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ABSTRACT 

Extra High Voltage (EHV) transmission lines are designed to transfer large 

amount of power from one location to another. The length exposed to the environment is 

a major reason for occurrence of faults on the lines. A fault on a high voltage 

transmission line affects the stability of the overall power system, which sometimes 

leads to permanent damage of the equipment. Relays are developed and installed to 

protect the lines. The transmission line protection relays, in the industry, are based on 

the fundamental frequency components of the voltages and currents. These relays need 

at least one fundamental frequency cycle for performing the protection operation. 

Voltage and current traveling waves are generated when a fault occurs on the 

transmission line. The velocity of propagation of traveling waves is finite and the level 

of the waves decreases with increase in the distance traveled.  Information about the 

fault can be obtained by analyzing the traveling waves.  A few traveling wave 

techniques, which are based on analog signal processing, to protect transmission lines 

have been proposed in the past.  

Two digital techniques, which use traveling waves for protecting EHV 

transmission lines, are proposed in this thesis. The traveling waves are extracted from 

the modal voltages and currents at the terminals of the transmission line. The techniques 

identify and locate the fault by using the information contained in the waves. A power 

system was modeled in the Electromagnetic Transient Direct Current Analysis 

(EMTDC) and several cases were created by varying different parameters related to the 

fault, fault type, fault location, fault resistance and fault inception angle. The techniques 

were implemented in hardware and their performance was tested on data, generated from 

the EMTDC simulations. Some cases are discussed in the thesis. 

The performance of the digital techniques for protecting EHV transmission lines 

using traveling waves was confirmed to be satisfactory. The proposed techniques 

provide protection at speed and discriminate well between internal and external faults. 



 

 iii

ACKNOWLEDGEMENTS 

The author expresses his sincere gratitude to Dr. M. S. Sachdev for his 

invaluable guidance, encouragement, and support throughout this work. His advice and 

assistance in the preparation of this thesis is thankfully acknowledged.  

The author would like to thank his wife, Pallavi Sehgal, who always encouraged 

him to go ahead and provided the atmosphere, which has been essential for the 

completion of this work. The love and guidance provided by the author’s parents are 

priceless.  

Special thanks are extended to Mr. B. S. Gahir, without whose help, the author 

would not have had the courage to pursue higher studies.  

The financial support provided by the Natural Sciences and Engineering 

Research Council of Canada is thankfully acknowledged. 



 

 iv 

 

Dedicated  

to  

my grandfather 

S. Sampuran Singh Sidhu 



TABLE OF CONTENTS 

 
PERMISSION TO USE.................................................................................................. i 

ABSTRACT.................................................................................................................. ii 

ACKNOWLEDGEMENTS.......................................................................................... iii 

DEDICATION ............................................................................................................. iv  

TABLE OF CONTENTS .............................................................................................. v  

LIST OF FIGURES...................................................................................................... ix  

LIST OF ACRONYMS .............................................................................................. xiii  

 
Chapter 1. Introduction ....................................................................................1 

1.1 Background........................................................................................................ 1 

1.2 Power System Protection ................................................................................... 1 

1.3 Protection Relays ............................................................................................... 3 

1.3.1 Electromechanical Relays ........................................................................ 3 

1.3.2 Solid-State Relays ................................................................................... 5 

1.3.3 Digital Relays.......................................................................................... 5 

1.4 Transmission Line Protection............................................................................. 6 

1.5 Objective of the Thesis....................................................................................... 8 

1.6 Outline of the Thesis .......................................................................................... 9 

 

Chapter 2. Traveling Waves ............................................................................ 11 

2.1 Introduction ..................................................................................................... 11 

2.2 Transmission Line Equations ........................................................................... 11 

2.3 Interpretation ................................................................................................... 15 

2.4 Propagation Constant ....................................................................................... 16 

2.5 Reflection and Refraction of Traveling Waves ................................................. 16 

2.6 Line Termination ............................................................................................. 18 

2.6.1 Line Terminated in a Short Circuit......................................................... 18 

2.6.2 Line Open Circuited at Receiving End................................................... 19 

2.7 Traveling Wave Relays .................................................................................... 20 

2.7.1 Chamia and Liberman Technique .......................................................... 20 

2.7.2 Crossley and McLaren Technique.......................................................... 22 



 

 vi 

2.8 Traveling Wave Relay Issues ........................................................................... 22 

2.9 Summary ......................................................................................................... 23 

 

Chapter 3. Proposed Protection Techniques ........................................................ 24 

3.1 Introduction ..................................................................................................... 24 

3.2 Traveling Wave Extraction .............................................................................. 24 

3.2.1 Sequence Filter with Data-Window of Two Samples ............................. 25 

3.2.2 Sequence Filter with Data-Window of Three Samples ........................... 27 

3.2.3 Sequence Filter with Data-Window of Five Samples ............................. 29 

3.2.3.1 Filter 1 ...................................................................................... 29 

3.2.3.2 Filter 2 ...................................................................................... 30 

3.3 Sequence Filter Inputs...................................................................................... 32 

3.4 Fault Location Techniques ............................................................................... 32 

3.4.1 Single Ended Technique: Single Circuit Line......................................... 32 

3.4.2 Single Ended Technique: Double Circuit Line ....................................... 34 

3.4.3 Double Ended Technique: Single Circuit Line ....................................... 36 

3.4.4 Double Ended Technique: Double Circuit Line...................................... 38 

3.5 The Algorithm for Single Ended Technique ..................................................... 39 

3.6 The Algorithm for Double Ended Technique.................................................... 41 

3.7 Features of Single Ended Technique and Double Ended Technique.................. 41 

3.8 Summary ......................................................................................................... 43 

 

Chapter 4. Hardware, Software and Programming................................................ 44 

4.1 Introduction ..................................................................................................... 44 

4.2 DSP Module .................................................................................................... 44 

4.2.1 Digital Signal Processor......................................................................... 46 

4.2.1.1 Digital Signal Processor C6201................................................. 46 

4.3 Real Time Operating System: Diamond ........................................................... 48 

4.4 Programming ................................................................................................... 48 

4.5 Summary ......................................................................................................... 50 

 

Chapter 5. System Studies............................................................................... 51 

5.1 Introduction ..................................................................................................... 51 

5.2 Test Power System........................................................................................... 51 



 

 vii 

5.3 Simulated Cases............................................................................................... 51 

5.3.1 Fault Distance........................................................................................ 52 

5.3.2 Fault Types............................................................................................ 54 

5.3.3 Fault Resistance..................................................................................... 54 

5.3.4 Fault Inception Angle ............................................................................ 55 

5.4 Effect of Transformer on Traveling Waves ...................................................... 55 

5.5 Case Discussion ............................................................................................... 56 

5.5.1 Single Ended Technique Cases .............................................................. 56 

5.5.1.1 Phase ‘a’ to Ground Fault at 10 km on Transmission Line T7a.. 56 

5.5.1.2 Phase ‘a’ to ‘b’ to Ground Fault at 60 km on Transmission Line 
T7a ........................................................................................... 57 

5.5.1.3 Phase ‘b’ to ‘c’ Fault at 110 km on Transmission Line T7a ....... 57 

5.5.1.4 Phase ‘b’ to Ground Fault at 20 km on Transmission Line T5 ... 58 

5.5.1.5 Phase ‘a’ to ‘b’ to ‘c’ to Ground Fault at 70 km on Transmission 
Line T5..................................................................................... 58 

5.5.1.6 Phase ‘c’ to ‘a’ Fault at 90 km on Transmission Line T5........... 59 

5.5.2 Double Ended Technique Cases............................................................. 59 

5.5.2.1 Phase ‘a’ to Ground Fault at 10 km on Transmission Line T7a.. 59 

5.5.2.2 Phase ‘a’ to ‘b’ to Ground Fault at 60 km on Transmission Line 
T7a ........................................................................................... 60 

5.5.2.3 Phase ‘b’ to ‘c’ Fault at 110 km on Transmission Line T7a ....... 61 

5.5.2.4 Phase ‘b’ to Ground Fault at 20 km on Transmission Line T5 ... 62 

5.5.2.5 Phase ‘a’ to ‘b’ to ‘c’ to Ground Fault at 70 km on Transmission 
Line T5..................................................................................... 63 

