
 
 

THE ROLE OF DISPERSAL IN POPULATION 
DYNAMICS OF BREEDING ROSS’S GEESE 

  
 
 
 
 

A THESIS SUBMITTED TO THE COLLEGE OF GRADUATE STUDIES AND 
RESEARCH IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE 

DEGREE OF DOCTOR OF PHILOSOPHY IN THE DEPARTMENT OF BIOLOGY, 
UNIVERSITY OF SASKATCHEWAN, SASKATOON 

 
 
 
 

By 
 

Kiel L. Drake 
 
 
 
 
 
 
 
 
 
 
 
 
 

 COPYRIGHT KIEL L. DRAKE, APRIL 2006.  ALL RIGHTS RESERVED 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Saskatchewan's Research Archive

https://core.ac.uk/display/226142092?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

 

i

PERMISSION TO USE 

 

In presenting this thesis in partial fulfillment of the requirements for a postgraduate 

degree from the University of Saskatchewan, I agree that the libraries of this university 

may make it freely available for inspection. I further agree that permission for copying 

of this thesis in any manner, in whole or in part, for scholarly purposes may be granted 

by the professors who supervised my thesis work or, in their absence, by the Head of 

the Department of Biology or the Dean of the College of Arts and Science in which my 

thesis work was done. It is understood that any copying or publication or use of this 

thesis or parts thereof for financial gain shall not be allowed without my written 

permission. It is also understood that due recognition shall be given to me and to the 

University of Saskatchewan in any scholarly use which may be made of any material in 

my thesis. 

 

Requests for permission to copy or to make other use of material in this thesis in whole 

or in part should be addressed to: 

 

Head of the Department of Biology 

University of Saskatchewan 

Saskatoon, Saskatchewan 

S7N 5E2 



 

 

 

ii

ACKNOWLEDGEMENTS 

 The past several years have been filled with experiences and interesting 

challenges that I will appreciate forever; numerous people have contributed to the work 

that permitted completion of this thesis. I would like to begin by thanking Jim Nichols 

for agreeing to serve as my external examiner, and for his insight and thought provoking 

questions. I thank my graduate advisory committee members, Trent Bollinger, Keith 

Hobson, and Francois Messier for their intuition and suggestions. I benefited greatly 

from having an office at the Canadian Wildlife Service, which provided me the 

opportunity to interact daily with a group of students and staff with whom I share many 

professional and personal interests. To the various Karrak Lake crews, thank you for the 

long days (and ‘nights’), for sleeping less and working more when that is what the 

mission required. I especially appreciate the field assistance of John Conkin, Jason 

Charlwood, Dana Kellett, and Ferguson Moore; your interest in my project was 

reflected by your exemplary efforts in the field, you always went the ‘extra mile’, 

usually on your own accord, while never complaining about it. Stuart Slattery’s efforts 

at Karrak Lake provided the foundation that allowed me to pursue my interest in 

studying dispersal; he also spent a lot of time discussing with me ideas and logistics. I 

thank the following people whose comments on earlier drafts of manuscripts improved 

the thesis: Bob Clark (for reviewing what at the time was Chapter 3 but at his 

suggestion ended up being Chapters 3 and 4), and Kevin Dufour and Jim Leafloor 

(Chapter 5). To Evan Cooch who never told me to ‘just go away’ while I pestered him 

with an endless barrage of questions (mostly related to Program MARK), many thanks 

for your time and interest, Evan. 

I am grateful for the financial and logistical support that I received from the 

following agencies/organizations: Arctic Goose Joint Venture (Canadian Wildlife 

Service), California Department of Fish & Game, Central and Mississippi Flyway 

Councils, Institute for Wetlands and Waterfowl Research (Ducks Unlimited), Polar 

Continental Shelf Project, Delta Waterfowl Foundation, and the University of 

Saskatchewan. 

Finally, I would like to thank my supervisor Ray Alisauskas for providing me 

the chance to pursue my ambitions, for trusting me with the responsibility and providing 



 

 

 

iii

me the experience of co-managing a large research camp in a remote location, and for 

the opportunity to realize my dream of experiencing the arctic. I thank Josh and Ferg for 

being there through thick and thin. I am grateful to my daughter, Marissa, for giving me 

a new perspective on life, and for exposing the fact that deadlines are not all they are 

made out to be. Last, I acknowledge the encouragement, sacrifice, and companionship 

of my wife Dana Kellett; thank you for your support and for helping to keep things in 

perspective. 



 

 

 

iv

GENERAL ABSTRACT 

Spatial variation in density of organisms can lead to challenges in estimation of 

population size. Associated vital rates responsible for this variation also may vary 

geographically and in response to local ecological conditions, with the result that 

subunits of a metapopulation may have different trajectories. Both temporal and spatial 

variation in population size occurs not only as a result of additions through birth and 

deletions through death, but also from gains and losses arising from immigration and 

emigration, respectively. Although virtually all organisms have evolved mechanisms for 

dispersal, the role of movement in population dynamics has received far less attention 

than have contributions from recruitment and losses to mortality. I used mark-recapture 

techniques to make inferences about the role of movement in local population dynamics 

of Ross’s Goose (Chen rossii) colonies by estimating rates of movement between 

breeding subpopulations in the Queen Maud Gulf metapopulation. I also assessed 

decision-based philopatry (i.e., the role of previous nesting outcome; sensu Hoover 

2003) and a potential cost of reproduction to female geese through experimental 

manipulation of nesting success.  

Previous nest fate influenced intra-colony dispersal as failed nesters moved 

further between consecutive nest sites, but inter-colony movement was not affected by 

previous nest fate. Regardless of previous nest fate, Ross’s Geese did not exhibit 

philopatry to nest sites, or to breeding territories, suggesting that philopatry occurs at a 

larger spatial scale. Breeding success accounted for a detectable, but only small amount 

of variation (<11%) in dispersal distance within colonies. I suggest that temporal 

variation in habitat availability favors flexibility in settling patterns by geese in a 

changing matrix of habitat availability, governed largely by receding snow cover. Such 

flexibility is necessary for nesting as early as possible, because recruitment is strongly 

linked to timing of breeding by arctic-nesting geese. Colonial philopatry may be 

important not only for favorable nesting but also for access to high-quality feeding areas 

adjacent to colonies. Such feeding areas represent a predictable food resource important 

not only to growing goslings, but also adult survival regardless of the outcome of their 

breeding attempt. 
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 I concluded from experimental manipulation that successful reproduction was 

encumbered with a cost to survival of females. I argue that such a cost of breeding is 

more likely to be incurred when climatic conditions during incubation are harsh, and 

when the breeding population is larger. 

 I did not find evidence for geographic variation in survival, but rates of 

philopatry varied markedly among colonies. The substantial exchange of females 

among breeding colonies (1) underscores the potential for dispersal to alter breeding 

distribution, (2) demonstrates that the influence of immigration on colony-specific rates 

of population growth was nontrivial, and (3) provides behavioral evidence for extensive 

gene flow resulting from female dispersal. Estimates of emigration and survival from 

my studies were used in combination with those for fecundity parameters and colony-

specific population growth rates (λ) to interpolate the role of immigration from a simple 

balance equation. During years for which rates of movement were estimated, 

immigration constituted 9-20% of λ at the Karrak Lake colony, suggesting that 

movement was an important contribution to population growth. 
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CHAPTER 1. THE ROLE OF DISPERSAL IN POPULATION DYNAMICS: A  

 GENERAL INTRODUCTION 

 

1.1 THE ROLE OF DISPERSAL IN POPULATION DYNAMICS 

 The primary variable of interest in population ecology is population size 

(Williams et al. 2002), which can be defined as the number of organisms of a given 

species distributed across some defined area (Krebs 1972). On the broadest spatial scale 

(i.e., the entire population of a species throughout its distribution), temporal variation in 

population size occurs as a result of additions through birth and deletions through death. 

However, viewing population process on the broadest spatial scale oversimplifies the 

spatial aspect of population ecology (Andrewartha and Birch 1954) because organisms 

usually are not distributed evenly throughout their range. Moreover, spatial variation 

can lead to challenges in estimation of population size, and relevant vital rates 

responsible for its variation. Recognition of spatial variation in abundance and 

associated vital rates often requires stratification of a population into spatially distinct 

subpopulations whose dynamics may behave independently from one another and in 

response to local ecological conditions. As well, conservation concerns and prescribed 

management efforts may best be focused on local populations of a species rather than 

over its global distribution. However, virtually all organisms have evolved mechanisms 

for dispersal. Such ability to move can be adaptive by allowing individuals to escape 

unfavorable environmental conditions, or to sample habitats and permit selection of new 

habitats in which likelihood of survival or successful reproduction may improve. If 

present, movement must also be considered for a complete understanding of local 

population processes. Immigration and emigration serve as vehicles for addition and 

deletion of individuals from local populations, and complement those from births and 

death, respectively. Thus, if ignored, movement of individuals may confound inferences 
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about local population dynamics, and requires that movement should be estimated for a 

full understanding of its role in population growth. 

 Movement has long been recognized as an important process from both 

ecological and evolutionary perspectives. However, until recently, methodological 

limitations curtailed our ability to derive robust inference about the process of dispersal 

and its influence on population dynamics. Consequently, the role of dispersal in 

structuring populations remains one of the largest gaps in our knowledge of ecological 

dynamics. 

Much of our current understanding of dispersal behavior and life history 

evolution in birds is based on return rates (i.e., the proportion of marked individuals 

released in one year that are recaptured in the following year). Return rates are the 

product of (1) surviving, (2) returning to the study area if alive, and (3) being 

resighted/recaptured if alive and on the study area (Brownie et al. 1993, Nichols and 

Kendall 1995); thus, any difference in return rate can be attributed to a difference in 

recapture, survival, or presence (Clobert 1995, Martin et al. 1995). Many recent 

methodological advances for estimating parameters associated with dispersal are cast 

within a capture-recapture framework (reviews by Nichols 1996, Nichols and Kaiser 

1999, Bennetts et al. 2002), which accounts for resighting probability (Lebreton et al. 

1992, Clobert 1995, Martin et al. 1995) and allows distinguishing between mortality 

and dispersal (Clobert and Lebreton 1991, Nichols and Kendall 1995, Spendelow et al. 

1995). I used marked individuals to address questions pertaining primarily to spatial 

aspects of Ross’s Goose (Chen rossii) population ecology. Recent population trends 

propound several questions regarding Ross’s Goose movement, and several life history 

characteristics of Ross’s Geese render them amenable for investigating movement. 

  

1.2 CHANGES IN DISTRIBUTION AND ABUNDANCE OF LIGHT GEESE 

Populations of Ross’s Geese and Lesser Snow Geese (C. caerulescens, hereafter 

Snow Geese, collectively referred to as ‘light geese’) breeding in the Canadian Arctic 

have increased exponentially over the past 30 years (Boyd et al. 1982, Kerbes et al. 

1983, Alisauskas et al. 1998). Agricultural practices have changed the North American 

landscape and brought about improved foraging conditions for light geese, which 



 

 

 

3

combined with management efforts, have created conditions favorable to survival and 

recruitment. By adapting to agricultural habitats, light geese have greatly expanded their 

migration and winter ranges, and the nutrient and energy subsidy garnered from using 

croplands during these periods (Alisauskas et al. 1988, Bateman et al. 1988, Alisauskas 

and Ankney 1992) has effectively released the birds from a continental carrying 

capacity that previously limited populations to much lower levels. Consequently, light 

goose populations are now considered ‘overabundant’ (Ankney 1996, Batt 1997, Moser 

2001). This range expansion draws attention to dispersal as a factor influencing 

population dynamics; for one thing, dispersal facilitated the pioneering of agricultural 

habitats thought to have led ultimately to unprecedented increases in light goose 

abundance. 

Knowledge of dispersal behavior in light geese is primarily limited to 

descriptive accounts of changes in breeding, migration, or winter distribution of Ross’s 

Geese and documentation of female-biased natal and breeding philopatry in Snow 

Geese. For example, as the continental population of Ross’s Geese increased, it 

expanded eastward from its historic winter range in California, to the midcontinent 

region (Dzubin 1965, McLandress 1979, Ryder and Alisauskas 1995, Moser 2001, 

Alisauskas et al. 2006a) where they occurred only rarely before the 1970s (Bellrose 

1976). Today, Ross’s Geese are commonly sighted in the midcontinent region (see 

Alisauskas 1998) and appear to be continuing their eastward shift in distribution 

(Alisauskas et al. 2006a). On breeding areas, new breeding colonies of light geese have 

formed (Alisauskas and Boyd 1994, Alisauskas unpublished data) and existing colonies 

have enlarged (MacInnes and Kerbes 1987, Alisauskas and Boyd 1994, Cooke et al. 

1995). Further, Snow Geese have expanded their breeding range in the central Arctic 

(Alisauskas and Boyd 1994, Kerbes 1994) and Ross’s Geese have expanded their 

breeding range into the eastern arctic and subarctic (Didiuk et al. 2001, J. Leafloor 

personal communication).  

Knowledge about philopatry (and complementary dispersal) in light geese is 

limited to information from studies on Snow Geese nesting at the southern edge of their 

breeding range at La Pérouse Bay (LPB), Manitoba. Descriptions of higher return rates 

by female Snow Geese compared to males provided evidence for female-biased natal 
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and breeding philopatry (Cooke et al. 1975, Cooke et al. 1995). Most gene flow in 

Snow Geese was thought to be through male dispersal (Cooke et al. 1975, Rockwell and 

Cooke 1977, Rockwell and Barrowclough 1987). However, genetic studies provide 

evidence supporting extensive gene flow involving females (Avise et al. 1992, Quinn 

1992), and expansion of breeding distribution by light geese confirms female dispersal.  

Philopatry is usually considered an adaptive strategy that confers some benefit to 

the individual because of previous experience and familiarity with the environment. 

However, there is evidence from Snow Geese nesting at LPB that philopatry can be 

maladaptive. Increased Snow Goose abundance has dramatically impacted coastal areas 

of Hudson and James Bays where goose herbivory (Cargill and Jefferies 1984, Hik and 

Jefferies 1990, Zellmer et al. 1993, Abraham and Jefferies 1997) has resulted in habitat 

degradation at breeding colonies and brood-rearing areas (Kerbes et al. 1990). These 

changes in habitat quality, in turn, are thought to have caused long-term declines in 

fecundity on local (Cooch et al. 1989) and continental scales (Alisauskas 2002), and in 

reductions in gosling growth rates (and subsequent adult body size, Alisauskas 2002) 

and gosling survival (Cooch et al. 1991a,b, Williams et al. 1993). Although females that 

continue to return to breed in such highly degraded habitats, such as at LPB, may suffer 

reduced fecundity, some geese have responded to this habitat degradation by emigrating 

to new breeding areas. Rates of permanent emigration from LPB appear to have 

increased (Francis and Cooke 1993), presumably this emigration includes some 

movement to other breeding colonies; and local dispersal to less impacted areas near 

traditional nesting (Ganter and Cooke 1998) and brood-rearing areas (Cooch et al. 2001) 

has been documented. Thus, it appears that female emigration has occurred, but we lack 

insight into the proportion that chose to emigrate. 

Observations of range expansion, genetic evidence for extensive dispersal, and 

findings from long-term studies at LBP suggest that dispersal is an important process in 

population dynamics of light geese. Nonetheless, we lack complete understanding of the 

process of dispersal, its consequences, potential factors invoking the behavior, and its 

influence on population process. Dispersal has enormous potential to influence light 

goose population dynamics during all phases of the life cycle. The objectives of my 

research were to: 



 

 

 

5

1. Estimate rates of between-colony breeding dispersal (and its complement, 

philopatry) within the Queen Maud Gulf metapopulation of Ross’s Geese to gain 

insight into its role in influencing species distribution, colony-specific population 

growth rates, and rates of gene flow. 

2. Evaluate the role of breeding experience as a factor influencing breeding dispersal 

using an experimental manipulation of nesting success. 

3. Test the hypothesis that a trade-off exists between current reproduction and future 

survival by comparing survival of females that hatched young to those that did not.  

4. Evaluate the potential for geographic heterogeneity in Ross’s Goose survival rates. 

If strong philopatry is exhibited throughout the annual cycle, limited exchange of 

individuals among subpopulations may result in subpopulation-specific rates of 

survival as mortality risks are likely to vary on a continental scale.  

5. Evaluate the potential influence of breeding dispersal on colony-specific population 

growth rates within the Queen Maud Gulf metapopulation. 

 

 I have organized my thesis into four data chapters and a synthesis. The data 

chapters are formatted as journal articles and each includes an Abstract and Introduction 

section. All of my research questions relied upon having a sample of marked 

individuals, so to reduce redundancy in the Methods sections of subsequent data 

chapters I have include a general methods section where I describe the study area, 

capture and marking of geese, and protocol for surveys for marked individuals. 

Methodologies specific to each chapter are found therein. 

 

1.3 GENERAL METHODS 

1.3.1 Study Area 

Most fieldwork took place at Colony 3 (hereafter, Karrak Lake; Fig. 1.1), site of 

the Karrak Lake Research Station where investigations of Ross’s Goose breeding 

ecology have occurred continuously since 1991. Karrak Lake (67o14' N, 100o15' W) is 

located in the Queen Maud Gulf Migratory Bird Sanctuary (QMGMBS), Nunavut, 

Canada, ~60 km from the coast. The QMGMBS was established in 1961 primarily to 

protect the nesting grounds of what was then a markedly reduced continental population  
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Figure 1.1. Location of the Karrak Lake Research Station, focal breeding colonies, and 
Ross’s Goose banding efforts (1991-2003) within brood rearing areas in the Queen 
Maud Gulf Migratory Bird Sanctuary, Nunavut, Canada. An open circle delineates 
Karrak Lake, while stars delineate locations of other breeding colonies where fieldwork 
occurred (1999-2003). Banding drive locations are shown as dots, while shaded areas 
depict density of geese banded.  
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of Ross’s Geese. Most (~95%) Ross’s Geese breed on the mainland just south of Queen 

Maud Gulf (QMG) in colonies of the central arctic lowland within the Sanctuary 

(Kerbes 1994, Ryder and Alisauskas 1995; Fig. 1.2). Breeding colonies are generally 

composed of Ross’s Geese and congeneric Lesser Snow Geese. Karrak Lake is one of 

the largest known colonies in the Sanctuary and has grown rapidly in both numbers of 

nesting geese (from 426,000 in 1993 to 960,000 in 2003) and terrestrial area occupied 

by nesting geese (from ~63 km2 in 1993 to ~176 km2 in 2003, Alisauskas unpublished 

data). Ryder and Alisauskas (1995) provide detailed descriptions of typical landscapes 

and habitat characteristics of QMG breeding colonies.  

In addition to work at Karrak Lake, surveys for marked individuals were 

conducted annually (1999-2003) at four other colonies (9, 10, 46 and 81; Fig. 1.2). I 

selected these colonies because they represent some of the largest known colonies 

within QMGMBS and collectively account for ~90% of the known continental breeding 

population of Ross’s Geese (Ryder and Alisauskas 1995, Alisauskas et al. 1998).  

 

1.3.2 Capture and Marking of Geese 

Several years of marking efforts before 1999 provided the sample of marked 

geese that made my research possible. Flightless Ross’s Geese were captured within 

brood-rearing habitats during adult remigial molt (10 July-15 August 1991-2003) by 

driving them into portable corral traps using a helicopter (Timm and Bromley 1976). 

After hatch, most geese move northward (Slattery 1994) and tend to be homogenously 

distributed in brood-rearing areas located between their breeding colony and the coast 

(Slattery 2000). Capture efforts were focused along the Simpson (1991-2003) and 

McNaughton (1999-2003) river drainages, brood-rearing areas located north of the two 

largest known colonies (Karrak Lake and Colony 10, respectively) in the Sanctuary, and 

to a lesser extent, in the Perry River region (1991-2003; Fig. 1.1). Age-class (adult, or 

after-hatch-year [AHY] vs. juvenile, or hatch-year [HY]) was determined using 

plumage characteristics and sex was determined by cloacal examination. Following 

methods used by Alisauskas and Lindberg (2002), all birds were marked with a metal 

legband and a portion was also marked with a plastic neckband engraved with a unique  
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Figure 1.2. Distribution of known breeding colonies of Ross’s and Lesser Snow Geese 
within the Queen Maud Gulf Migratory Bird Sanctuary, Nunavut, Canada. Light grey 
areas indicate water, dark grey areas indicate missing satellite imagery, black dots 
indicate colony locations, and black areas depict spatial extent of larger colonies. 
Numbers correspond to colony identification where surveys for neckbanded geese were 
conducted, 1999-2003: Colonies 3 (Karrak Lake), 9 (Simpson River, 66o46' N, 99o08' 
W), 10 (East McNaughton, 67o21' N, 98o04' W), 46 (West McNaughton, 67o18' N, 
98o57' W), and 81 (Reference Lake, 67o15' N, 100o50' W).  
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alphanumeric code. Geese were released en masse after banding to facilitate 

reformation and cohesion of family units. 

 

1.3.3 Surveys for Marked Geese 

I restricted surveys for neckbanded geese to their 23-day incubation period 

(Ryder 1972) because of my interest in estimating dispersal between breeding attempts. 

Observations strictly during incubation reduced potential for bias caused by sampling 

non-breeding adults, as territorial breeders displace most non-breeders from colonies by 

the onset of incubation (Ryder and Alisauskas 1995). Extent of breeding distribution at 

each colony was mapped each year during early incubation from a helicopter. Data were 

digitized and imported into SPANS GIS (PCI Geomatics 1999) study area with Albers 

equal area projection. Layers showing colony extent were overlaid with a layer showing 

land and water (30 m resolution from LandSat imagery) to calculate the area of 

terrestrial habitat at each colony occupied by nesting geese. Spatial extent of breeding 

colonies can encompass large areas; for example, in 2002 terrestrial habitat occupied by 

nesting geese was 164.9 km2 at Colony 3, 10.3 km2 at Colony 9, 151.2 km2 at Colony 

10, 39.8 km2 at Colony 46, and 1.9 km2 at Colony 81. Due to this vast area in which 

neckbands could only be searched for on foot, it was impossible to survey colonies in 

their entirety with the manpower at my disposal. Instead, I selected a contiguous area 

within each colony thought to have the highest nesting densities, so that efficiency of 

detecting neckbands was maximized. Consistency of sampling was maintained by 

searching for neckbands within these same areas each year. Within colonies and years, I 

assumed that the ratio of neckbanded to unmarked birds was relatively uniform and 

unrelated to variation in nesting density. Observers documented any broken neckbands 

found on the ground during neckband surveys.
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CHAPTER 2. BREEDING DISPERSAL BY ROSS’S GEESE IN THE QUEEN  

   MAUD GULF METAPOPULATION 

 

2.1 ABSTRACT 

I estimated rates of breeding philopatry and complementary dispersal within the Queen 

Maud Gulf metapopulation of Ross’s Geese (Chen rossii) using multistate modeling of 

neckband observations at five breeding colonies, 1999-2003. Probability of philopatry 

was female-biased, but varied among colonies. Probabilities of annual movement 

among breeding colonies ranged 0.02 to 0.14 for females and 0.12 to 0.38 for males, 

and was substantially higher than expected. These estimates (1) underscore the potential 

for dispersal to alter breeding distribution, (2) demonstrate substantial potential exists 

for movement to influence colony-specific rates of population growth, and (3) provide 

behavioral evidence for extensive gene flow. Sex differences in apparent survival, 

estimated from multistate models, likely resulted from a combination of higher rates of 

neckband loss by males compared to females, and higher rates of permanent emigration 

by males from my study area, rather than arising from actual differences in true 

survival. 

