
A Tiger Compiler for the Cell Broadband Engine

Architecture

A Thesis Submitted

to the College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the Degree of Master of Science

in the Department of Computer Science

University of Saskatchewan

by

Yiqing Liu

Saskatoon, Saskatchewan, Canada

c© Copyright Yiqing Liu, May, 2013. All rights reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Saskatchewan's Research Archive

https://core.ac.uk/display/226141939?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Permission to Use

In presenting this thesis in partial fulfillment of the requirements for a Postgraduate

degree from the University of Saskatchewan, it is agreed that the Libraries of this

University may make it freely available for inspection. Permission for copying of this

thesis in any manner, in whole or in part, for scholarly purposes may be granted by

the professors who supervised this thesis work or, in their absence, by the Head of

the Department of Computer Science or the Dean of the College of Graduate Studies

and Research at the University of Saskatchewan. Any copying, publication, or use

of this thesis, or parts thereof, for financial gain without the written permission of

the author is strictly prohibited. Proper recognition shall be given to the author and

to the University of Saskatchewan in any scholarly use which may be made of any

material in this thesis.

Request for permission to copy or to make any other use of material in this thesis

in whole or in part should be addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan Canada

S7N 5C9

i



Acknowledgments

I would like to take this opportunity to express my deepest appreciation to all the

people who helped me accomplish this work.

1. My family, thank you for your invaluable love. I would not have gotten this

work done without your support.

2. My friends, Yuan and Chuan, thank you for your encouragement throughout

these years, especially for your help in those tough times.

3. SRL members, Jeeva S. Paudel, Andriy Hnativ, Fatima Alawami, Zahrah Alawami,

Yosuke Yamamoto, Gadi Tellez Espinosa. Thank you for comments and sug-

gestions on my presentation.

4. Committee members Dr. Nathaniel Osgood and Dr. Chanchal Roy. Thank you

for your invaluable suggestions and support for my thesis completion.

5. Last and most important, my supervisor, Dr. Christopher Dutchyn. Thank you

for your patience and devoting your precious time in my study. I really appre-

ciate your suggestions and the encouragement you offered when I encountered

the stress of the research process. Thank you for teaching me how to think and

learn.

ii



Abstract

The modern computing industry tends to build integrated circuits with multiple

energy-efficient cores instead of ramping up the clock speed for each single processing

unit. While each core may not run as fast as the single core model, such archi-

tecture allows more jobs to be handled in parallel and also provides better overall

performance. Asymmetric Multiprocessing, also known as Heterogeneous Multipro-

cessing, involves multiple processors that differ architecturally from one another, es-

pecially where each processor has its own memory space. Under power limitations,

this design could provide better performance than that attained through symmetric

multiprocessing. However, the heterogeneous nature adds difficulty to programming.

Each specific architecture requires its own program code. Programmers also need to

explicitly transfer code and data between processors.

This study describes the implementation of a compiler of the pedagogic Tiger

language for the Cell Broadband Engine, an asymmetric multiprocessing platform

jointly developed by Sony, Toshiba and IBM. The problem above is solved by intro-

ducing multiple backends for the Tiger language, along with a remote call stub (RCS)

generator. Functions are compiled into different architectures, and calls across archi-

tectures are linked automatically through the stubs. RCS takes care of the execution

context switch and hides details of the argument data/return value transfer. TigC

simplifies the programming and building procedures. It also provides a high-level

view of the whole program execution for future optimization because all of the source

files are processed by a single compiler. As an example of this procedure, the possible

optimization of data transfer during remote calls is investigated here.

iii



Table of Contents

Permission to Use i

Acknowledgments ii

Abstract iii

Table of Contents iii

List of Tables viii

List of Figures viii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 5

2.1 Symmetric and Asymmetric . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Amdahl’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Cell Broadband Engine (Cell B.E.) Architecture . . . . . . . . . . . . 12

2.3.1 PowerPC Processor Element . . . . . . . . . . . . . . . . . . . 13

2.3.2 Synergistic Processor Element . . . . . . . . . . . . . . . . . . 15

2.3.3 Memory Flow Controller . . . . . . . . . . . . . . . . . . . . . 17

2.4 Tiger Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

iv



2.5 Overview of TigC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6.1 Generic Multiprocessing System . . . . . . . . . . . . . . . . . 21

2.6.2 Cell B.E. Platform . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6.3 GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Approach 27

3.1 Operating Environment . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Steps of Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 TigC Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Implementation Details 39

4.1 General Front-end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Heterogeneous Backend . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 Argument Passing . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.2 Stack Frame Layout . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.3 Register Usage . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.4 Instruction Selection . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 RCS Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.1 Simple Call Mode . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.2 Passing Array as Parameter . . . . . . . . . . . . . . . . . . . 66

v



4.3.3 Parallel Call Mode . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.4 Returning Data from SPU Function . . . . . . . . . . . . . . . 72

4.4 Automated Linker . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5 Data Transfer Optimization . . . . . . . . . . . . . . . . . . . . . . . 75

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Performance Evaluation 81

5.1 Workload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Simple Call Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 Parallel Call Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4 Potential Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4.1 Code Reordering . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4.2 Optimized SPU Dispatching . . . . . . . . . . . . . . . . . . . 99

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 Conclusion and Future Work 103

References 104

A Frontend Modification of TigC 110

A.1 Lexical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

A.2 Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

B Backend Implementation of TigC 121

B.1 Cell B.E. Frame Layout . . . . . . . . . . . . . . . . . . . . . . . . . 121

B.2 Cell B.E. Code Generator . . . . . . . . . . . . . . . . . . . . . . . . 130

vi



B.2.1 PPU Code Generator . . . . . . . . . . . . . . . . . . . . . . . 131

B.2.2 SPU Code Generator . . . . . . . . . . . . . . . . . . . . . . . 141

C RCS Generator and Automated Linker 154

D Testcases 170

D.1 Strassen Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

D.2 n-Queens Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

E Result Data of Performance Evaluation 174

vii



List of Tables

4.1 Function Call Types in Tiger . . . . . . . . . . . . . . . . . . . . . . 46

4.2 PPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 SPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1 Total Execution Time of 10-Queens problem . . . . . . . . . . . . . . 94

E.1 Strassen Algorithm (PPU Only vs Simple Call Mode) . . . . . . . . . 174

E.2 Strassen Algorithm with Matrix Size 256 × 256 (Data Transfer Opti-

mization on vs off) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

E.3 Strassen Algorithm under Parallel Call Mode . . . . . . . . . . . . . . 175

E.4 Strassen Algorithm under Parallel Call Mode (contd.) . . . . . . . . . 176

E.5 n-Queen Problem (PPU Only vs Simple Call Mode) . . . . . . . . . . 177

E.6 15-Queen Problem (Data Transfer Optimization on vs off) . . . . . . 178

E.7 n-Queen Problem under Parallel Call Mode . . . . . . . . . . . . . . . 178

E.8 n-Queen Problem under Parallel Call Mode (contd.) . . . . . . . . . . 179

E.9 n-Queen Problem under Parallel Call Mode (contd.) . . . . . . . . . . 179

E.10 n-Queen Problem under Parallel Call Mode (contd.) . . . . . . . . . . 180

E.11 n-Queen Problem under Parallel Call Mode (contd.) . . . . . . . . . . 180

viii



List of Figures

2.1 Symmetric Multiprocessing System . . . . . . . . . . . . . . . . . . . 6

2.2 Asymmetric Multiprocessing System . . . . . . . . . . . . . . . . . . 7

2.3 Symmetric Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Asymmetric Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Dynamic Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Cell Broadband Engine System Structure . . . . . . . . . . . . . . . . 13

2.7 PowerPC Processor Element . . . . . . . . . . . . . . . . . . . . . . . 14

2.8 Synergistic Processor Element . . . . . . . . . . . . . . . . . . . . . . 16

2.9 Tiger Example Source . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Example of Separate Compilations . . . . . . . . . . . . . . . . . . . 30

3.2 Example of Unified Compilations . . . . . . . . . . . . . . . . . . . . 32

3.3 Example Program of the First Design . . . . . . . . . . . . . . . . . . 33

3.4 Example Program of the Second Design . . . . . . . . . . . . . . . . . 34

3.5 TigC Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 TigC Lexical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 TigC Syntax Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Function Definition in Tiger Language . . . . . . . . . . . . . . . . . 42

4.4 Extended Function Definition . . . . . . . . . . . . . . . . . . . . . . 44

4.5 Parallel Call Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . 45

ix



4.6 Example of IR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.7 PPU Stack Frame Layout . . . . . . . . . . . . . . . . . . . . . . . . 50

4.8 SPU Stack Frame Layout . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.9 MIPS Stack Frame Layout . . . . . . . . . . . . . . . . . . . . . . . . 52

4.10 Initialization of SPE Contexts . . . . . . . . . . . . . . . . . . . . . . 60

4.11 Translations of R.CALL and R.SPUCALL . . . . . . . . . . . . . . . 61

4.12 SPU Program Input Buffer . . . . . . . . . . . . . . . . . . . . . . . . 62

4.13 Implementation of SPU Entry Function . . . . . . . . . . . . . . . . . 64

4.14 Using Switch in SPU Entry Function . . . . . . . . . . . . . . . . . . 65

4.15 Using Assembly in SPU Entry Function . . . . . . . . . . . . . . . . . 66

4.16 Array Data in Input Buffer . . . . . . . . . . . . . . . . . . . . . . . . 68

4.17 Parallel Call by Distributing Tasks . . . . . . . . . . . . . . . . . . . 69

4.18 Parallel Call by Distributing Data . . . . . . . . . . . . . . . . . . . . 70

4.19 Translations of R.PARCALL . . . . . . . . . . . . . . . . . . . . . . . 72

4.20 Parallel Call with Single Processor Switch . . . . . . . . . . . . . . . 78

4.21 Parallel Call with Overlapped I/O . . . . . . . . . . . . . . . . . . . . 80

5.1 Naive vs Strassen Matrix Multiplication . . . . . . . . . . . . . . . . 84

5.2 One Solution for 8-Queens Problem . . . . . . . . . . . . . . . . . . . 85

5.3 Strassen Algorithm (PPU Only vs Simple Call Mode) . . . . . . . . . 87

5.4 n-Queens Problem (PPU Only vs Simple Call Mode) . . . . . . . . . 88

x



5.5 Strassen Algorithm with Matrix Size 256 × 256 (Data Transfer Opti-

mization on vs off) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.6 15-Queens Problem (Data Transfer Optimization on vs off) . . . . . . 90

5.7 Strassen Algorithm under Parallel Call Mode . . . . . . . . . . . . . . 91

5.8 n-Queens Problem under Parallel Call Mode . . . . . . . . . . . . . . 93

5.9 Sample Program for Code Reordering . . . . . . . . . . . . . . . . . . 97

5.10 Dependency Graph of the Sample Program . . . . . . . . . . . . . . . 98

xi



List of Abbreviations

ABI Application Binary Interface

AMP Asymmetric MultiProcessing

BCE Base Core Equivalent

BP Base Pointer

Cell B.E. Cell Broadband Engine

CellSs Cell Superscalar

DMA Direct Memory Access

EIB Element Interconnect Bus

FP Frame Pointer

GPU Graphics Processing Unit

ILP Instruction-level Parallelism

IR Intermediate Representation

MFC Memory Flow Controller

NUMA Non-Uniform Memory Access

OOE Out-of-Order Execution

OpenMP Open Multiprocessing

PE Processing Element

PPE PowerPC Processor Element

PPSS PowerPC Processor Storage Subsystem

xii



PPU PowerPC Processor Unit

RCS Remote Call Stub

RPC Remote Procedure Calls

SML/NJ Standard ML of New Jersey

SMP Symmetric Multiprocessing

SP Stack Pointer

SPE Synergistic Processor Element

SPU Synergistic Processing Unit

TLP Thread-level Parallelism

TOC Table of Contents

xiii



1. Introduction

With contemporary advances in circuit integration, the industry has been apply-

ing Moore’s Law [46] to ramp up the clock of a single processor, or uniprocessor by

putting more transistors on a die. However, when the transistor count reaches a cer-

tain point, the processor performance will saturate because of the so-called “Power

Wall” problem. This physical limit of semiconductor-based microelectronics makes

it difficult to improve single processor clock frequency. In addition, heat dissipation

and data synchronization will also pose problems in this case. All of these reasons

make hardware designers move away from conventional superscalar processors and

study various alternatives that may increase the productivity; Instruction-level par-

allelism (ILP) [42] [43] and thread-level parallelism (TLP) [9] offer such possibilities.

Multiprocessing, as one of the TLP methods, refers to the usage of more than one

processor in a single computing unit [6] and now is widely used in almost all ar-

eas of computing. These applications include general-purpose desktop computers,

embedded systems, and networking devices. Instead of focusing on increasing the

performance of a single processor, multiprocessing is designed to improve the overall

speed for programs that can be run in parallel.

1.1 Motivation

While multiprocessing has emerged in order to overcome challenges stemming

from the physical limits of the conventional processor, simply offering multiple pro-

cessors cannot directly improve performance and reduce energy usage for most of the

applications. Developers should take the responsibility for exploiting the parallelism

1



and fully engaging the power of all their available processors. Programming becomes

increasingly complex because data in the memory may be accessed by different codes

at the same time, which requires some sort of synchronization. Consequently, dif-

ferent programming models are used to make the synchronization easier[15], such as

pthread[31], OpenMP[14], and others.

For example, one type of multiprocessing, namely asymmetric multiprocessing,

involves different processor architectures within one system. This means a binary

targeting on one architecture will not work on other types of processors. The whole

procedure of developing on this type of system becomes more complicated because of

the following extra work:

• Involves more steps to compile the source files. As mentioned, processors may

have incompatible instruction sets and require their own binaries. Programmers

need to provide different types of source files for this system and compile them

separately.

• Requires the implementation of a program loader. A program designed for other

processors is not loaded automatically by the system; the programmer needs to

write a piece of code to manually transfer it to the target processor and correctly

setup the environment for its execution.

• Requires the programmers to manage data transfer between different processors.

Programs running on different processors can communicate in many ways. This

communication needs to be implemented in the source files and interleaved

efficiently with the actual computation code.

• Difficult to analyze and optimize the program. Source files are now processed by

different compilers where each compiler runs independently. Usually there is no

data shared between different compilers, so it is difficult for them to exchange

information and produce a global view of the whole program.

This thesis explores all of these issues based on one asymmetric multiprocessing

2



platform, Cell Broadband Engine [41]. The pedagogic language known as Tiger[4]

serves as the input language for this compilation procedure.

1.2 Thesis Statement

A single compiler that translates the program fragments for different architectures

of an asymmetric multiprocessing system offers opportunities for better program mod-

ularization and performance.

Further optimization is investigated and described in this thesis, including the

following tasks:

1. Analyze and reorder the instructions so that the program can still run some

code while calling a function on a different processor.

2. Evaluate different distribution methods for an input source file and minimize

the running time of the program.

1.3 Contributions

This thesis implements a compiler to simplify the programming and compiling

procedures on an asymmetric multiprocessing platform. The goal is to process func-

tions defined for different architectures automatically and to generate corresponding

assembly codes. Furthermore, the compiler hides the details of handling the proces-

sor switches during function calls and data transfer between processors. This feature

makes programming easier and also provides more information for future optimiza-

tions.

The specific contributions include the following items:

1. The Tiger language is extended with some new keywords to support function

definitions for different architectures. The frontend is modified to recognize

these keywords and generate correct syntax trees.

3



2. Multiple backends are implemented to emit corresponding system instructions.

The compiler will choose the correct backend depending on the function type.

3. Stub functions are generated automatically by the compiler to hide all the details

of function calls and argument transfers. Programs can trigger a heterogeneous

function execution under simple or parallel mode.

4. The data transfer between processors is optimized to reduce the overhead of

processor switching.

5. The linking procedure is automated to hide both the stub functions and different

assembly files.

1.4 Thesis Organization

The rest of this paper is organized as follows: Chapter 2 conveys the background

knowledge of multiprocessing, the Tiger language, and related work in this area.

Chapter 3 gives an overview of the solution to the problem explained above and

describe the operating environment and general design of the compiler. Chapter 4

discusses in detail all the components components and explore a number of practical

problems that were solved during implementation. Then, it discuss the optimiza-

tion for data transfer across processors. Chapter 5 demonstrates performance results

for different practical applications of the compiler and then describes potential opti-

mization opportunities provided by the compiler. Finally, Chapter 6 concludes and

outlines future work.

4



2. Background

To take advantage of multiprocessing, a recent trend is to implement multi-

threaded software[3]. By sharing data across processors, threads can be distributed

and executed in parallel. However, from the nature of algorithms, these types of

programs inevitably contain a sequential execution inside each thread and require

synchronization across threads. This portion of the code serves as the primary factor

for any performance improvement to be gained from multiprocessing. This chapter

will discuss how multiprocessing impacts the performance, paying particular atten-

tion to describing the different flavors of multiprocessing implementations. Then,

Amdahl’s Law is introduced which characterizes the impact of sequential program

fragments on overall performance. It also details the Tiger language and covers some

general requirements for the compiler. Finally, this chapter ends with a literature

review of related work.

2.1 Symmetric and Asymmetric

The development of multiple processors has spawned various implementations to

partition and distribute the code. Two major operating modes [48] employed in the

industry are Symmetric Multiprocessing and Asymmetric Multiprocessing:

1. Symmetric Multiprocessing (SMP)

SMP[48] refers to the employment of several identical, general-purpose proces-

sors in the computing unit. They may be connected to a single memory through

a system bus, yielding a symmetric view of memory where every processor sees

all of it and operates on memory in the same way. Alternatively, such proces-

5



sors may have privileged access to a small amount of memory and limited or

no access to all of the memory. This Non-Uniform Memory Access (NUMA)

architecture could be constructed so that every processor has its own fast local

memory. Figure 2.1 shows a structure for an SMP system.

Figure 2.1: Symmetric Multiprocessing System

Most vendors are marketing SMP multicore processors, especially Intel/AMD

x86 architectures, which are widely used in science, industry, and business.

With carefully designed multi-threaded applications, SMP can bring perfor-

mance improvements by a factor approaching the number of processors. Even

with programs designed for uniprocessors, one may still benefit from SMP be-

cause other processes or background tasks can be handled by the additional

processors.

However, limitations in both performance and power for the uniprocessor still

remain because SMP is a replication of the original single processor. To fully

utilize the power of the additional processors, it also requires extra work to

synchronize the execution and data during the software development. In ad-

dition, all processes are managed by the operating system. It must be built

with SMP support so that a process can be scheduled for different processors.

6



The overhead for synchronization also increases with the number of processors

because there could be more contention for system resources. For example, a

situation of different processors accessing the same memory location requires

protection such as a critical section or a lock to make sure only one can touch

it exclusively. Other processors at the same time will either do busy waiting

or sleep waiting for the next signal. Finally, if a shared system bus is used

and each process has its own cache, an instruction operand may have several

copies, one in main memory and one in each cache. If one copy is modified, the

change must be propagated to different copies. This discipline, known as cache

coherency, becomes a potential performance issue.

2. Asymmetric Multiprocessing (AMP)

AMP[48] is based on the idea that no single processor is ideal for all types of

existing applications. It includes different types of processors where each type

is designed to solve one specific problem. For example, an AMP system may

include a low power-consuming processor to manage resources and to distribute

input data, along with several computation-intensive processors so that each

works on a different portion of the data.

Figure 2.2: Asymmetric Multiprocessing System

7



Distributing input data among different processors requires resource manage-

ment; generally, one processor is designated as the master processor to run the

operating system and to perform I/O. The master distributes computational

threads among other slave processors. An example AMP system is shown in

Figure 2.2. It contains one master processor and two slave processors. Each

slave processor has its own private memory. All processors are connected with

the system bus and can access the main memory, as well as performing I/O.

One special type of processor also considered as an AMP system in this study

is the Graphics Processing Unit (GPU).

For each computation thread, AMP provides an execution environment that is

similar to that of the conventional uniprocessor system. It is simple to migrate

the legacy code to take advantage of multiprocessing. Also easier is the im-

plementation of the operating system for AMP as the scheduling and system

interrupts happen on the master processor.

AMP also has some disadvantages:

• A single computational unit cannot be split to run on different processors,

so some of them may be left idle if the algorithm is not well selected. This

circumstance causes underutilization of the processors. For example, if

one processor gets busy while many threads are running on it, there is

difficulty in most cases to move them to another processor that has free

CPU cycles. A complex checkpointing procedure is required to save and

restore the running state of a thread, which leads to service interruption

during the movement.

• Processes will not be able to take advantage of AMP easily because the

operating system is running on the master processor. The task must be

designed for some specific processor and explicitly assigned to that type of

slave processor in AMP. By contrast, in SMP, all processors are compatible

and the scheduling across processors is transparent for programmers.

8



This research work focuses on the AMP design.

2.2 Amdahl’s Law

Amdahl’s Law[2] is used to calculate the maximum speedup of an overall system

when a fraction of it is enhanced. The speedup is defined as the original execution time

divided by the optimized execution time, and it can be calculated with Formula 2.1

Speedupenhanced(f, S) =
1

(1− f) + f
S

(2.1)

where f stands for the fraction of the system that is enhanced, and S means the

speedup of this fraction. Amdahl’s Law implies that if f is small, the overall opti-

mization will have little effect.

This law also has a special case for multiprocessing. If n processors can be used

in parallel, and there is no scheduling overhead, the speedup will still depend on

the fraction of the program that can not be parallelized. It shows the calculation in

Formula 2.2

Speedupparallel(f, n) =
1

(1− f) + f
n

(2.2)

Hill and Marty extended Amdahl’s Law to multicore processors to demonstrate

that Amdahl’s Law still plays an important role even in the multicore era[21]. They

were interested not only in maximizing performance, but also in taking the power

limitation into account. In their paper, they illustrated a simple cost model to sim-

ulate three kinds of integrated circuit design and analyzed program performance on

these integrated circuits.

Before discussing the different intreated circuit designs, they first introduced the

term base core equivalent (BCE) to stand for the baseline core, also making some

assumptions before the experiment:

• Assume for given size and technology, a multicore integrated circuit can support

at most n BCEs.

9



• Assume, given the resources of r BCEs, that architects are able to rebuild them

into one more powerful core with performance of perf(r) in sequential execution.

• Assume perf(r) is calculated as:

perf(r) =
√
r

For example, with 4 BCEs, the performance is doubled.

• Assume the non-processor resources such as shared caches, interconnections,

memory controllers, etc. are constant in the experiment.

In their experiments, these three different types of integrated circuit designs were:

• Symmetric Designs : In symmetric designs, all the cores on the integrated circuit

have the same cost, as shown in Figure 2.3. In the symmetric design, only one

Figure 2.3: Symmetric Designs

core with resources r BCEs will run the sequential part of the program at a

performance of perf(r); all the n/r cores will run the parallel part of the program

at a performance of perf(r)*n/r, so the speedup equation is reformed into:

Speedupparallel(f, n, r) =
1

(1−f)
perf(r)

+ f
perf(r)∗n

r

(2.3)

10



• Asymmetric Designs : In asymmetric designs, one or more cores are more pow-

erful than the other cores on the integrated circuit, as shown in Figure 2.4.

It is very common to design one more powerful core with r BCEs to execute

Figure 2.4: Asymmetric Designs

the sequential part of the program at a performance of perf(r), and it will run

the parallel part of the program together with all the n-r 1-BCE cores to get

the performance of perf(r)+(n-r). The enhanced speedup equation is shown as

below:

Speedupparallel(f, n, r) =
1

1−f
perf(r)

+ f
perf(r)+(n−r)

(2.4)

• Dynamic Designs : Different from symmetric or asymmetric designs, an inte-

grated circuit with dynamic design switches between the sequential mode and

the parallel mode. Figure 2.5 shows how these cores perform during the program

execution.

Figure 2.5: Dynamic Designs

11



This design employs r BCEs cores to be a richer core for the sequential part of

the program with a performance of perf(r) and works as n 1-BCE cores for the

parallel part of the program with a performance of n. So, the speedup equation

is modified as shown below:

Speedupparallel(f, n, r) =
1

1−f
perf(r)

+ f
n

(2.5)

The authors applied Amdahl’s Law to multicore integrated circuits using these three

different techniques. Their simulation results show that asymmetric multicore designs

provide better speedup than those enabled by symmetric designs. Dynamic designs

have the potential to achieve the best of both worlds, especially under modern power

limitations. Results also showed that even in the multicore era, sequential program

execution still dominates program performance.

Asymmetric processor code generation is not deeply investigated, but is necessary

to effectively employ power-limited processors. A goal of this research is to evaluate

these simulation-based claims using existing hardware. The Cell B.E. is used as an

asymmetrically designed integrated circuit.

2.3 Cell Broadband Engine (Cell B.E.) Architecture

Few AMP systems exist nowadays, but one has achieved commercial success: Cell

B.E. is a novel, heterogeneous, multicore architecture [45], designed by IBM, Sony, and

Toshiba, to provide significant performance improvements for computation-intensive

tasks at a relatively low power consumption. It is representative of AMP designs

and has been widely used by both industry and academia; one familiar example of

domestic use is Sony PlayStation 3. The processor is a multi-core integrated circuit

consisting of a standard 64-bit Power Architecture processor with eight high-frequency

synergistic processor cores offering pipelined SIMD capabilities [29]. To facilitate

communication between processors, it also integrates a high-speed memory controller

and a high-bandwidth bus interface on the integrated circuit. The structure of Cell

12



B.E. system [25] is shown in Figure 2.6. The Element Interconnect Bus (EIB) is the

system bus of Cell B.E. which connects all other components. A memory controller

and an I/O controller provide interfaces to access different hardware resources. The

remaining components will be described in this section.

Figure 2.6: Cell Broadband Engine System Structure

2.3.1 PowerPC Processor Element

A PowerPC Processor Element(PPE) is the general purpose processing unit in-

cluded in Cell B.E. intended for system resources management. It has a 64-bit Pow-

erPC processor unit (PPU) that conforms to standard PowerPC architecture and a

PowerPC virtual memory subsystem. The PPU supports dual-thread processing and

employs an extended version of the PowerPC instruction set, which includes SIMD[16]

instructions. Together with 32 special vector registers, these extra instructions are

used to broadcast an instruction to multiple computation units where this instruc-

tion is executed on different data simultaneously in order to achieve the data-level

parallelism.

Typically, the operating system runs on PPE and has an overall control of the

13



whole system. Parallelizable tasks sent to Cell B.E. are distributed by PPE to the

synergistic processors. Figure 2.7 shows the structure of PPE.

Figure 2.7: PowerPC Processor Element

The PPU is a 2-way multiprocessor with shared data flow, and it can support two

simultaneous threads of execution. Simplistically, the PPU itself can be viewed as

an SMP system with two independent processors. For instruction fetch, it contains a

32KB L1 cache which is 2-way set-associative, reload-on-error and parity protected.

The cache line size is 128 bytes. It also includes another 32KB cache for data access.

This cache is 4-way set-associative, write-through and parity protected. The cache

line size is 128 bytes.

The PowerPC Processor Storage Subsystem (PPSS) handles memory requests

from PPE in addition to memory coherence operations from EIB. PPSS includes a

14



512KB L2 cache that is 8-way set-associative, write-back with ECC support. The

cache line size is also 128 bytes.

In a Cell B.E., all hardware resources are mapped to the PPE’s linear address

space so that PPE can directly access any of these resources with an effective address

value. PPE also supports the vector/SIMD multimedia extension to run software

that uses this extension, meaning that, with a well designed distribution mechanism,

PPE can also serve to do some computation work.

2.3.2 Synergistic Processor Element

The Synergistic Processor Element (SPE) is the novel part of Cell B.E. archi-

tecture. It is named as “synergistic” because it works as a coprocessor to the PPE.

Optimized for computationally intensive processing instead of general purposes, these

eight SPEs are less complex cores able to achieve superior performance on critical

workloads such as gaming, media encoding, and similar activities. Figure 2.8 shows

the structure of SPE. Each SPE includes a Synergistic Processing Unit (SPU), a

Memory Flow Controller (MFC), and in the current generation of Cell B.E., a 256KB

embedded local storage for both instruction and data.

Optimized for computation, each SPU processor contains 128 registers, and each

register is 128 bits wide. This capacity benefits instruction scheduling and allows some

optimization techniques. The SPU instruction set does not match other systems, such

as x86, MIPS, but is optimized for this large number of registers in design. It includes

the following major features:

• Sequential loading and storing on these 128-bit registers. This means the SPU

will always execute the load and store instructions in the order specified by

the program. Even if two instructions have no dependency, the SPU does not

reorder them.

• SIMD arithmetic on multiple data elements up to 128 bits in total. In contrast

to PPE wherein a separate set of registers is used, SIMD registers on SPE

15



Figure 2.8: Synergistic Processor Element

are also unified. They can act as operands for both integer and floating-point

instructions.

• Memory access instructions are restricted to the local storage. There is no

direct access to other resources. The program needs to issue DMA operations

to transfer data between the local storage and main memory.

• Unlike a traditional system cache, this local storage is not transparent to soft-

ware and does not provide prediction for loading data.

In the typical usage scenario, the system will load the program binary and data to the

local storage of SPEs and chain them together to process each step of the operation.

The registers, local storage and main memory offer a three-level memory structure

for SPE, which is designed to avoid the false-sharing problems[10] and other cache

16



inefficiencies frequently found in conventional processors.

2.3.3 Memory Flow Controller

A crucial component of an SPU is the memory flow controller. All data transfers

between different stores on Cell B.E. platform, including main memory to local store,

local store to main memory, and between local stores on different SPU. SPE entirely

depends on MFC to transfer data between its local storage and main storage. An

MFC command is translated into a DMA transfer, and MFC can support multiple

commands at the same time. As shown in Figure 2.8, each SPE contains its own

MFC. MFC can be instructed by both PPE and SPE to perform DMA operations.

Requests are queued at MFC through two types of interfaces:

1. SPU Channel : As mentioned above, the SPU is decoupled from the system

with limited access to other components, and MFC is required to access the

main storage domain and other hardware resources. The MFC hardware pro-

vides the channel interface used by the SPUs to control MFC. Each channel is

unidirectional, so one can either read from, or write data to, the MFC through

it. An SPU interrupt mechanism detects data availability and avoids polling.

Multiple channels are supported for each SPU.

2. Memory-Mapped Register : This register is used by PPE and all other devices.

A request can be issued on behalf of an SPU through this interface.

Each MFC command is tagged with a 5-bit identifier. This identifier can be

shared by multiple MFC commands, and these commands are called a tag group. By

using this identifier, a program can check whether commands in a tag group have

completed.

Based on the above data transfer mechanism, MFC also offers methods for data

protection and synchronization. Several mechanisms are employed for communication

between PPE and SPEs and between the SPEs, including the following items:

17



1. Mailboxes : This mechanism allows programs to exchange 32-bit messages be-

tween processors. The MFC of each SPU contains both the inbound mailboxe,

where the local SPE reads and PPE and other SPEs write, and outbound mail-

boxes where a local SPE writes and PPE and other SPEs read.

2. Signal notification: This allows a PPU program or an SPU program to signal

an SPE with 32-bit signal registers. This is a one-direction operation with

information being sent only toward the SPU which resides in the same SPE as

the signal registers.

3. SPE events : This mechanism allows an SPU program to trace external events

set by either hardware or the Mailboxes and Signal notification. The PPU

program can also include an event handler to track the events which happen on

SPEs.

2.4 Tiger Language

Tiger is a functional programming language derived from an example language

introduced in Andrew Appel’s Modern Compiler Implementation book [4]. It has

built-in types, such as int, string, record, and array. Tiger allows flow control by

supporting for, while, and if. It also supports statically nested functions with variables

defined in outer functions available to inner functions. In addition, some built-in

functions exist in Tiger for string manipulations and system interactions. An example

of Tiger language is shown in Figure 2.9, listing a program that solves the classic 8-

queens problem.

Four variables of type intArray are defined, named row, col, diag1 and diag2.

Function try is a recursive function which takes one parameter to describe the current

column. It tries each different placement on the current column with a loop, and if it is

valid, moves to the next column. When it finishes the last column, a nested function

printboard defined as part of try will be called to print the current placement

of the chessboard. Each variable in this program has its scope. For example, those

18



Figure 2.9: Tiger Example Source

variables defined in the let...in can be accessed by all codes in this let...in...end

structure, but i defined in printboard can be accessed only by this function.

In this thesis, this study will extend the standard Tiger language by adding key-

words and flow control logic to build an executable program run across the PPU and

the SPU processors on the Cell B.E. platform. The Tiger language in this thesis sup-

ports all the above features. But it has limitations on function calls across processors.

Nested functions will not be able to access parent’s variables. Besides, with current

implementation, only array is supported as complicated parameter type.

19



2.5 Overview of TigC

This thesis provides a Tiger compiler called TigC for Cell B.E. platform, which is

able to accept mixed source code for both PPE and SPE processors and generate a

single executable file to run across the processor. All details about transferring data

between main memory and local storage and the heterogeneous function calls should

be hidden by stub functions generated automatically by the compiler. This study will

focus solely on the function calls from PPE to SPE, as this is the primary usage on

Cell B.E. platform.

TigC supports two different backends, one for PPE and one for SPE. The fron-

tend tags each function for its target platform. With these tags, function calls will be

analyzed and all remote calls (across processors) will be translated into the execution

of the wrapper code. Therefore, TigC requires another component to generate the

wrapper code in order to transfer the input/output data between processors, to man-

age the usage of SPEs, and to synchronize the execution contexts. The compiler also

needs to support distribution of a function onto different SPEs, each with a subset of

the input data, thereby employing the full power of Cell B.E. platform.

Lastly, to make the compiler easily extensible to support other AMP platforms,

or even programming with GPU, there should be only a few changes involved with

the general compiler frontend. A general backend interface is proposed so that it can

be extended to describe the features of all architectures.

2.6 Related Work

This section describes previous research that is closely related to the TigC imple-

mentation. Different solutions are proposed to offer convenient techniques for writing

programs on heterogeneous systems. These works are categorized into different groups

based on their target platform: Generic Multiprocessing Systems, GPU, and Cell B.E.

system. These groups are described below.

20



2.6.1 Generic Multiprocessing System

Early implementations of simultaneous executions include array processors, which

handle multiple data elements at the same time in a parallel fashion. They use

special instructions optimized for array operations. Differing from multiprocessors, all

computation units in array processors can work only on a single set of data elements.

In [7], G.H.Barnes describes the structure of a parallel-array computer, ILLIAC IV,

which includes 256 processing elements (PEs) for arithmetic and logic operations.

Each PE has its own 2048-word 64-bit per word random-access memory, named PEM.

Such PEs are used for multi-array processing. W. J. Watson in [50] describes the

TI-ASC system developed by Texas Instruments. This system implements a single

instruction to read streams of operands from memory into a vector unit and processes

them. The result stream will then be sent back to the memory.

In [11], John R. Callahan and James M. Purtilo propose a solution to integrate

heterogeneous, distributed software components. These components are implemented

with different programming languages, different data representation formats, and per-

haps different runtime environments. To link all these components together, the au-

thors propose a tool that analyzes the program and generates a wrapper function

as a bridge to connect the call between two components. Phillip B. Gibbons in [19]

describes a stub generator that is both language and machine independent. Based on

a set of language and machine specifications, the stub generator generates stub func-

tions that marshal the arguments and return values, also doing the remote procedure

calls (RPC)[37]. These research examples provide the ideas to do the heterogeneous

function calls between processors.

Mary W. Hall et al., in addition, describes the SUIF Compiler in [20], targeting

on shared memory multiprocessors. The compiler locates the coarse-grain parallelism

by analyzing the scalar and array usages in the program. These parts of the program

will be distributed to different processors.

Open Multiprocessing (OpenMP)[12] is library support for multiprocessing pro-

21



gramming on different platforms, such as AIX, HP-UX, Linux, Mac OS X, and Win-

dows. Different languages can be used with OpenMP, including C, C++, and Fortran.

It has evolved towards the parallelization of a wide range of applications ranging from

desktops to supercomputers. Preprocessor directives are used to create threads upon

entering a section. For example, the following pragma is utilized to fork multiple

threads for executing the next adjacent code section:

#pragma omp parallel

where omp represents the OpenMP preprocessor directive, and parallel tells the

compiler that the following code block is a parallel region with a default number of

threads. Eduard Ayguade et al. in [5] explores the approach to employ OpenMP on

heterogeneous systems, including GPU and Cell B.E. processors. They provide a new

pragma to precede the existing pragma task:

#pragma omp target device(device -name -list) [clause -list]

where the target construct specifies that the function declared right after is designed

to be executed on all the devices which appear in the device-name-list. A device

could be cell, cuda, or fpga. In this way, users are allowed to specify the target

processor to run a section in the program.

2.6.2 Cell B.E. Platform

Mao and Shen [34] explores the capability of Cell B.E. platform for scientific com-

puting. This paper presents the experience of implementing the LU decomposition

to utilize fully the power of a Cell B.E. system. Various performance factors are

considered for occasions while the tasks and data are distributed to different SPUs,

including:

1. Locality : A ready queue is maintained on SPE. When an SPU is about to process

a task, it checks this queue and issues the prefetch instructions for the data

that the newly entered program may need. This is a non-blocking operation,

so the current task immediately starts. Double buffering is used to overlap the

22



computation and prefetch. In addition, a software cache is implemented as an

index array to record what data exists in the local storage.

2. Load balancing : Four different distribution schemes are evaluated. The dynamic

distribution puts a task into the ready queue that has the fewest tasks in order

to produce a good load balance among SPEs. It is locality oblivious because

it assumes that no data is shared between tasks. The other three distribution

schemes are static but have different partitions. A 1D-unbalance scheme splits

the matrix evenly. Because LU decomposition involves different levels of com-

putation complexity on different parts of the matrix, this scheme leads to the

worst balance. 1D-interleaving improves the load balancing by interleaving the

distribution. 2D-interleaving does the same thing but also on the second di-

mension, and it has the best load balance. However, the first two schemes have

better locality than the third one because the whole column is processed on the

same SPU.

Evaluating different distribution schemes provides the compiler a baseline of how to

generate the parallel code.

Cell superscalar (CellSs) [8] is a C compiler which automatically exploits the func-

tional parallelism through different processing elements on Cell B.E. system. Users

are required to provide some annotations in the source code (a feature that is simi-

lar to OpenMP) to be used by a source-to-source compiler for generating necessary

helper code. An example of the annotation is shown below:

#pragma css task input(a{}, index) output(b{})

void array_op(float a[N], float b[N], int index);

where css task specifies that the following function should be scheduled to run on

the SPU. It also describes the types of each parameter and specifies whether they are

input or output parameters. Based on this information, a runtime library takes care

of the task scheduling and data transfer between different processors.

23



Alexandre E. Eichenberger et al. in [17] discusses different optimizing techniques

for a compiler for a CELL processor. The compiler is first optimized for branch

execution because a branch misprediction penalty on the SPU is an 18-cycle high

penalty. Then a simdization framework is introduced to generate the SIMD instruc-

tions automatically. In the end, the compiler employs the OpenMP pragmas to guide

parallelization decisions and to distribute threads to different SPUs. The authors

propose a single shared memory abstraction for data access. The compiler creates

a software cache for the SPU, then it analyzes the program to replace the load and

store instructions with instructions that search the operand in the cache. For the

data that appears in the cache, the address will be calculated and then passed to the

load and store operations. Otherwise, a subroutine is called to transfer the data from

the main memory.

An extension to OpenMP was introduced by Kevin O’Brien et al. in [39] to

support the Cell B.E. platform. Based on IBM’s XL compiler which already supports

OpenMP for AIX system, a new runtime library was developed to utilize the Cell

B.E. SDK libraries to target the new platform. It implements the OpenMP memory

model on the Cell B.E. memory system and generates thread code targeting different

architectures. Wei and Yu in [51] does similar work by translating the program with

OpenMP directives into codes targeting on both the PPU and the SPU.

2.6.3 GPU

CUDA is developed by NVIDA as a parallel computing platform and also a pro-

gramming model [38]. It is employed to utilize the computation power of GPU, which

is a specialized processor to address real-time, high-resolution graphics tasks. Cur-

rent GPUs actually do more than just render graphics, instead having a substantial

floating pointer performance that makes them perfect for applications from finance

to medicine [33]. With CUDA, users are allowed to write applications with kernel

functions in C, C++, and Fortran, as well as to execute code directly on GPU. There

is no need to use an assembly language for GPU programs. CUDA can be considered

24



as a special AMP system as GPU is different from the main processor. There are

several approaches available for using CUDA in parallel computing:

1. GPU-accelerated libraries One example of the accelerated library is CULA[23],

which is designed to solve Linear Algebra problems. It employs a hybrid process-

ing model, meaning the code utilizes both CPU and GPU for its computation.

2. OpenACC directives OpenACC[40] shares the same idea as OpenMP by using

directives to specify the parallel execution on the GPU. The code below shows

one example of using OpenACC in C or C++:

#pragma acc kernels copyin(a[0:n], b[0:n]), copyout(c[0:n])

for (i = 0; i < n; i++) {

c[i] = a[i] + b[i];

}

where a kernel is defined which runs on GPU and accepts two arrays, a and b.

The output is stored in c and should be copied out from GPU after execution.

3. Standard languages with extensions For example, in [13], Ludovic Courtes de-

veloped the StarPU, an extension to the C language, to allow programmers to

select a target for each function. A starpu codelet is defined to describe the

implementation and parameters of a task:

struct starpu_codelet scale_vector_codelet =

{

.cpu_funcs = { scale_vector_cpu , NULL },

.opencl_funcs = { scale_vector_opencl , NULL },

.nbuffers = 1,

.modes = { STARPU_RW },

.name = "scale_vector"

};

where .cpu funcs and .opencl funcs describe the functions that run on the

CPU and GPU. nbuffers denotes a possible transfer of large data back and

forth between main memory and GPU. modes describes whether the buffer is

accessed read-only, write-only, or read-write by the task. Then, C language is

25



extended to process this structure specially and to generate a wrapper function

to call the GPU version.

The authors in [30] offer a compiler frame which translates OpenMP program

to use CUDA-based GPUs. The translator interprets the OpenMP semantics and

identifies the kernel regions (code sections to be executed on the GPU). These kernel

regions will then be transformed into CUDA kernel functions. Shared data will be

analyzed to insert required memory transfer calls.

To improve the performance of OpenMP on heterogeneous systems, Thomas R.

W. Scogland et al. in [47] discusses the task scheduling for accelerators, (e.g., GPU).

Similar to the actions of OpenACC, an extra directive is introduced to define an

accelerator region representing a code block that should run as a thread on an ac-

celerator. New clauses are used to describe whether some values should be copied in

and out, just in, or just out from the accelerator. Then, the authors evaluate both

static splitting and dynamic splitting mechanisms to execute the accelerator region

on both CPU and the accelerator.

2.7 Summary

This chapter described different types of multiprocessing systems: Symmetric and

Asymmetric. The differences between them are discussed, such as their advantages

and drawbacks, and several ways that their characteristics impact the programming

models. Then, Amdahl’s Law was introduced. It can be used to estimate the per-

formance improvements with multiple processors. After that, the Cell B.E. system

was considered in detail, including the important components, the way different pro-

cessors communicate, and how data is transferred between main memory and each

SPE’s local storage. This chapter also examined the Tiger language, which is used

as the input for the compiler. Finally, a literature review of existing research on

multiprocessing systems and compilers optimized for systems is included.

26



3. Approach

This chapter summarizes the general design for the Tiger compiler, TigC. It starts

by describing the system environment that contains all required components to sup-

port this compiler. Thereafter, the general steps of the compilation procedure and

the structure of the compiler are discussed at a high level. Finally, it explores the

architecture of the compiler.

3.1 Operating Environment

The core component of TigC is implemented in Standard ML of New Jersey (SM-

L/NJ) language [35]. An implementation of SML/NJ is required in the system in

order to build the compiler itself. TigC should focus on code generation, and to

abstract the heterogeneous call implementation from the compilation procedure, a

separate component in the compiler is designed to manage all the function definitions

for different architectures and to generate the necessary stub code. This component

is implemented in a Python script and works as an automation tool, so Python is a

required tool in the system. Finally, this compiler generates assembly code and relies

on the system assembler for the final binary.

Two different compilers are provided by IBM for development on Cell B.E., one for

each of the two types of processors. The GNU toolchain contains the GCC compiler

for both the PPU and the SPU, called ppu-gcc and spu-gcc. In addition, a separate

command ppu-embedspu is provided to enable an SPU binary to be embedded with

the PPU binary and loaded to the SPU processor at runtime. In TigC, these gcc

commands are used to access the assembler and generate binaries.

27



To run the resulting executable file, if the program contains functions only for

the PPU, TigC will generate the binary which is compatible with standard PowerPC

64-bit architecture. However, a Cell B.E. platform will be required when the program

has SPU functions.

3.2 Steps of Compilation

While assembly language programs must be modified or rewritten execution on

different hardware architectures, a compiler enables development with higher-level

languages that are machine-independent. It accepts high-level source programs and

translates them into machine code for the target hardware platform. The compilation

procedure usually include several operations:

1. Lexical Analysis

The compiler must understand the structure and meaning of the input source

code to do the translation correctly. A scanner is used to break the input

source code into individual words that are called “tokens”. Based on given

lexical rules, the scanner reads the source program represented as a sequence of

accepted characters from the input stream (usually a source file) and produces

a list of tokens.

2. Syntax Parsing

Tokens from Lexical Analysis are passed here for further processing into abstract

syntax. They will be put together and parsed to form the syntactic structure

of the language. The syntax parser identifies the sentences that belong to the

input language and then translates them into abstract syntax representation.

3. Semantic Analysis

In this step, the semantic information will be added to the abstract-syntax

representation. This means the compiler will associate variable and function

definitions with their references and perform type-checking. Incorrect programs

will be rejected in this step.

28



4. Translation into IR

The abstract-syntax representation is transformed into IR, which describes the

machine-level operations while not involving too much details Most important,

IR is also independent of the source language so that, in future, the compiler

can be easily extended to support different languages.

5. Code Generation

Nodes of IR will be grouped and translated into clumps that correspond to the

native system instructions in this step. It also does the register allocation where

symbolic variable names used in IR will be replaced with actual registers.

In addition, the compiler usually also includes steps to optimize the size and speed

of the resulting binary. The above operations are organized into three categories: the

frontend that does lexical analysis and syntax parsing to generate the abstract syntax

representation, the middleend to generate the IR, and the backend to translate the

IR into assembly code. Optimizations on different levels could be involved in all these

three phases to improve the performance and also the binary size.

As stated before, the goal of this thesis is to support different architectures and

also to provide opportunities for better program modularization and performance. For

each architecture, all the compilation steps should be applied to the corresponding

source code to generate the resulting binary. This condition means that, logically, a

program designed for an AMP system will have more than one resulting binary. To

achieve this situation, the compiler could be designed with one of the following two

methods:

1. Separate compilations

The compiler itself is also a program that translates source language into ma-

chine code. To support different architectures, a simple solution is to have

multiple compilers. The input source code should be categorized into groups

of files where each group targets at one architecture. Then, the corresponding

29



compiler program will be used to process each group in order to generate result

binaries. A simple example is shown in Figure 3.1.

Figure 3.1: Example of Separate Compilations

In this example, the source code contains two different groups: one includes

all the function definitions for the PPU architecture and the other for the SPU

architecture. Each group has its own compilation procedure, which involves all

the above steps from lexical analysis to the final code generation. These two

compilations run as separate processes where little or no information is shared

between them. In the end, two different binaries will be generated.

In this case, where only a single source language is used, it becomes obvious

that although these two compilers belong to different programs, they could share

the same frontend and middleend. Only the code generators are needed to be

implemented for different architectures. This step may still involve significant

investment, as modern processors are usually equipped with dedicated perfor-

mance improvement technology, which then requires extensive compiler support

30



for generating high quality code; the difference between processors makes it dif-

ficult to retarget the compiler to another architecture. So generic backend, such

as MLRISC, could be used to solve these problems. Based on the machine de-

scription file, which includes information such as register file and instruction

encoding, MLRISC generates the actual backend implementation and does the

optimizations.

With this compilation model, the compilers do not handle any interactions be-

tween different architectures, a circumstance which simplifies the implementa-

tion of the compiler. However, programmers need to explicitly use the platform

SDK to make function calls across processors.

2. Unified compilation

The second way is based on the fact that the compiler works only on one source

language. Because the frontend depends solely on the input language, the com-

piler could be designed as a single program that includes a unified frontend.

Source code targeting at different architectures could then be processed into

abstract syntax representation. However, to generate IR and the final machine

code, each architecture requires its own backend implementation. One example

of this compilation procedure is shown in Figure 3.2.

In this example, there exists only one compiler program, but it has two backends.

Each function definition in the source code is first processed by the frontend.

Then depending on the information, provided either by programmers or by

some decision logic inside the compiler, the function will be labeled with a tag

indicating its target architecture; the corresponding backend will then be used

for the code generation. Note that even with a single compilation procedure,

the compiler will still generate two different binaries.

As each function definition is tagged with its target architecture, by check-

ing the caller and callee, the compiler can easily identify function calls across

processors, handling and automatically generating some wrapper code to hide

the implementation details. For programmers, calling a function on a different

31



Figure 3.2: Example of Unified Compilations

architecture has no difference from a local function call.

To illustrate the difference between these two designs, the following Tiger program

is used as an example: considering a piece of code targeting at the SPU platform and

implemented as a function bar, it will be called by a function foo which is running on

the PPU platform. The first design requires the programmer writing code as shown in

Figure 3.3. File foo.tig includes the definition of function foo, and bar.tig includes

the definition of the SPU function bar. To call an SPU function on the PPU, the

programmer needs to implement the code that loads the SPU program, to manage

the argument and return value passing, and to control processor switch. Compiling

this program also requires two different procedures, which in the end gives us two

resulting binaries.

32



Source Files: Compilation Procedure:

foo.tig: ppu -tigc foo.tig

ppu_function foo() := spu -tigc bar.tig

(ctx := spe_context_create ();

spe_program_load(

ctx ,

bar_program );

spe_program_run(ctx);

spe_context_destroy(ctx)

)

bar.tig:

function bar() :=

;; implementations of bar

function main() :=

bar()

Figure 3.3: Example Program of the First Design

With the second design, the compiler knows if a function call involves any pro-

cessor switch. It could generate all necessary code to hide all the details. The pro-

grammer then could write the program as shown in Figure 3.4. It has the following

differences from the first design:

1. Only one source file, foobar.tig, is needed. It includes definitions of both the

PPU function and the SPU function. In this case, the programmer is required

to provide the target architecture tag for the function.

2. No implementation of program loader, data transfer management and processor

switch code is needed. Based on the tags of functions, the compiler has enough

information to generate these codes automatically.

3. A single compilation is required to build the whole program, which will generate

two different binaries.

Comparing these two designs, it is obvious that the second one not only allows

better modularization because function definitions with different target platforms can

33



Source Files: Compilation Procedure:

foobar.tig: tigc foobar.tig

ppu_function foo() :=

bar()

spu_function bar() :=

;; implementations of bar

Figure 3.4: Example Program of the Second Design

appear in the same source file, but also provides more opportunities for optimization.

In the first design, bar.tig that contains the SPU code is not processed by the PPU

compiler, so it will be difficult to analyze the SPU functions when processing the PPU

code. In addition, function foo does not call the SPU function bar directly. Instead,

it calls some SDK functions (such as spe program load and spe context run) to

start the SPE program. For the PPU compiler, all the SPU calls end up with calling

these functions. Detecting the actual target function will require a significant amount

of work.

However, in the second design, all source codes (in this case foobar.tig) will be

processed by a single compiler. It knows all the function definitions for code analysis.

The SPU function is also called directly from the PPU function. After the frontend

translates the source code into IR, the SPU call could still be represented as a simple

function call node (although it may have some special flag). The compiler can easily

identify the target function for optimization use. Finally, the compiler that generates

the code for the processor switch could analyze both the PPU and the SPU code to

do more optimizations. More detail will be discussed in Chapter 5.

Because of the above reason, TigC uses the second design where a single compiler

program is created to process all the input source code. As a variation of the standard

Tiger compiler, TigC implements all of the common steps to generate the target

executable file [1]. It also has some special operations to support dynamic architecture

selection:

34



1. Function Labeling

To support both PPE and SPE architectures, each function defined in the source

files needs to be labeled. This is done through extended keywords which specify

the function type. When parsing the function definitions, the function-type

token will be read as a tag and attached in the abstract-syntax representation.

2. Stub Generation

With the tags of functions in the abstract-syntax representation, the compiler

can analyze and build the control flow graph for the program. For all function

calls across different processors, it will generate stub functions to hide all the

details of context switch and arguments/return-value transfer. A special stub

function will also be created if the target function is required in parallel mode. In

addition, the entry function will be generated with a map of all SPE functions,

so that all of them can be grouped into the same SPE binary.

3. Automated Link

The code generator in TigC produces assembly language that is a textual rep-

resentation of the target machine code. In this step, the assembler and linker

will group the code and translate it into the binary representation for both PPE

and SPE. Addresses of variables and functions are determined in this step. All

required libraries, such as stdc and Cell B.E. SDK will be linked into the binary.

Then, the SPE executable file will be embedded into the PPE binary to produce

the final output.

3.3 TigC Architecture

The general structure of TigC is shown in Figure 3.5.

35



Figure 3.5: TigC Structure

36



Based on the compilation steps described in the previous section, it contains four

subsystems: The General Frontend, Heterogeneous Backend, RCS Generator and

Automated Linker. The General Frontend accepts source files as input and translates

them into intermediate representation. Then, based on the tag of each function, a

different backend is chosen to emit the machine code. With different configurations,

they can share the same sets of utility classes, such as the register allocator. An RCS

generator reads the function definitions and their targeting architecture types that

are generated by the backend, creating all the needed stub functions for hiding all the

context switch details. Finally, the automated linker combines everything together

and produces the executable binary. Each of these components will be characterized

in detail in the next section.

Usually, a compiler is built with the separate compilation design, where the back-

end is fixed to work on one specific hardware platform. For example, spu-gcc men-

tioned earlier, can be used only to generate binaries for the SPU architecture. To

support different backends during compilation and to dynamically switch between

them based on given function type, TigC employs the unified compilation design and

creates a group of abstract interfaces for the Cell B.E. frame and code generator.

Different implementations of these interfaces describe the characteristics of target ar-

chitectures, such as word size, system instructions, and stack layout. The frontend

will pass the tag to the backend in order to employ the corresponding architecture.

The compiler is structured in such way that it can be easily extended later to

support different types of platforms. First, some keywords are required to specify the

function types. The frame and code generator must be rewritten to have the stack

layout and the instruction set for each new platform. RCS needs to be extended as

the stub function varies in different systems. In other words, this structure provides

a unified programming interface for different AMP architectures.

37



3.4 Summary

This chapter first discussed the operating environment for the TigC compiler,

because TigC has dependencies on various tools and libraries. The resulting binary

also requires a Cell B.E. to run correctly. Then it described the steps of compilation

used in TigC. In addition to the standard procedure, compilation involves several

extensions to support different architectures. Finally, this chapter illustrated the

general structure of TigC and how it can be extended to support multiple platforms.

38



4. Implementation Details

The following chapter discusses the implementation details of TigC. First it de-

scribes the general frontend of the compiler which accepts the mixed source code and

translates it into an abstract syntax tree with proper function tags. Then, different

backends are presented for both PPE and SPE architectures to generate the assembly

code. After that, there follows a detailed description of the RCS generator that pop-

ulates the stub functions and other necessary code for heterogeneous function calls.

Then, the automated linker script is introduced that is used to generate the final

binary. Finally, the optimization for data transfer between the main storage domain

and a local storage domain is presented.

4.1 General Front-end

As described in the previous section, a frontend includes three major steps to

validate the input source code and to check whether it is correct in terms of the

language syntax and semantics. TigC accepts Tiger source codes for two architectures,

but operations in this step do not involve any architecture-specific information, so the

frontend is designed as a general component.

TigC uses ML-lex and ML-yacc to simplify the scanner and parser for lexical

analysis and syntax parsing. This practice makes it possible to use regular expressions

and a context-free grammar to describe the Tiger language without focusing on the

implementation details. Figure 4.1 shows the rules governing how the source code is

parsed into tokens.

