the value of averageTicks and averageTicksRate */

}

Figure 4.6: Method resourceAllocate in the Facilitator Actor of the Cyberorg in
the Adaptive Quadrature Example (Resource Allocation Policy)

59

public void resourceAllocate(ActorName newActor, double error){

ratio = error/averageError;

//compute the ratio of error to the average error

//value of all actors

if (ratio > threshold){
myeCash = averageeCash * ratio;

/* generate a contract for isolation */

hostCyberOrg.isolate(eCash,newActor,myContract);

//tell the host cyberorg to isolate the new

//actor to a child cyberorg

/* update the value of averageError */

/* update the value of averageeCash */

}

else{

myTicks = averageTicks * ratio;

myTicksRate = averageTicksRate * ratio;

//calculate the amount of resources that is

//assigned to the new actor

hostCyberOrg.resourceAllocate(newActor,myTicks,myTicksRate);

//tell the host cyberorg to carry out the resource allocation

/* update the value of averageError */

/* update the value of averageResource */

}
}

Figure 4.7: Method resourceAllocate in Facilitator Actor of the cyberorg in the
Adaptive Quadrature Example (Multiple Cyberorgs)

• Multiple cyberorgs

Instead of developing a particular resource allocation policy, another method

for controlling resources is using multiple cyberorgs. Each of the cyberorgs

uses the resource allocation policy which is described in previous approach.

When a new application actor is created inside one cyberorg, this cyberorg

60

may isolate it to a new client cyberorg if the new actor’s error is more than a

threshold.

Similar with the previous method, we still extend the Facilitator class to

control resource, but we use the isolate primitive to encapsulate the new

actor (which has more workload) to a new cyberorg in order to guarantee

resource supply. In particular, if the ratio of the new actor’s error to the

average error exceeds some threshold, we set aside some eCash and isolate this

new actor to a new cyberorg; and if not, we use the resource allocation policy

of the original cyberorg to assign resources to the new actor.

Figure 4.7 shows the resourceAllocate method in the Facilitator class.

4.4 Chapter Summary

In this chapter, we described the APIs of our CyberOrgs implementation, including

cyberorg creation, actor creation, as well as CyberOrgs primitives. We also show

how to use these APIs to control resource using multiple examples.

61

Chapter 5

Experimental Results

5.1 Introduction

Experimental results are presented in this Chapter. Experiments using simulated

workload are carried out to analyze the overhead of our CyberOrgs implementation,

the results about performance analysis are presented in Section 5.2. In Section 5.3,

the actual application programs using CyberOrgs are described, as well as the re-

sults analysis. Experiments on CyberOrgs migration are carried out to measure the

network delay of migrating a cyberorg, and the results are presented in Section 5.4.

5.2 Performance Analysis

Experiments have been carried out to look at the overhead of using cyberorgs. Two

types of the flat scheduler which are based on suspend/resume and priority are

compared. The experiments and results are presented in this section.

5.2.1 Experiment Design

In order to show the efficiency of the flat scheduler, we compared the performance

of our scheduler with the Java Virtual Machine’s default thread scheduler by having

them schedule the same number of threads which carry out identical computation

tasks.

62

For different numbers of threads (from 10 to 1000), several types of experiments

were carried out:

1. With cyberorgs:

In this experiment, we scheduled all (actor) threads in cyberorgs organized as

a tree. The experiment began with a root cyberorg with an initial number of

threads. Thereafter, cyberorg isolation or creation of new threads was invoked

randomly until the total number of threads reached the predefined number.

Random time slices were assigned to each thread in the system. We performed

5 runs and calculated the average execution time for each experiment, and the

standard deviations were also calculated.

2. Fair scheduler (max, min, mean):

In these three experiments, there was no cyberorg, and each thread was sched-

uled for a fixed number of time slices in one scheduling cycle. For fair compar-

ison, we carried out three groups of experiments using three fixed time slices

respectively, which were the maximum, minimum, and mean value of all time

slices we got from the experiments on cyberorgs for corresponding number of

threads.

3. No scheduler:

There was no cyberorg or any custom schedulers in this experiment, and we

allowed the JVM default scheduler to schedule the threads in the system.

4. In one thread:

In this experiment, all workloads of corresponding numbers of threads were

carried by one thread. 1

5.2.2 Context Switching Using Suspend/Resume

The principle of the scheduler which uses suspend/resume is: suspend every thread

in the system immediately after its creation, and resume the threads one by one for

1We show the “one thread” here just for reference instead of comparison, because it does not
represent concurrent computing, as the other experiments do.

63

certain amounts of time according to the time slices that the threads receive.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 100 200 300 400 500 600 700 800 900 1000

E
x
e

c
u

ti
o

n
 T

im
e

Number of Threads

with CyberOrgs
no scheduler

max
mean

min
one thread

Figure 5.1: Performance Comparison of Scheduling Choices in Flat Scheduler Which
Uses Suspend/Resume

As shown in Figure 5.1, the execution times of all types of experiments appear

to be almost linear with the number of threads in the system. The experiment

with no scheduler has the best performance, because the threads are not suspended

or resumed; in Java, suspend and resume are time consuming. For the three fair

scheduling experiments, the one with maximum time slice has the best performance;

on the contrary, the one with minimum time slice has the worst. The smaller the

time slice, the more times we need to switch from one thread to another in the

whole process, and because the context switches are based on suspend and resume,

the overhead increases when the number of switches increases. Compared with the

fair schedulers, the scheduler with cyberorgs does not have significant overhead.