 

2.2 INTRODUCTION 

Species distributions often encompass broad geographic ranges that include 

great spatial variability in landscape characteristics. Corresponding variability in 

ecological conditions leads to uneven distributions of density throughout a species’ 

range, because animals congregate in areas where habitats are most suitable. Such 

subpopulations are often geographically separated from each other by areas of less 

suitable habitats (Wiens 1997). Nevertheless, almost all species have evolved 

mechanisms that allow dispersal across unsuitable or less than optimal habitats. 
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Consequently, disjunct conspecific populations are potentially interconnected through 

migration networks or dispersal to new breeding areas. Such potential for movement 

among subpopulations is key to the concept of metapopulations (Hanski and Simberloff 

1991), where persistence is a function of not only survival and recruitment of 

individuals but also of immigration and emigration between component subpopulations 

(Levins 1969, 1970). 

 In North America, breeding and wintering distributions of continental 

populations of the closely-related Ross’s Goose (Chen rossii) and Lesser Snow Goose 

(Chen caerulescens, hereafter Snow Goose, collectively referred to as ‘light geese’) are 

such that they fall within the conceptual domain of a metapopulation. Both species 

breed at spatially discrete colonies in arctic and subarctic habitats and winter in 

allopatric subpopulations across a broad range in southern North America (Ryder and 

Alisauskas 1995, Mowbray et al. 2000). Despite spatial segregation of breeding 

subpopulations, there is tremendous potential for exchange of light geese because of 

mixing during migration when long-term pair bonds begin to form during late winter 

and continue through spring migration (Ryder and Alisauskas 1995, Mowbray et al. 

2000).  

Much attention in North America has focused on the exponential population 

increase of light geese and their potential to damage breeding habitats (Batt 1997, 

Moser 2001). Regardless of causes resulting in unchecked population growth, light 

goose populations are markedly larger and occur over much broader winter ranges than 

they did 50 years ago. Winter range expansion highlights the ability of Snow Geese and 

Ross’s Geese to adapt to changing landscape conditions (Alisauskas et al. 1988, 

Alisauskas 1998). Despite these species’ apparently adaptive movement during the 

nonbreeding period, female Snow Geese were thought to be generally philopatric to 

breeding colonies (Cooke et al. 1995), even when the consequences of philopatry 

appeared to be maladaptive such as when population densities exceed carrying capacity 

(Cooch et al. 1989, Cooch et al. 1991a, but see Cooch et al. 2001). No information 

about vagility of Ross’s Geese was available. 

I estimated rates of movement among breeding colonies by Ross’s Geese to gain 

insight about the potential for breeding dispersal to influence species distribution and 
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gene flow in light geese. I focused the current analysis on Ross’s Geese because of 

uninterrupted marking within the Queen Maud Gulf Migratory Bird Sanctuary 

(QMGMBS) since 1989 that resulted in a substantial marked population at the outset of 

this study. Efforts to neckband Snow Geese in the QMGMBS, and to obtain subsequent 

resightings, have recently increased (Drake and Alisauskas unpublished data), but there 

remain insufficient data to include them in the current analysis. Nonetheless, Ross’s 

Geese and Snow Geese associate throughout their annual cycles (Alisauskas 2002), and 

the extent of such associations during breeding likely has increased recently with the 

growth in number of Snow Geese in the QMGMBS where >95% of the continental 

population of Ross’s Geese breeds (Kerbes 1994). 

 

2.3 METHODS 

2.3.1 Assigning Individual to Geographic Strata 

Because I could not assign with certainty Ross’s Geese captured on brood-

rearing areas in August to colonies in which they nested the previous June, I included 

only those birds that were resighted at breeding colonies in June 1999-2003. Only 501 

goslings were neckbanded during 1999-2002, so I excluded these from consideration; I 

further judged that their inclusion would have doubled the number of parameters to be 

estimated while increasing the sample size only by ~ 15%. Hence, this analysis included 

adult birds (n = 3,233) sighted at least once at one of the sampled colonies during 1999-

2003, regardless of year of marking. 

 

2.3.2 Analysis 

 I used multistate modeling (Arnason 1973, Hestbeck et al. 1991, Brownie et al. 

1993, Schwarz et al. 1993) in Program MARK to analyze resight data of neckbanded 

Ross’s Geese for estimation of dispersal and complementary philopatry probabilities. 

Multistate models allow estimation of probabilities for apparent survival, ( )φ̂ , detection, 

( )p̂ , and movement among states (i.e., colonies), ( )ψ̂ . I considered variation by colony, 

sex, and year for each of these estimates, subscripted as {φc, pc, ψc}, {φx, px, ψx}, or {φt, 

pt, ψt}, respectively. As such, the fully parameterized global model {φc.x.t, pc.x.t, ψc.x.t} 

had 240 potentially estimable parameters. The iterative routine used during the 
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maximization of the likelihood function failed to converge numerically for this model, 

so I re-examined input data and found that movement was not detected in 99 of the 160 

possible colony-, sex-, and time-specific movements. I obtained convergence after 

fixing these parameters to zero, but was warned by Program MARK that convergence 

was suspect. Numerical estimation for a few models from the candidate set resulted in 

inconsistent deviances relative to the number of parameters being estimated. 

Inconsistency in changes of deviance confirmed that the global model failed to 

converge properly even after fixing parameters (G. W. White personal communication). 

Consequently, I reduced the number of strata from five to three, thus reducing the 

number of parameters being estimated while maintaining biologically relevant models, 

as follows. 

 I constrained movement to occur among three strata only: Karrak Lake, Colony 

10, and other colonies combined (9, 46, and 81; hereafter, other colonies). Strata were 

redefined based on colony sizes (Fig. 1.2) and sampling effort. Karrak Lake and Colony 

10 represent the two largest colonies within the QMGMBS (~433,000 and ~386,000 

breeding Ross’s Geese in 1998, respectively; Alisauskas et al. 1998), and Colonies 9, 

46, and 81 are substantially smaller (ranging between ~30,000 and ~95,000 in 1998; 

Alisauskas et al. 1998). Sampling effort varied somewhat among years at different 

colonies from the interplay between spring phenology and availability of aircraft with 

which to visit study colonies. Sampling effort was highest at Karrak Lake, where unlike 

other colonies, it could be accessed entirely by foot or by boat from a permanent 

research facility. All other colonies were accessed by helicopter, and so neckband 

observations there ranged from one to four days. Relative sampling effort among 

colonies was consistent such that Karrak Lake > Colony 10 > other colonies, for all 

years of the study. Numerical convergence was attained after reducing the number of 

geographic strata from five to three in the global model. 

 My reduced global model {φc.x.t, pc.x.t, ψc.x.t} had 96 potentially estimable 

parameters, including all sources of variation and all possible interactions. My modeling 

approach was to test fit of the global model to the data and then, based upon biological 

knowledge of the study organism and differences in sampling effort, compare a set of 

candidate models with reduced numbers of parameters to assess parsimony and fit of 
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models to the data using AICc (Burnham and Anderson 1998). Program MARK does 

not provide goodness-of-fit tests specifically for multistate data sets, so I parameterized 

the data as a single-stratum (i.e., all colonies combined) Cormack-Jolly-Seber (CJS) 

data set and tested for goodness-of-fit of model φs*t, ps*t (Lebreton and Pradel 2002) 

using 1000 iterations of the parametric bootstrap available for such global models in 

Program MARK. Deviance of the global model was less than 85% of the simulated 

deviance indicating that the data were not overdispersed so a variance inflation factor 

(ĉ) was not used (Burnham and Anderson 1998). 

I considered 15 models in the candidate set. Movement probability was the 

primary parameter of interest, so my approach to hypothesis testing and parameter 

estimation was to reduce sources of variation in probabilities of resighting and then 

survival, while retaining full-structured variation in movement probabilities. First, I 

reduced sources of variation in p. I retained effects of colony and time in all 

parameterizations of p because sampling effort varied among colonies, and because I 

suspected temporary emigration as the size of breeding populations at colonies varies 

annually (Alisauskas and Rockwell 2001). I considered four additional 

parameterizations of p including (1) a multiplicative interaction between colony and 

additive effects of sex and time, pc*[x+t], (2) a completely additive model, pc+x+t, and (3) 

additive, pc+t, and (4) multiplicative, pc*t, models without sex effects. I used the 

parameterization of p from the best of these models in all subsequent modeling of 

survival and movement probabilities. 

Including the structure within the global model, I considered six 

parameterizations of φ. Breeding colonies represent subpopulations where the potential 

for colony-specific differences in φ has implications for colony-specific growth rates as 

well as potential fitness costs to individuals. There is considerable clinal variation in 

winter ground and migration route affinities of Ross’s Geese marked in QMG over a 

narrow range of ~200 km of longitude (Alisauskas et al. 2006a); thus it is likely that 

different segments of the QMG metapopulation are subject to geographically variable 

harvest pressure (Moser and Duncan 2001), so I tested for colony specific rates of 

survival by comparing model φc*x*t to φx*t. Most evidence suggests that true survival, S, 

does not vary between sexes in most species of geese (Melinchuk and Ryder 1980, 
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Alisauskas and Lindberg 2002, but see Francis and Cooke 1992b and Chapter 5). 

However, sex differences in philopatry to breeding colonies may still result in sex-

specific φ, because φ is the product of survival and fidelity; so, I considered φc*x*t vs. 

φc*t. After testing for colony and sex effects, I considered models with additive effects 

of sex and time φx+t, a linear time trend φx+T, and a model that included only the effect 

of sex φx. 

I proceeded to estimate ψ starting with models optimally structured for p and φ. 

I retained colony structure in ψ in all models because of my interest in stratum-specific 

estimates. These included fully multiplicative effects of colony, sex and year ψc*x*t, 

additive effects of sex and time specific to each colony ψc*[x+t], complete additivity 

ψc+x+t, a multiplicative model excluding the effect of sex ψc*t, and an additive model 

with colony and sex effects ψc+x. All manipulations of model structure were done with 

the design matrix in Program MARK, and all models were fit using the logit link 

function (White and Burnham 1999). 

 

2.4 RESULTS 

Model {φx+t, pc+t, ψ̂ c+x} was clearly best supported by the data (wAICc = 0.993, Table 

2.1); thus, all estimates were based on this model. In this model apparent survival varied 

over time in parallel between sexes, but was equal among colonies. Predictably, 

recapture probabilities varied among colonies, but differences were consistent for all 

years of study. Movement probability was constant over time but varied among colonies 

in parallel between sexes. Estimates of apparent survival ranged between 0.631± 0.038 

(SE) and 0.682 ± 0.033 for females, and between 0.489 ± 0.034 and 0.546 ± 0.044 for 

males (Table 2.2). Recapture probabilities varied in an additive fashion among colonies 

and years, but were as low as 0.069 ± 0.025 for Colonies 9, 46 and 81, and as high as 

0.612 ± 0.037 at Karrak Lake (Fig. 2.1). Colony- and sex-specific dispersal probabilities 

ranged from 0.023 ± 0.024 to 0.344 ± 0.085 for females and from 0.122 ± 0.063 to 

0.376 ± 0.074 for males (Fig. 2.2a); these probabilities represent movement of 

thousands of individuals among subpopulations (Fig. 2.2b, see DISCUSSION). 
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 Of the 56 broken neckbands found on the ground during surveys, 44 had fallen 

off male Ross’s Geese but only 12 were from females. Compared to 7,904 males and 

7,718 females that had been marked with neckbands, this represents a strong male bias 

in apparent rates of neckband loss (likelihood ratio 17.53 =χ 2 , df = 1, P < 0.001). 
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Table 2.1. Model structure, AICc, ∆AICc, model weight (wAICc), number of parameters 
(K), and model deviance, for multistate modeling of survival (φ), recapture (p), and 
dispersal (ψ) probabilities of neckbanded Ross’s Geese within the Queen Maud Gulf 
metapopulation, 1999-2003. Asterisks indicate multiplicative interactions between 
colony (c), sex (x), and time (t). Plus signs indicate an additive model. 'Global' denotes 
the most parameterized model. 
            
                     Model  
Model    AICc   ∆AICc   wAICc  K       Deviance 
            
φx+t px+t  ψc*x   7045.07       0.00    0.99 22 471.50 
φx+t  px+t  ψc+x   7055.23    10.16    0.01 15 495.81 
φx+t  px+t  ψc*(x+t)  7059.02    13.95    0.00 39 450.85 
φx+t  px+t  ψc*x*t     7069.92    24.85    0.00 51 437.14 
φx+t  px+t  ψc+x+t   7071.52    26.45    0.00 17 508.06 
φx*t  pc+t  ψc*x*t     7072.85    27.78    0.00 54 433.88 
φc*x*t   pc+t  ψ c*x*t    7073.95    28.88    0.00 66 410.15 
φx  pc+t  ψ c*x*t   7075.55    30.48    0.00 50 444.82 
φx+T  pc+t  ψ c*x*t    7077.50    32.43    0.00 51 444.72 
φc*x*t   pc+x+t  ψ c*x*t    7078.21    33.14    0.00 70 406.10 
φc*x*t   pc*(x+t)  ψ c*x*t   7078.46    33.39    0.00 74 398.02 
φc*x*t   pc*t  ψ c*x*t    7081.36    36.29    0.00 72 405.08 
φc*x*t   p c*x*t   ψ c*x*t   global 7081.86    36.79    0.00 72 405.58 
φc*t  px+t  ψ c*x*t    7094.46    49.39    0.00 60 443.10 
φx+t  px+t  ψc*t        7127.93    82.86    0.00 33 532.02 
            
 

 

Table 2.2. Apparent survival estimates from multistate modeling of neckbanded adult 
Ross’s Geese breeding within the Queen Maud Gulf metapopulation, 1999-2003. 
Survival was best modelled by including sex and time effects, but was equal among 
sampled colonies. Probabilities are given ± SE.  
            
                   Apparent Survival probability    
Year        Female               Male  
1999   0.682 ± 0.038  0.546 ± 0.044   
2000       0.657 ± 0.035  0.516 ± 0.040 
2001        0.653 ± 0.033  0.489 ± 0.035 
2002   not estimated  not estimated 
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Figure 2.1. Colony-specific detection probabilities from multistate modeling of 
neckbanded adult Ross’s Geese resighted at breeding colonies within the Queen Maud 
Gulf metapopulation, 1999-2003. Bars represent standard error of the estimate. 
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Figure 2.2. Breeding philopatry and dispersal of female (F) and male (M) Ross’s Geese 
from multistate modeling of neckband resightings at breeding colonies within the Queen 
Maud Gulf metapopulation, 1999-2003. (A) Dispersal probabilities ± SE and (B) 
calculated numbers combining movement probabilities with estimates of population size 
for each colony.  
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2.5 DISCUSSION 

2.5.1 Movement Probability 

Results of this study were consistent with the general prediction of the mating-system 

hypothesis (Greenwood 1980, Rohwer and Anderson 1988); Ross’s Goose breeding 

philopatry is female-biased. This result is qualitatively consistent with the pattern of 

female-biased philopatry that has emanated from studies that primarily employed return 

rates to gain inference on philopatry in waterfowl (Geramita and Cooke 1982, Anderson 

et al. 1992: Table 11-3). However, similar to other investigations that have used mark-

recapture methods (Lindberg et al. 1998, Doherty et al. 2002, Blums et al. 2003), sex-

specific estimates of philopatry in this study were substantially higher than return rates 

reported for waterfowl (Anderson et al. 1992: Table 11-3). More notable was that 

female philopatry was highly variable among colonies and was less than absolute in all 

cases. In any given year, a substantial portion of the Queen Maud Gulf (QMG) Ross’s 

Goose breeding population consists of dispersers. This finding underscores the 

importance of dispersal in colony-specific population dynamics of Ross’s Geese in the 

QMG region, and its potential to influence breeding distribution and gene flow. 

I applied estimates of female dispersal probabilities to estimated sizes of 

breeding subpopulations and found that they represent large numbers of birds that 

switch colonies annually. I used breeding population estimates of light geese at Karrak 

Lake (~866,000) from Alisauskas et al. (1998) and assumed that about 50% are Ross’s 

Geese, half of which are females (216,500). Assume that 216,500 females nest at 

Karrak Lake during year i, survive at a rate of 0.83 (i.e., the most recent published 

survival rate of adults that were not marked with neckbands; Alisauskas et al. 2006a), 

and breed during i + 1 at a hypothetical rate of 0.75. Thus, at i + 1 there are ~179,700 

(216,500 x 0.83) surviving individuals of which 134,800 (179,700 x 0.75) will breed. 

Of those breeders, ~14,600 (134,800 x 0.108) will disperse from Karrak Lake and breed 

at another colony. Accordingly, assuming that average nesting density is equal among 

colonies, then based on colony area (km2; Alisauskas et al. 1998), colony 10 had 

~772,000 geese (~193,000 female Ross’s Geese) and colonies 9, 46 and 81 combined 

represented ~339,000 geese (~84,800 female Ross’s Geese). Assuming the same rates 

of survival and breeding probability, I applied stratum-specific estimates of dispersal 
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from the other colonies to Karrak Lake and found that ~17,400 (193,000 x 0.83 x 0.75 x 

0.145) females emigrate from Colony 10, and ~18,200 (84,800 x 0.83 x 0.75 x 0.344) 

females emigrate from the other combined colonies to Karrak Lake. Such calculations 

suggest a net increase of ~21,000 (35,600 – 14,600) females to Karrak Lake within a 

given year due to breeding dispersal alone (Fig. 2.2b). 

 Based upon limited information about movements of geese to and from La 

Pérouse Bay (LPB), and overwhelming female-bias in re-encounters at the colony, 

Cooke et al. (1995) argued that gene flow was male-mediated among breeding 

subpopulations of Snow Geese, while acknowledging that females showed some 

dispersal (Geramita and Cooke 1982). More recently, Cooch et al. (2001) used a 

retrospective analysis to analyze life table response of the LPB colony and showed that 

emigration of adults had increased over time. Their results suggested that philopatry to 

brood rearing areas may be more flexible than philopatry to nesting areas. My results 

suggest that breeding philopatry is also a flexible trait in closely-related Ross’s Geese. 

Given similarities in life histories of these congeners and their sympatry throughout the 

annual cycle, dispersal by female Snow Geese may be more common than previously 

thought. 

Although my analysis was focused on Ross’s Goose movement between 

breeding colonies within the QMG metapopulation, 21% (680/3233) of the Ross’s 

Geese used in this analysis were immigrants to the QMG region that were banded along 

the West Coast of Hudson Bay (WHB); 8.5% (58/680) of these were females. 

Movement of WHB geese into the QMG region represent breeding dispersal of 

distances ranging 500-800 km depending upon colony of settling. There exists 

substantial additional movement of geese, but because observations of marked geese at 

WHB breeding colonies did not begin until 2002, I could not estimate rates of dispersal 

between these regions. 

Estimates of annual dispersal among breeding colonies by Ross’s Geese provide 

strong behavioral evidence for extensive gene flow among breeding subpopulations. 

This behavioral finding for Ross’s Geese is consistent with genetic studies of Snow 

Geese, which suggested little or no phylogeographic structure in frequency of mtDNA 

haplotypes detected in Snow Geese from different breeding areas across North America 
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(Avise et al. 1992, Quinn 1992). Additionally, based on recoveries from each of the 

Pacific, Central and Mississippi Flyways (Alisauskas et al. 2006a), there is great 

overlap in winter range used by Ross’s Geese marked in different brood-rearing areas 

used by the QMG metapopulation. Overall, Ross’s Geese from QMG now have one of 

the most extensive winter ranges of any arctic-nesting goose species from a single arctic 

region. Shared winter areas of Ross’s Geese with different breeding locations, high rates 

of movement by both sexes of Ross’s Geese among colonies in QMGMBS, and the fact 

that 21% of the geese included in this analysis had originated from another breeding 

region, hint at considerable potential for dispersal to influence gene flow in Ross’s 

Geese. I suggest that subpopulations of light geese are extensively interconnected by 

broadly overlapping migration networks, which likely enhances gene flow. Such 

widespread movement patterns would be consistent with the genetic evidence for 

“considerable population connectedness” inferred by Avise et al. (1992). 

Studies of other colonial geese have shown that dispersal increases with 

increasing population density (Lindberg et al. 1998), and that emigration can be an 

adaptive response to habitat degradation (Cooch et al. 1993, Cooch et al. 2001). I was 

unable to estimate population density at breeding colonies within the QMGMBS, other 

than for Karrak Lake, and so was precluded from directly assessing breeding dispersal 

as a function of breeding density. Nevertheless, I found an asymmetry favoring 

movement toward Karrak Lake despite it being the most expansive colony of the ones 

studied. Density dependent effects on gosling growth and survival on brood-rearing 

areas north of Karrak Lake have been detected (Slattery and Alisauskas 2002), so other 

factors may override a connection to dispersal probability. For example, there is a 

strong cline in chronology of snowmelt with that in the west of QMGMBS consistently 

far in advance (e.g., ~5% snow cover in 2003) compared to that 300 km to east (>75% 

snow cover in 2003, R. Alisauskas personal observation). Early nesting by arctic-

breeding geese has strong fitness benefits (Cooke et al. 1984) because of the short time 

available for goslings to attain flight before freeze-up (Raveling 1978). Hence, geese at 

Karrak Lake consistently may enjoy more favorable snow-free nesting conditions 

compared to most other colonies to the east. Consistent with this idea is that female 
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emigration from colony 10, the most eastward colony examined, exceeds female 

immigration to colony 10 for both Karrak and other colonies.  