Lexical rules are specified with regular expressions. In this example, some defini-

39



digit = [0 -9];
alpha =[a-zA-Z];
alnum =[a-zA-Z0 -9_];

"+" => (PLUS(yypos ,yypos+size yytext ));
"-" => (MINUS(yypos ,yypos+ size yytext ));
"," => (COMMA(yypos ,yypos+ size yytext ));
":" => (COLON(yypos ,yypos+ size yytext ));
"(" => (LPAREN(yypos ,yypos+ size yytext ));
")" => (RPAREN(yypos ,yypos+ size yytext ));

var => (VAR(yypos ,yypos+ size yytext ));
while => (WHILE(yypos ,yypos+ size yytext ));
for => (FOR(yypos ,yypos+ size yytext ));
function => (FUNCTION(yypos ,yypos+ size yytext ));

({alpha }{ alnum }*) => (ID(yytext ,yypos ,yypos+size yytext ));
({digit }{ digit }*) => (case Int.fromString yytext of

NONE => (ErrorMsg.error yypos
;continue ())

| SOME z = >INT(z,yypos ,yypos+size yytext ));

Figure 4.1: TigC Lexical Analysis

tions such as digit, alpha and alnum are first created to make the rules clear; then,

rules describe how a given input string is translated into a token. For example, a

single character “+” is marked as token type PLUS, and word var is marked as token

type VAR. Some rules are more than simple matches. Strings starting with alpha and

following with any number of alphanum will be treated as ID, while one or more digits

represent a token of type INT. The location of each token is also noted together with

the token type in the rule so that any error may be reported with friendly information,

such as the line number in the source file.

Following the above step, BNF-style rules are applied to describe the grammar.

Figure 4.2 shows the rules that form the result tokens into the abstract syntax tree.

First, all names required by these rules are listed. They could be either terminal

symbols, which are tokens recognized by the lexical analyzer, or nonterminal symbols,

which could be expanded and recognized by the parser. The rules are then defined

to describe an allowable structure in TigC and to associate it with a nonterminal

symbol. The right parts of these rules are called actions, and these actions describe

how the abstract syntax tree is formed. For example, a token of type ID matches the

40



rule and could be recognized as a var and then matched as an exp. An exp could be

expanded in many ways. It could be a single var, a token of type INT, or some other

type of recursive definition. For example, given a token sequence ID PLUS ID MINUS

INT, ID matches the rule, so it represents an exp, so ID PLUS ID becomes exp PLUS

exp; it then forms a new exp. After this step, exp MINUS INT could be transformed

into exp MINUS exp and thus form another exp. This outcome means that the given

tokens form a correct construct consistent with the grammar; it will be accepted by

TigC.

%term ID of string
| INT of int
| PLUS | MINUS | WHILE | FOR | FUNCTION | VAR

%nonterm program of A.exp
| exp of A.exp

program : exp (exp)
var : ID (A.SimpleVar(S.symbol ID ,IDleft ))
exp : var (A.VarExp var)

| INT (A.IntExp INT)
| exp ASSIGN exp (A.AssignExp { var = var , exp = exp ,

pos = ASSIGNleft })
| exp PLUS exp (A.OpExp { left = exp1 ,

oper = A.PlusOp ,
right = exp2 ,
pos = PLUSleft })

| exp MINUS exp (A.OpExp { left = exp1 ,
oper = A.MinusOp ,
right = exp2 ,
pos = MINUSleft })

| ID LPAREN args RPAREN (A.CallExp { func = S.symbol ID,
args = args ,
pos = LPARENleft })

| WHILE exp DO exp (A.WhileExp { test = exp1 , body = exp2 ,
pos = WHILEleft })

Figure 4.2: TigC Syntax Parsing

In TigC, function is reserved as a keyword and translated into a token of type

FUNCTION. The grammar shown in Figure 4.3 is used to define a function where

fields describes the parameters for this function, which could be empty, a single

ID, or multiple IDs separated with commas. optty designates the return type that

is potentially omitted, and exp will be expanded as expressions to form the function

body.

41



tann : COLON ID (S.symbol ID)
field : ID tann ({ name = S.symbol ID,

escape = ref true ,
typ = tann ,
pos = tannleft })

fields : (* empty *) ([])
| field ’ (field ’)

field ’ : field ([ field])
| field COMMA field ’ (field :: field ’)

optty : (* empty *) (NONE)
| tann (SOME(tann , tannleft ))

fdec : FUNCTION ID LPAREN fields RPAREN optty EQ exp (
{ name = S.symbol ID,

params = fields ,
result = optty ,
body = exp ,
pos = FUNCTIONleft })

Figure 4.3: Function Definition in Tiger Language

To support different architectures in TigC, the definition of each function should

be labeled with a tag to specify its target platform, either by the programmer or by

TigC. This condition means there exist two ways to achieve the goal:

1. Rely on the programmer to explicitly specify the target platform and also the

execution mode (simple or parallel call) for each function, with the compiler

remembering this information and using different backends to generate the as-

sembly code.

2. Implement some logic to automatically decide the target platform for each func-

tion. This action requires the analysis of the calls to decide which function would

be better moved to SPE context. The compiler also needs to decide how the

execution and data should be distributed to multiple SPUs.

With the first approach, the compiler hides the details of function calls across

architectures. Programmers need only to decide how the execution should be dis-

tributed and to assign correct tags to each function. The second approach improves

this situation by analyzing the whole program to find the optimal result binary. By

optimal, it means the compiler generates a binary where maximum parts of the com-

42



putation could be distributed to different SPUs and run in parallel. As described

before, this approach usually comes with loop optimization [32, 53, 22, 54]. The

implementation involves the following steps:

1. Locate all the loops in a function by analyzing its control flow.

2. Check all variables used in this loop to see if it carries across iteration depen-

dency. Cross iteration dependency means that during each iteration, the value

of a variable relies on the output of the previous iteration.

3. Consider the current loop as a candidate for SPU function if no cross iteration

dependency is found.

4. Evaluate the loop body and estimate if any performance improvement can be

gained if it is implemented as an SPU function.

5. Transform the loop body to an SPU function, and change the original function

to make a function call instead of entering a loop.

The implementation of the second approach in TigC requires added work because

calling SPU functions also needs some time. Distributing a simple loop may take

longer than running it on the PPU. This circumstance means that in step 4, the

compiler should make the decision either based on some knowledge of how long an

instruction usually takes to execute or by running a sample code on the platform to

get the actual time cost.

As this research focuses on evaluating the performance gained from the Cell B.E.

system, not on finding the optimal binary for a given work, the first approach is em-

ployed in the current version; choosing such an approach relieves us of implementing

overly complex logic. The Tiger language is extended by adding a few more keywords:

ppu function, spu function, and the original keyword function is removed so that

users cannot use it again. A function now in the input source file must be defined

either as a PPU function or as an SPU function. The rules for the new grammar to

43



define a function are shown in Figure 4.4. Both of these definitions share the same

abstract syntax tree node, and the only difference is the additional tag added, which

describes the target platform. This measure ensures that the same code can be shared

to parse both types of functions. The tags will be used later in the backend.

fdec : SPU_FUNCTION ID LPAREN fields RPAREN optty EQ exp (
{ name = S.symbol ID ,

params = fields ,
result = optty ,
body = exp ,
pos = SPU_FUNCTIONleft ,
tag = A.SPU_Func })

| PPU_FUNCTION ID LPAREN fields RPAREN optty EQ exp (
{ name = S.symbol ID ,

params = fields ,
result = optty ,
body = exp ,
pos = PPU_FUNCTIONleft ,
tag = A.PPU_Func })

Figure 4.4: Extended Function Definition

Another extension for Tiger is accomplished by supporting the parallel execution

mode with the new keyword spu for and the grammar defined in Figure 4.5. It

requires the name of the function that should run on the SPU, along with an input

array as its arguments. To split and distribute the input array to different SPUs, some

additional parameters are required: programmers need to provide the total length of

the array and the amount of data to be processed in the course of each iteration of

the loop on the SPE. Differing from ordinary function calls, this extension will be

translated into a separate abstract syntax tree node. One example of using spu for

is shown below:

spufor spufunc of (data, 128, 1024)

where a given array data of size 1024 will be split into small groups that have a size

of 128. These groups will be distributed to different SPUs and processed by the SPU

function spufunc. For example, it could be a function which calculates the multipli-

cation results of two 8×8 matrices. The arguments could be dynamically determined

44



- for example, with an expression of a variable. With this current implementation,

spufor can be employed only in a PPU function.

SPUFOR ID OF LPAREN args RPAREN (A.SpuForExp { func = S.symbol ID ,
args = args ,
pos = LPARENleft })

Figure 4.5: Parallel Call Grammar

With these extensions, the general frontend will generate an abstract syntax tree

with enough information about SPE usage.

4.2 Heterogeneous Backend

This section describes the facility to translate the abstract-syntax tree produced

by the general frontend into machine code for the PPE and the SPE architectures. As

mentioned earlier, IR constitutes another layer before the actual system instruction is

generated. In TigC, IR is another type of tree code that is at a lower level compared

with abstract-syntax trees. It contains basic data movement, branch operations, bi-

nary operations, and comparisons. For example, during the translation from abstract

syntax tree to IR, the rules used for an add operation of two variables in the memory

is shown in Figure 4.6. It defines a binary operation PLUS for addition and then an

expression standing for a memory access with the given offset. The figure also shows

the result IR after the translation.

exp = BINOP of binop * exp * exp
| MEM of exp
binop = PLUS

R.BINOP (R.MEM off1 , R.MEM off2)

Figure 4.6: Example of IR

One atypical action during this step is function-call translation because two dif-

ferent types of functions are expected in the source code, but not all types of function

calls are supported. As mentioned, the primary usage of Cell B.E. is to distribute

45



computation work to different SPUs, so it will be rare for an SPU function to call

a PPU function. Table 4.1 describes all possible function calls in TigC. When the

function call is within the same processor, R.CALL will be emitted, and calling from

the PPU to an SPU will emit R.SPUCALL. Note that function calls between dif-

ferent SPUs are not supported in this implementation. A parallel-mode call will be

translated into a separate IR node named R.PARCALL.

Source Target Call Type

PPU PPU R.CALL
PPU SPU R.SPUCALL
SPU SPU R.CALL
SPU PPU N/A

Table 4.1: Function Call Types in Tiger

Although IR is not strictly bound to the architecture and both the PPU and the

SPU backends share the same format, it does requires specific information to express

correct operations. Accessing variables in a function requires a memory read at an

offset in the frame. It means that this step needs to apply the Application Binary

Interface (ABI) for each of the architectures. All other components are still required

to have less knowledge about the heterogeneous implementations, so an abstract

interface is created to represent all of the properties and operations shared between

the two architectures.

The translator will query the function tag and instantiate an actual frame. The

primary information included in the frame component includes:

1. Word Size

Word is the natural unit used in the system instructions and its size varies on

different platforms. Usually, the int type in C language has the same size of

a word on a platform. In addition, most of the processor registers have the

same size as a word. The SPE uses 16 bytes as a basic word, while the PPE

uses 8 bytes. This value is important for memory operations, especially when

46



calculating the variable locations in memory and in transferring data between

different architectures. For example, an array is represented as a collection

of int values in memory, so an object on the PPU cannot be copied to local

storage and processed by the SPU directly because each time the SPU accesses

the ith element, the memory address is calculated as (i + 1)× 16; on the PPU,

the correct address should be (i + 1)× 8.

2. Argument Passing

This step defines how each argument is passed to the target function. Each

time a function is called, its arguments must be assigned to the corresponding

parameters. The arguments can be passed through a stack or, to improve the

performance, passed in registers. Then, it follows how TigC differentiates and

generates correct load/save instructions for these two styles in the implementa-

tion.

3. Stack Frame Layout

This is another definition in the ABI. When creating a new function frame, it

describes the locations of all data required for the execution of a function, such

as the return address, arguments, and local variables. The compiler needs to

generate the same format so that the executable file is compatible with results

from other languages.

4. Register Usage

ABI describes conventions for the ways registers are used during execution,

including rules about changes of register values, argument passing, and some

system registers for frame setup. For example, a platform may include several

dedicated registers, such as a stack pointer (SP) which points to the top of

the stack associated with the current call. Sometimes, there is another register

named base pointer (BP) or frame pointer (FP), which is used to make the

relative addressing easier for arguments and local variables.

Note that even when all the source files are compiled by TigC and there is no

47



plan to interact with programs written in other languages, it is still necessary for the

result executable file to be compatible with the ABI because TigC has dependencies

on certain libraries implemented in other languages and generated by other compilers.

For example, it has a library written in the C language to provide the ability to allocate

array objects and to implement built-in functions, such as converting between strings

and integers. So, even though all the users’ source codes are processed by TigC,

employing an array or calling the built-in functions still need to interact with binaries

generated by other compilers.

After translation, assembly code is generated from IR. The compiler selects proper

instructions for each IR node and assigns each temporary to a register. These steps

are examined in detail.

4.2.1 Argument Passing

A parameter refers to the special variable that represents one of the pieces of data

provided as the input of the target function. These pieces of data are called arguments.

Passing arguments means assigning one argument with data to the corresponding

parameter. This section will describe how this action is implemented in TigC.

In most modern architectures, including both the PPU and the SPU, an argument

may be passed to the called function by one of the following two methods:

1. Passing on Stack

Most systems designed in the 1970s have all of their function arguments passed

on the stack. It reserves a space, either statically or dynamically, and saves

the values of the arguments in that area. The address of this area is saved

somewhere, usually in a dedicated register, such as SP, so that the callee can

read it and then access the arguments.

2. Passing in Registers

Research shows that few functions in practice have more than four arguments.

Therefore, modern architectures have the calling conventions that the first k

48



arguments of a function are passed in registers, while any remaining ones are

still passed on the stack. This practice saves the unnecessary memory access

for the arguments under some cases, such as a leaf function that makes no calls.

Both the PPU and the SPU architectures utilize a stack area and some registers

for argument passing, which will be described in detail in the following sections.

However, there are some parameters, for which, although their indices are less than

k, the arguments cannot be passed in registers. For example, the callee needs to

get the memory address of the argument, so the argument must be stored in the

memory because variables in registers do not have addresses. In TigC, a function-

specific list called formals is maintained where each element represents whether the

corresponding parameter should be passed on stack or in register. Arguments are

passed by registers by marking the corresponding flag as false whenever it is possible

and if there is still a register available. TigC later generates instructions based on

this list in order to save the arguments to the correct places.

4.2.2 Stack Frame Layout

A stack frame represents a function call during runtime. It keeps track of the

point to which each function should return and also records the values used during

the execution of the callee function. As the name states, these data are organized in

an area of the process stack memory, which is pointed by a special register SP. The

calling function saves the execution state to the stack and then jumps to the target

function. When finished, the callee function recovers the original state from the stack

and jumps back to the calling function. SP will be adjusted before and after the

function is executed so that the stack is always balanced. The stack frame usually

includes the following data to describe the function call:

• BackChain

This specifies the address of the previous stack frame.

• Link Register

49



This is the value of the return address which is used when function finishes.

• Saved Registers

Values of some registers cannot be changed during the execution. This area is

used to store their values so they can be recovered after the function finishes.

• Local Variables

This area represents all the local variables that cannot fit into the register file

in the function.

The way such data is organized in the memory is defined as the stack frame layout,

which is described in the ABI specification of an architecture. The standard layout

for a PPU is shown in Figure 4.7 [24]. The backchain and link register are stored

as the first two words, and the function parameters and local variables are stored

right behind them. The stack grows downward from a high address, and the stack

pointer must maintain quadword alignment, so padding may be required in a PPU

stack frame. Note that the backchain at the top belongs to the parent’s stack frame.

Figure 4.7: PPU Stack Frame Layout

Figure 4.8 illustrates the stack frame layout of the SPU architecture [26]. The

first two words are used to store the backchain and the link register. The arguments

50



save area section starts from offset 32 bytes from the stack pointer, right above the

link register, and is followed by the local variable space and the register save area.

The stack pointer must maintain 16-byte alignment and must always point to the

backchain word. The backchain word, appearing as the first data in the frame, must

always point to the previous stack frame, except for the first stack frame (which must

have value NULL).

Figure 4.8: SPU Stack Frame Layout

As mentioned, the stack frame layout describes the data organization, and the

compiler should follow it for generating the necessary instructions to correctly set up

the stack frame during runtime. In TigC, this procedure is implemented as a series

of procEntryExit functions. These functions generate small pieces of code named

prolog and epilog, which are used to set up the new stack frame at the beginning

and to recover the calling function’s state at the end. When a new frame is created,

escape analysis is used to determine the scope of all the variables. A variable that is

passed by reference escapes and it should be allocated in stack. This analysis generates

the list formals. which will be applied to check whether a parameter needs to be

stored in the stack instead of being passed through the register. It then generates a

list of all the values that need to be saved before the call for argument passing and

runtime recovery. The procEntryExit functions translate this list to instructions

that store the values in proper locations. This means that, based on the SP of a

51



current frame, the compiler needs to calculate the correct memory address for each

argument that is passed in stack to generate the correct store instruction. Depending

on the architecture type, this calculation can represent one of the following cases:

1. The architecture includes a register to store the FP, and each parameter could

be accessed via FP. One example is MIPS, and its stack frame layout[36] is

shown in Figure 4.9. The parameter build area exists in the caller’s stack frame

while FP is set to the start address of the callee’s stack frame. Consequently,

the calling function pushes each parameter into the stack in its own frame at the

address to which SP points. No extra calculation is needed to generate these

instructions. Later, the callee can access each parameter by using FP + offset.

2. On some platforms, such as the PPU and the SPU, FP is not available, and

the parameters are stored in the callee’s stack frame. When passing escaped

parameters, the calling function must know the memory address where the value

should be stored, which is represented by an offset to the caller’s SP. However,

at this time, the callee’s stack frame remains not fully defined, and its size is

still unknown. For example, the compiler does not know the size of the local

variables area. Only the offset of each parameter to the callee’s SP is saved.

Figure 4.9: MIPS Stack Frame Layout

Because the PPU and the SPU frames do not provide a FP for data access,

the calling function needs to store the parameters’ value to the callee’s stack frame

52



without knowing its stack pointer because data are still being pushed to the stack. To

calculate the correct locations for each parameter, during the compilation, a variable

fsize is used to represent the callee’s frame size; this dimension is incremented by a

word size every time an instruction is generated to push an item into the stack for

the callee. Meanwhile, whenever a parameter is pushed to the stack, the value of fsize

refers its offset to the callee’s SP because the stack frame is built bottom-up. Finally,

the compiler calculates the offset of a parameter to the caller’s SP by applying the

following equation:

offsetparameter = fsize− offset’parameter

where offset refers to the parameter offset to caller’s SP, and offset’ refers to the

parameter offset to callee’s SP.

Tiger also supports nested function declarations, which means that the nested

function can access local variables defined in its parent function. This process requires

a static link. However, the frame module should be independent of the specific source

language being compiled. Suppose a function f has k ordinary parameters: let l be

the formal list specifying whether the parameter is in stack or register whose size will

be k. Then during the translation, a new list l′ will be created with an extra true in

front of l to represent the static link ; thus its value can be retrieved in the same way

as other parameters.

Finally, there is a piece of code in Tiger language that does not belong to any

function. This piece will serve as the entry code and will be executed at the very

beginning. In TigC, this piece of code is considered to be defined in a special func-

tion called tigermain, so a stack frame should also be created before the execution.

Because this is the first function to be called, there is no backchain, and no register

values need to be saved. When generating the procEntryExit functions, the function

name is checked for generating different instructions for tigermain.

53



4.2.3 Register Usage

A register is a small amount of the storage unit in the processor and can be

accessed quickly. Almost all architectures will first load the data from memory to

registers for later manipulation; they then store the result value back to memory.

However, registers are limited resources, and each frame will need to share the same

register space, so it is important to define the consistent usage of each register.

Certain registers have special usage, and they are named dedicated registers. Their

values must remain unchanged by the callee. Depending on how the register values

are saved and restored during a function call, non-dedicated registers can be divided

into two categories:

1. Volatile Registers (also named as caller-save registers) contain values that can

be lost when sub-routines are called. Therefore, if the calling function wants to

maintain these values, it must save the registers explicitly in the stack frame or

in another temporary unused register.

2. Non-volatile Registers (also named as callee-save registers) contain values that

must remain unchanged if subroutines are called. This stipulation means that

the callee must save the values to the stack before touching them. If this action

does not alter that register, no save/restore instructions will be generated.

TigC depends on the Frame module to provide the list of volatile registers so that

when calling a function, these registers will be stored together with the creation of

the new frame. The frame also describes the ABI conventions for registers in the

platform, such as those governing which registers are used to pass parameters to

functions and to return values back to the caller.

As a standard 64-bit PowerPC architecture, the PPU provides 32 general-purpose

registers, each 64-bits wide. It also contains 32 floating-point registers of the same

size. As TigC supports only integer operations, these floating-point registers will be

ignored here. The processor also includes some special registers to control the program

54



execution, such as the program counter, which points to the current instruction to

be executed. The condition code register is also not described because in current

implementation, only cr0 is used for branch operation. All the other registers in the

PPU are listed in Table 4.2. Some special registers are described here:

• r0 used in the function prolog. In 64-bit PowerPC, the prolog usually includes

an instruction to move the return address from the link register into r0. This

will be used to restore the return address at the end.

• r2 for Table of Contents (TOC) pointer. The code could be put anywhere in

memory, so it must be position-independent while still read-only. This state

is implemented by using a relative address in instructions. However, this has

some drawbacks. Accessing a local variable works fine, but the compiler cannot

calculate the offset of a global variable or a library function because they may

exist in other modules or be loaded dynamically during runtime. TOC solves

this issue by creating a table for the application and each import library. It

includes pointers the code uses to locate the static data or external functions.

• r11 for environment pointer. Some languages require a pointer for local vari-

ables, and r11 should be used for this purpose. TigC does not use environment

pointer, so r11 appears as a normal volatile register.

• r12 for exception handling. In languages that support exceptions, if an ex-

ception occurs, the execution stops, and the control passes to the exception

handler. Meanwhile, all objects allocated on the stack will be destroyed in the

reverse order of allocation. r12 is employed to support this process.

• ctr for loop counter. This can hold the loop count, which is decremented auto-

matically to stop the loop. The other usage is to provide branch target address

for a branch conditional to count register instructions.

As mentioned earlier, the SPU has a large register file in order to achieve the

greatest performance. It has 128 general-purpose registers, each having a 128-bit

55



Abbreviation Type Purpose
r0 Volatile Used in function prologs
r1 Dedicated Stack frame pointer
r2 Dedicated TOC pointer
r3 Volatile Parameter and return value
r4 - r10 Volatile For parameters
r11 Volatile Environment pointer if required
r12 Volatile For exception handling
r13 Dedicated Reserved to system thread ID
r14-r31 Non-volatile For local variables
lr volatile Link register
ctr volatile Loop counter register

Table 4.2: PPU Registers

width. Although an SPU treats all these registers in the same way, the ABI still

specifies conventions. Table 4.3 shows these conventions.

Abbreviation Type Purpose
r0 Dedicated Link register
r1 Dedicated Stack frame pointer
r2 Volatile Environment pointer if required
r3 Volatile Parameter and return value
r4 - r74 Volatile For parameters
r75 - r79 Volatile
r80 - r127 Non-volatile For local variables

Table 4.3: SPU Registers

4.2.4 Instruction Selection

Although relatively low-level, IR is still an intermediate level representation that

abstracts over processors and must be transformed into machine-specific instructions.

In this step, IR is translated into proper assembly code with the least number of

instructions or the lowest total execution time.

The implementation of instruction selection is based on the Maximal Munch[1]

algorithm. It works by converting IR with tiles containing one or more assembly

language instructions that perform that IR operation. Optimal tiling is applied to

make sure that there are no two adjacent tiles which can be used to combine into a

56



single tile with lower cost. The implementation starts at the root of the tree and tries

to find the largest tile that fits, then continuing recursively to apply the algorithm to

the IR subtree. Here, the largest tile means the one that covers the largest number of

nodes in the tree. Note that the optimal tiling is only local and does not guarantee the

lowest cost. This situation is fine because a compiler usually has optimizations such

as constant propagation, which introduces more chances for instruction selection. A

global optimal result at this step may still require changes later.

Here is an example for this algorithm, given the following source code:

a := exp

where exp represents a certain expression and its result is stored in t2, t1 represents

the stack pointer, and a has an offset i from the stack pointer, then the following IR

node will be generated:

R.MOVE(R.MEM(R.BINOP(R.PLUS , t1, R.CONST i)), t2)}

When generating the assembly code for the SPU architecture, it can be a quad-

word (128-bit) store instruction that covers MOVE, then a quad-word load in-

struction to cover the node MEM, followed by an add instruction which covers the

remaining binary operation subtree:

addi t’, t1 , i

lqd t’’, t’

stqd t2 , (t’’)

Alternatively, the compiler could emit it as a single quad-word store instruction

stqd, which will cover the whole IR node[27] (the largest tile).

stqd t2 , i(t1)

According to the Maximal Munch algorithm, the second option would be the bet-

ter choice. The implementation of this algorithm in TigC is straightforward. Two re-

cursive matching functions are provided: munchStm for the statements and munchExp

for all the expressions, wherein each clause will match one tile. Since SML pattern-

matching always chooses the first rule that matches, the rules are ordered so that the

57



biggest tile always comes first. TigC implements two assembly code generators: one

for the PPU and one for the SPU.

4.3 RCS Generator

The output from the compiler backend contains valid assembly code that can be

used to build the executable program. However, until this time, one important piece of

information is missing about the function calls. As described, for calls within the same

architecture, an R.CALL node will be used to generate the assembly code, the PPU

can emit proper branch code based on the function tag. However, for R.SPUCALL

and R.PARCALL nodes, no single instruction is available on the Cell B.E. system

in order to switch the execution context from the PPU to the SPU. In addition, all

the arguments for the function call are stored on the stack (which exists in the main

memory) or in registers of the PPU. Programs running on the SPU are restricted to

the SPU’s local storage and register file and cannot directly access these values. The

MFC must transfer the data into the SPU local storage first before the operation can

be executed.

First described is the normal procedure on Cell B.E. to run an SPU binary, then

the stub functions which help to transfer the execution from the PPU to the SPU.

These stubs also prepare all the required parameters in the local storage and retrieve

the return values back to main memory. For the PPU functions, calls to an SPU

function will be redirected into a local PPU stub function, which makes it similar

to calling a local subroutine. The details will be transparent for the programmers,

meaning that they do not need to worry about the SPE context initialization and data

transfer when writing the code. It follows by one important situation which describes

how complicated data structure is passed as parameters to the SPU functions and

explains how it is returned to the PPU. Finally, the implementation of the parallel

loop call is discussed.

58



4.3.1 Simple Call Mode

Simple Call Mode refers to the SPU function call from a PPU function that is not

to be executed concurrently. This means the program running on the PPU will help

load all the parameter data to one SPU’s local storage and then trigger the target

function. During the execution, the PPU program will stay blocked until the SPU

function returns. A simple call is represented as R.SPUCALL in the IR tree.

In a Cell B.E. system, the following steps are required to run a program on the

SPU:

1. Create an SPE context. A context represents an SPE execution environment,

so a simple call only needs one context.

2. Load the SPU program with the context created. The program will be loaded

into the local storage of the corresponding SPU.

3. Run the SPU code by specifying the context and wait until it finishes. This

interface allows us to provide some parameters from the PPE program.

4. Destroy the SPE context. This releases the usage of the SPE.

Creating and destroying the SPE context requires time. Repeating these steps for

every SPU function call will be inordinately expensive, and the performance will be

degraded greatly. The solution is based on the fact that TigC will compile all the

SPU functions into a single binary, and during execution, all the SPEs are employed

exclusively by this program. Consequently, all the SPE contexts are pre-allocated and

reused as necessary. As mentioned, TigC creates a special function tigermain for the

entry code that gets executed at the beginning of the program. Some extra IR nodes

will be injected to initialize the SPE contexts and to load the binary in the entry

function, then to clean up when the program exits. Two C functions are defined as

spu init and spu exit inside the TigC standard library. Because the Frame module

includes procEntryExit functions emitting code to initialize the stack frame, the

59



PPUFrame is simply extended by adding the execution of these two functions in the

tigermain of the PPU program. The assembly code after this change is shown in

Figure 4.10. This procedure guarantees that the context is initialized and that the

SPU is ready to run.

bl spu_init
...
main body
...
bl spu_exit

Figure 4.10: Initialization of SPE Contexts

With mixed function types in the source code, any function could be defined to

run on the SPU and then get called from a PPU function. One solution occurs

during the code generation: the call instruction such as bl is replaced with correct

instructions to load the program on the SPU and to run the program while waiting

for completion. However, this process makes the code generation complicated because

all the work needs to be implemented with assembly code. It should not corrupt the

stack frame, and the register allocation must be reconsidered. In addition, if the same

SPU function gets executed more than once, the same piece of code will be generated

multiple times, which increases the resulting binary file size. Thus, all of this work

is encapsulated into a function implemented with the C language, which is named

a stub function. Calling the SPU function will be simply redirected into this stub

function. The code generation is simplified as it still emits a call instruction, only

with a different function name. The stub function has the same interface as the target

SPU function, allowing it to correctly receive the argument values. To make sure that

all of the stubs required are generated, TigC needs to note down every SPU function

defined in the program source code and to assign it a unique ID. This unique ID will

be used to interact with the SPU program in locating the target function. This ID

assignment is completed by remembering the function definitions when parsing all

the functions into the abstract-syntax tree. The result includes a list of the functions

60



defined in the source file in the following format:

#FUNC < arch > name(id1, type1|id2, type2, |...|idn, typen)|typereturn

where arch is either PPU or SPU. The (id, type) pair describes the corresponding

parameter name and its type; typereturn represents the return type of this function.

This list is stored in a temporary file, and later the RCS system scans the list to

build a function map which includes all function names, architecture types, param-

eters, and return types. For each SPU function in this map, RCS will generate the

stub function that has the same parameters and return type. To simplify the im-

plementation, the prefix spucall is added to the original function to form the stub

function name. When translating IR trees into assembly code, for any R.SPUCALL, the

target function is replaced with the stub in the instruction as the destination; there-

fore, the call is redirected to the stub. Figure 4.11 shows the comparison between

R.CALL and R.SPUCALL translations. Note that only the PPU code generator al-

lows R.SPUCALL because, in current TigC implementation, a function running on

an SPU cannot make a remote call on another SPU.

munchExp (R.CALL (R.NAME f, es)) = emit (
A.OPER { assem ="bl " ^ S.name f

...
})
munchExp (R.SPUCALL (R.NAME f, es)) = emit (
A.OPER { assem ="bl spucall_" ^ S.name f

...
})

Figure 4.11: Translations of R.CALL and R.SPUCALL

Calling a function requires more than just setting the context and loading the

program. All function parameters’ data must be moved to the SPU’s local storage.

In the main memory, for each SPU, 16KB buffer is reserved for input data along

with another 16KB buffer to receive the output from the program. Considering that

the input data is partitioned into small pieces for distribution, this buffer should be

adequate. The size is also defined as a parameter of the compiler and may be expanded

61



easily. Following the initial steps, the address of the input buffer in the main memory

is passed as an argument to the SPU program. All function parameters are stored in

the input buffer, which can be accessed by the program on the SPU with MFC as its

address, since this address is now known. Because the input buffer is operated upon

by two different programs, some information is necessary to describe its structure.

The format of the input buffer is defined as a structure shown in Figure 4.12 and

shared on both platforms.

#define PARAM_DATA_SIZE (16 * 1024 - 7 * sizeof(uint64_t ))

struct input_buffer_t
{

/* The index of target function in the map */
uint64_t index;

/* The address of the output buffer in main memory */
uint64_t out_ea;

/* param_flags and param_size , used for array data */
uint64_t param_flags;
uint64_t param_size;

/* arr_ea and arr_size , used for data transfer optimization */
uint64_t arr_ea;
uint64_t arr_size;

/* Current SPU ID , assigned by the stub function , also used
for data transfer optimization */

uint64_t spuid;

/* Buffer to hold the values for all parameters */
uint64_t param_data[PARAM_DATA_SIZE ];

};

Figure 4.12: SPU Program Input Buffer

For a simple SPU call, index represents the target function ID from the function

map built by the RCS. out ea is the address of the output buffer in the main memory.

param size describes how many parameters exist in the input buffer. param data

occupies all of the remaining space in the input buffer. RCS queries the function

information in the map and copies its parameters to this array. The stub function

consists of these steps to prepare all required data and then to run the SPU program.

Once the program starts, the entry function will be activated with the address of the

62



input buffer passed from the PPU caller. An MFC read request will be issued to read

the input buffer from main memory to the local storage.

As mentioned, in the Cell B.E., an MFC tag must be reserved to represent a

channel for the DMA operation. The program can then issue asynchronous read

requests with the channel id and the main memory address. In TigC, the following

interfaces [28] are used on the SPU to transfer the data:

• mfc tag reserve reserves a channel for data transfer. All MFC operations will

require this tag ID.

• mfc get issues the asynchronous read request on the given address.

• mfc write tag mask selects tag groups to be included in query operation.

• mfc read tag status all queries the status tag groups that are selected in the

above operation. This will block execution until the data transfer is finished.

MFC supported transfer sizes are 1, 2, 4, 8, 16, or multiples of 16 bytes, so the

input/output buffers are initialized with 16-byte alignment to ensure that data will

transferred correctly.

Once the input buffer is loaded into an SPU’s local storage, the program is ready

to execute the target function on the SPU. However, different SPU functions exist

in the program, and their interfaces vary since they may have different parameters

and return types. The entry function should be able to call all of these functions

with the same code path. It is difficult, though, to implement a static entry function

able to correctly pass the arguments. For instance, with the sample code shown in

Figure 4.13, there are two SPU functions named spufunc a and spufunc b. Given

index representing the target function, the function pointer can be retrieved from

the map. However, because these two functions have different parameters, if only two

arguments are passed while the target function is spufunc b, parameter z will not be

initialized correctly.

63



int spufunc_a(int x, int y) {}

int spufunc_b(int x, int y, int z) {}

int main()
{

int index = /* read the target function index */;
spufunc_t funcmaps [] = { spufunc_a , spufunc_b };

int result = funcmaps[index]( /* parameters */);

/* rest of the code */
}

Figure 4.13: Implementation of SPU Entry Function

To solve this problem, stack frame should be built where the callee function expects

the same environment as that called locally. Three different approaches are evaluated

to achieve this end:

1. The problem comes from the fact that only one entry function exists but there

are different target functions. So, the easiest solution is to have the same

number of function call statements in the entry function, one for each SPU

function. Instead of having a map and an index, function calls are implemented

as a switch statement (as shown in Figure 4.14). This implementation has the

advantage of the function call still being a valid C statement, and there is no

extra operation to be performed during each call. The only problem occurs if

there are too many SPU functions: this switch statement then grows rapidly

and makes the entry function very large. Sometimes, this consequence matters

because the local storage has limited size.

2. This is actually a variation of the first approach. When calling a function, al-

though it has different definitions than others, it is always converted into the

same function pointer type, spufunc t, which has a fixed number of param-

eters. The values of the these parameters exist in the param data array, and

if the function has fewer parameters than spufunc t, some garbage data will

be passed to the callee. However, this problem can be ignored, as the target

64



int main()
{

int index = /* read the target function index */;
switch (index) {
case 0:

spufunc_a(param_data [0], param_data [1]);
break;

case 1:
spufunc_b(param_data [0], param_data [1], param_data [2]);
break;

default: error ();
}
/* rest of the code */

}

Figure 4.14: Using Switch in SPU Entry Function

function will never access that data. For example, if spufunc t has the same

definition of spufunc b, but the actual target function is spufunc a, the input

buffer will contain only the valid values for x and y, so z will be the next value

in param data which is never initialized. spufunc a has no knowledge about

the third parameter and will simply ignore its value. This situation also means

that the definition of spufunc t limits the number of parameters an SPU func-

tion can accept at most. If it has the same definition as spufunc a, spufunc b

cannot be called with correct arguments. In addition, parameter that cannot

fit an integer will not be correctly passed.

This method has the advantage of the entry function being very small because

it contains only one function call statement. Only one map is included to

remember all the function addresses. Calling different SPU functions will share

the same code to initialize the parameters from the input buffer and to handle

the return value. As mentioned, the downside of this approach is the that

maximum parameter count is limited by the definition of spufunc t.

3. In the SPU, registers r3 to r74 are volatile and are used to pass arguments, which

means that another stub function can be added to assign the parameters to these

registers. This function accepts param size and param data as its parameters.

Then, starting from r3, whenever param size is not 0, it will get the next value

65



from param data and assign it to the next available register. After this, it will

set up the callee stack frame and branch to its code. Figure 4.15 demonstrates

how the parameters are set up. The naive implementation of this approach

if (argsize && argsize --)
asm ("ai $3 , %0, 0" :: "r"( param_data [0]));

if (argsize && argsize --)
asm ("ai $4 , %0, 0" :: "r"( param_data [1]));

/* more checks until r74 is assigned */

Figure 4.15: Using Assembly in SPU Entry Function

also limits the parameter count to be under 72. Functions requiring additional

parameters get the extra values in the stack frame instead of registers, so this

approach cannot be used in such cases. It cannot support data structures that

are larger than the register size. In addition, for each parameter, two checks

are required, which slightly slows down the program. This approach also uses

assembly code directly, so more code change is needed when trying to support

another type of architecture.

As discussed above, although the second approach has some limitations, it simpli-

fies the implementation and reduces the binary size. So, in this study, TigC employs

it to pass the arguments to the target function. When the function returns, an MFC

write operation is applied to transfer the return value to the output buffer, and the

execution on the SPU is finished, which unblocks the stub function. This approach

handles the simple data types as well as arrays which will be described in the following

section. The whole procedure is now hidden in the stub function, so the calling func-

tion does not need to know anything about the processor switch. For programmers,

they can now call SPU functions in the same way as calling other PPU functions.

4.3.2 Passing Array as Parameter

In the implementation of simple call, the function parameters are first copied

into the input buffer and then transferred to the SPU local storage via MFC. How-

ever, Tiger language supports complicated data structures, such as array, record, and

66



string. Marshalling is required to transform these types into representations that are

easier to handle. For example, an array is defined as a pointer to a block of memory

with two parts: an array header indicating the count of its elements, followed by the

actual array data. Copying the pointer value itself to local storage does not work, for

the array data is not moved. The array contents should be copied to local storage

and then the pointer value in the parameters should be updated so that it can point

to the correct location. This section focuses on the array type, as record and string

can be considered as arrays as well.

To differentiate an array from other regular parameters, one bit is used for each

parameter in param flags. This appropriate bit will be set if it is an array parameter.

Otherwise, it will be cleared. Note that this feature limits the parameter count to

be under 64, asuint64 is used for param flags. The array data is also copied into

the same input buffer, so only one MFC transfer is required to pass the parameters

during each execution on the SPU. The format of the input buffer before and after

the array data get adjusted is shown in Figure 4.16.

In the above example, the first and the third parameters are of the array type;

thus, their data get copied into the input buffer right after the parameter values.

Meanwhile, the corresponding parameter values are also cleared to zero because the

original pointers represent main memory addresses and are no longer applicable. As

mentioned earlier, an array has its size as the first element in the buffer, so the second

array is stored right after the first array, and the offset of the second array can be

calculated easily by adding the first array’s offset and its size.

When the entry function of the SPU program is executed, an MFC read will be

issued for transferring the input buffer from the main memory to the local storage.

Then, the param flags will be inspected. Once a parameter marked as an array type

is reached, its value in param data will be ignored. Instead, the actual array address

is calculated based on the end address of the parameter values and is incremented

after processing each array. This address is selected as the corresponding parameter

for the target function.

67



Figure 4.16: Array Data in Input Buffer

4.3.3 Parallel Call Mode

With a simple call, the program will call the target SPU function and then block

waiting for its completion. However, this brings extra overhead to prepare the SPE

context and transfer the required data. For simple functions, these steps may take

longer than the function execution itself. Furthermore, there are eight SPEs in a Cell

B.E. system, while the simple call mode utilizes only one of them. The other seven

SPEs will stay idle and their power will be wasted. To improve this situation, suppose

there is a pseudo code such as

map (pk ◦ pk−1 ◦ pk−2...p2 ◦ p1) [d1, d2, ..., dn]

68



where K sequential operations (p1, p2, ..., pk) are applied on N data elements (d1, d2,

..., dn). Two distribution models are investigated to spread the computational jobs

across different SPEs.

1. The first model relies on the assumption that one algorithm usually includes

several steps of operations (K in this sample code). Different SPUs will be used

to form an execution pipeline where each finishes one exclusive subset of these

operations. During each step, the function accepts the resulting data from its

previous operation and does its work. Whenever two adjacent steps are running

on different SPUs, an MFC transfer is needed to synchronize the result data

between their local storages. This model is shown in Figure 4.17.

Figure 4.17: Parallel Call by Distributing Tasks

69



2. For a computation-intensive job, the worker functions usually receive a large

amount of input data to process. Therefore, the second model splits the input

data into several subsets and then runs all K operations on each SPU with one

subset. This requires the input data to be divisible. An example of the second

model is shown in Figure 4.18.

Compared with the first solution, the second one has several advantages. First,

it relies on the input data size rather than the number of steps. It may be pos-

sible that one task has only one step but still needs to process a large amount of

data. Second, the input data is split into independent subsets so that each SPU

can run its program without interacting with others, and no communication be-

tween the SPUs is required. Third, all the SPUs are always processing the same

amount of data, whereas in the first solution, the SPUs may receive steps with

different complexity; one may stay idle waiting for the result from the previous

step. In TigC, the second approach is employed for parallel processing.

Figure 4.18: Parallel Call by Distributing Data

70



Recall that simple-call mode is synchronous: after an SPU function is triggered

from the program, the stub function will block until the SPU call finishes. To support

different SPU calls at the same time, the program needs different threads, one for

each SPU execution. The stub function spu init is first modified to support the

initialization of multiple SPE contexts. In the main memory, the same amount of

input and output buffers are also reserved for these contexts. Each of these threads

is then assigned with an index for its target SPE context. When an SPU function is

called in parallel mode, it will locate the next unprocessed dataset and pass it to the

target SPU. The thread blocks until the SPU call is finished, and the parallel call is

considered finished when all threads finish.

When a function is recognized as an spu for, the RCS will generate a new stub

function for the above procedure. This new tub function has the same interface as

spu for to include the input data, total length and the step size. Similar to the

process for a simple-call stub function, the prefix parcall is added to the original

function name to form the new stub name. In this implementation, the pthread library

is utilized to create the same number of threads as the SPE contexts initialized at

the beginning. The input data is divided into datasets with a step size specified by

programmer. Each thread uses the following formula to decide the location of the ith

dataset:

locationi = spu id ∗ step size + i ∗ spu count ∗ step size

where the spu id is an integer representing the index value assigned for this thread.

It should be in the range [0, spu count). The thread will loop until the ith dataset

goes beyond the total length of the input data. The execution of the SPU function

stays the same as in simple call mode, except that each thread uses its own input

and output buffer for the SPU to access. The stub function uses pthread join to wait

until all threads finish, and then returns.

As illustrated in Figure 4.5, the abstract syntax is extended to include an Spu-

ForExp for supporting the parallel call mode. The expression will be translated later

into a new IR tree node R.PARCALL. Similar to R.SPUCALL, it is available only

71



to the PPU code generator. In the last step, Figure 4.19 shows how spufor finally is

translated to use the new stub function.

munchExp (R.PARCALL (R.NAME f, es)) = emit (
A.OPER { assem ="bl parcall_" ^ S.name f

...
})

Figure 4.19: Translations of R.PARCALL

4.3.4 Returning Data from SPU Function

According to the way the stub function works, after the target function finishes its

execution, it will return to the entry function of the SPU program. Next, this return

value should be transferred back into the stub function generated by RCS, and then

returned to the original caller, which is a PPU function. This section describes the

implementation of returning the resulting data to the calling function.

When calling an SPU function, either in simple call mode or in parallel call mode,

a parameter is passed to the SPU entry function that includes the main memory

addresses of the input and output buffers. The goal is to store the return value in the

output buffer. This section first describes simple call mode. As mentioned before, in

an SPU entry function, all target functions are treated as if they have the same return

type, which is a primitive integer. After the target function finishes its execution,

this value will be returned to the entry function. It checks the actual return type

from the function map, and for scalar types, the value will be saved to the output

buffer through an MFC write operation. If the actual return type is an array, this

value will be casted into a pointer to integers (int *). As mentioned, the first part

of the array is a header describing the count of the elements. So the total size of the

array could be calculated using the following equation:

TotalSize = sizeof(int) + ptr[0]× sizeof(int)

where ptr refers to the pointer to the array. An MFC operation will be issued to

72



transfer the whole memory data into the output buffer in the main memory.

For a parallel call, however, returning values from SPU functions are different for

two reasons. First, the target function is executed on multiple SPUs with different

parts of the input data, so each SPU will return only part of the result. Second, even

a single SPU may process different datasets of the input data, and each execution

will generate a return value. All of these partial results need to be aggregated to get

the final output.

To simplify the implementation, all of the SPU functions employed under parallel

call mode must have array as the return type, even if it only returns a single scalar

value. Thus, a simple solution utilizes the output buffer reserved in the main memory

in order to hold all the return values. An MFC call is issued after processing each

dataset. The offset in the output buffer can be calculated based on the SPU ID and

the dataset index, so different function calls use exclusive memory regions. However,

this process involves more MFC transfers, and although they can interleave with the

execution, function calls still take time. In addition, the procedure is based on the

assumption that every call on every SPU must return the same size of data, otherwise,

program runs on the second SPU need to wait until the first SPU finishes execution

to know the start offset in the output buffer; these conditions make the execution

run in a sequential way. If the assumption is true, this solution has the advantage

that as long as each function call on a single dataset returns smaller data than the

MFC transfer limit, an unlimited size of data can be returned to the main memory

if the output buffer is large enough. However, the compiler should not rely on this

assumption, and should be able to handle all cases.

To solve this problem, the following two changes are made under the parallel call

mode:

1. In the main memory, a buffer is reserved for each SPU used in the parallel

call mode. This buffer holds only the return values for the function executions

on that specific SPU. This exclusivity guarantees that functions running on

73



different SPUs will not have overlapped buffers.

2. Another temporary buffer is introduced in the local storage to hold all of the

results from datasets processed on one SPU. Because datasets on a single SPU

are processed sequentially, the result of a function call can be appended to this

temporary buffer by using a variable to track the current size of the buffer.

Because the compiler requires the return value as an array, with its length stored

as the first value, all the values in the array must be copied to the temporary buffer in

the local storage. Note that the length value itself is not copied. During the copy, the

first slot is skipped and left unused until after all datasets have been processed. The

total length will be stored there in the buffer. Next, a single MFC request is issued

to transfer this temporary buffer to the output buffer in the main memory reserved

for this SPU. After all of the SPUs finish the execution, the stub function collects the

return values in the output buffer. It will create a new array object by concatenating

all the data from the output buffers.

4.4 Automated Linker

With the assembly code generated by the PPU and the SPU code generators,

TigC now is ready to build the executable binary. However, the assembler can accept

instructions only for its target architecture, which requires TigC to provide two sepa-

rate sets of code. Then together with all required system libraries and stub functions,

these source files will be linked into binary files. A Python script is employed to

manage all the assembly files and to carry out this linking procedure automatically.

In the backend of TigC, CBFrame contains interface functions to generate the

prolog and epilog for each function. This is the point where the stack pointer is

adjusted to reserve enough space for the callee’s stack frame. Some important registers

are also initialized at this time. These two places are modified in both PPUFrame

and SPUFrame to mark the beginning and the end of each function by generating

some special labels in the assembly file. The automated Linker reads these labels

74



and splits the resulting assembly code into two separate files, after which different

assemblers are used to process them.

The linking procedure requires definitions for all functions, either in source or in

a library. TigC supports several built-in functions for string manipulations, array

creation, and some simple I/O operations. All of these functions are implemented in

libtiger.c in the C language and loaded by the linker on both platforms. For those

stub functions generated by RCS in the C language, another file is created to include

them. All of these source files will be compiled and linked together. In addition, the

stub functions use SPE context and MFC operations to run functions on the SPU,

which requires the Cell B.E. SDK to be linked into the final binaries.

Simply linking everything above together will generate two different executable

files, one for the PPU and the other for the SPU. However, there is another way

to make SPU calls more transparent for programmers. The system provides some

commands so that the SPU binary file can be embed into the PPU binary. When

loading the SPU program, the PPU code in spu init accesses the program handle,

which is declared with the following line:

extern spe_program_handle_t spu_main

This step requires that the SPU binary is already converted into a PPU object and

has a program handle defined as spu main. The conversion process is done by the

following command:

ppu -embedspu [handle] [SPU binary] [output object file]

This command creates the object file based on the given SPU binary. This object file

contains the actual definition of spu main, and later it will be linked into the PPU

binary as a separate segment. This procedure ends up with a single executable file.

4.5 Data Transfer Optimization

Parallel call mode allows us to distribute the program and input data to different

SPUs. Input data is transferred through MFC to the local storage. The logic requires

75



that the stub function on the PPU should create several threads; each thread keeps

calling the target SPU function with different datasets in a loop until all data are

processed. Obviously, the overhead of this approach is excessive:

1. Every time a thread calls an SPU function, it needs to prepare the input buffer,

including initializing the header and copying the parameter data.

2. Before the SPU function starts, the input buffer needs to be transferred to its

local storage with an MFC request by the PPU. This is an I/O operation, and

the processor stays idle until the transfer is finished.

3. Cell B.E. is used primarily for computation-intensive tasks. Programs solving

multimedia, scientific computations usually involve a large quantity of input

data, such as arrays or a media stream. In these cases, each thread needs to

call the SPU function repeatedly until all input data is processed. Each function

call is identical to a simple call, which involves a processor switch and arguments

passing across processors.

This section discusses how to optimize the parallel call mode in order to reduce

the overhead of the heterogeneous function call. Most of the existing work tries

to optimize the function call that is similar to the simple call mode. For example,

[17] uses local storage as a cache. It analyzes the instructions and checks if the

data exist in cache or should be transferred from the main memory. However, this

optimization does not utilize the fact that each SPU function will be called more than

once. [34] improves this by introducing double buffering logic so that the next dataset

is transferred to the local storage while the SPU is processing the existing data. A

similar idea is employed whereby each SPU has two buffers, one for computation and

the other for receiving the next dataset. The parallel call logic is also modified to

avoid unnecessary processor switches. With these modifications, the SPU can stay

busy most of the time until all datasets are processed.

In the parallel call mode, input data is divided into several datasets and each

thread picks up a group of them. Every time an SPU function is called from the

76



thread, only one dataset is transferred to the SPU to process, which is the reason

why several function calls are needed in a loop. In addition, the stub function first

must copy the dataset values to an input buffer, because the input data exists in

different buffers in the main memory. For example, a matrix multiplication function

requires two matrices, and their memory buffers most of the time are not contiguous.

Transferring these buffers directly requires more MFC operations and costs a longer

amount of time. Later, this input buffer needs to be copied to local storage again.

Instead of preparing one dataset for one SPU call, the whole input data could be

simply passed to the SPU. The split logic is moved to the SPU stub function to

decide which part of the input data represents a single dataset to be processed. This

step allows the loop to exist also in an SPU stub function, which means that only

one processor switch is required for each thread.

The input buffer formats must be modified to support this new data transfer logic.

Three fields shown in Figure 4.12 are used to help us eliminate the overhead:

1. arr ea specifies the address of the input data array in main memory. It points

to a location of the original array instead of a new copy of the datasets for the

current thread.

2. arr size represents the total size of the array.

3. spuid tells the program that which SPU it is running on. This value is the

index value assigned to this thread and is not required to be the same as the

real SPU ID.

These values are employed together with parameters in spu for to divide the input

data on the SPUs.

As mentioned previously, the MFC requires the transfer size to be aligned with

16 bytes, or the data has sizes of 1, 2, 4, or 8 bytes. To avoid extra operations for

the transfers of small data, group is used to represent the data size transferred within

each MFC operation. If each dataset is smaller than 16 bytes, group will be 16-byte

77



aligned and will contain 16 datasets; the total size will be step size× 16. Otherwise,

each group will only contain one dataset.

This address of the array will be used as arr ea and passed to the SPU program.

On the SPU, the program entry stub first checks this value. If it is not initialized and

appears as value 0, the execution falls back to the old execution for the simple call

mode. Otherwise, the program enters a loop to process all datasets for this thread.

It applies the following equation to calculate the address of the ith group in main

memory:

addri = arr ea + (spu id + i ∗ spu count) ∗ group size

Instead of step size, group size is used in this equation, so the case can be handled

correctly wherein small datasets are aggregated. The execution runs until the address

of a current group goes beyond the array size. Figure 4.20 shows the logic to process

all the datasets in one SPU context.

Figure 4.20: Parallel Call with Single Processor Switch

78



The above logic eliminates the extra SPU calls within one thread. It will transfer

the input data and will be blocked until the SPU processes all the data. However, the

SPU still retrieves only a small group from the main memory each time, and during

the MFC transfer, the SPU is blocked there doing nothing.

Thus, another optimization for the parallel mode is to allow the SPU to trigger

the transfer for the next available group into local storage while it is working on the

current one. This optimization is based on the fact that both operations (computation

for a current group and the MFC transfer for the next group) will take some time,

and if they can be executed in parallel, time for the data transfer will be saved. It

also actively checks the MFC transfer state before the computation to make sure that

it is completed.

While the SPU is processing the current group, the buffer that has the input data

and all other parameters used by the target SPU function must remain exclusively

dedicated to this computation during the whole execution. So, another buffer in local

storage is required to store the data for the next group. In the entry stub, two buffers

are initialized, and only one is marked as active to hold the current group; the other

remains available for transferring the next group. Every time a group is processed,

the active and inactive buffers are switched for the next iteration. This is a pointer

exchange operation that involves no memory copy.

As mentioned earlier, the SPU stub functions use the mfc get function to trigger

an MFC data transfer. This function itself starts the transfer asynchronously, meaning

that it will not wait for completion, so the computation work can start right away.

Another function, mfc read tag status all, queries the status of the MFC tag used

by the mfc get to see if the operation is completed. After processing the current

data, this function will therefore be called to make sure the next data block is fully

transferred. Figure 4.21 shows how the data transfer and the execution of the target

function are interleaved.

79



Figure 4.21: Parallel Call with Overlapped I/O

4.6 Summary

This chapter described how TigC completes each step in the compilation of the

source file. In addition, it discussed how a function could target the SPU architecture

to utilize the power of the Cell B.E. platform. By defining the format of the input

buffer and providing corresponding marshaling logic, complicated data structures

(such as arrays) can be passed to the SPU and will be correctly recognized. It also

evaluated different approaches for distributing the computation to different SPUs.

Various improvements were proposed and implemented to reduce the overhead of

using the SPU.

80



5. Performance Evaluation

This chapter compares the results of executing different applications to evaluate

the performance improvements from using TigC compiler against the Cell B.E. plat-

form. First, this chapter examines the workloads employed as the input source code

for TigC and goes onto compare the performance differences between running the

programs on the PPU only and under the SPU call mode. Next, the results achieved

by employing different number of the SPUs and increasing the input data size are

compared to see how the time cost changes. Finally, this chapter describes the poten-

tial optimization opportunities that this compiler provides by processing source files

for different architectures.

All the workloads are running on the IBM BladeCenter QS20 system, which con-

tains nine core processors with one PowerPC core and eight SPE cores. Each core has

a peak performance of 3.2GHz. The system is configured with 8GB of main memory,

and each SPE has 256KB of local storage.

PPC64 Linux with kernel 2.6.18 is running on the PPE as the host OS to manage

the system. It provides the Cell B.E. SDK which includes GCC 4.1.2 for the PPU

architecture and GCC 4.1.1 for the SPU architecture.