5.5.2.6 Phase ‘c’ to ‘a’ Fault at 90 km on Transmission Line T5........... 63 

5.6 Summary ......................................................................................................... 64 

 

Chapter 6. Summary and Conclusions ............................................................... 83 

 

References ................................................................................................... 86 

 

Appendix A. Modal Analysis........................................................................... 88 

 

Appendix B. Test Power System ...................................................................... 89 

B.1 System Parameters........................................................................................... 90 



 

 viii 

B.1.1 Source ................................................................................................... 90 

B.1.2 Motors................................................................................................... 90 

B.1.3 Transformers ......................................................................................... 90 

B.1.4 Transmission Lines................................................................................ 91 

B.1.5 Loads..................................................................................................... 91 

 

Appendix C. Linear Assembly Language Programs.............................................. 92 

C.1 Linear Assembly Program: Single Ended Technique........................................ 92 

C.2 Linear Assembly Program: Double Ended Technique .................................... 103 

 

Appendix D. C Language Programs ................................................................ 112 

D.1 C Program for Single Ended Technique ......................................................... 112 

D.2 C Programs for Double Ended Technique ...................................................... 113 

D.2.1 C Program: Mprog............................................................................... 114 

D.2.2 C Program: Prog1................................................................................ 115 

D.2.3 C Program: Prog2................................................................................ 116 

 

Appendix E. EMTDC PSCAD ....................................................................... 119 



 

 ix

LIST OF FIGURES 
 
Figure 1.1: Three phase current waveforms in steady state, during a fault and after a fault 

on phase-a ................................................................................................... 2 

Figure 1.2: Protection zones in a sample power system.................................................. 4 

Figure 1.3: Three phase voltage waveforms in steady state, during a fault and after a 
fault on phase-a ........................................................................................... 8 

Figure 2.1: Transmission line equivalent circuit ........................................................... 11 

Figure 2.2: Small section of a transmission line ........................................................... 12 

Figure 2.3: A positive traveling wave .......................................................................... 16 

Figure 2.4: Bewley’s Lattice diagram .......................................................................... 17 

Figure 2.5: Voltage and current at fault inception ........................................................ 21 

Figure 2.6: Voltage and current before fault................................................................. 21 

Figure 2.7: Voltage and current components injected by the fictitious source at the fault
.................................................................................................................. 21 

Figure 3.1: Step changes in voltage due to traveling waves .......................................... 25 

Figure 3.2: Frequency response of a two-sample sequence filter .................................. 26 

Figure 3.3: Output of a two-sample sequence filter ...................................................... 26 

Figure 3.4: Zoomed output of a two-sample sequence filter ......................................... 27 

Figure 3.5: Frequency response of a three-sample sequence filter ................................ 28 

Figure 3.6: Output of a three-sample sequence filter .................................................... 28 

Figure 3.7: Zoomed output of a three-sample sequence filter ....................................... 29 

Figure 3.8: Frequency response of a five-sample filter defined in Equation 3.7............ 30 

Figure 3.9: Output of a five-sample sequence filter defined in Equation 3.7................. 30 

Figure 3.10: Frequency response of a five-sample filter defined in Equation 3.10 ........ 31 

Figure 3.11: Output of a five-sample sequence filter defined in Equation 3.10 ............. 32 

Figure 3.12: Traveling waves on a single circuit transmission line in sample power 
system..................................................................................................... 33 

Figure 3.13: Sequence filter output at relay Ra............................................................. 33 

Figure 3.14: Power system with a double circuit transmission line............................... 35 

Figure 3.15: Voltage and current sequence filter outputs at relay on circuit 2 at bus A . 35 

Figure 3.16: Voltage and current sequence filter outputs at relay on circuit 1 at bus A . 36 

Figure 3.17: Traveling waves on a single circuit transmission line protected with double-
ended technique....................................................................................... 37 

Figure 3.18: Flowchart for the single-ended technique................................................. 40 



 

 x

Figure 3.19: Flowchart for the double-ended technique................................................ 42 

Figure 4.1: Block diagram of SMT335 ........................................................................ 44 

Figure 4.2: Block diagram of a digital signal processor................................................ 46 

Figure 4.3: Program execution sequence...................................................................... 49 

Figure 5.1: Model of the test power system in EMTDC ............................................... 52 

Figure 5.2: Model of a source and a transformer in EMTDC........................................ 53 

Figure 5.3: Model of a transmission line in EMTDC.................................................... 53 

Figure 5.4: Model of a transformer and a machine in EMTDC..................................... 53 

Figure 5.5: Model of a load in EMTDC ....................................................................... 54 

Figure 5.6: Output of mode 1 voltage and current sequence filters at bus B7 for phase ‘a’ 
to ground fault at 10 km on T7a................................................................. 65 

Figure 5.7: Output of mode 2 voltage and current sequence filters at bus B7 for phase ‘a’ 
to ground fault at 10 km on T7a................................................................. 65 

Figure 5.8: Output of mode 1 voltage and current sequence filters at bus B9 for phase ‘a’ 
to ground fault at 10 km on T7a................................................................. 66 

Figure 5.9: Output of mode 2 voltage and current sequence filters at bus B9 for phase ‘a’ 
to ground fault at 10 km on T7a................................................................. 66 

Figure 5.10: Output of mode 1 voltage and current sequence filters at bus B8 for phase 
‘a’ to ground fault at 10 km on T7a .......................................................... 67 

Figure 5.11: Output of mode 2 voltage and current sequence filters at bus B8 for phase 
‘a’ to ground fault at 10 km on T7a .......................................................... 67 

Figure 5.12: Output of mode 1 voltage and current sequence filters at bus B10 for phase 
‘a’ to ground fault at 10 km on T7a .......................................................... 68 

Figure 5.13: Output of mode 2 voltage and current sequence filters at bus B10 for phase 
‘a’ to ground fault at 10 km on T7a .......................................................... 68 

Figure 5.14: Output of mode 1 voltage and current sequence filters at bus B7 for phase 
‘a’ to ‘b’ to ground fault at 60 km on T7a................................................. 69 

Figure 5.15: Output of mode 2 voltage and current sequence filters at bus B7 for phase 
‘a’ to ‘b’ to ground fault at 60 km on T7a................................................. 69 

Figure 5.16: Output of mode 1 voltage and current sequence filters at bus B9 for phase 
‘a’ to ‘b’ to ground fault at 60 km on T7a................................................. 70 

Figure 5.17: Output of mode 2 voltage and current sequence filters at bus B9 for phase 
‘a’ to ‘b’ to ground fault at 60 km on T7a................................................. 70 

Figure 5.18: Output of mode 1 voltage and current sequence filters at bus B8 for phase 
‘a’ to ‘b’ to ground fault at 60 km on T7a................................................. 71 

Figure 5.19: Output of mode 2 voltage and current sequence filters at bus B8 for phase 
‘a’ to ‘b’ to ground fault at 60 km on T7a................................................. 71 



 

 xi

Figure 5.20: Output of mode 1 voltage and current sequence filters at bus B10 for phase 
‘a’ to ‘b’ to ground fault at 60 km on T7a................................................. 72 

Figure 5.21: Output of mode 2 voltage and current sequence filters at bus B10 for phase 
‘a’ to ‘b’ to ground fault at 60 km on T7a................................................. 72 

Figure 5.22: Output of mode 1 voltage and current sequence filters at bus B7 for phase 
‘b’ to ‘c’ fault at 110 km on T7a............................................................... 73 

Figure 5.23: Output of mode 2 voltage and current sequence filters at bus B7 for phase 
‘b’ to ‘c’ fault at 110 km on T7a............................................................... 73 

Figure 5.24: Output of mode 1 voltage and current sequence filters at bus B9 for phase 
‘b’ to ‘c’ fault at 110 km on T7a............................................................... 74 

Figure 5.25: Output of mode 2 voltage and current sequence filters at bus B9 for phase 
‘b’ to ‘c’ fault at 110 km on T7a............................................................... 74 

Figure 5.26: Output of mode 1 voltage and current sequence filters at bus B8 for phase 
‘b’ to ‘c’ fault at 110 km on T7a............................................................... 75 