Sometimes it is better, but sometimes it is worse than the fair schedulers. The

reason is that the scheduler with cyberorgs constructs and maintains a random

cyberorgs tree, and the time slice for each thread is random too. Although there

is some uncertainty in the scheduler with cyberorgs, it does not cause prohibitive

overhead. Table 5.1 shows the data from the experiments on the scheduler based on

suspend/resume.

64

With cyberorgs Fair scheduler No One
Height Cyberorgs Time Stdev Max Time Mean Time Min Time scheduler thread
10 2 4 356 37.8 14 272 8 280 2 334 319 137
50 4 17 1040 94.5 183 999 33 1087 2 1022 1020 646
100 3 15 1967 100.4 146 1878 17 1969 2 2016 2201 1129
200 4 27 4058 85.7 250 3720 15 3750 2 3775 3399 2083
300 5 40 5372 96.9 370 5412 19 5908 2 6074 5017 3047
400 5 67 7544 108.5 356 6685 21 7202 2 7931 6299 3960
500 5 59 8946 94.5 239 7823 13 8313 2 9043 7922 4993
600 5 71 11040 191 352 10121 11 10507 2 10943 9938 5841
700 5 102 13866 85.2 390 11607 11 12736 2 13291 10906 6524
800 5 74 14754 253.7 330 14203 11 14359 2 15614 12892 7460
900 6 129 17061 423.1 634 15617 16 16177 2 16568 13998 8359
1000 6 140 18736 684.9 324 16548 14 17715 2 18087 16781 9188

Table 5.1: Performance Comparison of Scheduling Choices in Scheduler Which Uses Suspend/Resume: Time is in Milliseconds;
Cyberorgs is the Final Number of Cyberorgs in the System; Height is the Final Height of the Cyberorgs Tree

65

5.2.3 Context Switching Using Priority

In this section, the scheduler still has a flat structure, but the context switching is

based on priority instead of suspend/resume. In Java, changing the priority of a

thread is more efficient than suspending or resuming a thread. We assign an initial

priority to each thread when it is created. In one scheduling cycle, we increase each

scheduled thread’s priority for its time slice.

Figure 5.2 shows the results of several types of experiments on the flat scheduler

using priorities for scheduling, and the results are similar to what we get in the

scheduler based on suspend/resume (as shown in Section 5.2.2).

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 100 200 300 400 500 600 700 800 900 1000

E
x
e

c
u

ti
o

n
 T

im
e

Number of Threads

with CyberOrgs
no scheduler

max
mean

min
one thread

Figure 5.2: Performance Comparison of Scheduling Choices in Flat Scheduler Which
Uses Priority

The disadvantage of the priority scheduler is that the priority is not precisely

specified in Java [12], and the relationship between priority and scheduling is unclear.

For example, when a thread’s priority is decreased, it may not be suspended by the

system right away. Furthermore, when the time slice is very large, there is more

possibility that a thread complete in the middle of the time slice, and if so, we lose

the control for the rest of time in this time slice. Therefore the flat scheduler based

on priority may not control resources precisely.

66

With cyberorgs Fair scheduler No One
Height Cyberorgs Time Stdev Max Time Mean Time Min Time scheduler thread
10 1 1 251 35.1 45 252 25 254 3 267 319 137
50 4 11 1011 28.3 304 981 63 1005 2 1086 1020 646
100 4 17 1828 59.6 240 1878 28 1941 2 1990 2201 1129
200 5 28 3499 166.8 640 3418 45 3589 2 3752 3399 2083
300 5 29 5113 89.8 528 5051 37 5231 2 5812 5017 3047
400 5 59 6666 151 552 6525 32 6769 2 6882 6299 3960
500 5 70 8297 136.3 504 8100 30 8173 2 9650 7922 4993
600 4 42 9934 59.4 640 9823 15 10429 2 10554 9938 5841
700 5 55 11927 302.6 560 11387 13 12168 2 12640 10906 6524
800 6 82 13126 393 1280 12670 25 13570 2 14240 12892 7460
900 5 100 14985 212.7 800 14996 19 15052 2 15670 13998 8359
1000 6 131 16222 185.5 960 16712 19 16892 2 16985 16781 9188

Table 5.2: Performance Comparison of Scheduling Choices in Scheduler Which Uses Priority: Time is in Milliseconds; Cyberorgs
is the Final Number of Cyberorgs in the System; Height is the Final Height of the Cyberorgs Tree

67

Table 5.2 shows the results of the experiments on the scheduler based on priority.

From the results of the experiments, we conclude that no significant overhead

occurs in using the flat scheduler to schedule a tree of cyberorgs. Specifically, the

overhead is unrelated to the number of cyberorgs and the height of the cyberorgs

tree. We reach the same conclusion from both the suspend/resume approach and

the priority approach, but we choose the suspend/resume approach in our imple-

mentation because it is more accurate than the priority one.

5.3 Application Experimental Results

In this section, we present and analyze the results of the adaptive quadrature example

which was described in Section 4.3.3.