5.1 Workload

The Cell B.E. is designed primarily for computation-intensive jobs, such as gam-

ing, video processing and scientific computation. Matrix operations are common

in these areas. For example, a gaming program may use matrix multiplication to

transform a vector in 3-D space, which, in the end, represents a character’s arm

81



movement. In the experiments, two computation-intensive programs are tested for

the performance evaluation:

1. Strassen’s Matrix Multiplication Here, matrix multiplication refers to the matrix

product rather than that of scalar multiplication. It is a binary operation that

takes two matrices where the number of columns of the first matrix should be

equal to the number of rows of the second matrix. The result is another matrix.

For example, given the following two matrices:

A =


A11 A12 · · · A1m

A21 A22 · · · A2m

...
...

. . .
...

An1 An2 · · · Anm

B =


B11 B12 · · · B1p

B21 B22 · · · B2p

...
...

. . .
...

Bm1 Bm2 · · · Bmp


the multiplication result is defined as

AB =


AB11 AB12 · · · AB1p

AB21 AB22 · · · AB2p

...
...

. . .
...

ABn1 ABn2 · · · ABnp



where each entry is defined by ABij =
∑kj

ik AikBkj. With the naive algorithm

shown above, it is obvious that the time cost of multiplication for the matrix

of size n × n is O(n3), which is considered inefficient for large matrices. Many

more efficient algorithms exist to reduce the multiplication operations. One

example is the Strassen algorithm. To simplify the problem, it assumes the

input matrices have the size 2n × 2n. For other sizes, they can be transformed

by padding rows and columns of 0. To calculate C = AB, it first splits the

input matrices into the following format:

82



A =

 A11 A12

A21 A22

B =

 B11 B12

B21 B22


where Aij and Bij are matrices of size 2n−1. With the following auxiliary ma-

trices:

M1 = (A11 + A22)(B11 + B22)

M2 = (A21 + A22)B11

M3 = A11(B12 + B22)

M4 = A22(B21 −B11)

M5 = (A11 + A12)B22

M6 = (A21 − A11)(B11 + B12)

M7 = (A12 − A22)(B21 + B22)

Then the result could be calculated by using:

C =

 M1 + M4 −M5 + M7 M3 + M5

M2 + M4 M1 + M3 −M2 + M6


The computation of the auxiliary matrices also requires matrix multiplications

which may be done either recursively or with the naive method. With the

recursive implementation, if f(n) is the number of operations involved in 2n×2n

matrix calculation, it is clear that f(n) = 7f(n− 1) + I where I represents the

additions to calculate C. Therefore, the asymptotic complexity for multiplying

matrices of size N = 2n using the Strassen algorithm is

O([7 + o(1)]n) = O(N log
7+o(1)
2 ) ≈ O(N2.807)

While the Strassen algorithm saves the multiplication instructions, it also intro-

duces some extra additions and requires more memory allocations. For small

83



matrices, the naive method offers a better solution because this overhead will

be more expensive than the instructions saved. This boundary is decided by

running both naive and Strassen algorithms with different matrix sizes to see at

which point Strassen starts to outperform the naive method. To make a clear

difference, the multiplication is run for 32K times with both methods, and the

result is shown in Figure 5.1.

Figure 5.1: Naive vs Strassen Matrix Multiplication

It is obvious that the Strassen algorithm outperforms the naive method only

when the input matrices are at least 32× 32. The test program is subsequently

designed in a way that large matrices can be split on the PPE recursively by

using the Strassen algorithm until it reaches size 16×16. Thereafter, calculations

for the auxiliary matrices can be distributed to different SPEs and solved by

naive method.

In the experiments, the Strassen algorithm is run on 200 pairs of matrices with

the same size n × n, where n is from 64 to 512. To make the distributions

84



easier, when the matrix size is 64 × 64, there will be 2 times of expansion to

get 49 pairs of 16× 16 matrices. These small matrices were then distributed to

different SPUs.

2. n-Queens Problem This is a classic problem that asks how to put n queens on an

ordinary n×n chess board so that none of them could hit each other within one

move. In chess, a queen can move as many steps as she wants in all directions,

vertically, horizontally and diagonally. This means that two queens should not

appear in a line to meet the requirements. The 8-queens problem has a total of

92 solutions. Figure 5.2 shows one example of a valid solution to the 8-queens

problem.

Figure 5.2: One Solution for 8-Queens Problem

This test evaluates the performance by measuring the time cost of finding all

valid solutions for a given n-Queens problem. The naive solution is to enumer-

ate all possible placements of the queens and to remove those that represent

invalid solutions, a procedure which is quite computationally expensive. The

implementation used in the experiment is based on the Wirth’s algorithm[52].

It records the current states of the chessboard by using three vectors to rep-

resent the vertical and diagonal placements of queens, and placing a queen on

the chessboard means that the appropriate elements need to be set in all three

vectors. To check whether a position is valid, the program needs to check if any

85



corresponding element in those vectors is set. Because the algorithm is work-

ing on a single row at a time, no extra vector for the row collision is required.

There are constraints introduced to avoid known symmetries, but they are not

relevant to the research.

To fully utilize the power of the Cell B.E., the n-Queens problem should be

divided into subsets, thereby allowing more than one SPU to run together. The

parallel approach is the same as the process described in [18]. Each SPE gets a

set of starting positions in the first row and is asked to find all the valid solutions

given the placement of the first queen. Note that the n-Queens problem does

not involve too many MFC operations, differing markedly from the Strassen’s

matrix multiplication above.

The experiments try to solve the n-Queens problem where n is a number from

4 to 16. Note that there is no solution for n < 4 except n = 1.

Both of the workloads require a huge number of computations when the input

size increases. However, only Strassen’s matrix multiplication requires abundant data

transfer across processors, so the behaviors of the Cell B.E. can be inspected in two

different cases. In each run of the experiments, time command is used to measure

the performance. The command reports three values:

• real refers to the elapsed wall clock time.

• user refers to the CPU time that the process spends under user mode.

• sys refers to the CPU time that the process spends under kernel mode.

In the experiments, the wall clock time (real) is chosen for performance evaluation.

Both algorithms ran 8 times, and the average value was calculated. Also, the system

has no other computation application running.

86



5.2 Simple Call Mode

As described earlier, the simple call refers to the case where only one SPU is used.

Whenever an SPU function is called, the PPU stub function will prepare a data buffer

having all the parameter data and will then transfer it to the SPU. The SPU entry

function interprets this buffer to get the arguments and to run the target function.

When it finishes the execution, the return value will be transferred back to the main

memory. During this whole period, the PPU is blocked and waiting for the execution.

Obviously, simple call does not bring any parallel performance improvements be-

cause the work is not distributed to different processors, and extra steps are required

to prepare the context for the SPU to start, which, in theory, makes the program even

slower than just running on the PPU. But, this procedure provides us the performance

baseline for the workloads. Figure 5.3 shows a comparison of the calculation of matrix

Figure 5.3: Strassen Algorithm (PPU Only vs Simple Call Mode)

multiplications with different input matrices sizes using the Strassen algorithm. With

87



the extra operations involved in the simple call, including memory buffer initializa-

tion, MFC transfers and SPE context start/stop, the program requires a longer time

than it would with PPU only. As the matrix size increases, the simple call involves

additional data transfer between the main memory and the local storage, so the gap

gets larger.

Figure 5.4: n-Queens Problem (PPU Only vs Simple Call Mode)

Figure 5.4 shows the comparison between solving the n-Queens problem on PPU

only and with one SPU under simple call mode. The simple call still takes longer than

it would on PPU only. However, the extra time used by the simple call is not as high

as the one in the Strassen’s matrix multiplication workload. This occurs because

the n-Queens algorithm just transfers the chessboard size to the SPU to start the

computation. Compared with transferring the matrix data, this is a relatively cheap

operation.

88



5.3 Parallel Call Mode

With parallel call mode, ideally, the input data is distributed to different SPUs,

and each SPU works solely on its fraction. So, the time cost should decrease when the

number of cores increases. However, there are certain parts of the code which cannot

be executed in parallel. For example, the parameter’s buffer should be prepared to

start the SPE context. In addition, the workload itself may have some parts that need

to be done in order and cannot be split. According to Amdahl’s Law, the potential

performance improvement is based on the fraction that could not run in parallel.

Figure 5.5: Strassen Algorithm with Matrix Size 256× 256 (Data Transfer Optimiza-
tion on vs off)

As mentioned in the previous chapter, when calling SPU functions under the

parallel call mode, an asynchronous MFC transfer can be issued for the next batch

of input data before processing the current batch. This optimization makes the

data transfer in parallel with the function execution, and the SPU running time will

be reduced to max(Tdata−transfer, Tfunction−execution). Figure 5.5 shows the result of

89



enabling the data transfer optimization when running the Strassen algorithm with

different matrix sizes. It does provide some performance improvements because this

workload involves many MFC operations to transfer a large amount of matrix data to

the local storage. It also shows that as the SPU count increases, the difference between

the optimization on and off actually decreases. This situation happens because when

the same amount of work is distributed to more cores, each SPU ends up with less

input data. As a result, less time is spent on the data transfer between processors

because more MFC operations can run in parallel. This also leads to less performance

improvements from the optimization.

Figure 5.6: 15-Queens Problem (Data Transfer Optimization on vs off)

Figure 5.6 shows the comparison demonstrated by solving the 15-Queens problems

with data transfer optimization enabled. It shows that although there are still im-

provements, the difference is actually quite small, and it keeps almost an unchanged

value while the SPU count is increased. This outcome is expected because, for the

n-Queens problem, the algorithm requires just one MFC transfer at the beginning of

90



each parallel execution to decide its place position of the first row on the chessboard;

there is nothing else to optimize for data transfer in this program.

All of the following experiments are run with data transfer optimization enabled.

The performance of the parallel calls are evaluated with different SPU counts. Fig-

ure 5.7 shows the time cost of running the Strassen’s matrix multiplication under

the parallel call mode. It shows that with only two SPUs, the time cost is decreased

significantly, nearly the same as those seen when using the PPU. However, compared

to the case where only the PPU is used, it does not save half of the time cost. One

reason is that there are extra operations needed to run functions on the SPUs. As

described before, under the simple call mode, it also requires the same amount of this

extra work. So, if comparing the results of two SPUs with the simple call, it saves

much more of the running time, which is exactly expected.

Figure 5.7: Strassen Algorithm under Parallel Call Mode

Increasing the SPU count, however, does not improve the performance at the same

91



rate. For example, the multiplication of two 512×512 matrices for 200 times requires

about 700 seconds with two SPUs, but it requires about 450 seconds with four SPUs

instead of 350 seconds. This result can be explained by the following two reasons:

1. As described, the multiplications are distributed when the input matrix has a

size of 64× 64. So in total there will be 49 multiplications of 16× 16 matrices

to calculate the auxiliary matrices. The round-robin method is employed to

distribute all of these multiplications to different SPUs without priority; in the

end, it is likely that some SPUs will remain idle because there is no more work

to do. For example, 49 multiplications require four SPUs running 13 batches,

where, in the last batch, only one SPU is used. It also requires eight SPUs

running seven batches.

2. Based on Amdahl’s Law, the potential improvements with more cores depend

on the fraction of the program that cannot run in parallel. However, with the

Strassen algorithm, only the calculation of auxiliary matrices is distributed to

different SPUs. The program still includes many sequential steps before and

after this calculation, such as allocating buffers for those temporary matrices

and adding the returning auxiliary matrices up to the final result. Thus, the

time cost will not decrease at the same rate.

Figure 5.8 shows the results of solving the n-Queens problem using different num-

bers of the SPUs. There are several differences to be compared with the results of

the Strassen algorithm:

1. Even with only two SPUs running under the parallel call mode, the procedure

reduces half of the running time compared with running on PPU only. For

example, it takes about 1200 seconds to solve the 16-Queens problem on the

PPU, but with two SPUs, it takes only 600 seconds.

2. As the SPU count increases, the time cost decreases almost at the same rate. For

example, two SPUs require around 600 seconds to solve the 16-Queens problem,

92



while four queens requires around 300 seconds.

This outcome is also expected because the n-Queens problem involves only one MFC

operation at the very beginning for each run. In addition, with the distribution

mechanism, most parts of the program can run in parallel. The only sequential

operation is that of summing up the results from each call, which involves only a few

instructions and is fast. Note that there are some exceptions:

Figure 5.8: n-Queens Problem under Parallel Call Mode

1. When the chessboard size is small (in this case, if it is smaller than 10), solving

the problem takes less time than SPE contexts initialization. Increasing the SPU

count will eventually cost a slightly longer time because the program needs to

initialize more contexts at the beginning.

2. The distribution mechanism on this workload may also waste some SPU cycles

at the last iteration. For example, if eight SPUs are used on a 12-Queens

93



problem, only four SPUs will be employed during the last iteration; it does not

bring twice the performance improvements compared to the four SPUs case.

Also different SPUs have a similar time cost when the chessboard has size 10.

This can be explained as follows: the total execution involves creating SPE contexts,

solving 9-Queens problems with the available SPUs, and destroying all these contexts.

Except the second step which is distributed to different SPUs, the other two steps are

executed sequentially on the PPU. Assume that initializing and destroying one SPE

context costs Tcontext, and a 9-Queens problem costs Tqueen, the total execution time

costs with different SPU counts is shown in Table 5.1. It is obvious that if Tcontext is

close to Tqueen, the results will converge when the chessboard is 10.

SPU Count Time Cost

2 2× Tcontext + 5× Tqueen

3 3× Tcontext + 4× Tqueen

4 4× Tcontext + 3× Tqueen

5 5× Tcontext + 2× Tqueen

6 6× Tcontext + 2× Tqueen

7 7× Tcontext + 2× Tqueen

8 8× Tcontext + 2× Tqueen

Table 5.1: Total Execution Time of 10-Queens problem

5.4 Potential Optimizations

As described in chapter 3, existing compilers, such as ppu-gcc and spu-gcc, work

independently. ppu-gcc parses source files that contain only the PPU functions and

generate the PPU binary, while spu-gcc processes only SPU source files. There is

no information shared between these two compilers, making it difficult to perform

future optimizations. For example, from ppu-gcc’s view, calling an SPU function

always ends up with calling the PPU function spe context run. It will be difficult

for the compiler to learn the fact that this call involves a processor switch. Even

if the compiler has built-in knowledge to treat this case specially, it still needs to

94



differentiate the preparation code, such as input buffer initialization, from the actual

work.

TigC is different in that it accepts source files that contain both the PPU and the

SPU functions. It will process them together and generate the result binary. This

capability allows the compiler to have a global view of the program. During the com-

pilation, the SPU function calls are represented with a single IR node R.SPUCALL. All

the preparation code is separated from users’ codes and hidden in the stub function,

which makes the optimization component simple. In addition, using a different IR

node instead of the original R.CALL provides the information that this function call

actually requires a processor switch, and provides evidence that the compiler can

further optimize the program.

This section discusses two optimization opportunities that can be implemented

based on the knowledge provided by TigC.

5.4.1 Code Reordering

One optimization that usually happens within the processors is the out-of-order

execution (OOE)[49]. The basic idea involves processing the next available instruc-

tion using some instruction cycles that would otherwise be wasted by costly delays.

Previously, instructions were executed in-order, meaning that the processor fetches

an instruction, and if the input operand is not available because it is being fetched

from memory, the processor blocks waiting until this step is finished. With OOE, an

instruction can happen before an earlier instruction if its data is ready.

The code reordering optimization contains a similar idea but at a higher level.

Calling an SPU function has a costly delay because it may be a computation-intensive

algorithm dealing with a large amount of input data. The goal is to run statements

that are ready for execution before the call returns. To simplify the problem, the

optimization focuses on a small scope where no loop is involved.

First, variables used within a statement are considered as its data. A variable is

95



not ready if its value relies on the output of the function call, which means that such

a statement will be unable to run until the call is completed. However, for statements

that do not use any data modified by the function call, they can be reordered so the

processor can overlap their execution with the function call. Differing from OOE, this

reordering logic occurs during the compilation after the source files are translated into

the IR format.

To achieve this goal, a separate optimization component needs to be added in

TigC. It will be triggered directly after IR is generated. In addition, IR nodes

R.SPUCALL and R.PARCALL should first be modified to be asynchronous, meaning

that calling an SPU function will be non-blocking. This optimization component

takes the IR nodes as input, and when a heterogeneous call is detected, a special

IR node R.SPUWAIT must be added to explicitly wait for the completion of the SPU

function call. This is a blocking operation, working as a barrier to make sure that

all variables have correct values before they are used. Its initial position follows right

after the function call statement. TigC needs to analyze the following statements to

check whether they are dependent on the result of the function call. For one with no

dependency, it will be reordered to run before R.SPUWAIT. After the reordering, the

resulting program should be similar to the following format:

..

R.SPUCALL / R.PARCALL

..

Statements that do not depend on the SPU function ’s output

..

R.SPUWAIT

..

Statements that depend on the SPU function ’s output

..

The procedure to analyze the IR to determine if a variable is in use is called

liveness analysis. A variable is live if its value may be needed later. The optimization

component first converts the input IR nodes into a control-flow graph wherein each

node represents a statement in the program. Any assignment to a variable defines

96



this variable, and any occurrence of a variable on the right side of an expression

uses this variable. For a statement node, defs and uses store the variables that are

defined and used in this statement. To make sure the reordering does not change the

program’s behavior, a directed graph is built; each node represents a statement in

the control-flow graph, and each edge represents the dependency between two nodes.

A statement S1 is dependent on another statement S2 if it meets one of the following

conditions:

1. There is a path in the control-flow graph from S2 to S1, and S1 uses a variable

that is defined only by S2 on this path. This stipulation guarantees that a

statement will not be executed before all variables it uses are initialized.

2. There is a path in the control-flow graph from S2 to S1, and S1 defines a variable

that is used or defined in S2. This stipulation guarantees that a statement

modifying a variable will not impact statements that should use the old value

of the variable.

1 b := spu_function(a);
2 c := b + d;
3 d := 7;
4 e := a + 4;
5 f := e + d;
6 g := e + 5;
7 e := 8

Figure 5.9: Sample Program for Code Reordering

For example, considering the program shown in Figure 5.9. Pseudo code is used

here to simplify the description. spu function is an SPU function and involves a

heterogeneous call. Its dependency graph is shown in Figure 5.10. The first depen-

dency rule is shown as solid edges, while the second rule is shown as dash edges. A

path in this graph represents an execution order that must be maintained.

With the dependency graph, TigC can reorder the statements using Algorithm 1.

In this algorithm, SPUCALL is employed to represent both SPUCALL and PAR-

CALL. It keeps a set to record all nodes that have no incoming edges, meaning that

97



Figure 5.10: Dependency Graph of the Sample Program

their dependent nodes are already completed and ready to run. Once a node is con-

sidered as completed and removed from this set, the dependency graph needs to be

updated by removing all edges from this node. This procedure is repeated until the

set is empty. All the remaining nodes in the graph have dependency on the SPU call

node and cannot be reordered. The resulting IR nodes after the optimization will be

passed to the backend for code generation.

Algorithm 1 Algorithm to Reorder the Statements

Require: S includes all statements after the SPU call
Require: D is the DependencyGraph

L← Empty List
R← Set of nodes with no incoming edge
remove nodespucall from R
while R is non-empty do

n← R.popfront()
L.append(n)
for all node m with an edge e from n to m do

D.remove(e)
if m has no incoming edge then R.append(m)
end if

end for
end while
emit SPUCALL
emit statements in L
emit SPUWAIT
emit statements in S − L

98



There is one important rule for code reordering: it cannot change the order of the

program output. Statements such as print must maintain their original order. This

point can be solved by stopping processing the code on the first output statement.

In addition, a threshold may be set to limit the statements the compiler can reorder

before the SPUWAIT.

5.4.2 Optimized SPU Dispatching

The experiment results show that increasing the SPU count does not bring the

same rate of performance improvement. For example, from Figure 5.7, it is clear that

using four SPUs does not reduce half of the execution time of two SPUs. This result

is explained in Section 5.3 with Amdahl’s Law and the load balancing problem. This

means that given a parallel call, although using all available SPUs leads to the locally

optimal execution time, it is not guaranteed that the result will be globally optimal

for the whole program. In this section, another opportunity is described to further

optimize the program by choosing proper amount of the SPUs for different SPU calls.

Considering the following sample program which has two parallel calls on spufunc a

and spufunc b:

a = spufor spufunc_a of (a_input , 128, 1024)

b = spufor spufunc_b of (b_input , 128, 1024)

Assume that these two functions have no data dependency, it means neither function

relies on the output of the other one. If both parallel calls take 900ms when running

with four SPUs, and 600ms with eight SPUs, the current implementation of TigC will

execute them sequentially, both with all eight SPUs; ultimately, the total time cost

will be 600ms+ 600ms = 1200ms. However, because these two parallel calls have no

data dependency, they can run in parallel with different sets of the SPUs. If eight

SPUs are divided into two groups, one for spufunc a and the other for spufunc b,

both parallel calls have four SPUs; the total time cost will be 900ms. For each

function, the execution time is 300ms longer than before, but the total time cost of

the program is lower.

99



This optimization also works with IR and can be implemented in the same opti-

mization component. It relies on the result of the previous liveness analysis to detect

whether two parallel calls have any data dependency and can be reordered to execute

in parallel. If so, TigC needs to determine the optimal SPU dispatch schemes. First,

the compiler must estimate the time cost of the SPU function. One simple solution is

to analyze all instructions involved in the call, including the stub function. This can

be easily achieved because TigC processes all the source files. Because the function

may contain loops, it cannot be calculated by simply summing up the CPU cycles

of each function. In [44], the authors proposed a system to estimate the execution

time during runtime based on static dependent cost expressions generated during

compilation. These expressions can be included in a component to be invoked by the

optimization component. This method requires a dynamic dispatching logic because

when compiling the source code, TigC cannot decide the optimal SPU assignment.

Another solution is to allow programmers to use some annotation to specify the time

cost for a parallel call:

spufor spufunc_a (8:600 , 4:900, 2:1000) of (a_input , 128, 1024)

This means the parallel call on spufunc a will cost 600ms with eight SPUs, 900ms

with four SPUs and 1000ms with two SPUs. These annotations will be stored in the

IR node and used by the optimization component, and the dispatching can happen

during the compilation procedure.

Considering the static dispatching as an example, with the time cost estimation

for each PARCALL, Algorithm 2 is activated to decide if some parallel calls should

be merged to emit the final code. PARCALL is modified to accept the SPU count

assigned for this parallel call. Given a valid assignment, the algorithm first considers

PARCALLs that have an SPU count greater than zero. These PARCALLs will be put

in a single batch and run in parallel, so their time cost depends on the slowest one.

For all PARCALLs with zero SPU assigned, they are processed in different batches,

so a recursive way is used to find their best assignment. In the end, the parallel call

is emitted for each batched assignment with an SPUWAIT. A dynamic dispatching

100



mechanism may be implemented through applying a similar idea. Instead of emitting

an IR node, it can make parallel call directly.

Algorithm 2 Algorithm to Dispatch SPU for multiple PARCALLs

Require: S represents PARCALL statements with no dependency
Require: E is the time cost estimation

function DispatchWithMinCost(S, E, R)
T ← MAX
for all A as a valid SPU assignment for S do

L← 0
for all PARCALL c ∈ S where A[c] 6= 0 do

if E[c][A[c]] > L then
L← E[c][A[c]]

end if
end for
M ← every statement s where A[s] = 0
L+ = DispatchWithMinCost(M , E, A)
if L < T then

R.insert(A), T ← L
end if

end for
return T

end function
DispatchWithMinCost(S, E, R)
for all Batched Assignment A in R do

for all PARCALL c in A do
emit PARCALL(c, A[c])

end for
emit SPUWAIT

end for

5.5 Summary

This chapter evaluated TigC by using different applications. First it described

the implementations of two workloads used in the performance evaluation: Strassen’s

Matrix Multiplication and n-Queens problem. Then, it compared the differences

between using PPU only and simple call mode, with different sizes of input data. After

that, the parallel call mode was evaluated with an increasing SPU count. The results

show that the performance gained from multiprocessing is consistent with Amdahl’s

Law. By enabling the data transfer optimization, the time cost TigC processes both

101



types of source files, it provides a global view to do further optimizations. Then, this

chapter discussed two potential optimizations that can be done with TigC.

102



6. Conclusion and Future Work

This study has presented the design, implementation, and performance evaluation

of a Tiger compiler, TigC, on the Cell B.E. system. It extends the standard Tiger

language to allow function definitions for both the PPU and the SPU architectures.

The compiler includes two backends tailored to emit correct assembly instructions

and to automatically generate processor switch and data transfer operations. An

RCS generator is implemented to read information about all the functions defined

and to create stubs for triggering the SPU calls. It then investigated how to call a

specified SPU method with a generic entry function, using a predefined input buffer

layout for the SPU programs to support array data.

The parallel call mode is introduced to more fully utilize the computational power

of Cell B.E. systems. A new loop syntax is added to Tiger to distribute the input data

to different SPUs. Instead of calling an SPU function and waiting for the completion,

now the program is able to create multiple threads, where each thread is assigned

one SPU to process part of the input data. Finally, overlapped I/O is implemented

wherein the computation and the transfer for the next dataset between the main

memory and the local storage can thus run in parallel.

The most important benefit from TigC is that it provides a general purpose com-

piler architecture for asymmetric processors. Programmers are not required to provide

two different sets of source files. All function definitions can be put into a single file

and processed by a single compiler. Although this feature is not novel, it is not avail-

able on Cell B.E. systems yet. Calling functions on a different processor does not need

explicitly programmed context initialization and program loading. The compiler hides

103



all the details about the system-specific operations. This capability provides greater

knowledge of the program and offers a better platform for future optimizations.

In the future, there are several places that can be extended. TigC currently does

not take advantage of the SIMD capability on the PPU and the SPU cores. For

operations, such as some multimedia operations with the same simple addition or

subtraction to large amounts of data, SIMD offers data level parallelism and huge

performance improvements. This is especially important for the SPU, because all

its registers are SIMD registers. Even scalar value is processed with these registers,

which is less efficiency than generic scalar architecture because the load and store

instructions require data alignment. Some decision-making component can be imple-

mented to automatically recognize functions that should be executed on the SPUs.

This addition will eliminate the usage of extended keywords. Another improvement is

about the entry function. Instead of starting from the same entry in the SPU binary,

the Cell B.E. SDK allows us to specify an entry offset in the binary, which makes

it possible to call a function directly. Finally, the compiler should be extended to

allow communications between the SPUs, so that, when necessary, different steps of

an operation can be distributed.

104



Bibliography

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and

Tools. Pearson/Addison Wesley, Boston, MA, USA, 2007.

[2] G. M. Amdahl. Validity of the Single Processor Approach to Achieving Large

Scale Computing Capabilities. In Proc. SJC ’67, pages 483–385. ACM, 1967.

[3] M. Annavaram, E. Grochowski, and J. Shen. Mitigating Amdahl’s law through

EPI throttling. In Proc. ISCA ’05, pages 298–309. IEEE, 2005.

[4] A. W. Appel. Modern Compiler Implementation in ML. Cambridge University

Press, New York, NY, USA, 1st edition, 1998.

[5] E. Ayguade et al. A Proposal to Extend the OpenMP Tasking Model for Hetero-

geneous Architectures. In Proc. IWOMP ’09, pages 154–167. Springer-Verlag,

2009.

[6] J.-L. Baer. Multiprocessing Systems. IEEE Transactions on Computers,

100(12):1271–1277, 1976.

[7] G. H. Barnes, R. M. Brown, M. Kato, D. J. Kuck, D. L. Slotnick, and R. A.

Stokes. The ILLIAC IV Computer. IEEE Transactions on Computers, 17(8):746–

757, 1968.

[8] P. Bellens, J. M. Perez, R. M. Badia, and J. Labarta. CellSs: a Programming

Model for the Cell B.E. Architecture. In Proc. SC ’06, pages 5–5. ACM, 2006.

[9] G. Blake, R. G. Dreslinski, T. Mudge, and K. Flautner. Evolution of Thread-

level Parallelism in Desktop Applications. In Proc. ISCA ’10, pages 302–313.

ACM, 2010.

[10] W. J. Bolosky and M. L. Scott. False sharing and its effect on shared memory

performance. In Proc.SEDMS ’93. Usenix Association, 1993.

105



[11] J. R. Callahan and J. M. Purtilo. Using an architectural approach to integrate

heterogeneous, distributed software components. Technical report, NASA/WVU

Software IV & V Facility Software Research Laboratory, 1995.

[12] R. Chandra et al. Parallel Programming in OpenMP. Morgan Kaufmann Pub-

lishers Inc., San Francisco, CA, USA, 2001.

[13] L. Courtès. C Language Extensions for Hybrid CPU/GPU Programming with

StarPU. CoRR, abs/1304.0878, 2013.

[14] L. Dagum and R. Menon. OpenMP: an Industry Standard API for Shared-

memory Programming. IEEE Computational Science & Engineering, 5(1):46–55,

1998.

[15] T. Deepak Shekhar et al. Comparison of Parallel Programming Models for Mul-

ticore Architectures. In IPDPSW ’11, pages 1675–1682. IEEE Computer Society,

2011.

[16] R. Duncan. A Survey of Parallel Computer Architectures. Computer, 23(2):5–16,

1990.

[17] A. E. Eichenberger et al. Optimizing Compiler for the Cell Processor. In Proc.

PACT ’05, pages 161–172. IEEE, 2005.

[18] H. Espeland. Investigation of Parallel Programming on Heterogeneous Multipro-

cessors. Master’s thesis, Department of Informatics, University of Oslo, Oslo,

Norway, 2008.

[19] P. B. Gibbons. A Stub Generator for Multilanguage RPC in Heterogeneous

Environments. IEEE Transactions on Software Engineering, 13(1):77–87, 1987.

[20] M. W. Hall et al. Maximizing Multiprocessor Performance with the SUIF Com-

piler. Computer, 29(12):84–89, 1996.

[21] M. D. Hill and M. R. Marty. Amdahl’s Law in the Multicore Era. Computer,

41(7):33–38, 2008.

106



[22] M.-C. Hsiao et al. Implementation of a Portable Parallelizing Compiler with

Loop Partitioning. In ICPADS ’94, pages 333–338. IEEE, 1994.

[23] J. R. Humphrey, D. K. Price, K. E. Spagnoli, A. L. Paolini, and E. J. Kelmelis.

CULA: Hybrid GPU Accelerated Linear Algebra Routines. In SPIE ’10, pages

770502–770502. SPIE, 2010.

[24] IBM. PowerPC Architecture Book. http://www.ibm.com/developerworks/

systems/library/es-archguide-v2.html, 2005.

[25] IBM. Cell Broadband Engine Architecture. https://www-01.ibm.com/chips/

techlib/techlib.nsf/techdocs/1AEEE1270EA2776387257060006E61BA,

2007.

[26] IBM. SPU Application Binary Interface Specification. https:

//www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/

02E544E65760B0BF87257060006F8F20, 2008.

[27] IBM. SPU Assembly Language Specification. https://www-01.ibm.com/chips/

techlib/techlib.nsf/techdocs/EFA2B196893B550787257060006FC9FB,

2008.

[28] IBM. Cell Broadband Engine Programming Handbook Including the PowerX-

Cell 8i Processor. https://www-01.ibm.com/chips/techlib/techlib.nsf/

techdocs/7A77CCDF14FE70D5852575CA0074E8ED, 2009.

[29] C. R. Johns and D. A. Brokenshire. Introduction to the Cell Broadband Engine

Architecture. IBM Journal of Research and Development, 51(5):503–519, 2007.

[30] S. Lee, S.-J. Min, and R. Eigenmann. OpenMP to GPGPU: a Compiler Frame-

work for Automatic Translation and Optimization. ACM SIGPLAN Notices,

44(4):101–110, 2009.

[31] B. Lewis and D. J. Berg. Multithreaded Programming with Pthreads. Prentice-

Hall, Inc., 1998.

107



[32] D. J. Lilja. Exploiting the Parallelism Available in Loops. Computer, 27(2):13–

26, 1994.

[33] D. Luebke. CUDA: Scalable Parallel Programming for High-Performance Scien-

tific Computing. In Proc. ISBI ’08, pages 836–838. IEEE, 2008.

[34] F. Mao and X. Shen. LU Decomposition on Cell Broadband Engine: an Empirical

Study to Exploit Heterogeneous Chip Multiprocessors. In Proc. NPC ’10, pages

61–75. Springer, 2010.

[35] C. Meyers, C. Clack, and E. Poon. Programming with Standard ML. Prentice-

Hall, Inc., 1993.

[36] Microsoft. MIPS Stack Frame Layout. http://msdn.microsoft.com/en-us/

library/aa448710.aspx, 2006.

[37] B. J. Nelson. Remote Procedure Call. PhD thesis, Palo Alto Research Center,

Carnegie Mellon University, Pittsburgh, PA, USA, 1981.

[38] NVIDA. Parallel Programming and Computing Platform: CUDA. http://www.

nvidia.com/object/cuda_home_new.html, 2013.

[39] K. O’Brien, K. O’Brien, Z. Sura, T. Chen, and T. Zhang. Supporting OpenMP

on Cell. International Journal of Parallel Programming, 36(3):289–311, 2008.

[40] OpenACC. The OpenACC Application Programming Interface, v1.0 . CAPS

Enterprise, Cray Inc., NVIDIA, and the Portland Group, 2011.

[41] D. Pham et al. The Design and Implementation of a First-Generation Cell

Processor. In Proc. ISSCC ’05, pages 184–592. IEEE, 2005.

[42] B. R. Rau and J. A. Fisher. Instruction-Level Parallel Processing: History,

Overview, and Perspective. The Journal of Supercomputing, 7(1-2):9–50, 1993.

[43] B. R. Rau and J. A. Fisher. Instruction-Level Parallelism. In Encyclopedia of

Computer Science, pages 883–887. John Wiley and Sons Ltd., 2003.

108



[44] B. Reistad and D. K. Gifford. Static dependent costs for estimating execution

time. In LFP ’94, pages 65–78. ACM, 1994.

[45] M. W. Riley, J. D. Warnock, and D. F. Wendel. Cell Broadband Engine Proces-

sor: Design and Implementation. IBM Journal of Research and Development,

51(5):545–557, 2007.

[46] R. R. Schaller. Moore’s Law: Past, Present and Future. IEEE Spectrum,

34(6):52–59, 1997.

[47] T. R. Scogland, B. Rountree, W.-c. Feng, and B. R. de Supinski. Heterogeneous

Task Scheduling for Accelerated OpenMP. In IPDPS ’12, pages 144–155. IEEE,

2012.

[48] A. L. Sepillo. A Comparative Study on Symmetric and Asymmetric Multipro-

cessors. Technical report, University of the Philippines, 2006.

[49] W. Stallings. Computer Organization and Architecture: Designing for Perfor-

mance. Prentice-Hall, Inc., 2005.

[50] W. J. Watson. The TI ASC: A Highly Modular and Flexible Super Computer

Architecture. In AFIPS ’72 (Fall, part I), pages 221–228. ACM, 1972.

[51] H. Wei and J. Yu. Loading OpenMP to Cell: An Effective Compiler Framework

for Heterogeneous Multi-Core Chip. In IWOMP ’07, pages 129–133. Springer-

Verlag, 2008.

[52] N. Wirth. Program Development by Stepwise Refinement. Communications of

the ACM, 14(4):221–227, 1971.

[53] C. Yang and C.-C. Lim. Speculative Parallel Threading Architecture and Com-

pilation. In ICPPW ’05, pages 285–294. IEEE Computer Society, 2005.

[54] H. Zhong, M. Mehrara, S. A. Lieberman, and S. A. Mahlke. Uncovering Hidden

Loop Level Parallelism in Sequential Applications. In HPCA ’08, pages 290–301.

IEEE, 2008.

109



A
.

F
ro

n
te

n
d

M
o
d
ifi

ca
ti

o
n

o
f

T
ig

C

In
th

is
ch

ap
te

r,
w

e
sh

ow
th

e
m

o
d
ifi

ca
ti

on
in

th
e

fr
on

te
n
d

of
T

ig
C

in
d
et

ai
ls

to
su

p
p

or
t

P
P

U
an

d
S
P

U
fu

n
ct

io
n
s.

A
.1

L
e
x
ic

a
l

A
n

a
ly

si
s

L
is

ti
n
g

A
.1

:
ti

ge
r.

le
x

1
(
*

t
i
g
e
r

s
c
a
n
n
e
r

*
)

2 3
t
y
p
e

p
o
s

=
i
n
t
;

(
*

%
p
o
s

i
n
t

g
i
v
e
n

i
n

t
i
g
e
r
.
g
r
m

*
)

4
t
y
p
e

s
v
a
l
u
e

=
T
o
k
e
n
s
.
s
v
a
l
u
e

5
t
y
p
e

(
’
a
,

’
b
)

t
o
k
e
n

=
(
’
a
,

’
b
)

T
o
k
e
n
s
.
t
o
k
e
n

6
t
y
p
e

l
e
x
r
e
s
u
l
t

=
(
s
v
a
l
u
e
,

p
o
s
)

t
o
k
e
n
;

7 8
v
a
l

l
i
n
e
N
u
m

=
E
r
r
o
r
M
s
g
.
l
i
n
e
N
u
m

9
v
a
l

l
i
n
e
P
o
s

=
E
r
r
o
r
M
s
g
.
l
i
n
e
P
o
s

1
0

1
1

f
u
n

n
e
x
t
L
n

p
o
s

=
(

l
i
n
e
N
u
m

:
=

!
l
i
n
e
N
u
m
+
1

1
2

;
l
i
n
e
P
o
s

:
=

p
o
s

:
:

!
l
i
n
e
P
o
s
)

1
3

1
4

f
u
n

c
t
r
l
A
l
p
h
a
U

c
=

c
h
r

(
(
o
r
d

c
)

-
(
o
r
d

#
"
A
"
)

+
1
)

1
5

110



1
6

f
u
n

c
t
r
l
A
l
p
h
a
L

c
=

c
h
r

(
(
o
r
d

c
)

-
(
o
r
d

#
"
a
"
)

+
1
)

1
7

1
8

f
u
n

c
t
r
l
C
h
a
r

c
=

l
e
t

f
u
n

t
r

#
"
[
"

=
2
7

1
9

|
t
r

#
"
\
\
"

=
2
8

2
0

|
t
r

#
"
]
"

=
2
9

2
1

|
t
r

#
"
^
"

=
3
0

2
2

|
t
r

#
"
_
"

=
3
1

2
3

|
t
r

#
"
@
"

=
0

2
4

|
t
r

_
=

(
E
r
r
o
r
M
s
g
.
i
m
p
o
s
s
i
b
l
e

"
C
T
R
L

C
H
A
R

C
O
N
S
I
S
T
E
N
C
Y
"

2
5

;
0
)

2
6

i
n

c
h
r

(
t
r

c
)

2
7

e
n
d

2
8

2
9

v
a
l

s
t
r
B
u
f

:
(
p
o
s

*
s
t
r
i
n
g

o
p
t
i
o
n
)

r
e
f

=
r
e
f

(
0
,

N
O
N
E
)

3
0

3
1

f
u
n

s
t
r
A
p
p

s
=

c
a
s
e

!
s
t
r
B
u
f

o
f

3
2

(
_
,

N
O
N
E
)

=
>

E
r
r
o
r
M
s
g
.
i
m
p
o
s
s
i
b
l
e

"
S
T
R
I
N
G

C
O
N
S
I
S
T
E
N
C
Y
"

3
3

|
(
l
,

S
O
M
E

s
’
)

=
>

s
t
r
B
u
f

:
=

(
l
,

S
O
M
E

(
s
’

^
s
)
)

3
4

3
5

f
u
n

e
r
r

(
p
1
,
p
2
)

=
E
r
r
o
r
M
s
g
.
e
r
r
o
r

p
1

3
6

3
7

v
a
l

c
o
m
m
e
n
t
s

:
p
o
s

l
i
s
t

r
e
f

=
r
e
f

[
]

3
8

3
9

f
u
n

e
o
f

(
)

=
l
e
t

v
a
l

p
o
s

=
h
d
(
!
l
i
n
e
P
o
s
)

4
0

i
n

(
c
a
s
e

!
c
o
m
m
e
n
t
s

o
f

4
1

[
]

=
>

(
)

4
2

|
[
c
]

=
>

E
r
r
o
r
M
s
g
.
e
r
r
o
r

p
o
s

(
"
U
n
f
i
n
i
s
h
e
d

c
o
m
m
e
n
t

s
t
a
r
t
i
n
g

a
t

l
i
n
e

"
^

(
I
n
t
.
t
o
S
t
r
i
n
g

c
)
)

4
3

|
(
c
:
:
c
s
)

=
>

l
e
t

f
u
n

l
o
o
p

[
]

=
(

E
r
r
o
r
M
s
g
.
i
m
p
o
s
s
i
b
l
e

"
C
O
M
M
E
N
T

C
O
N
S
I
S
T
E
N
C
Y
"

4
4

;
"
b
o
g
u
s
"

)

4
5

|
l
o
o
p

[
c
]

=
"

a
n
d

"
^

I
n
t
.
t
o
S
t
r
i
n
g

c

4
6

|
l
o
o
p

(
c
:
:
c
s
)

=
"
,

"
^

I
n
t
.
t
o
S
t
r
i
n
g

c
^

l
o
o
p

c
s

4
7

i
n

E
r
r
o
r
M
s
g
.
e
r
r
o
r

p
o
s

(
"
U
n
f
i
n
i
s
h
e
d

c
o
m
m
e
n
t
s

f
r
o
m

l
i
n
e
s

"
^

I
n
t
.
t
o
S
t
r
i
n
g

c
^

l
o
o
p

c
s
)

4
8

e
n
d

4
9

;
c
o
m
m
e
n
t
s

:
=

[
]

5
0

;
c
a
s
e

!
s
t
r
B
u
f

o
f

5
1

(
_
,

N
O
N
E
)

=
>

(
)

5
2

|
(
l
,

S
O
M
E

_
)

=
>

E
r
r
o
r
M
s
g
.
e
r
r
o
r

p
o
s

(
"
U
n
f
i
n
i
s
h
e
d

s
t
r
i
n
g

s
t
a
r
t
e
d

a
t

l
i
n
e

"
^

(
I
n
t
.
t
o
S
t
r
i
n
g

l
)
)

5
3

;
s
t
r
B
u
f

:
=

(
0
,

N
O
N
E
)

5
4

;
T
o
k
e
n
s
.
E
O
F
(
p
o
s
,
p
o
s
)

)

5
5

e
n
d

5
6

5
7

%
%

5
8

n
o
n
z
e
r
o
=
[
1
-
9
]
;

111



5
9

d
i
g
i
t
=
[
0
-
9
]
;

6
0

a
l
p
h
a
=
[
a
-
z
A
-
Z
]
;

6
1

a
l
p
h
a
n
u
m
=
[
a
-
z
A
-
Z
0
-
9
_
]
;

6
2

w
h
i
t
e
s
p
a
c
e
=
[

\
0
0
9
\
0
1
1
\
0
1
2
\
0
1
3
]
;

6
3

c
t
r
l
=
"
\
\
^
"
;

6
4

c
t
r
l
c
h
=
{
c
t
r
l
}
[
\
\
@
^
_
[
\
]
]
;

6
5

6
6

%
s

I
N
I
T
I
A
L

C
O
M
M
E
N
T

S
T
R
I
N
G

F
M
T
S
E
Q
;

6
7

6
8

%
h
e
a
d
e
r

(
f
u
n
c
t
o
r

T
i
g
e
r
L
e
x
F
u
n
(
s
t
r
u
c
t
u
r
e

T
o
k
e
n
s

:
T
i
g
e
r
_
T
O
K
E
N
S
)

(
*

%
n
a
m
e

T
i
g
e
r

g
i
v
e
n

i
n

t
i
g
e
r
.
g
r
m

*
)
)
;

6
9

7
0

%
%

7
1

<
I
N
I
T
I
A
L
>
"
,
"

=
>

(
T
o
k
e
n
s
.
C
O
M
M
A
(
y
y
p
o
s
,
y
y
p
o
s
+

s
i
z
e

y
y
t
e
x
t
)
)
;

7
2

<
I
N
I
T
I
A
L
>
"
:
"

=
>

(
T
o
k
e
n
s
.
C
O
L
O
N
(
y
y
p
o
s
,
y
y
p
o
s
+

s
i
z
e

y
y
t
e
x
t
)
)
;

7
3

<
I
N
I
T
I
A
L
>
"
;
"

=
>

(
T
o
k
e
n
s
.
S
E
M
I
C
O
L
O
N
(
y
y
p
o
s
,
y
y
p
o
s
+

s
i
z
e

y
y
t
e
x
t
)
)
;

7
4

<
I
N
I
T
I
A
L
>
"
(
"

=
>

(
T
o
k
e
n
s
.
L
P
A
R
E
N
(
y
y
p
o
s
,
y
y
p
o
s
+

s
i
z
e

y
y
t
e
x
t
)
)
;

7
5

<
I
N
I
T
I
A
L
>
"
)
"

=
>

(
T
o
k
e
n
s
.
R
P
A
R
E
N
(
y
y
p
o
s
,
y
y
p
o
s
+

s
i
z
e

y
y
t
e
x
t
)
)
;

7
6

<
I
N
I
T
I
A
L
>
"
[
"

=
>

(
T
o
k
e
n
s
.
L
B
R
A
C
K
(
y
y
p
o
s
,
y
y
p
o
s
+

s
i
z
e

y
y
t
e
x
t
)
)
;

7
7

<
I
N
I
T
I
A
L
>
"
]
"

=
>

(
T
o
k
e
n
s
.
R
B
R
A
C
K
(
y
y
p
o
s
,
y
y
p
o
s
+

s
i
z
e

y
y
t
e
x
t
)
)
;

7
8

<
I
N
I
T
I
A
L
>
"
{
"

=
>

(
T
o
k
e
n
s
.
L
B
R
A
C
E
(
y
y
p
o
s
,
y
y
p
o
s
+

s
i
z
e

y
y
t
e
x
t
)
)
;

7
9

<
I
N
I
T
I
A
L
>
"
}
"

=
>

(
T
o
k
e
n
s
.
R
B
R
A
C
E
(
y
y
p
o
s
,
y
y
p
o
s
+

s
i
z
e

y
y
t
e
x
t
)
)
;

8
0

<
I
N
I
T
I
A
L
>
"
.
"

=
>

(
T
o
k
e
n
s
.
D
O
T
(
y
y
p
o
s
,
y
y
p
o
s
+

s
i
z
e

y
y
t
e
x
t
)
)
;

8
1

<
I
N
I
T
I
A
L
>
"
+
"

=
>

(
T
o
k
e
n
s
.
P
L
U
S
(
y
y
p
o
s
,
y
y
p
o
s
+

s
i
z
e

y
y
t
e
x
t
)
)
;

8
2

<
I
N
I
T
I
A
L
>
"
-
"

=
>

(
T
o
k
e
n
s
.
M
I
N
U
S
(
y
y
p
o
s
,
y
y
p
o
s
+

s
i
z
e

y
y
t
e
x
t
)
)
;

8
3

<
I
N
I
T
I
A
L
>
"
*
"

=
>

(
T
o
k
e
n
s
.
T
I
M
E
S
(
y
y
p
o
s
,
y
y
p
o
s
+

s
i
z
e

y
y
t
e
x
t
)
)
;

8
4

<
I
N
I
T
I
A
L
>
"
/
"

=
>

(
T
o
k
e
n
s
.
D
I
V
I
D
E
(
y
y
p
o
s
,
y
y
p
o
s
+

s
i
z
e

y
y
t
e
x
t
)
)
;

8
5

<
I
N
I
T
I
A
L
>
"
=
"

=
>

(
T
o
k
e
n
s
.
E
Q
(
y
y
p
o
s
,
y
y
p
o
s
+

s
i
z
e

y
y
t
e
x
t
)
)
;

8
6

<
I
N
I
T
I
A
L
>
"
<
>
"

=
>

(
T
o
k
e
n
s
.
N
E
Q
(
y
y
p
o
s
,
y
y
p
o
s
+

s
i
z
e

y
y
t
e
x
t
)
)
;

8
7

<
I
N
I
T
I
A
L
>
"
<
"

=
>

(
T
o
k
e
n
s
.
L
T
(
y
y
p
o
s
,
y
y
p
o
s
+

s
i
z
e

y
y
t
e
x
t
)
)
;

8
8

<
I
N
I
T
I
A
L
>
"
<
=
"

=
>

(
T
o
k
e
n
s
.
L
E
(
y
y
p
o
s
,
y
y
p
o
s
+

s
i
z
e

y
y
t
e
x
t
)
)
;

8
9

<
I
N
I
T
I
A
L
>
"
>
"

=
>

(
T
o
k
e
n
s
.
G
T
(
y
y
p
o
s
,
y
y
p
o
s
+

s
i
z
e

y
y
t
e
x
t
)
)
;

9
0

<
I
N
I
T
I
A
L
>
"
>
=
"

=
>

(
T
o
k
e
n
s
.
G
E
(
y
y
p
o
s
,
y
y
p
o
s
+

s
i
z
e

y
y
t
e
x
t
)
)
;

9
1

<
I
N
I
T
I
A
L
>
"
&
"

=
>

(
T
o
k
e
n
s
.
A
N
D
(
y
y
p
o
s
,
y
y
p
o
s
+

s
i
z
e

y
y
t
e
x
t
)
)
;

9
2

<
I
N
I
T
I
A
L
>
"
|
"

=
>

(
T
o
k
e
n
s
.
O
R
(
y
y
p
o
s
,
y
y
p
o
s
+

s
i
z
e

y
y
t
e
x
t
)
)
;

9
3

<
I
N
I
T
I
A
L
>
"
:
=
"

=
>

(
T
o
k
e
n
s
.
A
S
S
I
G
N
(
y
y
p
o
s
,
y
y
p
o
s
+

s
i
z
e

y
y
t
e
x
t
)
)
;

9
4

9
5

<
I
N
I
T
I
A
L
>
v
a
r

=
>

(
T
o
k
e
n
s
.
V
A
R
(
y
y
p
o
s
,
y
y
p
o
s
+

s
i
z
e

y
y
t
e
x
t
)
)
;

9
6

<
I
N
I
T
I
A
L
>
w
h
i
l
e

=
>

(
T
o
k
e
n
s
.
W
H
I
L
E
(
y
y
p
o
s
,
y
y
p
o
s
+

s
i
z
e

y
y
t
e
x
t
)
)
;

9
7

<
I
N
I
T
I
A
L
>
f
o
r

=
>

(
T
o
k
e
n
s
.
F
O
R
(
y
y
p
o
s
,
y
y
p
o
s
+

s
i
z
e

y
y
t
e
x
t
)
)
;

9
8

<
I
N
I
T
I
A
L
>
s
p
u
f
o
r

=
>

(
T
o
k
e
n
s
.
S
P
U
F
O
R
(
y
y
p
o
s
,
y
y
p
o
s
+

s
i
z
e

y
y
t
e
x
t
)
)
;

9
9

<
I
N
I
T
I
A
L
>
t
o

=
>

(
T
o
k
e
n
s
.
T
O
(
y
y
p
o
s
,
y
y
p
o
s
+

s
i
z
e

y
y
t
e
x
t
)
)
;

1
0
0

<
I
N
I
T
I
A
L
>
b
r
e
a
k

=
>

(
T
o
k
e
n
s
.
B
R
E
A
K
(
y
y
p
o
s
,
y
y
p
o
s
+

s
i
z
e

y
y
t
e
x
t
)
)
;

1
0
1

<
I
N
I
T
I
A
L
>
l
e
t

=
>

(
T
o
k
e
n
s
.
L
E
T
(
y
y
p
o
s
,
y
y
p
o
s
+

s
i
z
e

y
y
t
e
x
t
)
)
;

112



1
0
2

<
I
N
I
T
I
A
L
>
i
n

=
>

(
T
o
k
e
n
s
.
I
N
(
y
y
p
o
s
,
y
y
p
o
s
+

s
i
z
e

y
y
t
e
x
t
)
)
;

1
0
3

<
I
N
I
T
I
A
L
>
e
n
d

=
>

(
T
o
k
e
n
s
.
E
N
D
(
y
y
p
o
s
,
y
y
p
o
s
+

s
i
z
e

y
y
t
e
x
t
)
)
;

1
0
4

<
I
N
I
T
I
A
L
>
t
y
p
e

=
>

(
T
o
k
e
n
s
.
T
Y
P
E
(
y
y
p
o
s
,
y
y
p
o
s
+

s
i
z
e

y
y
t
e
x
t
)
)
;

1
0
5

<
I
N
I
T
I
A
L
>
a
r
r
a
y

=
>

(
T
o
k
e
n
s
.
A
R
R
A
Y
(
y
y
p
o
s
,
y
y
p
o
s
+

s
i
z
e

y
y
t
e
x
t
)
)
;

1
0
6

<
I
N
I
T
I
A
L
>
i
f

=
>

(
T
o
k
e
n
s
.
I
F
(
y
y
p
o
s
,
y
y
p
o
s
+

s
i
z
e

y
y
t
e
x
t
)
)
;

1
0
7

<
I
N
I
T
I
A
L
>
t
h
e
n

=
>

(
T
o
k
e
n
s
.
T
H
E
N
(
y
y
p
o
s
,
y
y
p
o
s
+

s
i
z
e

y
y
t
e
x
t
)
)
;

1
0
8

<
I
N
I
T
I
A
L
>
e
l
s
e

=
>

(
T
o
k
e
n
s
.
E
L
S
E
(
y
y
p
o
s
,
y
y
p
o
s
+

s
i
z
e

y
y
t
e
x
t
)
)
;

1
0
9

<
I
N
I
T
I
A
L
>
d
o

=
>

(
T
o
k
e
n
s
.
D
O
(
y
y
p
o
s
,
y
y
p
o
s
+

s
i
z
e

y
y
t
e
x
t
)
)
;

1
1
0

<
I
N
I
T
I
A
L
>
o
f

=
>

(
T
o
k
e
n
s
.
O
F
(
y
y
p
o
s
,
y
y
p
o
s
+

s
i
z
e

y
y
t
e
x
t
)
)
;

1
1
1

<
I
N
I
T
I
A
L
>
n
i
l

=
>

(
T
o
k
e
n
s
.
N
I
L
(
y
y
p
o
s
,
y
y
p
o
s
+

s
i
z
e

y
y
t
e
x
t
)
)
;

1
1
2

<
I
N
I
T
I
A
L
>
s
p
u
_
f
u
n
c
t
i
o
n

=
>

(
T
o
k
e
n
s
.
S
P
U
_
F
U
N
C
T
I
O
N
(
y
y
p
o
s
,
y
y
p
o
s
+

s
i
z
e

y
y
t
e
x
t
)
)
;

1
1
3

<
I
N
I
T
I
A
L
>
p
p
u
_
f
u
n
c
t
i
o
n

=
>

(
T
o
k
e
n
s
.
P
P
U
_
F
U
N
C
T
I
O
N
(
y
y
p
o
s
,
y
y
p
o
s
+

s
i
z
e

y
y
t
e
x
t
)
)
;

1
1
4

1
1
5

<
I
N
I
T
I
A
L
>
(
{
a
l
p
h
a
}
{
a
l
p
h
a
n
u
m
}
*
)

=
>

(
T
o
k
e
n
s
.
I
D
(
y
y
t
e
x
t
,

y
y
p
o
s
,

y
y
p
o
s

+
s
i
z
e

y
y
t
e
x
t
)
)
;

1
1
6

<
I
N
I
T
I
A
L
>
(
{
d
i
g
i
t
}
{
d
i
g
i
t
}
*
)

=
>

(
c
a
s
e

I
n
t
.
f
r
o
m
S
t
r
i
n
g

y
y
t
e
x
t

o
f

1
1
7

N
O
N
E

=
>

(
E
r
r
o
r
M
s
g
.
e
r
r
o
r

y
y
p
o
s

(
"
n
u
m
b
e
r

n
o
t

i
n
t
e
g
e
r

"
^

y
y
t
e
x
t
)

1
1
8

;
c
o
n
t
i
n
u
e
(
)
)

1
1
9

|
S
O
M
E

z
=
>

T
o
k
e
n
s
.
I
N
T
(
z
,
y
y
p
o
s
,
y
y
p
o
s
+
s
i
z
e

y
y
t
e
x
t
)
)
;

1
2
0

1
2
1

<
I
N
I
T
I
A
L
>
"
/
*
"

=
>

(
Y
Y
B
E
G
I
N

C
O
M
M
E
N
T

1
2
2

;
c
o
m
m
e
n
t
s

:
=

y
y
p
o
s

:
:

!
c
o
m
m
e
n
t
s

1
2
3

;
c
o
n
t
i
n
u
e
(
)
)
;

1
2
4

1
2
5

<
C
O
M
M
E
N
T
>
"
/
*
"

=
>

(
c
o
m
m
e
n
t
s

:
=

y
y
p
o
s

:
:

!
c
o
m
m
e
n
t
s

1
2
6

;
c
o
n
t
i
n
u
e
(
)
)
;

1
2
7

1
2
8

<
C
O
M
M
E
N
T
>
\
n

=
>

(
n
e
x
t
L
n

y
y
p
o
s

1
2
9

;
c
o
n
t
i
n
u
e
(
)
)
;

1
3
0

1
3
1

<
C
O
M
M
E
N
T
>
"
*
/
"

=
>

(
c
a
s
e

!
c
o
m
m
e
n
t
s

o
f

1
3
2

[
]

=
>

(
Y
Y
B
E
G
I
N

I
N
I
T
I
A
L

1
3
3

;
E
r
r
o
r
M
s
g
.
i
m
p
o
s
s
i
b
l
e

"
C
O
M
M
E
N
T
S

S
T
A
T
E

C
O
N
S
I
S
T
E
N
C
Y
"
)

1
3
4

|
[
c
]

=
>

(
Y
Y
B
E
G
I
N

I
N
I
T
I
A
L

1
3
5

;
c
o
m
m
e
n
t
s

:
=

[
]
)

1
3
6

|
(
c
:
:
c
s
)

=
>

c
o
m
m
e
n
t
s

:
=

c
s

1
3
7

;
c
o
n
t
i
n
u
e
(
)
)
;

1
3
8

1
3
9

<
C
O
M
M
E
N
T
>
.