Figure 5.27: Output of mode 2 voltage and current sequence filters at bus B8 for phase 
‘b’ to ‘c’ fault at 110 km on T7a............................................................... 75 

Figure 5.28: Output of mode 1 voltage and current sequence filters at bus B10 for phase 
‘b’ to ‘c’ fault at 110 km on T7a............................................................... 76 

Figure 5.29: Output of mode 2 voltage and current sequence filters at bus B10 for phase 
‘b’ to ‘c’ fault at 110 km on T7a............................................................... 76 

Figure 5.30: Output of mode 1 voltage and current sequence filters at bus B3 for phase 
‘b’ to ground fault at 20 km on T5............................................................ 77 

Figure 5.31: Output of mode 2 voltage and current sequence filters at bus B3 for phase 
‘b’ to ground fault at 20 km on T5............................................................ 77 

Figure 5.32: Output of mode 1 voltage and current sequence filters at bus B4 for phase 
‘b’ to ground fault at 20 km on T5............................................................ 78 

Figure 5.33: Output of mode 2 voltage and current sequence filters at bus B4 for phase 
‘b’ to ground fault at 20 km on T5............................................................ 78 

Figure 5.34: Output of mode 1 voltage and current sequence filters at bus B3 for phase 
‘a’ to ‘b’ to ‘c’ to ground fault at 70 km on T5 ......................................... 79 

Figure 5.35: Output of mode 2 voltage and current sequence filters at bus B3 for phase 
‘a’ to ‘b’ to ‘c’ to ground fault at 70 km on T5 ......................................... 79 

Figure 5.36: Output of mode 1 voltage and current sequence filters at bus B4 for phase 
‘a’ to ‘b’ to ‘c’ to ground fault at 70 km on T5 ......................................... 80 

Figure 5.37: Output of mode 2 voltage and current sequence filters at bus B4 for phase 
‘a’ to ‘b’ to ‘c’ to ground fault at 70 km on T5 ......................................... 80 

Figure 5.38: Output of mode 1 voltage and current sequence filters at bus B3 for phase 
‘c’ to ‘a’ fault at 90 km on T5................................................................... 81 



 

 xii

Figure 5.39: Output of mode 2 voltage and current sequence filters at bus B3 for phase 
‘c’ to ‘a’ fault at 90 km on T5................................................................... 81 

Figure 5.40: Output of mode 1 voltage and current sequence filters at bus B4 for phase 
‘c’ to ‘a’ fault at 90 km on T5................................................................... 82 

Figure 5.41: Output of mode 2 voltage and current sequence filters at bus B4 for phase 
‘c’ to ‘a’ fault at 90 km on T5................................................................... 82 

 

 



LIST OF ACRONYMS 
 

EHV Extra High Voltage 

EMTDC Electromagnetic Transient Direct Current Analysis 

PSCAD Power Systems Computer Aided Design 

GPS Global Positioning System 

DSP Digital Signal Processor 

A/D Analog to Digital Converter 

CPU Central Processing Unit 

ALU Arithmetic and Logic Unit 

ROM Read-Only Memory 

RAM Random Access Memory 

DRAM Dynamic Random Access Memory 

SRAM Static Random Access Memory 

SDRAM Synchronous Dynamic Random Access Memory 

SBSRAM Synchronous Burst Static Random Access Memory 

FPGA Field Programmable Gate Array 

SDB Sundance Digital Bus 

EMIF External Memory Interface 

DMA Direct Memory Access 

HPI Host Port Interface 



 

 1

Chapter 1  

Introduction 

1.1  Background 

An electric power system comprises of generation, transmission and distribution 

of electric energy. Growth in power systems has lead to very complex networks 

extended across large areas. A power system, most of the time, operates in a steady state 

but disturbances, temporary and permanent, occur occasionally by the presence of large 

number of components which are susceptible to failures caused due to natural calamities, 

human errors and aging. Faults cause large amounts of currents to flow in the 

components that would burn out if current flows are not promptly interrupted. The 

voltages of the faulted phases decrease on the occurrence of a fault. The waveforms of 

currents in three phases in steady state, during a fault and after a fault on phase-a are 

shown in Figure 1.1. 

Faults, if not detected and eliminated quickly, may cause severe reduction in 

system voltage, loss of synchronism, loss of revenue and may damage the equipment 

permanently. Faults can be minimized by proper power system planning and using 

sophisticated equipment but the occurrence of faults cannot be eliminated fully. It is, 

therefore, necessary to protect power systems from faults. 

1.2  Power System Protection 

Modern power systems involve large amount of investment. Proper operation 

and protection of power systems is necessary to minimize the consequences of faults. 

Devices, called protective relays, are installed at various places in the power system to 

detect faults and isolate the faulted part from the remaining system. Depending on the 

application, relays receive voltages and/or currents as inputs from a power system via 

voltage and current transformers. 
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Figure 1.1: Three phase current waveforms in steady state, during a fault and after a fault              

on phase-a 

 
Relays continuously monitor the power system and operate when the inputs 

deviate from their normal levels. Each relay, used for power system protection, performs 

a pre-defined function and responds to change in pre-specified parameters. The changes 

to which the relays respond are  

•  increased current in one or more phases, 

•  direction of the current flow, 

•  under voltage, 

•  reduction in apparent impedance, 

•  under frequency, 

•  specified direction of power flow, and 

•  increase in the temperature of equipment. 

 According to their functionality, relays are classified as  

•  current relays (directional and non-directional), 

•  voltage relays, 
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Relays are installed in various configurations to protect the major components of 

a power system without leaving any part of the system unprotected. This is achieved by 

dividing the power system into segments called protective zones. A protection zone 

normally includes a generator, a transformer, a bus, a transmission line, a distribution 

line or a motor. Protection zones are overlapped so that every part of system is protected. 

Figure 1.2 shows an example of the protection zones [1] of a sample system.  

In the event of a fault in a zone, relays associated with that zone open the circuit 

breakers to isolate that zone from the rest of the system. To cover the risk of failure of 

relays, backup protection is provided in the adjacent zones. Backup relays isolate the 

faulted zone and an adjoining zone, in which backup relay is located, in case primary 

relays fail to isolate the faulted zone. 

1.3  Protection Relays 

In the previous century, protective relays have gone through major transitions 

with the change in technology. Electromechanical relays, the oldest in the family of 

protective relays, served the power system quite reliably. With the development in 

electronics, solid-state relays were developed. Small size, light weight and quiet 

operation are the advantages of solid-state relays over the electromechanical relays. 

Microprocessors technology made the relays even more compact, multifunctional and 

flexible. 

1.3.1  Electromechanical Relays 

Electromechanical relays consist of parts that move due to force produced by 

currents flowing in the electromagnets. Usually, an electromagnetic relay protects one 

phase and is dedicated to single protection function. Presence of mechanical parts makes 

the device big and heavy. Environmental condition is an important aspect to decide 

monitoring and maintenance needs of the relay. Dusty environment increases wear and  

•  distance relays, 

•  power relays, 

•  differential relays, and 

•  frequency relays. 
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Figure 1.2: Protection zones in a sample power system
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tear of the moving parts; therefore, maintenance is required at short intervals. 

Electromagnetic relays are not seriously affected by voltage transients. These 

relays have clean on and off states due to substantial distance between the contacts. 

Experience has shown that well maintained electromagnetic relays give reliable 

performance but, the probability of failure increases rapidly as these relays approach the 

end of their useful life. 

1.3.2  Solid-State Relays 

Solid-state relays are semiconductor devices composed of electronic components 

like resistors, diodes, transistors etc. These relays do not have moving parts which make 

them lighter and smaller than electromagnetic relays. Solid-state relays perform the 

same functions as electromagnetic relays except that they need less voltage to operate 

and switching can be performed in very short times. However, these relays are affected 

by transients, which, if present in the inputs, may cause them to malfunction. Solid-state 

relays are reliable but electronic components may drift due to high ambient temperature 

and aging. 

Solid-state relays energize trip circuits using electronic devices such as silicon 

controller rectifiers and, therefore, there is no arcing during switching. Switches in solid-

state relays always have leakage currents irrespective of the fact whether the switches 

are open or closed.  