We take the function f(x) = x sin(1
x
), x ∈ [0, 1] as an example, i.e., we calculate

∫ 1
0 x sin(1

x
)dx (we define f(0)=0). Using the CyberOrgs system, we can allocate the

processor time resource to each actor according to its workload. We compare the

performance of two approaches (Section 4.3.3) using CyberOrgs system and the fair

scheduling. In the experiment “One Cyberorg”, we use one cyberorg to allocate

resource to the application actors for the adaptive quadrature calculation. In the

“Multiple Cyberorgs” experiment, we use cyberorgs hierarchy to control resource,

i.e., if an actor’s error exceeds a threshold, isolate is triggered to encapsulate

this actor to a new cyberorg and delegate resource control. In the fair scheduling

experiments, we schedule all application actors in a fair scheduler, which assigns

the same time slice (the maximum, minimum, and mean values of the time slices in

“Multiple Cyberorgs”) for every application actor.

The experimental results are shown in Table 5.3 and Figure 5.3. We use the mi-

nus logarithm of the error tolerance for the x axis in Figure 5.3, in order to disperse

the sample points. Points with higher x values represent adaptive quadrature com-

putation with smaller error tolerance, which requires more calculation. The results

illustrate that compared with the fair scheduling, there is no significant overhead

caused by the hierarchical resource control in CyberOrgs system, which is consistent

68

Error One Multiple Fair Scheduling
Tolerance Cyberorg Cyberorgs Max Mean Min

0.1 2401 2349 2385 2380 2572
0.075 2630 2378 2403 2587 2603
0.05 2420 2389 2417 2377 2610
0.025 2785 2798 2577 2589 2679
0.01 3008 3047 2678 2735 2905

0.0075 3549 3695 2751 3267 3729
0.005 4772 4905 3490 4351 4790
0.0025 5748 6637 5401 6210 6968
0.001 7026 7930 5829 6969 8120

0.00075 7315 8947 6075 7439 8997
0.0005 7408 9723 6970 7521 9560
0.00025 8075 10011 7324 9991 10373
0.0001 9820 11640 8035 10987 11377

Table 5.3: Experimental Results for the Adaptive Quadrature Example

with our performance analysis results. The performance of “Multiple Cyberorgs” is

worse than the “One Cyberorg”, because the former enforces a hierarchical resource

control, while the latter does not have a hierarchy.

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 0.5 1 1.5 2 2.5 3 3.5 4

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

s
)

-log10(Error Tolerance)

one cyberorg
multiple cyberorgs

max
mean

min

Figure 5.3: Experimental Results for the Adaptive Quadrature Example

69

5.4 Network Delay Experimental Results

Experiments have been carried out on the distributed CyberOrgs system to test the

network delay of the migration.

Actor

Cyberorg

Facilitator

Figure 5.4: The Structure of the Migrating Cyberorg

For example, we migrate a cyberorg (as shown in Figure 5.4) from one node to

another node. The network delay of this remote migration is shown in Table 5.4.

The results illustrate that it takes 610 milliseconds to send the structure infor-

mation of the example cyberorg to a remote node, and to extract the information

there. Migrating a single actor and inserting it into the remote schedule takes 547

milliseconds. Compared with migrating an actor, migrating cyberorgs is not very

costly.

Total Time for Delay for Migrating Delay for Migrating
the Migration (ms) an Actor (ms) the Cyberorgs (ms)

2798 547 610

Table 5.4: Network Delay of Migrating the Example Cyberorg

Both message passing and cyberorg migration consume network bandwidth re-

source, and this fact motivates our future work of network bandwidth resource con-

trol using CyberOrgs, which makes the network delay manageable.

70

5.5 Chapter Summary

In this Chapter, we analyze the performance of using CyberOrgs system through

both simulated workload and actual application workload. Network delay of migrat-

ing a cyberorg is also analyzed. The conclusions are as follows:

• CyberOrgs implementation gains overhead from the resource acquisition and

control.

• The overhead can be reduced by increasing the granularity of resource control,

and this is the trade-off between the overhead and resource control.

• Hierarchical resource control in CyberOrgs system does not cause significant

overhead.

• In comparison with migrating an actor, migrating a cyberorg is not very costly.

71

Chapter 6

Future Work

6.1 Introduction

The first version of CyberOrgs implementation has been developed, and it can be

used for resource coordination in a multi-agent system. At present our CyberOrgs

implementation aims at processor time control, including single processor time and

distributed processor time.

In this Chapter, some future directions are presented.

6.2 Internally Distributed CyberOrgs

An internally distributed cyberorg is located on multiple nodes. In other words,

one part of such an cyberorg can exist on one node and other parts of the same

cyberorg may exist on other nodes. If there is at least one internally distributed cy-

berorg existing in the CyberOrgs system, we call the system an internally distributed

CyberOrgs System.

6.2.1 Cyberorg

A cyberorg can be physically located on one or multiple nodes. Whether a cyberorg

is internally distributed or not depends on the type of resources it holds. For ex-

ample, cyberorg CA is created on node A, and at the time of its creation, it is

assigned certain amount of processor time on node A, as well as some resources on

72

another node, B. In this case, cyberorg CA has to be internally distributed in order

to manage the distributed resources it holds.

There are two different ways to implement an internally distributed cyberorg, one

facilitator per cyberorg or multiple facilitators. The former uses one facilitator to

manage all resources the cyberorg possesses, which are physically located on several

nodes, and all cyberorg primitives are handled by this single facilitator. The latter

uses multiple facilitators for one cyberorg, and the number of facilitators depends

on the number of nodes on which this cyberorg is located. One facilitator is only in

charge of the resources located on one physical node, and the cyberorg primitives

are handled by multiple facilitators.

Figure 6.1 and Figure 6.2 show the two implementation approaches using an

example: one cyberorg which is distributed on two nodes: A and B.