 

2.5.2 Apparent Survival Rates 

Sex differences in apparent survival provide insights to potential sources of bias 

when interpreting my results, given what is known about true survival estimates. My 

estimates of apparent survival for neckbanded Ross’s Goose females generally 

corresponded with estimates for true survival rates of neckbanded females from band 

recovery models (Alisauskas et al. 2006a); however, male apparent survival ranged 

0.11-0.22 lower than estimates for true survival of neckbanded males. Accordingly, I 

suggest that at least in part, the differences in apparent survival between males and 

females resulted from violation of model assumptions rather than arising solely from 

differences in true survival between sexes. Multistate models will produce survival 

estimates that are biased low if movement of individuals to an unobserved state occurs 

(i.e., permanent emigration from the sampled areas and/or marker loss). I suggest that 

the sex differences in estimates of apparent survival resulted in part from a combination 

of (1) higher rates of permanent emigration by males, from surveyed areas, than by 

females and (2) higher rates of neckband loss by males. A higher rate of permanent 

emigration by males from my study area is consistent with the finding of greater 

vagility within my study area by male than by female geese. Additionally, rates of 

neckband loss are generally higher for males in numerous other goose species 

(Alisauskas and Lindberg 2002 and references therein). Low recapture probability of 

Ross’s Geese during annual banding efforts precluded direct estimation of neckband 

loss as done by Alisauskas and Lindberg (2002). Nevertheless, discovery of nearly four 

times as many broken neckbands from males than from females, despite similar 

numbers marked, is in agreement with the general pattern of higher neckband loss by 

males. Most of these neckbands were lost probably during aggressive behaviour by 

males on breeding territories. The general correspondence between estimates of survival 

for neckbanded females from multistate modeling to those for neckbanded females from 

band recovery models (Alisauskas et al. 2006a, Chapter 5) suggests that permanent 
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emigration by females, from the areas I sampled, was close to zero during the course of 

this study. 
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CHAPTER 3. AN EXPERIMENTAL ASSESSMENT OF DECISION RULES:  

    PHILOPATRY IN A CAPITAL BREEDER 

 

3.1 ABSTRACT 

I studied female Ross’s Geese (Chen rossii) nesting in a colony at Karrak Lake, 

Nunavut, Canada, from 2000 to 2003, to evaluate the prior experience hypothesis (PEH) 

as an explanation for breeding site philopatry in migratory birds. I experimentally 

manipulated nesting success of randomly-chosen females and determined subsequent 

dispersal distances for successful and failed breeders. Previous nest fate influenced 

dispersal distance; successful nesters generally dispersed shorter distances than failed 

nesters. Although observed differences in dispersal distances were consistent with 

predictions from the PEH, estimated dispersal distance for both groups exceeded 1500 

m suggesting that philopatry occurs at a scale larger than that of the nest site or territory. 

Regardless of previous nest success, some breeding dispersal within the colony 

constituted asymmetrical movement toward areas of higher nesting density. Contrary to 

the prediction of the PEH, successful nesters generally returned at lower rates than 

failed nesters, but this difference was detectable during only one year. I suggest that 

geese showed flexible selection of nest sites to ensure earliest possible nest initiation; I 

propose that early nesting in general is adaptive because it minimizes depletion of 

stored nutrients for maintenance, and allows earlier allocation of such nutrients toward 

eggs and energetic requirements of incubation. 

 

3.2 INTRODUCTION 

Dispersal represents individual decisions that determine settling patterns 

responsible for population-level changes in distribution and abundance. Despite 

recognition of movement as an important evolutionary force (Clobert et al. 2001), our 
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understanding of mechanisms that govern decisions by individuals to disperse, or to 

return to specific breeding locations, is not well understood. Many migratory bird 

species exhibit breeding philopatry (Greenwood 1980, Greenwood and Harvey 1982), 

representing species that have different nest types (e.g. cavity, cup, ground), mating 

systems (mate-defense vs. resource-defense), and which produce young that require 

variable levels of parental care (precocial vs. altricial young; e.g. Newton and Marquis 

1982, Dow and Fredga 1983, Gavin and Bollinger 1988, Pärt and Gustafsson 1989, 

Paton and Edwards 1996, Lindberg and Sedinger 1997). Estimation of philopatry is 

scale-dependent and subject to bias (Koenig et al. 1996, Lambrechts et al. 1999, 

Cilimburg et al. 2002), but the widespread occurrence of philopatry suggests that such 

behavior is adaptive. 

Decisions about movement between sequential breeding sites likely involve 

complex interactions among numerous influences including mate or site competitors, 

predator presence, food resources, or availability and suitability of nest sites.  

Nevertheless, previous reproductive output may serve as a logical and tractable metric 

of overall suitability of a previous breeding site. Thus, prior breeding experience likely 

influences decisions about where to breed in future [i.e., Prior Experience Hypothesis 

(PEH)].  

The degree to which individuals use previous reproductive performance to 

assess where to make subsequent attempt to breed is expected to vary among species; 

nest sites, and adjacent resources, are likely to show high interspecific variation in the 

contribution and importance to successful production of offspring. A causal link 

between reproductive performance and breeding philopatry has been demonstrated 

using experimental manipulation in songbirds (Haas 1998, Hoover 2003), but support 

for the generality of this phenomenon requires further study among other taxa. For 

example, most songbirds are income breeders because they use local food resources for 

egg production (Meijer and Drent 1999) and produce altricial young that are brooded in 

nests until fledging. So, nest site selection probably is influenced by perceptions and 

decisions about both (1) security from predation, and (2) availability of food near nest 

sites. In contrast, capital breeders rely largely on endogenous reserves for egg 

production and incubation, and often produce precocial young that may be brooded 
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several kilometers from the nest site (e.g. arctic-nesting geese). Thus, such species are 

more likely to base decisions about nest site fidelity solely on security of sites from 

predation because food resources near the nest have little consequence on egg 

production, incubation cost, or growth of newly-hatched young.  

I manipulated nesting success of female Ross’s Geese (Chen rossii) to test 

whether there is a response in breeding philopatry by a capital breeder with precocial 

young. Several studies have demonstrated correlations between nest success and 

subsequent site fidelity of female waterfowl (Dow and Fredga 1983, Hepp et al. 1989, 

Lindberg and Sedinger 1997), but I am unaware of studies wherein the effect of nest 

success through experimental manipulation on subsequent site fidelity was estimated 

directly. Arctic-nesting geese are ideally suited for testing the prediction that 

reproductive failure reduces breeding philopatry. Natal and breeding philopatry is 

female-biased (Anderson et al. 1992) and pair formation by arctic-nesting geese occurs 

on wintering and spring staging areas, so site and mate fidelity are separate (Greenwood 

and Harvey 1982, but see Hoover 2003). Use of nutrient reserves to meet metabolic 

costs of egg production and incubation varies among species (Ankney and MacInnes 

1978, Budeau et al. 1991, Alisauskas and Ankney 1992, Gauthier et al. 2003), but 

endogenous reserves are generally an important determinant of reproductive success in 

geese (Alisauskas 2002). In this study, I used traditional measures of site fidelity (i.e. 

dispersal distance and return rates) to test the prediction of the PEH. I also considered 

other ecological covariates that I thought were likely to influence philopatry, but that 

were beyond my ability to control. The PEH predicts that individuals that experience 

nesting failure are more likely to disperse to another breeding site, whereas those that 

produce young are more likely to breed again in the same location. 

 

3.3 METHODS 

3.3.1 Relevant Life History Aspects of the Study Organism 

Ross’s Geese are highly gregarious throughout the annual cycle, and, like Lesser 

Snow Geese (C. caerulescens; Mowbray et al. 2000), establish monogamous breeding 

pairs on wintering and spring staging areas. Pair bonds can last several years 

(Alisauskas and Drake unpublished data). Timing of arrival at nesting colonies 
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generally begins after snow cover is <70% (K. Drake and R. Alisauskas personal 

observation), but in some years nesting can be delayed, presumably by events farther 

south. Upon arrival, pairs establish a territory in which the female builds a nest on a 

snow-free patch of ground. Ross’s Geese nest at densities of up to 272 nests/ha 

(Alisauskas unpublished data). Geese begin laying eggs within 2-3 days of arrival when 

there is little or no green vegetation available. In addition, breeding geese provided with 

supplemental food did not differ from control birds in body condition at the end of 

incubation, which suggests that geese breeding at Karrak Lake subsisted independently 

of local food resources (Gloutney et al. 1999). Last, Ross’s Goose goslings are self 

feeding and able to walk (nidifugous) within 1 day of hatch (Ryder and Alisauskas 

1995); goslings and parents disperse from nest sites to brood-rearing areas within 48 hr. 

Hence, I suggest that, if breeding philopatry by Ross’s Geese is decision-based on 

previous experience, then the decision is simplified to perceived security of nest sites, 

and does not involve assessment of local food resources. 

 

3.3.2 Nest Searching 

This study was conducted at the Karrak Lake breeding colony (Fig. 1.2). Nesting 

geese with neckbands were observed from distances of up to 500 m with spotting 

scopes during incubation (late-May to early-July, 2000-2003). At times, high-density of 

nesting geese can confuse identification by observers of nests produced by neckbanded 

individuals. In such instances, fixing cross hairs in spotting scopes as a reference, and 

then walking to them confirmed nest locations of focal animals. Global position systems 

were used to determine Universal Transverse Mercator (UTM Zone 13) grid coordinates 

of nest locations. To facilitate location and verification of nest identity during 

subsequent visits, wooden stakes marked with neckband codes were placed beneath nest 

bowls and eggs were marked with indelible ink. I recorded clutch size (CS) and 

estimated incubation stage (days) by candling eggs (Weller 1956) to permit calculation 

of nest initiation date. CS was multiplied by 1.2 days, the interval between eggs (Ryder 

1969a), and added to incubation stage to calculate nest initiation date. 

I did not manipulate nest fate in 2000, but determined fate of 142 nests of 

neckbanded geese found that year. In 2001 and 2002, I found nests of 292 and 294 
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neckbanded females, respectively, and randomly assigned half to treatment (eggs 

removed during the last week of incubation) or control (eggs not removed) groups. 

Control nests were revisited after hatch and were considered successful if at least one 

egg hatched, judging from the presence of eggshell caps and/or egg membranes. Nests 

that failed from abandonment or depredation were assigned to a third group of natural 

failures. Due to unusually high rates of nest abandonment in 2001, natural nest failures 

represented the largest group in that year.  

 

3.3.3 Snow Cover 

 Habitat availability is known to influence settling patterns of nesting geese 

(Abraham 1980, Lepage et al. 1996, Reed et al. 2004), so I estimated snow cover using 

data collected from 100 m snow survey transects (n = 12, Alisauskas unpublished data). 

Transects were visited every 3-4 days from arrival by personnel at the study area in each 

year (18-22 May) to the end of snowmelt (usually mid- to late-June). Snow depth was 

measured at 5 m intervals, beginning at 0 m and ending at 100 m. For my purpose, I 

calculated average daily snow cover by dividing the total number of points along the 

transect that had snow cover (regardless of depth) by the total sampling points (n = 

252). To calculate daily snow cover for days between successive surveys, I assumed 

that snowmelt was linear and used predicted values between days when snow surveys 

were done. Figure 3.1 displays graphically the annual (2001-2003) interplay between 

snowmelt and percent of nests initiated within the colony (see Section 3.3.4 for an 

explanation of percent of nests initiated). 

 

3.3.4 Effect of Nest Failure on Dispersal Distance 

All measures of dispersal involved nests initiated in consecutive years. Dispersal 

distance was calculated as the length of a straight line between nest locations. Dispersal 

distance and nest fate were known for 22 females found in three consecutive years of 

the manipulation study (2001-2003). To avoid pseudoreplication, I randomly-selected 

one observed dispersal distance from each such female to include in analyses. I used  
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Figure 3.1. Chronology of snowmelt and nest initiation by Ross’s Geese at the Karrak 
Lake breeding colony, Queen Maud Gulf Migratory Bird Sanctuary, Nunavut, Canada 
(2001-2003). 
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data from years during manipulations, to compared dispersal distances by marked 

females with induced failures (n = 57) with those of females with natural nest failures (n 

= 39) (t-test, unequal variation, PROC TTEST, SAS 1996) and found no difference in 

distances dispersed (p = 0.43). Thus, I combined data from induced failures and natural 

failures (n = 96) in subsequent analyses for comparison with dispersal distance of 

successful nesters (n = 36). 

I believed that factors other than induced nest fate could influence dispersal, and 

so included several covariates in my a priori candidate set of 14 models. There are 

advantages of earlier nest initiation on production of young (Cooch et al. 1991a, 

Sedinger and Flint 1991), and because nests are initiated only in snow-free habitat, I 

considered snow cover at time of nest initiation as an individual covariate of dispersal 

distance. Nesting Ross’s Geese are territorial (Ryder and Alisauskas 1995), so 

individuals that arrive later are likely to face greater competition for nest sites (Fig. 3.1) 

and may settle in less preferred sites. Hence, as an index of competition for available 

nesting habitat, I included percent of nests initiated within the colony at time of nest 

initiation as another individual covariate. Percent of nests initiated was determined from 

a data set collected at systematically placed 30 m radius plots located throughout the 

colony (Alisauskas unpublished data). Number of sampled plots containing Ross’s 

Goose nests varied annually and ranged from 58 to 113, and the combined total of 

Ross’s Goose nests within these plots each year ranged from 690 to 866. I hypothesized 

that timing of arrival might also influence dispersal distance; however, I could not 

reliably determine how long an individual was present on the colony before initiating a 

nest. Thus, I calculated a relative nest initiation date (NID) for each bird by subtracting 

the annual colony mean nest initiation date for Ross’s Geese (calculated from nest plot 

data) from the NID of each individual. Arriving birds commonly have ovulated follicles 

(Alisauskas unpublished data) and eggs dumped outside of nest bowls are common 

throughout the colony, suggesting that there is likely a strong advantage for selecting a 

nest site and preparing a nest bowl before egg-laying begins; so, relative NID should 

serve as a suitable index for timing of arrival. I considered interaction effects between 

snow cover and relative NID, and between snow cover and percent of nests initiated. 

Finally, nesting densities vary spatially and temporally throughout the colony, so some 
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areas are undoubtedly preferred over others. In general, nesting density was lowest at 

the colony perimeter and increased towards the center; but the transition from low to 

high nesting densities is neither smooth nor continuous (Fig. 3.2). To account for such 

edge effects, I included two variables to account for the location of nests within the 

colony: distance from the Karrak Lake shoreline (to serve as an index of the centrality 

of the nest location within the colony), and whether a nest was located in an area with 

above-, or below-average nesting density (see below). I used general linear models for 

analysis (PROC GLM, SAS Institute 1996) and Akaike Information Criteria adjusted 

for small sample size (AICc) for model selection (Burnham and Anderson 2002). 

 

3.3.5. Return Rates 

I computed return rates to the colony for each group by dividing the number of 

marked birds that were detected as breeders on the study area in year t + 1 by the total 

number of marked birds composing that group in year t. I recognize that return rates 

offer limited inference on philopatry because detection probability is not accounted for, 

and non-returning individuals could have either dispersed or died (Martin et al. 1995), 

but due to limitations of the data, it was not possible to include in a capture-recapture 

analysis the combination of nesting outcome and geographic location. Accordingly, I 

provide return rates to allow comparison with other studies that have used them. 

Assuming equal survival and resighting probabilities between successful and failed 

breeders, the PEH predicts lower return rates for failed breeders if nesting failure leads 

to dispersal from the study area. I compared proportions of returning birds in each 

category using 2 x 3 contingency tables. 

  

3.3.6. Paired Observations 

I performed a paired t-test on data for 16 females for which I calculated 

dispersal distances in two years (i.e., between three consecutive nest attempts), but nest 

fate differed preceding each dispersal event. I used these data to test the one-tailed 

hypothesis that dispersal distance is greater following nest failure than after a successful 

nesting attempt. 
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Fig. 3.2. Colony boundary (outer line), study area boundary (inner line), and spatial 
variability in density of nesting geese at the Karrak Lake breeding colony, Nunavut, 
Canada, 2000-2003.  
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3.3.7 Movement Between Low-, and High-density Nesting Strata 

I used multistate modeling (Arnason 1973, Hestbeck et al. 1991, Brownie et al. 

1993, Schwartz et al. 1993) to estimate probability of movement between landscapes of 

below-average and above-average nesting density during 2000-2003. I compared annual 

estimates of state-specific transition probabilities, for intervals i to i + 1, to the 

proportion of the study area represented by each density stratum in year i + 1. If 

movement probabilities and proportions of the study area in each stratum were the 

same, I inferred random movement; if movement probabilities were different from 

proportions of the study area represented by high- and low-density strata, I inferred that 

movement was nonrandom or selective. Using the extent of colony area and nest plot 

data, I calculated annual average nesting densities for years 2000-2003 (Fig. 3.2). Nest 

locations of neckbanded females were imported into SPANS GIS (PCI Geomatics 

1999) to determine whether their nests were located in areas above or below the year-

specific average of nesting density. In some instances I was unable to determine the 

current nest location of females for which I had determined the location of their 

previous nest. Occasionally, neckbanded birds were detected after they stepped off of 

nests, and identity of nests could not be determined with certainty because of high 

densities of neighboring nests. If so, I recorded location of such females assuming 

reasonably that she was <10 m from her nest. These were not included in the analysis of 

nest fate effect on dispersal distance, but were included in this capture-recapture 

analysis because the scale of precision likely would have been sufficient to ensure 

inclusion of such nests in correct strata of nest density. From these data, I created 

encounter histories coded by density strata and conducted the analysis using Program 

MARK (White and Burnham 1999).  

The number of parameters in multistate models can be very large if all potential 

sources of variation are considered for all parameters. My primary interest was in 

estimating transition probabilities between areas of above- and below-average nesting 

density, so I parameterized the global model to include both time and stratum effects on 

movement, while assuming that apparent survival and resighting probabilities were 

equal between strata, but allowed to vary with time. Thus, I began with global model 

{φt, pt, ψs*t} where φ, p, and ψ represent apparent survival (hereafter survival), 
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resighting, and movement probabilities, respectively; subscripts 's' and 't' indicate 

stratum and time effects, respectively. I assessed goodness-of-fit of the global model to 

data using Program U-CARE (Choquet et al. 2003, Pradel et al. 2003), and, based on 

results of the Arnason-Schwartz test (χ2 = 20.716, p = 0.055, df = 12), applied a 

variance inflation factor (ĉ) calculated as the χ2 statistic divided by the degrees of 

freedom (ĉ = 1.726). I considered seven models, including the global, in the candidate 

set. Three models maintained full structure in movement with constant survival and 

time-dependent resighting probability {φ., pt, ψs*t}, time-dependent survival and 

constant resighting probability {φt, p., ψs*t}, and no time effect on either survival or 

resighting probabilities {φ., p., ψs*t}. Three other models included different 

parameterizations of φ and p listed above, while considering only stratum effects on 

movement {ψs}. I modified the design matrix for all manipulations of model structure, 

using the logit link function (White and Burnham 1999). Model selection was based on 

QAICc. Finally, to ensure that the stratum effect was not trivial, I assessed the fit of two 

a posteriori models where φ and p were constant (the best structure of these parameters 

based on the above model selection), while considering two alternate parameterizations 

with stratum effects on movement deleted: time dependent movement {ψt}, and neither 

time nor stratum effects on movement {ψ.}. 

 

3.4 RESULTS 

3.4.1 Dispersal Distance 

Observed dispersal distances between nest sites in consecutive years ranged 

from 4 to 6,666 m for successful nesters (n = 36) and from 0 to 9,781 m for failed 

nesters (n = 96). The most parsimonious model with dispersal distance as a response 

variable included only nest fate as the predictor variable (Table 3.1). Model-averaged 

parameter estimates demonstrated that successful nesters generally dispersed shorter 

distances [95% CI ( x ) = 1,526 ± 2,143 m] than failed nesters (2,564 ± 1,621 m) with an 

effect size of 1,037 ± 931 m. Confidence intervals for slope estimates of all other 

parameters included zero. 
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Table 3.1. RSS (residual sum of squares), ∆AICc, AIC weight (ωAICc), and number of 
parameters (K) of all candidate models considered explaining breeding dispersal 
distance of individual female Ross’s Geese at the Karrak Lake breeding colony, 
Nunavut, Canada, 2001-2003. Models were based on general linear models in which 
dispersal distance was the response variable. 
 
Model   RSS   ∆AICc  ωAICc  K    r2 
F   696883527   0.00  0.283   3 0.032 
F, P   692461399   1.29  0.149   4  0.039 
F, SC, P, N, K  671078777   1.50  0.133   6 0.068 
F, SC    696188482   2.00  0.104   4 0.033 
intercept  720265540   2.26  0.091   2 0.000 
F, SC, P  691487113   3.26  0.055   5 0.040 
P   718966191   4.12  0.036   3 0.000 
SC   720265540   4.36  0.032   3 0.000 
F, SC, P, N, K, D 664708491   4.74  0.026   8 0.077 
F, SC, P, N, K, D, 653952727   4.89  0.025   9 0.092 
    SC*N 
F, SC, P, N, K, D, 642818415   4.97  0.024  10 0.107 
    SC*N, SC*P 
F, SC, P, SC*P 690707583   5.31  0.020   6 0.041 
F, SC, P, N   690729313   5.31  0.020   6 0.041 
SC, P, N. K, D, 676999626   9.47  0.009   9 0.060 
    SC*N, SC*P 
Abbreviations: nest fate = F; snow cover = SC; percent of nests initiated = P; nest 
initiation date = N; distance of nest location from the Karrak Lake shoreline = K; 
nesting density class = D. 
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3.4.2 Return Rates 

Return rates did not support predictions of the PEH. Successful nesters generally 

returned at lower rates than failed nesters (Table 3.2), but an effect of nesting success 

was detectable only in the first year (χ2 = 6.05, df = 2, p = 0.048), and not the second 

(χ2 = 2.84, df = 2, p = 0.242). Combining induced and natural failures in the analysis 

produced similar results for the first (Fisher’s exact test, p = 0.010) and second year 

(Fisher’s exact test, p = 0.144). 

 

3.4.3 Paired Observations 

Twelve of 16 females moved farther after a failed nesting attempt ( Faild ± SE = 

2,629 ± 657 m) than after a successful one ( Successd = 1,430 ± 358 m). On average, 

females moved 1,199 m farther (n = 16, SE = 300, P = 0.08) following nest failure.   

 

3.4.4 Movement in Relation to Nesting Density 

I made 952 resightings of 673 neckbanded females either on or near their nests. 

Models with only stratum effects in the parameterization of movement were most 

supported by data (Table 3.3), but there was some support for temporal variability in 

movement probabilities, so I model-averaged parameter estimates. Female Ross’s Geese 

were more apt to move to areas with above-average nesting density than to areas with 

below-average nesting density during all years of the study (Table 3.4). Ross’s Geese 

moved nonrandomly (i.e., at rates higher than expected relative to the proportional size 

of density strata within the study area) to areas of above-average density in 2001-2002; 

probabilities of inter-stratum movement in 2003 were in proportion to size of density 

strata that year. My a posteriori check confirmed that data did not support models that 

excluded stratum effects of nest density in the parameterization of movement {i.e., ψt 

and ψ.}. 

 

3.4.5 Supplementary Data from Chapter 2 

 At least 15 females (6 successful: 9 failed) from this study at Karrak Lake were 

known to have dispersed 23-97 km to other colonies within the Queen Maud Gulf 
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Table 3.2. Return rates relative to nesting outcome in the previous year for female 
Ross’s Geese nesting at the Karrak Lake colony, Nunavut, Canada, 2001-2003. Values 
in parentheses are the number of birds that returned/total number. 
 