1.3.3  Digital Relays 

 Power system protection has changed a lot since the evolution of 

microprocessors. Very large scale integration has made it possible to put together 

numerous components in a single chip. Digital technology has made its place in the field 

of power system protection. Today, digital techniques are implemented to protect almost 

all components of power systems. Basically digital techniques use the same logic that is 

used in electromechanical and solid-state relays. Digital relays have many advantages 

over electromechanical relays.  

1. Economical: The major reason for the acceptance of digital relays is that they 

present many features at reasonable price. 
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2. Fast operation: There are two reasons for fast operation of digital relays. One, 

digital relays barely use any mechanical parts. Two, the use of high speed 

processors have made these relays very fast.  

3. Self monitoring: Digital relays monitor themselves continuously.  On the other 

hand, electromechanical relays must be tested by personnel at regular intervals. 

Self monitoring feature saves time as well as money. 

4. Multiple functions: Relays, meters, control switches, indicators, and 

communication devices can be integrated into a single microprocessor-based 

protective relay. Substation/system schematics and wiring diagrams are easy to 

generate due to the reduced number of devices and related wiring. 

5. Reduced commissioning time: Commissioning is a process of verifying the 

performance of an equipment before it is put into operation. Microprocessor-

based relays have metering features and remote capabilities, which makes 

commissioning, simple and less time consuming. 

6. Less outage time: Fast operation and fault location capability of microprocessor-

based relays for transmission line protection reduce the power outage time 

considerably. When relays, without a fault location capability, detect a fault, 

crew spends a lot of time in finding the location of the fault by patroling the line. 

7. Flexibility: Digital relays can be designed and built using general purpose 

hardware. A relay can be used to protect different power system components by 

loading different software programs. 

8. Small size: Digital relays are lighter in weight and need less space than the 

electromechanical and solid-state relays. For this reason, digital relays are easy to 

transport. 

9. Easy replacement: Due to economical advantage, digital relays, if fail, can be 

replaced in full. This saves time and labor needed for repairs. 

1.4  Transmission Line Protection 

 A power transmission line can be protected by fuses, overcurrent relays, distance 

relays, pilot protection schemes or by a combination of these relays. 
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Fuses and overcurrent relays are generally used for the protection of distribution 

lines because these devices are simple and inexpensive. Another reason is that fault 

currents are generally greater than load currents in distribution circuits; selectivity is 

achieved by time grading.  

Overcurrent relays are also applicable, where a large impedance component such 

as a transformer, is involved. Currents due to a fault on the load end of a transformer are 

considerably less than the currents due to a fault on the source end. Therefore it is 

possible to current grade the relays. 

With the passage of time and increase in demand of electric energy, power 

systems have grown to large areas. The EHV transmission lines connect the generating 

sources and load points located at long distance. Due to the long lengths of EHV 

transmission lines and networking of the transmission systems, overcurrent relays cannot 

be used to protect EHV lines.  

Distance relays are the most often used to protect transmission lines. Distance 

relays take voltages and currents as inputs from the power system and calculate 

impedance. If the calculated impedance lies in a pre-defined operating region on the 

impedance plane, distance relays operate to isolate the faulted part. 

A pilot protection scheme is a unit type of protection, which compares the 

direction of power flow, or phase relation of currents, at both ends of the line. 

Information exchange between relays provided at the two ends of a transmission line is 

done by a wire, a carrier, or a microwave pilot channel. These schemes provide 

protection for 100 percent of the line. The cost of the wire pilot schemes increases with 

the increase in length of the transmission line, because of the increased length of the 

pilot wire length. 

Digital relays, used in the transmission line protection, are based on the same 

protection logic as is used in analog relays but, the physical structure and operation of 

the digital relays are different. Most digital relays, presently in practice, use the 

fundamental frequency components of the voltages and currents to protect the 

transmission line. 
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Figure 1.3: Three phase voltage waveforms in steady state, during a fault and after a fault              

on phase-a 

 
Voltages and currents on a transmission line contain high frequency components 

at the occurrence of a fault. These components, generated by faults in the voltages are 

shown in Figure 1.3. The same phenomenon is observed in currents also. The high 

frequency components contain traveling waves, which originate at the fault and travel 

away from it.  The information contained in the waves can be extracted and used to 

detect and locate faults. In this thesis, the digital techniques, which use traveling waves 

to protect transmission lines, are proposed. 

1.5  Objective of the Thesis 

  Following are the major objectives of the work reported in this thesis. 

1.  To develop a digital technique for detecting the occurrence of a fault on a 

transmission line and extract traveling waves from the voltages and currents. 

2.  To determine the distance of a fault on the protected line from the information 

contained in the traveling waves. 
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3.  To implement the fault detection and location logic in a Texas Instruments Digital 

Signal Processor (DSP), TMS320C6201 [2]. And to check the performance of the 

techniques on data generated from the Electromagnetic Transient program 

(EMTDC) simulations. 

1.6  Outline of the Thesis 

 This thesis is organized in five chapters and five appendices. The first chapter 

provides a brief review of areas relevant to the project and outlines the material 

presented in the thesis. Numerical relays are also introduced in this chapter. 

 The second chapter introduces the subject of traveling waves. This chapter also 

describes the properties and behavior of traveling waves. 

The third chapter presents a technique which can be used to detect the arrival of 

traveling waves from a fault. Optimal number of samples required to detect traveling 

waves is also determined. This chapter also presents the techniques for calculating the 

distance of a fault from the relaying point.  

The fourth chapter introduces the hardware and software used in the project. The 

hardware includes the Texas Instruments DSP TMS320C6201 and the software includes 

the real time operating system, Diamond, developed by 3L Limited. This chapter also 

describes the programming logic of the technique implemented in the selected DSP for 

detecting and locating faults on a transmission line. 

The fifth chapter presents the test system, simulated in the electromagnetic 

transient simulation application, EMTDC [3], to generate data for testing the 

performance of the proposed techniques. Cases were run, in EMTDC, by varying 

different parameters like transmission line length, fault type, fault resistance and fault 

inception angle. Results of some cases, obtained by processing the data in the designed 

relay, are also discussed. 

The summary of the thesis and the conclusions drawn from the work reported in 

the thesis are provided in Chapter six. 

The Appendix A discusses the modal analysis. The test power system and its 

parameters are described in Appendix B. The code for the proposed protection 

techniques, written in linear assembly language and C language, is given in Appendix C 
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and Appendix D respectively. EMTDC, which was used to simulate the test power 

system, is discussed in Appendix E. 
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Chapter 2  

Traveling Waves 

2.1 Introduction 

All conductors of a transmission line have resistances and inductances 

distributed uniformly along the length of the line. It is, however, assumed in most 

applications that the resistance and inductance of a conductor is lumped and is, 

therefore, replaced by a single value. This is also true for the conductance and 

capacitance of a conductor.  

Transmission lines can not be analyzed with lumped parameters, when the length 

of the line is considerably small compared to the wavelength of the signal applied to the 

line. Power lines, which operate at 60Hz and are more than 50 km long, are considered 

to have distributed parameters. These lines have the following properties. 

1. Voltages and currents travel on the line. 

2. The velocity of propagation of these waves is finite. 

One meter sections of a power transmission line can be represented by the 

circuits shown in Figure 2.1. 

Figure 2.1: Transmission line equivalent circuit 

2.2 Transmission Line Equations 

Consider a small section of length, x∆  of a transmission line, as shown in Figure 

2.2. Assume that resistance, inductance, capacitance and conductance remain constant 

along the length of the transmission line and do not change with time. 



 

 12 

∆VV −V

a bx∆l ∆xr

xc∆ xg∆

I

x∆x

Figure 2.2: Small section of a transmission line 

 

Due to distributed resistance and inductance, voltage at every point along the 

length of the line is different. The transmission line equations [4, 5] can be derived as 

follows.  

Voltage drop per unit length of the line from location ‘a’ to location ‘b’ is 

∆x

x)jωxI(

∆x

∆V)(VV ∆+∆=−− lr
 

where, r  is resistance per unit length of the line, and 

l  is inductance per unit length of the line. 