=
>

(
c
o
n
t
i
n
u
e
(
)
)
;

1
4
0

1
4
1

<
I
N
I
T
I
A
L
>
\
"

=
>

(
Y
Y
B
E
G
I
N

S
T
R
I
N
G

1
4
2

;
s
t
r
B
u
f

:
=

(
!
l
i
n
e
N
u
m
,

S
O
M
E

"
"
)

1
4
3

;
c
o
n
t
i
n
u
e
(
)
)
;

1
4
4

<
S
T
R
I
N
G
>
\
"

=
>

(
Y
Y
B
E
G
I
N

I
N
I
T
I
A
L

113



1
4
5

;
c
a
s
e

!
s
t
r
B
u
f

o
f

1
4
6

(
_
,

N
O
N
E
)

=
>

(
E
r
r
o
r
M
s
g
.
i
m
p
o
s
s
i
b
l
e

"
S
T
R
I
N
G

S
T
A
T
E

C
O
N
S
I
S
T
E
N
C
Y
"

1
4
7

;
c
o
n
t
i
n
u
e
(
)
)

1
4
8

|
(
l
,

S
O
M
E

s
)

=
>

(
s
t
r
B
u
f

:
=

(
0
,

N
O
N
E
)

1
4
9

;
T
o
k
e
n
s
.
S
T
R
I
N
G
(
s
,

l
,

s
i
z
e

s
)
)
)
;

1
5
0

<
S
T
R
I
N
G
>
\
\
n

=
>

(
s
t
r
A
p
p

"
\
n
"

1
5
1

;
n
e
x
t
L
n

y
y
p
o
s

1
5
2

;
c
o
n
t
i
n
u
e
(
)
)
;

1
5
3

<
S
T
R
I
N
G
>
\
\
t

=
>

(
s
t
r
A
p
p

"
\
t
"

1
5
4

;
c
o
n
t
i
n
u
e
(
)
)
;

1
5
5

<
S
T
R
I
N
G
>
\
\
\
"

=
>

(
s
t
r
A
p
p

"
\
\
"

1
5
6

;
c
o
n
t
i
n
u
e
(
)
)
;

1
5
7

<
S
T
R
I
N
G
>
(
{
c
t
r
l
}
[
a
-
z
]
)

=
>

(
s
t
r
A
p
p

(
s
t
r

(
c
t
r
l
A
l
p
h
a
L

(
S
t
r
i
n
g
.
s
u
b

(
y
y
t
e
x
t
,

2
)
)
)
)

1
5
8

;
c
o
n
t
i
n
u
e
(
)
)
;

1
5
9

<
S
T
R
I
N
G
>
(
{
c
t
r
l
}
[
A
-
Z
]
)

=
>

(
s
t
r
A
p
p

(
s
t
r

(
c
t
r
l
A
l
p
h
a
U

(
S
t
r
i
n
g
.
s
u
b

(
y
y
t
e
x
t
,

2
)
)
)
)

1
6
0

;
c
o
n
t
i
n
u
e
(
)
)
;

1
6
1

<
S
T
R
I
N
G
>
(
{
c
t
r
l
c
h
}
)

=
>

(
s
t
r
A
p
p

(
s
t
r

(
c
t
r
l
C
h
a
r

(
S
t
r
i
n
g
.
s
u
b

(
y
y
t
e
x
t
,

2
)
)
)
)

1
6
2

;
c
o
n
t
i
n
u
e
(
)
)
;

1
6
3

<
S
T
R
I
N
G
>
(
\
\
{
d
i
g
i
t
}
{
d
i
g
i
t
}
{
d
i
g
i
t
}
)

=
>

(
c
a
s
e

I
n
t
.
f
r
o
m
S
t
r
i
n
g

(
s
u
b
s
t
r
i
n
g

(
y
y
t
e
x
t
,

1
,

3
)
)

1
6
4

o
f

N
O
N
E

=
>

E
r
r
o
r
M
s
g
.
i
m
p
o
s
s
i
b
l
e

"
D
E
C
I
M
A
L

C
O
N
T
R
O
L

S
T
R
I
N
G

C
O
N
S
I
S
T
E
N
C
Y
"

1
6
5

|
S
O
M
E

n
=
>

i
f

n
>
=
0

a
n
d
a
l
s
o

n
<
1
2
8

t
h
e
n

s
t
r
A
p
p

(
s
t
r

(
c
h
r

n
)
)

1
6
6

e
l
s
e

E
r
r
o
r
M
s
g
.
e
r
r
o
r

y
y
p
o
s

"
i
n
v
a
l
i
d

d
e
c
i
m
a
l

c
o
n
t
r
o
l

c
h
a
r
a
c
t
e
r
"

1
6
7

;
c
o
n
t
i
n
u
e
(
)
)
;

1
6
8

<
S
T
R
I
N
G
>
(
\
\
{
w
h
i
t
e
s
p
a
c
e
}
)

=
>

(
Y
Y
B
E
G
I
N

F
M
T
S
E
Q

1
6
9

;
c
o
n
t
i
n
u
e
(
)
)
;

1
7
0

<
S
T
R
I
N
G
>
\
\
\
n

=
>

(
Y
Y
B
E
G
I
N

F
M
T
S
E
Q

1
7
1

;
c
o
n
t
i
n
u
e
(
)
)
;

1
7
2

<
S
T
R
I
N
G
>
\
\
\
\

=
>

(
s
t
r
A
p
p

"
\
\
"

1
7
3

;
c
o
n
t
i
n
u
e
(
)
)
;

1
7
4

<
S
T
R
I
N
G
>
\
\

=
>

(
E
r
r
o
r
M
s
g
.
e
r
r
o
r

y
y
p
o
s

"
i
n
v
a
l
i
d

e
s
c
a
p
e

s
e
q
u
e
n
c
e
"

1
7
5

;
c
o
n
t
i
n
u
e
(
)
)
;

1
7
6

<
S
T
R
I
N
G
>
\
n

=
>

(
E
r
r
o
r
M
s
g
.
e
r
r
o
r

y
y
p
o
s

"
n
e
w
l
i
n
e

i
n

s
t
r
i
n
g

c
o
n
s
t
a
n
t
"

1
7
7

;
n
e
x
t
L
n

y
y
p
o
s

1
7
8

;
c
o
n
t
i
n
u
e
(
)
)
;

1
7
9

<
S
T
R
I
N
G
>
.

=
>

(
s
t
r
A
p
p

y
y
t
e
x
t

1
8
0

;
c
o
n
t
i
n
u
e
(
)
)
;

1
8
1

<
F
M
T
S
E
Q
>
(
{
w
h
i
t
e
s
p
a
c
e
}
)

=
>

(
c
o
n
t
i
n
u
e
(
)
)
;

1
8
2

<
F
M
T
S
E
Q
>
\
n

=
>

(
n
e
x
t
L
n

y
y
p
o
s

1
8
3

;
c
o
n
t
i
n
u
e
(
)
)
;

1
8
4

<
F
M
T
S
E
Q
>
\
\

=
>

(
Y
Y
B
E
G
I
N

S
T
R
I
N
G

1
8
5

;
c
o
n
t
i
n
u
e
(
)
)
;

1
8
6

<
F
M
T
S
E
Q
>
.

=
>

(
Y
Y
B
E
G
I
N

S
T
R
I
N
G

1
8
7

;
E
r
r
o
r
M
s
g
.
e
r
r
o
r

y
y
p
o
s

(
"
i
l
l
e
g
a
l

f
o
r
m
a
t

c
h
a
r
a
c
t
e
r

"
^

y
y
t
e
x
t
)

114



1
8
8

;
s
t
r
A
p
p

y
y
t
e
x
t

1
8
9

;
c
o
n
t
i
n
u
e
(
)
)
;

1
9
0

<
I
N
I
T
I
A
L
>
\
n

=
>

(
n
e
x
t
L
n

y
y
p
o
s

1
9
1

;
c
o
n
t
i
n
u
e
(
)
)
;

1
9
2

<
I
N
I
T
I
A
L
>
(
{
w
h
i
t
e
s
p
a
c
e
}
)

=
>

(
c
o
n
t
i
n
u
e
(
)
)
;

1
9
3

<
I
N
I
T
I
A
L
>
.

=
>

(
E
r
r
o
r
M
s
g
.
e
r
r
o
r

y
y
p
o
s

(
"
i
l
l
e
g
a
l

c
h
a
r
a
c
t
e
r

"
^

y
y
t
e
x
t
)

1
9
4

;
c
o
n
t
i
n
u
e
(
)
)
;

A
.2

P
a
rs

e
r

L
is

ti
n
g

A
.2

:
ti

ge
r.

gr
m

1
(
*

T
i
g
e
r

g
r
a
m
m
a
r

*
)

2
s
t
r
u
c
t
u
r
e

A
=

A
b
s
y
n

3
s
t
r
u
c
t
u
r
e

S
=

S
y
m
b
o
l

4 5
f
u
n

m
k
S
e
q
E
x
p

[
(
x
,

p
)
]

=
x

6
|

m
k
S
e
q
E
x
p

x
p
s

=
A
.
S
e
q
E
x
p

x
p
s

7 8
f
u
n

m
k
A
r
r
a
y
E
x
p

(
A
.
S
i
m
p
l
e
V
a
r

(
i
,

_
)
,

e
x
p
1
,

e
x
p
2
,

p
o
s
)

=
A
.
A
r
r
a
y
E
x
p

{
t
y
p

=
i
,

s
i
z
e

=
e
x
p
1
,

i
n
i
t

=
e
x
p
2
,

p
o
s

=
p
o
s

}

9
|

m
k
A
r
r
a
y
E
x
p

(
_
,

_
,

_
,

p
o
s
)

=
(

E
r
r
o
r
M
s
g
.
e
r
r
o
r

p
o
s

"
I
n
v
a
l
i
d

a
r
r
a
y

e
l
e
m
e
n
t

t
y
p
e
"

1
0

;
A
.
N
i
l
E
x
p

)

1
1

1
2

t
y
p
e

n
e
x
p

=
(
S
.
s
y
m
b
o
l

*
A
.
e
x
p

*
A
.
p
o
s
)

1
3

1
4

t
y
p
e

t
d
e
c

=
{

n
a
m
e

:
S
.
s
y
m
b
o
l
,

t
y

:
A
.
t
y
,

p
o
s

:
A
.
p
o
s
}

1
5

1
6

t
y
p
e

o
p
t
t
y

=
(
S
.
s
y
m
b
o
l

*
A
.
p
o
s
)

o
p
t
i
o
n

1
7

1
8

t
y
p
e

p
e
x
p

=
(
A
.
e
x
p

*
A
.
p
o
s
)

1
9

2
0

%
%

2
1

%
t
e
r
m

E
O
F

2
2

|
I
D

o
f

s
t
r
i
n
g

115



2
3

|
I
N
T

o
f

i
n
t

|
S
T
R
I
N
G

o
f

s
t
r
i
n
g

2
4

|
C
O
M
M
A

|
C
O
L
O
N

|
S
E
M
I
C
O
L
O
N

|
D
O
T

2
5

|
L
P
A
R
E
N

|
R
P
A
R
E
N

|
L
B
R
A
C
K

|
R
B
R
A
C
K

|
L
B
R
A
C
E

|
R
B
R
A
C
E

2
6

|
P
L
U
S

|
M
I
N
U
S

|
T
I
M
E
S

|
D
I
V
I
D
E

|
E
Q

|
N
E
Q

|
L
T

|
L
E

|
G
T

|
G
E

2
7

|
A
N
D

|
O
R

|
A
S
S
I
G
N

2
8

|
A
R
R
A
Y

|
I
F

|
T
H
E
N

|
E
L
S
E

|
W
H
I
L
E

|
F
O
R

|
S
P
U
F
O
R

|
T
O

|
D
O

|
L
E
T

|
I
N

|
E
N
D

|
O
F

2
9

|
B
R
E
A
K

|
N
I
L

3
0

|
S
P
U
_
F
U
N
C
T
I
O
N

|
P
P
U
_
F
U
N
C
T
I
O
N

|
V
A
R

|
T
Y
P
E

3
1

|
U
M
I
N
U
S

|
D
E
C
L

3
2

3
3

%
n
o
n
t
e
r
m

p
r
o
g
r
a
m

o
f

A
.
e
x
p

3
4

|
e
x
p

o
f

A
.
e
x
p

3
5

|
e
x
p
s

o
f

p
e
x
p

l
i
s
t

3
6

|
e
x
p
’

o
f

p
e
x
p

l
i
s
t

3
7

|
d
e
c

o
f

A
.
d
e
c

3
8

|
d
e
c
s

o
f

A
.
d
e
c

l
i
s
t

3
9

|
f
d
e
c

o
f

A
.
f
u
n
d
e
c

4
0

|
f
d
e
c
s

o
f

A
.
f
u
n
d
e
c

l
i
s
t

4
1

|
t
d
e
c

o
f

t
d
e
c

4
2

|
t
d
e
c
s

o
f

t
d
e
c

l
i
s
t

4
3

|
t
y

o
f

A
.
t
y

4
4

|
t
a
n
n

o
f

S
.
s
y
m
b
o
l

4
5

|
o
p
t
t
y

o
f

(
S
.
s
y
m
b
o
l

*
A
.
p
o
s
)

o
p
t
i
o
n

4
6

|
f
i
e
l
d

o
f

A
.
f
i
e
l
d

4
7

|
f
i
e
l
d
s

o
f

A
.
f
i
e
l
d

l
i
s
t

4
8

|
f
i
e
l
d
’

o
f

A
.
f
i
e
l
d

l
i
s
t

4
9

|
v
a
r

o
f

A
.
v
a
r

5
0

|
a
r
g
s

o
f

A
.
e
x
p

l
i
s
t

5
1

|
a
r
g
’

o
f

A
.
e
x
p

l
i
s
t

5
2

|
n
e
x
p

o
f

n
e
x
p

5
3

|
n
e
x
p
s

o
f

n
e
x
p

l
i
s
t

5
4

|
n
e
x
p
’

o
f

n
e
x
p

l
i
s
t

5
5

5
6

%
k
e
y
w
o
r
d

W
H
I
L
E

D
O

F
O
R

S
P
U
F
O
R

T
O

B
R
E
A
K

5
7

L
E
T

I
N

E
N
D

5
8

S
P
U
_
F
U
N
C
T
I
O
N

P
P
U
_
F
U
N
C
T
I
O
N

V
A
R

T
Y
P
E

A
R
R
A
Y

O
F

5
9

I
F

T
H
E
N

E
L
S
E

6
0

N
I
L

6
1

6
2

%
s
t
a
r
t

p
r
o
g
r
a
m

6
3

%
e
o
p

E
O
F

6
4

%
n
o
s
h
i
f
t

E
O
F

6
5

116



6
6

%
p
o
s

i
n
t

6
7

%
v
e
r
b
o
s
e

6
8

%
n
a
m
e

T
i
g
e
r

6
9

7
0

%
r
i
g
h
t

D
E
C
L

7
1

%
r
i
g
h
t

T
Y
P
E

S
P
U
_
F
U
N
C
T
I
O
N

7
2

7
3

%
r
i
g
h
t

D
O

7
4

%
l
e
f
t

O
F

7
5

%
n
o
n
a
s
s
o
c

A
S
S
I
G
N

T
H
E
N

7
6

%
n
o
n
a
s
s
o
c

E
L
S
E

7
7

%
l
e
f
t

O
R

7
8

%
l
e
f
t

A
N
D

7
9

%
n
o
n
a
s
s
o
c

E
Q

N
E
Q

G
T

L
T

G
E

L
E

8
0

%
l
e
f
t

P
L
U
S

M
I
N
U
S

8
1

%
l
e
f
t

T
I
M
E
S

D
I
V
I
D
E

8
2

%
n
o
n
a
s
s
o
c

U
M
I
N
U
S

8
3

8
4

%
p
r
e
f
e
r

T
H
E
N

E
L
S
E

L
P
A
R
E
N

8
5

8
6

%
v
a
l
u
e

I
D

(
"
b
o
g
u
s
"
)

8
7

%
v
a
l
u
e

I
N
T

(
1
)

8
8

%
v
a
l
u
e

S
T
R
I
N
G

(
"
"
)

8
9

9
0

%
%

9
1

9
2

p
r
o
g
r
a
m

:
e
x
p

(
e
x
p
)

9
3

9
4

e
x
p

:
v
a
r

(
A
.
V
a
r
E
x
p

v
a
r
)

9
5

|
v
a
r

A
S
S
I
G
N

e
x
p

(
A
.
A
s
s
i
g
n
E
x
p

{
v
a
r

=
v
a
r
,

e
x
p

=
e
x
p
,

p
o
s

=
A
S
S
I
G
N
l
e
f
t

}
)

9
6

|
I
D

L
P
A
R
E
N

a
r
g
s

R
P
A
R
E
N

(
A
.
C
a
l
l
E
x
p

{
f
u
n
c

=
S
.
s
y
m
b
o
l

I
D
,

a
r
g
s

=
a
r
g
s
,

p
o
s

=
L
P
A
R
E
N
l
e
f
t

}
)

9
7

|
I
D

L
B
R
A
C
E

n
e
x
p
s

R
B
R
A
C
E

(
A
.
R
e
c
o
r
d
E
x
p

{
f
i
e
l
d
s

=
n
e
x
p
s
,

t
y
p

=
S
.
s
y
m
b
o
l

I
D
,

p
o
s

=

L
B
R
A
C
E
l
e
f
t

}
)

9
8

|
v
a
r

L
B
R
A
C
K

e
x
p

R
B
R
A
C
K

O
F

e
x
p

(
m
k
A
r
r
a
y
E
x
p

(
v
a
r
,

e
x
p
1
,

e
x
p
2
,

L
B
R
A
C
K
l
e
f
t
)
)

9
9

1
0
0

|
S
P
U
F
O
R

I
D

O
F

L
P
A
R
E
N

a
r
g
s

R
P
A
R
E
N

(
A
.
S
p
u
F
o
r
E
x
p

{
f
u
n
c

=
S
.
s
y
m
b
o
l

I
D
,

a
r
g
s

=
a
r
g
s
,

p
o
s

=
L
P
A
R
E
N
l
e
f
t

}
)

1
0
1

1
0
2

|
N
I
L

(
A
.
N
i
l
E
x
p
)

1
0
3

|
I
N
T

(
A
.
I
n
t
E
x
p

I
N
T
)

1
0
4

|
S
T
R
I
N
G

(
A
.
S
t
r
i
n
g
E
x
p

(
S
T
R
I
N
G
,

S
T
R
I
N
G
l
e
f
t
)
)

1
0
5

117



1
0
6

|
M
I
N
U
S

e
x
p

%
p
r
e
c

U
M
I
N
U
S

(
A
.
O
p
E
x
p

{
l
e
f
t

=
A
.
I
n
t
E
x
p

0
,

o
p
e
r

=
A
.
M
i
n
u
s
O
p
,

r
i
g
h
t

=
e
x
p
,

p
o
s

=
M
I
N
U
S
l
e
f
t

}
)

1
0
7

|
e
x
p

P
L
U
S

e
x
p

(
A
.
O
p
E
x
p

{
l
e
f
t

=
e
x
p
1
,

o
p
e
r

=
A
.
P
l
u
s
O
p
,

r
i
g
h
t

=
e
x
p
2
,

p
o
s

=

P
L
U
S
l
e
f
t

}
)

1
0
8

|
e
x
p

M
I
N
U
S

e
x
p

(
A
.
O
p
E
x
p

{
l
e
f
t

=
e
x
p
1
,

o
p
e
r

=
A
.
M
i
n
u
s
O
p
,

r
i
g
h
t

=
e
x
p
2
,

p
o
s

=

M
I
N
U
S
l
e
f
t

}
)

1
0
9

|
e
x
p

T
I
M
E
S

e
x
p

(
A
.
O
p
E
x
p

{
l
e
f
t

=
e
x
p
1
,

o
p
e
r

=
A
.
T
i
m
e
s
O
p
,

r
i
g
h
t

=
e
x
p
2
,

p
o
s

=

T
I
M
E
S
l
e
f
t

}
)

1
1
0

|
e
x
p

D
I
V
I
D
E

e
x
p

(
A
.
O
p
E
x
p

{
l
e
f
t

=
e
x
p
1
,

o
p
e
r

=
A
.
D
i
v
i
d
e
O
p
,

r
i
g
h
t

=
e
x
p
2
,

p
o
s

=

D
I
V
I
D
E
l
e
f
t

}
)

1
1
1

|
e
x
p

E
Q

e
x
p

(
A
.
O
p
E
x
p

{
l
e
f
t

=
e
x
p
1
,

o
p
e
r

=
A
.
E
q
O
p
,

r
i
g
h
t

=
e
x
p
2
,

p
o
s

=

E
Q
l
e
f
t

}
)

1
1
2

|
e
x
p

N
E
Q

e
x
p

(
A
.
O
p
E
x
p

{
l
e
f
t

=
e
x
p
1
,

o
p
e
r

=
A
.
N
e
q
O
p
,

r
i
g
h
t

=
e
x
p
2
,

p
o
s

=

N
E
Q
l
e
f
t

}
)

1
1
3

|
e
x
p

G
T

e
x
p

(
A
.
O
p
E
x
p

{
l
e
f
t

=
e
x
p
1
,

o
p
e
r

=
A
.
G
t
O
p
,

r
i
g
h
t

=
e
x
p
2
,

p
o
s

=

G
T
l
e
f
t

}
)

1
1
4

|
e
x
p

L
T

e
x
p

(
A
.
O
p
E
x
p

{
l
e
f
t

=
e
x
p
1
,

o
p
e
r

=
A
.
L
t
O
p
,

r
i
g
h
t

=
e
x
p
2
,

p
o
s

=

L
T
l
e
f
t

}
)

1
1
5

|
e
x
p

G
E

e
x
p

(
A
.
O
p
E
x
p

{
l
e
f
t

=
e
x
p
1
,

o
p
e
r

=
A
.
G
e
O
p
,

r
i
g
h
t

=
e
x
p
2
,

p
o
s

=

G
E
l
e
f
t

}
)

1
1
6

|
e
x
p

L
E

e
x
p

(
A
.
O
p
E
x
p

{
l
e
f
t

=
e
x
p
1
,

o
p
e
r

=
A
.
L
e
O
p
,

r
i
g
h
t

=
e
x
p
2
,

p
o
s

=

L
E
l
e
f
t

}
)

1
1
7

1
1
8

|
e
x
p

A
N
D

e
x
p

(
A
.
I
f
E
x
p

{
t
e
s
t

=
e
x
p
1
,

t
h
e
n
’

=
e
x
p
2
,

e
l
s
e
’

=
S
O
M
E

(
A
.
I
n
t
E
x
p

0
)
,

p
o
s

=
A
N
D
l
e
f
t

}
)

1
1
9

|
e
x
p

O
R

e
x
p

(
A
.
I
f
E
x
p

{
t
e
s
t

=
e
x
p
1
,

t
h
e
n
’

=
A
.
I
n
t
E
x
p

1
,

e
l
s
e
’

=
S
O
M
E

e
x
p
2
,

p
o
s

=
O
R
l
e
f
t

}
)

1
2
0

1
2
1

|
I
F

e
x
p

T
H
E
N

e
x
p

E
L
S
E

e
x
p

(
A
.
I
f
E
x
p

{
t
e
s
t

=
e
x
p
1
,

t
h
e
n
’

=
e
x
p
2
,

e
l
s
e
’

=
S
O
M
E

e
x
p
3
,

p
o
s

=

I
F
l
e
f
t

}
)

1
2
2

|
I
F

e
x
p

T
H
E
N

e
x
p

(
A
.
I
f
E
x
p

{
t
e
s
t

=
e
x
p
1
,

t
h
e
n
’

=
e
x
p
2
,

e
l
s
e
’

=
N
O
N
E
,

p
o
s

=
I
F
l
e
f
t

}
)

1
2
3

1
2
4

|
W
H
I
L
E

e
x
p

D
O

e
x
p

(
A
.
W
h
i
l
e
E
x
p

{
t
e
s
t

=
e
x
p
1
,

b
o
d
y

=
e
x
p
2
,

p
o
s

=
W
H
I
L
E
l
e
f
t
}
)

1
2
5

|
B
R
E
A
K

(
A
.
B
r
e
a
k
E
x
p

B
R
E
A
K
l
e
f
t
)

1
2
6

(
*

|
F
O
R

I
D

A
S
S
I
G
N

e
x
p

T
O

e
x
p

D
O

e
x
p

.
.
.

*
)

1
2
7

|
L
E
T

d
e
c
s

I
N

e
x
p
s

E
N
D

(
A
.
L
e
t
E
x
p

{
d
e
c
s

=
d
e
c
s
,

b
o
d
y

=
m
k
S
e
q
E
x
p

e
x
p
s
,

p
o
s

=
L
E
T
l
e
f
t

}
)

1
2
8

|
L
P
A
R
E
N

e
x
p
s

R
P
A
R
E
N

(
m
k
S
e
q
E
x
p

e
x
p
s
)

1
2
9

1
3
0

d
e
c

:
t
d
e
c
s

(
A
.
T
y
p
e
D
e
c

t
d
e
c
s
)

1
3
1

|
V
A
R

I
D

o
p
t
t
y

A
S
S
I
G
N

e
x
p

(
A
.
V
a
r
D
e
c

{
n
a
m
e

=
S
.
s
y
m
b
o
l

I
D
,

1
3
2

e
s
c
a
p
e

=
r
e
f

t
r
u
e
,

1
3
3

t
y
p

=
o
p
t
t
y
,

118



1
3
4

i
n
i
t

=
e
x
p
,

1
3
5

p
o
s

=
V
A
R
l
e
f
t

}
)

1
3
6

|
f
d
e
c
s

(
A
.
F
u
n
c
t
i
o
n
D
e
c

f
d
e
c
s
)

1
3
7

1
3
8

d
e
c
s

:
(
*

e
m
p
t
y

*
)

(
[
]
)

1
3
9

|
d
e
c

d
e
c
s

(
d
e
c

:
:

d
e
c
s
)

1
4
0

1
4
1

t
d
e
c
s

:
t
d
e
c

%
p
r
e
c

D
E
C
L

(
[
t
d
e
c
]
)

1
4
2

|
t
d
e
c

t
d
e
c
s

(
(
t
d
e
c

:
:

t
d
e
c
s
)
)

1
4
3

1
4
4

t
d
e
c

:
T
Y
P
E

I
D

E
Q

t
y

(
{

n
a
m
e

=
S
.
s
y
m
b
o
l

I
D
,

t
y

=
t
y
,

p
o
s

=
T
Y
P
E
l
e
f
t

}
)

1
4
5

1
4
6

f
d
e
c
s

:
f
d
e
c

%
p
r
e
c

D
E
C
L

(
[
f
d
e
c
]
)

1
4
7

|
f
d
e
c

f
d
e
c
s

(
(
f
d
e
c

:
:

f
d
e
c
s
)
)

1
4
8

1
4
9

f
d
e
c

:
S
P
U
_
F
U
N
C
T
I
O
N

I
D

L
P
A
R
E
N

f
i
e
l
d
s

R
P
A
R
E
N

o
p
t
t
y

E
Q

e
x
p

(
{

n
a
m
e

=
S
.
s
y
m
b
o
l

I
D
,

1
5
0

p
a
r
a
m
s

=
f
i
e
l
d
s
,

1
5
1

r
e
s
u
l
t

=
o
p
t
t
y
,

1
5
2

b
o
d
y

=
e
x
p
,

1
5
3

p
o
s

=
S
P
U
_
F
U
N
C
T
I
O
N
l
e
f
t
,

1
5
4

t
a
g

=
A
.
S
P
U
_
F
u
n
c

}
)

1
5
5

|
P
P
U
_
F
U
N
C
T
I
O
N

I
D

L
P
A
R
E
N

f
i
e
l
d
s

R
P
A
R
E
N

o
p
t
t
y

E
Q

e
x
p

(
{

n
a
m
e

=
S
.
s
y
m
b
o
l

I
D
,

1
5
6

p
a
r
a
m
s

=
f
i
e
l
d
s
,

1
5
7

r
e
s
u
l
t

=
o
p
t
t
y
,

1
5
8

b
o
d
y

=
e
x
p
,

1
5
9

p
o
s

=
P
P
U
_
F
U
N
C
T
I
O
N
l
e
f
t
,

1
6
0

t
a
g

=
A
.
P
P
U
_
F
u
n
c

}
)

1
6
1

1
6
2

v
a
r

:
I
D

(
A
.
S
i
m
p
l
e
V
a
r

(
S
.
s
y
m
b
o
l

I
D
,

I
D
l
e
f
t
)
)

1
6
3

|
v
a
r

D
O
T

I
D

(
A
.
F
i
e
l
d
V
a
r

(
v
a
r
,

S
.
s
y
m
b
o
l

I
D
,

D
O
T
l
e
f
t
)
)

1
6
4

|
v
a
r

L
B
R
A
C
K

e
x
p

R
B
R
A
C
K

(
A
.
S
u
b
s
c
r
i
p
t
V
a
r

(
v
a
r
,

e
x
p
,

L
B
R
A
C
K
l
e
f
t
)
)

1
6
5

1
6
6

o
p
t
t
y

:
(
*

e
m
p
t
y

*
)

(
N
O
N
E
)

1
6
7

|
t
a
n
n

(
S
O
M
E
(
t
a
n
n
,

t
a
n
n
l
e
f
t
)
)

1
6
8

1
6
9

t
y

:
I
D

(
A
.
N
a
m
e
T
y

(
S
.
s
y
m
b
o
l

I
D
,

I
D
l
e
f
t
)
)

1
7
0

|
L
B
R
A
C
E

f
i
e
l
d
s

R
B
R
A
C
E

(
A
.
R
e
c
o
r
d
T
y

f
i
e
l
d
s
)

1
7
1

|
A
R
R
A
Y

O
F

I
D

(
A
.
A
r
r
a
y
T
y

(
S
.
s
y
m
b
o
l

I
D
,

A
R
R
A
Y
l
e
f
t
)
)

1
7
2

1
7
3

t
a
n
n

:
C
O
L
O
N

I
D

(
S
.
s
y
m
b
o
l

I
D
)

1
7
4

1
7
5

f
i
e
l
d

:
I
D

t
a
n
n

(
{

n
a
m
e

=
S
.
s
y
m
b
o
l

I
D
,

e
s
c
a
p
e

=
r
e
f

t
r
u
e
,

t
y
p

=
t
a
n
n
,

p
o
s

=
t
a
n
n
l
e
f
t

}
)

1
7
6

119



1
7
7

f
i
e
l
d
s

:
(
*

e
m
p
t
y

*
)

(
[
]
)

1
7
8

|
f
i
e
l
d
’

(
f
i
e
l
d
’
)

1
7
9

1
8
0

f
i
e
l
d
’

:
f
i
e
l
d

(
[
f
i
e
l
d
]
)

1
8
1

|
f
i
e
l
d

C
O
M
M
A

f
i
e
l
d
’

(
f
i
e
l
d

:
:

f
i
e
l
d
’
)

1
8
2

1
8
3

e
x
p
s

:
(
*

e
m
p
t
y

*
)

(
[
]
)

1
8
4

|
e
x
p
’

(
e
x
p
’
)

1
8
5

1
8
6

e
x
p
’

:
e
x
p

(
[
(
e
x
p
,

e
x
p
l
e
f
t
)
]
)

1
8
7

|
e
x
p

S
E
M
I
C
O
L
O
N

e
x
p
’

(
(
e
x
p
,

e
x
p
l
e
f
t
)

:
:

e
x
p
’
)

1
8
8

1
8
9

a
r
g
s

:
(
*

e
m
p
t
y

*
)

(
[
]
)

1
9
0

|
a
r
g
’

(
a
r
g
’
)

1
9
1

1
9
2

a
r
g
’

:
e
x
p

(
[
e
x
p
]
)

1
9
3

|
e
x
p

C
O
M
M
A

a
r
g
’

(
e
x
p

:
:

a
r
g
’
)

1
9
4

1
9
5

n
e
x
p

:
I
D

E
Q

e
x
p

(
(
S
.
s
y
m
b
o
l

I
D
,

e
x
p
,

E
Q
l
e
f
t
)
)

1
9
6

1
9
7

n
e
x
p
s

:
(
*

e
m
p
t
y

*
)

(
[
]
)

1
9
8

|
n
e
x
p
’

(
n
e
x
p
’
)

1
9
9

2
0
0

n
e
x
p
’

:
n
e
x
p

(
[
n
e
x
p
]
)

2
0
1

|
n
e
x
p

C
O
M
M
A

n
e
x
p
’

(
n
e
x
p

:
:

n
e
x
p
’
)

120



B
.

B
a
ck

e
n
d

Im
p
le

m
e
n
ta

ti
o
n

o
f

T
ig

C

H
er

e
w

e
sh

ow
th

e
d
et

ai
ls

of
th

e
b
ac

ke
n
d

im
p
le

m
en

ta
ti

on
of

T
ig

C
fo

r
b

ot
h

P
P

U
an

d
S
P

U
ar

ch
it

ec
tu

re
s.

B
.1

C
e
ll

B
.E

.
F
ra

m
e

L
a
y
o
u

t

T
h
is

fi
le

ge
n
er

at
es

th
e

P
P

U
an

d
S
P

U
fr

am
e

la
yo

u
t.

L
is

ti
n
g

B
.1

:
cb

fr
am

e.
sm

l
1

s
t
r
u
c
t
u
r
e

S
P
U
F
r
a
m
e

=

2
s
t
r
u
c
t

3
s
t
r
u
c
t
u
r
e

M
=

T
e
m
p

4 5
f
u
n

m
a
k
e
R
e
g

(
s
,

n
)

=
(
"
$
"

^
(
I
n
t
.
t
o
S
t
r
i
n
g

(
n
+
4
)
)
,

M
.
n
e
w
t
e
m
p

(
)
)

6
f
u
n

m
a
k
e
R
e
g
s

(
s
,

n
)

=
i
f

(
0
=
n
)

7
t
h
e
n

[
m
a
k
e
R
e
g

(
s
,

0
)
]

8
e
l
s
e

(
m
a
k
e
R
e
g

(
s
,

n
)
)
:
:
m
a
k
e
R
e
g
s

(
s
,

n
-
1
)

9

1
0

f
u
n

m
a
k
e
R
e
g
’

(
s
,

n
)

=
(
"
$
"

^
(
I
n
t
.
t
o
S
t
r
i
n
g

(
n
+
8
0
)
)
,

M
.
n
e
w
t
e
m
p
(
)
)

1
1

f
u
n

m
a
k
e
R
e
g
s
’

(
s
,

n
)

=
i
f

(
0
=
n
)

1
2

t
h
e
n

[
m
a
k
e
R
e
g
’

(
s
,

0
)
]

121



1
3

e
l
s
e

(
m
a
k
e
R
e
g
’

(
s
,

n
)
)
:
:
m
a
k
e
R
e
g
s
’

(
s
,

n
-
1
)

1
4

1
5

f
u
n

m
a
k
e
R
e
g
’
’

(
s
,

n
)

=
(
"
$
"

^
(
I
n
t
.
t
o
S
t
r
i
n
g

(
n
+
7
5
)
)
,

M
.
n
e
w
t
e
m
p
(
)
)

1
6

f
u
n

m
a
k
e
R
e
g
s
’
’

(
s
,

n
)

=
i
f

(
0
=
n
)

1
7

t
h
e
n

[
m
a
k
e
R
e
g
’
’

(
s
,

0
)
]

1
8

e
l
s
e

(
m
a
k
e
R
e
g
’
’

(
s
,

n
)
)
:
:
m
a
k
e
R
e
g
s
’
’

(
s
,

n
-
1
)

1
9

2
0

v
a
l

a
r
g
r
e
g
s

=
r
e
v

(
m
a
k
e
R
e
g
s

(
"
r
"
,

6
)
)

2
1

v
a
l

c
a
l
l
e
e
s
a
v
e
r
e
g
s

=
r
e
v

(
m
a
k
e
R
e
g
s
’

(
"
r
"
,

1
0
)
)

2
2

v
a
l

c
a
l
l
e
r
s
a
v
e
r
e
g
s

=
r
e
v

(
m
a
k
e
R
e
g
s
’
’

(
"
r
"
,

4
)
)

2
3

2
4

v
a
l

w
o
r
d
S
i
z
e

=
1
6

2
5

e
n
d

2
6

2
7

s
t
r
u
c
t
u
r
e

P
P
U
F
r
a
m
e

=

2
8

s
t
r
u
c
t

2
9

s
t
r
u
c
t
u
r
e

M
=

T
e
m
p

3
0

3
1

f
u
n

m
a
k
e
R
e
g

(
s
,

n
)

=
(
I
n
t
.
t
o
S
t
r
i
n
g

(
n
+
4
)
,

M
.
n
e
w
t
e
m
p

(
)
)

3
2

f
u
n

m
a
k
e
R
e
g
s

(
s
,

n
)

=
i
f

(
0
=
n
)

3
3

t
h
e
n

[
m
a
k
e
R
e
g

(
s
,

0
)
]

3
4

e
l
s
e

(
m
a
k
e
R
e
g

(
s
,

n
)
)
:
:
m
a
k
e
R
e
g
s

(
s
,

n
-
1
)

3
5

3
6

f
u
n

m
a
k
e
R
e
g
’

(
s
,

n
)

=
(
I
n
t
.
t
o
S
t
r
i
n
g

(
n
+
1
4
)
,

M
.
n
e
w
t
e
m
p
(
)
)

3
7

f
u
n

m
a
k
e
R
e
g
s
’

(
s
,

n
)

=
i
f

(
0
=
n
)

3
8

t
h
e
n

[
m
a
k
e
R
e
g
’

(
s
,

0
)
]

3
9

e
l
s
e

(
m
a
k
e
R
e
g
’

(
s
,

n
)
)
:
:
m
a
k
e
R
e
g
s
’

(
s
,

n
-
1
)

4
0

4
1

f
u
n

m
a
k
e
R
e
g
’
’

(
s
,

n
)

=
(
I
n
t
.
t
o
S
t
r
i
n
g

(
n
+
1
1
)
,

M
.
n
e
w
t
e
m
p
(
)
)

4
2

f
u
n

m
a
k
e
R
e
g
s
’
’

(
s
,

n
)

=
i
f

(
0
=
n
)

4
3

t
h
e
n

[
m
a
k
e
R
e
g
’
’

(
s
,

0
)
]

4
4

e
l
s
e

(
m
a
k
e
R
e
g
’
’

(
s
,

n
)
)
:
:
m
a
k
e
R
e
g
s
’
’

(
s
,

n
-
1
)

4
5

4
6

v
a
l

a
r
g
r
e
g
s

=
r
e
v

(
m
a
k
e
R
e
g
s

(
"
r
"
,

6
)
)

(
*

r
4

-
r
1
0

a
r
e

u
s
e
d

f
o
r

a
r
g
u
m
e
n
t
s

*
)

4
7

v
a
l

c
a
l
l
e
e
s
a
v
e
r
e
g
s

=
r
e
v

(
m
a
k
e
R
e
g
s
’

(
"
r
"
,

1
7
)
)

(
*

r
1
4
-
r
3
2

a
r
e

n
o
n
-
v
a
l
i
t
i
l
e

*
)

4
8

v
a
l

c
a
l
l
e
r
s
a
v
e
r
e
g
s

=
r
e
v

(
m
a
k
e
R
e
g
s
’
’

(
"
r
"
,

1
)
)

(
*

r
1
1
-
r
1
2

a
r
e

v
o
l
a
t
i
l
e

*
)

4
9

5
0

v
a
l

w
o
r
d
S
i
z
e

=
8

5
1

e
n
d

5
2

5
3

s
t
r
u
c
t
u
r
e

C
B
F
r
a
m
e

:
F
R
A
M
E

=

5
4

s
t
r
u
c
t

5
5

s
t
r
u
c
t
u
r
e

E
=

E
r
r
o
r
M
s
g

122



5
6

s
t
r
u
c
t
u
r
e

A
=

A
s
s
e
m

5
7

s
t
r
u
c
t
u
r
e

M
=

T
e
m
p

5
8

s
t
r
u
c
t
u
r
e

M
B

=
M
.
T
a
b
l
e

5
9

s
t
r
u
c
t
u
r
e

R
=

T
r
e
e

6
0

s
t
r
u
c
t
u
r
e

S
=

S
y
m
b
o
l

6
1

s
t
r
u
c
t
u
r
e

U
=

U
n
p
a
r
s
e
A
b
s
y
n

6
2

6
3

t
y
p
e

r
e
g
i
s
t
e
r

=
s
t
r
i
n
g

6
4

v
a
l

m
a
i
n
L
a
b
e
l

=
M
.
n
a
m
e
d
l
a
b
e
l

"
t
i
g
e
r
m
a
i
n
"

6
5

6
6

f
u
n

r
e
g
N
a
m
e

(
s
,

_
)

=
s

6
7

f
u
n

r
e
g
T
e
m
p

(
_
,

t
)

=
t

6
8

6
9

v
a
l

S
P

=
M
.
n
e
w
t
e
m
p

(
)

7
0

f
u
n

S
P
r
e
g

f
t
a
g

=
(
c
a
s
e

f
t
a
g

o
f

A
b
s
y
n
.
S
P
U
_
F
u
n
c

=
>

"
$
s
p
"

|
A
b
s
y
n
.
P
P
U
_
F
u
n
c

=
>

"
1
"
,

S
P
)

7
1

7
2

v
a
l

L
R

=
M
.
n
e
w
t
e
m
p

(
)

7
3

f
u
n

L
R
r
e
g

f
t
a
g

=
(
c
a
s
e

f
t
a
g

o
f

A
b
s
y
n
.
S
P
U
_
F
u
n
c

=
>

"
$
l
r
"

|
A
b
s
y
n
.
P
P
U
_
F
u
n
c

=
>

"
0
"
,

L
R
)

7
4

7
5

v
a
l

R
V

=
M
.
n
e
w
t
e
m
p
(
)

7
6

f
u
n

R
V
r
e
g

f
t
a
g

=
(
c
a
s
e

f
t
a
g

o
f

A
b
s
y
n
.
S
P
U
_
F
u
n
c

=
>

"
$
3
"

|
A
b
s
y
n
.
P
P
U
_
F
u
n
c

=
>

"
3
"
,

R
V
)

7
7

7
8

f
u
n

s
p
e
c
i
a
l
r
e
g
s

f
t
a
g

=
[

L
R
r
e
g

f
t
a
g
,

S
P
r
e
g

f
t
a
g
,

R
V
r
e
g

f
t
a
g

]

7
9

f
u
n

a
r
g
r
e
g
s

f
t
a
g

=
[
(
R
V
r
e
g

f
t
a
g
)
]

@
(
c
a
s
e

f
t
a
g

o
f

A
b
s
y
n
.
S
P
U
_
F
u
n
c

=
>

S
P
U
F
r
a
m
e
.
a
r
g
r
e
g
s

|
A
b
s
y
n
.
P
P
U
_
F
u
n
c

=
>

P
P
U
F
r
a
m
e
.

a
r
g
r
e
g
s
)

8
0

f
u
n

c
a
l
l
e
e
s
a
v
e
r
e
g
s

f
t
a
g

=
c
a
s
e

f
t
a
g

o
f

A
b
s
y
n
.
S
P
U
_
F
u
n
c

=
>

S
P
U
F
r
a
m
e
.
c
a
l
l
e
e
s
a
v
e
r
e
g
s

|
A
b
s
y
n
.
P
P
U
_
F
u
n
c

=
>

P
P
U
F
r
a
m
e
.

c
a
l
l
e
e
s
a
v
e
r
e
g
s

8
1

f
u
n

c
a
l
l
e
r
s
a
v
e
r
e
g
s

f
t
a
g

=
c
a
s
e

f
t
a
g

o
f

A
b
s
y
n
.
S
P
U
_
F
u
n
c

=
>

S
P
U
F
r
a
m
e
.
c
a
l
l
e
r
s
a
v
e
r
e
g
s

|
A
b
s
y
n
.
P
P
U
_
F
u
n
c

=
>

P
P
U
F
r
a
m
e
.

c
a
l
l
e
r
s
a
v
e
r
e
g
s

8
2

f
u
n

r
e
g
s

f
t
a
g

=
(
(
c
a
l
l
e
e
s
a
v
e
r
e
g
s

f
t
a
g
)

@
(
c
a
l
l
e
r
s
a
v
e
r
e
g
s

f
t
a
g
)

@
(
a
r
g
r
e
g
s

f
t
a
g
)

@
(
s
p
e
c
i
a
l
r
e
g
s

f
t
a
g
)
)

8
3

8
4

(
*

b
o
t
h

p
p
u

a
n
d

s
p
u

u
s
e

8
r
e
g
i
s
t
e
r
s

3
-
1
0

f
o
r

a
r
g
u
m
e
n
t

p
a
s
s
i
n
g

*
)

8
5

f
u
n

a
r
g
s

f
t
a
g

=
m
a
p

r
e
g
T
e
m
p

(
a
r
g
r
e
g
s

f
t
a
g
)

8
6

f
u
n

c
a
l
l
e
e
s
a
v
e
s

f
t
a
g

=
m
a
p

r
e
g
T
e
m
p

(
c
a
s
e

f
t
a
g

o
f

A
b
s
y
n
.
S
P
U
_
F
u
n
c

=
>

S
P
U
F
r
a
m
e
.
c
a
l
l
e
e
s
a
v
e
r
e
g
s

8
7

|
A
b
s
y
n
.
P
P
U
_
F
u
n
c

=
>

P
P
U
F
r
a
m
e
.
c
a
l
l
e
e
s
a
v
e
r
e
g
s
)

8
8

f
u
n

c
a
l
l
e
r
s
a
v
e
s

f
t
a
g

=
m
a
p

r
e
g
T
e
m
p

(
c
a
s
e

f
t
a
g

o
f

A
b
s
y
n
.
S
P
U
_
F
u
n
c

=
>

S
P
U
F
r
a
m
e
.
c
a
l
l
e
r
s
a
v
e
r
e
g
s

8
9

|
A
b
s
y
n
.
P
P
U
_
F
u
n
c

=
>

P
P
U
F
r
a
m
e
.
c
a
l
l
e
r
s
a
v
e
r
e
g
s
)

9
0

f
u
n

r
e
g
i
s
t
e
r
s

f
t
a
g

=
m
a
p

r
e
g
N
a
m
e

(
r
e
g
s

f
t
a
g
)

9
1

f
u
n

c
a
l
l
d
e
f
s

f
t
a
g

=
[
L
R
,

R
V
]
@
(
c
a
l
l
e
r
s
a
v
e
s

f
t
a
g
)

9
2

9
3

f
u
n

t
e
m
p
M
a
p

{
n
a
m
e
,

f
n
a
m
e
,

f
o
r
m
a
l
s
,

s
i
z
e
,

m
o
v
e
s
,

s
a
v
e
s
,

f
t
a
g
}

=
f
o
l
d
r

(
f
n

(
(
s
,

m
)
,

t
)

=
>

M
B
.
e
n
t
e
r

(
t
,

m
,

s
)
)

9
4

M
B
.
e
m
p
t
y

9
5

(
r
e
g
s

f
t
a
g
)

123



9
6

9
7

f
u
n

t
e
m
p
N
a
m
e

f
r
a
m
e

t
=

c
a
s
e

(
M
B
.
l
o
o
k

(
t
e
m
p
M
a
p

f
r
a
m
e
,

t
)
)

9
8

o
f

N
O
N
E

=
>

M
.
m
a
k
e
s
t
r
i
n
g

t

9
9

|
S
O
M
E

s
=
>

s

1
0
0

1
0
1

d
a
t
a
t
y
p
e

a
c
c
e
s
s

=
I
n
F
r
a
m
e

o
f

i
n
t

1
0
2

|
I
n
R
e
g

o
f

M
.
t
e
m
p

1
0
3

1
0
4

t
y
p
e

f
r
a
m
e

=
{

n
a
m
e

:
M
.
l
a
b
e
l

1
0
5

,
f
n
a
m
e

:
s
t
r
i
n
g

1
0
6

,
f
o
r
m
a
l
s

:
a
c
c
e
s
s

l
i
s
t

1
0
7

,
s
i
z
e

:
i
n
t

r
e
f

1
0
8

,
m
o
v
e
s

:
R
.
s
t
m

(
*

m
o
v
e
s

t
o

g
e
t

I
n
R
e
g

a
r
g
s

i
n
t
o

t
h
e

a
r
g
u
m
e
n
t

t
e
m
p
o
r
a
r
i
e
s

$
a
0

-
-

$
a
3

*
)

1
0
9

,
s
a
v
e
s

:
R
.
e
x
p

l
i
s
t

(
*

p
r
e
-
a
l
l
o
c
a
t
e
d

m
e
m
o
r
y

l
o
c
a
t
i
o
n
s

f
o
r

s
a
v
i
n
g

c
a
l
l
e
r
-
s
a
v
e

r
e
g
i
s
t
e
r
s

*
)

1
1
0

,
f
t
a
g

:
A
b
s
y
n
.
f
t
a
g
}

1
1
1

1
1
2

f
u
n

f
o
r
m
a
l
s

{
n
a
m
e
,

f
n
a
m
e
,

f
o
r
m
a
l
s
,

s
i
z
e
,

m
o
v
e
s
,

s
a
v
e
s
,

f
t
a
g
}

=
f
o
r
m
a
l
s

1
1
3

1
1
4

f
u
n

f
n
a
m
e

{
n
a
m
e
,

f
n
a
m
e
,

f
o
r
m
a
l
s
,

s
i
z
e
,

m
o
v
e
s
,

s
a
v
e
s
,

f
t
a
g
}

=
f
n
a
m
e

1
1
5

1
1
6

f
u
n

n
a
m
e

{
n
a
m
e
,

f
n
a
m
e
,

f
o
r
m
a
l
s
,

s
i
z
e
,

m
o
v
e
s
,

s
a
v
e
s
,

f
t
a
g
}

=
n
a
m
e

1
1
7

1
1
8

f
u
n

s
i
z
e

{
n
a
m
e
,

f
n
a
m
e
,

f
o
r
m
a
l
s
,

s
i
z
e
,

m
o
v
e
s
,

s
a
v
e
s
,

f
t
a
g
}

=
!
s
i
z
e

1
1
9

1
2
0

f
u
n

m
o
v
e
s

{
n
a
m
e
,

f
n
a
m
e
,

f
o
r
m
a
l
s
,

s
i
z
e
,

m
o
v
e
s
,

s
a
v
e
s
,

f
t
a
g
}

=
m
o
v
e
s

1
2
1

1
2
2

f
u
n

f
t
a
g

{
n
a
m
e
,

f
n
a
m
e
,

f
o
r
m
a
l
s
,

s
i
z
e
,

m
o
v
e
s
,

s
a
v
e
s
,

f
t
a
g
}

=
f
t
a
g

1
2
3

1
2
4

f
u
n

w
o
r
d
S
i
z
e

f
t
a
g

=
c
a
s
e

f
t
a
g

o
f

A
b
s
y
n
.
S
P
U
_
F
u
n
c

=
>

S
P
U
F
r
a
m
e
.
w
o
r
d
S
i
z
e

1
2
5

|
A
b
s
y
n
.
P
P
U
_
F
u
n
c

=
>

P
P
U
F
r
a
m
e
.
w
o
r
d
S
i
z
e

1
2
6

1
2
7

f
u
n

p
o
s
t
i
n
c

r
v

=
l
e
t

v
a
l

n
=

!
r

1
2
8

i
n

(
r

:
=

n
+

v

1
2
9

;
n

1
3
0

)

1
3
1

e
n
d

1
3
2

1
3
3

f
u
n

a
l
l
o
c
L
o
c
a
l

{
n
a
m
e

1
3
4

,
f
n
a
m
e

1
3
5

,
f
o
r
m
a
l
s

1
3
6

,
s
i
z
e

1
3
7

,
m
o
v
e
s

1
3
8

,
s
a
v
e
s

124



1
3
9

,
f
t
a
g
}

t
r
u
e

=
I
n
F
r
a
m
e

(
p
o
s
t
i
n
c

s
i
z
e

(
c
a
s
e

f
t
a
g

o
f

A
b
s
y
n
.
S
P
U
_
F
u
n
c

=
>

S
P
U
F
r
a
m
e
.
w
o
r
d
S
i
z
e

1
4
0

|
A
b
s
y
n
.
P
P
U
_
F
u
n
c

=
>

P
P
U
F
r
a
m
e
.
w
o
r
d
S
i
z
e
)
)

1
4
1

|
a
l
l
o
c
L
o
c
a
l

_
f
a
l
s
e

=
I
n
R
e
g

(
M
.
n
e
w
t
e
m
p

(
)
)

1
4
2

1
4
3

f
u
n

e
x
t
e
r
n
a
l
C
a
l
l

(
s
,

a
r
g
s
)

=
R
.
C
A
L
L

(
R
.
N
A
M
E

(
T
e
m
p
.
n
a
m
e
d
l
a
b
e
l

(
"
_
"

^
s
)
)
,

a
r
g
s
)

1
4
4

1
4
5

f
u
n

e
x
p

(
I
n
F
r
a
m
e

k
)

s
p

=
R
.
M
E
M

(
R
.
B
I
N
O
P

(
R
.
P
L
U
S
,

s
p
,

(
R
.
C
O
N
S
T

k
)
)
)

1
4
6

|
e
x
p

(
I
n
R
e
g

r
)

_
=

R
.
T
E
M
P

r

1
4
7

1
4
8

f
u
n

s
t
a
t
i
c
L
i
n
k

{
n
a
m
e
,
f
n
a
m
e
,
f
o
r
m
a
l
s
=
[
]
,
s
i
z
e
,

m
o
v
e
s
,

s
a
v
e
s
,

f
t
a
g
}

=
E
.
i
m
p
o
s
s
i
b
l
e

"
N
O

S
T
A
T
I
C

L
I
N
K
"

1
4
9

|
s
t
a
t
i
c
L
i
n
k

{
n
a
m
e
,
f
n
a
m
e
,
f
o
r
m
a
l
s
=
(
s
l
:
:
r
e
a
l
F
o
r
m
a
l
s
)
,

s
i
z
e
,

m
o
v
e
s
,

s
a
v
e
s
,

f
t
a
g
}

=
s
l

1
5
0

1
5
1

f
u
n

n
e
w
F
r
a
m
e

{
n
a
m
e
,

f
n
a
m
e
,

f
o
r
m
a
l
s
,

t
a
g
}

=

1
5
2

l
e
t

f
u
n

p
l
a
c
e
F
o
r
m
a
l

(
_
,

(
o
f
f
s
e
t
,

[
]
,

f
o
r
m
a
l
s
,

s
t
m
)
)