         Induced       Natural 
     Year  Successful      failure        failure 
2001-2002  20% (18/88)  36% (35/97)  33% (38/114) 
2002-2003  21% (26/124)  30% (36/122)  21% (10/48) 
 

 

Table 3.3. Model structure, quasi-deviance, ∆QAICc, model weight (ωAICc), and number 
of parameters (K) for all candidate models considered for multistate modeling of 
transition probabilities for female Ross’s Geese breeding at the Karrak Lake colony, 
Nunavut, Canada, 2000-2003. Transition probabilities represent interannual movement 
from areas (strata) with below average nesting density to areas with above average 
nesting density, and vice versa. Model parameters include: apparent survival (φ), 
recapture (p), and transition (ψ) probabilities. Asterisks indicate multiplicative 
interactions between density stratum (s) and time (t), whereas a '.' denotes exclusion of 
these effects. 'Global' denotes the most parameterized model. 
 
Model            QDeviance       ∆QAICc            ωAICc  K 
φ.  p.  ψs   50.01     0.00    0.32   4 
φt  p.  ψs   46.28    0.32    0.27   6 
φ.  pt  ψs   47.68    1.73    0.13   6 
φt  pt  ψs*t   global     38.13    2.42    0.09  11 
φ.  p.  ψs*t   44.50    2.63    0.08   8 
φt  p.  ψs*t     40.77    3.00    0.07  10 
φ.  pt  ψs*t    42.17    4.40    0.03  10 
aφ.  p.  ψ.    72.70             20.67  0.00    3 
aφ.  p.  ψt    71.93             23.95   0.00    5 
ĉ = 1.726  
a a posteriori models that excluded stratum effects of nest density on movement 



 

 

 

39

Table 3.4. Probabilities of movement by nesting female Ross’s Geese between areas 
with above-, and below-average nesting density within the Karrak Lake breeding 
colony, Nunavut, Canada, 2000-2003.  Also shown are proportions of the study area 
with above- and below-average nesting density. Movement probabilities are state-
specific transitions for the interval i to i + 1, whereas proportion of the study area 
represented by each density stratum are for year i + 1. Model-averaged transition 
probabilities are presented ± 1 SE. 
 
Year   Below to Above  Above to Below Above           Below 
2000-2001     0.60 ± 0.08     0.33 ± 0.11    42%  58% 
2001-2002     0.63 ± 0.06     0.29 ± 0.06    44%  56% 
2002-2003     0.65 ± 0.07     0.24 ± 0.07    68%  32% 
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region, suggesting that movement between colonies is not influenced by previous 

reproductive outcome (likelihood ratio 0.06 =χ 2 , df = 1, P > 0.75). 

 

3.5 DISCUSSION 

3.5.1 The Effect of Prior Experience on Breeding Philopatry 

Movement by Ross’s Geese both within and among colonies seems pervasive in 

the Queen Maud Gulf metapopulation (Chapter 2, Drake and Alisauskas 2004, this 

study). Previous nest fate was the best predictor, among those considered, of dispersal 

distance and induced movement by females of ~1 km within the colony between years. 

Although detectable, breeding success accounts for a small amount (<11%; Table 3.1) 

of variation in dispersal distance within colonies, and it does not appear to influence 

movements among colonies. Judging from the small proportion of variation explained 

by the candidate models and estimated dispersal distances exceeding 1500 m regardless 

of previous nest fate, >89% of nest site selection is also influenced by factors other than 

those that I considered. 

My results suggest that support for the PEH depends highly on the scale at 

which dispersal is measured. If I were to base inference solely on differences in 

dispersal distance, my results support the prediction that failed birds should disperse 

farther if prior experience is used to determine location of subsequent breeding 

attempts. Despite the fact that greater dispersal distance by failed nesters should have 

lead to them having a higher risk of leaving the study area, this did not result in them 

having lower return rates, so processes other than dispersal are likely to have caused 

differences in return rates (discussed below). Lack of consistency in support for 

predictions of the PEH suggests that the decision process of habitat selection that 

ultimately determines dispersal patterns, likely involves many factors occurring at 

several spatial scales. How previous information is applied, and the degree to which the 

application of this information overlaps on different spatial scales, is apt to vary with 

life history strategy and environmental stability. 

Annual migration of birds generally involves transit between areas where food 

supply is abundant for a limited time. If philopatry depends on reproductive success as a 

metric of site quality, then temporal and spatial acquisition of resources for reproduction 
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in turn may influence settling patterns. The breeding period of arctic-nesting geese can 

be divided into two important phases of nesting and brood-rearing. Nesting begins with 

arrival of geese each spring to an environment in breeding colonies where food 

resources are generally unavailable or offer poor nutritive value (Gloutney et al. 1999, 

2001), and the timing and extent of snow-free nesting habitat are unpredictable. 

Females arrive in advanced stages of rapid follicular development (Bon 1996) and lay 

eggs shortly after arriving at the colony. Although females generally have ample 

endogenous reserves to meet energy requirements of nesting (average nest success over 

a 14-year period is 82%; Alisauskas unpublished data), short delays in nesting can have 

negative impacts on reproductive output because clutch size is smaller in later nests 

(Findlay and Cooke 1982, Lepage et al. 2000), producing smaller goslings with slower 

growth rates (Cooch et al. 1991a,b, Sedinger and Flint 1991), and lower rates of 

recruitment (Cooke et al. 1984, Sedinger et al. 1995, 2004). Although breeding geese 

forage throughout the nesting period at Karrak Lake, little food is ingested; in fact, most 

available vegetation is of poor digestibility (Gloutney et al. 2001) and is used primarily 

as material with which to construct nests. Because nesting habitat does not offer much 

food for parents or goslings, geese probably do not become attached to specific nest 

sites. 

Including non-manipulation and manipulation years, I recorded locations of 216 

nesting females in consecutive years. Of these, only one bird returned exactly to its 

previous nest bowl, although it had failed the previous year. Even if the definition of 

philopatry is relaxed to include return to a previous nesting territory, only four birds (2 

successful and 2 failed) returned ≤10 m of their previous nest site; based on limited 

information about nesting territory size of Ross’s Geese (Ryder and Alisauskas 1995), 

territory overlap would have occurred for two of these birds (1 successful; 1 failed). 

Like Lindberg and Sedinger (1997), I suspect that selection pressures which favor early 

arrival and nest initiation (Slattery and Alisauskas 2002) render timing of nesting to be a 

greater influence of reproductive success than would nest location. Some movement 

between nest sites may result simply from behavioral flexibility required for early 

nesting that ultimately results in offspring emergence coinciding with peak food 

availability on brood-rearing areas (Raveling 1978). 
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Breeding philopatry likely is resource driven, but brood-rearing areas probably 

represent the resource to which philopatry by Ross’s Geese occurs. Precocial goslings 

disperse up to 70 km from natal colonies with their parents after hatch (Slattery 2000) to 

vast areas of sedge (Carex spp.) meadows. Such meadows represent a predictable food 

supply consistently available in most years. This is a critical time for goslings because 

they must attain sufficient size and functional maturity to migrate south to fall staging 

areas, while adults undergo molt and also must store sufficient reserves for the 

migration. As in other regions where recruitment of Snow Geese has been negatively 

influenced by declines in food abundance (Cooch et al. 2001), spatial variation in food 

resources on brood-rearing areas north of Karrak Lake appear to influence recruitment 

by Ross’s Geese (Slattery 2000, Slattery and Alisauskas 2002); however, this limitation 

has been insufficient as yet to cause local population decline (Alisauskas and Rockwell 

2002). Although goslings are subject to several selection pressures (i.e., predation, 

disease, parasites, weather, and food availability), productivity by most populations of 

arctic-nesting geese is under strong environmental control (Ankney and MacInnes 1978, 

Cooke et al. 1995, Bon 1996, Alisauskas 2002); even when distribution of food is 

predictable, weather, the principle determinant of productivity in arctic-nesting geese, is 

highly unpredictable for the duration of the arctic summer. Geese tend to nest when 

conditions are still uncertain, but hatch seems to be timed to the coincidence of 

abundant foods on brood-rearing areas; there is far less likelihood of snow covering up 

brood-rearing areas than there is of snow covering exposed ground a month earlier. 

Considering that arctic-nesting geese exhibit philopatry to brood-rearing areas (Cooke 

and Abraham 1980, Lindberg and Sedinger 1998), philopatry to nesting areas may 

occur (~90% adult female fidelity to Karrak Lake; Chapter 2, Drake and Alisauskas 

2004) in part because adjacent brood-rearing areas represent a predictable food resource 

important to adult survival regardless of the outcome of their breeding attempt. 

An evolutionary history of breeding in an unpredictable environment may favor 

flexibility in fine-scale fidelity to breeding sites. Switzer’s (1993) models predict that 

philopatry should vary inversely with heterogeneity in habitat quality and longevity of 

the organism, and vary directly with cost of switching territories and with age. He also 

assessed two decision rules strategies: ‘always-stay’ and ‘win-stay: lose-switch’. The 
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‘always-stay’ strategy performed well in unpredictable environments, whereas the ‘win-

stay: lose-switch’ strategy did well in predictable environments. Compared to terrestrial 

habitats in other ecosystems, the habitat of arctic-nesting geese is relatively 

homogenous, but availability is highly unpredictable. My results generally support 

Switzer’s predictions taking scale into context. On a landscape scale, Ross’s Geese 

generally stay at Karrak Lake regardless of previous nest fate (Chapter 2), but almost 

always switch to a new nest site probably because territory quality is similar among 

sites, and time is of essence. The general applicability of Switzer’s (1993) models is 

appealing, but predictions regarding breeding site fidelity need to consider the temporal 

and spatial scales at which resources critical for successful reproduction are acquired. 

Capital breeders rely on endogenous reserves for successful reproduction, so the suite of 

characteristics used to assess site suitability may be much simpler than those used by 

income breeders.  

In two of three years, rates of movement by Ross’s Geese towards areas of 

above-average nesting density were higher than those expected by random chance. In 

the final year of this study, rates of movement were consistent with the availability of 

each density-class within the study area; although probability of movement toward areas 

of higher nest densities remained consistent with previous years, area of above-average 

nesting density increased markedly (Table 3.4). While there was substantial annual 

variation in the spatial distribution of nest density, certain regions of the colony 

consistently contained nest densities 4-6 times greater than the colony average. In 

general, such high-density areas were near the center of the colony (Fig. 3.2) where 

geese have nested for several decades (Alisauskas et al. 2006b). Plant communities 

within the colony have been altered as a direct result of vegetation removal by nesting 

geese. Consequently, amount and diversity of vegetation is markedly reduced in areas 

with a longer history of nesting geese (Alisauskas et al. 2006b). Devegetation likely 

results in decreased snow depth, thereby advancing dates of snow clearance and 

availability of nesting habitat. In addition, directional movement toward areas of higher 

nesting density may also be related to advancing social status with increasing age as 

older geese tend to nest earlier (Finney and Cooke 1978, Flint and Sedinger 1992). I 
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was unable to test for this effect because I did not know the age of marked individuals 

as most neckbanded geese were marked as sexually mature adults. 

Alternatively, movement toward areas of higher nesting density may be 

motivated by anti-predator benefits associated with improved communal vigilance, 

effects of predator swamping, and mobbing behavior (Slattery et al. 1998). Historically, 

Ross’s Geese nested on islands in shallow lakes perhaps to avoid nest predation by 

Arctic Fox (Alopex lagopus; Ryder 1969b). Concurrent with Ross’s Goose population 

increase, terrestrial area occupied by nesting geese expanded into previously unused 

island and mainland habitats (Kerbes et al. 1983, McLandress 1983, Kerbes 1994). At 

Karrak Lake, this expansion by nesting Ross’s Goose into mainland habitats occurred 

sometime between 1969 and 1975, but densities of nesting Ross’s Geese remained 

highest on islands that had been used for nesting in the late 1960’s (McLandress 1983). 

Terrestrial area of the colony has increased more than sixty-fold since McLandress’ 

study, and most nests (> 97%), and the highest nesting densities, are now found on 

mainland habitats (Alisauskas unpublished data). Per capita rates of nest predation are 

lower in larger colonies (Raveling 1989); thus, areas of mainland habitats with high 

nesting densities may function as ecological equivalents to islands. If so, reproductive 

parameters may differ between areas of above-average densities compared to below-

average nesting densities. However, based on nest plot data, clutch size and nest success 

were similar between areas of below-average and above-average nesting density, which 

suggests that neither partial nor full clutch loss varies with density. In two years nest 

initiation date was 1.3 and 2.5 days earlier in above-average areas (Alisauskas 

unpublished data) suggesting that these areas are either preferred or available at an 

earlier date. In addition, Samelius and Alisauskas (2000) estimated that foxes took 4-8% 

of eggs from the Banks Island colony of Lesser Snow Geese; a colony that is about half 

the size of the Karrak Lake nesting population. Based on knowledge about fox 

population size and rates of egg removal by foxes at Karrak Lake, foxes could be 

expected to remove a maximum of ~11% of the eggs laid at Karrak Lake (Samelius 

personal communication); a number substantially below the long-term rate of 18% 

complete nest failure. Perhaps the Karrak Lake colony has exceeded a size threshold at 

which a functional response in predation rate would make the per capita rate of egg or 
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clutch loss very low. Historically, movement toward existing areas of high nest density 

may have been adaptive when colony size was smaller and per capita risk of predation 

may have been greater. However, the similarity between recent rates of Ross’s Goose 

nest success and those during 1966-1968 (Ryder 1972) suggests that predation pressure 

has remained similar, at least during the past 40 years. 

 

3.5.2 Can Anything Be Gained from Return Rates? 

The shortcomings of using return rates to gain insight into demographic process 

have been previously discussed (Martin et al. 1995); nevertheless, return rates are 

commonly relied upon to ‘test’ hypotheses set forth to explain difference in site fidelity 

and/or ‘survival’ between successful and unsuccessful nesting birds. The PEH states 

that differential philopatry occurs as an outcome of experienced-based choices by 

individuals and thus, difference in return rates arise from differential philopatry (or site 

fidelity), and not simply as a result of differential mortality (Bollinger and Gavin 1989, 

Haas 1998). Two other common explanations for differential return rates include the 

renesting stress hypothesis (Haas 1998) and the low quality hypothesis (Pugesek and 

Diem 1990). The first states that stress associated with renesting results in higher annual 

mortality; thus, renesting individuals are less likely to return to their previous breeding 

site because they have died. The low quality hypothesis states that low reproductive 

success is associated with birds in poor condition that are also more likely to die, which 

causes them to have lower rates of return. I did not consider the latter two hypotheses 

because arctic-nesting geese do not renest, and the random assignment of individuals to 

experimental manipulation should have resulted in equal proportions of high- and low-

quality individuals in each group. Nonetheless, these hypotheses all predict lower return 

rates of failed breeders, but return rates do not allow differentiating between the 

underlying processes (dispersal and mortality) producing the observed pattern. 

For example, as it pertains to my study system, the PEH predicts that nest failure 

will result in an increase in the probability of dispersal. This prediction was supported 

by the fact that dispersal distance was greater for female Ross’s Geese that experienced 

nesting failure; yet, observed return rates were in a direction opposite to that predicted 

by the PEH, successful breeders returned at lower rates than failed breeders. Given 
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presence in the study area, it is reasonable to assume that detection probability is 

independent of previous nest fate; thus, explanations for differential return rates can be 

‘narrowed down’ to a difference in survival and/or emigration probability. My results 

from capture-recapture analysis (Chapter 4) suggest that successful nesters survive at 

lower rates and that a difference in mortality may be responsible for lower return rates 

of successful females. But even after accounting for known mortalities, return rates 

were still lower for successful nesters. Confounding things further, I found differences 

in annual resighting probabilities between successful and failed nesters (Chapter 4). 

Failed nesting resulted in increased dispersal distance, which should have increased the 

risk of these birds leaving the study area, but detection of failed breeders was lower 

only during the last year of my study (Fig. 4.2). Finally, there exists the potential for 

differences in future breeding probability between successful and failed nesters. For 

example, if greater incidence of nonbreeding results from successful reproduction in the 

previous year (i.e., a cost of reproduction), this may lead to a lower rate of return by 

successful breeders that is unrelated to differential dispersal or mortality. Given that 

absence from the sample population can arise from several processes, return rates likely 

will never permit identification of the biological process(es) responsible for patterns 

observed in wild populations of birds. 

 

3.5.3 Summary 

It clearly is important to consider the scale at which dispersal is measured 

because estimates of dispersal depend explicitly on the spatial configuration of the study 

area itself, and discontinuities in distribution of study animals. It is intractable to define 

dispersal as a binary response (i.e., stay vs. move) in a landscape with contiguous 

occupancy, as is the case for intracolonial movements of Ross’s Geese. Instead, distance 

moved is an appropriate metric of dispersal at such a scale. However, movement 

probability among insular colonies comprising a metapopulation is easily treated as a 

binary response, and lends itself to estimation of movement probability using multistate 

methods. Each approach was necessary because decisions by Ross’s Geese about where 

to attempt to nest appear to be at least a two-stage process occurring primarily at the 
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metapopulation level between colonies, and secondarily at a more localized scale 

involving landscape variability within colonies.  

My impressions about predictability, quality, and abundance of nesting habitat 

across landscapes in which Ross’s Geese nest, suggest to me that decisions about 

breeding philopatry occur primarily at the metapopulation level. I believe that there are 

two important determinants for the geographic location of Ross’s Goose colonies. Most 

colonies of Ross’s Geese in QMGMBS are associated with islands in shallow lakes that 

become ice-free earliest, and so historically they were probably the best sites to avoid 

mammalian predation. However, as critical to fitness as successful nesting is the 

survival of goslings to adulthood. While nesting success may provide a direct metric for 

colony quality, an indirect metric that is pertinent to settling patterns by prenesting 

adults may be proximity of colonies to high-quality brood-rearing areas. Aspects of 

brood ecology of geese, such as gosling growth during movement from natal colonies to 

brood-rearing areas, can have large effects on gosling survival (Slattery 2000, Slattery 

and Alisauskas 2002). Lack of philopatry to nest sites and my previous finding of ~90% 

fidelity to Karrak Lake (Chapter 2, Drake and Alisauskas 2004) lead me to suggest that 

philopatry occurs as a result of an affinity to broader landscape features rather than to 

nest sites or even territories. I propose that philopatry to the colony may be driven by a 

predictable supply of food on adjacent brood-rearing areas that ensures high survival of 

adults regardless of the outcome of their reproductive attempt. 

 At the finer scale, nest success and gosling survival may be relevant to 

intracolonial movements as well, but in different ways. Nevertheless, intracolonial 

movements appear to be governed by additional, less predictable events that limit 

nesting habitat. When nests sites are limited, when breeding territories contain resources 

used to meet metabolic costs of reproduction, and/or when predation pressure is such 

that safe sites are difficult to find (e.g., Hoover 2003), site fidelity is more likely to be 

exhibited at a finer scale. Each of these situations should lead to increased spatial 

heterogeneity in probability of successful nesting. Temporally predictable heterogeneity 

in site quality should increase the importance of previous reproductive experience on 

philopatry (Switzer 1993). Reliance by Ross’s Geese on nutrient reserves, and spatially 

random nest success diminish the importance of where geese nest; nesting is conditional 
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on ground being snow free. Nest site availability can be highly variable from year to 

year due to timing and pattern of snow melt, and I suspect that this is the most important 

determinant of intracolonial movement between sequential nest sites.  

If a difference in dispersal distance was the only criterion for evaluating the 

PEH, my results support the PEH by demonstrating a causal relationship between 

previous nesting outcome and subsequent dispersal distance. However, estimated 

dispersal distances exceeded 1500 m regardless of previous nest fate, and homing to 

nest sites or territories was exceedingly rare. Ross’s Geese showed ~90% fidelity to 

Karrak Lake (Drake and Alisauskas 2004), but <11% of finer-scale adjustments to 

settlement patterns within the Karrak Lake colony, although statistically detectable, 

appeared to be overshadowed by random or unmeasured effects. There is strong 

selection for arctic-nesting geese to nest early. While reliance on nutrient reserves 

emancipates females from a dependency on local food resources during nesting (Ryder 

1970, Ankney and MacInnes 1978), long delays in snowmelt and nesting after arrival to 

a nesting colony can deplete nutrient reserves. Furthermore, a strong relationship 

between gosling mortality and lateness of nesting is pervasive in arctic-nesting geese 

(Cooch et al. 1991b, Sedinger and Flint 1991, Lepage et al. 1999) and is an additional 

selection pressure favoring early nesting. Thus, the adaptiveness of early nesting from 

these two causes alone likely favors decisions that advance nesting at the expense of 

philopatry. I suggest that there is great advantage to females that can quickly exploit 

snow free habitat in which to nest as gaps in snow cover emerge with more rapid snow 

melt. Acquisition of nest sites and surrounding territories undoubtedly would be 

hastened by flexibility in movement after arrival to a colony by allowing continuous 

prospecting, rather than homing directly to previous nest sites. 
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CHAPTER 4. IS THERE A SURVIVAL COST TO SUCCESSFUL NESTING BY  

FEMALE ROSS’S GEESE? 

 

4.1 ABSTRACT 

Life history theory assumes a trade-off between current reproduction and survival. Most 

bird studies have focused on costs of rearing nidicolous young, as these costs are 

assumed to be low in species with nidifugous young. I investigated costs of 

reproduction in a breeding population of Ross’s Geese (Chen rossii), a species having 

self-feeding nidifugous young. I experimentally tested for a trade-off between current 

and future reproduction using modern methods of estimation that permit unbiased 

inference about true survival. I estimated survival and resighting probabilities of female 

geese using multistate capture-resighting analysis that incorporates recoveries of dead 

birds. I found that annual survival estimates of successful nesting birds were 

consistently lower than those of failed breeders. There was evidence that a cost of 

breeding is more likely incurred when conditions during incubation are harsh, and when 

the breeding population is larger. I also found differences in annual resighting 

probabilities of successful and failed nesters, but interacting group and time effects and 

multiple forms of temporary emigration prevent using differential resighting rates to 

draw further inference about the biological process responsible for such detection 

differences. Failed nesters had a larger proportion of total mortality associated with 

hunting; thus, a cost of breeding likely resulted from an increase in vulnerability of 

successful nesters to mortality factors other than hunting. 

 

4.2 INTRODUCTION 

Fundamental to life-history theory is the notion that the evolution of life history 

characteristics is constrained by trade-offs that link life history traits (Roff 1992, Stearns 
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1992). In the context of life-history theory, reproduction and survival are viewed as 

competing processes because individuals must balance the allocation of limited 

resources between these activities. Thus, individuals may incur a cost of reproduction 

(Williams et al. 1966) whereby current reproductive effort (1) reduces survival 

probability, or (2) impedes or prevents future reproductive investment, breeding 

success, or breeding probability, without affecting survival. 

There are clear examples of costs of current breeding effort at the expense of 

future breeding performance in birds (reviews in Nur 1988, Lindén and Møller 1989), 

but evidence for trade-offs between breeding investment and survival probability 

remains inconclusive to date. Studies that have tested hypotheses involving breeding 

costs in birds frequently manipulate numbers of offspring that parents are induced to 

rear, and then compare return rates as a function of offspring number (e.g., Reid 1987, 

Jacobsen et al. 1995, Golet et al. 1998, but see Golet et al. 2004). However, because 

return rates are the product of the probabilities of (1) surviving, (2) returning to the 

study area if alive, and (3) being resighted/recaptured if alive and on the study area 

(Brownie et al. 1993, Nichols and Kendall 1995), group-specific differences in return 

rate may result from differences in any or all of these separate probabilities (Clobert 

1995, Martin et al. 1995). Additionally, most studies have focused on variation in 

family size, conditional on offspring presence, rather than comparing breeders that raise 

young to breeders that do not rear young. 