Node A

Facilitator
Scheculer

CyberOrg Manager

Request

Actor

1

2

3

Coordination

Node B

Figure 6.1: Internally Distributed Cyberorg Implementation : Approach 1 (One
Facilitator per Cyberorg)

73

1

Facilitator
Scheculer

CyberOrg Manager

Request

Actor

Coordination

Node BNode A

3

2

Figure 6.2: Internally Distributed Cyberorg Implementation : Approach 2 (Multiple
Facilitators)

These two approaches are different in implementing the CyberOrg primitives.

We take the isolation of an internally distributed cyberorg as an example. Suppose

in an cyberorg C1 which is distributed on m nodes, n actors are isolated to create

a new cyberorg C2, and these n actors are located at m′ nodes (m′ < m). The

operations for the isolation in the two implementation approaches are as follows:

• Approach 1: One facilitator per cyberorg

1. The facilitator calculates resource amounts for all n actors.

2. The facilitator informs the local CyberOrg Manager about the resource

amounts.

3. The local CyberOrg Manager sends the calculated resource amounts to

CyberOrg Managers on the m′ − 1 nodes.

74

One facilitator per cyberorg Multiple facilitators
number of facilitators 1 m
computation overhead n × cr n × cr

caused by one primitive (on one node) (on m′ nodes)
communication overhead (m′ − 1) × cc (m′ − 1) × cc

caused by one primitive (between facilitator and (between facilitators)
CyberOrg Manager)

modification overhead n × cv n × cv

caused by one primitive

Table 6.1: Comparison of the Overhead in Two Implementation Approaches for
Internally Distributed CyberOrgs

4. The CyberOrg Managers on m′ nodes change the schedules on their re-

spective nodes according to the calculated resource amounts.

• Approach 2: Multiple facilitators

1. The facilitator which receives the primitive request sends messages to

m′ − 1 facilitators to invoke corresponding primitives on them.

2. On each of the m′ nodes, calculations about the resource availability are

carried out only for local actors on that node.

3. Each facilitator sends calculated resource amounts to the local CyberOrg

Manager.

4. Each CyberOrg Manager changes corresponding schedule on its node.

Table 6.2.1 shows the comparison of the overhead caused by invoking a CyberOrg

primitive in cyberorg C1 using these two implementation approaches. Here n is the

number of actors that are involved in the primitive, and m′ is the number of nodes

at which these n actors are located (m′ ≤ n). cr, cc, and cv are respectively the

overheads caused by recalculating resource allocation, sending a message to a remote

node, and changing a value of one time slice in the schedule.

It is obvious that second approach (with multiple facilitators) performs better

than the first approach (one facilitator), because in the Approach 1, the number of

messages sent to CyberOrg Managers (which are most likely busy) is fewer than in

75

Approach 2, and the resource allocation computation in Approach 2 is distributed

to each of the nodes involved in the primitive. Moreover, using a central facilitator

to control distributed resources is hard to implement. We adopt Approach 2 in the

analysis of internally distributed CyberOrgs.

6.2.2 CyberOrg Manager

The CyberOrg Managers in an internally distributed CyberOrgs system are similar

to CyberOrg Managers in the case of distributed CyberOrgs (Section 3.5.2). There

is one CyberOrg Manager on each node, which is responsible for delivering resources

to the actors on this node.

Because it is the CyberOrg Manager that keeps track of the structure of cy-

berorgs, for each internally distributed cyberorg, the CyberOrg Manager maintains

a name table of facilitator actors which belong to other parts of this cyberorg that

exist on different nodes.

6.2.3 Scheduler Manager

The Scheduler Manager in internally distributed CyberOrgs is identical to the one

for distributed CyberOrgs (Section 3.5.1).

6.2.4 Overhead Analysis

In this section, we analyze the overhead in the scheduler caused by invocation of

CyberOrgs primitives in the internally distributed CyberOrgs.

• Isolation

In an internally distributed cyberorg CA, the overhead in the scheduler is not

only caused by resource reallocations, but also by communications between

sub-schedulers. If n actors in the cyberorg CA are isolated into a new client

cyberorg CA′ , and these n actors are located on m′ nodes, then the overhead

76

on the schedulers resulting from the isolation primitive is:

n × cr + n × cv + (m′ − 1) × cc

where cr is the time it takes to recalculate the resource for one actor; cv is

the time it takes to change a value of the time slice for one thread in the

schedule; and cc is the cost of communication. Because the actors involved

in the isolation are located on m′ nodes, the facilitator which receives the

isolation request has to send messages to the facilitators in other parts of the

cyberorg, in order to invoke resource reallocation on those nodes.

• Assimilation

Similar with isolation, assimilation in distributed CyberOrgs system incurs

overhead because of resource reallocation for the actors which are in the as-

similating cyberorg.

In an internally distributed cyberorg CA with n actors, the overhead for as-

similation is:

n × cr + n × cv + (m − 1) × cc

where c1r and cv are respectively the times it takes to recalculate resource

allocation for one individual actor and change a value of a time slice in the

schedule, and cc is the time it takes to send a message from one facilitator to

another facilitator.

• Local Migration

Local migration means no actor is migrated to a remote node, and we only

need to change the resource allocation for actors of the migrating cyberorg.

For an internally distributed cyberorg CA with n actors which are distributed

on m nodes, the overhead from migrating CA to another internally distributed

77

cyberorg CB
1:

n × cr + n × cv + (m − 1) × cc

where cr and cv are respectively the time it takes to recalculate resource alloca-

tion for one individual actor and change a value of a time slice in the schedule,

and cc is the time it takes to send a message from one facilitator to another

facilitator.