Rearranging this equation provides, 

)Ijω  (
∆x

∆V
l+= r      

        zI=        (2.1) 

where, z  is impedance per unit length of the line. 

Similarly, )Vjω(
∆x

∆I
cg +=  

 yV=        (2.2) 

where, g  is conductance per unit length of the line, 

c  is capacitance per unit length of the line, and 

y  is admittance per unit length of the line. 

As x∆ approaches zero, 
∆x
∆V

 approaches 
dx
dV

 and 
∆x
∆I

 approaches 
dx
dI

. 
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Now, 

zI
dx
dV = , and       (2.3) 

yV
dx

dI =        (2.4) 

 

Differentiating Equation 2.3 with respect to x provides, 

dx

dI
z

dx

Vd
2

2

=        (2.5) 

Substituting Equation 2.4 in Equation 2.5 provides, 

zyV
dx

Vd
2

2

=  

         Vγ
2=        (2.6) 

In this equation, γ  is a complex quantity that is known as the propagation constant and 

is given by 

 zyγ =  

The propagation constant, γ , can also be expressed as  

jβαγ +=  

where, α  is the attenuation constant, and 

β  is the phase constant. 

Similarly, differentiating Equation 2.4 with respect to x provides, 

dx

dV
y

dx

Id
2

2

=        (2.7) 

Substituting Equation 2.3 in Equation 2.7 provides, 

zyI
dx

Id
2

2

=  

        Iγ
2=        (2.8) 

The solution of the differential Equation 2.6 can be written as 

γxγx BeAeV −+=       (2.9) 

A  and B are constants that are usually complex quantities. At the sending end, 0=x , 

and therefore, the sending end voltage is  
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BAVs +=        (2.10) 

Equation 2.3 can be written as 

dx

dV

z

1
I =        (2.11) 

Differentiating Equation 2.9 with respect to x provides, 

γxγx
γBeγAe

dx

dV −−=       (2.12) 

Substituting the value of 
dx
dV

 in Equation 2.11 provides, 

]Beγ[Ae
z

1
I γxγx −−=  

Also, 

]Be[Ae
Z

1
I γxγx

o

−−=       (2.13) 

oZ , called the Characteristic impedance of the line and is given by  

y

z
Zo =        (2.14) 

At the sending end, 0=x , therefore, Equation 2.13 provides, 

B][A
Z
1

I
o

s −=       (2.15)  

The constants, A  and B , determined from Equations 2.10 and 2.15, are 

]IZ[V
2

1
A sos +=       (2.16) 

]IZ[V
2

1
B sos −=       (2.17) 

Substituting A and B in Equation 2.9 provides, 

])eIZ(V)eIZ[(V
2

1
V γx

sos
γx

sos
−−++=  

    ]
2

)e(e
IZ

2

)e(e
[V

γxγx

so

γxγx

s

−− −++=  

    )]γxsinh(IZ)γx(coshV[ sos +=     (2.18) 
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Similarly, 

])eIZ(V)eIZ[(V
2Z

1
I γx

sos
γx

sos
o

−−−+=  

   ])γx(coshIZ)γx(sinh[V
Z

1
sos

o

+=     (2.19) 

These equations provide the voltage and current at a location on the transmission 

line that is x meters away from the sending end. 

2.3 Interpretation 

Equation 2.9 indicates that there are two components of the voltage at any 

location on the transmission line. Both components represent traveling waves; γxBe−  

represents the wave travelling in the forward direction and γxAe  represents the wave 

travelling in the backward direction. The voltage and current can also be expressed as 

−+ += VVV        (2.20) 

−+ += III        (2.21) 

where, +V  and +I  are the voltage and current waves traveling in the forward direction, 

and −V  and −I  are the voltage and current waves traveling in the backward direction. 

The voltage wave traveling in the forward direction can be expressed as  

++ = IZV o        (2.22) 

Similarly, the voltage wave traveling in the backward direction can be expressed as  

−− −= IZV o        (2.23) 

A typical positive traveling wave, as shown in Figure 2.3, has the following 

properties [6]. 

•  Crest: This is the maximum amplitude attained by the wave.  

•  Front: This is the part of wave before crest, when the wave is rising to attain 

the maximum value. 

•  Tail: This is part of the wave beyond crest. In this portion, the wave 

gradually decreases in amplitude.  

•  Polarity: Polarity of a traveling wave, positive or negative, is the polarity of 

crest of the wave. 
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•  The rate of rise of the wave is higher than the rate at which the wave dies. 

 
Figure 2.3: A positive traveling wave 

 

2.4 Propagation Constant 

The amplitude and phase variation of traveling waves along the transmission line 

is controlled by γ , the propagation constant of the line. 

jβαγ +=        (2.24) 

Attenuation of traveling waves depends on α , the attenuation constant and phase 

variation depends on β , the phase constant. The velocity of propagation of traveling 

waves on overhead lines is close to the velocity of light, 8103× m/s. 

2.5 Reflection and Refraction of Traveling Waves 

Traveling waves travel along the transmission line and encounter discontinuities, 

such as buses and transformers. When traveling waves reach a discontinuity, part of it is 

reflected back and the remaining part passes through. The magnitude of the reflected and 

refracted waves depends on the characteristic impedance of the transmission line and the 

impedance beyond the discontinuity. The amplitude of the reflected and refracted waves 

is such that the proportionality of the voltage and current is preserved. The phenomenon 

of the reflection and refraction of traveling waves is shown in the Bewley’s Lattice 

diagram [6], which is reproduced in Figure 2.4. This diagram shows the propagation of 
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traveling waves that originates at a fault location that is 80 km from bus A, on a 

transmission line of 100 km length.  

 

 

 

 

 

 

 

 

 

Figure 2.4: Bewley’s Lattice diagram 

 
At each discontinuity, the total energy of the incident wave is distributed among 

the reflected and refracted waves. This process lasts until the traveling waves loose all 

their energy and their amplitudes become negligible. Consider a transmission line with 

characteristic impedance, oZ . From Equations 2.22 and 2.23, 

+

+

=
I

V
Zo  and       (2.25) 

−

−

=−
I

V
Zo        (2.26) 

If the refracted voltage and current waves are tV  and tI , the impedance of load, tZ , at 

the termination of the line, is given by 

t

t

t I

V
Z =        (2.27) 

Because the voltage and current waves exist at the same time at a junction, 

−+ += VVV t , and      (2.28) 

−+ += III t        (2.29) 

100 km 

80 km 
Fault A B 

T
im

e 
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Substituting Equations 2.28 and 2.29 in Equation 2.27 provides, 

−+

−+

+
+=

II

VV
Zt       (2.30) 

Substituting for +I  and −I  from Equations 2.22 and 2.23 in this equation gives 

−+

−+

−
+=

VV

VV

Z

Z

o

t  

Rearranging this equation provides, 

ot

ot

ZZ

ZZ

V

V

+
−

=+

−

      (2.31) 

This ratio, called the voltage reflection factor, vρ , is given by 

ot

ot
v ZZ

ZZ
ρ

+
−=        (2.32) 

Similarly, the current reflection factor, iρ , is given by 

to

to
i ZZ

ZZ
ρ

+
−=        (2.33) 

2.6 Line Termination 

A transmission line may be terminated in a short circuit, in an open circuit or 

with an impedance. These cases are discussed in the following sections. 

2.6.1 Line Terminated in a Short Circuit 

When a transmission line is terminated in a short circuit, the voltage at the 

termination is zero. Equation 2.28 now becomes 

0VV =+ −+  

Rearranging the equation provides, 

+− −= VV        (2.34) 

Substituting for +V  and −V  from Equations 2.22 and 2.23 in this equation, and 

rearranging provides, 
−+ = II        (2.35) 

Substituting Equations 2.34 and 2.35 in Equation 2.30 provides,  

0Zt =         (2.36) 
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Substituting tZ  in Equations 2.32 and 2.33 provides, 

1ρ v −= , and   (2.37) 

1ρ i +=        (2.38) 

Therefore, for a line terminated in a short circuit, the voltage of the backward (or 

reflected) wave is equal and opposite to the voltage of the forward (or incident) wave. 