Using proper methods of estimation, Golet et al. (2004) detected a survival cost 

to reproduction in Black-legged Kittiwakes (Rissa tridactyla) by comparing survival of 

adults that raised young to those whose clutch was removed late in incubation. Their 

findings demonstrated that demands of provisioning nidicolous young compromised 

future reproductive potential by reducing apparent survival of adult birds. Relative to 

nidicolous species, costs of chick rearing in precocial birds with nidifugous young are 

assumed to be low (Winkler and Waters 1983, Rohwer 1992) because they avoid costs 

of food provisioning directly to offspring after hatch as nutrient transfer to young is 

done in ovo. Despite the fact that metabolic costs of caring for growing young are likely 

much lower for nidifugous birds with self-feeding offspring, parenting may still carry 

costs. For example, in ducks and geese, parents that care for young have less time for 



 

 

 

51

self-maintenance (i.e., feeding) than do parents without young (Lessells 1987, Seddon 

and Nudds 1992, Ruusila and Pöysä 1998); thus, brood rearing may inhibit the ability of 

female parents to restore body condition, which in turn, may compromise future 

reproductive efforts or survival. In addition, parents will often put themselves at risk 

while defending young (Afton and Paulus 1992). Although there is potential for 

precocial species to incur costs from brood rearing, this topic has received less attention 

than in altricial species. 

Recent studies that examined costs of brood rearing in waterfowl have 

demonstrated costs to future reproduction (Milonoff et al. 2004) and survival (Hartke et 

al. 2006). These findings were reported for female ducks in which pair bonds dissolve 

after egg laying and females solely provide parental care. Although ducks and geese 

share many life history characteristics, geese have long-term pair bonds and exhibit bi-

parental care (Prevett and MacInnes 1980), so costs associated with brood rearing may 

be less for female geese. 

Evidence for costs associated with brood rearing in geese is equivocal. Williams 

et al. (1994) found no evidence of negative effects to fitness in relation to offspring 

number (over the natural range of brood sizes) in adult female Lesser Snow Geese 

(Chen caerulescens). Whereas, using brood size manipulation, Lessells (1986) found 

that demands of parenthood rendered female Canada Geese (Branta canadensis) less 

efficient at recouping body condition, and they bred later in the following year. 

Considering that parenting may inhibit the recouping of body condition, and that 

survival of adult female geese increases with body condition (Schmutz and Ely 1999), 

successful reproduction may come at a cost to survival of female geese.  

Herein, I experimentally tested whether nest success by Ross’s Geese (C. rossii) 

resulting in offspring that accompany adults after hatch constituted a cost, a benefit or 

was a neutral influence on adult female survival probability. In addition to comparing 

group-specific survival rates, I estimated the effect of three ecological covariates on 

survival probability: a year-specific index of timing of breeding, temperature during the 

nesting interval, and prefledging age-ratios during capture efforts. I used multistate 

capture-recapture analysis that incorporates information from recoveries of dead birds 

(Kendall et al. 2006) sampled over their entire distribution so that estimates were of true 



 

 

 

52

survival, i.e., unconfounded by emigration probability (Brownie et al. 1985). To my 

knowledge, this is the first study to investigate costs to true survival as a result of 

successful nesting. 

 

4.3 METHODS 

4.3.1 Data 

Data used for this analysis were collected at Karrak Lake during surveys for 

neckbanded geese, described in Chapters 1 and 3. 

 

4.3.2 Analysis 

I used multistate models (Arnason 1973, Hestbeck et al. 1991, Brownie et al. 

1993, Schwarz et al. 1993), as implemented in Program MARK, that combine 

information from resightings of unique marks on live birds during nesting with 

information from marks recovered from dead birds killed and reported by hunters for 

years 2000-2003 (hereafter recoveries; Kendall et al. 2006). Such multistate models 

permit estimation of true survival probability (S), resighting probability (p), state-

specific transition probability (ψ), and reporting probability (r). Reporting probability is 

distinct from band reporting rate, λ, which is the probability that a hunter will report the 

band given that (s)he has killed and retrieved a banded bird (Brownie et al. 1985). Yet, 

both reporting probability and band reporting rate have an association with recovery 

probability, f, which is the probability that a marked bird is killed and retrieved by a 

hunter, and its band reported (Brownie et al. 1985). Reporting probability is 
)1( S

fr
−

= , 

or the proportion of mortality, M = (1 - S), composed of birds shot, retrieved and 

reported.  My main interest was to compare survival of adult females from two 

experimental groups or states: (1) those in a control group that hatched at least one 

gosling (state 'S'), and (2) those in a treatment group whose eggs were removed from 

their nests, thereby inducing total nest failure (state 'F'). I also was interested in 

comparing state-specific reporting probabilities because they can provide insight into 

the fraction of total mortality associated with harvest. It is reasonable to assume that the 

reporting component of r would not depend upon previous nest fate; thus, support for 



 

 

 

53

group-specific differences in r would suggest differential vulnerability to hunting 

mortality. In my study, state-specific resighting probability was confounded with 

probability of permanent emigration from the study area on the nesting grounds. 

However given presence on the study area, I could think of no biological or 

methodological reason why detection should have been related to previous nest fate per 

se.  So, differences in resighting probability in relation to nest fate could only result 

from differences in emigration probability. The transition of many individuals from 

successful to failed state was induced as part of the experimental design, and was of no 

direct ecological interest, so reductions in model structure of ψ do not represent tests of 

biological hypotheses.  

I began with a candidate set of models that excluded covariate effects (M = 16). 

The global model included all potential sources of variation and interactions {Sg*t, pg*t, 

ψg*t, rg*t,}. Subscripts 'g' and 't' represent group (i.e., nest fate) and time effects, 

respectively; whereas, absence of group, time, or covariate effects is denoted by a 

period (e.g. ψ.). I reduced the structure of transition probability while maintaining full 

structure in other parameters because transitions between nest fates did not always 

represent ecological processes, but instead resulted from manipulations of nest fate. I 

maintained the best structure of transition (i.e., ψ.) when testing for group differences 

and temporal variability in survival, resighting, and reporting probabilities. When 

evaluating temporal variation in survival, I also considered two time trend models 

(denoted by 'T' e.g., Sg*T), because Ross’s Goose survival has recently declined with 

increased harvest (Alisauskas et al. 2006a).  

Using the structure of the best-approximating model, I further considered 10 

additional models in which survival was constrained to be a function of single or 

combinations of year-specific covariates. Arctic-nesting geese incur significant 

physiological costs during reproduction, which are likely to be greater when 

environmental conditions are harsh or when nesting is delayed. Thus, I hypothesized 

that in years of later mean nest initiation, or when colder temperatures persist during 

nesting, females are more likely to finish nesting in poorer condition; such reduced 

condition may impinge on survival probability. I predicted a negative relationship 

between survival and an early-late index (ELI) of timing of nest initiation (calculated as 
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the difference between annual mean nest initiation and the long-term average for 1991-

2003, Julian date), and a positive relationship between survival and average relative 

temperature during nesting (calculated as mean wind chill during nest initiation and 

incubation; WC, °C). I further considered that harvest of Ross’s Goose adults may 

increase in years when there is high production of goslings; this is because juvenile 

geese are twice as vulnerable as adults to hunting (Alisauskas et al. 2006a) and adults 

closely associate with young. I tested this prediction by constructing models in which 

adult survival was constrained as a function of annual juvenile/adult age ratios (JAR) 

determined from banding data. Lastly, birds that experienced natural nest failure may 

have represented individuals of low quality; so, I considered a model wherein the 

parameter structure was similar to that of the best approximating model, using three 

groups instead of two. 

I used AICc for model selection and modified the design matrix for all 

manipulations of model structure using the logit link function. The relative plausibility 

of each model was assessed by comparing differences between the AICc value for the 

best model and values for all other models (∆AICc), and by comparing Akaike model 

weights (Burnham and Anderson 2002). Akaike weights (wi) sum to 1, and wi provides 

a measure of the support for model i given the data and the set of models. I based 

inference and model averaged parameter estimates on a confidence set of models for 

which the evidence ratio 
( )

( ) 125.0
|

|

min

≈
xg

xgi

L
L

(Burnham and Anderson 2002) where L is 

the likelihood of model gi, given the data x, and gmin is the best-supported model. I could 

not assess goodness-of-fit of these data because methods have not been developed for 

multistate models with recoveries. However, I was reassured by the fit of data to 

multistate models where states represented nesting densities (Chapter 3) and thus, 

considered the data robust for analysis using multistate models that incorporate 

recoveries.  

 

4.4 RESULTS 

There were 894 resightings of 665 neckbanded females for which nest fate was 

known. Forty-two of these females were reported as shot and recovered by hunters.  
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Table 4.1. Results of model selection for multistate models incorporating dead 
recoveries for female Ross’s Geese breeding at the Karrak Lake colony, Nunavut, 
Canada, 2000-2003. Model parameters include: true survival (S), recapture (p), 
transition (ψ), and reporting (r) probabilities. Asterisks indicate interactions between 
group effects (g: successful and failed nesting attempt, or 3g: successful, natural failure 
and experimental failure) and temporal variability (t); whereas, '+' denote additive 
effects in model structure. Year-specific covariates are wind chill (WC), early-late index 
(ELI), and juvenile/adult age ratio (JAR). Absence of group, time, or covariate effects is 
denoted by a period within parentheses. 'Global' denotes the most parameterized model. 
 
Model     Deviance  ∆AICc  ωAICc  K 
S(g+WC) p(g*t) ψ(.) r(g)   1643.65     0.00  0.150    12 
S(g*WC) p(g*t) ψ(.) r(g)   1642.06     0.47   0.119    13 
S(g+WC+JAR) p(g*t) ψ(.) r(g)  1642.22     0.63  0.110    13 
S(g+ELI)  p(g*t) ψ(.) r(g)   1644.50     0.85   0.098    12 
S(g+WC+ELI) p(g*t) ψ(.) r(g)  1642.69         1.10  0.087    13 
S(g*t) p(g*t) ψ(.) r(g)   1636.58     1.19  0.083    16 
S(g*ELI) p(g*t) ψ(.) r(g)   1642.86      1.27  0.080    13 
S(g+t) p(g*t) ψ(.) r(g)   1640.88      1.35  0.076    14 
S(g+WC+ELI+JAR) p(g*t) ψ(.) r(g)  1640.88      1.35  0.076    14 
S(g+ELI+JAR) p(g*t) ψ(.) r(g)  1643.89      2.30  0.048    13 
S(g*t) p(g*t) ψ(.) r(.)   1641.21      3.75  0.023    15 
S(g*t) p(g*t) ψ(.) r(g+t)   1635.19      3.96  0.021    18 
S(g*t) p(g*t) ψ(.) r(t)   1638.43      5.13  0.012    17 
S(g*t) p(g*t) ψ(.) r(g*t)   1635.12      5.99  0.007    19 
S(g*t) p(g*t) ψ(g*t) r(g*t) global  1630.89     8.04   0.003   22 
S(g*t) p(g*t) ψ(g) r(g*t)   1635.11     8.07   0.003   20 
S(g*t) p(g*t) ψ(t) r(g*t)   1633.15     8.20   0.002   21 
S(t) p(g*t) ψ(.) r(g)   1650.52     8.93   0.002   13 
S(g*JAR) p(g*t) ψ(.) r(g)   1652.31   10.72   0.001   13 
S(g+T) p(g*t) ψ(.) r(g)   1656.74   11.03   0.000   11 
S(g+JAR) p(g*t) ψ(.) r(g)   1656.47   12.83   0.000   12 
S(g*T) p(g*t) ψ(.) r(g)   1656.64   12.99   0.000   12 
S(g) p(g*t) ψ(.) r(g)   1662.31   16.60   0.000   11 
S(g*t) p(g+t) ψ(.) r(g)   1676.58   39.12   0.000   15 
S(g*t) p(t) ψ(.) r(g)   1682.73   41.13   0.000   13 
S(g*t) p(g) ψ(.) r(g)   1693.37   49.72   0.000   12 
S(3g*t) p(g*t) ψ(.) r(g)   1770.90 137.59  0.000  17 
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There was no support for models in which the effects of group or time were 

eliminated from the parameterization of S or p, thus indicating that group and temporal 

structure existed. Similarly, there was no support for stratification of nest fate into three 

groups described in METHODS (Table 4.1; model {S(3g*t) p(g*t) ψ(.) r(g)}). My results 

support the hypothesis that successful reproductive comes with cost to survival; in 

general, survival was best parameterized with additive effects between group and 

ecological covariates or time, but there was some support for models with interactions 

between these terms (Table 4.1). Estimated survival probability of successful nesters 

was consistently lower than that of failed nesters, but 95% confidence intervals 

overlapped considerably in three of four years (Fig. 4.1). Nevertheless, the model-

averaged effect size of breeding success (where success = 1 and failure = 0) on survival 

over all years was 87.0ˆ −=β (-1.94, 0.21 unconditional 95% CI). The unconditional 

90% confidence interval for overall effect size was –1.77, 0.04). Examination of model-

specific estimates for the effect of breeding success on survival revealed that when 

survival was parameterized as S(g*t), standard errors of effect size were much larger than 

other models included in the confidence set. If these two models are removed from the 

confidence set (remaining models ΣωAICc = 0.84), the effect size is 73.0ˆ −=β (-1.41, -

0.04, unconditional 95% CI). Models in which survival was constrained to be a function 

of covariates were generally better supported than models without constraints. I model-

averaged slope estimates of environmental covariates over the subset of models in 

which these effects were included. Models with wind chill as a covariate for survival 

received the most support (ΣωAICc  = 0.54, 99.2ˆ =β , -1.23, 7.20, unconditional 95% 

CI), followed by those with nest initiation date  (ΣωAICc  = 0.39, 46.0ˆ =β , -5.05, 5.98) 

and age ratio (ΣωAICc  = 0.23, 77.3ˆ =β , -2.91, 10.47). The slope coefficient was in the 

direction predicted by my hypotheses about respective influence of wind chill on 

survival, but not for lateness of nesting or age ratio during marking. Although 

confidence intervals around model-averaged slope estimates for wind chill included 

zero, slope coefficients for effects of wind chill were in the predicted direction in all 

models that included these constraints, and confidence intervals excluded zero in three 

of these models. Resighting probability was best parameterized as time dependent that 
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differed between groups; detection of failed nesters was greater than of successful 

nesters in the first two years, but greater for successful nesters in the last (Fig. 4.2). 

Reporting probability was best parameterized without temporal variability but differed 

between birds that were successful (rs = 0.049, 0.028, 0.086 unconditional 95% CI) and 

unsuccessful (rf = 0.119, 0.075, 0.184) at their nesting attempt. Assuming equal band-

reporting rate between treatment groups, this result suggests that the fraction of total 

mortality associated with harvest was greater for failed nesters.
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Fig. 4.1. Model-averaged estimates of annual survival probabilities, 95% CI( iŜ ), of 
adult female Ross’s Geese that hatched and failed to hatch eggs at the Karrak Lake 
colony, Queen Maud Gulf Migratory Bird Sanctuary, Nunavut, Canada, 2000-2003. 
Estimates are based on multistate models incorporating recoveries of dead birds. 
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Fig. 4.2. Estimates of annual resighting probability, 95%CI( ip̂ ), of female Ross’s 
Geese following successful and failed nesting attempts at the Karrak Lake colony, 
Queen Maud Gulf Migratory Bird Sanctuary, Nunavut, Canada, 2000-2003. Results are 
from multistate models incorporating dead recoveries. Model-averaged parameter 
estimates are presented with 95% CI.   
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4.5 DISCUSSION 

Although the costs of rearing precocial young have often been considered low (Winkler 

and Waters 1983, Rohwer 1992) and most evidence suggests that trade-offs are absent 

between current reproduction and future reproduction or survival in precocial species 

(Savard and Eadie 1989, Williams et al. 1994, Loonen et al. 1999, but see Milonoff et 

al. 2004, and Hartke et al. 2006), my results demonstrate a cost of reproduction to future 

survival of female Ross’s Geese. In my comparison, successful and unsuccessful 

females should have had similar costs of egg laying, so the cost of reproduction likely 

arises from differences in terms of energetic costs of late incubation (~1 week) and 

brood rearing. I suggest that environmental conditions during nesting, and composition 

of individuals within the breeding population, are the most plausible factors responsible 

for annual variation in the magnitude of reproductive costs in female Ross’s Geese. 

Estimates of survival for successful nesting female Ross’s Geese were 

consistently lower than those of failed nesters. Confidence in this inferred effect of 

breeding on survival was strengthened because I combined direct experimentation with 

modern methods of estimation that permit unbiased inference about survival. I also 

found weak support for a relationship between temperature during nesting and survival 

probability in the year following breeding in both successful and failed breeders. The 

difference in survival was more likely to be greater between groups when conditions 

were colder during incubation; thus any effects of temperature on survival were greater, 

i.e., during cooler years, on breeders than on failed nesters (Fig. 4.1). I found no 

relationship of survival to group-level covariates for timing of breeding or post-breeding 

age ratio prior to departing the arctic for fall migration. Contrary to my prediction, the 

observed pattern of survival suggested that survival declined in years of earlier nest 

initiation and increased when breeding was delayed. This pattern underscores a 

potential sampling limitation (discussed below), but considering that the number of 

geese nesting at Karrak Lake increases with earlier breeding (Alisauskas unpublished 

data), probably due to increased likelihood of breeding, then a cost of breeding to 

survival may more likely appear when incidence of breeding is greater. Survival of both 

groups was lower in years with earlier nest initiation (2001 and 2003), and the distance 

between point estimates of group-specific survival was greater in these years (Fig. 4.1). 
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These findings are consistent with the hypothesis that reproduction poses a trade-off 

that is expressed physiologically by increased mortality, and complemented my finding 

of a cost of reproduction on survival to adults that were not relieved of parental duty by 

means of experimental manipulation. 

Detection of trade-offs between fitness components in wild populations can be 

difficult because environmental interactions can lead to positive correlation between life 

history traits (van Noordwijk and de Jong 1986). Furthermore, free-ranging populations 

often are composed of individuals that differ in quality, where ‘good’ individuals may 

outperform ‘poor’ individuals in several life history traits (Cam et al. 2002). 

Consequently, the ability to detect trade-offs is influenced by the degree to which the 

sampled population reflects true variation in individual quality found within the real 

population.  

The extent to which a population of interest is sampled in proportion to its actual 

composition can be confounded by temporary emigration. For example, snow 

conditions on breeding areas can cause marked annual variation in probability of 

breeding by arctic-nesting geese (Reed et al. 2004). Considering that reproductive 

decisions are adjusted to body condition and migratory behavior in Greater Snow Geese 

(Bêty et al. 2004), it is likely that incidence of breeding increases as favorable nesting 

conditions develop earlier, as individuals are probably more apt to assume the risks of 

breeding. Reduced variation in individual quality within the sampled population would 

impede my ability to detect consistently annual evidence for a cost of breeding to 

survival if in some years the population of breeders consists primarily of good quality 

individuals. This is particularly pertinent when there is positive covariation between 

survival and breeding probability (Cam et al. 2002). In my study, sampling was 

restricted to the breeding population, as nonbreeders remained outside the colony in 

which my study area was located (Figure 3.2). I was unable to directly estimate 

breeding probability due to sampling limitations, but considering that survival alone 

cannot be responsible for the observed annual changes in population size of nesting 

geese at Karrak Lake (R. Alisauskas unpublished data), breeding probability of Ross’s 

Geese likely varies markedly from year to year, as in other species of arctic-nesting 

geese (Reed et al. 2004, Sedinger et al. 2006). In years of lower breeding probability it 
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was possible that the sample was composed of better quality individuals representing a 

smaller range of individual quality than in a year when a larger fraction of the 

population bred. Thus, the cost of breeding may be more acute in years when breeding 

phenology is earlier because it seems reasonable that when conditions favorable to 

breeding develop earlier, the proportion of low quality individuals composing the 

breeding cohort will increase. 

Reproductive costs may not necessarily involve a direct reduction in survival 

probability following reproduction, but instead could be expressed as reductions in 

breeding probability in the following year. In my capture-recapture study, nonbreeding 

represents a form of temporary emigration because nonbreeders do not remain at 

breeding colonies. Such temporary emigration from the study area without death is 

confounded with detection probability, and so would predictably result in reduced 

resighting probabilities. Thus, if successful nesting results in lower breeding probability 

relative to failed nesters in the following year, resighting probabilities may provide 

insight into biological processes. Viallefont et al. (1995) used such differences in 

recapture rates of Lesser Snow Geese to infer that age of first breeding directly affected 

the likelihood of nesting the following year, i.e., the cost of breeding was much more 

acute in younger birds. 

In my study, lower resighting probability of successful nesting Ross’s Geese in 

2001 and the qualitatively similar result in 2002 (Fig. 4.2), is consistent with the 

prediction that successful nesting comes at a cost by lowering breeding probability in 

the following year. This pattern, however, did not persist in 2003 as resighting 

probability declined markedly for failed breeders. I could think of no methodological or 

biological reason why previous nest fate should influence detectability of marked 

Ross’s Geese, given presence at Karrak Lake; hence, differences in group-specific 

resighting probabilities should have reflected differences in rates of emigration (or 

absence from the sample population). However, given that an animal is alive, 

emigration from my study area could result from nonbreeding, or from breeding outside 

the study area. I detected no difference in probability of moving to another breeding 

colony in a small sample of females for which I knew the fate of their previous breeding 

attempt (Chapter 3), but failed nesting increased distance of dispersal before Ross’s 
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Geese nested in the same colony the following year (Chapter 3). Such increased 

propensity to move farther by failed nesters also may predispose failed nesters to leave 

the sample population at a greater rate than successful nesters, especially if the 

magnitude of the dispersal response to failed breeding increases with the number of 

failed breeding attempts an individual experiences. Because emigration from the sample 

population can result from nonbreeding or breeding dispersal, both resulting in lower 

resighting probability, I am precluded from making inference into biological process 

based on comparisons of group-specific resighting probabilities 

 To my knowledge, this is the first study to detect reduced survival probability 

following successful production of offspring in geese. Successfully nesting females 

incurred a cost to survival, but contrary to my prediction, this cost did not appear to be 

related to increased vulnerability to hunting mortality. Failed nesters had a larger 

proportion of total mortality associated with hunting, and thus were more vulnerable to 

this mortality factor. Hence, the cost of breeding incurred by female Ross’s Geese in 

this study, likely resulted from increased vulnerability to mortality factors other than 

hunting. This is an interesting result considering the benefits of social structure in geese. 