=
(

T
e
x
t
I
O
.
o
u
t
p
u
t

(
T
e
x
t
I
O
.
s
t
d
E
r
r

1
5
3

,
"
o
u
t

o
f

r
e
g
i
s
t
e
r
s
:

o
f
f
s
e
t

"

^
I
n
t
.
t
o
S
t
r
i
n
g

o
f
f
s
e
t

^

"
\
n
"
)

1
5
4

;
(
(
c
a
s
e

t
a
g

o
f

A
b
s
y
n
.
S
P
U
_
F
u
n
c

=
>

o
f
f
s
e
t
+

S
P
U
F
r
a
m
e
.
w
o
r
d
S
i
z
e

1
5
5

|
A
b
s
y
n
.
P
P
U
_
F
u
n
c

=
>

o
f
f
s
e
t
+

P
P
U
F
r
a
m
e
.
w
o
r
d
S
i
z
e
)

1
5
6

,
[
]

1
5
7

,
(
I
n
F
r
a
m
e

o
f
f
s
e
t
)
:
:
f
o
r
m
a
l
s

1
5
8

,
s
t
m

1
5
9

)

1
6
0

)

1
6
1

|
p
l
a
c
e
F
o
r
m
a
l

(
t
r
u
e
,

(
o
f
f
s
e
t
,

r
s
,

f
o
r
m
a
l
s
,

s
t
m
)
)

=
(

T
e
x
t
I
O
.
o
u
t
p
u
t

(
T
e
x
t
I
O
.
s
t
d
E
r
r
,

"
i
n
-
f
r
a
m
e

a
t

"
^

I
n
t
.
t
o
S
t
r
i
n
g

o
f
f
s
e
t

^
"
\
n
"
)

1
6
2

;
(
(
c
a
s
e

t
a
g

o
f

A
b
s
y
n
.
S
P
U
_
F
u
n
c

=
>

o
f
f
s
e
t
+

S
P
U
F
r
a
m
e
.
w
o
r
d
S
i
z
e

1
6
3

|
A
b
s
y
n
.
P
P
U
_
F
u
n
c

=
>

o
f
f
s
e
t
+

P
P
U
F
r
a
m
e
.
w
o
r
d
S
i
z
e
)

1
6
4

,
r
s

1
6
5

,
(
I
n
F
r
a
m
e

o
f
f
s
e
t
)
:
:
f
o
r
m
a
l
s

1
6
6

,
s
t
m

1
6
7

)

1
6
8

)

1
6
9

|
p
l
a
c
e
F
o
r
m
a
l

(
f
a
l
s
e
,

(
o
f
f
s
e
t
,

(
(
_
,
r
)
:
:
r
s
)
,

f
o
r
m
a
l
s
,

s
t
m
)
)

=
(

T
e
x
t
I
O
.
o
u
t
p
u
t

(
T
e
x
t
I
O
.
s
t
d
E
r
r
,

"
i
n
-
r
e
g
i
s
t
e
r

"
^

I
n
t
.
t
o
S
t
r
i
n
g

(
l
e
n
g
t
h

r
s
)

^
"
\
n
"
)

1
7
0

;
l
e
t

v
a
l

t
m
p

=
M
.
n
e
w
t
e
m
p

(
)

1
7
1

i
n

(
o
f
f
s
e
t
,

r
s
,

(
I
n
R
e
g

t
m
p
)

:
:
f
o
r
m
a
l
s
,

(
R

.
M
O
V
E

(
R
.
T
E
M
P

t
m
p
,

R
.
T
E
M
P

r
)
)
:
:
s
t
m
)

1
7
2

e
n
d

125



1
7
3

)

1
7
4

i
n

l
e
t

v
a
l

(
s
a
v
e
s
,

_
,

f
o
r
m
a
l
s
,

s
t
m
)

=
f
o
l
d
l

p
l
a
c
e
F
o
r
m
a
l

1
7
5

(
c
a
s
e

t
a
g

o
f

A
b
s
y
n
.
S
P
U
_
F
u
n
c

=
>

3
2

1
7
6

|
A
b
s
y
n
.
P
P
U
_
F
u
n
c

=
>

1
2
8
,

a
r
g
r
e
g
s

t
a
g
,

[
]
,

[
]
)

1
7
7

f
o
r
m
a
l
s

1
7
8

i
n

l
e
t

v
a
l

(
l
o
c
a
l
s
,

s
a
v
e
E
x
p
s
)

=
i
f

n
a
m
e

=
m
a
i
n
L
a
b
e
l

1
7
9

t
h
e
n

(
s
a
v
e
s
,

[
]
)

1
8
0

e
l
s
e

f
o
l
d
r

(
f
n

(
_
,

(
s
a
v
e
s
,

e
x
p
s
)
)

=
>

(
(
c
a
s
e

t
a
g

o
f

A
b
s
y
n
.
S
P
U
_
F
u
n
c

=
>

s
a
v
e
s
+

S
P
U
F
r
a
m
e
.
w
o
r
d
S
i
z
e

1
8
1

|
A
b
s
y
n
.
P
P
U
_
F
u
n
c

=
>

s
a
v
e
s
+

P
P
U
F
r
a
m
e
.
w
o
r
d
S
i
z
e
)

1
8
2

,
(
e
x
p

(
I
n
F
r
a
m
e

s
a
v
e
s
)

(
R
.
T
E
M
P

S
P
)
)
:
:

e
x
p
s

1
8
3

)

1
8
4

)

1
8
5

(
s
a
v
e
s
,

[
]
)

1
8
6

(
c
a
l
l
e
r
s
a
v
e
s

t
a
g
)

1
8
7

i
n

{
n
a
m
e

=
n
a
m
e

1
8
8

,
f
n
a
m
e

=
f
n
a
m
e

1
8
9

,
f
o
r
m
a
l
s

=
r
e
v

f
o
r
m
a
l
s

1
9
0

,
s
i
z
e

=
r
e
f

l
o
c
a
l
s

1
9
1

,
m
o
v
e
s

=
R
.
s
e
q

s
t
m

1
9
2

,
s
a
v
e
s

=
s
a
v
e
E
x
p
s

1
9
3

,
f
t
a
g

=
t
a
g
}

1
9
4

e
n
d

1
9
5

e
n
d

1
9
6

e
n
d

1
9
7

1
9
8

f
u
n

f
o
r
m
a
l
S
t
r
i
n
g

(
I
n
F
r
a
m
e

n
)

=
(
I
n
t
.
t
o
S
t
r
i
n
g

n
)

^
"
(
s
p
)
"

1
9
9

|
f
o
r
m
a
l
S
t
r
i
n
g

(
I
n
R
e
g

t
)

=
M
.
m
a
k
e
s
t
r
i
n
g

t

2
0
0

2
0
1

f
u
n

f
r
a
m
e
S
t
a
t
s

{
n
a
m
e

2
0
2

,
f
n
a
m
e

2
0
3

,
f
o
r
m
a
l
s

2
0
4

,
s
i
z
e

2
0
5

,
m
o
v
e
s

2
0
6

,
s
a
v
e
s

2
0
7

,
f
t
a
g
}

=
"
#
F
R
A
M
E

"
^

(
c
a
s
e

f
t
a
g

o
f

A
b
s
y
n
.
P
P
U
_
F
u
n
c

=
>

"
<
p
p
u
>

"

2
0
8

|
A
b
s
y
n
.
S
P
U
_
F
u
n
c

=
>

"
<
s
p
u
>

"
)

^
S
.
n
a
m
e

n
a
m
e

^
"

\
"
"

^
f
n
a
m
e

^
"
\
"

"

2
0
9

^
"
(
"

^
U
.
c
o
m
m
a
S
e
p

(
m
a
p

f
o
r
m
a
l
S
t
r
i
n
g

f
o
r
m
a
l
s
)

2
1
0

^
"
)

o
f

s
i
z
e

"
^

I
n
t
.
t
o
S
t
r
i
n
g

(
!
s
i
z
e
)

^
"
\
n
"

2
1
1

126



2
1
2

(
*

g
e
n
e
r
a
t
e

t
h
e

c
a
l
l
e
e
-
s
a
v
e
s

m
o
v
e

i
n
s
t
r
u
c
t
i
o
n
s

*
)

2
1
3

f
u
n

p
r
o
c
E
n
t
r
y
E
x
i
t
1

(
f
r
a
m
e

a
s

{
n
a
m
e

2
1
4

,
f
n
a
m
e

2
1
5

,
f
o
r
m
a
l
s

2
1
6

,
s
i
z
e

2
1
7

,
m
o
v
e
s

2
1
8

,
s
a
v
e
s

2
1
9

,
f
t
a
g
}

2
2
0

,
b
o
d
y
)

=
i
f

n
a
m
e

=
m
a
i
n
L
a
b
e
l

2
2
1

t
h
e
n

b
o
d
y

2
2
2

e
l
s
e

f
o
l
d
r

(
f
n

(
r
,

s
t
m
)

=
>

l
e
t

v
a
l

p
l
a
c
e

=
e
x
p

(
a
l
l
o
c
L
o
c
a
l

f
r
a
m
e

t
r
u
e
)

(
R
.

T
E
M
P

S
P
)

2
2
3

v
a
l

r
t
e
m
p

=
R
.
T
E
M
P

r

2
2
4

i
n

R
.
s
e
q

[
R
.
M
O
V
E

(
p
l
a
c
e
,

r
t
e
m
p
)
,

2
2
5

s
t
m
,

2
2
6

R
.
M
O
V
E

(
r
t
e
m
p
,

p
l
a
c
e
)

]

2
2
7

e
n
d
)

2
2
8

(
R
.
S
E
Q

(
m
o
v
e
s
,

b
o
d
y
)
)

2
2
9

(
c
a
l
l
e
e
s
a
v
e
s

f
t
a
g
)

2
3
0

2
3
1

f
u
n

p
r
o
c
E
n
t
r
y
E
x
i
t
2

(
{

n
a
m
e

2
3
2

,
f
n
a
m
e

2
3
3

,
f
o
r
m
a
l
s

2
3
4

,
s
i
z
e

2
3
5

,
m
o
v
e
s

2
3
6

,
s
a
v
e
s

2
3
7

,
f
t
a
g
}

2
3
8

,
b
o
d
y
)

=
i
f

n
a
m
e

=
m
a
i
n
L
a
b
e
l

2
3
9

t
h
e
n

b
o
d
y

2
4
0

e
l
s
e

(
A
.
O
P
E
R

{
a
s
s
e
m

=
"
#

S
T
A
R
T
\
n
"
,

2
4
1

s
r
c
=
[
]
,

2
4
2

d
s
t
=
[
L
R
,

S
P
]
@
c
a
l
l
e
e
s
a
v
e
s

f
t
a
g
@
a
r
g
s

f
t
a
g
,

2
4
3

j
u
m
p
=
N
O
N
E

}
)

2
4
4

:
:

b
o
d
y

2
4
5

@
[
A
.
O
P
E
R

{
a
s
s
e
m

=
"
#

E
N
D
\
n
"
,

2
4
6

s
r
c
=
[
L
R
,

S
P
,

R
V
]
@
c
a
l
l
e
e
s
a
v
e
s

f
t
a
g
,

2
4
7

d
s
t
=
[
]
,

2
4
8

j
u
m
p
=
S
O
M
E
[
]

}
]

2
4
9

2
5
0

f
u
n

s
p
u
P
r
o
c
P
r
o
l
o
g

(
n
a
m
e
,

f
n
a
m
e
,

s
t
a
t
,

s
i
z
e
)

=
"
#
S
P
U
_
B
E
G
I
N
\
n
.
t
e
x
t
\
n
.
g
l
o
b
l

"
^

n
a
m
e

^
"
\
n
"

^

2
5
1

"
#
P
R
O
C
E
D
U
R
E
\
n
"

^
n
a
m
e

^
"
:
\
n
"

^
"
#
#
#
#
#
#
#
#
"
^
"

\
"
"

^
f
n
a
m
e

^
"
\
"

"
^

"

:
\
n
"

^

2
5
2

s
t
a
t

^
"
s
t
q
d

$
l
r
,

1
6
(
$
s
p
)
\
n
"

^

127



2
5
3

"
s
t
q
d

$
s
p
,

-
"

^
I
n
t
.
t
o
S
t
r
i
n
g

(
!
s
i
z
e
)

^
"
(
$
s
p
)
\
n
"

^

2
5
4

"
a
i

$
s
p
,

$
s
p
,

-
"

^
I
n
t
.
t
o
S
t
r
i
n
g

(
!
s
i
z
e
)

^
"
\
n
"

2
5
5

f
u
n

s
p
u
P
r
o
c
E
p
i
l
o
g

(
n
a
m
e
,

s
i
z
e
)

=
"
a
i

$
s
p
,

$
s
p
,

"
^

I
n
t
.
t
o
S
t
r
i
n
g
(
!
s
i
z
e
)

^
"
\
n
"

^

2
5
6

"
l
q
d

$
s
p
,

-
"

^
I
n
t
.
t
o
S
t
r
i
n
g
(
!
s
i
z
e
)

^
"
(
$
s
p
)
\
n
"

^

2
5
7

"
l
q
d

$
l
r
,

1
6
(
$
s
p
)
\
n
"

^

2
5
8

"
b
i

$
l
r
\
n
"

^

2
5
9

"
#
S
P
U
_
E
N
D

"
^

n
a
m
e

^
"
\
n
\
n
"

2
6
0

2
6
1

f
u
n

p
p
u
P
r
o
c
P
r
o
l
o
g

(
n
a
m
e
,

f
n
a
m
e
,

s
t
a
t
,

s
i
z
e
)

=
"
.
a
l
i
g
n

2
\
n
.
g
l
o
b
l

"
^

f
n
a
m
e

^
"
\
n
.
s
e
c
t
i
o
n

\
"
.
o
p
d
\
"
,
\
"
a
w
\
"
\
n
.
a
l
i
g
n

3
\
n
"

^
f
n
a
m
e

^
"
:
\
n
"

^

2
6
2

"
.
q
u
a
d

"
^

n
a
m
e

^
"
,
.
T
O
C
.
@
t
o
c
b
a
s
e
,
0
\
n
.
p
r
e
v
i
o
u
s
\
n
.
t
y
p
e

"
^

f
n
a
m
e

^
"
,

@
f
u
n
c
t
i
o
n
\
n
"

^

2
6
3

"
#
P
R
O
C
E
D
U
R
E
\
n
"

^
n
a
m
e

^
"
:
\
n
"

^
"
#
#
#
#
#
#
#
#
"
^
"

\
"
"

^
n
a
m
e

^
"
\
"

"
^

"
:
\

n
"

^

2
6
4

s
t
a
t

^
"
s
t
d
u

1
,

-
"

^
I
n
t
.
t
o
S
t
r
i
n
g
(
!
s
i
z
e
)

^
"
(
1
)
\
n
"

^

2
6
5

"
m
f
l
r

0
\
n
s
t
d

3
1
,

"
^

I
n
t
.
t
o
S
t
r
i
n
g
(
!
s
i
z
e

-
8
)

^
"
(
1
)
\
n
"

^

2
6
6

"
s
t
d

0
,

"
^

I
n
t
.
t
o
S
t
r
i
n
g
(
!
s
i
z
e

+
1
6
)

^
"
(
1
)
\
n
"

2
6
7

f
u
n

p
p
u
P
r
o
c
E
p
i
l
o
g

(
n
a
m
e
,

f
n
a
m
e
,

s
i
z
e
)

=
"
l
d

1
,
0
(
1
)
\
n
"

^

2
6
8

"
l
d

0
,
1
6
(
1
)
\
n
"

^

2
6
9

"
m
t
l
r

0
\
n
"

^

2
7
0

"
b
l
r
\
n
"

^

2
7
1

"
.
l
o
n
g

0
\
n
.
b
y
t
e

0
,
0
,
0
,
0
,
1
2
8
,
1
,
0
,
1
\
n
.
s
i
z
e

"
^

f
n
a
m
e

^
"
,
.
-
"

^
n
a
m
e

^
"
\
n
"

2
7
2

f
u
n

p
r
o
c
E
n
t
r
y
E
x
i
t
3

(
f
r
a
m
e

a
s

{
n
a
m
e

2
7
3

,
f
n
a
m
e

2
7
4

,
f
o
r
m
a
l
s

2
7
5

,
s
i
z
e

2
7
6

,
m
o
v
e
s

2
7
7

,
s
a
v
e
s

2
7
8

,
f
t
a
g
}

2
7
9

,
b
o
d
y
)

=
i
f

n
a
m
e

=
m
a
i
n
L
a
b
e
l

2
8
0

t
h
e
n

2
8
1

{

2
8
2

p
r
o
l
o
g

=
"
.
s
e
c
t
i
o
n

\
"
.
t
o
c
\
"
,
\
"
a
w
\
"
\
n
.
s
e
c
t
i
o
n

\
"
.
t
e
x
t
\
"
\
n
.
a
l
i
g
n

2
\
n
.
g
l
o
b
l

m
a
i
n
\
n
"

2
8
3

^
"
.
s
e
c
t
i
o
n

\
"
.
o
p
d
\
"
,
\
"
a
w
\
"
\
n
.
a
l
i
g
n

3
\
n
m
a
i
n
:
\
n
"

2
8
4

^
"
.
q
u
a
d

"
^

S
.
n
a
m
e

n
a
m
e

^
"
,
.
T
O
C
.
@
t
o
c
b
a
s
e
,
0
\
n
.
p
r
e
v
i
o
u
s
\
n
.
t
y
p
e

m
a
i
n
,
@
f
u
n
c
t
i
o
n
\
n
"

2
8
5

^
"
#
P
R
O
C
E
D
U
R
E
\
n
"

^
S
.
n
a
m
e

n
a
m
e

^
"
:
\
n
"
^

"
#
#
#
#
#
#
#
#
"
^
"

\
"
"

^
f
n
a
m
e

^

"
\
"

"
^

"
:
\
n
"

2
8
6

^
f
r
a
m
e
S
t
a
t
s

f
r
a
m
e

2
8
7

^
"
s
t
d
u

1
,

-
"
^

I
n
t
.
t
o
S
t
r
i
n
g
(
!
s
i
z
e
)

^
"
(
1
)
\
n
"

2
8
8

^
"
m
f
l
r

0
\
n
"

2
8
9

^
"
s
t
d

0
,

"
^

I
n
t
.
t
o
S
t
r
i
n
g

(
!
s
i
z
e

+
1
6
)
^
"
(
1
)
\
n
"

128



2
9
0

^
"
b
l

s
p
u
_
i
n
i
t
\
n
"

2
9
1

2
9
2

,
b
o
d
y

=
b
o
d
y

2
9
3

,
e
p
i
l
o
g

=
"
b
l

s
p
u
_
e
x
i
t
\
n
"

2
9
4

^
"
l
d

1
,
0
(
1
)
\
n
"

2
9
5

^
"
l
d

0
,
1
6
(
1
)
\
n
"

2
9
6

^
"
m
t
l
r

0
\
n
"

2
9
7

^
"
b
l
r
\
n
"

2
9
8

^
"
#
E
N
D

"
^

S
.
n
a
m
e

n
a
m
e

^
"
\
n
.
l
o
n
g

0
\
n
.
b
y
t
e

0
,
0
,
0
,
0
,
1
2
8
,
1
,
0
,
1
\

n
.
s
i
z
e

m
a
i
n
,

.
-
"

2
9
9

^
S
.
n
a
m
e

n
a
m
e

^
"
\
n
"

}

3
0
0

3
0
1

e
l
s
e
{

p
r
o
l
o
g

=
c
a
s
e

f
t
a
g

o
f

A
b
s
y
n
.
P
P
U
_
F
u
n
c

=
>

p
p
u
P
r
o
c
P
r
o
l
o
g
(
S
.
n
a
m
e

n
a
m
e
,

f
n
a
m
e
,

f
r
a
m
e
S
t
a
t
s

f
r
a
m
e
,

s
i
z
e
)

3
0
2

|
A
b
s
y
n
.
S
P
U
_
F
u
n
c

=
>

s
p
u
P
r
o
c
P
r
o
l
o
g
(
S
.
n
a
m
e

n
a
m
e
,

f
n
a
m
e
,

f
r
a
m
e
S
t
a
t
s

f
r
a
m
e
,

s
i
z
e
)

3
0
3

,
b
o
d
y
=
b
o
d
y

3
0
4

,
e
p
i
l
o
g

=
c
a
s
e

f
t
a
g

o
f

A
b
s
y
n
.
P
P
U
_
F
u
n
c

=
>

p
p
u
P
r
o
c
E
p
i
l
o
g
(
S
.
n
a
m
e

n
a
m
e
,

f
n
a
m
e
,

s
i
z
e
)

3
0
5

|
A
b
s
y
n
.
S
P
U
_
F
u
n
c

=
>

s
p
u
P
r
o
c
E
p
i
l
o
g
(
S
.
n
a
m
e

n
a
m
e
,

s
i
z
e

)
}

3
0
6

f
u
n

s
t
r
i
n
g

(
l
,

s
)

=
"
.
d
a
t
a
\
n
"

3
0
7

^
"
.
a
l
i
g
n

4
\
n
"

3
0
8

^
(
S
.
n
a
m
e

l
)

^
"
:

.
s
t
r
i
n
g

"
^

"
\
"
"

^
(
S
t
r
i
n
g
.
t
o
C
S
t
r
i
n
g

s
)

^
"
\
"
"

^
"
\
n
"

3
0
9

3
1
0

d
a
t
a
t
y
p
e

f
r
a
g

=
P
R
O
C

o
f

{
b
o
d
y

:
T
r
e
e
.
s
t
m
,

f
r
a
m
e

:
f
r
a
m
e

}

3
1
1

|
S
T
R
I
N
G

o
f

M
.
l
a
b
e
l

*
s
t
r
i
n
g

3
1
2

3
1
3

f
u
n

s
h
o
w
R
e
g
s

f
r
a
m
e

s
t
r
e
a
m

=
(
a
p
p

(
f
n

r
e
g
s

=
>

T
e
x
t
I
O
.
o
u
t
p
u
t

(
s
t
r
e
a
m
,

"
#
R
E
G
S
:

"

3
1
4

^
U
.
c
o
m
m
a
S
e
p

(
m
a
p

(
f
n

(
r
,

t
)

=
>

(
r

3
1
5

^
"
=
=
"

3
1
6

^
(
M
.
m
a
k
e
s
t
r
i
n
g

t
)
)
)

r
e
g
s

)

3
1
7

^
"
\
n
"

3
1
8

)

3
1
9

)

3
2
0

[
s
p
e
c
i
a
l
r
e
g
s

(
f
t
a
g

f
r
a
m
e
)

3
2
1

,
a
r
g
r
e
g
s

(
f
t
a
g

f
r
a
m
e
)

3
2
2

,
c
a
l
l
e
e
s
a
v
e
r
e
g
s

(
f
t
a
g

f
r
a
m
e
)

3
2
3

,
c
a
l
l
e
r
s
a
v
e
r
e
g
s

(
f
t
a
g

f
r
a
m
e
)

3
2
4

]

3
2
5

)

3
2
6

129



3
2
7

f
u
n

s
h
o
w
F
r
a
m
e

s
t
r
e
a
m

f
r
a
m
e

=
T
e
x
t
I
O
.
o
u
t
p
u
t

(
s
t
r
e
a
m
,

f
r
a
m
e
S
t
a
t
s

f
r
a
m
e
)

3
2
8

3
2
9

e
n
d

B
.2

C
e
ll

B
.E

.
C

o
d

e
G

e
n

e
ra

to
r

T
h
is

is
th

e
co

d
e

ge
n
er

at
io

n
m

o
d
u
le

w
h
ic

h
tr

an
sl

at
es

th
e

IR
in

to
as

se
m

b
ly

co
d
e.

L
is

ti
n
g

B
.2

:
co

d
eg

en
.s

m
l

1
s
i
g
n
a
t
u
r
e

C
O
D
E
G
E
N

=

2
s
i
g

3
s
t
r
u
c
t
u
r
e

F
r
a
m
e

:
F
R
A
M
E

4
v
a
l

c
o
d
e
g
e
n

:
F
r
a
m
e
.
f
r
a
m
e

-
>

T
r
e
e
.
s
t
m

-
>
A
s
s
e
m
.
i
n
s
t
r

l
i
s
t

5
e
n
d

6 7
s
t
r
u
c
t
u
r
e

C
o
d
e
G
e
n

:
C
O
D
E
G
E
N

=

8
s
t
r
u
c
t

9
s
t
r
u
c
t
u
r
e

F
r
a
m
e

=
C
B
F
r
a
m
e

1
0

f
u
n

c
o
d
e
g
e
n

(
f
r
a
m
e

a
s

{
n
a
m
e
,

f
n
a
m
e
,

f
o
r
m
a
l
s
,

s
i
z
e
,

m
o
v
e
s
,

s
a
v
e
s
,

f
t
a
g
}
)

s
t
m

=

1
1

c
a
s
e

f
t
a
g

o
f

A
b
s
y
n
.
P
P
U
_
F
u
n
c

=
>

p
p
u
G
e
n
.
c
o
d
e
g
e
n

f
r
a
m
e

s
t
m

1
2

|
A
b
s
y
n
.
S
P
U
_
F
u
n
c

=
>

s
p
u
G
e
n
.
c
o
d
e
g
e
n

f
r
a
m
e

s
t
m

1
3

e
n
d

130



B
.2

.1
P

P
U

C
o
d

e
G

e
n

e
ra

to
r

L
is

ti
n
g

B
.3

:
p
p
u
G

en
.s

m
l

1
s
t
r
u
c
t
u
r
e

p
p
u
G
e
n

=

2
s
t
r
u
c
t

3 4
s
t
r
u
c
t
u
r
e

F
r
a
m
e

=
C
B
F
r
a
m
e

5 6
s
t
r
u
c
t
u
r
e

R
=

T
r
e
e

7
s
t
r
u
c
t
u
r
e

A
=

A
s
s
e
m

8
s
t
r
u
c
t
u
r
e

E
=

E
r
r
o
r
M
s
g

9
s
t
r
u
c
t
u
r
e

F
=

C
B
F
r
a
m
e

1
0

s
t
r
u
c
t
u
r
e

S
=

S
y
m
b
o
l

1
1

1
2

f
u
n

c
o
d
e
g
e
n

(
f
r
a
m
e

a
s

{
n
a
m
e
,

f
n
a
m
e
,

f
o
r
m
a
l
s
,

s
i
z
e
,

m
o
v
e
s
,

s
a
v
e
s
,

f
t
a
g
}
)

s
t
m

=

1
3

1
4

l
e
t

v
a
l

i
l
i
s
t

=
r
e
f

[
]

1
5

f
u
n

i
n
t

z
=

i
f

(
z
<
0
)

1
6

t
h
e
n

"
-
"

^
(
I
n
t
.
t
o
S
t
r
i
n
g

(
0

-
z
)
)

1
7

e
l
s
e

I
n
t
.
t
o
S
t
r
i
n
g

z

1
8

f
u
n

e
m
i
t

x
=

i
l
i
s
t

:
=

x
:
:

!
i
l
i
s
t

1
9

f
u
n

r
e
s
u
l
t

g
e
n

=
l
e
t

v
a
l

t
=

T
e
m
p
.
n
e
w
t
e
m
p
(
)

2
0

i
n

(
g
e
n

t

2
1

;
t
)

2
2

e
n
d

2
3

v
a
l

c
a
l
l
d
e
f
s

=
F
.
c
a
l
l
d
e
f
s

A
b
s
y
n
.
P
P
U
_
F
u
n
c

2
4

2
5

f
u
n

m
u
n
c
h
S
t
m
(
R
.
S
E
Q
(
s
1
,
s
2
)
)

=
(
m
u
n
c
h
S
t
m

s
1
;

m
u
n
c
h
S
t
m

s
2
)

2
6

|
m
u
n
c
h
S
t
m
(
R
.
L
A
B
E
L

l
)

=
e
m
i
t
(
A
.
L
A
B
E
L
{
a
s
s
e
m
=
S
.
n
a
m
e

l
^

"
:
\
n
"
,

l
a
b
=
l
}
)

2
7

|
m
u
n
c
h
S
t
m
(
R
.
J
U
M
P
(
e
,

l
s
)
)

=
e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
m
t
c
t
r

‘
s
0
\
n
b
c
t
r
\
n
"
,

2
8

s
r
c
=
[
m
u
n
c
h
E
x
p

e
]
,

2
9

d
s
t
=
[
]
,

3
0

j
u
m
p
=
S
O
M
E

l
s
}
)

3
1

|
m
u
n
c
h
S
t
m
(
R
.
C
J
U
M
P
(
R
.
N
E
,

e
1
,

R
.
C
O
N
S
T

0
,

t
,

f
)
)

=
e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
c
m
p
w
i

c
r
7
,
‘
s
0
,
0
\
n
b
n
e

c
r
7
,
"
^
S
.
n
a
m
e

t
^
"
\
n
"
,

3
2

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
]
,

3
3

d
s
t
=
[
]
,

3
4

j
u
m
p
=
S
O
M
E

[
t
,
f
]
}
)

3
5

|
m
u
n
c
h
S
t
m
(
R
.
C
J
U
M
P
(
R
.
N
E
,

e
1
,

R
.
C
O
N
S
T

i
,

t
,

f
)
)

=
e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
c
m
p
w
i

c
r
7
,

‘
s
0
,

"
^
i
n
t

i
^
"
\
n
b
n
e

c
r
7
,
"
^
S
.

n
a
m
e

t
^
"
\
n
"
,

131



3
6

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
]
,

3
7

d
s
t
=
[
]
,

3
8

j
u
m
p
=
S
O
M
E

[
t
,
f
]
}
)

3
9

|
m
u
n
c
h
S
t
m
(
R
.
C
J
U
M
P
(
R
.
N
E
,

e
1
,

e
2
,

t
,

f
)
)

=
e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
c
m
p
w

c
r
7
,

‘
s
0
,

‘
s
1
\
n
b
n
e

c
r
7
,
"
^
S
.
n
a
m
e

t
^
"
\
n
"
,

4
0

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
,

m
u
n
c
h
E
x
p

e
2
]
,

4
1

d
s
t
=
[
]
,

4
2

j
u
m
p
=
S
O
M
E

[
t
,
f
]
}
)

4
3

4
4

|
m
u
n
c
h
S
t
m
(
R
.
C
J
U
M
P
(
R
.
E
Q
,

e
1
,

R
.
C
O
N
S
T

0
,

t
,

f
)
)

=
e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
c
m
p
w
i

c
r
7
,
‘
s
0
,
0
\
n
b
e
q

c
r
7
,
"
^
S
.
n
a
m
e

t
^
"
\
n
"
,

4
5

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
]
,

4
6

d
s
t
=
[
]
,

4
7

j
u
m
p
=
S
O
M
E

[
t
,

f
]
}
)

4
8

|
m
u
n
c
h
S
t
m
(
R
.
C
J
U
M
P
(
R
.
E
Q
,

e
1
,

R
.
C
O
N
S
T

i
,

t
,

f
)
)

=
e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
c
m
p
w
i

c
r
7
,

‘
s
0
,

"
^
i
n
t

i
^
"
\
n
b
e
q

c
r
7
,
"
^
S
.

n
a
m
e

t
^
"
\
n
"
,

4
9

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
]
,

5
0

d
s
t
=
[
]
,

5
1

j
u
m
p
=
S
O
M
E

[
t
,
f
]
}
)

5
2

|
m
u
n
c
h
S
t
m
(
R
.
C
J
U
M
P
(
R
.
E
Q
,

e
1
,

e
2
,

t
,

f
)
)

=
e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
c
m
p
w

c
r
7
,

‘
s
0
,

‘
s
1
\
n
b
e
q

c
r
7
,
"
^
S
.
n
a
m
e

t
^
"
\
n
"
,

5
3

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
,

m
u
n
c
h
E
x
p

e
2
]
,

5
4

d
s
t
=
[
]
,

5
5

j
u
m
p
=
S
O
M
E

[
t
,
f
]
}
)

5
6

5
7

|
m
u
n
c
h
S
t
m
(
R
.
C
J
U
M
P
(
R
.
G
T
,

e
1
,

R
.
C
O
N
S
T

i
,

t
,

f
)
)

=
e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
c
m
p
w
i

c
r
7
,

‘
s
0
,

"
^
i
n
t

i
^

"
\
n
b
g
t

c
r
7
,
"
^
S
.

n
a
m
e

t
^
"
\
n
"
,

5
8

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
]
,

5
9

d
s
t
=
[
]
,

6
0

j
u
m
p
=
S
O
M
E

[
t
,
f
]
}
)

6
1

|
m
u
n
c
h
S
t
m
(
R
.
C
J
U
M
P
(
R
.
G
T
,

e
1
,

e
2
,

t
,

f
)
)

=
e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
c
m
p
w

c
r
7
,
‘
s
0
,
‘
s
1
\
n
b
g
t

c
r
7
,
"
^
S
.
n
a
m
e

t
^
"
\
n
"
,

6
2

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
,

m
u
n
c
h
E
x
p

e
2
]
,

6
3

d
s
t
=
[
]
,

6
4

j
u
m
p
=
S
O
M
E

[
t
,
f
]
}
)

6
5

|
m
u
n
c
h
S
t
m
(
R
.
C
J
U
M
P
(
R
.
L
T
,

e
1
,

e
2
,

t
,

f
)
)

=
e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
c
m
p
w

c
r
7
,
‘
s
0
,
‘
s
1
\
n
b
l
t

c
r
7
,
"
^
S
.
n
a
m
e

t
^
"
\
n
"
,

6
6

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
,

m
u
n
c
h
E
x
p

e
2
]
,

6
7

d
s
t
=
[
]
,

6
8

j
u
m
p
=
S
O
M
E

[
t
,
f
]
}
)

6
9

|
m
u
n
c
h
S
t
m
(
R
.
C
J
U
M
P
(
R
.
L
E
,

e
1
,

e
2
,

t
,

f
)
)

=
e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
c
m
p
w

c
r
7
,
‘
s
0
,
‘
s
1
\
n
b
l
e

c
r
7
,
"
^
S
.
n
a
m
e

t
^
"
\
n
"
,

7
0

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
,

m
u
n
c
h
E
x
p

e
2
]
,

7
1

d
s
t
=
[
]
,

7
2

j
u
m
p
=
S
O
M
E

[
t
,
f
]
}
)

7
3

|
m
u
n
c
h
S
t
m
(
R
.
M
O
V
E
(
R
.
M
E
M
(
R
.
O
F
F
S
E
T
(
i
,
s
)
)
,
e
)
)

=
e
m
i
t
(
A
.
A
R
G
{

a
s
s
e
m

=
"
s
t
d

‘
a
,

-
"

^
"
‘
o
(
1
)
\
n
"
,

7
4

a
r
g

=
m
u
n
c
h
E
x
p

e
,

7
5

o
f
f

=
i
,

7
6

f
s
i
z
e

=
s
}
)

132



7
7

|
m
u
n
c
h
S
t
m
(
R
.
M
O
V
E
(
R
.
M
E
M
(
R
.
B
I
N
O
P
(
R
.
P
L
U
S
,

e
1
,

R
.
C
O
N
S
T

i
)
)
,

e
2
)
)

=
e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
s
t
d

‘
s
1
,

"
^

i
n
t

i
^
"
(
‘
s
0
)
\

n
"
,

7
8

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
,

m
u
n
c
h
E
x
p

e
2
]
,

7
9

d
s
t
=
[
]
,

8
0

j
u
m
p
=
N
O
N
E
}
)

8
1

|
m
u
n
c
h
S
t
m
(
R
.
M
O
V
E
(
R
.
M
E
M
(
R
.
B
I
N
O
P
(
R
.
P
L
U
S
,

R
.
C
O
N
S
T

i
,

e
1
)
)
,

e
2
)
)

=
e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
s
t
d

‘
s
1
,

"
^

i
n
t

i
^
"
(
‘
s
0
)
\
n

"
,

8
2

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
,

m
u
n
c
h
E
x
p

e
2
]
,

8
3

d
s
t
=
[
]
,

8
4

j
u
m
p
=
N
O
N
E
}
)

8
5

|
m
u
n
c
h
S
t
m
(
R
.
M
O
V
E
(
R
.
M
E
M
(
R
.
B
I
N
O
P
(
R
.
P
L
U
S
,

e
1
,

e
2
)
)
,

e
3
)
)

=
e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
s
t
d
x

‘
s
2
,

‘
s
0
,

‘
s
1
\
n
"
,

8
6

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
,

m
u
n
c
h
E
x
p

e
2
,

m
u
n
c
h
E
x
p

e
3
]
,

8
7

d
s
t
=
[
]
,

8
8

j
u
m
p
=
N
O
N
E
}
)

8
9

|
m
u
n
c
h
S
t
m
(
R
.
M
O
V
E
(
R
.
M
E
M
(
R
.
C
O
N
S
T

i
)
,

e
2
)
)

=
l
e
t

v
a
l

r
=

r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
l
i

‘
d
0
,

"
^
i
n
t

i
^
"
\
n
"
,

9
0

s
r
c
=
[
]
,

9
1

d
s
t
=
[
r
]
,

9
2

j
u
m
p
=
N
O
N
E
}
)
)

9
3

i
n

9
4

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
s
t
d

‘
s
0
,

0
(
‘
d
0
)
\
n
"
,

9
5

s
r
c
=
[
m
u
n
c
h
E
x
p

e
2
]
,

9
6

d
s
t
=
[
r
]
,

9
7

j
u
m
p
=
N
O
N
E
}
)

9
8

e
n
d

9
9

|
m
u
n
c
h
S
t
m
(
R
.
M
O
V
E
(
R
.
M
E
M

(
e
1
)
,

e
2
)
)

=
e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
s
t
d

‘
s
1
,

0
(
‘
s
0
)
\
n
"
,

1
0
0

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
,

m
u
n
c
h
E
x
p

e
2
]
,

1
0
1

d
s
t
=
[
]
,

1
0
2

j
u
m
p
=
N
O
N
E
}
)

1
0
3

|
m
u
n
c
h
S
t
m
(
R
.
M
O
V
E
(
R
.
T
E
M
P

t
,

R
.
M
E
M
(
R
.
B
I
N
O
P
(
R
.
P
L
U
S
,

R
.
C
O
N
S
T

i
,

e
2
)
)
)
)

=
e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
l
d

‘
d
0
,

"
^

i
n
t

i
^
"
(
‘

s
0
)

\
n
"
,

1
0
4

s
r
c
=
[
m
u
n
c
h
E
x
p

e
2
]
,

1
0
5

d
s
t
=
[
t
]
,

1
0
6

j
u
m
p
=
N
O
N
E
}
)

1
0
7

|
m
u
n
c
h
S
t
m
(
R
.
M
O
V
E
(
R
.
T
E
M
P

t
,

R
.
M
E
M
(
R
.
B
I
N
O
P
(
R
.
P
L
U
S
,

e
2
,

R
.
C
O
N
S
T

i
)
)
)
)

=
e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m

=
"
l
d

‘
d
0
,

"
^

i
n
t

i
^
"

(
‘
s
0
)

\
n
"
,

1
0
8

s
r
c
=
[
m
u
n
c
h
E
x
p

e
2
]
,

1
0
9

d
s
t
=
[
t
]
,

1
1
0

j
u
m
p
=
N
O
N
E
}
)

1
1
1

|
m
u
n
c
h
S
t
m
(
R
.
M
O
V
E
(
R
.
T
E
M
P

t
,

R
.
M
E
M
(
R
.
C
O
N
S
T

i
)
)
)

=
l
e
t

v
a
l

r
=

r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
l
i

‘
d
0
,

"
^
i
n
t

i

^
"
\
n
"
,

1
1
2

s
r
c
=
[
]
,

1
1
3

d
s
t
=
[
r
]
,

133



1
1
4

j
u
m
p
=
N
O
N
E
}
)
)

1
1
5

i
n

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
l
d

‘
d
0
,

0
(
‘
s
0
)
\
n
"
,

1
1
6

s
r
c
=
[
r
]
,

1
1
7

d
s
t
=
[
t
]
,

1
1
8

j
u
m
p
=
N
O
N
E
}
)

1
1
9

e
n
d

1
2
0

|
m
u
n
c
h
S
t
m
(
R
.
M
O
V
E
(
R
.
T
E
M
P

t
,

R
.
C
O
N
S
T

i
)
)

=
e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
l
i

‘
d
0
,
"

^
i
n
t

i
^

"
\
n
"
,

1
2
1

s
r
c
=
[
]
,

1
2
2

d
s
t
=
[
t
]
,

1
2
3

j
u
m
p
=
N
O
N
E
}
)

1
2
4

|
m
u
n
c
h
S
t
m
(
R
.
M
O
V
E
(
R
.
T
E
M
P

t
,

R
.
M
E
M
(
e
2
)
)
)

=
e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
l
d

‘
d
0
,

"
^

i
n
t

0
^
"
(
‘
s
0
)
\
n
"
,

1
2
5

s
r
c
=
[
m
u
n
c
h
E
x
p

e
2
]
,

1
2
6

d
s
t
=
[
t
]
,

1
2
7

j
u
m
p
=
N
O
N
E
}
)

1
2
8

|
m
u
n
c
h
S
t
m
(
R
.
M
O
V
E
(
R
.
T
E
M
P

t
,

R
.
B
I
N
O
P
(
R
.
P
L
U
S
,

R
.
C
O
N
S
T

i
,

e
2
)
)
)

=
e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
a
d
d
i

‘
d
0
,

‘
s
0
,

"
^
i
n
t

i
^
"
\
n
"
,

1
2
9

s
r
c
=
[
m
u
n
c
h
E
x
p

e
2
]
,

1
3
0

d
s
t
=
[
t
]
,

1
3
1

j
u
m
p
=
N
O
N
E
}
)

1
3
2

|
m
u
n
c
h
S
t
m
(
R
.
M
O
V
E
(
R
.
T
E
M
P

t
,

R
.
B
I
N
O
P
(
R
.
P
L
U
S
,

e
2
,

R
.
C
O
N
S
T

i
)
)
)

=
e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
a
d
d
i

‘
d
0
,

‘
s
0
,

"
^
i
n
t

i
^
"
\
n
"
,

1
3
3

s
r
c
=
[
m
u
n
c
h
E
x
p

e
2
]
,

1
3
4

d
s
t
=
[
t
]
,

1
3
5

j
u
m
p
=
N
O
N
E
}
)

1
3
6

1
3
7

|
m
u
n
c
h
S
t
m
(
R
.
M
O
V
E
(
R
.
T
E
M
P

t
1
,

R
.
T
E
M
P

t
2
)
)

=
e
m
i
t
(
A
.
M
O
V
E
{
a
s
s
e
m
=
"
m
r

‘
d
0
,

‘
s
0
\
n
"
,

1
3
8

s
r
c
=
(
t
2
)
,

1
3
9

d
s
t
=
(
t
1
)
}
)
(
*
l
o
a
d

r
e
g
i
s
t
e
r

l
r

r
t
,

r
a

=
o
r
i

r
t
,

r
a
,

0
*
)

1
4
0

|
m
u
n
c
h
S
t
m
(
R
.
M
O
V
E
(
R
.
T
E
M
P

t
,

e
2
)
)

=
e
m
i
t
(
A
.
M
O
V
E
{
a
s
s
e
m
=
"
m
r

‘
d
0
,

‘
s
0
\
n
"
,

1
4
1

s
r
c
=
(
m
u
n
c
h
E
x
p

e
2
)
,

1
4
2

d
s
t
=
(
t
)
}
)

1
4
3

|
m
u
n
c
h
S
t
m
(
R
.
E
X
P

e
1
)

=
i
g
n
o
r
e

(
m
u
n
c
h
E
x
p

e
1
)

1
4
4

|
m
u
n
c
h
S
t
m

_
=

E
.
i
m
p
o
s
s
i
b
l
e

"
C
O
D
E
G
E
N

S
T
M

M
I
S
M
A
T
C
H
"

1
4
5

1
4
6

(
*
-
-
-
-
-
-
m
u
n
c
h
E
x
p
-
-
-
-
-
-
*
)

1
4
7

a
n
d

m
u
n
c
h
E
x
p
(
R
.
E
S
E
Q
(
s
,
e
)
)

=
(
m
u
n
c
h
S
t
m

s
;

m
u
n
c
h
E
x
p

e
)

1
4
8

|
m
u
n
c
h
E
x
p
(
R
.
M
E
M
(
R
.
B
I
N
O
P
(
R
.
P
L
U
S
,
e
1
,
R
.
C
O
N
S
T

i
)
)
)
=
r
e
s
u
l
t
(
f
n

r
=
>
e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
l
d

‘
d
0
,

"
^

i
n
t

i
^

"
(
‘
s
0
)
\
n
"
,

1
4
9

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
]
,

1
5
0

d
s
t
=
[
r
]
,

1
5
1

j
u
m
p
=
N
O
N
E
}
)
)

1
5
2

1
5
3

|
m
u
n
c
h
E
x
p
(
R
.
M
E
M
(
R
.
B
I
N
O
P
(
R
.
P
L
U
S
,

R
.
C
O
N
S
T

i
,

e
1
)
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
l
d

‘
d
0
,

"
^

i
n
t

i
^

"
(
‘

s
0
)
\
n
"
,

1
5
4

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
]
,

1
5
5

d
s
t
=
[
r
]
,

134



1
5
6

j
u
m
p
=
N
O
N
E
}
)
)

1
5
7

|
m
u
n
c
h
E
x
p
(
R
.
M
E
M
(
R
.
C
O
N
S
T

i
)
)

=
l
e
t

v
a
l

r
1

=
r
e
s
u
l
t
(
f
n

r
1

=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
l
i

‘
d
0
,

"
^
i
n
t

i
^
"
\
n
"
,

1
5
8

s
r
c
=
[
]
,

1
5
9

d
s
t
=
[
r
1
]
,

1
6
0

j
u
m
p
=
N
O
N
E
}
)
)

1
6
1

i
n

r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
l
d

‘
d
0
,

0
(
‘
s
0
)
\
n
"
,

1
6
2

s
r
c
=
[
r
1
]
,

1
6
3

d
s
t
=
[
r
]
,

1
6
4

j
u
m
p
=
N
O
N
E
}
)
)

1
6
5

e
n
d

1
6
6

|
m
u
n
c
h
E
x
p
(
R
.
M
E
M

e
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
l
d

‘
d
0
,

0
(
‘
s
0
)
\
n
"
,

1
6
7

s
r
c
=
[
m
u
n
c
h
E
x
p

e
]
,

1
6
8

d
s
t
=
[
r
]
,

1
6
9

j
u
m
p
=
N
O
N
E
}
)
)

1
7
0

(
*
B
I
N
O
P
(
o
,

e
1
,

e
2
)
*
)

1
7
1

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
P
L
U
S
,

R
.
C
O
N
S
T

i
,

e
1
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
a
d
d
i

‘
d
0
,

‘
s
0
,

"
^

i
n
t

i
^

"
\
n
"

,

1
7
2

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
]
,

1
7
3

d
s
t
=
[
r
]
,

1
7
4

j
u
m
p
=
N
O
N
E
}
)
)

1
7
5

1
7
6

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
P
L
U
S
,

e
1
,

R
.
C
O
N
S
T

i
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
a
d
d
i

‘
d
0
,

‘
s
0
,

"
^

i
n
t

i
^

"
\
n
"

,

1
7
7

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
]
,

1
7
8

d
s
t
=
[
r
]
,

1
7
9

j
u
m
p
=
N
O
N
E
}
)
)

1
8
0

1
8
1

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
P
L
U
S
,

e
1
,

e
2
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
a
d
d

‘
d
0
,

‘
s
0
,

‘
s
1
\
n
"
,

1
8
2

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
,

m
u
n
c
h
E
x
p

e
2
]
,

1
8
3

d
s
t
=
[
r
]
,

1
8
4

j
u
m
p
=
N
O
N
E
}
)
)

1
8
5

1
8
6

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
M
I
N
U
S
,

e
1
,

R
.
C
O
N
S
T

i
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
a
d
d
i

‘
d
0
,

‘
s
0
,

-
"

^
i
n
t

i
^

"
\

n
"
,

1
8
7

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
]
,

1
8
8

d
s
t
=
[
r
]
,

1
8
9

j
u
m
p
=
N
O
N
E
}
)
)

1
9
0

1
9
1

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
M
I
N
U
S
,

e
1
,

e
2
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
s
u
b
f

‘
d
0
,

‘
s
1
,

‘
s
0
\
n
"
,

1
9
2

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
,

m
u
n
c
h
E
x
p

e
2
]
,

1
9
3

d
s
t
=
[
r
]
,

1
9
4

j
u
m
p
=
N
O
N
E
}
)
)

1
9
5

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
M
U
L
,

e
1
,

R
.
C
O
N
S
T

2
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
r
l
d
i
c

‘
d
0
,

‘
s
0
,

"
^
i
n
t

1
^
"
,

0
\
n
"
,

135



1
9
6

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
]
,

1
9
7

d
s
t
=
[
r
]
,

1
9
8

j
u
m
p
=
N
O
N
E
}
)
)

1
9
9

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
M
U
L
,

R
.
C
O
N
S
T

2
,

e
1
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
r
l
d
i
c

‘
d
0
,

‘
s
0
,

"
^
i
n
t

1
^
"
,

0
\
n
"
,

2
0
0

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
]
,

2
0
1

d
s
t
=
[
r
]
,

2
0
2

j
u
m
p
=
N
O
N
E
}
)
)

2
0
3

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
M
U
L
,

e
1
,

R
.
C
O
N
S
T

0
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
l
i

‘
d
0
,

"
^
i
n
t

0
^
"
\
n
"
,

2
0
4

s
r
c
=
[
]
,

2
0
5

d
s
t
=
[
r
]
,

2
0
6

j
u
m
p
=
N
O
N
E
}
)
)

2
0
7

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
M
U
L
,

R
.
C
O
N
S
T

0
,

e
1
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
l
i

‘
d
0
,

"
^
i
n
t

0
^
"
\
n
"
,

2
0
8

s
r
c
=
[
]
,

2
0
9

d
s
t
=
[
r
]
,

2
1
0

j
u
m
p
=
N
O
N
E
}
)
)

2
1
1

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
M
U
L
,

e
1
,

R
.
C
O
N
S
T

i
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
m
u
l
i

‘
d
0
,

‘
s
0
,

"
^

i
n
t

i
^

"
\
n
"
,

2
1
2

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
]
,

2
1
3

d
s
t
=
[
r
]
,

2
1
4

j
u
m
p
=
N
O
N
E
}
)
)

2
1
5

2
1
6

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
M
U
L
,

R
.
C
O
N
S
T

i
,

e
2
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
m
u
l
i

‘
d
0
,

‘
s
0
,

"
^

i
n
t

i
^

"
\
n
"
,

2
1
7

s
r
c
=
[
m
u
n
c
h
E
x
p

e
2
]
,

2
1
8

d
s
t
=
[
r
]
,

2
1
9

j
u
m
p
=
N
O
N
E
}
)
)

2
2
0

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
M
U
L
,

e
1
,

e
2
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
m
u
l
l
w

‘
d
0
,

‘
s
0
,

‘
s
1
\
n
"
,

2
2
1

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
,

m
u
n
c
h
E
x
p

e
2
]
,

2
2
2

d
s
t
=
[
r
]
,

2
2
3

j
u
m
p
=
N
O
N
E
}
)
)

2
2
4

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
D
I
V
,

e
1
,

R
.
C
O
N
S
T

0
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>
e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
l
i

‘
d
0
,
"
^
i
n
t

0
^
"
\
n
"
,

2
2
5

s
r
c
=
[
]
,

2
2
6

d
s
t
=
[
r
]
,

2
2
7

j
u
m
p
=
N
O
N
E
}
)
)

2
2
8

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
D
I
V
,

e
1
,

R
.
C
O
N
S
T

2
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
s
r
a
d
i

‘
d
0
,

‘
s
0
,

"
^
i
n
t

1
^
"
\
n
"
,

2
2
9

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
]
,

2
3
0

d
s
t
=
[
r
]
,

2
3
1

j
u
m
p
=
N
O
N
E
}
)
)

2
3
2

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
A
N
D
,

e
1
,

R
.
C
O
N
S
T

i
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
a
n
d
i

‘
d
0
,

‘
s
0
,

"
^

i
n
t

i
^

"
\
n
"

,

2
3
3

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
]
,

2
3
4

d
s
t
=
[
r
]
,

2
3
5

j
u
m
p
=
N
O
N
E
}
)
)

2
3
6

2
3
7

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
A
N
D
,

R
.
C
O
N
S
T

i
,

e
1
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
a
n
d
i

‘
d
0
,

‘
s
0
,

"
^

i
n
t

i
^

"
\
n
"
,

136



2
3
8

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
]
,

2
3
9

d
s
t
=
[
r
]
,

2
4
0

j
u
m
p
=
N
O
N
E
}
)
)

2
4
1

2
4
2

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
A
N
D
,

e
1
,

e
2
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
a
n
d

‘
d
0
,

‘
s
0
,

‘
s
1
\
n
"
,

2
4
3

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
,

m
u
n
c
h
E
x
p

e
2
]
,

2
4
4

d
s
t
=
[
r
]
,

2
4
5

j
u
m
p
=
N
O
N
E
}
)
)

2
4
6

2
4
7

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
O
R
,

e
1
,

R
.
C
O
N
S
T

i
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
o
r
i

‘
d
0
,

‘
s
0
,
"

^
i
n
t

i
^

"
\
n
"
,

2
4
8

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
]
,

2
4
9

d
s
t
=
[
r
]
,

2
5
0

j
u
m
p
=
N
O
N
E
}
)
)

2
5
1

2
5
2

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
O
R
,

R
.
C
O
N
S
T

i
,

e
1
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
o
r
i

‘
d
0
,

‘
s
0
,

"
^

i
n
t

i
^

"
\
n
"
,

2
5
3

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
]
,

2
5
4

d
s
t
=
[
r
]
,

2
5
5

j
u
m
p
=
N
O
N
E
}
)
)

2
5
6

2
5
7

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
O
R
,

e
1
,

e
2
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
o
r

‘
d
0
,

‘
s
0
,

‘
s
1
\
n
"
,

2
5
8

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
,

m
u
n
c
h
E
x
p

e
2
]
,

2
5
9

d
s
t
=
[
r
]
,

2
6
0

j
u
m
p
=
N
O
N
E
}
)
)

2
6
1

2
6
2

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
L
S
H
I
F
T
,

e
1
,

R
.
C
O
N
S
T

i
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
r
l
d
i
c

‘
d
0
,

‘
s
0
,

"
^

i
n
t

i
^

"

\
n
"
,

2
6
3

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
]
,

2
6
4

d
s
t
=
[
r
]
,

2
6
5

j
u
m
p
=
N
O
N
E
}
)
)

2
6
6

2
6
7

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
L
S
H
I
F
T
,

e
1
,

e
2
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
s
l
d

‘
d
0
,

‘
s
0
,

‘
s
1
\
n
"
,

2
6
8

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
,

m
u
n
c
h
E
x
p

e
2
]
,

2
6
9

d
s
t
=
[
r
]
,

2
7
0

j
u
m
p
=
N
O
N
E
}
)
)

2
7
1

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
R
S
H
I
F
T
,

e
1
,

R
.
C
O
N
S
T

0
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
l
d

‘
d
0
,

0
(
‘
s
0
)
\
n
"
,

2
7
2

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
]
,

2
7
3

d
s
t
=
[
r
]
,

2
7
4

j
u
m
p
=
N
O
N
E
}
)
)

2
7
5

2
7
6

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
R
S
H
I
F
T
,

e
1
,

R
.
C
O
N
S
T

i
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
s
r
a
d
i

‘
d
0
,

‘
s
0
,

"
^
i
n
t

i
^
"
\
n
"
,

2
7
7

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
]
,

2
7
8

d
s
t
=
[
r
]
,

2
7
9

j
u
m
p
=
N
O
N
E
}
)
)

137



2
8
0

2
8
1

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
R
S
H
I
F
T
,

e
1
,

e
2
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
s
r
d

‘
d
0
,

‘
s
0
,

‘
s
1
\
n
"
,

2
8
2

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
,

m
u
n
c
h
E
x
p

e
2
]
,

2
8
3

d
s
t
=
[
r
]
,

2
8
4

j
u
m
p
=
N
O
N
E
}
)
)

2
8
5

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
X
O
R
,

e
1
,

R
.
C
O
N
S
T

i
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
x
o
r
i

‘
d
0
,

‘
s
0
,

"
^
i
n
t

i
^
"
\
n
"
,

2
8
6

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
]
,

2
8
7

d
s
t
=
[
r
]
,

2
8
8

j
u
m
p
=
N
O
N
E
}
)
)

2
8
9

2
9
0

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
X
O
R
,

e
1
,

e
2
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
x
o
r

‘
d
0
,

‘
s
0
,

‘
s
1
\
n
"
,

2
9
1

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
,

m
u
n
c
h
E
x
p

e
2
]
,

2
9
2

d
s
t
=
[
r
]
,

2
9
3

j
u
m
p
=
N
O
N
E
}
)
)

2
9
4

(
*
T
E
M
P
(
t
)
*
)

2
9
5

|
m
u
n
c
h
E
x
p
(
R
.
T
E
M
P

t
)

=
t

2
9
6

(
*
N
A
M
E

l
*
)

2
9
7

|
m
u
n
c
h
E
x
p

(
R
.
N
A
M
E

l
)

=
r
e
s
u
l
t

(
f
n

r
=
>

e
m
i
t

(
A
.
O
P
E
R

{
a
s
s
e
m
=
"
l
i
s

‘
d
0
,

"
^

(
S
.
n
a
m
e

l
)

^
"
@
h
i
g
h
e
s
t
\
n
o
r
i

‘
d
0
,

‘

d
0
,

"
^

(
S
.
n
a
m
e

l
)

^
"
@
h
i
g
h
e
r
\
n
"

^

2
9
8

"
r
l
d
i
c
r

‘
d
0
,
‘
d
0
,
3
2
,
3
1
\
n
o
r
i
s

‘
d
0
,
‘
d
0
,
"

^
(
S
.
n
a
m
e

l

)
^

"
@
h
\
n
o
r
i

‘
d
0
,
‘
d
0
,
"

^
(
S
.
n
a
m
e

l
)

^
"
@
l
\
n
"
,

2
9
9

s
r
c
=
[
]
,

3
0
0

d
s
t
=
[
r
]
,

3
0
1

j
u
m
p
=
N
O
N
E

}
)
)

3
0
2

3
0
3

(
*
C
O
N
S
T
(
i
)
*
)

3
0
4

|
m
u
n
c
h
E
x
p
(
R
.
C
O
N
S
T

0
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
l
i

‘
d
0
,

"
^

i
n
t

0
^

"
\
n
"
,

3
0
5

s
r
c
=
[
]
,

3
0
6

d
s
t
=
[
r
]
,

3
0
7

j
u
m
p
=
N
O
N
E
}
)
)

3
0
8

|
m
u
n
c
h
E
x
p
(
R
.
C
O
N
S
T

i
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
l
i

‘
d
0
,

"
^

i
n
t

i
^

"
\
n
"
,

3
0
9

s
r
c
=
[
]
,

3
1
0

d
s
t
=
[
r
]
,

3
1
1

j
u
m
p
=
N
O
N
E
}
)
)

3
1
2

(
*
I
M
P
O
R
T
A
N
T

b
r
s
l

$
l
r
,

S
.
n
a
m
e

f
*
)

3
1
3

|
m
u
n
c
h
E
x
p

(
R
.
C
A
L
L

(
R
.
N
A
M
E

f
,

e
s
)
)

=
r
e
s
u
l
t

(
f
n

r
=
>

(
i
f

n
a
m
e

=
F
.
m
a
i
n
L
a
b
e
l

t
h
e
n

(
)

3
1
4

e
l
s
e

L
i
s
t
P
a
i
r
.
a
p
p
E
q

(
f
n

(
r
,

m
)

=
>

m
u
n
c
h
S
t
m

(
R
.
M
O
V
E

(
m
,

R
.
T
E
M
P

r
)
)
)

3
1
5

(
F
.
c
a
l
l
e
r
s
a
v
e
s

A
b
s
y
n
.
P
P
U
_
F
u
n
c
,

3
1
6

s
a
v
e
s
)

3
1
7

h
a
n
d
l
e

L
i
s
t
P
a
i
r
.
U
n
e
q
u
a
l
L
e
n
g
t
h
s

=
>

E
.
i
m
p
o
s
s
i
b
l
e

"

C
O
D
G
E
N
:

w
r
o
n
g

n
u
m
b
e
r

o
f

c
a
l
l
e
r
-
s
a
v
e
s

v
s

l
o
c
a
t
i
o
n
s
"

138



3
1
8

;
e
m
i
t

(
A
.
O
P
E
R

{
a
s
s
e
m
=
"
b
l

"
^

S
.
n
a
m
e

f
^

"
\
n
"
,

3
1
9

s
r
c
=
(
m
u
n
c
h
A
r
g
s

e
s
)
,

3
2
0

d
s
t
=
r
:
:
c
a
l
l
d
e
f
s
,

3
2
1

j
u
m
p
=
N
O
N
E

}
)

3
2
2

;
e
m
i
t

(
A
.
M
O
V
E

{
a
s
s
e
m
=

"
m
r

‘
d
0
,

‘
s
0
\
n
"
,

3
2
3

s
r
c
=
F
.
R
V
,

3
2
4

d
s
t
=
r

}
)

3
2
5

;
i
f

n
a
m
e

=
F
.
m
a
i
n
L
a
b
e
l

t
h
e
n

(
)

3
2
6

e
l
s
e

L
i
s
t
P
a
i
r
.
a
p
p
E
q

(
f
n

(
r
,

m
)

=
>

m
u
n
c
h
S
t
m

(
R
.
M
O
V
E

(
R
.