Similarly, the current of the backward (or reflected) wave is equal and in phase with the 

current of the forward (or incident) wave. 

2.6.2 Line Open Circuited at Receiving End 

When a transmission line is open circuited at receiving end, the current flow out 

of the transmission line is zero. 

Equation 2.29, in this case, becomes 

0II =+ −+  

Rearranging this equation provides, 
−+ −= II        (2.39) 

Substituting for +I  and −I  from Equations 2.22 and 2.23, and rearranging provides, 

+− = VV        (2.40) 

Substituting Equations 2.39 and 2.40 in Equation 2.30 provides,  

∞=tZ        (2.41) 

Substituting tZ  in Equations 2.32 and 2.33 provides, 

1ρ v += , and   (2.42) 

1ρ i −=        (2.43) 

Therefore, for a line terminated by an open circuit, the current of the backward 

(or reflected) wave is equal and opposite to the current of the forward (or incident) 

wave. Similarly, the voltage of the backward (or reflected) wave is equal and in phase 

with the voltage of the forward (or incident) wave. 
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2.7 Traveling Wave Relays 

Several traveling wave relays have been proposed in the past, but all of them use 

analog technology. Due to the limitations in detecting high frequency waves, these 

techniques have not been used in commercial devices. 

The basic concept of previously proposed techniques is presented in this section. 

A fault on a transmission line can be replaced by a fictitious source [7] as shown in 

Figure 2.7. Let the voltage and current injected at the fault be fv  and fi . These injected 

signals can be calculated by subtracting the pre-fault voltage and current from the post-

fault voltage and current. Fault injected components; therefore, can be expressed in 

terms of the forward and backward traveling waves as [8, 9] 








 ++






 −= −+

v

x
tf

v

x
tftxv f ),(     (2.44) 
















 +−






 −= −+

v

x
tf

v

x
tf

Z
txi

o
f

1
),(    (2.45) 

where, +f  is a function representing the forward traveling wave, 

−f  is a function representing the backward traveling wave, 

v  is velocity of propagation of traveling waves, 

oZ  is surge impedance of the transmission line, and 

x  is the distance traveled by the traveling waves. 

Rearranging Equations 2.44 and 2.45 provides, 

),(),(2 txiZtxv
v

x
tf fof +=







 −+     (2.46) 

),(),(2 txiZtxv
v

x
tf fof −=







 +−     (2.47) 

Two traveling wave relays, proposed in the past, are described in the following sections. 

2.7.1 Chamia and Liberman Technique 

M. Chamia and S. Liberman proposed a traveling waves technique [7] for 

protecting transmission lines; the technique used directional comparison. To understand 

the technique, consider a two terminal power system [7], shown in Figure 2.5.  
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Figure 2.5: Voltage and current at fault inception 

 

A transmission line connects the bus A to bus B and a fault is experienced at 

location F on the line. Post-fault voltage, v  and current, i  can be split into four 

components. Two components are the pre-fault voltage and current and the other two 

components are the changes in the voltage and current due to the fault. Figure 2.5 shows 

the voltage and current at the inception of the fault; Figure 2.6 shows the pre-fault 

voltage and current and Figure 2.7 shows the component of voltage and current injected 

by the fictitious source at the fault [7]. 

 

v′

i′

v  

Figure 2.6: Voltage and current before fault 

 

fv

fi

fv−

 

Figure 2.7: Voltage and current components injected by the fictitious source at the fault 

 
If the pre-fault voltage and current are v′  and i′ , and the fault injected voltage 

and current are fv and fi , then 

vvv f ′−= , and      (2.48) 

iii f ′−=        (2.49) 

fv  and fi  are directly related to the fault, therefore, they can be used to obtain 

information about the fault. The direction of motion of traveling waves can be 

determined by comparing polarities of the pre-fault voltage and current with the 
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polarities of the fault injected voltage and current. The internal and external faults can be 

distinguished by comparing polarities of the fault injected voltage and current. 

2.7.2 Crossley and McLaren Technique 

Crossley and McLaren proposed a traveling waves technique [10] to determine 

the location of a fault on the transmission line. The technique records samples of the 

incident traveling wave at the inception of a fault. The wave that returns after reflection 

from the fault is recognized by correlating the reflected signal with the recorded incident 

signal. The correlation is used to determine the degree of similarity between the signals. 

If irφ is the discrete correlation function [10] establishing a correlation between incident 

signal, i  and reflected signal, r , 

)(.)(
1

)(
1

tkrtki
N

N

k
ir ∆+∆= ∑

=
ττφ     (2.50) 

where, i is the incident signal, 

r is the incident signal, and 

           τ  is the time delay introduced in the reflected signal. 

The time at the arrival of incident and reflected traveling waves is recorded. If T 

is the difference in time at the arrival of incident wave and time of arrival of reflected 

waves, then, twice the distance of fault from the relay is equal to T times velocity of 

propagation of traveling waves. 

2

vT
D

×=        (2.51) 

2.8 Traveling Wave Relay Issues 

The implementation of the techniques, developed by Chamia and Liberman, and 

Crossley and McLaren, was based on the analog signals and devices. Analog signal 

processing can not fully exploit the information, about the fault, carried by the traveling 

waves. The analog devices are slow in operation; therefore, the techniques, based on 

traveling waves, do not present realizable implementation on analog devices.  

Digital techniques, proposed in this thesis, eliminate the drawbacks of the analog 

devices. The relays, based on the proposed techniques, provide high-speed detection and 

location of the faults.  
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2.9 Summary 

Traveling wave theory is discussed in this chapter. Traveling waves originate at 

the fault and travel away from the fault.  Buses act as discontinuities in the path of the 

traveling waves, which are reflected when they encounter a discontinuity.  The fault 

location also acts as a discontinuity.  The techniques proposed by Chamia and Liberman, 

and Crossley and McLaren are described. The problems associated with the 

implementation of traveling wave techniques using the analog technology are also 

discussed briefly. 
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Chapter 3  
Proposed Protection Techniques 

3.1  Introduction 

Traveling waves are introduced in Chapter 2. A technique for extracting 

traveling waves from the modal components of voltages and currents is presented in this 

chapter. The modal analysis is briefly discussed in Appendix A. Two techniques, which 

utilize the information obtained from the traveling waves to detect and locate a fault on 

an EHV transmission line, are also presented. Application of the techniques on a single 

circuit line as well as on a double circuit line is discussed. 

Tamije Selvy Munian studied the feasibility of traveling wave techniques for 

protecting transmission lines [11]. She proposed digital techniques, which are based on 

the traveling waves extracted from the phase voltages and currents. Two digital 

techniques are proposed in this thesis, which are based on the traveling waves extracted 

from the modal voltages and currents. The techniques are implemented in hardware and 

performance is tested on data generated by simulating cases using EMTDC. 

3.2  Traveling Wave Extraction 

Traveling waves can be extracted from the modal voltages and currents by using 

sequence filters. A sequence filter, basically, is an algorithm that uses a sequence of 

samples to obtain information about the changes in a signal.  

Traveling waves result in step changes in voltages and currents, such as the 

changes shown in Figure 3.1. Step changes in voltages and currents can be detected by 

using sequence filters that are classified on the basis of the size of the data window and 

on the structure of the filter. The size of the data window is an important aspect in 

detecting traveling waves. The data-window size should be optimal for achieving 

accuracy without leaving any part of the line unprotected. 
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Figure 3.1: Step changes in voltage due to traveling waves 

 
Increasing the data-window size increases the accuracy, but the length of the 

unprotected region increases. Various sequence filters with different number of samples 

and different structures were studied to detect the arrival of traveling waves at the relay 

location. The filters and their feasibility for detecting traveling waves are discussed in 

the following sections. 

3.2.1 Sequence Filter with Data-Window of Two Samples 

A two-sample sequence filter is proposed in Reference 11. This filter is based on 

the first differences [12] of the voltage and current samples. The first differences of the 

voltage samples can be expressed as 

2

1

2

1n vv∆v
−+

−=
nn

      (3.1) 

where, 
2

1
n

v
+

 is 







 +
2

1
n

th sample of the voltage, and 

2

1
n

v
−

 is 









2

1
-n

th sample of the voltage. 