Goose families remain together at least until the beginning of reproduction the 

following year (Prevett and MacInnes 1980), and these social bonds result in a 

dominance hierarchy such that large goose families dominate smaller families, which in 

turn, dominate pairs and single geese (Boyd 1953, Hanson 1953, Raveling 1970, 

Gregoire and Ankney 1990). Dominance leads to acquisition and defense of food 

patches (Gregoire and Ankney 1990) and so presumably affords nutritional benefits to 

parents with young compared to adults without young. Results of my study suggest that 

the benefit of increased social dominance to females that have families may be offset, in 

part, by an increase in mortality to adult females. 
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CHAPTER 5. SURVIVAL OF ROSS’S GEESE: SEX DIFFERENCES, 

BREEDING CHRONOLOGY AND BREEDING LONGITUDE 

 

5.1 ABSTRACT 

I investigated sex differences, and the effects of timing of breeding, and longitude of 

capture on survival of Ross’s Geese (Chen rossii), marked between 1991-2003, in the 

Queen Maud Gulf Migratory Bird Sanctuary, Nunavut, Canada. Based on (1) earlier 

evidence for apparent differences in affinity to winter areas by different breeding 

subpopulations, and (2) far higher limits to daily harvest by hunters in midcontinent 

flyways than in the Pacific flyway, I predicted that survival probability of Ross’s Geese 

would decline from western to eastern breeding longitude. Contrary to my prediction, I 

could detect no such relationship. Overall, survival of adult females was 0.02 lower than 

that of adult males; thus, average longevity of adult females was only 80-89% that of 

adult males. Models that included timing of breeding in the parameterization of adult 

survival were better supported over those without, suggesting that timing of breeding 

has some influence on survival of adult geese. Consistent with other studies, I also 

found a strong negative relationship between timing of breeding and survival of juvenile 

Ross’s Geese. In years when breeding was delayed, usually by late snowmelt, survival 

for corresponding cohorts of juvenile Ross’s Geese was reduced. I estimated that annual 

survival of juveniles declined by ~0.02 each day that hatch was delayed.  

 

5.2 INTRODUCTION 

Anthropogenic influences can impose pressures on the life history of organisms 

different from those under which such species evolved. Human activity can induce 

continental or global changes in the distribution of habitats and associated resources. In 

turn, this can have large-scale effects on the distribution and abundance of free-ranging 
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wildlife populations. Additionally, direct exploitation of such populations by humans 

can affect vital rates whose dynamics over the annual cycle or geographic range of an 

animal may be vastly altered. To properly manage and conserve such exploited wildlife 

populations, a broad understanding of the geographic and temporal variation in vital 

rates should be a goal of applied wildlife biology. An excellent North American 

example of anthropogenic effects on free-ranging wildlife populations involves 

midcontinent Lesser Snow Geese (Chen caerulescens caerulescens, hereafter Snow 

Geese; Ankney 1996, Batt 1997, Jefferies et al. 2004a,b). Although a highly sought-

after species by humans, numbers of snow geese have grown far above historic levels 

(Batt 1997). This unprecedented population growth has resulted in severe environmental 

degradation in some breeding areas (Batt 1997). The review by Batt (1997) led to 

recommendations for increased harvest with the objective of reducing population 

density on arctic breeding areas (Rockwell et al. 1997). 

 Major changes in management have been implemented to reduce the population 

of mid-continent Snow Geese. The main approach has been to encourage increased 

annual harvest. For example, season lengths and daily limits to harvest by individual 

hunters increased incrementally in the U.S. Central and Mississippi Flyways (hereafter 

midcontinent flyways) and Canadian Prairie Provinces during the 1990s. Hunting 

regulation were further liberalized in February 1999 under a special conservation order 

allowing harvest of light geese in U.S. midcontinent flyways between 10 March and 1 

September, and special regulations in Canada permitted harvest of Snow Geese during 

spring and summer in Manitoba (beginning 1999) and Saskatchewan and Nunavut 

(beginning 2001). Although directed primarily at Snow Geese, these regulatory changes 

have potential to affect Ross’s Goose (C. rossii, referred to collectively with Snow 

Geese as ‘light geese’) populations because harvest management of Ross’s Geese is 

done in aggregate with Snow Geese (Moser and Duncan 2001), and Ross’s Geese are 

now common in midcontinent flyways, where they overlap with the midcontinent Snow 

Goose population. 

The continental population of Ross’s Geese has increased dramatically in 

abundance, and expanded its distribution eastward (Dzubin 1965, McLandress 1979, 

Ryder and Alisauskas 1995, Moser 2001, Alisauskas et al. 2006a). Historically, Ross’s 
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Geese wintered largely in California and occurred only rarely in the midcontinent 

before the 1970s (Bellrose 1976). Ross’s Geese are now commonly sighted (Alisauskas 

1998) and hunted (Alisauskas et al. 2006a) in the midcontinent region, far outside of 

their previous winter range. The affinity of Ross’s Geese to eastern vs. western portions 

of this broadened winter range also corresponds somewhat with the longitude at which 

they are found during summer. For example, Ross’s Geese marked in the western 

portion of the Queen Maud Gulf Migratory Bird Sanctuary (QMGMBS) are more likely 

to be recovered in the Pacific Flyway (71%) than those marked in the central (52%) or 

eastern (21%) parts of the Sanctuary (Alisauskas et al. 2006a). Hunting mortality of 

adult geese is largely additive to natural mortality (Francis et al. 1992, Gauthier et al. 

2001, Alisauskas et al. 2006a), so the recent liberalization of opportunities for hunting 

light geese in midcontinent flyways that far exceeds those on traditional Ross’s Goose 

winter areas in the Pacific Flyway may have resulted in geographic heterogeneity in 

survival rates. Spatial and temporal variation in adult survival can affect population 

dynamics, especially in long-lived organisms, such as Ross’s Geese, where change in 

population size is usually most sensitive to adult survival (Lebreton and Clobert 1991, 

Rockwell et al. 1997, Alisauskas and Rockwell 2001). Such longitudinal clines in 

breeding distributions, winter distributions, and hunting pressure lead to a prediction of 

clinal variation in survival probability in Ross’s Geese. Geese are highly mobile, 

however, and the strength of this prediction would be undermined by the frequency with 

which Ross’s Geese change winter areas. 

Knowledge about sex differences in energy demand and predation risk in arctic-

nesting geese suggests the possibility of sex differences in survival. Metabolic costs are 

substantially greater for female geese than for males during the breeding season 

resulting in poorer female condition at the end of nesting relative to males (Ankney 

1977, Ankney and MacInnes 1978, Ankney 1982). Recently, Samelius and Alisauskas 

(2006) estimated sex-specific probabilities of Snow Goose depredation by Arctic Fox 

and found that females faced a far greater probability of physical contact with these 

predators. Sex differences in energetics, behavior, and predation risk associated with 

reproduction predict reduced survival of female Ross’s Geese compared to males.  

Resulting differences could have important consequences on population models of 
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Ross’s Geese, which are important for proper conservation and management. Although 

sex differences in survival of adult ducks are obvious (Johnson et al. 1992), most 

previous studies of geese have reported similar probabilities of annual survival for both 

sexes (Samuel et al. 1990, Francis and Cooke 1992b, Ward et al. 1997, Menu et al. 

2002).  In Chapter 4, I provided evidence that successful nesters survived at lower rates 

than did failed nesters, and that the strength of this effect varied annually. Herein, I was 

interested to test the prediction of diminished survival of female Ross’s Geese in 

relation to males. 

In addition to a prediction of lower survival among females compared to males, 

several lines of evidence suggest that sex difference in mortality of arctic-nesting geese 

should be greater when breeding is delayed. Survival of adult females is related to body 

condition (Schmutz and Ely 1999), and ability to restore condition is likely influenced 

by the time available between hatch and southward migration (Raveling et al. 1992, 

Schmutz et al. 1994, Schmutz and Ely 1999); thus, in addition to sex differences, 

survival probability may be compromised by delays in annual breeding schedules. 

Previous research on breeding chronology in arctic-nesting geese focused on its 

influence on recruitment (e.g., Cooch 2002, Slattery and Alisauskas 2002, Alisauskas 

2002) through combined effects of timing of fledging, breeding propensity, clutch size, 

nest success and gosling survival. Instead, I was interested in the role that delays in 

reproduction, brought on largely by delayed arctic snowmelt, might play as an influence 

on adult survival in arctic-nesting geese. I reasoned that further stratification by sex of 

heterogeneity in adult survival could lead to (1) increased precision of estimates and 

improved ability to offer management prescriptions, while also (2) contributing to our 

general understanding of population dynamics in arctic-nesting geese. 

I tested whether the location where geese were captured on the breeding grounds 

played a role in heterogeneity of annual survival rate in Ross’s Geese. Survival of adult 

geese declines as harvest increases (Francis et al. 1992, Gauthier et al. 2001, Alisauskas 

et al. 2006a); thus, I predicted that survival probability of Ross’s Geese would decline 

with longitude of banding (i.e., from west to east) in response to a presumed cline in 

harvest pressure. I also examined whether survival differed between sexes; such a 

difference has relevance to (1) lifetime reproductive success, and thus (2) proper 
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construction of population models for Ross’s Geese. Lastly, I tested the hypothesis that 

adult survival declines when breeding is delayed. 

 

5.3 METHODS 

5.3.1 Data 

I used data from goose banding efforts 1991-2003. Juvenile geese were not marked with 

neckbands during 1991-1993 or 2002. Ross’s Geese were captured on brood-rearing 

areas about 4 weeks after they dispersed from highly insular breeding colonies, so I did 

not know with certainty the breeding colony occupied that year. Nevertheless, Ross’s 

Geese generally moved north, within days of hatch, to brood-rearing areas adjacent to 

nesting colonies (Slattery 2000). So, for example, it is reasonable to assume that geese 

captured in the region north of Karrak Lake originated from a colony in the vicinity of 

Karrak Lake (i.e. within 30 km; Slattery 1994) in the year of marking, and not from the 

other two sampled regions (i.e., Perry River 85 km to the west, or McNaughton River 

100 km to the east). A longitudinal correspondence between summer banding locations 

and migration and wintering locations suggests that the probability of a Ross’s Goose 

using a midcontinent flyway increases as longitude of banding location declines 

(Alisauskas et al. 2006a). Thus, I used longitude at which geese were first captured as a 

continuous individual covariate. 

 

5.3.2 Analysis 

I obtained recovery information from the Bird Banding Laboratory and 

considered only geese that were shot by hunters or researchers. Data were formatted 

into individual encounter histories so that longitude of banding could be included as an 

individual covariate. I used the band recovery models of Brownie et al. (1985) as 

implemented in Program MARK to estimate annual survival, Si, and recovery, fi, 

probabilities. I used age-structured models to accommodate the transition of juvenile 

birds (or hatch-year [HY]) to adult birds (or after hatch-year [AHY]) during the interval 

following banding. One-year intervals begin at the midpoint of banding in year t until 

the midpoint of banding in year t + 1. I constrained Program MARK to not estimate Si 

or fi of neckbanded goslings for years when none were marked. Thus, the global model 
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{S A (LB[s*t] * NB[s*t]) * J (LB[s*t] * NB[s*t])  f A (LB[s*t] * NB[s*t]) * J (LB[s*t] * NB[s*t])} had 184 estimable 

parameters instead of 200, where 'A' and 'J' represent AHY and HY age-classes, 

respectively, 'LB' and 'NB' refer to marker type (legband only vs. neckband plus 

legband), 's' represents sex, and 't' represents time (year). I assessed goodness-of-fit of 

the global model using the median ĉ  test in Program MARK and applied a variance 

inflation factor ( ĉ  = 1.198 ± 0.043 SE) to correct for possible overdispersion and to 

adjust variance estimates of iŜ  and if̂ .  

Model selection was based on minimization of AICc after adjusting values for 

overdispersion (QAICc; Burnham and Anderson 2002). I assessed the relative 

plausibility of each model by comparing differences between the QAICc value for the 

best model and values for all other models (∆QAICc), and by comparing Akaike model 

weights (Burnham and Anderson 2002). Akaike weights (wi) sum to 1, and wi provides 

a measure of the support for model i given the data and the set of models. Models with 

∆QAICc ≤2 were included in the confidence set of best models (Burnham and Anderson 

2002). I considered models where survival and recovery rate parameters were 

constrained to be equal over potential sources of variation such as sex and time, but I 

maintained marker and age structure in all models because neckbands are known to 

influence survival (Schmutz and Morse 2000, Alisauskas and Lindberg 2002, 

Alisauskas et al. 2006a), and because survival and recovery probabilities commonly 

vary by age-class in geese and most other vertebrates. As alternatives to interacting 

main effects on both Si and fi, I considered additive models with parallelism in effects 

on Si and fi over time. Because my interest was primarily in survival, I sequentially 

constrained parameters in a hierarchy of models by first testing time and sex effects as 

sources of variation in recovery rates, and then used the best parameterization of 

recovery when testing for effects on survival. An earlier analysis based in part on the 

same banded sample of Ross’s Geese (Alisauskas et al. 2006a) found strong support for 

models that considered temporal variation in age-specific Si as either linear time trends, 

ST, or as a function of age-specific annual harvest as a group covariate, SH; thus, I 

included models with these parameterizations when evaluating temporal variation in Si 

and fi. I followed the approach used by Alisauskas et al. (2006a) for estimating total 

annual harvest of Ross’s Geese for each age class. I investigated the effect of timing of 
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breeding on survival by including mean nest initiation date at Karrak Lake (Alisauskas 

unpublished data), denoted as 'NID' in model notation, as a year-specific covariate to 

explain temporal variability in Si. I predicted that survival of HY geese would decline 

with later nest initiation because timing of hatch is a major source of variation in 

gosling growth and development (Cooch et al. 1991b, Sedinger and Flint 1991, Lepage 

et al. 1999), and first-year survival of Snow Goose goslings hatched in late years is 

lower than those hatched in early years (Francis et al. 1992). The predicted relationship 

between survival of adult geese and NID is less clear. On one hand, I might expect a 

negative relationship if later NID results in adult geese completing the nesting period in 

poorer condition relative to earlier years and this leads to increased vulnerability to 

mortality factors (i.e., a cost of breeding). Alternatively, environmental conditions that 

bring about delayed nesting may also reduce breeding probability, and reduce the 

proportion of the population incurring physiological costs of breeding. I used the 

structure of the best approximating model when assessing longitude of banding (BLON) 

as an individual covariate explaining variation in survival probability. Hence, I assessed 

fit of three models wherein (1) slopes between the covariate BLON and various 

combinations of age and marker type were different, (2) slopes were parallel between 

marker types but not ages, or (3) slopes were parallel between all 4 combinations of age 

and marker type. 

 

5.4 RESULTS 

 Numbers of geese captured and marked during 1991-2003 were: 10,412 adults 

with legbands, 12,996 adults with neckbands, 11,452 goslings with legbands, and 3,370 

goslings with neckbands of which 661, 1,074, 718, and 319, respectively, were shot and 

reported to the Bird Banding Laboratory until the end of the 2002/2003 hunting season. 

Although the adult sample included some subadults and adult nonbreeders, most of the 

adults in this sample had attempted to breed in the year of their capture (i.e., ~95% of 

AHY females captured during 1999-2003 had a visible brood patch). I considered 75 

models with survival and recovery probabilities structured by age, marker type, sex, and 

time. Before assessing the effect of BLON on iŜ , Akaike weight of the best model {S A 

(LB[s+NID+H] * NB[s+NID+H]) * J (LB[NID] * NB[NID]) f A (LB[s+t] + NB[t]) * J (LB[s+t] + NB[t])} was 0.912, and 
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support for this model was ~33.5 times (0.912/0.027) that of the next best model; thus, I 

used the structure of this model when testing the effect of the individual covariate 

BLON. Cumulative weight of the top three models was 0.977, and aside from the 

presence of BLON in two of these, parameterization of all other effects on survival and 

recovery was the same (Table 5.1). There was sufficient difference in model quality 

between the best two models (∆QAICc = 3.20), so estimates of survival and recovery 

were based on the best model. 

 Recovery probability varied in an additive manner between marker types within 

the age-classes and generally increased over the course of the study (Fig. 5.1). There 

was considerable uncertainty about how to proceed with the inclusion of sex effects on 

recovery, but when sex effects on recovery were removed from all combinations of age 

and marker types, model quality declined substantially (∆QAICc = 117.98). There was 

equal support for seven models (i.e., within <1 ∆QAICc unit) that included a sex effect 

on fi, albeit in different combinations of age and marker types; thus, I based the 

inclusion of sex effects within each age-class and marker type on the relative support 

from these models. Sex effects on fi were most supported for legbanded adults (ΣωQAICc 

= 0.740) and juveniles (ΣωQAICc = 0.738), and less so for neckbanded adults (ΣωQAICc = 

0.161) and juveniles (ΣωQAICc = 0.536); therefore, I retained sex effects on fi of 

legbanded birds only, and then used this parameterization of recovery {i.e., f A (LB[s+t] + 

NB[t]) * J (LB[s+t] + NB[t])} in subsequent models when evaluating effects on survival. 

Although inclusion of sex effects on LB
if improved model fit, confidence intervals 

around the slope estimate for sex effect included both positive and negative values 

(95%CI( SEXβ̂ ) = -0.061 ± 0.119 on a logit scale). There were no differences in annual 

recovery rates between males and females (Fig. 5.1). There was no support for models 

for which recovery probability of adults or juveniles was constrained to be a function of 

harvest or longitude of banding. 

Annual variation in AHY
iS was best parameterized with combined effects of 

annual harvest and nest initiation date, whereas annual variation in HY
iS  was modeled 

best as a function of nest initiation date only. Within marker type, survival of adults 
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Table 5.1. Model selection results for effects of age (after hatch year vs. hatch year), 
sex, marker (legband [LB] or neckband with legband [NB]), and year, on survival (S) 
and recovery (f) probabilities of Ross’s Geese marked as either adults (A) or juveniles 
(J) within the Queen Maud Gulf Migratory Bird Sanctuary, Nunavut, Canada, 1991-
2003. Only shown are models having a model weight > 0 and the most general model 
from a candidate set of 75 models (variance inflation factor, ĉ  = 1.198). Shown for 
each model are: deviance, quasi-AIC difference corrected for small sample size 
(∆QAICc), model weight (w), and number of parameters (K). Model notation represents 
estimates stratified by age (S A or S J) and marker (LB or NB), with effects of sex (s), 
annual harvest (H), nest initiation date (NID), linear time trend (T), temporal variation 
by time (t), and an individual covariate longitude of banding (BLON). Asterisks denote 
multiplicative interactions among specified effects, whereas a plus sign denotes 
parallelism between effects. 'Global' denotes the most parameterized model. 
 
 
Model 

Quasi- 
Deviance

 
∆QAICc 

 
w 

 
K 

S A (LB [s+H+NID] * NB [s+H+NID]) * J (LB [NID] * NB [NID])  
 f A (LB [s+t] + NB [t]) * J (LB [s+t] + NB [t]) 

 
22293.59

 
0.00 

 
0.729

 
27 

S A ((LB [s+H+NID] * NB [s+H+NID])+BLON) * J ((LB [NID] * NB 

[NID])+BLON)  
 f A (LB [s+t] + NB [t]) * J (LB [s+t] + NB [t]) 

 
22292.79

 
3.20 

 
0.147

 
29 

S A (LB [s+H+NID+BLON] * NB [s+H+NID+BLON]) * J (LB 

[NID+BLON] * NB [NID+BLON]) 

  f A (LB [s+t] + NB [t]) * J (LB [s+t] + NB [t]) 

 
22291.52

 
3.94 

 
0.102

 
30 

S A (LB [s+NID] * NB [s+NID]) * J (LB [NID] * NB [NID])  
 f A (LB [s+t] + NB [t]) * J (LB [s+t] + [NB+t]) 

 
22300.61

 
7.02 

 
0.022

 
27 

S A (LB [s+H] * NB [s+NID] * J (LB [T] * NB [T])  
 f A (LB [s+t] + NB [t]) * J (LB [s+t] + NB [t]) 

 
22297.17

 
13.59 

 
0.001

 
32 

S A (LB [s*t] * NB [s*t]) * J (LB [s*t] * NB [s*t])  
 f A (LB [s*t] * NB [s*t]) * J (LB [s*t] * NB [s*t]) Global 

 
22364.03

 
329.68 

 
0.000

 
156
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Fig. 5.1. Estimates of annual recovery probabilities, 95% CI( if̂ ), of Ross’s Geese 
marked in the Queen Maud Gulf Migratory Bird Sanctuary, Nunavut, Canada, 1991-
2003, as adults (AHY) or goslings (HY), with either legbands only (LB) or also with 
neckbands (NB). Sex effects on recovery probability were not supported for 
neckbanded birds. Estimates derive from the most parsimonious model based on QAICc 
model selection. 
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varied in parallel between the sexes, but there was no parallelism between age-classes 

or marker types over time (Fig. 5.2). Inclusion of sex as an effect on AHY
iS improved 

model fit, and overall adult females survived at a lower rate than males (95%CI( AHY
SEXβ̂ ) 

= -0.257 ± 0.157 on a logit scale). There were no annual differences in survival 

estimates of males and females as confidence intervals overlapped considerably for 

annual estimates, but the reciprocal of the logit transformation,  

( )







+ −

−

882.3

882.3

1 e
e ,          Equation 5.1 

showed that, overall, adult females survive at a rate 0.020 ± 0.019 lower than that of 

adult males. Sex effects on HY
iS were not supported by the data. Inclusion of NID as an 

effect on survival improved model fit, but the effect of NID on survival was equivocal 

for adults having either marker type (95%CI( LB
NIDβ̂ ) = -0.047 ± 0.203 and ( NB

NIDβ̂ ) = 0.035 

± 0.051), and for HY birds marked with neckbands (95%CI( NB
NIDβ̂ ) = 0.018 ± 0.140), as 

estimated coefficients were imprecise and confidence intervals included both positive 

and negative values. As expected, survival declined with later NID in HY birds marked 

with legbands (95%CL( LB
NIDβ̂ ) = -0.069 ± 0.066); the reciprocal of the logit 

transformation, ( )







+ −

−

695.3

695.3

1 e
e , provided an estimate of a daily decline in HY survival of 

~0.021 per day for every day that hatch was delayed. Annual survival of adults was 

negatively related to adult harvest, but this relationship was weaker for adults marked 

with legbands compared to those marked with neckbands (95%CI( LB
Hβ̂ ) = -1.728 ± 

2.902 and ( NB
Hβ̂ ) = -1.682 ± 1.272). Although longitude of banding, was included in 

two of the top three models, its effect on survival was equivocal; estimates for slopes of 

survival in relation to longitude were (95%CI( AHY
BLONβ̂ ) = 0.059 ± 0.133 and ( HY

BLONβ̂ ) = -

0.039 ± 0.248). 
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Fig. 5.2. Estimates of annual survival probabilities, 95% CI( iŜ ), of Ross’s Geese 
marked in the Queen Maud Gulf Migratory Bird Sanctuary, Nunavut, Canada, 1991-
2003, as adults (AHY) or goslings (HY), with either legbands only (LB) or also with 
neckbands (NB). Estimates derive from the most parsimonious model based on QAICc 
model selection. 
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5.5 DISCUSSION 

I predicted that survival probability of Ross’s Geese should decline from 

western to eastern longitudes of banding within QMGMBS because (1) Ross’s Geese 

marked in the eastern QMGMBS tend to be recovered at a much higher proportion in 

the midcontinent than those marked in the western part of the sanctuary (Alisauskas et 

al. 2006a), (2) harvest has increased in the midcontinent such that, for the past several 

years, ≥75% of the U.S. harvest of Ross’s Geese has occurred in the midcontinent 

region (Kruse et al. 2005), and (3) harvest mortality generally is additive to natural 

mortality in adult geese (Francis et al. 1992, Gauthier et al. 2001, Alisauskas et al. 