• Remote Migration

Remote migration means the destination cyberorg (new host) of the migrating

cyberorg is at a different physical node, and the actors in the migrating cy-

berorg have to be moved to another CyberOrg platform, and be inserted into

the schedule there.

The steps to be carried out in a remote migration are as follows:

1. Remove n actors from the local scheduler;

2. Send cyberorg information and actors to the destination cyberorg;

3. Recalculate the amount of resource that each actor should receive accord-

ing to the new contract;

4. Insert n actors to the scheduler queue on the destination node.

If the cyberorg which is migrating is internally distributed, there is additional

overhead caused by the communication between facilitators (the facilitator

which receives the primitive request has to send it to other facilitators in

other parts of the cyberorg).

As a result, the overhead caused by a remote migration of an internally dis-

tributed cyberorg is:

n × cd + n × cr + n × ci + (m − 1) × cc

1Here we mean local migration, so cyberorg CB must be internally distributed, and it must
have m or more than m hosts which include the nodes where CA is located.

78

where n is the number of actors in the migrating cyberorg; cd is the time

is takes to delete an actor from the local schedule; cr is the time it takes

to recalculate the resource allocation for one actor; ci is the time is takes to

insert an actor into the schedule; and cc is the time it takes to send a message

to another node where some of the actors are involved in the migration are

located.

6.3 Network Resource Control

Network bandwidth is an important type of resource in multi-agent systems, because

it is necessary for an agent to communicate with other agents which are located on

a different node.

The current version of CyberOrgs implementation can be generalized in order to

control the network bandwidth resource. For the processor resource control, we use

processor time as a measure, which is obvious. Similarly, for network bandwidth, it

is necessary to abstract the resource to a measurable number.

Network bandwidth is a resource that is required when an actor is going to send

message to another actor which is located on a different node. Intuitively we can

use the number of messages an actor or a cyberorg can send within a fixed period

of time (say, per second) to represent the amount of network bandwidth it holds.

Initially all of the network resources belong to the root cyberorg, which assigns part

of the resource to the actors and the client cyberorgs it hosts according to the local

resource allocation policy and the contracts. The network resource is represented

by an upper limit of messages being sent. Sending messages consumes network

resources. When a cyberorg runs out of network resources, all of actors it hosts are

not be able to send messages to a remote actor.

The flat scheduling approach can be generalized to control network resource.

Specifically, a message scheduler can be used to manage the outgoing messages in

a CyberOrgs system. The message scheduler has a flat structure, and it maintains

received messages in a queue and send them one by one. It is the CyberOrg Manager

79

that maintains the hierarchy of cyberorgs, enforces the hierarchical resource control,

and inserts each cyberorg’s outgoing messages to the message scheduler’s queue.

Messages from a cyberorg with more network resource have shorter delay.

6.4 Chapter Summary

In this Chapter, future directions of our research work were described, including

internally distributed CyberOrgs and network bandwidth resource control. Two

approaches of implementing internally distributed CyberOrgs were compared, and

their overhead were analyzed. Network resource control using CyberOrgs was de-

scribed, and our flat scheduling approach can be generated for controlling network

bandwidth.

80

Chapter 7

Conclusion

In a multi-agent system distributed over a peer-owned network, agents share a com-

putational space where the resources connected through the network are owned

by independent peers. Because every agent requires resources to support its com-

putations, resource acquisition and control is an important concern in deploying

multi-agent systems.

The fundamental motivation for the research work presented in this thesis is the

growing demand for an efficient and scalable mechanism of resource management

in multi-agent systems. Hierarchical structure is adopted by many resource man-

agement models (CyberOrgs model is one of them), but enforcing a hierarchical

resource coordination is very costly. In this thesis, we use CyberOrgs model as an

example to illustrate that the hierarchical resource control can be implemented in

an efficient manner.

Although the CyberOrgs model organizes resources and agents in a hierarchy,

the amount of resource allocated to each agent can be calculated and enforced in

a resource schedule which has a flat structure. By flattening the resource schedule,

we reduce the prohibitive overhead caused by the hierarchical control. Experiments

have been carried out on our CyberOrgs implementation, and the results illustrate

our implementation does not cause significant overhead in comparison with the

traditional round-robin scheduling. Moreover, the overhead caused by enforcing the

resource control in our CyberOrgs implementation is manageable by adjusting the

granularity of control.

81

The resource we deal with in our implementation is the processor time resource,

but this approach can be generalized for other types of resources.

82

References

[1] Gul A. Agha. Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge, 1986.

[2] Gul A. Agha, Svend Frφund, Woo Young Kim, Rajendra Panwar, Anna Patterson,
and Daniel Sturman. Abstraction and modularity mechanisms for concurrent com-
puting. IEEE Parallel & Distributed Technology: Systems & Technology, 1(2):3–14,
1993.

[3] Gul A. Agha, Ian A. Mason, Scott F. Smith, and Carolyn L. Talcott. A foundation
for actor computation. Journal of Functional Programming, 7:1–72, 1997.

[4] Mark Astley. The actor foundry. Manual of the Actor Foundry, version 0.2.0, 1999.

[5] William D. Clinger. Foundations of Actor Semantics. PhD thesis, Massachusetts
Institute of Technology, 1981.

[6] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems—
Concepts and Design. Addison-Wesley Publishing Company, second edition, 1994.