T
E
M
P

r
,

m
)
)
)

3
2
7

(
F
.
c
a
l
l
e
r
s
a
v
e
s

A
b
s
y
n
.
P
P
U
_
F
u
n
c
,

3
2
8

s
a
v
e
s
)

3
2
9

h
a
n
d
l
e

L
i
s
t
P
a
i
r
.
U
n
e
q
u
a
l
L
e
n
g
t
h
s

=
>

E
.
i
m
p
o
s
s
i
b
l
e

"

C
O
D
G
E
N
:

w
r
o
n
g

n
u
m
b
e
r

o
f

c
a
l
l
e
r
-
s
a
v
e
s

v
s

l
o
c
a
t
i
o
n
s
"

3
3
0

)

3
3
1

)

3
3
2

|
m
u
n
c
h
E
x
p

(
R
.
S
P
U
C
A
L
L

(
R
.
N
A
M
E

f
,

e
s
)
)

=
r
e
s
u
l
t

(
f
n

r
=
>

(
i
f

n
a
m
e

=
F
.
m
a
i
n
L
a
b
e
l

t
h
e
n

(
)

3
3
3

e
l
s
e

L
i
s
t
P
a
i
r
.
a
p
p
E
q

(
f
n

(
r
,

m
)

=
>

m
u
n
c
h
S
t
m

(
R
.
M
O
V
E

(
m
,

R
.
T
E
M
P

r
)
)
)

3
3
4

(
F
.
c
a
l
l
e
r
s
a
v
e
s

A
b
s
y
n
.
P
P
U
_
F
u
n
c
,

3
3
5

s
a
v
e
s
)

3
3
6

h
a
n
d
l
e

L
i
s
t
P
a
i
r
.
U
n
e
q
u
a
l
L
e
n
g
t
h
s

=
>

E
.
i
m
p
o
s
s
i
b
l
e

"

C
O
D
G
E
N
:

w
r
o
n
g

n
u
m
b
e
r

o
f

c
a
l
l
e
r
-
s
a
v
e
s

v
s

l
o
c
a
t
i
o
n
s
"

3
3
7

;
e
m
i
t

(
A
.
O
P
E
R

{
a
s
s
e
m
=
"
#

c
a
l
l

s
p
u

f
u
n
c
t
i
o
n
\
n
b
l

s
p
u
c
a
l
l
_
"

^
S
.
n
a
m
e

f
^

"
\
n
"
,

3
3
8

s
r
c
=
(
m
u
n
c
h
A
r
g
s

e
s
)
,

3
3
9

d
s
t
=
r
:
:
c
a
l
l
d
e
f
s
,

3
4
0

j
u
m
p
=
N
O
N
E

}
)

3
4
1

;
e
m
i
t

(
A
.
M
O
V
E

{
a
s
s
e
m
=

"
m
r

‘
d
0
,

‘
s
0
\
n
"
,

3
4
2

s
r
c
=
F
.
R
V
,

3
4
3

d
s
t
=
r

}
)

3
4
4

;
i
f

n
a
m
e

=
F
.
m
a
i
n
L
a
b
e
l

t
h
e
n

(
)

3
4
5

e
l
s
e

L
i
s
t
P
a
i
r
.
a
p
p
E
q

(
f
n

(
r
,

m
)

=
>

m
u
n
c
h
S
t
m

(
R
.
M
O
V
E

(
R
.

T
E
M
P

r
,

m
)
)
)

3
4
6

(
F
.
c
a
l
l
e
r
s
a
v
e
s

A
b
s
y
n
.
P
P
U
_
F
u
n
c
,

3
4
7

s
a
v
e
s
)

3
4
8

h
a
n
d
l
e

L
i
s
t
P
a
i
r
.
U
n
e
q
u
a
l
L
e
n
g
t
h
s

=
>

E
.
i
m
p
o
s
s
i
b
l
e

"

C
O
D
G
E
N
:

w
r
o
n
g

n
u
m
b
e
r

o
f

c
a
l
l
e
r
-
s
a
v
e
s

v
s

l
o
c
a
t
i
o
n
s
"

3
4
9

)

3
5
0

)

139



3
5
1

|
m
u
n
c
h
E
x
p

(
R
.
P
A
R
C
A
L
L

(
R
.
N
A
M
E

f
,

e
s
)
)

=
r
e
s
u
l
t

(
f
n

r
=
>

(
i
f

n
a
m
e

=
F
.
m
a
i
n
L
a
b
e
l

t
h
e
n

(
)

3
5
2

e
l
s
e

L
i
s
t
P
a
i
r
.
a
p
p
E
q

(
f
n

(
r
,

m
)

=
>

m
u
n
c
h
S
t
m

(
R
.
M
O
V
E

(
m
,

R
.
T
E
M
P

r
)
)
)

3
5
3

(
F
.
c
a
l
l
e
r
s
a
v
e
s

A
b
s
y
n
.
P
P
U
_
F
u
n
c
,

3
5
4

s
a
v
e
s
)

3
5
5

h
a
n
d
l
e

L
i
s
t
P
a
i
r
.
U
n
e
q
u
a
l
L
e
n
g
t
h
s

=
>

E
.
i
m
p
o
s
s
i
b
l
e

"

C
O
D
G
E
N
:

w
r
o
n
g

n
u
m
b
e
r

o
f

c
a
l
l
e
r
-
s
a
v
e
s

v
s

l
o
c
a
t
i
o
n
s
"

3
5
6

;
e
m
i
t

(
A
.
O
P
E
R

{
a
s
s
e
m
=
"
#

p
a
r
-
c
a
l
l

s
p
u

f
u
n
c
t
i
o
n
\
n
b
l

p
a
r
c
a
l
l
_
"
^

S
.
n
a
m
e

f
^

"
\
n
"
,

3
5
7

s
r
c
=
(
m
u
n
c
h
A
r
g
s

e
s
)
,

3
5
8

d
s
t
=
r
:
:
c
a
l
l
d
e
f
s
,

3
5
9

j
u
m
p
=
N
O
N
E

}
)

3
6
0

;
e
m
i
t

(
A
.
M
O
V
E

{
a
s
s
e
m
=

"
m
r

‘
d
0
,

‘
s
0
\
n
"
,

3
6
1

s
r
c
=
F
.
R
V
,

3
6
2

d
s
t
=
r

}
)

3
6
3

;
i
f

n
a
m
e

=
F
.
m
a
i
n
L
a
b
e
l

t
h
e
n

(
)

3
6
4

e
l
s
e

L
i
s
t
P
a
i
r
.
a
p
p
E
q

(
f
n

(
r
,

m
)

=
>

m
u
n
c
h
S
t
m

(
R
.
M
O
V
E

(
R
.

T
E
M
P

r
,

m
)
)
)

3
6
5

(
F
.
c
a
l
l
e
r
s
a
v
e
s

A
b
s
y
n
.
P
P
U
_
F
u
n
c
,

3
6
6

s
a
v
e
s
)

3
6
7

h
a
n
d
l
e

L
i
s
t
P
a
i
r
.
U
n
e
q
u
a
l
L
e
n
g
t
h
s

=
>

E
.
i
m
p
o
s
s
i
b
l
e

"

C
O
D
G
E
N
:

w
r
o
n
g

n
u
m
b
e
r

o
f

c
a
l
l
e
r
-
s
a
v
e
s

v
s

l
o
c
a
t
i
o
n
s
"

3
6
8

)

3
6
9

)

3
7
0

|
m
u
n
c
h
E
x
p

e
=

(
P
r
i
n
t
T
r
e
e
.
p
r
i
n
t
T
r
e
e

(
T
e
x
t
I
O
.
s
t
d
E
r
r
,

R
.
E
X
P

e
)

3
7
1

;
E
r
r
o
r
M
s
g
.
i
m
p
o
s
s
i
b
l
e

"
C
O
D
E
G
E
N

M
U
N
C
H

E
X
P

N
O

M
A
T
C
H
"

3
7
2

)

3
7
3

3
7
4

3
7
5

3
7
6

(
*
-
-
-
-
-
-
m
u
n
c
h
A
r
g
s
(
i
,

e
s
)
-
-
-
-
-
-
*
)

3
7
7

a
n
d

m
u
n
c
h
A
r
g
s

e
s

=
L
i
s
t
P
a
i
r
.
m
a
p

(
f
n

(
t
,

e
)

=
>

l
e
t

v
a
l

s
r
c

=
m
u
n
c
h
E
x
p

e

3
7
8

i
n

(
e
m
i
t

(
A
.
M
O
V
E

{
a
s
s
e
m
=
"
m
r

‘
d
0
,

‘
s
0
\
n
"
,

3
7
9

s
r
c
=
s
r
c
,

3
8
0

d
s
t
=
t

}
)

3
8
1

;
s
r
c
)

3
8
2

e
n
d
)

3
8
3

(
F
.
a
r
g
s

A
b
s
y
n
.
P
P
U
_
F
u
n
c
,

e
s
)

3
8
4

h
a
n
d
l
e

L
i
s
t
P
a
i
r
.
U
n
e
q
u
a
l
L
e
n
g
t
h
s

=
>

E
.
i
m
p
o
s
s
i
b
l
e

"
C
A
L
L
:

M
O
R
E

A
R
G
S

T
H
A
N

R
E
G
I
S
T
E
R
S
"

3
8
5

3
8
6

i
n

(
m
u
n
c
h
S
t
m

s
t
m

140



3
8
7

h
a
n
d
l
e

_
=
>

E
r
r
o
r
M
s
g
.
i
m
p
o
s
s
i
b
l
e

"
m
u
n
c
h
S
t
m

c
r
a
s
h
e
d
"

3
8
8

;
r
e
v

(
!
i
l
i
s
t
)

3
8
9

)

3
9
0

e
n
d

3
9
1

e
n
d

B
.2

.2
S

P
U

C
o
d

e
G

e
n

e
ra

to
r

L
is

ti
n
g

B
.4

:
sp

u
G

en
.s

m
l

1
s
t
r
u
c
t
u
r
e

s
p
u
G
e
n

=

2
s
t
r
u
c
t

3 4
s
t
r
u
c
t
u
r
e

F
r
a
m
e

=
C
B
F
r
a
m
e

5 6
s
t
r
u
c
t
u
r
e

R
=

T
r
e
e

7
s
t
r
u
c
t
u
r
e

A
=

A
s
s
e
m

8
s
t
r
u
c
t
u
r
e

E
=

E
r
r
o
r
M
s
g

9
s
t
r
u
c
t
u
r
e

F
=

C
B
F
r
a
m
e

1
0

s
t
r
u
c
t
u
r
e

S
=

S
y
m
b
o
l

1
1

1
2

f
u
n

c
o
d
e
g
e
n

(
f
r
a
m
e

a
s

{
n
a
m
e
,

f
n
a
m
e
,

f
o
r
m
a
l
s
,

s
i
z
e
,

m
o
v
e
s
,

s
a
v
e
s
,

f
t
a
g
}
)

s
t
m

=

1
3

1
4

l
e
t

v
a
l

i
l
i
s
t

=
r
e
f

[
]

1
5

f
u
n

i
n
t

z
=

i
f

(
z
<
0
)

1
6

t
h
e
n

"
-
"

^
(
I
n
t
.
t
o
S
t
r
i
n
g

(
0

-
z
)
)

1
7

e
l
s
e

I
n
t
.
t
o
S
t
r
i
n
g

z

1
8

f
u
n

e
m
i
t

x
=

i
l
i
s
t

:
=

x
:
:

!
i
l
i
s
t

1
9

f
u
n

r
e
s
u
l
t

g
e
n

=
l
e
t

v
a
l

t
=

T
e
m
p
.
n
e
w
t
e
m
p
(
)

2
0

i
n

(
g
e
n

t

2
1

;
t
)

2
2

e
n
d

2
3

v
a
l

c
a
l
l
d
e
f
s

=
F
.
c
a
l
l
d
e
f
s

A
b
s
y
n
.
S
P
U
_
F
u
n
c

2
4

141



2
5

(
*
-
-
-
-
-
-
m
u
n
c
h
S
t
m
-
-
-
-
-
-
*
)

2
6

2
7

(
*
S
E
Q
(
s
1
,

s
2
)
*
)

2
8

f
u
n

m
u
n
c
h
S
t
m
(
R
.
S
E
Q
(
s
1
,
s
2
)
)

=
(
m
u
n
c
h
S
t
m

s
1
;

m
u
n
c
h
S
t
m

s
2
)

2
9

(
*
L
A
B
E
L

l
*
)

3
0

|
m
u
n
c
h
S
t
m
(
R
.
L
A
B
E
L

l
)

=
e
m
i
t
(
A
.
L
A
B
E
L
{
a
s
s
e
m
=
S
.
n
a
m
e

l
^

"
:
\
n
"
,

3
1

l
a
b
=
l
}
)

3
2

3
3

(
*
J
U
M
P
(
e
,

l
a
b
s
)
*
)

3
4

|
m
u
n
c
h
S
t
m
(
R
.
J
U
M
P
(
e
,

l
s
)
)

=
e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
b
i

‘
s
0
\
n
"
,

3
5

s
r
c
=
[
m
u
n
c
h
E
x
p

e
]
,

3
6

d
s
t
=
[
]
,

3
7

j
u
m
p
=
S
O
M
E

l
s
}
)

3
8

3
9

4
0

(
*
C
J
u
m
p
(
o
,

e
1
,

e
2
,

t
,

f
)
*
)

4
1

|
m
u
n
c
h
S
t
m
(
R
.
C
J
U
M
P
(
R
.
N
E
,

e
1
,

R
.
C
O
N
S
T

0
,

t
,

f
)
)

=
e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
b
r
n
z

‘
s
0
,

"
^
S
.
n
a
m
e

t
^
"
\
n
"
,

4
2

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
]
,

4
3

d
s
t
=
[
]
,

4
4

j
u
m
p
=
S
O
M
E

[
t
,
f
]
}
)

4
5

4
6

|
m
u
n
c
h
S
t
m
(
R
.
C
J
U
M
P
(
R
.
N
E
,

e
1
,

R
.
C
O
N
S
T

i
,

t
,

f
)
)

=
l
e
t

v
a
l

r
=

r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
c
e
q
i

‘
d
0
,

‘
s
0
,

"
^
i
n
t

i
^
"
\
n
"
,

4
7

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1

]
,

4
8

d
s
t
=
[
r
]
,

4
9

j
u
m
p
=
N
O
N
E
}
)
)

5
0

i
n

5
1

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
b
r
n
z

‘
s
0
,

"
^

S
.
n
a
m
e

f
^
"
\

n
"
,

5
2

s
r
c
=
[
r
]
,

5
3

d
s
t
=
[
]
,

5
4

j
u
m
p
=
S
O
M
E

[
t
,
f
]
}
)

5
5

e
n
d

5
6

5
7

|
m
u
n
c
h
S
t
m
(
R
.
C
J
U
M
P
(
R
.
N
E
,

e
1
,

e
2
,

t
,

f
)
)

=
l
e
t

v
a
l

r
=

r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
c
e
q

‘
d
0
,

‘
s
0
,

‘
s
1

\
n
"
,

5
8

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
,

m
u
n
c
h
E
x
p

e
2
]
,

5
9

d
s
t
=
[
r
]
,

6
0

j
u
m
p
=
N
O
N
E
}

6
1

)

6
2

)

6
3

i
n

142



6
4

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
b
r
n
z

‘
s
0
,

"
^

S
.
n
a
m
e

f
^
"
\
n
"
,

6
5

s
r
c
=
[
r
]
,

6
6

d
s
t
=
[
]
,

6
7

j
u
m
p
=
S
O
M
E

[
t
,
f
]
}

6
8

)

6
9

e
n
d

7
0

|
m
u
n
c
h
S
t
m
(
R
.
C
J
U
M
P
(
R
.
E
Q
,

e
1
,

R
.
C
O
N
S
T

0
,

t
,

f
)
)

=
e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
b
r
z

‘
s
0
,

"
^
S
.
n
a
m
e

t
^
"
\
n
"
,

7
1

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
]
,

7
2

d
s
t
=
[
]
,

7
3

j
u
m
p
=
S
O
M
E

[
t
,

f
]
}
)

7
4

|
m
u
n
c
h
S
t
m
(
R
.
C
J
U
M
P
(
R
.
E
Q
,

e
1
,

R
.
C
O
N
S
T

i
,

t
,

f
)
)

=
l
e
t

v
a
l

r
=

r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
c
e
q
i

‘
d
0
,

‘
s
0
,

"
^
i
n
t

i
^

"
\
n
"
,

7
5

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1

]
,

7
6

d
s
t
=
[
r
]
,

7
7

j
u
m
p
=
N
O
N
E
}
)
)

7
8

i
n

7
9

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
b
r
n
z

‘
s
0
,

"
^

S
.
n
a
m
e

t
^
"
\
n
"
,

8
0

s
r
c
=
[
r
]
,

8
1

d
s
t
=
[
]
,

8
2

j
u
m
p
=
S
O
M
E

[
t
,
f
]
}
)

8
3

e
n
d

8
4

8
5

|
m
u
n
c
h
S
t
m
(
R
.
C
J
U
M
P
(
R
.
E
Q
,

e
1
,

e
2
,

t
,

f
)
)

=
l
e
t

v
a
l

r
=

r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
c
e
q

‘
d
0
,

‘
s
0
,

‘
s
1

\
n
"
,

8
6

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
,

m
u
n
c
h
E
x
p

e
2
]
,

8
7

d
s
t
=
[
r
]
,

8
8

j
u
m
p
=
N
O
N
E
}
)
)

8
9

i
n

9
0

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
b
r
n
z

‘
s
0
,

"
^

S
.
n
a
m
e

t
^
"
\
n
"
,

9
1

s
r
c
=
[
r
]
,

9
2

d
s
t
=
[
]
,

9
3

j
u
m
p
=
S
O
M
E

[
t
,
f
]
}
)

9
4

e
n
d

9
5

9
6

|
m
u
n
c
h
S
t
m
(
R
.
C
J
U
M
P
(
R
.
G
T
,

e
1
,

R
.
C
O
N
S
T

i
,

t
,

f
)
)

=
l
e
t

v
a
l

r
=

r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
c
g
t
i

‘
d
0
,

‘
s
0
,

"
^
i
n
t

i
^

"
\
n
"
,

9
7

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
]
,

9
8

d
s
t
=
[
r
]
,

9
9

j
u
m
p
=
N
O
N
E
}
)
)

1
0
0

i
n

1
0
1

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
b
r
n
z

‘
s
0
,

"
^

S
.
n
a
m
e

t
^
"
\
n
"
,

1
0
2

s
r
c
=
[
r
]
,

143



1
0
3

d
s
t
=
[
]
,

1
0
4

j
u
m
p
=
S
O
M
E

[
t
,
f
]
}
)

1
0
5

e
n
d

1
0
6

1
0
7

|
m
u
n
c
h
S
t
m
(
R
.
C
J
U
M
P
(
R
.
G
T
,
e
1
,
e
2
,
t
,

f
)
)

=
l
e
t

v
a
l

r
=

r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
c
g
t

‘
d
0
,

‘
s
0
,

‘
s
1
\
n
"
,

1
0
8

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
,

m
u
n
c
h
E
x
p

e
2
]
,

1
0
9

d
s
t
=
[
r
]
,

1
1
0

j
u
m
p
=
N
O
N
E
}
)
)

1
1
1

i
n

1
1
2

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
b
r
n
z

‘
s
0
,

"
^
S
.
n
a
m
e

t
^
"
\
n
"
,

1
1
3

s
r
c
=
[
r
]
,

1
1
4

d
s
t
=
[
]
,

1
1
5

j
u
m
p
=
S
O
M
E

[
t
,
f
]
}
)

1
1
6

e
n
d

1
1
7

1
1
8

|
m
u
n
c
h
S
t
m
(
R
.
C
J
U
M
P
(
R
.
L
T
,

e
1
,

e
2
,

t
,

f
)
)

=
l
e
t

v
a
l

r
=

r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
c
g
t

‘
d
0
,

‘
s
1
,

‘
s
0
\
n
"
,

1
1
9

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
,

m
u
n
c
h
E
x
p

e
2
]
,

1
2
0

d
s
t
=
[
r
]
,

1
2
1

j
u
m
p
=
N
O
N
E
}
)
)

1
2
2

i
n

1
2
3

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
b
r
n
z

‘
s
0
,

"
^
S
.
n
a
m
e

t
^
"
\
n
"
,

1
2
4

s
r
c
=
[
r
]
,

1
2
5

d
s
t
=
[
]
,

1
2
6

j
u
m
p
=
S
O
M
E

[
t
,
f
]
}
)

1
2
7

e
n
d

1
2
8

|
m
u
n
c
h
S
t
m
(
R
.
C
J
U
M
P
(
R
.
L
E
,

e
1
,

e
2
,

t
,

f
)
)

=
l
e
t

v
a
l

r
1

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
c
g
t

‘
d
0
,

‘
s
1
,

‘
s
0
\
n
"
,

1
2
9

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
,

m
u
n
c
h
E
x
p

e
2
]
,

1
3
0

d
s
t
=
[
r
]
,

1
3
1

j
u
m
p
=
N
O
N
E
}
)
)

1
3
2

v
a
l

r
2

=
r
e
s
u
l
t
(
f
n

r
=
>
e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
c
e
q

‘
d
0
,

‘
s
0
,

‘
s
1

\
n
"
,

1
3
3

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
,

m
u
n
c
h
E
x
p

e
2

]
,

1
3
4

d
s
t
=
[
r
]
,

1
3
5

j
u
m
p
=
N
O
N
E
}
)
)

1
3
6

i
n

l
e
t

v
a
l

r
=

r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
o
r

‘
d
0
,

‘
s
0
,

‘
s
1

\
n

"
,

1
3
7

s
r
c
=
[
r
1
,
r
2
]
,

1
3
8

d
s
t
=
[
r
]
,

1
3
9

j
u
m
p
=
N
O
N
E
}
)
)

1
4
0

i
n

1
4
1

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
b
r
n
z

‘
s
0
,

"
^
S
.
n
a
m
e

t
^
"
\
n
"
,

1
4
2

s
r
c
=
[
r
]
,

144



1
4
3

d
s
t
=
[
]
,

1
4
4

j
u
m
p
=
S
O
M
E

[
t
,
f
]
}
)

1
4
5

e
n
d

1
4
6

e
n
d

1
4
7

1
4
8

1
4
9

1
5
0

(
*
M
O
V
E
(
M
E
M
(
e
1
)
,

e
2
)
*
)

1
5
1

1
5
2

(
*
A
l
l
o
c
a
t
i
n
g

C
a
l
l
e
e
’
s

F
r
a
m
e
.
.
.
*
)

1
5
3

|
m
u
n
c
h
S
t
m
(
R
.
M
O
V
E
(
R
.
M
E
M
(
R
.
O
F
F
S
E
T
(
i
,
s
)
)
,
e
)
)

=
e
m
i
t
(
A
.
A
R
G
{

a
s
s
e
m

=
"
s
t
q
d

‘
a
,

-
"

^
"
‘
o
(
$
s
p
)
\
n
"
,

1
5
4

a
r
g

=
m
u
n
c
h
E
x
p

e
,

1
5
5

o
f
f

=
i
,

1
5
6

f
s
i
z
e

=
s
}
)

1
5
7

1
5
8

|
m
u
n
c
h
S
t
m
(
R
.
M
O
V
E
(
R
.
M
E
M
(
R
.
B
I
N
O
P
(
R
.
P
L
U
S
,
e
1
,
R
.
C
O
N
S
T

i
)
)
,
e
2
)
)
=
e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
s
t
q
d

‘
s
1
,

"
^

i
n
t

i
^
"
(
‘
s
0
)
\
n
"
,

1
5
9

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
,

m
u
n
c
h
E
x
p

e
2
]
,

1
6
0

d
s
t
=
[
]
,

1
6
1

j
u
m
p
=
N
O
N
E
}
)

1
6
2

|
m
u
n
c
h
S
t
m
(
R
.
M
O
V
E
(
R
.
M
E
M
(
R
.
B
I
N
O
P
(
R
.
P
L
U
S
,

R
.
C
O
N
S
T

i
,

e
1
)
)
,

e
2
)
)

=
e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
s
t
q
d

‘
s
1
,

"
^

i
n
t

i
^
"
(
‘
s
0
)
\

n
"
,

1
6
3

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
,

m
u
n
c
h
E
x
p

e
2
]
,

1
6
4

d
s
t
=
[
]
,

1
6
5

j
u
m
p
=
N
O
N
E
}
)

1
6
6

|
m
u
n
c
h
S
t
m
(
R
.
M
O
V
E
(
R
.
M
E
M
(
R
.
B
I
N
O
P
(
R
.
P
L
U
S
,

e
1
,

e
2
)
)
,

e
3
)
)

=
e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
s
t
q
x

‘
s
2
,

‘
s
0
,

‘
s
1
\
n
"
,

1
6
7

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
,

m
u
n
c
h
E
x
p

e
2
,

m
u
n
c
h
E
x
p

e
3
]
,

1
6
8

d
s
t
=
[
]
,

1
6
9

j
u
m
p
=
N
O
N
E
}
)

1
7
0

|
m
u
n
c
h
S
t
m
(
R
.
M
O
V
E
(
R
.
M
E
M
(
R
.
C
O
N
S
T

i
)
,

e
2
)
)

=
e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
s
t
q
a

‘
s
0
,

"
^

i
n
t

i
^
"
\
n
"
,

1
7
1

s
r
c
=
[
m
u
n
c
h
E
x
p

e
2
]
,

1
7
2

d
s
t
=
[
]
,

1
7
3

j
u
m
p
=
N
O
N
E
}
)

1
7
4

|
m
u
n
c
h
S
t
m
(
R
.
M
O
V
E
(
R
.
M
E
M

(
e
1
)
,

e
2
)
)

=
e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
s
t
q
d

‘
s
1
,

0
(
‘
s
0
)
\
n
"
,

1
7
5

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
,

m
u
n
c
h
E
x
p

e
2
]
,

1
7
6

d
s
t
=
[
]
,

1
7
7

j
u
m
p
=
N
O
N
E
}
)

1
7
8

(
*
M
O
V
E
(
T
E
M
P

t
,

e
)
*
)

1
7
9

|
m
u
n
c
h
S
t
m
(
R
.
M
O
V
E
(
R
.
T
E
M
P

t
,
R
.
M
E
M
(
R
.
B
I
N
O
P
(
R
.
P
L
U
S
,
R
.
C
O
N
S
T

i
,
e
2
)
)
)
)
=
e
m
i
t
(
A
.
O
P
E
R

1
8
0

{

1
8
1

a
s
s
e
m
=
"
l
q
d

‘
d
0
,

"
^

i
n
t

i
^
"
(
‘
s
0
)

\
n
"
,

1
8
2

s
r
c
=
[
m
u
n
c
h
E
x
p

e
2
]
,

1
8
3

d
s
t
=
[
t
]
,

145



1
8
4

j
u
m
p
=
N
O
N
E

1
8
5

}

1
8
6

)

1
8
7

|
m
u
n
c
h
S
t
m
(
R
.
M
O
V
E
(
R
.
T
E
M
P

t
,
R
.
M
E
M
(
R
.
B
I
N
O
P
(
R
.
P
L
U
S
,
e
2
,
R
.
C
O
N
S
T

i
)
)
)
)
=
e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
l
q
d

‘
d
0
,

"
^

i
n
t

i
^
"
(
‘
s
0
)

\

n
"
,

1
8
8

s
r
c
=
[
m
u
n
c
h
E
x
p

e
2
]
,

1
8
9

d
s
t
=
[
t
]
,

1
9
0

j
u
m
p
=
N
O
N
E
}
)

1
9
1

|
m
u
n
c
h
S
t
m
(
R
.
M
O
V
E
(
R
.
T
E
M
P

t
,

R
.
M
E
M
(
R
.
C
O
N
S
T

i
)
)
)

=
e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
l
q
a

‘
d
0
,

"
^
i
n
t

i
^

"
\
n
"
,

1
9
2

s
r
c
=
[
]
,

1
9
3

d
s
t
=
[
t
]
,

1
9
4

j
u
m
p
=
N
O
N
E
}
)

1
9
5

|
m
u
n
c
h
S
t
m
(
R
.
M
O
V
E
(
R
.
T
E
M
P

t
,

R
.
C
O
N
S
T

i
)
)

=
e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
i
l

‘
d
0
,
"

^
i
n
t

i
^

"
\
n
"
,

1
9
6

s
r
c
=
[
]
,

1
9
7

d
s
t
=
[
t
]
,

1
9
8

j
u
m
p
=
N
O
N
E
}
)

1
9
9

|
m
u
n
c
h
S
t
m
(
R
.
M
O
V
E
(
R
.
T
E
M
P

t
,

R
.
M
E
M
(
e
2
)
)
)

=
e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
l
q
d

‘
d
0
,

"
^

i
n
t

0
^
"
(
‘
s
0
)
\
n
"
,

2
0
0

s
r
c
=
[
m
u
n
c
h
E
x
p

e
2
]
,

2
0
1

d
s
t
=
[
t
]
,

2
0
2

j
u
m
p
=
N
O
N
E
}
)

2
0
3

|
m
u
n
c
h
S
t
m
(
R
.
M
O
V
E
(
R
.
T
E
M
P

t
,

R
.
B
I
N
O
P
(
R
.
P
L
U
S
,

R
.
C
O
N
S
T

i
,

e
2
)
)
)

=
e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
a
i

‘
d
0
,

‘
s
0
,

"
^
i
n
t

i
^
"
\
n
"
,

2
0
4

s
r
c
=
[
m
u
n
c
h
E
x
p

e
2
]
,

2
0
5

d
s
t
=
[
t
]
,

2
0
6

j
u
m
p
=
N
O
N
E
}
)

2
0
7

|
m
u
n
c
h
S
t
m
(
R
.
M
O
V
E
(
R
.
T
E
M
P

t
,

R
.
B
I
N
O
P
(
R
.
P
L
U
S
,

e
2
,

R
.
C
O
N
S
T

i
)
)
)

=
e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
a
i

‘
d
0
,

‘
s
0
,

"
^
i
n
t

i
^
"
\
n
"
,

2
0
8

s
r
c
=
[
m
u
n
c
h
E
x
p

e
2
]
,

2
0
9

d
s
t
=
[
t
]
,

2
1
0

j
u
m
p
=
N
O
N
E
}
)

2
1
1

2
1
2

|
m
u
n
c
h
S
t
m
(
R
.
M
O
V
E
(
R
.
T
E
M
P

t
1
,

R
.
T
E
M
P

t
2
)
)

=
e
m
i
t
(
A
.
M
O
V
E
{
a
s
s
e
m
=
"
l
r

‘
d
0
,

‘
s
0
\
n
"
,

2
1
3

s
r
c
=
(
t
2
)
,

2
1
4

d
s
t
=
(
t
1
)
}
)
(
*
l
o
a
d

r
e
g
i
s
t
e
r

l
r

r
t
,

r
a

=
o
r
i

r
t
,

r
a
,

0
*
)

2
1
5

|
m
u
n
c
h
S
t
m
(
R
.
M
O
V
E
(
R
.
T
E
M
P

t
,

e
2
)
)

=
e
m
i
t
(
A
.
M
O
V
E
{
a
s
s
e
m
=
"
l
r

‘
d
0
,

‘
s
0
\
n
"
,

2
1
6

s
r
c
=
(
m
u
n
c
h
E
x
p

e
2
)
,

2
1
7

d
s
t
=
(
t
)
}
)

2
1
8

2
1
9

|
m
u
n
c
h
S
t
m
(
R
.
E
X
P

e
1
)

=
i
g
n
o
r
e

(
m
u
n
c
h
E
x
p

e
1
)

2
2
0

|
m
u
n
c
h
S
t
m

_
=

E
.
i
m
p
o
s
s
i
b
l
e

"
C
O
D
E
G
E
N

S
T
M

M
I
S
M
A
T
C
H
"

2
2
1

2
2
2

2
2
3

2
2
4

(
*
-
-
-
-
-
-
m
u
n
c
h
E
x
p
-
-
-
-
-
-
*
)

2
2
5

146



2
2
6

(
*
E
S
E
Q
(
s
,
e
)
*
)

2
2
7

a
n
d

m
u
n
c
h
E
x
p
(
R
.
E
S
E
Q
(
s
,
e
)
)

=
(
m
u
n
c
h
S
t
m

s
;

m
u
n
c
h
E
x
p

e
)

2
2
8

(
*
M
E
M
(
e
)
*
)

2
2
9

|
m
u
n
c
h
E
x
p
(
R
.
M
E
M
(
R
.
B
I
N
O
P
(
R
.
P
L
U
S
,

e
1
,

R
.
C
O
N
S
T

i
)
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
l
q
d

‘
d
0
,

"
^

i
n
t

i
^

"
(
‘
s
0
)
\
n
"
,

2
3
0

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
]
,

2
3
1

d
s
t
=
[
r
]
,

2
3
2

j
u
m
p
=
N
O
N
E
}
)
)

2
3
3

2
3
4

|
m
u
n
c
h
E
x
p
(
R
.
M
E
M
(
R
.
B
I
N
O
P
(
R
.
P
L
U
S
,

R
.
C
O
N
S
T

i
,

e
1
)
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
l
q
d

‘
d
0
,

"
^

i
n
t

i
^

"
(
‘
s
0
)
\
n
"
,

2
3
5

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
]
,

2
3
6

d
s
t
=
[
r
]
,

2
3
7

j
u
m
p
=
N
O
N
E
}
)
)

2
3
8

2
3
9

|
m
u
n
c
h
E
x
p
(
R
.
M
E
M
(
R
.
C
O
N
S
T

i
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
l
q
a

‘
d
0
,

"
^

i
n
t

i
^

"
\
n
"
,

2
4
0

s
r
c
=
[
]
,

2
4
1

d
s
t
=
[
r
]
,

2
4
2

j
u
m
p
=
N
O
N
E
}
)
)

2
4
3

|
m
u
n
c
h
E
x
p
(
R
.
M
E
M

e
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
l
q
d

‘
d
0
,

0
(
‘
s
0
)
\
n
"
,

2
4
4

s
r
c
=
[
m
u
n
c
h
E
x
p

e
]
,

2
4
5

d
s
t
=
[
r
]
,

2
4
6

j
u
m
p
=
N
O
N
E
}
)
)

2
4
7

(
*
B
I
N
O
P
(
o
,

e
1
,

e
2
)
*
)

2
4
8

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
P
L
U
S
,

R
.
C
O
N
S
T

i
,

e
1
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
a
i

‘
d
0
,

‘
s
0
,

"
^

i
n
t

i
^

"
\

n
"
,

2
4
9

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
]
,

2
5
0

d
s
t
=
[
r
]
,

2
5
1

j
u
m
p
=
N
O
N
E
}
)
)

2
5
2

2
5
3

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
P
L
U
S
,

e
1
,

R
.
C
O
N
S
T

i
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
a
i

‘
d
0
,

‘
s
0
,

"
^

i
n
t

i
^

"
\

n
"
,

2
5
4

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
]
,

2
5
5

d
s
t
=
[
r
]
,

2
5
6

j
u
m
p
=
N
O
N
E
}
)
)

2
5
7

2
5
8

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
P
L
U
S
,

e
1
,

e
2
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
a

‘
d
0
,

‘
s
0
,

‘
s
1
\
n
"
,

2
5
9

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
,

m
u
n
c
h
E
x
p

e
2
]
,

2
6
0

d
s
t
=
[
r
]
,

2
6
1

j
u
m
p
=
N
O
N
E
}
)
)

2
6
2

2
6
3

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
M
I
N
U
S
,

e
1
,

R
.
C
O
N
S
T

i
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
a
i

‘
d
0
,

‘
s
0
,

-
"

^
i
n
t

i
^

"
\
n
"
,

147



2
6
4

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
]
,

2
6
5

d
s
t
=
[
r
]
,

2
6
6

j
u
m
p
=
N
O
N
E
}
)
)

2
6
7

2
6
8

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
M
I
N
U
S
,

e
1
,

e
2
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
s
f

‘
d
0
,

‘
s
1
,

‘
s
0
\
n
"
,

2
6
9

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
,

m
u
n
c
h
E
x
p

e
2
]
,

2
7
0

d
s
t
=
[
r
]
,

2
7
1

j
u
m
p
=
N
O
N
E
}
)
)

2
7
2

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
M
U
L
,

e
1
,

R
.
C
O
N
S
T

2
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
s
h
l
i

‘
d
0
,

‘
s
0
,

"
^
i
n
t

1
^
"
\
n
"
,

2
7
3

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
]
,

2
7
4

d
s
t
=
[
r
]
,

2
7
5

j
u
m
p
=
N
O
N
E
}
)
)

2
7
6

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
M
U
L
,

R
.
C
O
N
S
T

2
,

e
1
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
s
h
l
i

‘
d
0
,

‘
s
0
,

"
^
i
n
t

1
^
"
\
n
"
,

2
7
7

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
]
,

2
7
8

d
s
t
=
[
r
]
,

2
7
9

j
u
m
p
=
N
O
N
E
}
)
)

2
8
0

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
M
U
L
,

e
1
,

R
.
C
O
N
S
T

0
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
i
l

‘
d
0
,

"
^
i
n
t

0
^
"
\
n
"
,

2
8
1

s
r
c
=
[
]
,

2
8
2

d
s
t
=
[
r
]
,

2
8
3

j
u
m
p
=
N
O
N
E
}
)
)

2
8
4

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
M
U
L
,

R
.
C
O
N
S
T

0
,

e
1
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
i
l

‘
d
0
,

"
^
i
n
t

0
^
"
\
n
"
,

2
8
5

s
r
c
=
[
]
,

2
8
6

d
s
t
=
[
r
]
,

2
8
7

j
u
m
p
=
N
O
N
E
}
)
)

2
8
8

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
M
U
L
,

e
1
,

R
.
C
O
N
S
T

i
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
m
p
y
i

‘
d
0
,

‘
s
0
,

"
^

i
n
t

i
^

"

\
n
"
,

2
8
9

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
]
,

2
9
0

d
s
t
=
[
r
]
,

2
9
1

j
u
m
p
=
N
O
N
E
}
)
)

2
9
2

2
9
3

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
M
U
L
,

R
.
C
O
N
S
T

i
,

e
2
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
m
p
y
i

‘
d
0
,

‘
s
0
,

"
^

i
n
t

i
^

"

\
n
"
,

2
9
4

s
r
c
=
[
m
u
n
c
h
E
x
p

e
2
]
,

2
9
5

d
s
t
=
[
r
]
,

2
9
6

j
u
m
p
=
N
O
N
E
}
)
)

2
9
7

2
9
8

2
9
9

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
M
U
L
,

e
1
,

e
2
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
m
p
y

‘
d
0
,

‘
s
0
,

‘
s
1
\
n
"
,

3
0
0

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
,

m
u
n
c
h
E
x
p

e
2
]
,

3
0
1

d
s
t
=
[
r
]
,

3
0
2

j
u
m
p
=
N
O
N
E
}
)
)

3
0
3

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
D
I
V
,

e
1
,

R
.
C
O
N
S
T

0
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>
e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
i
l

‘
d
0
,
"
^
i
n
t

0
^
"
\
n
"
,

3
0
4

s
r
c
=
[
]
,

148



3
0
5

d
s
t
=
[
r
]
,

3
0
6

j
u
m
p
=
N
O
N
E
}
)
)

3
0
7

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
D
I
V
,

e
1
,

R
.
C
O
N
S
T

2
)
)

=
l
e
t

v
a
l

r
1

=
r
e
s
u
l
t
(
f
n

r
1

=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
r
o
t
m
i

‘
d
0
,

‘
s
0

,
"
^
i
n
t

1
^
"
\
n
"
,

3
0
8

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
]
,

3
0
9

d
s
t
=
[
r
1
]
,

3
1
0

j
u
m
p
=
N
O
N
E
}
)
)

3
1
1

i
n

3
1
2

l
e
t

v
a
l

r
2

=
r
e
s
u
l
t
(
f
n

r
2

=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
s
h
l
i

‘
d
0
,

‘
s
0
,

"
^
i
n
t

1
^
"
\
n
"
,

3
1
3

s
r
c
=
[
r
1
]
,

3
1
4

d
s
t
=
[
r
2
]
,

3
1
5

j
u
m
p
=
N
O
N
E
}
)
)
;

3
1
6

i
n

3
1
7

r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
r
o
t
m
i

‘
d
0
,

‘
s
0
,

"
^

i
n
t

1
^
"
\
n
"
,

3
1
8

s
r
c
=
[
r
2
]
,

3
1
9

d
s
t
=
[
r
]
,

3
2
0

j
u
m
p
=
N
O
N
E
}
)
)

3
2
1

e
n
d

3
2
2

3
2
3

e
n
d

3
2
4

3
2
5

3
2
6

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
A
N
D
,

e
1
,

R
.
C
O
N
S
T

i
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
a
n
d
i

‘
d
0
,

‘
s
0
,

"
^

i
n
t

i
^

"
\
n
"
,

3
2
7

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
]
,

3
2
8

d
s
t
=
[
r
]
,

3
2
9

j
u
m
p
=
N
O
N
E
}
)
)

3
3
0

3
3
1

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
A
N
D
,

R
.
C
O
N
S
T

i
,

e
1
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
a
n
d
i

‘
d
0
,

‘
s
0
,

"
^

i
n
t

i
^

"

\
n
"
,

3
3
2

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
]
,

3
3
3

d
s
t
=
[
r
]
,

3
3
4

j
u
m
p
=
N
O
N
E
}
)
)

3
3
5

3
3
6

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
A
N
D
,

e
1
,

e
2
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
a
n
d

‘
d
0
,

‘
s
0
,

‘
s
1
\
n
"
,

3
3
7

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
,

m
u
n
c
h
E
x
p

e
2
]
,

3
3
8

d
s
t
=
[
r
]
,

3
3
9

j
u
m
p
=
N
O
N
E
}
)
)

3
4
0

3
4
1

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
O
R
,

e
1
,

R
.
C
O
N
S
T

i
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
o
r
i

‘
d
0
,

‘
s
0
,
"

^
i
n
t

i
^

"
\
n
"

,

149



3
4
2

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
]
,

3
4
3

d
s
t
=
[
r
]
,

3
4
4

j
u
m
p
=
N
O
N
E
}
)
)

3
4
5

3
4
6

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
O
R
,

R
.
C
O
N
S
T

i
,

e
1
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
o
r
i

‘
d
0
,

‘
s
0
,

"
^

i
n
t

i
^

"
\
n

"
,

3
4
7

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
]
,

3
4
8

d
s
t
=
[
r
]
,

3
4
9

j
u
m
p
=
N
O
N
E
}
)
)

3
5
0

3
5
1

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
O
R
,

e
1
,

e
2
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
o
r

‘
d
0
,

‘
s
0
,

‘
s
1
\
n
"
,

3
5
2

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
,

m
u
n
c
h
E
x
p

e
2
]
,

3
5
3

d
s
t
=
[
r
]
,

3
5
4

j
u
m
p
=
N
O
N
E
}
)
)

3
5
5

3
5
6

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
L
S
H
I
F
T
,

e
1
,

R
.
C
O
N
S
T

i
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
s
h
l
i

‘
d
0
,

‘
s
0
,

"
^

i
n
t

i

^
"
\
n
"
,

3
5
7

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
]
,

3
5
8

d
s
t
=
[
r
]
,

3
5
9

j
u
m
p
=
N
O
N
E
}
)
)

3
6
0

3
6
1

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
L
S
H
I
F
T
,

e
1
,

e
2
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
s
h
l

‘
d
0
,

‘
s
0
,

‘
s
1
\
n
"
,

3
6
2

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
,

m
u
n
c
h
E
x
p

e
2
]
,

3
6
3

d
s
t
=
[
r
]
,

3
6
4

j
u
m
p
=
N
O
N
E
}
)
)

3
6
5

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
R
S
H
I
F
T
,

e
1
,

R
.
C
O
N
S
T

0
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
l
q
d

‘
d
0
,

0
(
‘
s
0
)
\
n
"
,

3
6
6

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
]
,

3
6
7

d
s
t
=
[
r
]
,

3
6
8

j
u
m
p
=
N
O
N
E
}
)
)

3
6
9

3
7
0

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
R
S
H
I
F
T
,

e
1
,

R
.
C
O
N
S
T

i
)
)

=
l
e
t

v
a
l

r
1

=
r
e
s
u
l
t
(
f
n

r
1

=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
r
o
t
m
i

‘
d
0
,

‘

s
0
,

"
^
i
n
t

i
^
"
\
n
"
,

3
7
1

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
]
,

3
7
2

d
s
t
=
[
r
1
]
,

3
7
3

j
u
m
p
=
N
O
N
E
}
)
)

3
7
4

i
n

3
7
5

l
e
t

v
a
l

r
2

=
r
e
s
u
l
t
(
f
n

r
2

=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
s
h
l
i

‘
d
0

,
‘
s
0
,

"
^
i
n
t

i
^
"
\
n
"
,

3
7
6

s
r
c
=
[
r
1
]
,

3
7
7

d
s
t
=
[
r
2
]
,

3
7
8

j
u
m
p
=
N
O
N
E
}
)
)

3
7
9

i
n

150



3
8
0

r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
r
o
t
m
i

‘
d
0
,

‘
s
0
,

"
^
i
n
t

i
^

"
\
n
"
,

3
8
1

s
r
c
=
[
r
2
]
,

3
8
2

d
s
t
=
[
r
]
,

3
8
3

j
u
m
p
=
N
O
N
E
}
)
)

3
8
4

e
n
d

3
8
5

e
n
d

3
8
6

3
8
7

3
8
8

3
8
9

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
R
S
H
I
F
T
,

e
1
,

e
2
)
)

=
l
e
t

v
a
l

r
1
=
r
e
s
u
l
t
(
f
n

r
1
=
>
e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
r
o
t
m

‘
d
0
,

‘
s
0
,

‘
s
1
\
n
"
,

3
9
0

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
,

m
u
n
c
h
E
x
p

e
2

]
,

3
9
1

d
s
t
=
[
r
1
]
,

3
9
2

j
u
m
p
=
N
O
N
E
}
)
)

3
9
3

i
n

3
9
4

l
e
t

v
a
l

r
2

=
r
e
s
u
l
t
(
f
n

r
2

=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
s
h
l

‘
d
0
,

‘
s
0
,

‘

s
1
\
n
"
,

3
9
5

s
r
c
=
[
r
1
,

m
u
n
c
h
E
x
p

e
2
]
,

3
9
6

d
s
t
=
[
r
2
]
,

3
9
7

j
u
m
p
=
N
O
N
E
}
)
)

3
9
8

i
n

3
9
9

r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
r
o
t
m

‘
d
0
,

‘
s
0
,

‘
s
1
\
n
"
,

4
0
0

s
r
c
=
[
r
2
,

m
u
n
c
h
E
x
p

e
2
]
,

4
0
1

d
s
t
=
[
r
]
,

4
0
2

j
u
m
p
=
N
O
N
E
}
)
)

4
0
3

e
n
d

4
0
4

e
n
d

4
0
5

4
0
6

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
X
O
R
,

e
1
,

R
.
C
O
N
S
T

i
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
x
o
r
i

‘
d
0
,

‘
s
0
,

"
^
i
n
t

i
^
"
\
n
"
,

4
0
7

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
]
,

4
0
8

d
s
t
=
[
r
]
,

4
0
9

j
u
m
p
=
N
O
N
E
}
)
)

4
1
0

4
1
1

|
m
u
n
c
h
E
x
p
(
R
.
B
I
N
O
P
(
R
.
X
O
R
,

e
1
,

e
2
)
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
x
o
r

‘
d
0
,

‘
s
0
,

‘
s
1
\
n
"
,

4
1
2

s
r
c
=
[
m
u
n
c
h
E
x
p

e
1
,

m
u
n
c
h
E
x
p

e
2
]
,

4
1
3

d
s
t
=
[
r
]
,

4
1
4

j
u
m
p
=
N
O
N
E
}
)
)

4
1
5

4
1
6

(
*
T
E
M
P
(
t
)
*
)

4
1
7

|
m
u
n
c
h
E
x
p
(
R
.
T
E
M
P

t
)

=
t

4
1
8

(
*
N
A
M
E

l
*
)

4
1
9

|
m
u
n
c
h
E
x
p

(
R
.
N
A
M
E

l
)

=
r
e
s
u
l
t

(
f
n

r
=
>

e
m
i
t

(
A
.
O
P
E
R

{
a
s
s
e
m
=
"
i
l
a

‘
d
0
,

"
^

(
S
.
n
a
m
e

l
)

^
"
\
n
"
,

151



4
2
0

s
r
c
=
[
]
,

4
2
1

d
s
t
=
[
r
]
,

4
2
2

j
u
m
p
=
N
O
N
E

}
)
)

4
2
3

4
2
4

4
2
5

(
*

C
O
N
S
T
(
i
)

*
)

4
2
6

|
m
u
n
c
h
E
x
p
(
R
.
C
O
N
S
T

0
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
i
l

‘
d
0
,

"
^

i
n
t

0
^

"
\
n
"
,

4
2
7

s
r
c
=
[
]
,

4
2
8

d
s
t
=
[
r
]
,

4
2
9

j
u
m
p
=
N
O
N
E
}
)
)

4
3
0

|
m
u
n
c
h
E
x
p
(
R
.
C
O
N
S
T

i
)

=
r
e
s
u
l
t
(
f
n

r
=
>

e
m
i
t
(
A
.
O
P
E
R
{
a
s
s
e
m
=
"
i
l

‘
d
0
,

"
^

i
n
t

i
^

"
\
n
"
,

4
3
1

s
r
c
=
[
]
,

4
3
2

d
s
t
=
[
r
]
,

4
3
3

j
u
m
p
=
N
O
N
E
}
)
)

4
3
4

(
*

b
r
s
l

$
l
r
,

S
.
n
a
m
e

f
*
)

4
3
5

|
m
u
n
c
h
E
x
p

(
R
.
C
A
L
L

(
R
.
N
A
M
E

f
,

e
s
)
)

=
r
e
s
u
l
t

(
f
n

r
=
>

(
i
f

n
a
m
e

=
F
.
m
a
i
n
L
a
b
e
l

t
h
e
n

(
)

4
3
6

e
l
s
e

L
i
s
t
P
a
i
r
.
a
p
p
E
q

(
f
n

(
r
,

m
)

=
>

m
u
n
c
h
S
t
m

(
R
.
M
O
V
E

(
m
,

R
.