2006a). Nonetheless, longitude at which Ross’s Geese were banded in the QMGMBS 

did not influence survival probability, so increased harvest in midcontinent flyways 

does not appear to have resulted in differential survival among major colonies of Ross’s 

Geese in the QMGMBS. This result is consistent with findings of equal rates of 

apparent survival among breeding populations (Chapter 2, Drake and Alisauskas 2004). 

Although estimates of harvest rate (i.e., the proportion of birds alive at the 

beginning of the hunting season that are shot and retrieved during that same hunting 

season) for North American geese are absent (but see Gauthier et al. 2001), hunting 

regulations represent an attempt to produce a desired rate of harvest, or at least change 

the harvest rate in a specified direction. Indeed, increases in bag and possession limits 

within midcontinent flyways have resulted in greater harvest of Ross’s Geese, and of 

light geese in general (Kruse et al. 2005). Correspondingly, survival of adult Ross’s 

Geese has declined with increased harvest (Alisauskas et al. 2006a), although results 

herein suggest that this relationship exists only for neckbanded adults. Yet, consistent 

with Alisauskas et al. (2006a), survival in Ross’s Geese overall appears to have 

continued to decline. Despite increased harvest (H), harvest rate 
N
Hh ˆ
ˆˆ = , may not have 

changed, or even may have declined, because the continental population of Ross’s 

Geese has continued to increase at the same time. Additionally, co-occurrence of Ross’s 

Geese in the midcontinent with far more numerous Snow Geese may dilute harvest 

pressure on midcontinent Ross’s Geese compared to those that migrate and winter in the 

Pacific Flyway. Estimates of harvest rates of arctic-breeding geese are unavailable, but 
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if reporting rate (λ) is constant, then recovery rate (f) should reflect harvest rate because 

λhf = . Assuming constant reporting rates, the slight increase in recovery rates of 

Ross’s Geese during this study could be interpreted as evidence for a continental 

increase in harvest rate. But this interpretation of recovery rate should be viewed with 

caution because reporting rate can vary geographically (Henny and Burnham 1976, 

Nichols et al. 1995), and the implementation of 1-800 legbands in 1995 likely has had 

the intended result of increasing reporting rates. Hence, proportional differences in 

recoveries of Ross’s Geese in each flyway (Alisauskas et al. 2006a) may have arisen 

from differences in harvest rate and/or changes in reporting rate. If reporting rate 

changed with implementation of 1-800 legbands, this could easily have confounded any 

relationship between f and H. A study aimed at estimating band reporting rates of arctic-

nesting geese is currently underway and preliminary evidence suggests that band 

reporting rate is higher in the Mississippi Flyway than elsewhere for migrant Canada 

Geese (Branta canadensis) (T. Moser personal communication). If this preliminary 

finding applies to Ross’s Geese, then the east-west gradient in proportions of recoveries 

in migratory flyways may not reflect differences in harvest rate among flyways. 

I think that longitude of capture in the Arctic is a reasonable indicator of 

breeding subpopulation in the year of marking. However, its long-term utility may be 

compromised by the frequent exchange of Ross’s Geese among breeding populations 

and perhaps between winter areas. At the two largest colonies that serve as the major 

source of birds in the sampled areas, probability of breeding dispersal by females was > 

0.11 (Drake and Alisauskas 2004); some individual Ross’s Geese were known to have 

switched nesting colonies in three consecutive breeding attempts (Drake unpublished 

data). Thus, capture location is not necessarily a reliable indicator of previous or future 

breeding location. Good estimates of winter philopatry in geese are generally absent 

(Robertson and Cooke 1999), but in the case where it has been adequately addressed, 

Canada Geese exhibited considerable movement between large geographic regions 

(Hestbeck et al. 1991). Considering the adaptive nature of light geese, illustrated by 

their proclivity to expand range and exploit new habitats (Alisauskas et al. 1988, 

Alisauskas 1998), and the continual increase in numbers of Ross’s Geese found in 

midcontinent flyways (Alisauskas 1998), I suspect that there is substantial movement of 
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individuals among winter areas in the same flyways, and potentially among different 

flyways. Such movement was responsible for the large-scale eastward expansion in 

winter range into the midcontinent by Ross’s Geese (Alisauskas et al. 2006a). Although 

there exists a geographic pattern of recoveries of migrating and wintering Ross’s Geese 

related to their longitude of capture in the Arctic, there is probably sufficient movement 

among subpopulations to confound the ability to detect differences in survival. As well, 

mate loss followed by remating, both of which very likely have increased more recently 

with increased harvest of Ross’s Geese across North America (Alisauskas et al. 2006a), 

may contribute to additional movement. Variation among colonies in migration routes 

(Francis and Cooke 1992a) has potential to result in subpopulation survival differences 

if risk of mortality varies spatially and philopatry persists; however, considering overlap 

in migration routes (Alisauskas et al. 2006a) and the current level of mixing among 

breeding colonies (Chapter 2, Drake and Alisauskas 2004) by geese that winter in 

different flyways, movement may have been sufficiently high to confound detection of 

heterogeneity in survival among breeding subpopulations. 

 Bi-parental care and maintenance of long-term pair bonds throughout the annual 

cycle are life history characteristics of geese that expose both sexes to similar mortality 

risks. Consequently, some mortality factors (especially hunting) probably do not act 

independently on each member of a pair (Prevett and MacInnes 1980). Hence, even if 

survival differs between sexes in adult geese, the difference is likely to be small, 

difficult to detect on an annual basis, and probably confined to certain periods of the 

annual cycle (Schmutz et. 1994, Schmutz and Ely 1999). Using composite Z-statistics, 

Francis and Cooke (1992b) found sexual differences in survival and recovery rates in 5 

of 10 data sets for adult Snow Geese; there was some suggestion that female Snow 

Geese had slightly lower survival than males, but because this difference was small 

relative to total adult mortality, they concluded that mortality was mainly due to factors 

independent of sex. My data supported models that included a sex effect in the 

parameterization of survival of adult Ross’s Geese, and my findings were similar to 

those of Francis and Cooke’s (1992b) in that the sexual difference that we found is 

small relative to total mortality. I was unable to detect annual differences in sex-specific 

survival (Fig. 5.2), but overall, adult females survived at a lower rate than adult males. 
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For long-lived waterfowl such as Ross’s Geese, even small differences in survival can 

project to marked differences in average lifespan. For example, using the lowest 

estimate (0.815) for survival of legbanded adult males I calculate an average lifespan of 

=







− )815.0ln(

1 4.89 years.      Equation 5.2 

Subtracting 0.02 from the survival rate of legbanded males and recalculating an average 

lifespan for adult females shows that their longevity is expected to be 4.36 years, or 

only ~89% of the mean lifespan of adult males. The same calculations with the highest 

estimate (0.915) for survival of legbanded adult males lead to a difference in adult 

lifespan of 2.24 years between sexes; adult females in this case would live only 80% as 

long as adult males, on average. The effect of such apparently small sex differences in 

survival of 0.02 resulting in a 0.11 to 0.20 difference in longevity has potential to 

greatly alter sex-specific expectations of lifetime reproductive success, especially when 

survival rates are high (>0.90). A sex difference in lifetime reproductive success could 

attenuate somewhat because geese are monogamous, and members of the surplus sex 

that result from sex differences in adult survival would have a higher probability of 

nonbreeding; nevertheless, this should result in an unequal sex ratio favoring males. 

I speculate that sexual differences in physiological costs associated with 

reproduction, and increased mortality suffered by nesting females are the most likely 

causes of differential survival between the sexes. Nutritional ecology during winter and 

migration is similar between sexes of Snow Geese (Alisauskas et al. 1988, Alisauskas 

and Ankney 1992), but metabolic costs are substantially greater for females during the 

breeding period resulting in poorer condition at the end of the nesting period relative to 

males (Ankney 1977, Ankney and MacInnes 1978, Ankney 1982). Incubating females 

can even deplete nutrient reserves to the point of starvation (Harvey 1971, Ankney 

1975, 1976). The sex difference in body condition after breeding likely varies annually 

because environmental conditions during breeding can fluctuate markedly from year to 

year. For example, cold and windy conditions increase energy expenditure. In addition, 

during years when breeding is delayed and/or freeze-up occurs early, time available for 

restoring body condition will be shortened before conditions on breeding areas motivate 

southward migration. Other than my results in Chapter 4, I am unaware of any studies 
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that demonstrate a direct negative effect of breeding on survival of adult female geese; 

nevertheless, (1) survival of adult females increases with body condition (Schmutz and 

Ely 1999), and (2) females appear to be most vulnerable during the period following 

reproduction (Raveling et al. 1992, Schmutz et al. 1994, Schmutz and Ely 1999). So, I 

suggest that costs related to breeding provide the most plausible explanation for the 

overall sex difference in survival of Ross’s Geese. 

I did not find unequivocal evidence for a relationship between survival of adults 

and NID, but models that included NID in the parameterization of survival were favored 

over those without NID, suggesting that annual variation in mean NID accounts for 

some of the annual variation in survival of adult Ross’s Geese. Ideally, an investigation 

of the potential for timing of breeding to influence variability in survival should be 

based on marked individuals for whom this variable is known; for most investigations 

of arctic-nesting geese, this is not feasible. As such, I used NID as a year-specific 

covariate to assess the potential for timing of breeding to explain annual variability in 

survival at the aggregate level. I used estimates of NID that were calculated from data 

collected at one of the two largest colonies in the Sanctuary (located in the western 

portion of the sanctuary), so they serve only as an index for breeding chronology for the 

greater metapopulation. This is because I included individuals from different colonies in 

my analysis, and mean NID may have varied among colonies due to a longitudinal cline 

in chronology of snowmelt; such a cline is consistently present each spring, and occurs 

earlier in the western portion of the Sanctuary compared to that 300 km to east (R. 

Alisauskas personal observation). Inclusion of an undetermined number of nonbreeders 

in the capture data likely further confounded my ability to detect an effect of timing of 

breeding on survival. Capture efforts generally focused on brood-rearing flocks, but 

such flocks could have included nonbreeders. Although I was unable to quantify the 

number of nonbreeders captured for each year included in this study, >95% of AHY 

females captured during 1999-2003 had a brood patch and the protocol for capture 

efforts has remained consistent for the duration of the study; thus, most of the adult 

birds included in this analysis had made an attempt to breed in the year of their marking.  

Most (~95%) Ross’s Geese breed within the QMGMBS (Kerbes 1994, Ryder 

and Alisauskas 1995), so my aggregate level analysis permits inference about the effect 
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of breeding chronology on gosling survival at the metapopulation level. Breeding 

seasons of the Queen Maud Gulf (QMG) metapopulation that were delayed, usually by 

late snowmelt, clearly reduced survival for corresponding cohorts of juvenile Ross’s 

Geese. This result is consistent with findings that late-hatching goslings are structurally 

smaller and lighter for a given age than earlier-hatching gosling (Cooch et al. 1991b, 

Sedinger and Flint 1991, Lepage et al. 1999), and show lower rates of survival than 

earlier hatching goslings from the same cohort (Sedinger et al. 1995, Slattery 2000, 

Cooch 2002, Slattery and Alisauskas 2002, Hill et al. 2003). I estimate that survival of 

juvenile Ross’s Geese declined ~0.021 per day, so that a mere 5-day delay in mean nest 

initiation results in a cohort-level decline of ~0.10 (i.e., 0.9795) in offspring survival. 

Reduced offspring survival may act as a strong selection pressure favoring flexible nest 

site selection, especially if flexibility results in earlier breeding. Landscape level 

dispersal by adult Ross’s Geese is not related to previous breeding experience (Chapter 

3), but instead may be motivated by habitat availability as influenced by rates of 

snowmelt. A west-east cline in snowmelt exists within the QMG region, and so NID is 

likely to vary geographically, with earlier breeding in the western portions of the 

Sanctuary. Within the QMG region, this may favor westward adult dispersal, and would 

be consistent with my earlier finding of asymmetrical (i.e. westward) movement among 

QMG colonies of Ross’s Geese (Chapter 2, Drake and Alisauskas 2004). 

I suspect that my inability to detect an effect of mean NID on annual survival of 

juvenile birds marked with neckbands may have been related to non-random sampling 

of goslings in late years. Juvenile geese must be large enough at capture to ensure that 

neckbands of constant size cannot slip over the head. However, the proportion of 

goslings with heads large enough to prevent neckband loss declines dramatically in 

years when nesting is delayed, resulting in a sample representative of only the largest 

goslings in such years. Furthermore, even in early or average years, neckbanded 

goslings represent a biased sample of larger goslings that do not include the full range in 

gosling size present in the population. 
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CHAPTER 6. THE ROLE OF MOVEMENT: A SYNTHESIS 

 

Movement of individuals among populations has the potential to affect the distribution 

and size of populations; thus, estimation of dispersal probability is necessary to 

understand its influence on local and metapopulation dynamics. A portion of my 

research involved estimating rates of movement and survival to further our 

understanding of the potential for movement to influence population dynamics of 

breeding Ross’s Geese (Chen rossii), and to account for movement in future population 

modeling efforts. I also investigated the potential for breeding dispersal to result from 

decision rules by conducting an experimental manipulation of nest success, and I 

examined a potential trade-off between current reproduction and future survival. 

 

6.1 BREEDING DISPERSAL 

My results demonstrated that the movement of Ross’s Geese among Queen 

Maud Gulf (QMG) breeding colonies involved tens of thousands of birds moving each 

year from one breeding colony to another. Quantitative inference from my study is 

restricted to the QMG colonies that I sampled, but there existed substantial immigration 

into my QMG study area: a fifth of the geese in my sample were known immigrants that 

were marked along the West Coast of Hudson Bay (WHB). Immigration from WHB 

was male-biased, but a nontrivial proportion of breeding females also moved to new 

colonies. Rates of exchange of light geese between the QMG region and other breeding 

areas in the eastern arctic currently are unknown. But during 1999-2004, sightings of 

neckbanded Lesser Snow Geese (C. caerulescens caerulescens) from the eastern arctic 

also increased within the QMG region (Drake unpublished data), partly because of 

increased efforts to mark Snow Geese. Most eastern arctic Snow Geese sighted in the 

QMG region were males, but female immigration to the QMG also occurred. I speculate 
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that the exchange of females among breeding subpopulations encompasses the entire 

breeding region of Ross’s Geese; this might also be the case for the midcontinent 

population of Lesser Snow Geese.  

Breeding failure appeared to influence breeding dispersal of Ross’s Geese, but 

only on a local scale (Chapter 3); breeding failure did not appear to influence long 

distance dispersal in a small sample of females (n = 15) whose nest fate, and subsequent 

dispersal to another colony, were known. It is unknown to what extent multiple 

experiences factor into dispersal decisions (or decisions about other life history 

characteristics) by individuals, but long-lived species are likely to rely upon an 

accumulation of information from several years of experience. 

The motivation for long distance (between colony) dispersal in Ross’s Geese 

remains unknown, but it might be linked to knowledge about other locations with 

suitable breeding habitat. In their review of family structure in Snow Geese, Prevett and 

MacInnes (1980) suggested that goslings learn migration and winter locations from 

parents. Breeding pairs often are accompanied to breeding areas by their surviving 

offspring from the previous year, but as egg-laying begins, families break up (Prevett 

and MacInnes 1980). By incubation, yearlings generally join flocks of other 

nonbreeders or failed breeders, these birds undergo molt prior to southward migration to 

wintering areas. In many species of waterfowl, segments of the population migrate 

northward from their breeding grounds to undergo summer molt (Salomonsen 1968, 

Davis et al. 1985, Abraham et al. 1999). Abraham (1980) recognized that molt 

migration by nonbreeding geese might function as prospecting behavior, whereby new 

areas of suitable breeding habitat are encountered; Abraham speculated that molt 

migration rarely resulted in permanent emigration by females. Ross’s Geese breeding in 

the QMG region are at the terminus of their breeding range, so further northward 

migration related to molt is not likely to occur. Rather, nonbreeding flocks of light 

geese (which presumably also include failed breeders) probably remain in the QMG 

region; during transit of personnel to sampled breeding colonies (K. Drake) and during 

aerial transects that covered a larger portion of the Sanctuary (R. Alisauskas personal 

observation) flocks ranging from <10 to several hundred birds were commonly 

observed. Most Ross’s Geese probably do not make their first breeding attempt until ≥3 
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years old (Drake unpublished data), which ensures that most reproductively mature 

adults will have spent at least two summer on the breeding grounds without being 

attached to a nest. Delayed sexual maturity, breeding failure, or opting out of breeding 

in one year presents an opportunity to gather information that might be used at some 

point in the future. These birds are free to move about, and while they search for food, 

they likely discover the locations of other breeding colonies and suitable brood-rearing 

areas. It is unknown the extent to which geese gather and use information obtained 

while on the breeding grounds as a nonbreeder (or failed breeder), but the proclivity to 

disperse to another breeding colony might increase with knowledge of alternative 

breeding sites. 

The interplay between variation in habitat availability, stage of follicular 

development by females, and social status of pairs ensures that some degree of dispersal 

occurs between successive nesting attempts by arctic-nesting geese. Lindberg and 

Sedinger (1997) found little evidence that fidelity to nest sites by Black Brant (Branta 

bernicla nigricans) was adaptive and concluded that geese were not likely to delay 

breeding to maintain fidelity to the nest site they had used in the previous year. 

Similarly, dispersal distance of Snow Geese at La Pérouse Bay was not correlated with 

age, status of pair bond, or timing of nest initiation; rather, Snow Geese dispersal was 

most influenced by available nesting area, i.e., exposed ground (Abraham 1980). 

Abraham did not find an effect of previous reproductive experience on dispersal 

distance, but his inference was limited by very small sample size. I found that failed 

nesters moved greater distances before nesting in the following year than did successful 

nesters. Dispersal distance in both groups of female Ross’s Geese was >1,500 m on 

average (Chapter 3). Although arctic-nesting geese that fail in their previous 

reproductive attempt tend to disperse further than successful breeders (Lindberg and 

Sedinger 1997, Chapter 3), within-colony dispersal by arctic-nesting geese appears to be 

an inherent trait that is mostly influenced by habitat availability. This availability, in 

turn, is governed by depth, distribution and disappearance rate of melting snow all of 

which can be highly variable from year to year. Some within-colony movement of 

Ross’s Geese appeared to result from movement towards areas of higher nesting 

densities, and in some years nest initiation dates were earlier in above-average areas 
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(Alisauskas unpublished data) suggesting that these areas are either preferred or 

available at an earlier date. Finally, although breeding philopatry is female-biased 

(Chapter 2), the role of male geese in determining settling patterns has not been studied. 

Males are the primary defenders of breeding territories (Ryder 1975) and deterrents to 

foraging predators (Samelius and Alisauskas 2006); thus, dominance status of the male 

is apt to influence a pair’s ability to compete for, secure, and retain a nesting territory 

until goslings hatch. 

 

6.2 REPRODUCTIVE COSTS 

Although life history theory predicts that longer-lived species preserve survival 

at the expense of reproduction, reproduction may come at a cost to individuals that 

attempt to breed. In general, Ross’s Goose females that nested successfully survived at 

lower rates than failed nesters. I found that breeding had a deleterious effect on future 

survival: the effect was largest in 2001 - a year in which the onset of breeding was early 

(Alisauskas unpublished data) and with one of the largest estimated breeding 

populations for Karrak Lake. Spring conditions on breeding grounds have a large role 

on breeding probability of arctic-nesting geese and incidence of breeding increases 

when conditions permit earlier breeding (Reed et al. 2004). Nesting densities provide a 

good index of annual variation in breeding probability of Greater Snow Geese (C. 

caerulescens atlantica; Reed et al. 2004); thus, it is likely that annual variation in 

breeding probability factors large in annual changes in population size at Karrak Lake. 

Recent evidence suggests that premigration condition influences laying date and clutch 

size in Greater Snow Geese (Bêty et al. 2003), and given that variation in individual 

quality (e.g., condition) is a ubiquitous characteristic of wild populations, it seems 

reasonable that when conditions favorable to breeding develop earlier, the proportion of 

low quality individuals composing the breeding cohort will increase. I did not directly 

assess the relationship between survival and population size, but survival varied in 

parallel between successful and failed breeders; increasing in years when the nesting 

population was smaller, and vice versa. The ability to detect a cost of breeding likely 

varies from year to year because of variation in climatic conditions. Climatic conditions 

influence the timing and probability of breeding (i.e., who is in the sample); they also 
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determine the rate of energy expenditure during incubation and, thus, the condition of 

females at end of incubation. 

An understanding of life history evolution often requires estimation of the 

relationship between survival and other life history traits. To my knowledge, this is the 

first study to demonstrate a cost of reproduction based on estimation of true survival, 

although Golet et al. (2004) did find a tradeoff between reproduction and apparent 

survival. Several previous studies of life history evolution in birds have examined the 

relationship between reproduction and survival by comparing return rates. When 

detection is imperfect, return rates will provide biased survival estimates (Lebreton et 

al. 1992, Clobert 1995); the potential for bias and invalid inference drawn from return 

rates has been discussed previously (Martin et al. 1995).  

In many cases, previous reproductive experience influences the magnitude of the 

dispersal response (Greenwood and Harvey 1982, Chapter 3), and long-distance 

breeding dispersal may occur regardless of the outcome of a previous nesting attempt 

(Chapter 3). In any case, emigration from the study area is likely to result in group-

differences in availability for capture which will be confounded with other forms of 

emigration (i.e., non-breeding). Cilimburg et al. (2002) cautioned against the use of 

return rates in light of the potential for spatial and temporal variation in the extent of 

emigration. I add that in most studies of wild populations, multiple forms of emigration 

are likely to exist; dispersal must be accounted for, as it can influence the sampling 

process and is likely to be linked to other life history characteristics. Inference into 

biological process may be gained from comparing group-specific sampling probabilities 

(Nichols 1992, Nichols et al. 1994), but only if absence from the sample results from a 

single cause, or when additional information regarding absence exists.  

 

6.3 SPATIAL HETEROGENEITY IN SURVIVAL 

Considering the diversity of biomes and climatic conditions encountered by light 

geese during their annual cycle, it is probable that mortality risks vary geographically. 

Thus, if philopatry is exhibited throughout the annual cycle and the exchange of 

individuals among subpopulations is infrequent, then rates of survival may differ among 

subpopulations. I did not detect spatial heterogeneity in survival when comparing rates 
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of apparent survival among breeding colonies 1999-2003 (Chapter 2), or when 

assessing the relationship between location of capture and true survival probability, 

1991-2003 (Chapter 5). I suspect that any potential for differential survival resulting 

from spatial heterogeneity in mortality is homogenized by the substantial exchange of 

individuals among breeding colonies (Chapter 2), and possibly between wintering 

subpopulations. Absence of spatial heterogeneity in survival simplifies population 

modeling.  