[7] Grzegorz Czajkowski, Stephen Hahn, Glenn Skinner, Pete Soper, and Ciaran Bryce.
A resource management api for java platform. SMLI TR-2003-124, 2003.

[8] Grzegorz Czajkowski and Thorston von Eichen. Jres: A resource accounting interface
for java. 13th ACM OOPSLA, Vancouver, BC, 1998.

[9] Frank Dignum and Mark Greaves. Issues in agent communication: An introduction.
In Issues in Agent Communication, pages 1–16, 2000.

[10] James E.White. Telescript technology: The foundation for the electronic marketplace.
Technical report, General Magic Inc., Mountainview, CA, 1994.

[11] Bryan Ford and Sai Susarla. Cpu inheritance scheduling. In OSDI ’96: Proceedings
of the second USENIX symposium on Operating systems design and implementation,
pages 91–105. ACM Press, 1996.

[12] James Gosling, Bill Joy, and Guy Steele. The Java Language Specification. Java
Series. Sun Microsystems, 1996.

[13] Irene Greif. Semantics of communicating parallel processes. Technical report, Mas-
sachusetts Institute of Technology, 1975.

83

[14] Carl E. Hewitt. Description and Theoretical Analysis (Using Schemata) of PLAN-
NER: A Language for Proving Theorems and Manipulating Models in a Robot. PhD
thesis, Massachusetts Institute of Technology, 1971.

[15] Carl E. Hewitt. Viewing control structures as patterns of passing messages. Journal
of Artificial Intelligence, 8(3), June,1977.

[16] Carl E. Hewitt and Peter de Jong. Open systems. In John Mylopoulos Michael
L. Brodie and Joachim W. Schmidt, editors, On Conceptual Modelling, chapter 6,
pages 147–164. Springer Verlag, 1984.

[17] Henry Hexmoor, Cristiano CasteIfranchi, and Rino Falcone. Agent Autonomy. Kluwer
Academic Publishers, Boston, Dordrecht, London, 2003.

[18] Raj K. Jain. The art of computer systems performance analysis: techniques for
experimental design, measurement, simulation, and modeling. John Wiley, New York,
USA, 1991.

[19] Nadeem Jamali. CYBERORGS: A Model for Resource Bounded Complex Agents.
PhD thesis, University of Illinois at Urbana-Champaign, 2004.

[20] Nadeem Jamali, Prasanna V. Thati, and Gul A. Agha. An actor-based architecture
for customizing and controlling agent ensembles. IEEE Intelligent Systems, 14(2):38–
44, March/April 1999.

[21] Nadeem Jamali and Xinghui Zhao. A scalable approach to multi-agent resource
acquisition and control. In Proceedings of the Fourth International Joint Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS 2005), pages 868–875,
Utrecht, Netherlands, July 2005. ACM Press.

[22] Myeong-Wuk Jang and Gul A. Agha. Efficient communication in multi-agent systems.
Software Engineering for Scale Multi-Agent Systems III, Lecture Notes in Computer
Science 3390, Springer-Verlag, 2005.

[23] William A. Kornfeld and Carl E. Hewitt. The scientific community metaphor. In
A. H. Bond and L. Gasser, editors, Readings in Distributed Artificial Intelligence,
pages 311–320. Kaufmann, San Mateo, CA, 1988.

[24] Open System Laboratory. The actor foundry: A java-based actor programming en-
vironment. Available for download at(http://osl.cs.uiuc.edu/foundry), 1999.

[25] Open System Laboratory. The actor architecture. Available for download
at(http://osl.cs.uiuc.edu/aa), 2004.

[26] Manoj Lal and Raju Pandey. A scheduling scheme for controlling allocation of cpu
resources for mobile programs. Autonomous Agents and Multi-Agent Systems, 5,
2002.

[27] John Lehoczky, Lui Sha, and Ye Ding. The rate-monotonic scheduling algorithm:
Exact characterization and average behavior. In Proceedings of the IEEE Real-Time
Systems Symposium, pages 166–171, 1989.

84

[28] Tim Lindholm and Frank Yellin. Java Virtual Machine Specification. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[29] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a
hard-real-time environment. Journal of the ACM, 20(1):46–61, 1973.

[30] Thomas W. Malone. Modeling coordination in organizations and markets. In Alan H.
Bond and Les Gasser, editors, Readings in Distributed Artificial Intelligence, pages
151–158. Kaufmann, San Mateo, CA, 1988.

[31] Carl Manning. ACORE: The design of a core actor language and its compiler. PhD
thesis, Massachusetts Institute of Technology, Artificial Intelligence Laboratory, 1987.

[32] Robin Milner. Communication and Concurrency. Prentics Hall, 1989.

[33] Robin Milner. Communicating and Mobile Systems: the π-calculus. Cambridge Uni-
versity Press, 1999.

[34] Luc Moreau and Christian Queinnec. Design and semantics of quantum: a language
to control resource consumption in distributed computing. Usenix Conference on
Domain-Specific Languages(DSL’97), pages 183–197, 1997.

[35] Luc Moreau and Christian Queinnec. Distribued and multi-type resource manage-
ment. ECOOP’02 Workshop on Resource Management for Sage Languages,Malaga,
Spain., 2002.

[36] Reid Simmons. Towards reliable autonomous agents. In Proc. of the AAAI Spring
Symp. on Lessons Learned from Implememted Software Architectures for Physical
Agents, Stanford, CA, 1995.