Taking z-transform of Equation 3.1 provides, 

2

1

2

1

)H(z
−+

−= zz       (3.2) 

Equation 3.2, in frequency domain, becomes  

ω∆T
2

1
jω∆T

2

1
j

ee)H(ω
−+

−=  

         






=
2

ω∆T
2jsin       (3.3) 

V
ol

ta
ge

 (
kV

) 



 

 26 

The frequency response of the filter for a sampling rate of 1MHz is shown in 

Figure 3.2. This sequence filter is the simplest of all and uses minimum number of 

samples, but this filter does not provide adequate accuracy. The output of this filter, 

when traveling waves are present in the voltage, is shown in Figures 3.3 and 3.4. These 

figures show that the output of the filter has clear spikes when a traveling wave arrives 

at the measuring device. 
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Figure 3.2: Frequency response of a two-sample sequence filter 
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Figure 3.3: Output of a two-sample sequence filter 

The output of the filter is, however, not zero when signal is a sinusoidal 

waveform as shown in Figures 3.3 and 3.4. Also, low level traveling waves due to the 
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occurrence of faults at low instantaneous values, can not be detected. Therefore, this 

filter is not appropriate for detecting traveling waves. 
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Figure 3.4: Zoomed output of a two-sample sequence filter 

 

3.2.2 Sequence Filter with Data-Window of Three Samples 

Consider a three-sample sequence filter, which is based on the second differences 

of the voltage and current samples. The second differences of the voltage samples can be 

expressed as 

1nn1nn v2vv∆v −+ +−=       (3.4) 

where, 1nv +  is (n+1)th sample of the voltage, 

nv  is nth sample of the voltage, and 

1nv −  is (n–1)th sample of the voltage. 

Taking z-transform of Equation 3.4 provides, 

101 2H(z) −+ +−= zzz      (3.5) 

Equation 3.5, in frequency domain, becomes  

ω∆Tj0ω∆Tj ee2e)H(ω −+ +−=  

         1))ω∆T2(cos( −=      (3.6) 

The frequency response of the filter for a sampling rate of 1MHz is shown in 

Figure 3.5.  
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Figure 3.5: Frequency response of a three-sample sequence filter 

 
The output of this filter, when the input voltage contains traveling waves, is 

shown in Figures 3.6 and 3.7. Sets of up-down spikes confirm the presence of traveling 

waves.  
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Figure 3.6: Output of a three-sample sequence filter 

 
Figure 3.6 also shows that when a traveling wave is not present in the signal, the 

output is zero. This feature helps in recognizing traveling waves with low intensity. 

Also, using a set of up and down spikes for detecting the arrival of a traveling wave adds 

to dependability and security of the detection process. 
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Figure 3.7: Zoomed output of a three-sample sequence filter 

 

3.2.3 Sequence Filter with Data-Window of Five Samples 

Two sequence filters, which take five samples as input, are discussed in the 

following sections. 

3.2.3.1 Filter 1 

Consider a five-sample sequence filter, which is based on the following difference 

equation  

2n1nn1n2nn vv22vv2v∆v −−++ +−+−=    (3.7) 

where, 2nv +  is (n+2)th sample of the voltage, 

  1nv +  is (n+1)th sample of the voltage, 

nv  is nth sample of the voltage,  

1nv −  is (n–1)th sample of the voltage, and 

2nv −  is (n–2)th sample of the voltage. 

The z-transform of Equation 3.7 provides, 

21012 222H(z) −− +−+−= zzzzz     (3.8) 

Equation 3.8, in frequency domain, becomes  

ω∆T2jω∆Tj0jω∆Tjω∆T2j eee2e2e)H(ω −−++ +−+−=  

         1)ω∆Tcos(4)ω∆T2cos(2 +−=    (3.9) 

The frequency response of the sequence filter for a sampling rate of 1MHz is 

shown in Figure 3.8. The output of this filter is shown in Figure 3.9. The filter does not 
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give a consistent pattern, when traveling waves arrive at the relay; therefore, this filter 

can not be used for detecting faults on transmission lines.  
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Figure 3.8: Frequency response of a five-sample filter defined in Equation 3.7 
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Figure 3.9: Output of a five-sample sequence filter defined in Equation 3.7 

3.2.3.2 Filter 2 

Consider a five-sample sequence filter, which is based on the following difference 

equation  

2n1nn1n2nn v2v2vvv2∆v −−++ +−−−=    (3.10) 
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where, 2nv +  is (n+2)th sample of the voltage, 

  1nv +  is (n+1)th sample of the voltage, 

nv  is nth sample of the voltage,  

1nv −  is (n–1)th sample of the voltage, and 

2nv −  is (n–2)th sample of the voltage. 

The z-transform of Equation 3.10 provides, 

21012 222H(z) −− +−−−= zzzzz     (3.11) 

Equation 3.11, in frequency domain, becomes  

ω∆T2jω∆Tj0jω∆Tjω∆T2j e2ee2ee2)H(ω −−++ +−−−=  

         2)ω∆Tcos(2)ω∆Tcos(24 −−=    (3.12) 

The frequency response of the sequence filter for a sampling rate of 1MHz is 

shown in Figure 3.10.  
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Figure 3.10: Frequency response of a five-sample filter defined in Equation 3.10 

The output of this filter is shown in Figure 3.11, which clearly depicts the arrival 

of traveling waves. But this filter does not have any additional advantages over the 

three-sample filter discussed in section 3.2.1.2. Therefore, the sequence filter, which 

uses three samples, was used for detecting traveling waves. 
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Figure 3.11: Output of a five-sample sequence filter defined in Equation 3.10 

3.3  Sequence Filter Inputs 

The proposed techniques use modal voltages and currents as inputs to the 

sequence filters instead of the phase voltages and currents. The modal components 

simplify the logic for detecting the traveling waves.  

When the phase signals are used, voltages and currents of all three phases are 

checked for the presence of traveling waves. When modal components of the signals are 

used, aerial modes are checked for the presence of traveling waves. The calculations 

required for detecting traveling waves by using modal components of voltages and 

currents are less than the calculations required for detecting traveling waves by using 

phase voltages and currents. 

3.4  Fault Location Techniques 

The two digital techniques, single-ended and double-ended, for detecting and 

locating faults on transmission lines are described in the following sections. The single-

ended technique takes voltage and current inputs from one end of the transmission line. 

The double-ended technique takes voltage and current inputs from both ends of the 

transmission line; the information from the remote end is obtained over a 

communication channel between the two ends of the transmission line. 

3.4.1 Single-Ended Technique: Single Circuit Line 

Consider a power system, shown in Figure 3.12, with a single circuit 

transmission line connecting bus A and bus B. A traveling wave digital relay, Ra, is 

located at the bus A terminal of the line. This relay takes input voltages and currents 
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from the local terminal and calculates modal voltages and currents. The aerial modes, 1 

and 2, of the voltages and currents are passed through the sequence filters. 

 
Figure 3.12: Traveling waves on a single circuit transmission line in sample power system 

 

When a fault occurs on the transmission line, the voltage and current traveling 

waves originate and propagate on the line away from the fault.  One wave travels 

towards bus A and the other wave travels towards bus B. The traveling waves, after a 

few microseconds, arrive at bus A. When the traveling waves are detected by the relay, 

Ra, the timer is turned on.  The spikes corresponding to the voltage and current incident 

waves are shown as VS1 and IS1 in the outputs of sequence filters, in Figure 3.13. The 

opposite polarities of the voltage and current spikes confirm the occurrence of  
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Figure 3.13: Sequence filter output at relay Ra 
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a fault. A bus acts as a discontinuity in the path of the traveling waves. On reaching a 

bus, a part of the voltage wave and a part of the current traveling wave is reflected, and 

rest passes through. The reflected waves arrive at the fault, where a part of the voltage 

wave and a part of the current wave is reflected. These waves arrive at bus A, the second 

time. The arrival of the waves is detected by the relay, Ra. The spikes, corresponding to 

these voltage and current waves are shown as VS2 and IS2, in Figure 3.13. The timer is 

stopped and the time is noted as aT .  