 

6.4 THE ROLE OF MOVEMENT IN SUBPOPULATION GROWTH 

I had insufficient data to estimate directly the role of movement in population 

growth rate using a reverse-time capture-recapture approach because I could not 

determine the capture probability of goslings (Nichols et al. 2000). Similarly, I chose 

not to use a matrix metapopulation model to determine the role of movement in 

population growth (Caswell 2001), because of insufficient information on age-specific, 

and colony-specific breeding parameters, and estimates of natal philopatry. 

Nevertheless, temporal changes in population size result from four primary population 

processes; thus, population growth rate can be expressed as a balance equation that 

incorporates gains and losses:   

λ = F + S – E + I       (Equation 6.1). 

where population growth rate (λ) is written as a function of per capita female 

recruitment (F), survival rate (S), emigration rate (E), and immigration rate (I). The 

long-term study of reproductive biology of Ross’s Geese at Karrak Lake provides 

reproductive information specific to this colony; thus, I use Karrak Lake as a case study 

to get an idea of the contribution of movement to subpopulation growth rate. Although 

recruitment is apt to vary spatially, for illustrative purposes, I assume equal rates of per 

capita female recruitment between Karrak Lake and Colony 10 to compare potential 

contributions of movement to colony-specific population growth rates. 

  The annual number of breeding light geese at Karrak Lake ( tN̂ ) has been 

estimated for 1993-2005 using stratified sampling of nests at 30 m radius plots 

systematically placed throughout the colony (Alisauskas unpublished data). Following 
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Eberhardt and Simmons (1992), log-linear regression of Log( tN̂ ) on t, where 0t  = 

1993, gives the intrinsic rate of increase (r), and the population growth rate is calculated 

by: 

r+= 1λ̂         (Equation 6.2).  

Karrak Lake is the only colony for which population size can be calculated from 

ground-based sampling, but periodic estimates of light geese obtained from aerial 

photography (Kerbes et al. 2006, see Table 6.1) provide another means to estimate 

population growth rate at Karrak Lake, and also for some of the same colonies that I 

surveyed for neckbanded geese. However, estimates of λ deriving from aerial 

photography are limited to pre-1999; thus, ground sampling at Karrak Lake provides 

more current estimates of λ than those available for other colonies. Nonetheless, the 

general agreement of estimates from different methods (Table 6.1) lends confidence to 

the assertion that, based on personal observations during surveys (K. Drake) and 

mapping of annual change in colony perimeter (R. Alisauskas unpublished data), 

Colony 10 has grown at a faster rate than Karrak Lake. 

Data gathered during a long-term study (1991-2005) of the reproductive biology 

of Ross’s Geese at Karrak Lake provide estimates of many of the necessary 

reproductive parameters for calculation of per capita female recruitment (Table 6.2). 

Survival of Ross’s Goose goslings from hatch to fledge is an area requiring more data, 

so I assume that this rate is similar to those of Lesser Snow Geese goslings reported by 

Rockwell et al. (1997) and use the value 0.64 (sensu Alisauskas and Rockwell 1997). 

Using White’s (2000) method, I averaged annual estimates (1991-2002) of post-fledge 

gosling survival and adult female survival from legbanded birds. Because adult survival 

declines with increased harvest (Alisauskas et al. 2006a) and also has declined in recent 

years (Alisauskas et al. 2006a, Chapter 5), I averaged adult female survival over years 

of conservation order harvest for which I had estimates (i.e., 1999-2002; Table 6.2). I 

calculated F̂ as the product of the reproductive and juvenile survival parameters listed 

in Table 6.2. Estimates of colony-specific rates of emigration (Chapter 2) for Karrak 

Lake and Colony 10 are presented in Table 6.3. 
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Table 6.1. Estimated population growth rates ( λ̂ ) for mixed species breeding colonies 
of Ross’s and Lesser Snow Geese (collectively referred to as light geese) at Karrak 
Lake and Colony 10 (McNaughton), Queen Maud Gulf Migratory Bird Sanctuary, 
Nunavut, Canada. 
 

Colony   Species λ̂  Source of data 

λ̂ Karrak (1993-2005) Light geese 1.087 1993-2005 nest plots, Alisauskas 
unpublished data 

λ̂ Karrak (1999-2005) Light geese 1.072 1999-2005 nest plots, Alisauskas 
unpublished data 

    
λ̂ Karrak (1967-1998) Light geese 1.110 Kerbes et al. 2006 

λ̂ Karrak (1967-1998) Ross’s Geese 1.097 Kerbes et al. 2006 

λ̂ Karrak (1988-1998) Light geese 1.075 Kerbes et al. 2006 

λ̂ Karrak (1988-1998) Ross’s Geese 1.098 Kerbes et al. 2006 
    
λ̂ McNaughton (1967-1998) Light geese 1.154 Kerbes et al. 2006 

λ̂ McNaughton (1967-1998) Ross’s Geese 1.135 Kerbes et al. 2006 

λ̂ McNaughton (1988-1998) Light geese 1.157 Kerbes et al. 2006 

λ̂ McNaughton (1988-1998) Ross’s Geese 1.131 Kerbes et al. 2006 
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Table 6.2. Survival and reproductive parameters for Ross’s Geese. 
 

 Parameter Estimate Source of data 

Reproduction Clutch size 3.290 1991-2005 nest plots, Alisauskas 
unpublished data 

 Breeding Probability 0.820 Alisauskas and Rockwell 2001 
 Nest Success 0.820 1991-2005 nest plots, Alisauskas 

unpublished data 
 Hatch Success 0.820 1995-1998 nest plots, in Alisauskas 

and Rockwell 2001 
 Sex ratio of offspring 0.500 assumed 
    
 F (per capita female        

     reproduction) 
0.214 Product of juvenile survival and 

recruitment parameters 
    
Survival Hatch to fledge 0.640 Alisauskas and Rockwell 2001 
 Post-fledge1991-2002 0.369a Chapter 5 (averaged over all years) 
    
 Adult1999-2002 0.811a Chapter 5 (averaged over years 

during conservation order harvest) 
 Adult1991-2002 0.859a Chapter 5 (averaged over all years) 

a Average survival calculated using White’s (2000) method. 

  

 

 

Table 6.3. Estimates of Ross’s Goose permanent emigration from the Karrak Lake and 
McNaughton (Colony 10) breeding colonies, 1999-2003, Queen Maud Gulf Migratory 
Bird Sanctuary, Nunavut, Canada. Model selection resulted in a model with constant 
rates of movement receiving virtually all of the support from the data, so there is only 
one estimate of emigration per colony that applies to all years of the study. Estimates 
are presented with lower (LCL) and upper (UCL) 95% confidence limits. 
 

  Emigration  
Colony LCL Point Estimate UCL 
Karrak Lake 0.05 0.11 0.17 
McNaughton 0.11 0.25 0.39 
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 I calculated the contribution of movement, both immigration and emigration, 

toward λ by using λ̂ , F̂ , Ŝ , and Ê  in Equation 6.1 to solve for Î . I did this for each 

estimate of population growth rate at Karrak Lake and Colony 10 (Table 6.4). These 

calculations suggest that population size of geese at these colonies would decline 

without immigration. Population growth rate at Karrak Lake is likely augmented by (1) 

the general westward movement of Ross’s Geese among larger breeding colonies within 

the QMG region (Chapter 2), and (2) contributions from other smaller QMG colonies 

that were not sampled. In recent years, it appears that nesting populations at some of the 

smaller colonies within the QMG region have declined, and some of the smallest 

colonies had disappeared by 2005 (R. Alisauskas personal communication); thus, a 

general movement of geese from smaller colonies to the largest colonies may have 

occurred. Given the general westward movement of Ross’s Geese within the QMG 

region, it seems unlikely that the population growth rate of Colony 10 would be 

maintained solely by contributions from other QMG breeding colonies. I sampled the 

largest known colonies in the Sanctuary, and among these, there was a net loss of birds 

from Colony 10 (Figure 2.2B). There is substantial immigration from WHB given the 

numbers of marked geese in my sample that originated from this region. It seems 

probable that the contribution of birds from WHB to Colony 10 is greater than 

contributions to more western QMG colonies considering that 32.0-43.5% of the 

marked birds sighted at Colony 10 had originated from WHB, whereas at Karrak Lake, 

WHB geese represented 10.1-15.9% of neckbands read.  

Additional research on colony-specific recruitment and rates of natal philopatry 

is needed in order to better understanding the role of movement in population dynamics 

of arctic nesting geese. Nonetheless, results presented in this section demonstrate that 

the role of movement in population dynamics of breeding Ross’s Geese is nontrivial. 

Even if the higher estimate of average adult survival (0.859) were assumed in Equation 

6.1, immigration from Karrak Lake still would have ranged 0.049-0.207 and 0.168-

0.479 for Colony 10. The assumption of equal recruitment rate among colonies is not 

likely to be met because known spatial variability in snowmelt and geographic 

variability in climatic conditions over broad arctic regions influences breeding success 

(Boyd et al. 1982, Alisauskas 2002). A higher rate of in situ recruitment at Colony 10  
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Table 6.4. Potential per capita contribution of immigration to population growth rates 
of Karrak Lake and McNaughton (Colony 10) breeding colonies, Queen Maud Gulf 
Migratory Bird Sanctuary, Nunavut, Canada. Population growth rates (λ) were derived 
from annual population estimates based on nest plot sampling (Alisauskas unpublished 
data), or from periodic photo inventory surveys (Kerbes et al. 2006). Population growth 
rates pertain to Ross’s and Lesser Snow Geese, collectively light geese (LG), or to 
Ross’s Geese only (RG), for the range of years presented next to the estimate. 
Contribution of immigration (I) to λ was obtained by solving a balance equation where 
per capita female recruitment (F), adult female survival during conservation order years 
(S), and colony-specific emigration rate (E) were known, and immigration was the one 
unknown parameter. λ, F, and S were held constant while the point estimate of 
emigration rate, and its lower and upper 95% confidence levels were used to calculate 
the upper and lower bounds for the contribution of immigration to λ. 
 

              Population Parameters Estimates 
Colony Data Spp. Years λ̂  F̂  Ŝ  Ê  Î  
Karrak Plots LG 1993-2005 1.087 0.214 0.811 0.110 0.172 
 Plots LG 1999-2005 1.072 0.214 0.811 0.110 0.157 
 Photo LG 1988-1998 1.075 0.214 0.811 0.110 0.159 
 Photo RG 1988-1998 1.098 0.214 0.811 0.110 0.183 
         
 Plots LG 1993-2005 1.087 0.214 0.811 0.050 0.112 
 Plots LG 1999-2005 1.072 0.214 0.811 0.050 0.097 
 Photo LG 1988-1998 1.075 0.214 0.811 0.050 0.099 
 Photo RG 1988-1998 1.098 0.214 0.811 0.050 0.123 
         
 Plots LG 1993-2005 1.087 0.214 0.811 0.170 0.232 
 Plots LG 1999-2005 1.072 0.214 0.811 0.170 0.217 
 Photo LG 1988-1998 1.075 0.214 0.811 0.170 0.219 
 Photo RG 1988-1998 1.098 0.214 0.811 0.170 0.243 
         
Col. 10 Photo LG 1988-1998 1.157 0.214 0.811 0.250 0.382 
 Photo RG 1988-1998 1.131 0.214 0.811 0.250 0.356 
         
 Photo LG 1988-1998 1.157 0.214 0.811 0.110 0.242 
 Photo RG 1988-1998 1.131 0.214 0.811 0.110 0.216 
         
 Photo LG 1988-1998 1.157 0.214 0.811 0.390 0.522 
 Photo RG 1988-1998 1.131 0.214 0.811 0.390 0.496 
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could compensate for immigration to sustain the observed population growth rate at 

Colony 10. 

 

6.5 CONCLUDING REMARKS 

6.5.1 Are Current Rates of Movement Greater Than Historical Levels? 

Breeding dispersal by adult Ross’s Geese clearly influences the species’ 

distribution, and behavioral evidence for breeding dispersal (Chapter 2) is consistent 

with genetic evidence of extensive subpopulation connectedness (Avise et al. 1992). It 

is unknown whether these results reflect a long-term evolutionary history of extensive 

movement, or more recent selection favoring behavioral flexibility in patterns of 

philopatry. Historic rates of dispersal during any portion of the annual cycle are 

unknown, but populations of light geese were once smaller and more restricted in 

distribution (Dzubin 1965, Alisauskas and Ryder 1995) when migration and winter food 

were more limited, so it is possible that historic rates of philopatry differed from current 

levels. For light geese, the cost-benefit relationship of philopatry during the 

nonbreeding period has likely changed as food has increased in abundance and quality 

along migration routes and on wintering areas (Abraham and Jefferies 1997, Alisauskas 

et al. 1988); thus, dispersal decisions during the nonbreeding period probably carry less 

risk than they did historically. Increased dispersal has undoubtedly been a favorable trait 

during the nonbreeding period judging from the marked expansion of winter range, 

whether positive outcomes of dispersal during one portion of the annual cycle has any 

impact on breeding philopatry remains unknown. 

Based on mitochondrial DNA markers, Avise et al. (1992) presented evidence 

suggesting allopatric evolution of Ross’s and Lesser Snow Geese. At present, light 

goose breeding colonies in the QMG region are composed of Ross’s and Lesser Snow 

Geese. These species have very similar life histories, now co-occur throughout the 

annual cycle, and interbreed; thus, social facilitation may presently influence the 

evolution of life history traits. Historically, Ross’s Geese nested on islands in shallow 

lakes perhaps to avoid nest predation by Arctic Fox (Ryder 1969b). With the concurrent 

increase of Ross’s Goose and Snow Goose populations, terrestrial area occupied by 

nesting geese expanded into previously unused island and mainland habitats (Kerbes et 
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al. 1983, McLandress 1983, Kerbes 1994). Early expansion of nesting area from islands 

to the mainland involved mostly Snow Geese, probably because they are larger and 

more capable at deterring foxes than smaller Ross’s Geese (McLandress 1983). 

Similarly, social facilitation may have had a role in the winter expansion of Ross’s 

Geese into mid-continent flyways (Alisauskas 1998, Alisauskas et al. 2006a). 

In species of arctic-nesting geese for which proper estimates of breeding 

philopatry exist, female philopatry appears to be highly variable (≥0.93 for Black Brant, 

Lindberg et al. 1998; and ≥0.63 for Ross’s Geese, Chapter 2), but in no case is it 

absolute. Estimates of colony-level philopatry by Lesser Snow Geese are absent, but 

they are considered to “show a high degree of breeding-site fidelity” at LPB (Ganter 

and Cooke 1998), based on the fact that 73% of detected females had nested ≤500 m of 

their previous nest site (Abraham 1980, Cooke and Abraham 1980). Female emigration 

from this subarctic colony was thought to occur at very low rates (Cooke et al. 1975, 

Rockwell et al. 1977), but coinciding with extensive habitat degradation, emigration 

from LPB has increased over time (Francis and Cooke 1993, Cooch et al. 2001). Thus, 

even in a population where female geese show a “high degree” of philopatry, dispersal 

is likely to persist. 

Dispersal patterns result from cumulative decisions during the process of habitat 

selection; this decision process is bound to overlap at different spatial scales. For geese 

philopatric to their breeding colony, there appears to be substantial flexibility with 

regard to affinity to previous nest location (Abraham 1980, Lindberg and Sedinger 

1997, Chapter 3). In general, locations of breeding colonies remain stable, but colony-

specific breeding distributions of arctic-nesting geese are spatially and temporally 

dynamic (Abraham 1980, Alisauskas and Boyd 1994, Lindberg and Sedinger 1997, 

Ganter and Cooke 1998). These local distributional changes result from changes in 

suitability and availability of habitat (Lindberg and Sedinger 1997, Ganter and Cooke 

1998), settling patterns of new recruits into the breeding population (Lindberg and 

Sedinger 1997, Ganter and Cooke 1998), and from intra-colony breeding dispersal by 

adults (Ganter and Cooke 1998, Chapter 3). 

The motivation for inter-colony breeding dispersal by female arctic-nesting 

geese is not known, but the outcomes of such movement can have a large influence on 
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local population dynamics of breeding Ross’s Geese; a portion of most breeding 

populations is composed of migrant females, but it should not be assumed that 

emigration and immigration are equal. A more complete understanding of the role of 

dispersal in population dynamics, and in the evolution of life history strategies, requires 

additional study because several questions remain unanswered. Further work is needed 

to assess the potential for spatial variability in recruitment, as this may be linked to 

movement decisions. To this end, information on natal philopatry is needed because in 

situ recruitment requires the return of individuals to their natal colony. Delayed sexual 

maturity may be adaptive not only to permit young geese to exceed physiological 

thresholds for breeding (Reynolds 1972, Alisauskas and Ankney 1992), but also may 

afford young geese the opportunity to prospect new areas before sexual maturity, after 

which time constraints of breeding may interfere with exploration.  

Of interest is the question about whether variability in dispersal probability 

(Abraham 1980, Lindberg and Sedinger 1997, Chapter 3) has a genetic basis, or largely 

is the result of phenotypic plasticity. Further work should focus on identifying factors 

that cue dispersal decisions, which would assist our understanding of what serves as the 

impetus for dispersal. In addition, information on the reproductive outcome following 

inter-colony movements by breeding geese is required to assess of the adaptive 

significance of dispersal. For example, I found that reproductive success influences 

dispersal distance (Chapter 3), but do dispersing individuals have better lifetime 

reproductive success than philopatric individuals? Adaptiveness and genetic variance of 

dispersal may change over time in a density-dependent fashion, similar to arguments 

made by Gloutney et al. (1999) about variable anorexia in this same species. 

 Avian philopatry should be correlated with stability of the habitat (McNicholl 

1975), so among-colony differences in philopatry may arise in part from spatial 

variation in chronology of habitat availability. Given a lack of attachment to previous 

nest sites (Chapter 3), homogeneous nature of lowland tundra habitat, and the 

importance of early onset of breeding, I imagine that some between-colony breeding 

dispersal by Ross’s Geese results from a lack of available habitat prompting a dispersal 

event that is related to maintaining a pair’s reproductive status. This may result from 

individuals arriving at their previous breeding colony to find poor habitat conditions, 



 

 

 

96

and then deciding to attempt to breed at another colony. This speculation arises from the 

apparent directional movement towards Karrak Lake and a west-east cline in timing of 

snowmelt. Although this serves as a working hypothesis to explain the directional 

westward movement of Ross’s Geese in the QMG region, it does not explain the 

movement of geese from Karrak Lake to other more easterly-located colonies.  

 Clearly movement has a substantial role in population dynamics of breeding 

geese. My studies of Ross’s Goose dispersal on their breeding grounds highlight the 

importance of movement in determining their distributional patterns, and influencing 

gene flow, on a continental scale. I hope this work serves as a springboard to further 

investigation pertaining to spatial aspects of population dynamics. 

 

6.5.2 Management Implications of Inducing Nest Failure 

Several alternative strategies for reducing light goose populations have been 

proposed (Johnson 1997, Johnson and Ankney 2003). One of the strategies considered 

was the taking of eggs on the breeding grounds (Johnson 1997), but if breeding failure 

causes dispersal, induced nest failure might produce the undesirable result of geese 

moving, and exporting the ‘problem’ to other breeding areas. My results suggest that 

egg removal would not result in widespread dispersal if it were implemented as a 

method to reduce light goose populations. 
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APPENDIX A. NECKBANDS AS A MARKING TECHNIQUE: ARE THEY  

      WORTH THE EFFORT? 

Neckbands are useful markers that permit the identification of individual geese 

without having to physically capture them. In most cases, neckbands negatively affect 

the survival of adult geese (Alisauskas and Lindberg 2002 and references therein, 

Alisauskas et al. 2006a, but see Menu et al. 2000), and neckbands have also been shown 

to negatively influence breeding probability and clutch size in Greater Snow Geese 

(Reed et al. 2004). The potential for negative effects of neckbands to bias the estimation 

of population parameters has been discussed previously (Alisauskas and Lindberg 2002, 

Reed et al. 2004). Negative effects of neckbands on survival should not necessarily bias 

estimates of movement because the processes of survival and movement are separate in 

multistate models (Clobert and Lebreton 1991, Nichols and Kendall 1995).  

As an alternative to neckbands, tarsal bands have been used effectively as a 

marker in population studies of other geese, but because they are smaller and placed on 

the leg, tarsal bands are more difficult to detect and read. In order for an observer to 

detect a tarsal band on a nesting female goose, the bird must be standing. Based on my 

experience with sightings of tarsal-banded Ross’s Geese, I suggest that tarsal bands do 

not result in sufficiently high detection of individual codes, at least in situations of 

density and numbers of geese encountered during my study. In the case of Ross’s 

Geese, and the midcontinent population of Lesser Snow Geese, most birds nest at large 

colonies (Alisauskas and Boyd 1994, Kerbes 1994), some having upwards of a million 

birds. In order to conduct studies based on marked individuals, at these colonies 

markers need to be: (1) conspicuous, (2) readable from long distances (500 m), and (3) 

detectable without having to flush every bird from its nest. Tarsal bands may prove to 

be a useful marker for estimating vital rates at smaller colonies with lower densities of 
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light geese, but the trade-off is restricted inference from sampling a smaller proportion 

of the population of interest. 

I tested whether reproduction by Ross’s Geese after they were marked was 

independent of marker type (legband vs. neckband) by comparing the presence/absence 

of a brood patch in females with differing marker types (n = 197). Of the 197 

recaptures, 85.2% (98/115) of legbanded females had visible evidence of a brood patch, 

whereas 92.7% (76/82) of neckbanded females had a brood patch. These results are 

opposite of the predicted relationship, suggesting that neckbands do not have a negative 

effect on breeding probability (likelihood ratio 2.72 =χ 2 , df = 1, P = 0.099). 

I also compared estimates of mean nest initiation date, clutch size, and nest 

success of neckbanded females, 2000-2004, to those estimated from systematically-

spaced plots for the same range of years (Alisauskas unpublished data). Nest initiation 

dates were consistently earlier for neckbanded geese in all years (range 0.90–1.98 days), 

and clutch size differed only in 2002 when clutch size within nest plots was 0.1 egg 

greater than clutch size of neckbanded birds. Nest success of neckbanded females was 

0.06 greater than that of nests within plots in 2000, but during 2001-2003, nest success 

within plots ranged 0.05-0.17 higher than that of neckbanded females. There was no 

difference between nest success of neckbanded females and nests within plots during 

2004. 

Neckbands negatively influence the survival of Ross’s Geese (Alisauskas et al. 

2006a), but they do not appear to negatively influence breeding probability, nest 

initiation date, or clutch size. In three of five years, estimates of nest success for 

neckbanded geese were lower than those of unmarked birds (nest plot data), but 

inconsistent results preclude making generalities about an effect of neckbands on nest 

success; this effect appears to be year-specific. 