[37] Niranjan Suri. State capture and resource control for java: The design and imple-
mentation of the aroma virtual machine. In Java Virtual Machine Research and
Technology Symposium, 2001.

[38] Niranjan Suri, Jeffrey M. Bradshaw, Maggie R. Breedy, Paul T. Groth, Gregory A.
Hill, Renia Jeffers, and Timothy S. Mitrovich. An overview of the nomads mobile
agent system. In Proceedings of ECOOP’2000, Nice, France, 2000, 2000.

[39] Uresh Vahalia. UNIX Internals: The New Frontiers. Prentice-Hall, 1996.

[40] Jarle G. Hulaas Walter Binder and Alex Villazon. Portable resource control in java:
The j-seal2 approach. 16th ACM OOPSLA, Tampa Bay, FL, 2001.

[41] Gerhard Weiss, editor. Multiagent Systems: A Modern Approach to Distributed Ar-
tificial Intelligence. MIT Press, 1999.

[42] Michael Wooldridge. An Introduction to MultiAgent Systems. John Wiley and Sons,
Chichester, England, 2002.

85

Appendix A: Code for Adaptive Quadrature

/*

* QuadActor.java

*

* Created on June 21, 2005, 11:20 AM

*/

package aa.application.AdaptiveQuad;

import aa.core.Actor; import aa.core.ActorName;

import aa.core.CreateActorException;

import java.lang.Math;

import aa.core.ActorThread;

/**

*

* @author xinghuizhao

*/

public class QuadActor extends Actor{

int numResponses; //number of response it has received

double partialResponse; //temporary result

Double tolerance; //tolerance of the quadrature problem

ActorName facili; //facilitator actor’s name

/**

* The first response we have received from a child actor. We

* save this value until we receive the second response, and

* send our client the sum of both values

*/

ActorName client;

//the actor which is suppose to receive result from this actor

String meth; //method to invoke on the receiving client

/** Creates a new instance of QuadWorker */

public QuadActor(Double p_douTolerance,ActorName p_anFacili) {

86

tolerance = p_douTolerance;

facili = p_anFacili;

meth = "result";

}

public QuadActor(Double p_douTolerance,ActorName p_anClient,

ActorName p_anFacili) {

tolerance = p_douTolerance;

facili = p_anFacili;

client = p_anClient;

meth = "result";

}

public QuadActor(ActorName p_anClient,String p_strMeth,

Double p_douTolerance,ActorName p_anFacili) {

client = p_anClient;

facili = p_anFacili;

meth = p_strMeth;

numResponses = 0;

tolerance = p_douTolerance;

}

public void setFaci(ActorName p_anNewFaci){

facili = p_anNewFaci;

}

/** This method is called to do the quadrature computation

* a: lower bound

* b: upper bound

* tolerance: the error tolerance

* p_anClient: the actor which is suppose to receive result

* from this actor

* p_strMeth: the name of the method to calculate result in

* client actor

*/

public void quadrature(Double a,Double b,ActorName p_anClient,

String p_strMeth){

double mid = (a.doubleValue()+b.doubleValue())/2;

Double m = new Double(mid);

double erroram = error(a,m);

87

double errormb = error(m,b);

double tol = tolerance.doubleValue();

if ((erroram > tol)&&(errormb > tol)){

// need an actor for (a,m) and an actor for (m,b)

//double percentam = erroram/(erroram + errormb);

//int ipercentam = (int)percentam;

try{

ActorName newChild=

create("aa.application.AdaptiveQuad.QuadActor",

p_anClient,p_strMeth,tolerance,facili);

send(newChild,"quadrature",a,m,newChild,

p_strMeth);

send(facili,"resourceAlloc",newChild,

new Double(erroram));

}catch (CreateActorException e){

System.err.println("Exception in QuadActor: "+e);

}

try{

ActorName newChild2=

create("aa.application.AdaptiveQuad.QuadActor",

p_anClient,p_strMeth,tolerance,facili);

send(newChild2,"quadrature",m,b,newChild2,

p_strMeth);

send(facili,"resourceAlloc",newChild2,

new Double(errormb));

}catch (CreateActorException e){

System.err.println("Exception in QuadActor: "+e);

}

}

if ((erroram > tol)&&(errormb < tol)){ //actor for (a,m)

88

try{

ActorName newChild=

create("aa.application.AdaptiveQuad.QuadActor",

p_anClient,p_strMeth,tolerance,facili);

send(newChild,"quadrature",a,m,newChild,

p_strMeth);

send(facili,"resourceAlloc",newChild,

new Double(erroram));

}catch (CreateActorException e){

System.err.println("Exception in QuadActor: "+e);

}

result(new Double(trapezoid(m,b)));

}

if ((erroram < tol)&&(errormb > tol)){ //actor for (m,b)

result(new Double(trapezoid(a,m)));

try{

ActorName newChild3=

create("aa.application.AdaptiveQuad.QuadActor",

p_anClient,p_strMeth,tolerance,facili);

send(newChild3,"quadrature",m,b,newChild3,

p_strMeth);

send(facili,"resourceAlloc",newChild3,

new Double(errormb));

}catch (CreateActorException e){

}

}

if ((erroram < tol)&&(errormb < tol)){ //no new actors

result(new Double(trapezoid(a,m)));

result(new Double(trapezoid(m,b)));

}

89

}

/** The function */

public double func(double x){

//return x*x;

if (x==0){

//System.out.println("func 0");

return 0;

} else {

double myFunc = x*(Math.sin(1/x));