T
E
M
P

r
)
)
)

4
3
7

(
F
.
c
a
l
l
e
r
s
a
v
e
s

A
b
s
y
n
.
S
P
U
_
F
u
n
c
,

4
3
8

s
a
v
e
s
)

4
3
9

h
a
n
d
l
e

L
i
s
t
P
a
i
r
.
U
n
e
q
u
a
l
L
e
n
g
t
h
s

=
>

E
.
i
m
p
o
s
s
i
b
l
e

"

C
O
D
G
E
N
:

w
r
o
n
g

n
u
m
b
e
r

o
f

c
a
l
l
e
r
-
s
a
v
e
s

v
s

l
o
c
a
t
i
o
n
s

"

4
4
0

;
e
m
i
t

(
A
.
O
P
E
R

{
a
s
s
e
m
=
"
b
r
s
l

$
l
r
,
"
^

S
.
n
a
m
e

f
^

"
\
n
"
,

4
4
1

s
r
c
=
(
m
u
n
c
h
A
r
g
s

e
s
)
,

4
4
2

d
s
t
=
r
:
:
c
a
l
l
d
e
f
s
,

4
4
3

j
u
m
p
=
N
O
N
E

}
)

4
4
4

;
e
m
i
t

(
A
.
M
O
V
E

{
a
s
s
e
m
=

"
l
r

‘
d
0
,

‘
s
0
\
n
"
,

4
4
5

s
r
c
=
F
.
R
V
,

4
4
6

d
s
t
=
r

}
)

4
4
7

;
i
f

n
a
m
e

=
F
.
m
a
i
n
L
a
b
e
l

t
h
e
n

(
)

4
4
8

e
l
s
e

L
i
s
t
P
a
i
r
.
a
p
p
E
q

(
f
n

(
r
,

m
)

=
>

m
u
n
c
h
S
t
m

(
R
.
M
O
V
E

(
R
.
T
E
M
P

r
,

m
)
)
)

4
4
9

(
F
.
c
a
l
l
e
r
s
a
v
e
s

A
b
s
y
n
.
S
P
U
_
F
u
n
c
,

4
5
0

s
a
v
e
s
)

4
5
1

h
a
n
d
l
e

L
i
s
t
P
a
i
r
.
U
n
e
q
u
a
l
L
e
n
g
t
h
s

=
>

E
.
i
m
p
o
s
s
i
b
l
e

"

C
O
D
G
E
N
:

w
r
o
n
g

n
u
m
b
e
r

o
f

c
a
l
l
e
r
-
s
a
v
e
s

v
s

l
o
c
a
t
i
o
n
s

"

4
5
2

)

4
5
3

)

4
5
4

4
5
5

4
5
6

|
m
u
n
c
h
E
x
p

e
=

(
P
r
i
n
t
T
r
e
e
.
p
r
i
n
t
T
r
e
e

(
T
e
x
t
I
O
.
s
t
d
E
r
r
,

R
.
E
X
P

e
)

152



4
5
7

;
E
r
r
o
r
M
s
g
.
i
m
p
o
s
s
i
b
l
e

"
C
O
D
E
G
E
N

M
U
N
C
H

E
X
P

N
O

M
A
T
C
H
"

4
5
8

)

4
5
9

4
6
0

4
6
1

4
6
2

(
*
-
-
-
-
-
-
m
u
n
c
h
A
r
g
s
(
i
,

e
s
)
-
-
-
-
-
-
*
)

4
6
3

a
n
d

m
u
n
c
h
A
r
g
s

e
s

=
L
i
s
t
P
a
i
r
.
m
a
p

(
f
n

(
t
,

e
)

=
>

l
e
t

v
a
l

s
r
c

=
m
u
n
c
h
E
x
p

e

4
6
4

i
n

(
e
m
i
t

(
A
.
M
O
V
E

{
a
s
s
e
m
=
"
l
r

‘
d
0
,

‘
s
0
\
n
"
,

4
6
5

s
r
c
=
s
r
c
,

4
6
6

d
s
t
=
t

}
)

4
6
7

;
s
r
c
)

4
6
8

e
n
d
)

4
6
9

(
F
.
a
r
g
s

A
b
s
y
n
.
S
P
U
_
F
u
n
c
,

e
s
)

4
7
0

h
a
n
d
l
e

L
i
s
t
P
a
i
r
.
U
n
e
q
u
a
l
L
e
n
g
t
h
s

=
>

E
.
i
m
p
o
s
s
i
b
l
e

"
C
A
L
L
:

M
O
R
E

A
R
G
S

T
H
A
N

R
E
G
I
S
T
E
R
S
"

4
7
1

4
7
2

i
n

(
m
u
n
c
h
S
t
m

s
t
m

4
7
3

h
a
n
d
l
e

_
=
>

E
r
r
o
r
M
s
g
.
i
m
p
o
s
s
i
b
l
e

"
m
u
n
c
h
S
t
m

c
r
a
s
h
e
d
"

4
7
4

;
r
e
v

(
!
i
l
i
s
t
)

4
7
5

)

4
7
6

e
n
d

4
7
7

e
n
d

153



C
.

R
C

S
G

e
n
e
ra

to
r

a
n
d

A
u
to

m
a
te

d
L

in
k
e
r

T
h
is

is
th

e
sc

ri
p
t

fo
r

R
C

S
ge

n
er

at
io

n
an

d
au

to
m

at
ed

li
n
k
in

g.
O

p
ti

m
iz

at
io

n
s

ar
e

al
so

im
p
le

m
en

te
d

in
th

is
p
ar

t.

L
is

ti
n
g

C
.1

:
ti

gc
1

#
!
/
u
s
r
/
b
i
n
/
p
y
t
h
o
n

2 3
i
m
p
o
r
t

s
y
s

4
i
m
p
o
r
t

o
s

5
i
m
p
o
r
t

s
t
a
t

6 7
f
r
o
m

s
u
b
p
r
o
c
e
s
s

i
m
p
o
r
t

P
o
p
e
n
,

P
I
P
E

8 9
S
R
C
_
D
I
R

=
"
.
.
/
t
e
s
t
"

1
0

X
L
C
_
D
I
R

=
o
s
.
p
a
t
h
.
j
o
i
n
(
S
R
C
_
D
I
R
,

"
x
l
c
"
)

1
1

S
M
L
_
D
I
R

=
"
~
/
s
m
l
-
2
"

1
2

S
M
L
_
B
I
N

=
o
s
.
p
a
t
h
.
j
o
i
n
(
S
M
L
_
D
I
R
,

"
b
i
n
/
s
m
l
"
)

1
3

1
4

S
D
K
_
I
N
C

=
"
/
o
p
t
/
c
e
l
l
/
s
d
k
/
u
s
r
/
s
p
u
/
i
n
c
l
u
d
e
"

1
5

P
P
U
_
I
N
C

=
"
/
o
p
t
/
c
e
l
l
/
s
d
k
/
u
s
r
/
i
n
c
l
u
d
e
"

1
6

P
P
U
_
L
I
B

=
"
/
o
p
t
/
c
e
l
l
/
s
d
k
/
u
s
r
/
l
i
b
"

1
7

1
8

V
E
R
B
O
S
E

=
F
a
l
s
e

1
9

2
0

#

154



2
1

#
e
x
e
c
u
t
e
s

a
n

e
x
t
e
r
n
a
l

c
o
m
m
a
n
d

a
n
d

r
e
t
u
r
n
s

e
r
r
o
r

c
o
d
e

2
2

#
i
f

u
s
e
E
x
c
e
p
t
i
o
n
,

r
a
i
s
e

a
n

e
x
c
e
p
t
i
o
n

i
n
s
t
e
a
d

2
3

#

2
4

d
e
f

r
u
n
(
c
m
d
,

u
s
e
E
x
c
e
p
t
i
o
n
=
T
r
u
e
)
:

2
5

i
f

V
E
R
B
O
S
E
:

p
r
i
n
t

"
L
O
G
:

i
n
v
o
k
e

c
o
m
m
a
n
d

%
s
"

%
c
m
d

2
6

p
=

P
o
p
e
n
(
c
m
d
,

s
h
e
l
l
=
T
r
u
e
,

s
t
d
o
u
t
=
P
I
P
E
,

s
t
d
e
r
r
=
P
I
P
E
)

2
7

c
h
i
l
d
_
s
t
d
o
u
t
,

c
h
i
l
d
_
s
t
d
e
r
r

=
(
p
.
s
t
d
o
u
t
,

p
.
s
t
d
e
r
r
)

2
8

r
e
t
v
a
l

=
p
.
w
a
i
t
(
)

2
9

3
0

i
f

r
e
t
v
a
l

!
=

0
:

3
1

l
i
n
e
s

=
c
h
i
l
d
_
s
t
d
e
r
r
.
r
e
a
d
l
i
n
e
s
(
)

3
2

i
f

u
s
e
E
x
c
e
p
t
i
o
n
:

r
a
i
s
e

E
x
c
e
p
t
i
o
n
(
"
C
o
m
m
a
n
d

%
s

e
r
r
o
r
:
\
n
%
s
"

%
(
c
m
d
,

"
"
.
j
o
i
n
(
l
i
n
e
s
)
)
)

3
3

e
l
i
f

V
E
R
B
O
S
E
:

3
4

f
o
r

l
i
n

c
h
i
l
d
_
s
t
d
e
r
r
.
r
e
a
d
l
i
n
e
s
(
)
:

p
r
i
n
t

l

3
5

3
6

r
e
t
u
r
n

(
r
e
t
v
a
l
,

c
h
i
l
d
_
s
t
d
o
u
t
.
r
e
a
d
l
i
n
e
s
(
)
)

3
7

3
8

#

3
9

#
g
i
v
e
n

t
i
g
e
r

s
o
u
r
c
e

f
i
l
e
,

b
u
i
l
d

t
h
e

p
a
r
a
m
e
t
e
r

m
a
p

i
n

t
h
e

4
0

#
f
o
l
l
o
w
i
n
g

f
o
r
m
a
t
:

4
1

#

4
2

#
f
u
n
c
_
n
a
m
e
:

(
t
y
p
e
)

(
i
d
,

t
y
p
e
)
,

(
i
d
,

t
y
p
e
)
,

.
.
.

4
3

#

4
4

d
e
f

b
u
i
l
d
_
p
a
r
a
m
_
m
a
p
(
s
r
c
f
i
l
e
)
:

4
5

c
m
d

=
"
%
s

@
S
M
L
l
o
a
d
=
s
o
u
r
c
e
s

-
a

%
s
/
%
s
.
t
i
g
"

%
(
S
M
L
_
B
I
N
,

S
R
C
_
D
I
R
,

s
r
c
f
i
l
e
)

4
6

r
e
t
v
a
l
,

o
u
t
p
u
t

=
r
u
n
(
c
m
d
)

4
7

4
8

p
a
r
a
m
_
m
a
p

=
{
}

4
9

f
o
r

l
i
n
e

i
n

o
u
t
p
u
t
:

5
0

l
i
n
e

=
l
i
n
e
.
s
t
r
i
p
(
)

5
1

i
f

n
o
t

l
i
n
e
.
s
t
a
r
t
s
w
i
t
h
(
"
#
F
U
N
C
<
S
P
U
>
"
)
:

c
o
n
t
i
n
u
e

5
2

f
u
n
c
_
d
e
c

=
l
i
n
e
[
1
0
:
]

5
3

5
4

f
u
n
c
_
n
a
m
e

=
f
u
n
c
_
d
e
c
[
0
:
f
u
n
c
_
d
e
c
.
i
n
d
e
x
(
’
(
’
)
]

5
5

f
u
n
c
_
d
e
f

=
f
u
n
c
_
d
e
c
[
l
e
n
(
f
u
n
c
_
n
a
m
e
)
:
]

5
6

f
u
n
c
_
p
a
r
a
m
,

f
u
n
c
_
r
e
t
s

=
f
u
n
c
_
d
e
f
.
s
p
l
i
t
(
’
-
’
)

5
7

p
a
r
a
m
s

=
f
u
n
c
_
p
a
r
a
m
.
s
p
l
i
t
(
)

5
8

5
9

p
a
r
a
m
_
m
a
p
[
f
u
n
c
_
n
a
m
e
]

=
[
]

6
0

p
a
r
a
m
_
m
a
p
[
f
u
n
c
_
n
a
m
e
]
.
a
p
p
e
n
d
(
f
u
n
c
_
r
e
t
s
.
s
t
r
i
p
(
)
)

6
1

f
o
r

p
a
r
a
m

i
n

p
a
r
a
m
s
:

6
2

i
f

p
a
r
a
m
.
f
i
n
d
(
’
(
’
)

+
1

>
=

p
a
r
a
m
.
f
i
n
d
(
’
)
’
)
:

c
o
n
t
i
n
u
e

6
3

p
a
r
a
m

=
p
a
r
a
m
[
p
a
r
a
m
.
i
n
d
e
x
(
’
(
’
)

+
1

:
p
a
r
a
m
.
i
n
d
e
x
(
’
)
’
)
]

155



6
4

i
f

l
e
n
(
p
a
r
a
m
)

=
=

0
:

c
o
n
t
i
n
u
e

6
5

6
6

f
i
e
l
d
s

=
p
a
r
a
m
.
s
p
l
i
t
(
’
,
’
)

6
7

i
f

l
e
n
(
f
i
e
l
d
s
)

!
=

3
:

r
a
i
s
e

E
x
c
e
p
t
i
o
n
(
"
I
n
v
a
l
i
d

p
a
r
a
m
e
t
e
r

f
i
e
l
d
"
)

6
8

f
i
e
l
d
_
i
d

=
f
i
e
l
d
s
[
0
]

6
9

f
i
e
l
d
_
t
y
p
e

=
f
i
e
l
d
s
[
2
]

7
0

p
a
r
a
m
_
m
a
p
[
f
u
n
c
_
n
a
m
e
]
.
a
p
p
e
n
d
(
(
f
i
e
l
d
_
i
d
,

f
i
e
l
d
_
t
y
p
e
)
)

7
1

7
2

r
e
t
u
r
n

p
a
r
a
m
_
m
a
p

7
3

7
4

S
P
U
_
I
N
V
O
K
E
_
C
O
D
E

=
"
"
"

7
5

#
i
n
c
l
u
d
e

<
s
t
d
i
o
.
h
>

7
6

#
i
n
c
l
u
d
e

<
s
t
d
l
i
b
.
h
>

7
7

7
8

#
i
n
c
l
u
d
e

<
s
p
u
_
i
n
t
r
i
n
s
i
c
s
.
h
>

7
9

#
i
n
c
l
u
d
e

<
s
p
u
_
m
f
c
i
o
.
h
>

8
0

8
1

#
d
e
f
i
n
e

I
N
_
B
U
F
F
_
S
I
Z
E

1
6

*
1
0
2
4

8
2

#
d
e
f
i
n
e

O
U
T
_
B
U
F
F
_
S
I
Z
E

3
2

*
1
0
2
4

8
3

8
4

t
y
p
e
d
e
f

s
t
r
u
c
t

{

8
5

u
i
n
t
6
4
_
t

i
n
d
e
x
;

8
6

u
i
n
t
6
4
_
t

e
a
_
o
u
t
;

8
7

u
i
n
t
6
4
_
t

a
r
g
_
f
l
a
g
s
;

8
8

u
i
n
t
6
4
_
t

a
r
g
_
s
i
z
e
;

8
9

9
0

/
/

u
s
e
d

f
o
r

d
a
t
a

t
r
a
n
s
f
e
r

o
p
t
i
m
i
z
a
t
i
o
n

9
1

u
i
n
t
6
4
_
t

e
a
_
a
r
r
a
y
;

9
2

u
i
n
t
6
4
_
t

a
r
r
_
s
i
z
e
;

9
3

u
i
n
t
6
4
_
t

s
p
u
i
d
;

9
4

9
5

c
h
a
r

a
r
g
_
d
a
t
a
[
1
]
;

9
6

}
c
a
l
l
_
c
t
x
;

9
7

9
8

v
o
l
a
t
i
l
e

c
h
a
r

i
n
_
d
a
t
a
[
I
N
_
B
U
F
F
_
S
I
Z
E
]

_
_
a
t
t
r
i
b
u
t
e
_
_

(
(
a
l
i
g
n
e
d
(
1
2
8
)
)
)
;

9
9

v
o
l
a
t
i
l
e

c
h
a
r

o
u
t
_
d
a
t
a
[
O
U
T
_
B
U
F
F
_
S
I
Z
E
]

_
_
a
t
t
r
i
b
u
t
e
_
_

(
(
a
l
i
g
n
e
d
(
1
2
8
)
)
)
;

1
0
0

1
0
1

/
/

t
h
i
s

i
s

t
h
e

t
r
a
n
f
o
r
m
e
d

d
a
t
a

u
s
e
d

i
n

p
a
r
c
a
l
l

m
o
d
e

1
0
2

c
h
a
r

t
r
a
n
_
d
a
t
a
[
I
N
_
B
U
F
F
_
S
I
Z
E
]
;

1
0
3

1
0
4

t
y
p
e
d
e
f

i
n
t

(
*
t
a
r
g
e
t
_
f
u
n
c
)
(
u
i
n
t
3
2
_
t

a
,

u
i
n
t
3
2
_
t

b
,

u
i
n
t
3
2
_
t

c
)
;

1
0
5

1
0
6

i
n
t

i
n
v
o
k
e
(
u
i
n
t
6
4
_
t

a
d
d
r
,

u
i
n
t
6
4
_
t

a
r
g
s
i
z
e
,

c
h
a
r

a
r
g
d
a
t
a
[
]
)

156



1
0
7

{

1
0
8

u
i
n
t
6
4
_
t
*

a
d
a
t
a

=
(
u
i
n
t
6
4
_
t
*
)
a
r
g
d
a
t
a
;

1
0
9

1
1
0

t
a
r
g
e
t
_
f
u
n
c

t
a
r
g
e
t

=
(
t
a
r
g
e
t
_
f
u
n
c
)
a
d
d
r
;

1
1
1

u
i
n
t
3
2
_
t

a
=

a
r
g
s
i
z
e

>
=

1
?

a
d
a
t
a
[
0
]

:
0
;

1
1
2

u
i
n
t
3
2
_
t

b
=

a
r
g
s
i
z
e

>
=

2
?

a
d
a
t
a
[
2
]

:
0
;

1
1
3

u
i
n
t
3
2
_
t

c
=

a
r
g
s
i
z
e

>
=

3
?

a
d
a
t
a
[
4
]

:
0
;

1
1
4

1
1
5

/
/

O
n
l
y

a
l
l
o
w
s

3
p
a
r
a
m
e
t
e
r
s
,

s
o

w
e

c
a
n

t
r
e
a
t

a
l
l

s
p
u

f
u
n
c
t
i
o
n
s

1
1
6

/
/

i
n

t
h
i
s

f
o
r
m
a
t
,

a
s

t
h
e

p
a
r
a
m
e
t
e
r
s

a
r
e

p
a
s
s
e
d

w
i
t
h

r
e
g
i
s
t
e
r
s

1
1
7

/
/

i
n
s
t
e
a
d

o
f

i
n

s
t
a
c
k

1
1
8

r
e
t
u
r
n

t
a
r
g
e
t
(
a
,

b
,

c
)
;

1
1
9

}

1
2
0

1
2
1

i
n
t

m
a
i
n
(
i
n
t

s
p
e
i
d
,

u
i
n
t
6
4
_
t

a
r
g
p
)

1
2
2

{

1
2
3

u
i
n
t
3
2
_
t

t
a
g
_
i
d
;

1
2
4

c
a
l
l
_
c
t
x
*

c
a
l
l
c
t
x
;

1
2
5

i
n
t
*

r
e
t
_
b
u
f
f
e
r
;

1
2
6

i
n
t

r
e
t
v
a
l

=
0
;

1
2
7

i
n
t

i
=

0
;

1
2
8

1
2
9

s
t
r
u
c
t

{
c
o
n
s
t

c
h
a
r

*
n
a
m
e
;

u
i
n
t
6
4
_
t

a
d
d
r
;

}
f
u
n
c
_
l
i
s
t
[
]

=
{

1
3
0

F
U
N
C
_
D
I
C
T

1
3
1

}
;

1
3
2

i
n
t

f
u
n
c
_
r
e
t
s
[
]

=
{

1
3
3

F
U
N
C
_
R
E
T
S

1
3
4

}
;

1
3
5

1
3
6

i
f

(
(
t
a
g
_
i
d

=
m
f
c
_
t
a
g
_
r
e
s
e
r
v
e
(
)
)

=
=

M
F
C
_
T
A
G
_
I
N
V
A
L
I
D
)

1
3
7

r
e
t
u
r
n

1
;

1
3
8

1
3
9

m
f
c
_
g
e
t
(
(
v
o
i
d

*
)
i
n
_
d
a
t
a
,

a
r
g
p
,

s
i
z
e
o
f
(
i
n
_
d
a
t
a
)
,

t
a
g
_
i
d
,

0
,

0
)
;

1
4
0

m
f
c
_
w
r
i
t
e
_
t
a
g
_
m
a
s
k
(
1

<
<

t
a
g
_
i
d
)
;

1
4
1

m
f
c
_
r
e
a
d
_
t
a
g
_
s
t
a
t
u
s
_
a
l
l
(
)
;

1
4
2

1
4
3

c
a
l
l
c
t
x

=
(
c
a
l
l
_
c
t
x
*
)
i
n
_
d
a
t
a
;

1
4
4

1
4
5

/
*

1
4
6

p
r
i
n
t
f
(
"
c
a
l
l
i
n
g

f
u
n
c
t
i
o
n

%
s

0
x
%
0
8
l
l
x

w
i
t
h

%
l
l
d

p
a
r
a
m
e
t
e
r
s
[
%
l
l
x
]
\
\
n
"
,

1
4
7

f
u
n
c
_
l
i
s
t
[
c
a
l
l
c
t
x
-
>
i
n
d
e
x
]
.
n
a
m
e
,

1
4
8

f
u
n
c
_
l
i
s
t
[
c
a
l
l
c
t
x
-
>
i
n
d
e
x
]
.
a
d
d
r
,

1
4
9

c
a
l
l
c
t
x
-
>
a
r
g
_
s
i
z
e
,

157



1
5
0

c
a
l
l
c
t
x
-
>
a
r
g
_
f
l
a
g
s
)
;

1
5
1

*
/

1
5
2

1
5
3

u
i
n
t
6
4
_
t

*
a
r
g
d
a
t
a

=
(
u
i
n
t
6
4
_
t

*
)
c
a
l
l
c
t
x
-
>
a
r
g
_
d
a
t
a
;

1
5
4

i
f

(
c
a
l
l
c
t
x
-
>
e
a
_
a
r
r
a
y

!
=

0
)

{

1
5
5

/
/

t
h
i
s

i
s

p
a
r
c
a
l
l

m
o
d
e
,

w
e

h
a
v
e

a
f
i
x
e
d

f
o
r
m
a
t

o
f

s
p
u

f
u
n
c
t
i
o
n
:

1
5
6

/
/

[
a
r
r
a
y

s
t
a
r
t

s
i
z
e
]

1
5
7

/
/

1
5
8

/
/

a
r
r
a
y

a
d
d
r
e
s
s
:

c
a
l
l
c
t
x
-
>
e
a
_
a
r
r
a
y

1
5
9

/
/

a
r
r
a
y

s
i
z
e

:
c
a
l
l
c
t
x
-
>
a
r
r
_
s
i
z
e

1
6
0

/
/

s
p
u
i
d

:
c
a
l
l
c
t
x
-
>
s
p
u
i
d

1
6
1

/
/

s
p
u
c
o
u
n
t

:
a
r
g
d
a
t
a
[
2
]

1
6
2

/
/

s
t
e
p

s
i
z
e

:
a
r
g
d
a
t
a
[
4
]

1
6
3

1
6
4

m
e
m
c
p
y
(
t
r
a
n
_
d
a
t
a
,

i
n
_
d
a
t
a
,

1
2
8
)
;

1
6
5

c
a
l
l
c
t
x

=
(
c
a
l
l
_
c
t
x

*
)
t
r
a
n
_
d
a
t
a
;

1
6
6

a
r
g
d
a
t
a

=
(
u
i
n
t
6
4
_
t

*
)
c
a
l
l
c
t
x
-
>
a
r
g
_
d
a
t
a
;

1
6
7

1
6
8

/
/

S
e
t

t
h
e

a
r
r
a
y

a
d
d
r
e
s
s

(
7

b
e
c
a
u
s
e

o
f

t
h
e

a
l
i
g
n
m
e
n
t

)

1
6
9

a
r
g
d
a
t
a
[
0
]

=
(
u
i
n
t
6
4
_
t
)
(
a
r
g
d
a
t
a

+
7
)
;

1
7
0

1
7
1

/
/

S
e
t

t
h
e

a
r
r
a
y

l
e
n
g
t
h

1
7
2

a
r
g
d
a
t
a
[
6
]

=
(
a
r
g
d
a
t
a
[
4
]

|
a
r
g
d
a
t
a
[
4
]

<
<

3
2
)
;

a
r
g
d
a
t
a
[
7
]

=
a
r
g
d
a
t
a
[
6
]
;

1
7
3

1
7
4

u
i
n
t
6
4
_
t

g
r
o
u
p
s
i
z
e

=
a
r
g
d
a
t
a
[
4
]

<
1
6

?
1
6

:
a
r
g
d
a
t
a
[
4
]
;

1
7
5

u
i
n
t
6
4
_
t

f
r
a
m
e
s
i
z
e

=
a
r
g
d
a
t
a
[
4
]
;

1
7
6

1
7
7

u
i
n
t
6
4
_
t

c
u
r
r

=
c
a
l
l
c
t
x
-
>
s
p
u
i
d

*
g
r
o
u
p
s
i
z
e
;

1
7
8

1
7
9

/
/

G
e
t

t
h
e

f
i
r
s
t

g
r
o
u
p

o
f

d
a
t
a

1
8
0

m
f
c
_
g
e
t
(
(
v
o
i
d

*
)
i
n
_
d
a
t
a
,

c
a
l
l
c
t
x
-
>
e
a
_
a
r
r
a
y

+
c
u
r
r

*
s
i
z
e
o
f
(
u
i
n
t
6
4
_
t
)
,

g
r
o
u
p
s
i
z
e

*
s
i
z
e
o
f
(
u
i
n
t
6
4
_
t
)
,

t
a
g
_
i
d
,

0
,

0
)
;

1
8
1

1
8
2

u
i
n
t
6
4
_
t

r
e
s
u
l
t
_
c
u
r
r

=
1
;

1
8
3

w
h
i
l
e

(
c
u
r
r

<
c
a
l
l
c
t
x
-
>
a
r
r
_
s
i
z
e
)

{

1
8
4

1
8
5

/
/

M
a
k
e

s
u
r
e

I
h
a
v
e

t
h
e

i
n
p
u
t

d
a
t
a

r
e
a
d
y

1
8
6

m
f
c
_
r
e
a
d
_
t
a
g
_
s
t
a
t
u
s
_
a
l
l
(
)
;

1
8
7

1
8
8

u
i
n
t
6
4
_
t

*
i
n
p
u
t

=
(
u
i
n
t
6
4
_
t

*
)
i
n
_
d
a
t
a
;

1
8
9

1
9
0

u
i
n
t
6
4
_
t

f
r
a
m
e

=
0
;

1
9
1

u
i
n
t
6
4
_
t

v
a
l
i
d
_
f
r
a
m
e

=
g
r
o
u
p
s
i
z
e

/
f
r
a
m
e
s
i
z
e
;

158



1
9
2

i
f

(
v
a
l
i
d
_
f
r
a
m
e

>
(
c
a
l
l
c
t
x
-
>
a
r
r
_
s
i
z
e

-
c
u
r
r
)

/
f
r
a
m
e
s
i
z
e
)

1
9
3

v
a
l
i
d
_
f
r
a
m
e

=
(
c
a
l
l
c
t
x
-
>
a
r
r
_
s
i
z
e

-
c
u
r
r
)

/
f
r
a
m
e
s
i
z
e
;

1
9
4

1
9
5

/
/

S
a
v
e

t
h
e

a
r
g
d
a
t
a

s
o

i
n
_
d
a
t
a

c
o
u
l
d

b
e

u
s
e
d

f
o
r

n
e
x
t

i
t
e
r
a
t
i
o
n

1
9
6

f
o
r

(
i

=
0
;

i
<

f
r
a
m
e
s
i
z
e

*
v
a
l
i
d
_
f
r
a
m
e
;

+
+
i
)

{

1
9
7

a
r
g
d
a
t
a
[
i

*
2

+
8
]

=
(
i
n
p
u
t
[
i
]

|
i
n
p
u
t
[
i
]

<
<

3
2
)
;

1
9
8

}

1
9
9

2
0
0

/
/

I
f

w
e

s
t
i
l
l

h
a
v
e

d
a
t
a

t
o

p
r
o
c
e
s
s

2
0
1

c
u
r
r

+
=

g
r
o
u
p
s
i
z
e

*
a
r
g
d
a
t
a
[
2
]
;

2
0
2

i
f

(
c
u
r
r

<
c
a
l
l
c
t
x
-
>
a
r
r
_
s
i
z
e
)

2
0
3

m
f
c
_
g
e
t
(
(
v
o
i
d

*
)
i
n
_
d
a
t
a
,

c
a
l
l
c
t
x
-
>
e
a
_
a
r
r
a
y

+
c
u
r
r

*
s
i
z
e
o
f
(
u
i
n
t
6
4
_
t
)
,

g
r
o
u
p
s
i
z
e

*
s
i
z
e
o
f
(
u
i
n
t
6
4
_
t
)
,

t
a
g
_
i
d
,

0
,

0
)
;

2
0
4

2
0
5

/
/

P
r
o
c
e
s
s

c
u
r
r
e
n
t

g
r
o
u
p
,

w
h
i
c
h

m
a
y

c
o
n
t
a
i
n

s
e
v
e
r
a
l

f
r
a
m
e
s

2
0
6

f
o
r

(
f
r
a
m
e

=
0
;

f
r
a
m
e

<
v
a
l
i
d
_
f
r
a
m
e
;

+
+
f
r
a
m
e
)

{

2
0
7

2
0
8

f
o
r

(
i

=
0
;

i
<

f
r
a
m
e
s
i
z
e
;

+
+
i
)

{

2
0
9

a
r
g
d
a
t
a
[
i

*
2

+
8
]

=
a
r
g
d
a
t
a
[
i

*
2

+
8

+
f
r
a
m
e

*
f
r
a
m
e
s
i
z
e

*
2
]
;

2
1
0

a
r
g
d
a
t
a
[
i

*
2

+
9
]

=
a
r
g
d
a
t
a
[
i

*
2

+
8

+
f
r
a
m
e

*
f
r
a
m
e
s
i
z
e

*
2
]
;

2
1
1

}

2
1
2

2
1
3

r
e
t
v
a
l

=
i
n
v
o
k
e
(
(
u
i
n
t
6
4
_
t
)
f
u
n
c
_
l
i
s
t
[
c
a
l
l
c
t
x
-
>
i
n
d
e
x
]
.
a
d
d
r
,

c
a
l
l
c
t
x
-
>
a
r
g
_
s
i
z
e
,

a
r
g
d
a
t
a
)
;

2
1
4

/
/
p
r
i
n
t
f
(
"
p
a
r

%
l
l
u

r
e
t
u
r
n

%
d
\
\
n
"
,

c
a
l
l
c
t
x
-
>
s
p
u
i
d
,

r
e
t
v
a
l
)
;

2
1
5

i
f

(
f
u
n
c
_
r
e
t
s
[
c
a
l
l
c
t
x
-
>
i
n
d
e
x
]

=
=

1
)

2
1
6

{

2
1
7

i
n
t
*

r
e
t
_
a
r
r
a
y

=
(
i
n
t
*
)
r
e
t
v
a
l
;

2
1
8

r
e
t
_
b
u
f
f
e
r

=
(
i
n
t
*
)
o
u
t
_
d
a
t
a
;

2
1
9

/
/
p
r
i
n
t
f
(
"
f
r
a
m
e

r
e
t
u
r
n

%
d
\
\
n
"
,

r
e
t
_
a
r
r
a
y
[
0
]
)
;

2
2
0

f
o
r

(
i

=
1
;

i
<
=

r
e
t
_
a
r
r
a
y
[
0
]
;

+
+
i
)

2
2
1

r
e
t
_
b
u
f
f
e
r
[
r
e
s
u
l
t
_
c
u
r
r
+
+
]

=
r
e
t
_
a
r
r
a
y
[
i

*
4
]
;

2
2
2

f
r
e
e
(
r
e
t
_
a
r
r
a
y
)
;

2
2
3

}

2
2
4

}

2
2
5

}

2
2
6

i
f

(
f
u
n
c
_
r
e
t
s
[
c
a
l
l
c
t
x
-
>
i
n
d
e
x
]

=
=

1
)

2
2
7

{

2
2
8

r
e
t
_
b
u
f
f
e
r
[
0
]

=
r
e
s
u
l
t
_
c
u
r
r

-
1
;

2
2
9

m
f
c
_
p
u
t
(
(
v
o
i
d

*
)
o
u
t
_
d
a
t
a
,

c
a
l
l
c
t
x
-
>
e
a
_
o
u
t
,

s
i
z
e
o
f
(
o
u
t
_
d
a
t
a
)

/
2
,

t
a
g
_
i
d
,

0
,

0
)
;

2
3
0

m
f
c
_
r
e
a
d
_
t
a
g
_
s
t
a
t
u
s
_
a
l
l
(
)
;

2
3
1

2
3
2

m
f
c
_
p
u
t
(
(
v
o
i
d

*
)
o
u
t
_
d
a
t
a

+
1
6

*
1
0
2
4
,

c
a
l
l
c
t
x
-
>
e
a
_
o
u
t

+
1
6

*
1
0
2
4
,

s
i
z
e
o
f
(
o
u
t
_
d
a
t
a
)

/
2
,

t
a
g
_
i
d
,

0
,

0
)
;

2
3
3

m
f
c
_
r
e
a
d
_
t
a
g
_
s
t
a
t
u
s
_
a
l
l
(
)
;

159



2
3
4

}

2
3
5

2
3
6

m
f
c
_
t
a
g
_
r
e
l
e
a
s
e
(
t
a
g
_
i
d
)
;

2
3
7

r
e
t
u
r
n

0
;

2
3
8

}

2
3
9

2
4
0

u
i
n
t
6
4
_
t

*
a
r
r
d
a
t
a

=
(
u
i
n
t
6
4
_
t

*
)
(
c
a
l
l
c
t
x
-
>
a
r
g
_
d
a
t
a

+
4
8
)
;

2
4
1

f
o
r

(
i

=
0
;

i
<

c
a
l
l
c
t
x
-
>
a
r
g
_
s
i
z
e
;

+
+
i
)

{

2
4
2

i
f

(
c
a
l
l
c
t
x
-
>
a
r
g
_
f
l
a
g
s

&
(
1

<
<

i
)
)

{

2
4
3

a
r
g
d
a
t
a
[
i

*
2
]

=
(
u
i
n
t
6
4
_
t
)
(
a
r
r
d
a
t
a

+
1
)
;

2
4
4

/
/

p
r
i
n
t
f
(
"
s
e
t
t
i
n
g

a
r
r
a
y

a
r
g
u
m
e
n
t

%
d

a
r
r
a
y

s
i
z
e
:

%
d

p
o
i
n
t
e
r
:

%
l
l
x
\
\
n
"
,

i
,

a
r
r
d
a
t
a
[
0
]
,

a
r
g
d
a
t
a
[
i

*
2
]
)
;

2
4
5

a
r
r
d
a
t
a

+
=

2
*

(
1

+
a
r
r
d
a
t
a
[
0
]
)
;

2
4
6

}

2
4
7

}

2
4
8

2
4
9

r
e
t
v
a
l

=
i
n
v
o
k
e
(
(
u
i
n
t
6
4
_
t
)
f
u
n
c
_
l
i
s
t
[
c
a
l
l
c
t
x
-
>
i
n
d
e
x
]
.
a
d
d
r
,

c
a
l
l
c
t
x
-
>
a
r
g
_
s
i
z
e
,

c
a
l
l
c
t
x
-
>
a
r
g
_
d
a
t
a
)
;

2
5
0

i
f

(
f
u
n
c
_
r
e
t
s
[
c
a
l
l
c
t
x
-
>
i
n
d
e
x
]

=
=

0
)

2
5
1

{

2
5
2

*
(
(
i
n
t

*
)
o
u
t
_
d
a
t
a
)

=
r
e
t
v
a
l
;

2
5
3

/
/

p
r
i
n
t
f
(
"
r
e
t
u
r
n

v
a
l
u
e
:

%
l
u
\
\
n
"
,

r
e
t
v
a
l
)
;

2
5
4

}

2
5
5

e
l
s
e

2
5
6

{

2
5
7

i
n
t
*

r
e
t
_
a
r
r
a
y

=
(
i
n
t
*
)
r
e
t
v
a
l
;

2
5
8

i
n
t
*

r
e
t
_
b
u
f
f
e
r

=
(
i
n
t
*
)
o
u
t
_
d
a
t
a
;

2
5
9

r
e
t
_
b
u
f
f
e
r
[
0
]

=
r
e
t
_
a
r
r
a
y
[
0
]
;

2
6
0

f
o
r

(
i

=
1
;

i
<
=

r
e
t
_
a
r
r
a
y
[
0
]
;

+
+
i
)

2
6
1

r
e
t
_
b
u
f
f
e
r
[
i
]

=
r
e
t
_
a
r
r
a
y
[
i

*
4
]
;

2
6
2

}

2
6
3

2
6
4

m
f
c
_
p
u
t
(
(
v
o
i
d

*
)
o
u
t
_
d
a
t
a
,

c
a
l
l
c
t
x
-
>
e
a
_
o
u
t
,

s
i
z
e
o
f
(
o
u
t
_
d
a
t
a
)

/
2
,

t
a
g
_
i
d
,

0
,

0
)
;

2
6
5

m
f
c
_
r
e
a
d
_
t
a
g
_
s
t
a
t
u
s
_
a
l
l
(
)
;

2
6
6

2
6
7

m
f
c
_
p
u
t
(
(
v
o
i
d

*
)
o
u
t
_
d
a
t
a

+
1
6

*
1
0
2
4
,

c
a
l
l
c
t
x
-
>
e
a
_
o
u
t

+
1
6

*
1
0
2
4
,

s
i
z
e
o
f
(
o
u
t
_
d
a
t
a
)

/
2
,

t
a
g
_
i
d
,

0
,

0
)
;

2
6
8

m
f
c
_
r
e
a
d
_
t
a
g
_
s
t
a
t
u
s
_
a
l
l
(
)
;

2
6
9

2
7
0

m
f
c
_
t
a
g
_
r
e
l
e
a
s
e
(
t
a
g
_
i
d
)
;

2
7
1

r
e
t
u
r
n

0
;

2
7
2

}

2
7
3

2
7
4

"
"
"

2
7
5

2
7
6

P
P
U
_
S
T
U
B
_
C
O
D
E

=
"
"
"

160



2
7
7

2
7
8

#
i
n
c
l
u
d
e

<
s
t
d
i
n
t
.
h
>

2
7
9

#
i
n
c
l
u
d
e

<
s
t
d
l
i
b
.
h
>

2
8
0

#
i
n
c
l
u
d
e

<
s
t
r
i
n
g
.
h
>

2
8
1

#
i
n
c
l
u
d
e

<
l
i
b
s
p
e
2
.
h
>

2
8
2

2
8
3

#
i
n
c
l
u
d
e

<
p
t
h
r
e
a
d
.
h
>

2
8
4

2
8
5

#
d
e
f
i
n
e

I
N
_
B
U
F
F
_
S
I
Z
E

1
6

*
1
0
2
4

2
8
6

#
d
e
f
i
n
e

O
U
T
_
B
U
F
F
_
S
I
Z
E

3
2

*
1
0
2
4

2
8
7

2
8
8

#
d
e
f
i
n
e

S
P
U
_
C
O
U
N
T

2

2
8
9

#
d
e
f
i
n
e

M
A
I
N
_
S
P
U
_
I
D

0

2
9
0

2
9
1

t
y
p
e
d
e
f

s
t
r
u
c
t

{

2
9
2

u
i
n
t
6
4
_
t

i
n
d
e
x
;

2
9
3

u
i
n
t
6
4
_
t

e
a
_
o
u
t
;

2
9
4

u
i
n
t
6
4
_
t

a
r
g
_
f
l
a
g
s
;

2
9
5

u
i
n
t
6
4
_
t

a
r
g
_
s
i
z
e
;

2
9
6

2
9
7

/
/

u
s
e
d

f
o
r

d
a
t
a

t
r
a
n
s
f
e
r

o
p
t
i
m
i
z
a
t
i
o
n

2
9
8

u
i
n
t
6
4
_
t

e
a
_
a
r
r
a
y
;

2
9
9

u
i
n
t
6
4
_
t

a
r
r
_
s
i
z
e
;

3
0
0

u
i
n
t
6
4
_
t

s
p
u
i
d
;

3
0
1

3
0
2

c
h
a
r

a
r
g
_
d
a
t
a
[
1
]
;

3
0
3

}
c
a
l
l
_
c
t
x
;

3
0
4

3
0
5

e
x
t
e
r
n

s
p
e
_
p
r
o
g
r
a
m
_
h
a
n
d
l
e
_
t

s
p
u
_
m
a
i
n
;

3
0
6

s
p
e
_
c
o
n
t
e
x
t
_
p
t
r
_
t

s
p
e
_
c
t
x
[
S
P
U
_
C
O
U
N
T
]
;

3
0
7

3
0
8

v
o
l
a
t
i
l
e

c
h
a
r

i
n
_
d
a
t
a
[
S
P
U
_
C
O
U
N
T
]
[
I
N
_
B
U
F
F
_
S
I
Z
E
]

_
_
a
t
t
r
i
b
u
t
e
_
_

(
(
a
l
i
g
n
e
d
(
1
2
8
)
)
)
;

3
0
9

v
o
l
a
t
i
l
e

c
h
a
r

o
u
t
_
d
a
t
a
[
S
P
U
_
C
O
U
N
T
]
[
O
U
T
_
B
U
F
F
_
S
I
Z
E
]

_
_
a
t
t
r
i
b
u
t
e
_
_

(
(
a
l
i
g
n
e
d
(
1
2
8
)
)
)
;

3
1
0

3
1
1

v
o
l
a
t
i
l
e

c
h
a
r
*

t
r
a
n
_
d
a
t
a
;

3
1
2

3
1
3

v
o
i
d

s
p
u
_
i
n
i
t
(
v
o
i
d
)

3
1
4

{

3
1
5

i
f

(
p
o
s
i
x
_
m
e
m
a
l
i
g
n
(
&
t
r
a
n
_
d
a
t
a
,

1
2
8
,

3
2

<
<

2
0
)

!
=

0
)

{

3
1
6

p
e
r
r
o
r
(
"
f
a
i
l
e
d

t
o

a
l
l
o
c
a
t
e

t
r
a
n
_
d
a
t
a
"
)
;

3
1
7

e
x
i
t
(
1
)
;

3
1
8

}

3
1
9

i
n
t

s
p
u
i
d

=
0
;

161



3
2
0

f
o
r

(
s
p
u
i
d

=
0
;

s
p
u
i
d

<
S
P
U
_
C
O
U
N
T
;

+
+
s
p
u
i
d
)

{

3
2
1

i
f

(
(
s
p
e
_
c
t
x
[
s
p
u
i
d
]

=
s
p
e
_
c
o
n
t
e
x
t
_
c
r
e
a
t
e
(
0
,

N
U
L
L
)
)

=
=

N
U
L
L
)

3
2
2

{

3
2
3

p
e
r
r
o
r
(
"
F
a
i
l
e
d

c
r
e
a
t
i
n
g

c
o
n
t
e
x
t
"
)
;

3
2
4

e
x
i
t
(
1
)
;

3
2
5

}

3
2
6

3
2
7

/
/

p
r
i
n
t
f
(
"
l
o
a
d
i
n
g

p
r
o
g
r
a
m
.
.
.
\
\
n
"
)
;

3
2
8

i
f

(
s
p
e
_
p
r
o
g
r
a
m
_
l
o
a
d
(
s
p
e
_
c
t
x
[
s
p
u
i
d
]
,

&
s
p
u
_
m
a
i
n
)
)

{

3
2
9

p
e
r
r
o
r
(
"
F
a
i
l
e
d

l
o
a
d
i
n
g

p
r
o
g
r
a
m
"
)
;

3
3
0

e
x
i
t
(
1
)
;

3
3
1

}

3
3
2

}

3
3
3

}

3
3
4

3
3
5

v
o
i
d

s
p
u
_
e
x
i
t
(
v
o
i
d
)

3
3
6

{

3
3
7

i
n
t

s
p
u
i
d

=
0
;

3
3
8

f
o
r

(
s
p
u
i
d

=
0
;

s
p
u
i
d

<
S
P
U
_
C
O
U
N
T
;

+
+
s
p
u
i
d
)

{

3
3
9

i
f

(
s
p
e
_
c
o
n
t
e
x
t
_
d
e
s
t
r
o
y
(
s
p
e
_
c
t
x
[
s
p
u
i
d
]
)
)

{

3
4
0

p
e
r
r
o
r
(
"
f
a
i
l
e
d

t
o

d
e
s
t
r
o
y

c
o
n
t
e
x
t
"
)
;

3
4
1

e
x
i
t
(
1
)
;

3
4
2

}

3
4
3

}

3
4
4

f
r
e
e
(
t
r
a
n
_
d
a
t
a
)
;

3
4
5

}

3
4
6

3
4
7

i
n
t

s
p
u
_
i
n
v
o
k
e
(
i
n
t

c
t
x
i
d
)

3
4
8

{

3
4
9

u
i
n
t
3
2
_
t

e
n
t
r
y

=
S
P
E
_
D
E
F
A
U
L
T
_
E
N
T
R
Y
;

3
5
0

s
p
e
_
s
t
o
p
_
i
n
f
o
_
t

s
t
o
p
_
i
n
f
o
;

3
5
1

i
f

(
s
p
e
_
c
o
n
t
e
x
t
_
r
u
n
(
s
p
e
_
c
t
x
[
c
t
x
i
d
]
,

&
e
n
t
r
y
,

0
,

(
v
o
i
d
*
)
(
i
n
_
d
a
t
a
[
c
t
x
i
d
]
)
,

N
U
L
L
,

&
s
t
o
p
_
i
n
f
o
)

!
=

0
)

{

3
5
2

p
e
r
r
o
r
(
"
F
a
i
l
e
d

r
u
n
n
i
n
g

c
o
n
t
e
x
t
"
)
;

3
5
3

e
x
i
t
(
1
)
;

3
5
4

}

3
5
5

r
e
t
u
r
n

0
;

3
5
6

}

3
5
7

3
5
8

i
n
t

s
p
u
_
i
n
v
o
k
e
2
(
i
n
t

c
t
x
i
d
)

3
5
9

{

3
6
0

i
f

(
s
p
e
_
p
r
o
g
r
a
m
_
l
o
a
d
(
s
p
e
_
c
t
x
[
c
t
x
i
d
]
,

&
s
p
u
_
m
a
i
n
)
)

{

3
6
1

p
e
r
r
o
r
(
"
F
a
i
l
e
d

l
o
a
d
i
n
g

p
r
o
g
r
a
m
"
)
;

3
6
2

e
x
i
t
(
1
)
;

162



3
6
3

}

3
6
4

3
6
5

s
p
u
_
i
n
v
o
k
e
(
c
t
x
i
d
)
;

3
6
6

}

3
6
7

3
6
8

v
o
i
d

*
s
p
u
t
h
r
e
a
d
(
v
o
i
d

*
p
a
r
a
m
)

3
6
9

{

3
7
0

s
p
e
_
s
t
o
p
_
i
n
f
o
_
t

s
t
o
p
_
i
n
f
o
;

3
7
1

i
n
t

*
s
p
u
i
d

=
(
i
n
t

*
)
p
a
r
a
m
;

3
7
2

u
i
n
t
3
2
_
t

e
n
t
r
y

=
S
P
E
_
D
E
F
A
U
L
T
_
E
N
T
R
Y
;

3
7
3

3
7
4

c
a
l
l
_
c
t
x
*

c
a
l
l
c
t
x

=
(
c
a
l
l
_
c
t
x
*
)
i
n
_
d
a
t
a
[
*
s
p
u
i
d
]
;

3
7
5

c
a
l
l
c
t
x
-
>
e
a
_
o
u
t

=
(
u
i
n
t
6
4
_
t
)
o
u
t
_
d
a
t
a
[
*
s
p
u
i
d
]
;

3
7
6

3
7
7

/
/

p
r
i
n
t
f
(
"
r
u
n
n
i
n
g

p
r
o
g
r
a
m
.
.
.