//System.out.println("func:"+ myFunc);

return myFunc;

}

}

/** Calculate the area of a trapezoid */

public double trapezoid(Double a,Double b){

double aValue = a.doubleValue();

double bValue = b.doubleValue();

return (func(aValue)+func(bValue))*(bValue-aValue)/2;

}

/** Calculate the sum of areas of two sub trapezoids*/

public double divideSum(Double a,Double b){

double aValue = a.doubleValue();

double bValue = b.doubleValue();

double midpoint = (aValue+bValue)/2;

Double dmid = new Double(midpoint);

return (trapezoid(a,dmid)+trapezoid(dmid,b));

}

public double error(Double a, Double b){

return Math.abs(trapezoid(a,b)-divideSum(a,b));

}

/** This method is called from another child actor to pass a

* partial result. We wait until we have two such results,

* add them, and return the result to client.

*

*/

public void result(Double p_douVal){

if (numResponses==0){

90

numResponses++;

partialResponse = p_douVal.doubleValue();

}

else {

//send the answer

double myResult = p_douVal.doubleValue()+partialResponse;

send(client,meth,new Double(myResult));

System.out.flush();

destroy("Result actor no longer accessible,removing...");

}

}

}

/*

* QuadFacilitator.java

*

* Created on June 15, 2005, 9:26 AM

*/

package aa.application.AdaptiveQuad;

import aa.core.FacilitatorActor;

import aa.core.CyberOrg;

import aa.core.ActorName;

import aa.core.Contract;

/**

*

* @author xinghuizhao

*/

public class QuadFacilitator extends FacilitatorActor{

int num; //keep track of the number of computation actors

long aveRate;

//keep track of the average of ticks rate that actors got

long aveRes; //average of total ticks

91

double aveError; //average error so far;

long myRate;

//ticks rate that will be assigned to new comming actor

long myRes; //ticks that will be assigned to new comming actor

/** Creates a new instance of QuadFacilitator */

public QuadFacilitator(CyberOrg p_cybHost) {

super(p_cybHost);

aveRes = 0;

aveRate = 0;

aveRes = 0;

aveError = 0;

myRate = 0;

myRes = 0;

}

public void resourceAlloc(ActorName p_anActor,

Double p_doubleError){

if ((aveError==0)||

(p_doubleError.doubleValue()/aveError<0.1)){

estimate(p_doubleError.doubleValue());

try {

m_cybHost.resourceAlloc(p_anActor, myRate, myRes);

}catch (Exception e){

//System.out.println(e);

}

}else{

System.out.println("isolate..");

estimate(p_doubleError.doubleValue());

Contract newContract=new Contract(m_cybHost.getTicks()/2,

(long)(myRate*p_doubleError.doubleValue()/aveError),10);

ActorName[] actors= new ActorName[1];

actors[0] = p_anActor;

try {

CyberOrg childcyb = m_cybHost.isolate(20, actors,

newContract);

send(p_anActor,"setFaci",childcyb.getFacilitator());

92

}catch (Exception e){

}

}

}

public void estimate(double p_dError){

if (aveError ==0){

aveRes = m_cybHost.getTicks()/10;

aveRate = m_cybHost.getTicksRate()/10;

aveError = p_dError;

myRate = aveRate;

myRes = aveRes;

num++;

}else{

double ratio = p_dError/aveError;

myRate = (long)(aveRate * ratio);

myRes = (long)(aveRes * ratio);

aveRate = (aveRate * num + myRate)/(num+1);

aveRes = (aveRes * num + myRes)/(num+1);

aveError = (aveError * num + p_dError)/(num+1);

num++;

}

}

}

/*

* BootQuad_Res.java

*

* Created on June 21, 2005, 11:14 AM

*/

package aa.application.AdaptiveQuad;

import aa.core.Platform;

import aa.core.CyberOrg;

import aa.core.ActorName;

import aa.core.ActorMessage;

93

import aa.gui.View;

/**

*

* @author xinghuizhao

*/

public class BootQuad_Res {

/** Creates a new instance of BootQuad_Res */

public BootQuad_Res() {

}

/**

* @param args the command line arguments

*/

public static void main(String[] args) {

// TODO code application logic here

System.out.println(System.currentTimeMillis());

Integer myPort = new Integer(8070);

View myView = new View(myPort);

Platform pPlatform=new Platform(myView,myPort);

pPlatform.start();

Object[] nullobja={};

CyberOrg fibCyber=pPlatform.createCyberOrg(

Contract.initialContract(),

"aa.application.AdaptiveQuad.QuadFacilitator", nullobja);

ActorName facility=fibCyber.getFacilitator();

ActorName fibonacciActor=null;

Object[] quadAgs = {new Double(0.0001),facility};

ActorName quadActor=pPlatform.createActor(facility,

"aa.application.AdaptiveQuad.QuadActor", quadAgs);

//adapt for QuadActor (in order to allocate resource)

94

Object[] quadAgs2 = {new Double(0.0001),quadActor,facility};

ActorName quadActor2=pPlatform.createActor(facility,

"aa.application.AdaptiveQuad.QuadActor", quadAgs2);

//end adapt

Object[] Ags=new Object[4];

Ags[0] = new Double(0);

Ags[1] = new Double(1);

Ags[2] = quadActor2;

Ags[3] = "result";

ActorMessage request=new ActorMessage

(pPlatform.getActorNameOfPlatform(),

quadActor2, "quadrature",Ags, false);

pPlatform.sendMessage(request);

}

}

95