%
d

%
l
l
x
\
\
n
"
,

*
s
p
u
i
d
,

c
a
l
l
c
t
x
-
>
e
a
_
a
r
r
a
y
)
;

3
7
8

i
f

(
s
p
e
_
c
o
n
t
e
x
t
_
r
u
n
(
s
p
e
_
c
t
x
[
*
s
p
u
i
d
]
,

&
e
n
t
r
y
,

0
,

(
v
o
i
d
*
)
(
c
a
l
l
c
t
x
)
,

N
U
L
L
,

&
s
t
o
p
_
i
n
f
o
)

<
0
)

{

3
7
9

p
e
r
r
o
r
(
"
F
a
i
l
e
d

r
u
n
n
i
n
g

c
o
n
t
e
x
t
"
)
;

3
8
0

e
x
i
t
(
1
)
;

3
8
1

}

3
8
2

/
/

p
r
i
n
t
f
(
"
[
%
d
]

r
e
t
u
r
n
:

%
d
\
\
n
"
,

*
s
p
u
i
d
,

(
(
i
n
t

*
)
o
u
t
_
d
a
t
a
[
*
s
p
u
i
d
]
)
[
0
]
)
;

3
8
3

p
t
h
r
e
a
d
_
e
x
i
t
(
N
U
L
L
)
;

3
8
4

}

3
8
5

3
8
6

"
"
"

3
8
7

3
8
8

d
e
f

b
u
i
l
d
_
s
o
u
r
c
e
s
(
s
r
c
f
i
l
e
,

p
a
r
a
m
_
m
a
p
)
:

3
8
9

p
p
u
s
r
c

=
o
s
.
p
a
t
h
.
j
o
i
n
(
X
L
C
_
D
I
R
,

s
r
c
f
i
l
e

+
"
_
p
p
u
.
s
"
)

3
9
0

s
p
u
s
r
c

=
o
s
.
p
a
t
h
.
j
o
i
n
(
X
L
C
_
D
I
R
,

s
r
c
f
i
l
e

+
"
_
s
p
u
.
s
"
)

3
9
1

3
9
2

c
m
d

=
"
%
s

@
S
M
L
l
o
a
d
=
s
o
u
r
c
e
s

-
r

%
s
/
%
s
.
t
i
g
"

%
(
S
M
L
_
B
I
N
,

S
R
C
_
D
I
R
,

s
r
c
f
i
l
e
)

3
9
3

r
e
t
v
a
l
,

o
u
t
p
u
t

=
r
u
n
(
c
m
d
)

3
9
4

3
9
5

n
a
m
e
d
i
c
t

=
{
}

3
9
6

3
9
7

p
p
u
f
i
l
e

=
o
p
e
n
(
p
p
u
s
r
c
,

"
w
"
)

3
9
8

s
p
u
f
i
l
e

=
o
p
e
n
(
s
p
u
s
r
c
,

"
w
"
)

3
9
9

4
0
0

i
n
s
p
u

=
F
a
l
s
e

4
0
1

f
o
r

l
i
n
e

i
n

o
u
t
p
u
t
:

4
0
2

i
f

l
i
n
e
.
s
t
a
r
t
s
w
i
t
h
(
"
#
S
P
U
_
B
E
G
I
N
"
)
:

4
0
3

i
n
s
p
u

=
T
r
u
e

4
0
4

c
o
n
t
i
n
u
e

4
0
5

i
f

l
i
n
e
.
s
t
a
r
t
s
w
i
t
h
(
"
#
S
P
U
_
E
N
D
"
)
:

163



4
0
6

i
n
s
p
u

=
F
a
l
s
e

4
0
7

c
o
n
t
i
n
u
e

4
0
8

4
0
9

i
f

i
n
s
p
u

a
n
d

l
i
n
e
.
s
t
a
r
t
s
w
i
t
h
(
"
#
F
R
A
M
E

<
s
p
u
>
"
)
:

4
1
0

f
i
e
l
d
s

=
l
i
n
e
.
s
p
l
i
t
(
)

4
1
1

f
u
n
c
_
l
a
b
e
l

=
f
i
e
l
d
s
[
2
]

4
1
2

f
u
n
c
_
n
a
m
e

=
f
i
e
l
d
s
[
3
]
.
r
e
p
l
a
c
e
(
"
\
"
"
,

"
"
)

4
1
3

n
a
m
e
d
i
c
t
[
f
u
n
c
_
n
a
m
e
]

=
f
u
n
c
_
l
a
b
e
l

4
1
4

4
1
5

i
f

i
n
s
p
u
:

s
p
u
f
i
l
e
.
w
r
i
t
e
(
l
i
n
e
)

4
1
6

e
l
s
e
:

p
p
u
f
i
l
e
.
w
r
i
t
e
(
l
i
n
e
)

4
1
7

4
1
8

p
p
u
f
i
l
e
.
c
l
o
s
e
(
)

4
1
9

s
p
u
f
i
l
e
.
c
l
o
s
e
(
)

4
2
0

4
2
1

t
y
p
e
d
i
c
t

=
{

"
i
n
t
"

:
"
i
n
t
"
,

"
i
n
t
A
r
r
a
y
"

:
"
u
i
n
t
6
4
_
t

*
"

}

4
2
2

4
2
3

s
t
u
b
s
r
c

=
o
s
.
p
a
t
h
.
j
o
i
n
(
X
L
C
_
D
I
R
,

s
r
c
f
i
l
e

+
"
_
s
t
u
b
.
c
"
)

4
2
4

s
t
u
b
f
i
l
e

=
o
p
e
n
(
s
t
u
b
s
r
c
,

"
w
"
)

4
2
5

4
2
6

s
t
u
b
f
i
l
e
.
w
r
i
t
e
(
P
P
U
_
S
T
U
B
_
C
O
D
E
)

4
2
7

4
2
8

f
u
n
c
_
e
x
t
e
r
n

=
[
]

4
2
9

f
u
n
c
_
i
n
d
e
x

=
0

4
3
0

f
o
r

f
u
n
c
_
n
a
m
e
,

f
u
n
c
_
p
a
r
a
m
s

i
n

p
a
r
a
m
_
m
a
p
.
i
t
e
m
s
(
)
:

4
3
1

f
u
n
c
_
l
a
b
e
l

=
n
a
m
e
d
i
c
t
[
f
u
n
c
_
n
a
m
e
]

4
3
2

f
u
n
c
_
r
e
t

=
f
u
n
c
_
p
a
r
a
m
s
[
0
]

4
3
3

f
u
n
c
_
p
a
r
a
m
s

=
f
u
n
c
_
p
a
r
a
m
s
[
1
:
]

4
3
4

4
3
5

a
r
g
_
a
s
s
i
g
n

=
[
]

4
3
6

p
o
s

=
0

4
3
7

a
r
g
_
f
l
a
g
s

=
0

4
3
8

a
r
g
_
s
i
z
e

=
l
e
n
(
f
u
n
c
_
p
a
r
a
m
s
)

4
3
9

a
r
g
_
a
s
s
i
g
n
.
a
p
p
e
n
d
(
"

u
i
n
t
6
4
_
t
*

d
e
s
t

=
(
u
i
n
t
6
4
_
t

*
)
(
c
a
l
l
c
t
x
-
>
a
r
g
_
d
a
t
a

+
4
8
)
;

i
n
t

i
=

0
;
"
)

4
4
0

a
r
g
_
i
t

=
0

4
4
1

f
o
r

i
,
t

i
n

f
u
n
c
_
p
a
r
a
m
s
:

4
4
2

i
f

t
=
=

’
i
n
t
A
r
r
a
y
’
:

4
4
3

a
r
g
_
f
l
a
g
s

=
a
r
g
_
f
l
a
g
s

|
(
1

<
<

a
r
g
_
i
t
)

4
4
4

a
r
g
_
a
s
s
i
g
n
.
a
p
p
e
n
d
(
"

/
/

p
r
i
n
t
f
(
\
"
p
r
e
p
a
r
i
n
g

a
r
r
a
y

l
e
n
g
t
h
:

%
%
d
\
\
n
\
"
,

%
s
[
0
]
)
;
"

%
i
)

4
4
5

a
r
g
_
a
s
s
i
g
n
.
a
p
p
e
n
d
(
"

*
(
d
e
s
t
+
+
)

=
(
%
s
[
0
]

|
(
%
s
[
0
]

<
<

3
2
)
)
;
*
d
e
s
t

=
*
(
d
e
s
t

-
1
)
;

d
e
s
t
+
+
;
"

%
(
i
,

i

)
)

4
4
6

a
r
g
_
a
s
s
i
g
n
.
a
p
p
e
n
d
(
"

f
o
r

(
i

=
0
;

i
<

%
s
[
0
]
;

+
+
i
)

{
*
(
d
e
s
t
+
+
)

=
(
%
s
[
i
+
1
]

|
(
%
s
[
i
+
1
]

<
<

3
2
)
)
;

*

d
e
s
t

=
*
(
d
e
s
t

-
1
)
;
d
e
s
t
+
+
;
}
"

%
(
i
,

i
,

i
)
)

164



4
4
7

a
r
g
_
a
s
s
i
g
n
.
a
p
p
e
n
d
(
"

*
(
(
u
i
n
t
6
4
_
t
*
)
(
c
a
l
l
c
t
x
-
>
a
r
g
_
d
a
t
a

+
%
d
)
)

=
0
;
"

%
p
o
s
)

4
4
8

e
l
s
e
:

4
4
9

a
r
g
_
a
s
s
i
g
n
.
a
p
p
e
n
d
(
"

*
(
(
u
i
n
t
6
4
_
t
*
)
(
c
a
l
l
c
t
x
-
>
a
r
g
_
d
a
t
a

+
%
d
)
)

=
%
s
;
"

%
(
p
o
s
,

i
)
)

4
5
0

p
o
s

=
p
o
s

+
1
6

4
5
1

a
r
g
_
i
t

=
a
r
g
_
i
t

+
1

4
5
2

4
5
3

f
u
n
c
_
t
e
x
t

=
’
’
;

4
5
4

i
f

f
u
n
c
_
r
e
t

=
=

’
i
n
t
A
r
r
a
y
’
:

f
u
n
c
_
t
e
x
t

=
’
i
n
t
*
’

4
5
5

e
l
s
e
:

f
u
n
c
_
t
e
x
t

=
’
i
n
t
’

4
5
6

f
u
n
c
_
t
e
x
t

+
=

"
s
p
u
c
a
l
l
_
%
s
(
"

%
f
u
n
c
_
l
a
b
e
l

4
5
7

f
u
n
c
_
t
e
x
t

+
=

"
,
"
.
j
o
i
n
(
[
t
y
p
e
d
i
c
t
[
t
]

+
"

"
+

i
f
o
r

i
,
t

i
n

f
u
n
c
_
p
a
r
a
m
s
]
)

4
5
8

f
u
n
c
_
t
e
x
t

+
=

"
)
\
n
{
\
n
"

4
5
9

f
u
n
c
_
t
e
x
t

+
=

"
"
"

4
6
0

c
a
l
l
_
c
t
x
*

c
a
l
l
c
t
x
;

4
6
1

i
n
t
*

r
e
s

=
(
i
n
t
*
)
o
u
t
_
d
a
t
a
[
M
A
I
N
_
S
P
U
_
I
D
]
;

4
6
2

\
n
"
"
"

4
6
3

f
u
n
c
_
t
e
x
t

+
=

"
"
"

4
6
4

c
a
l
l
c
t
x

=
(
c
a
l
l
_
c
t
x
*
)
i
n
_
d
a
t
a
[
M
A
I
N
_
S
P
U
_
I
D
]
;

4
6
5

m
e
m
s
e
t
(
c
a
l
l
c
t
x
,

0
,

s
i
z
e
o
f
(
*
c
a
l
l
c
t
x
)
)
;

4
6
6

c
a
l
l
c
t
x
-
>
i
n
d
e
x

=
%
d
;

4
6
7

c
a
l
l
c
t
x
-
>
e
a
_
o
u
t

=
(
u
i
n
t
6
4
_
t
)
o
u
t
_
d
a
t
a
[
M
A
I
N
_
S
P
U
_
I
D
]
;

4
6
8

c
a
l
l
c
t
x
-
>
a
r
g
_
f
l
a
g
s

=
%
d
;

4
6
9

c
a
l
l
c
t
x
-
>
a
r
g
_
s
i
z
e

=
%
d
;

4
7
0

c
a
l
l
c
t
x
-
>
e
a
_
a
r
r
a
y

=
0
;

4
7
1

c
a
l
l
c
t
x
-
>
a
r
r
_
s
i
z
e

=
0
;

4
7
2

c
a
l
l
c
t
x
-
>
s
p
u
i
d

=
M
A
I
N
_
S
P
U
_
I
D
;

4
7
3

%
s

4
7
4

s
p
u
_
i
n
v
o
k
e
2
(
M
A
I
N
_
S
P
U
_
I
D
)
;

4
7
5

\
n
"
"
"

%
(
f
u
n
c
_
i
n
d
e
x
,

a
r
g
_
f
l
a
g
s
,

a
r
g
_
s
i
z
e
,

"
\
n
"
.
j
o
i
n
(
a
r
g
_
a
s
s
i
g
n
)
)

4
7
6

i
f

f
u
n
c
_
r
e
t

=
=

’
i
n
t
A
r
r
a
y
’
:

4
7
7

f
u
n
c
_
t
e
x
t

+
=

"
"
"

4
7
8

{

4
7
9

l
o
n
g

l
o
n
g
*

r
e
s
u
l
t

=
(
l
o
n
g

l
o
n
g

*
)
m
a
l
l
o
c
(
s
i
z
e
o
f
(
l
o
n
g

l
o
n
g
)

*
(
r
e
s
[
0
]

+
1
)
)
;

4
8
0

f
o
r

(
i

=
0
;

i
<
=

r
e
s
[
0
]
;

+
+
i
)

r
e
s
u
l
t
[
i
]

=
(
l
o
n
g

l
o
n
g
)
r
e
s
[
i
]
;

4
8
1

r
e
t
u
r
n

r
e
s
u
l
t
;

4
8
2

}

4
8
3

}

4
8
4

4
8
5

"
"
"

4
8
6

e
l
s
e
:

4
8
7

f
u
n
c
_
t
e
x
t

+
=

"
r
e
t
u
r
n

r
e
s
[
0
]
;
\
n
}
\
n
\
n
"

4
8
8

4
8
9

i
f

f
u
n
c
_
r
e
t

=
=

’
i
n
t
A
r
r
a
y
’
:

f
u
n
c
_
t
e
x
t

+
=

’
i
n
t
*
’

165



4
9
0

e
l
s
e
:

f
u
n
c
_
t
e
x
t

+
=

’
i
n
t
’

4
9
1

4
9
2

f
u
n
c
_
t
e
x
t

+
=

"
"
"

p
a
r
c
a
l
l
_
%
s
(
u
i
n
t
6
4
_
t
*

a
,

i
n
t

s
t
e
p
,

i
n
t

l
e
n
)

4
9
3

{

4
9
4

i
n
t

s
t
a
r
t

=
0
;

4
9
5

i
n
t

s
p
u
i
d

=
0
;

4
9
6

p
t
h
r
e
a
d
_
t

t
h
r
e
a
d
s
[
S
P
U
_
C
O
U
N
T
]
;

4
9
7

i
n
t

t
h
r
e
a
d
i
d
[
S
P
U
_
C
O
U
N
T
]
;

4
9
8

c
a
l
l
_
c
t
x
*

c
a
l
l
c
t
x
;

4
9
9

u
i
n
t
6
4
_
t
*

a
r
r
d
a
t
a
;

5
0
0

5
0
1

/
/

t
r
y

t
o

u
s
e

a
l
l

t
h
e

s
p
u

c
o
r
e
s

5
0
2

i
n
t

s
p
u
c
o
u
n
t

=
S
P
U
_
C
O
U
N
T
;

5
0
3

i
n
t

g
r
o
u
p
s
i
z
e

=
s
t
e
p
;

5
0
4

5
0
5

p
t
h
r
e
a
d
_
a
t
t
r
_
t

a
t
t
r
;

5
0
6

p
t
h
r
e
a
d
_
a
t
t
r
_
i
n
i
t
(
&
a
t
t
r
)
;

5
0
7

p
t
h
r
e
a
d
_
a
t
t
r
_
s
e
t
d
e
t
a
c
h
s
t
a
t
e
(
&
a
t
t
r
,

P
T
H
R
E
A
D
_
C
R
E
A
T
E
_
J
O
I
N
A
B
L
E
)
;

5
0
8

5
0
9

/
/

c
h
e
c
k

h
o
w

m
a
n
y

s
p
u

c
o
r
e
s

w
e

r
e
a
l
l
y

n
e
e
d

5
1
0

i
f

(
g
r
o
u
p
s
i
z
e

*
s
i
z
e
o
f
(
u
i
n
t
6
4
_
t
)

<
1
2
8
)

5
1
1

g
r
o
u
p
s
i
z
e

=
1
2
8

/
s
i
z
e
o
f
(
u
i
n
t
6
4
_
t
)
;

5
1
2

i
f

(
s
p
u
c
o
u
n
t

>
(
l
e
n

+
g
r
o
u
p
s
i
z
e

-
1
)

/
g
r
o
u
p
s
i
z
e
)

5
1
3

s
p
u
c
o
u
n
t

=
(
l
e
n

+
g
r
o
u
p
s
i
z
e

-
1
)

/
g
r
o
u
p
s
i
z
e
;

5
1
4

5
1
5

m
e
m
c
p
y
(
t
r
a
n
_
d
a
t
a
,

a
+

1
,

l
e
n

*
s
i
z
e
o
f
(
u
i
n
t
6
4
_
t
)
)
;

5
1
6

5
1
7

f
o
r

(
s
p
u
i
d

=
0
;

s
p
u
i
d

<
s
p
u
c
o
u
n
t
;

+
+
s
p
u
i
d
)

{

5
1
8

c
a
l
l
c
t
x

=
(
c
a
l
l
_
c
t
x
*
)
i
n
_
d
a
t
a
[
s
p
u
i
d
]
;

5
1
9

m
e
m
s
e
t
(
c
a
l
l
c
t
x
,

0
,

s
i
z
e
o
f
(
*
c
a
l
l
c
t
x
)
)
;

5
2
0

c
a
l
l
c
t
x
-
>
i
n
d
e
x

=
%
d
;

5
2
1

c
a
l
l
c
t
x
-
>
e
a
_
o
u
t

=
(
u
i
n
t
6
4
_
t
)
o
u
t
_
d
a
t
a
[
s
p
u
i
d
]
;

5
2
2

c
a
l
l
c
t
x
-
>
a
r
g
_
f
l
a
g
s

=
%
d
;

5
2
3

c
a
l
l
c
t
x
-
>
a
r
g
_
s
i
z
e

=
%
d
;

5
2
4

5
2
5

/
/

i
n

p
a
r
c
a
l
l

m
o
d
e
,

l
e
t

s
p
u

h
a
n
d
l
e

t
h
e

d
a
t
a

5
2
6

c
a
l
l
c
t
x
-
>
e
a
_
a
r
r
a
y

=
(
u
i
n
t
6
4
_
t
)
t
r
a
n
_
d
a
t
a
;

5
2
7

c
a
l
l
c
t
x
-
>
a
r
r
_
s
i
z
e

=
l
e
n
;

5
2
8

c
a
l
l
c
t
x
-
>
s
p
u
i
d

=
s
p
u
i
d
;

5
2
9

5
3
0

/
*

5
3
1

d
e
s
t

=
(
u
i
n
t
6
4
_
t
*
)
(
c
a
l
l
c
t
x
-
>
a
r
g
_
d
a
t
a

+
4
8
)
;

5
3
2

*
(
d
e
s
t
+
+
)

=
(
(
u
i
n
t
6
4
_
t
)
s
t
e
p

|
(
(
u
i
n
t
6
4
_
t
)
s
t
e
p

<
<

3
2
)
)
;

*
d
e
s
t

=
*
(
d
e
s
t

-
1
)
;

d
e
s
t
+
+
;

166



5
3
3

f
o
r

(
i

=
s
t
a
r
t

+
s
p
u
i
d

*
s
t
e
p
;

i
<

s
t
a
r
t

+
(
s
p
u
i
d

+
1
)

*
s
t
e
p
;

+
+
i
)

{
*
(
d
e
s
t
+
+
)

=
(
a
[
i
+
1
]

|
(
a
[
i
+
1
]

<
<

3
2
)
)
;

*

d
e
s
t

=
*
(
d
e
s
t

-
1
)
;

d
e
s
t
+
+
;

}

5
3
4

*
/

5
3
5

5
3
6

*
(
(
u
i
n
t
6
4
_
t
*
)
(
c
a
l
l
c
t
x
-
>
a
r
g
_
d
a
t
a

+
0
)
)

=
0
;

5
3
7

*
(
(
u
i
n
t
6
4
_
t
*
)
(
c
a
l
l
c
t
x
-
>
a
r
g
_
d
a
t
a

+
1
6
)
)

=
s
p
u
c
o
u
n
t
;

5
3
8

*
(
(
u
i
n
t
6
4
_
t
*
)
(
c
a
l
l
c
t
x
-
>
a
r
g
_
d
a
t
a

+
3
2
)
)

=
s
t
e
p
;

5
3
9

5
4
0

}

5
4
1

5
4
2

f
o
r

(
s
p
u
i
d

=
0
;

s
p
u
i
d

<
s
p
u
c
o
u
n
t
;

+
+
s
p
u
i
d
)

{

5
4
3

t
h
r
e
a
d
i
d
[
s
p
u
i
d
]

=
s
p
u
i
d
;

5
4
4

p
t
h
r
e
a
d
_
c
r
e
a
t
e
(
&
t
h
r
e
a
d
s
[
s
p
u
i
d
]
,

&
a
t
t
r
,

s
p
u
t
h
r
e
a
d
,

&
t
h
r
e
a
d
i
d
[
s
p
u
i
d
]
)
;

5
4
5

}

5
4
6

f
o
r

(
s
p
u
i
d

=
0
;

s
p
u
i
d

<
s
p
u
c
o
u
n
t
;

+
+
s
p
u
i
d
)

{

5
4
7

v
o
i
d
*

s
t
a
t
u
s

=
N
U
L
L
;

5
4
8

p
t
h
r
e
a
d
_
j
o
i
n
(
t
h
r
e
a
d
s
[
s
p
u
i
d
]
,

&
s
t
a
t
u
s
)
;

5
4
9

}

5
5
0

p
t
h
r
e
a
d
_
a
t
t
r
_
d
e
s
t
r
o
y
(
&
a
t
t
r
)
;

5
5
1

"
"
"

%
(
f
u
n
c
_
l
a
b
e
l
,

f
u
n
c
_
i
n
d
e
x
,

a
r
g
_
f
l
a
g
s
,

a
r
g
_
s
i
z
e
)

5
5
2

5
5
3

i
f

f
u
n
c
_
r
e
t

=
=

’
i
n
t
A
r
r
a
y
’
:

5
5
4

f
u
n
c
_
t
e
x
t

+
=

"
"
"

5
5
5

{

5
5
6

i
n
t

t
o
t
a
l
_
l
e
n

=
0
;

5
5
7

i
n
t

i
=

0
;

5
5
8

f
o
r

(
s
p
u
i
d

=
0
;

s
p
u
i
d

<
s
p
u
c
o
u
n
t
;

+
+
s
p
u
i
d
)

5
5
9

{

5
6
0

i
n
t
*

s
p
u
r
e
s

=
(
i
n
t
*
)
o
u
t
_
d
a
t
a
[
s
p
u
i
d
]
;

5
6
1

t
o
t
a
l
_
l
e
n

+
=

s
p
u
r
e
s
[
0
]
;

5
6
2

}

5
6
3

l
o
n
g

l
o
n
g
*

r
e
s
u
l
t

=
(
l
o
n
g

l
o
n
g

*
)
m
a
l
l
o
c
(
s
i
z
e
o
f
(
l
o
n
g

l
o
n
g
)

*
(
t
o
t
a
l
_
l
e
n

+
1
)
)
;

5
6
4

i
n
t

c
u
r
r
p
o
s

=
1
;

5
6
5

r
e
s
u
l
t
[
0
]

=
t
o
t
a
l
_
l
e
n
;

5
6
6

f
o
r

(
s
p
u
i
d

=
0
;

s
p
u
i
d

<
s
p
u
c
o
u
n
t
;

+
+
s
p
u
i
d
)

5
6
7

{

5
6
8

i
n
t
*

s
p
u
r
e
s

=
(
i
n
t
*
)
o
u
t
_
d
a
t
a
[
s
p
u
i
d
]
;

5
6
9

f
o
r

(
i

=
1
;

i
<
=

s
p
u
r
e
s
[
0
]
;

+
+
i
)

r
e
s
u
l
t
[
c
u
r
r
p
o
s
+
+
]

=
(
l
o
n
g

l
o
n
g
)
s
p
u
r
e
s
[
i
]
;

5
7
0

}

5
7
1

r
e
t
u
r
n

r
e
s
u
l
t
;

5
7
2

}

5
7
3

}

5
7
4

"
"
"

167



5
7
5

5
7
6

e
l
s
e
:

5
7
7

f
u
n
c
_
t
e
x
t

+
=

"
r
e
t
u
r
n

0
;
\
n
}
\
n
"
;

5
7
8

5
7
9

f
u
n
c
_
e
x
t
e
r
n
.
a
p
p
e
n
d
(
"
e
x
t
e
r
n

i
n
t

%
s
(
%
s
)
;
"

%
(
f
u
n
c
_
l
a
b
e
l
,

"
,
"
.
j
o
i
n
(
[
t

f
o
r

i
,
t

i
n

f
u
n
c
_
p
a
r
a
m
s
]
)
)
)

5
8
0

f
u
n
c
_
i
n
d
e
x

=
f
u
n
c
_
i
n
d
e
x

+
1

5
8
1

5
8
2

s
t
u
b
f
i
l
e
.
w
r
i
t
e
(
f
u
n
c
_
t
e
x
t
)

5
8
3

5
8
4

s
t
u
b
f
i
l
e
.
c
l
o
s
e
(
)

5
8
5

5
8
6

s
p
u
m
a
i
n
s
r
c

=
o
s
.
p
a
t
h
.
j
o
i
n
(
X
L
C
_
D
I
R
,

s
r
c
f
i
l
e

+
"
_
s
p
u
m
a
i
n
.
c
"
)

5
8
7

s
p
u
m
a
i
n
f
i
l
e

=
o
p
e
n
(
s
p
u
m
a
i
n
s
r
c
,

"
w
"
)

5
8
8

5
8
9

f
u
n
c
d
i
c
t

=
"
,
\
n
"
.
j
o
i
n
(
[
"
{
\
"
%
s
\
"
,

(
u
i
n
t
6
4
_
t
)
%
s

}
"

%
(
n
a
m
e
d
i
c
t
[
f
n
a
m
e
]
,

n
a
m
e
d
i
c
t
[
f
n
a
m
e
]
)

f
o
r

f
n
a
m
e

i
n

p
a
r
a
m
_
m
a
p
.
k
e
y
s
(
)

]
)

5
9
0

d
e
f

r
e
t
t
y
p
e
(
t
y
p
e
n
a
m
e
)
:

5
9
1

i
f

t
y
p
e
n
a
m
e

=
=

’
i
n
t
A
r
r
a
y
’
:

r
e
t
u
r
n

’
1
’

5
9
2

r
e
t
u
r
n

’
0
’

5
9
3

f
u
n
c
r
e
t
s

=
"
,
\
n
"
.
j
o
i
n
(
[
r
e
t
t
y
p
e
(
p
a
r
a
m
s
[
0
]
)

f
o
r

p
a
r
a
m
s

i
n

p
a
r
a
m
_
m
a
p
.
v
a
l
u
e
s
(
)
]
)

5
9
4

5
9
5

s
p
u
m
a
i
n
f
i
l
e
.
w
r
i
t
e
(
"
#
i
n
c
l
u
d
e

<
s
t
d
i
n
t
.
h
>
\
n
"
)

5
9
6

s
p
u
m
a
i
n
f
i
l
e
.
w
r
i
t
e
(
"
t
y
p
e
d
e
f

u
i
n
t
3
2
_
t

*
i
n
t
A
r
r
a
y
;
\
n
"
)

5
9
7

s
p
u
m
a
i
n
f
i
l
e
.
w
r
i
t
e
(
"
\
n
"
.
j
o
i
n
(
f
u
n
c
_
e
x
t
e
r
n
)
)

5
9
8

s
p
u
m
a
i
n
f
i
l
e
.
w
r
i
t
e
(
S
P
U
_
I
N
V
O
K
E
_
C
O
D
E
.
r
e
p
l
a
c
e
(
"
F
U
N
C
_
D
I
C
T
"
,

f
u
n
c
d
i
c
t
)
.
r
e
p
l
a
c
e
(
"
F
U
N
C
_
R
E
T
S
"
,

f
u
n
c
r
e
t
s
)
)

5
9
9

6
0
0

s
p
u
m
a
i
n
f
i
l
e
.
c
l
o
s
e
(
)

6
0
1

6
0
2

s
p
u
s
r
c
s

=
[

s
p
u
m
a
i
n
s
r
c
,

s
p
u
s
r
c

]

6
0
3

p
p
u
s
r
c
s

=
[

s
t
u
b
s
r
c
,

p
p
u
s
r
c

]

6
0
4

r
e
t
u
r
n

s
p
u
s
r
c
s
,

p
p
u
s
r
c
s

6
0
5

6
0
6

#

6
0
7

#
b
u
i
l
d

t
h
e

t
a
r
g
e
t

e
x
e
c
u
t
a
b
l
e

f
i
l
e

w
i
t
h

a
l
l

s
o
u
r
c
e
s

f
i
l
e

g
e
n
e
r
a
t
e
d

6
0
8

#

6
0
9

d
e
f

b
u
i
l
d
_
t
a
r
g
e
t
(
t
a
r
g
e
t
,

s
p
u
s
r
c
s
,

p
p
u
s
r
c
s
)
:

6
1
0

s
p
u
g
c
c

=
"
/
u
s
r
/
b
i
n
/
s
p
u
-
g
c
c

-
I
%
s

-
O
2

-
o

%
s
/
s
p
u
_
m
a
i
n

%
s

.
/
l
i
b
t
i
g
e
r
.
c
"

%
(
S
D
K
_
I
N
C
,

X
L
C
_
D
I
R
,

"
"
.
j
o
i
n
(
s
p
u
s
r
c
s
)
)

6
1
1

r
u
n
(
s
p
u
g
c
c
)

6
1
2

6
1
3

e
m
b
e
d
g
c
c

=
"
/
u
s
r
/
b
i
n
/
p
p
u
-
e
m
b
e
d
s
p
u

s
p
u
_
m
a
i
n

%
s
/
s
p
u
_
m
a
i
n

%
s
/
s
p
u
_
m
a
i
n
-
e
m
b
e
d
.
o
"

%
(
X
L
C
_
D
I
R
,

X
L
C
_
D
I
R
)

6
1
4

r
u
n
(
e
m
b
e
d
g
c
c
)

6
1
5

6
1
6

a
r
g
c
c

=
"
/
u
s
r
/
b
i
n
/
p
p
u
-
a
r

-
q
c
s

%
s
/
s
p
u
_
m
a
i
n
.
a

%
s
/
s
p
u
_
m
a
i
n
-
e
m
b
e
d
.
o
"

%
(
X
L
C
_
D
I
R
,

X
L
C
_
D
I
R
)

168



6
1
7

r
u
n
(
a
r
g
c
c
)

6
1
8

6
1
9

p
p
u
g
c
c

=
"
/
u
s
r
/
b
i
n
/
p
p
u
-
g
c
c

-
g

-
I
%
s

-
L
%
s

-
R
%
s

-
m
a
b
i
=
a
l
t
i
v
e
c

-
m
a
l
t
i
v
e
c

-
O
2

%
s

.
/
l
i
b
t
i
g
e
r
.
c

.
/
l
i
b
t
i
g
e
r
2
.
c

%
s
/
s
p
u
_
m
a
i
n
.
a

-
o

%
s

-
l
s
p
e
2

-
l
p
t
h
r
e
a
d
"

%
(

6
2
0

P
P
U
_
I
N
C
,

P
P
U
_
L
I
B
,

P
P
U
_
L
I
B
,

6
2
1

"
"
.
j
o
i
n
(
p
p
u
s
r
c
s
)
,

X
L
C
_
D
I
R
,

t
a
r
g
e
t
)

6
2
2

r
u
n
(
p
p
u
g
c
c
)

6
2
3

6
2
4

d
e
f

p
r
o
c
e
s
s
_
o
p
t
i
o
n
s
(
o
p
t
i
o
n
s
)
:

6
2
5

g
l
o
b
a
l

V
E
R
B
O
S
E

6
2
6

f
o
r

o
p
t
i
o
n

i
n

o
p
t
i
o
n
s
:

6
2
7

i
f

o
p
t
i
o
n

=
=

"
-
v
"
:

V
E
R
B
O
S
E
=
T
r
u
e

6
2
8

6
2
9

d
e
f

m
a
i
n
(
a
r
g
v
)
:

6
3
0

p
r
i
n
t

"
T
i
g
e
r

C
o
m
p
i
l
e
r
"

6
3
1

i
f

l
e
n
(
a
r
g
v
)

<
2
:

6
3
2

r
a
i
s
e

E
x
c
e
p
t
i
o
n
(
"
B
a
d

u
s
a
g
e
:

t
i
g
c

[
s
r
c
]

[
t
a
r
g
e
t
]
"
)

6
3
3

6
3
4

p
r
i
n
t

a
r
g
v
[
0
]

6
3
5

6
3
6

p
r
o
c
e
s
s
_
o
p
t
i
o
n
s
(
a
r
g
v
[
2
:
]
)

6
3
7

6
3
8

p
a
r
a
m
_
m
a
p

=
b
u
i
l
d
_
p
a
r
a
m
_
m
a
p
(
a
r
g
v
[
0
]
)

6
3
9

p
r
i
n
t

p
a
r
a
m
_
m
a
p

6
4
0

6
4
1

t
a
r
g
e
t

=
a
r
g
v
[
1
]

6
4
2

6
4
3

s
p
u
s
r
c
s
,

p
p
u
s
r
c
s

=
b
u
i
l
d
_
s
o
u
r
c
e
s
(
a
r
g
v
[
0
]
,

p
a
r
a
m
_
m
a
p
)

6
4
4

b
u
i
l
d
_
t
a
r
g
e
t
(
t
a
r
g
e
t
,

s
p
u
s
r
c
s
,

p
p
u
s
r
c
s
)

6
4
5

6
4
6

i
f

_
_
n
a
m
e
_
_

=
=

’
_
_
m
a
i
n
_
_
’
:

6
4
7

m
a
i
n
(
s
y
s
.
a
r
g
v
[
1
:
]
)

169



D
.

T
e
st

ca
se

s

D
.1

S
tr

a
ss

e
n

A
lg

o
ri

th
m

L
is

ti
n
g

D
.1

:
S
tr

as
se

n
A

lg
or

it
h
m

1
l
e
t

2
t
y
p
e

i
n
t
A
r
r
a
y

=
a
r
r
a
y

o
f

i
n
t

3
v
a
r

N
:
=

2
5
6

4 5
v
a
r

m
a
t
1

:
=

i
n
t
A
r
r
a
y
[
N

*
N
]

o
f

1

6
v
a
r

m
a
t
2

:
=

i
n
t
A
r
r
a
y
[
N

*
N
]

o
f

2

7 8
s
p
u
_
f
u
n
c
t
i
o
n

s
p
u
_
m
a
t
m
u
l
(
a
:

i
n
t
A
r
r
a
y
,

s
:

i
n
t
,

l
:

i
n
t
)

:
i
n
t
A
r
r
a
y

=

9
l
e
t

1
0

v
a
r

r
e
s
u
l
t

:
=

i
n
t
A
r
r
a
y
[
2
5
6
]

o
f

0

1
1

v
a
r

t
m
p

:
=

0

1
2

i
n

1
3

(

1
4

f
o
r

r
:
=

0
t
o

1
5

d
o

1
5

(

1
6

f
o
r

c
:
=

0
t
o

1
5

d
o

1
7

(

1
8

t
m
p

:
=

0
;

1
9

f
o
r

i
:
=

0
t
o

1
5

d
o

170



2
0

(
t
m
p

:
=

t
m
p

+
a
[
r

*
1
6

+
i
]

*
a
[
i

*
1
6

+
c

+
2
5
6
]
)
;

2
1

r
e
s
u
l
t
[
r

*
1
6

+
c
]

:
=

t
m
p

2
2

)

2
3

)
;

2
4

r
e
s
u
l
t

2
5

)

2
6

e
n
d

2
7

2
8

p
p
u
_
f
u
n
c
t
i
o
n

s
t
r
a
s
s
e
n
6
4
(
a
:

i
n
t
A
r
r
a
y
,

b
:

i
n
t
A
r
r
a
y
)

:
i
n
t
A
r
r
a
y

=

2
9

l
e
t

3
0

v
a
r

m
i
n
p
u
t

:
=

s
t
r
a
s
s
e
n
_
p
r
e
p
a
r
e
(
a
,

b
)

3
1

i
n

3
2

l
e
t

3
3

v
a
r

t
r

:
=

s
p
u
f
o
r

s
p
u
_
m
a
t
m
u
l

o
f

(
m
i
n
p
u
t
,

1
6

*
1
6

*
2
,

1
6

*
1
6

*
9
8
)

3
4

i
n

3
5

s
t
r
a
s
s
e
n
6
4
_
s
u
m
u
p
(
t
r
)

3
6

e
n
d

3
7

e
n
d

3
8

3
9

p
p
u
_
f
u
n
c
t
i
o
n

s
t
r
a
s
s
e
n
(
a
:

i
n
t
A
r
r
a
y
,

b
:

i
n
t
A
r
r
a
y
,

s
:

i
n
t
)

:
i
n
t
A
r
r
a
y

=

4
0

i
f

s
=

6
4

t
h
e
n

s
t
r
a
s
s
e
n
6
4
(
a
,

b
)

4
1

e
l
s
e

4
2

l
e
t

4
3

v
a
r

s
u
b
s
i
z
e

:
=

d
i
v
(
s
,

2
)

4
4

v
a
r

a
m
1

:
=

s
t
r
a
s
s
e
n
_
g
e
t
m
(
a
,

s
,

1
)

4
5

v
a
r

a
m
2

:
=

s
t
r
a
s
s
e
n
_
g
e
t
m
(
a
,

s
,

2
)

4
6

v
a
r

a
m
3

:
=

s
t
r
a
s
s
e
n
_
g
e
t
m
(
a
,

s
,

3
)

4
7

v
a
r

a
m
4

:
=

s
t
r
a
s
s
e
n
_
g
e
t
m
(
a
,

s
,

4
)

4
8

v
a
r

a
m
5

:
=

s
t
r
a
s
s
e
n
_
g
e
t
m
(
a
,

s
,

5
)

4
9

v
a
r

a
m
6

:
=

s
t
r
a
s
s
e
n
_
g
e
t
m
(
a
,

s
,

6
)

5
0

v
a
r

a
m
7

:
=

s
t
r
a
s
s
e
n
_
g
e
t
m
(
a
,

s
,

7
)

5
1

v
a
r

b
m
1

:
=

s
t
r
a
s
s
e
n
_
g
e
t
m
(
b
,

s
,

8
)

5
2

v
a
r

b
m
2

:
=

s
t
r
a
s
s
e
n
_
g
e
t
m
(
b
,

s
,

9
)

5
3

v
a
r

b
m
3

:
=

s
t
r
a
s
s
e
n
_
g
e
t
m
(
b
,

s
,

1
0
)

5
4

v
a
r

b
m
4

:
=

s
t
r
a
s
s
e
n
_
g
e
t
m
(
b
,

s
,

1
1
)

5
5

v
a
r

b
m
5

:
=

s
t
r
a
s
s
e
n
_
g
e
t
m
(
b
,

s
,

1
2
)

5
6

v
a
r

b
m
6

:
=

s
t
r
a
s
s
e
n
_
g
e
t
m
(
b
,

s
,

1
3
)

5
7

v
a
r

b
m
7

:
=

s
t
r
a
s
s
e
n
_
g
e
t
m
(
b
,

s
,

1
4
)

5
8

i
n

5
9

l
e
t

6
0

v
a
r

m
1

:
=

s
t
r
a
s
s
e
n
(
a
m
1
,

b
m
1
,

s
u
b
s
i
z
e
)

6
1

v
a
r

m
2

:
=

s
t
r
a
s
s
e
n
(
a
m
2
,

b
m
2
,

s
u
b
s
i
z
e
)

6
2

v
a
r

m
3

:
=

s
t
r
a
s
s
e
n
(
a
m
3
,

b
m
3
,

s
u
b
s
i
z
e
)

171



6
3

v
a
r

m
4

:
=

s
t
r
a
s
s
e
n
(
a
m
4
,

b
m
4
,

s
u
b
s
i
z
e
)

6
4

v
a
r

m
5

:
=

s
t
r
a
s
s
e
n
(
a
m
5
,

b
m
5
,

s
u
b
s
i
z
e
)

6
5

v
a
r

m
6

:
=

s
t
r
a
s
s
e
n
(
a
m
6
,

b
m
6
,

s
u
b
s
i
z
e
)

6
6

v
a
r

m
7

:
=

s
t
r
a
s
s
e
n
(
a
m
7
,

b
m
7
,

s
u
b
s
i
z
e
)

6
7

i
n

6
8

s
t
r
a
s
s
e
n
_
s
u
m
u
p
(
m
1
,

m
2
,

m
3
,

m
4
,

m
5
,

m
6
,

m
7
)

6
9

e
n
d

7
0

e
n
d

7
1

7
2

i
n

7
3

f
o
r

i
:
=

0
t
o

1
9
9

d
o

7
4

s
t
r
a
s
s
e
n
(
m
a
t
1
,

m
a
t
2
,

N
)

7
5

e
n
d

D
.2

n
-Q

u
e
e
n

s
P

ro
b

le
m

L
is

ti
n
g

D
.2

:
16

-q
u
ee

n
P

ro
b
le

m
1

l
e
t

2
t
y
p
e

i
n
t
A
r
r
a
y

=
a
r
r
a
y

o
f

i
n
t

3
v
a
r

S
:
=

1
5

4
v
a
r

t
r
y
v
a
l
u
e

:
=

i
n
t
A
r
r
a
y

[
S

*
1
6
]

o
f

0

5
v
a
r

c
o
u
n
t

:
=

0

6 7
s
p
u
_
f
u
n
c
t
i
o
n

t
r
y
(
c
o
l
:

i
n
t
A
r
r
a
y
,

d
i
a
g
1
:
i
n
t
A
r
r
a
y
,

d
i
a
g
2
:
i
n
t
A
r
r
a
y
,

c
:
i
n
t
)

:
i
n
t

=

8
l
e
t

9
v
a
r

c
o
u
n
t

:
=

0

1
0

v
a
r

N
:
=

1
5

1
1

i
n

1
2

(

1
3

i
f

c
=
N

t
h
e
n

c
o
u
n
t

:
=

1

1
4

e
l
s
e

f
o
r

r
:
=

0
t
o

N
-
1

d
o

1
5

i
f

c
o
l
[
r
]

=
0

&
d
i
a
g
1
[
r
+
c
]

=
0

&
d
i
a
g
2
[
r
+
N
-
1
-
c
]

=
0

t
h
e
n

1
6

(

172



1
7

c
o
l
[
r
]

:
=

1
;

d
i
a
g
1
[
r
+
c
]

:
=

1
;

1
8

d
i
a
g
2
[
r
+
N
-
1
-
c
]

:
=

1
;

1
9

c
o
u
n
t

:
=

c
o
u
n
t

+
t
r
y
(
c
o
l
,

d
i
a
g
1
,

d
i
a
g
2
,

c
+
1
)
;

2
0

c
o
l
[
r
]

:
=

0
;

d
i
a
g
1
[
r
+
c
]

:
=

0
;

2
1

d
i
a
g
2
[
r
+
N
-
1
-
c
]

:
=

0

2
2

)
;

2
3

c
o
u
n
t

2
4

)

2
5

e
n
d

2
6

2
7

s
p
u
_
f
u
n
c
t
i
o
n

q
u
e
e
n
(
a
:
i
n
t
A
r
r
a
y
,

s
:
i
n
t
,

l
:
i
n
t
)

:
i
n
t
A
r
r
a
y

=

2
8

l
e
t

2
9

v
a
r

N
:
=

1
5

3
0

v
a
r

c
o
l

:
=

i
n
t
A
r
r
a
y

[
N
]

o
f

0

3
1

v
a
r

d
i
a
g
1

:
=

i
n
t
A
r
r
a
y

[
N
+
N
-
1
]

o
f

0

3
2

v
a
r

d
i
a
g
2

:
=

i
n
t
A
r
r
a
y

[
N
+
N
-
1
]

o
f

0

3
3

v
a
r

c
o
u
n
t

:
=

i
n
t
A
r
r
a
y

[
1
]

o
f

0

3
4

i
n

3
5

(

3
6

c
o
l
[
a
[
0
]
]

:
=

1
;

d
i
a
g
1
[
a
[
0
]
]

:
=

1
;

d
i
a
g
2
[
a
[
0
]

+
N

-
1
]

:
=

1
;

3
7

c
o
u
n
t
[
0
]

:
=

c
o
u
n
t
[
0
]

+
t
r
y
(
c
o
l
,

d
i
a
g
1
,

d
i
a
g
2
,

1
)
;

3
8

c
o
u
n
t

3
9

)

4
0

e
n
d

4
1

i
n

4
2

(

4
3

f
o
r

i
:
=

0
t
o

S
-
1

d
o

4
4

(

4
5

t
r
y
v
a
l
u
e
[
i

*
1
6
]

:
=

i

4
6

)
;

4
7

l
e
t

v
a
r

r
e
s
u
l
t

:
=

s
p
u
f
o
r

q
u
e
e
n

o
f

(
t
r
y
v
a
l
u
e
,

1
6
,

S
*

1
6
)

4
8

i
n

4
9

(

5
0

f
o
r

i
:
=

0
t
o

S
-
1

d
o

5
1

(

5
2

c
o
u
n
t

:
=

c
o
u
n
t

+
r
e
s
u
l
t
[
i
]

5
3

)
;

5
4

p
r
i
n
t
(
i
t
o
a
(
c
o
u
n
t
,

1
0
)
)

5
5

)

5
6

e
n
d

5
7

)

5
8

e
n
d

173



E
.

R
e
su

lt
D

a
ta

o
f

P
e
rf

o
rm

a
n
ce

E
v
a
lu

a
ti

o
n

S
iz

e
P

P
U

1
S
P

U

M
ax

M
in

A
v
g

S
td

ev
M

ax
M

in
A

v
g

S
td

ev

64
1.

58
1.

55
6

1.
56

9
0.

01
2

4.
99

4.
89

4.
95

0.
05

2
12

8
11

.3
12

11
.2

87
11

.2
97

0.
01

3
34

.9
72

34
.0

21
34

.4
07

0.
5

25
6

88
.5

03
88

.3
37

88
.4

24
0.

08
3

24
9.

98
24

8.
97

24
9.

42
3

0.
51

2
51

2
63

4.
79

63
2.

56
63

3.
71

6
1.

11
7

17
65

.3
7

17
62

.2
5

17
63

.6
9

1.
57

3

T
ab

le
E

.1
:

S
tr

as
se

n
A

lg
or

it
h
m

(P
P

U
O

n
ly

v
s

S
im

p
le

C
al

l
M

o
d
e)

174



S
P

U
N

o
O

p
ti

m
iz

at
io

n
W

it
h

O
p
ti

m
iz

at
io

n

M
ax

M
in

A
v
g

S
td

ev
M

ax
M

in
A

v
g

S
td

ev

2
12

3.
92

12
2.

03
12

2.
84

0.
97

2
91

.3
55

90
.0

13
90

.7
51

0.
68

3
92

.9
89

91
.7

98
92

.4
85

0.
61

6
71

.5
01

70
.5

59
70

.9
22

0.
50

6
4

78
.3

37
76

.9
43

77
.6

92
0.

70
2

61
.8

37
60

.3
44

61
.2

08
0.

77
3

5
66

.9
7

65
.8

81
66

.3
77

0.
55

1
58

.9
29

57
.9

32
58

.5
49

0.
53

9
6

63
.1

04
62

.4
75

62
.6

5
0.

39
6

54
.9

15
54

.4
03

54
.7

24
0.

28
7

63
.9

7
62

.7
76

63
.2

83
0.

61
6

54
.9

72
54

.2
19

54
.5

83
0.

37
7

8
60

.1
03

58
.6

59
59

.3
28

0.
72

7
53

.9
66

52
.6

79
53

.2
43

0.
65

8

T
ab

le
E

.2
:

S
tr

as
se

n
A

lg
or

it
h
m

w
it

h
M

at
ri

x
S
iz

e
25

6
×

25
6

(D
at

a
T

ra
n
sf

er
O

p
ti

m
iz

at
io

n
on

v
s

off
)

S
P

U
64

12
8

M
ax

M
in

A
v
g

S
td

ev
M

ax
M

in
A

v
g

S
td

ev

2
1.

67
3

1.
60

4
1.

63
85

0.
04

8
11

.9
47

11
.5

76
11

.7
61

5
0.

26
2

3
1.

37
1.

05
1.

21
0.

22
6

9.
02

2
8.

76
6

8.
89

4
0.

18
1

4
1.

05
6

1.
02

2
1.

03
9

0.
02

4
7.

69
9

7.
55

3
7.

62
6

0.
10

3
5

0.
98

9
0.

93
2

0.
96

05
0.

04
7.

40
2

7.
02

1
7.

21
15

0.
26

9
6

0.
90

3
0.

87
2

0.
88

75
0.

02
1

6.
69

8
6.

62
1

6.
65

95
0.

05
4

7
0.

90
1

0.
86

6
0.

88
35

0.
02

4
6.

58
9

6.
50

2
6.

54
55

0.
06

1
8

0.
87

2
0.

84
3

0.
85

75
0.

02
6.

29
3

6.
23

3
6.

26
3

0.
04

2

T
ab

le
E

.3
:

S
tr

as
se

n
A

lg
or

it
h
m

u
n
d
er

P
ar

al
le

l
C

al
l

M
o
d
e

175



S
P

U
25

6
51

2

M
ax

M
in

A
v
g

S
td

ev
M

ax
M

in
A

v
g

S
td

ev

2
91

.3
55

90
.0

13
90

.7
5

0.
68

69
0.

72
4

68
8.

98
1

68
9.

85
25

1.
23

2
3

71
.5

01
70

.5
59

70
.9

22
0.

50
6

53
6.

97
1

53
5.

68
3

53
6.

32
7

0.
9

4
61

.8
37

60
.3

44
61

.2
08

0.
77

3
45

8.
37

6
45

6.
92

5
45

7.
65

1.
02

6
5

58
.9

29
57

.9
32

58
.5

49
0.

53
9

43
5.

75
9

43
3.

77
3

43
4.

76
6

1.
40

4
6

54
.9

15
54

.4
03

54
.7

2
0.

28
44

2.
89

2
44

0.
97

1
44

1.
93

1
1.

35
8

7
54

.9
72

54
.2

19
54

.5
8

0.
37

7
42

2.
32

9
42

0.
79

9
42

1.
56

4
1.

08
1

8
53

.9
66

52
.6

79
53

.2
43

0.
65

8
40

9.
72

7
40

7.
93

8
40

8.
83

2
1.

26
5

T
ab

le
E

.4
:

S
tr

as
se

n
A

lg
or

it
h
m

u
n
d
er

P
ar

al
le

l
C

al
l

M
o
d
e

(c
on

td
.)

176



C
h
es

sb
oa

rd
S
iz

e
P

P
U

S
P

U

M
ax

M
in

A
v
g

S
td

ev
M

ax
M

in
A

v
g

S
td

ev

4
0.

01
9

0.
01

9
0.

01
9

0
0.

01
9

0.
01

9
0.

01
9

0
5

0.
02

5
0.

02
3

0.
02

4
0.

00
1

0.
02

5
0.

02
6

0.
02

55
0.

00
07

6
0.

01
9

0.
01

9
0.

01
9

0
0.

02
0.

02
0.

02
0

7
0.

01
9

0.
01

9
0.

01
9

0
0.

02
1

0.
02

1
0.

02
1

0
8

0.
02

0.
01

9
0.

01
95

0.
00

07
0.

02
3

0.
02

1
0.

02
2

0.
00

1
9

0.
02

4
0.

02
4

0.
02

4
0

0.
02

7
0.

02
6

0.
02

65
0.

00
07

10
0.

04
6

0.
04

4
0.

04
5

0.
00

1
0.

04
9

0.
04

9
0.

04
9

0
11

0.
15

6
0.

15
4

0.
15

5
0.

00
1

0.
16

9
0.

16
6

0.
16

75
0.

00
2

12
0.

73
9

0.
73

8
0.

73
85

0.
00

07
0.

83
6

0.
83

2
0.

83
4

0.
00

2
13

4.
19

2
4.

17
6

4.
18

4
0.

01
1

4.
79

9
4.

72
1

4.
76

0.
05

5
14

25
.9

03
25

.4
34

25
.6

68
0.

33
1

29
.3

87
29

.2
24

29
.3

05
5

0.
11

5
15

17
1.

92
7

17
1.

03
3

17
1.

48
0.

63
2

19
4.

12
9

19
3.

04
8

19
3.

58
8

0.
76

4
16

12
01

.9
8

12
00

.8
9

12
01

.4
4

0.
77

4
13

55
.8

7
13

55
.4

4
13

55
.6

6
0.

30
3

T
ab

le
E

.5
:

n
-Q

u
ee

n
P

ro
b
le

m
(P

P
U

O
n
ly

v
s

S
im

p
le

C
al

l
M

o
d
e)

177



S
P

U
C

ou
n
t

N
o

O
p
ti

m
iz

at
io

n
W

it
h

O
p
ti

m
iz

at
io

n

M
ax

M
in

A
v
g

S
td

ev
M

ax
M

in
A

v
g

S
td

ev

2
92

.9
03

91
.9

77
92

.4
4

0.
65

4
90

.9
75

90
.2

19
90

.5
97

0.
53

4
3

58
.9

34
58

.4
72

58
.7

03
0.

32
6

57
.9

66
57

.2
44

57
.6

05
0.

51
0

4
46

.9
75

46
.2

33
46

.6
04

0.
52

4
45

.9
31

45
.2

99
45

.6
15

0.
44

6
5

36
.8

9
36

.3
12

36
.6

01
0.

40
8

35
.9

97
35

.1
21

35
.5

59
0.

61
9

6
34

.6
99

34
.0

35
34

.3
67

0.
46

9
33

.9
36

33
.2

18
33

.5
77

0.
50

7
7

31
.9

98
31

.4
21

31
.7

09
5

0.
40

8
31

.9
43

31
.1

36
31

.5
39

5
0.

57
0

8
23

.9
72

23
.7

66
23

.8
69

0.
14

5
23

.5
72

23
.0

12
23

.2
92

0.
39

5

T
ab

le
E

.6
:

15
-Q

u
ee

n
P

ro
b
le

m
(D

at
a

T
ra

n
sf

er
O

p
ti

m
iz

at
io

n
on

v
s

off
)

S
P

U
4-

Q
u
ee

n
5-

Q
u
ee

n
6-

Q
u
ee

n

M
ax

M
in

A
v
g

S
td

ev
M

ax
M

in
A

v
g

S
td

ev
M

ax
M

in
A

v
g

S
td

ev

2
0.

01
4

0.
01

4
0.

01
4

0
0.

01
5

0.
01

4
0.

01
4

0.
00

05
0.

01
5

0.
01

4
0.

01
46

0.
00

05
3

0.
01

6
0.

01
5

0.
01

5
0.

00
05

0.
01

6
0.

01
4

0.
01

5
0.

00
11

0.
01

6
0.

01
5

0.
01

56
0.

00
05

4
0.

01
8

0.
01

7
0.

01
7

0.
00

05
0.

01
7

0.
01

7
0.

01
7

0
0.

01
7

0.
01

7
0.

01
7

0
5

0.
01

8
0.

01
7

0.
01

7
0.

00
05

0.
01

9
0.

01
8

0.
01

8
0.

00
05

0.
01

8
0.

01
8

0.
01

8
0

6
0.

01
9

0.
01

9
0.

01
9

0
0.

02
0.

01
9

0.
01

9
0.

00
05

0.
02

0.
02

0.
02

0
7

0.
02

0.
01

9
0.

01
9

0.
00

05
0.

02
1

0.
02

0.
02

0.
00

05
0.

02
3

0.
02

0.
02

1
0.

00
15

8
0.

02
2

0.
02

1
0.

02
1

0.
00

05
0.

02
2

0.
02

1
0.

02
1

0.
00

05
0.

02
3

0.
02

1
0.

02
2

0.
00

1

T
ab

le
E

.7
:

n
-Q

u
ee

n
P

ro
b
le

m
u
n
d
er

P
ar

al
le

l
C

al
l

M
o
d
e

178



S
P

U
7-

Q
u
ee

n
8-

Q
u
ee

n
9-

Q
u
ee

n

M
ax

M
in

A
v
g

S
td

ev
M

ax
M

in
A

v
g

S
td

ev
M

ax
M

in
A

v
g

S
td

ev

2
0.

01
5

0.
01

4
0.

01
4

0.
00

05
0.

01
5

0.
01

4
0.

01
4

0.
00

05
0.

01
7

0.
01

6
0.

01
6

0.
00

05
3

0.
01

6
0.

01
5

0.
01

5
0.

00
05

0.
01

6
0.

01
6

0.
01

6
0

0.
02

9
0.

01
7

0.
02

1
0.

00
66

4
0.

01
8

0.
01

7
0.

01
7

0.
00

05
0.

01
7

0.
01

7
0.

01
7

0
0.

01
8

0.
01

7
0.

01
7

0.
00

05
5

0.
01

9
0.

01
8

0.
01

8
0.

00
05

0.
01

9
0.

01
9

0.
01

9
0

0.
01

9
0.

01
9

0.
01

9
0

6
0.

02
1

0.
02

0.
02

0.
00

05
0.

02
0.

01
9

0.
01

9
0.

00
05

0.
02

1
0.

02
0.

02
0

0.
00

05
7

0.
02

2
0.

02
0.

02
1

0.
00

1
0.

02
2

0.
02

1
0.

02
1

0.
00

05
0.

02
3

0.
02

1
0.

02
1

0.
00

11
8

0.
02

3
0.

02
3

0.
02

3
0

0.
02

3
0.

02
2

0.
02

2
0.

00
05

0.
02

4
0.

02
3

0.
02

3
0.

00
05

T
ab

le
E

.8
:

n
-Q

u
ee

n
P

ro
b
le

m
u
n
d
er

P
ar

al
le

l
C

al
l

M
o
d
e

(c
on

td
.)

S
P

U
10

-Q
u
ee

n
11

-Q
u
ee

n
12

-Q
u
ee

n

M
ax

M
in

A
v
g

S
td

ev
M

ax
M

in
A

v
g

S
td

ev
M

ax
M

in
A

v
g

S
td

ev

2
0.

02
7

0.
02

6
0.

02
6

0.
00

05
0.

08
5

0.
08

4
0.

08
4

0.
00

05
0.

37
3

0.
37

3
0.

37
3

0
3

0.
02

4
0.

02
4

0.
02

4
0

0.
06

2
0.

06
1

0.
06

1
0.

00
05

0.
25

7
0.

25
6

0.
25

6
0.

00
05

4
0.

02
4

0.
02

4
0.

02
4

0
0.

05
3

0.
05

1
0.

05
2

0.
00

1
0.

20
1

0.
19

9
0.

2
0.

00
1

5
0.

02
3

0.
02

3
0.

02
3

0
0.

05
1

0.
05

1
0.

05
1

0
0.

19
1

0.
19

1
0.

19
1

0
6

0.
02

4
0.

02
3

0.
02

3
0.

00
05

0.
04

5
0.

04
4

0.
04

4
0.

00
05

0.
14

3
0.

14
2

0.
14

2
0.

00
05

7
0.

02
6

0.
02

5
0.

02
5

0.
00

05
0.

04
5

0.
04

5
0.

04
5

0
0.

15
0.

14
5

0.
14

6
0.

00
2

8
0.

02
7

0.
02

5
0.

02
6

0.
00

1
0.

04
5

0.
04

5
0.

04
5

0
0.

14
4

0.
14

1
0.

14
2

0.
00

1

T
ab

le
E

.9
:

n
-Q

u
ee

n
P

ro
b
le

m
u
n
d
er

P
ar

al
le

l
C

al
l

M
o
d
e

(c
on

td
.)

179



S
P

U
13

-Q
u
ee

n
14

-Q
u
ee

n

M
ax

M
in

A
v
g

S
td

ev
M

ax
M

in
A

v
g

S
td

ev

2
2.

23
6

2.
23

6
2.

23
6

0
13

.0
04

12
.9

99
13

.0
00

6
0.

00
2

3
1.

57
3

1.
56

9
1.

57
0

0.
00

2
9.

16
2

9.
15

6
9.

15
8

0.
00

3
4

1.
23

8
1.

23
7

1.
23

7
0.

00
05

7.
23

5
7.

23
1

7.
23

2
0.

00
2

5
0.

97
6

0.
97

3
0.

97
4

0.
00

1
5.

62
3

5.
62

2
5.

62
2

0.
00

05
6

0.
91

1
0.

91
1

0.
91

1
0

5.
30

4
5.

30
3

5.
30

3
0.

00
05

7
0.

69
0.

67
8

0.
68

2
0.

00
6

3.
84

5
3.

84
3

3.
84

4
0.

00
1

8
0.

67
9

0.
67

8
0.

67
8

0.
00

05
3.

78
4

3.
78

2
3.

78
3

0.
00

1

T
ab

le
E

.1
0:

n
-Q

u
ee

n
P

ro
b
le

m
u
n
d
er

P
ar

al
le

l
C

al
l

M
o
d
e

(c
on

td
.)

S
P

U
15

-Q
u
ee

n
16

-Q
u
ee

n

M
ax

M
in

A
v
g

S
td

ev
M

ax
M

in
A

v
g

S
td

ev

2
90

.5
55

0.
38

4
90

.5
55

0.
38

4
60

3.
29

3
60

3.
15

7
60

3.
23

2
0.

06
9

3
57

.5
58

0.
36

9
57

.5
58

0.
36

9
43

8.
22

1
43

8.
20

2
43

8.
21

3
0.

01
0

4
45

.5
6

0.
32

9
45

.5
60

0.
32

9
30

4.
53

2
30

4.
46

3
30

4.
50

4
0.

03
6

5
35

.4
79

0.
45

9
35

.4
79

0.
45

9
28

2.
09

1
28

2.
07

3
28

2.
08

2
0.

00
9

6
33

.5
29

0.
36

8
33

.5
29

0.
36

8
22

3.
96

1
22

3.
91

4
22

3.
93

3
0.

02
4

7
31

.4
4

0.
43

8
31

.4
40

0.
43

8
21

0.
59

21
0.

53
3

21
0.

57
0.

03
2

8
23

.3
3

0.
28

7
23

.3
3

0.
28

7
20

5.
08

6
20

5.
02

3
20

5.
06

1
0.

03
3

T
ab

le
E

.1
1:

n
-Q

u
ee

n
P

ro
b
le

m
u
n
d
er

P
ar

al
le

l
C

al
l

M
o
d
e

(c
on

td
.)

180