The distance traveled by the traveling waves is twice the distance of the fault 

from bus A. Therefore, the distance of the fault can be calculated as 

v
2

T
D a ×=        (3.13) 

where, v is the velocity of propagation of the traveling waves. 

If the distance, D is less than the length of the protected transmission line, the 

relay sends trip signals to the circuit breakers to isolate the faulted line from the rest of 

the system. If the value of D is greater than the length of the protected line, the relay is 

reset and normal operation is resumed. 

When the traveling waves arrive at bus B, part of the waves is reflected back to 

the fault. Again a part of the voltage wave and a part of the current wave gets reflected at 

the fault, and the rest passes through. When the waves, which pass through the fault, 

arrive at bus A, are detected by the relay, Ra. The spikes, corresponding to these voltage 

and current waves are shown as VS3 and IS3 in Figure 3.13. The same polarities of the 

spikes of these waves, distinguish them from the initial traveling waves, which 

propagated from the fault to bus A. 

3.4.2 Single-Ended Technique: Double Circuit Line 

Consider a power system, shown in Figure 3.14, with a double circuit 

transmission line connecting bus A and bus B. The traveling wave digital relays are 

located at bus A terminal of both circuits. The relays take the input voltages and currents 

from the local terminals and transform them into modal components. The aerial modes, 

1 and 2, of the voltages and currents are passed through the sequence filters. 
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Figure 3.14: Power system with a double circuit transmission line 

 
When a fault occurs on one of the circuits of the transmission line, the voltage 

and current traveling waves originate and propagate away from the fault. The traveling 

waves also exist on the healthy circuit due to magnetic induction. The voltage and 

current traveling waves, which arrive at bus A, are detected by the relays, R1 and R2. 

The first set of spikes corresponding to the initial voltage and current traveling waves at 

relay R2 are shown as VC21 and IC21 in Figures 3.15. The polarity of the voltage spike is 

opposite than the polarity of the current spike, which indicates that the fault is on circuit 

2. The timer in Relay, R2, is turned on.  

 

 

Figure 3.15: Voltage and current sequence filter outputs at relay on circuit 2 at bus A 

 
The first set of spikes in voltage and current detected by the relay, R1, on circuit 

1 are shown as VC11 and IC11 in Figure 3.16. The polarities of these spikes are same; 

therefore, fault is not on circuit 1.  
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Figure 3.16: Voltage and current sequence filter outputs at relay on circuit 2 at bus A 

 
The bus A reflects a part of the traveling waves, which travel back to the fault, 

where a part of the waves again gets reflected. The reflected voltage and current waves 

travel towards the bus A, where they are detected by the relays. The second set of 

voltage and current waves detected by relay R2 is represented as VC22 and IC22 in Figure 

3.15. The timer is stopped. If, the time recorded by the relay is aT , the distance of the 

fault from bus A can be calculated as 

v
2

T
D a ×=        (3.14) 

where, v is the velocity of propagation of the traveling waves.  

If the value of D is less than the length of the protected transmission line, the 

fault is on the line. Relay sends the trip signals to circuit breakers to isolate the faulted 

line. If the value of D is greater than the length of the protected line, the relays are reset 

and normal operation is resumed. 

3.4.3 Double-Ended Technique: Single Circuit Line 

Consider a power system, shown in Figure 3.17, with a single circuit 

transmission line connecting bus A and bus B. The traveling wave digital relays are 

located at each terminal of the line. The relays take the input voltages and currents from 

the local terminals of the line and calculate modal components. The aerial modes, 1 and 

2, of the voltages and currents are passed through the sequence filters. The relays can 
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send and receive information from each other through the communication channel. A 

Global Positioning System (GPS) is used to time-stamp the incoming samples.   

 

 

Figure 3.17: Traveling waves on a single circuit transmission line protected with double-ended 
technique 

 

In case of a fault on the transmission line, traveling waves originate on the line 

and propagate away from the fault. These waves arrive at the buses after a few 

microseconds. Traveling waves present up-down spikes in the outputs of the voltage and 

current sequence filters. The polarities of the spikes in voltages are opposite to the 

polarities of the spikes in currents. The traveling waves are detected by the relays and 

the time corresponding to the arrival of the waves is recorded. The relay at each terminal 

sends the recorded time to the relay at the other terminal. Let the difference of the times 

recorded by the relays be Td, therefore, 

bad TTT −=        (3.15) 

where, aT  is the time recorded by the relay, aR , at the arrival of the waves, and 

bT  is the time recorded by the relay, bR , at the arrival of the waves. 

The time taken by a traveling wave to travel the length of the line can be 

calculated as 

v

L
T =         (3.16) 
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where, L is the total length of the transmission line, and 

v is the velocity of propagation of the traveling waves.  

Now the time, Td is compared with the time, T. If, Td is smaller than T , fault is 

on the transmission line. Therefore, the trip signals are issued by the relays to the circuit 

breakers to isolate the faulted line. If, Td is equal to T, fault is beyond the remote end of 

the line, therefore the relays are reset and no action is taken.  

If, fault is on the transmission line, the relay, Ra, calculates the distance of the 

fault as 

2

v

v

L
TTD ba1 ×















+−=      (3.17) 

The relay, Rb, calculates the distance of the fault as 

( )
2

v
TT 

v

L
D ba2 ×







 −−






=     (3.18) 

3.4.4 Double-Ended Technique: Double Circuit Line 

In case of a double circuit transmission line, the traveling wave relays are located 

at each terminal of the circuits. The relays can transfer information to the relays at the 

remote terminal through a communication channel. A GPS system is used to time-stamp 

the incoming samples. The relays take input voltages and currents from the local 

terminals of the line and transform them into modal components. The aerial modes, 1 

and 2, of the voltages and currents are passed through the sequence filters.  

When a fault occurs on one of the circuits, traveling waves originate on the line 

and propagate away from the fault. The traveling waves also exist on the healthy circuit 

due to magnetic induction. When the voltage and current waves arrive at the terminals of 

the lines, the relays compare the polarities of spikes in the outputs of the voltage and 

current sequence filters. In case, the polarities of the spikes in voltages are opposite to 

the polarities of the spikes in currents, the time corresponding to the arrival of the waves 

is recorded by the relays. The relay at each terminal sends the recorded time to the relay 

at the other terminal via the communication channel. The difference in the values of time 

recorded by the relays is compared with the time, T, calculated by using Equation 3.16. 
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If the fault is on the circuit, the distance of fault from bus A and bus B is calculated by 

using Equations 3.17 and 3.18 respectively. 

In case, polarities of the spikes in the outputs of the voltage and current sequence 

filters are same, fault is not on the circuit. 

3.5  The Algorithm for Single-Ended Technique 

The flowchart for the single-ended technique is shown in Figure 3.18. The steps 

involved in the algorithm are as follows 

1. Initialize variables, CV and CI, to zero. 

2. Fetch the voltage and current samples. 

3. Calculate aerial modes of the voltages and currents. 

4. Pass samples through the sequence filters. 

5. Check if spikes are present in the outputs of the sequence filters. 

6. If spikes are detected, compare polarities of the voltage and current spikes. 

7. If polarities of the spikes are different, increment the variables, VC and VI, by one.  

8. Compare the values of the variables with 2. 

9. If values of the variables are not equal to 2, turn the timer on. 

10. If values of the variables are equal to 2, compare the polarities of the second set of 

voltage and current spikes with the polarities of the first set of voltage and current 

spikes respectively. 

11. If the compared polarities are same, stop the timer and record the time. 

12. Calculate the distance of the fault. 

13. If the calculated distance is less than the length of the protected transmission line, 

send trip signals to the circuit breakers. 

14. Otherwise, the fault is external to the line. Reset the variables to zero. 
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v
2

T
D ×=

 

Figure 3.18: Flowchart for the single-ended technique 
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3.6  The Algorithm for Double-Ended Technique 

The flowchart for the double-ended technique is shown in Figure 3.19. The steps 

involved in the algorithm are as follows  

1. Fetch the voltage and current samples. 

2. Calculate aerial modes of the voltages and currents. 

3. Pass samples through the sequence filters. 

4. Check if spikes are present in the outputs of the sequence filters. 

5. If spikes are detected, compare polarities of the voltage and current spikes. 

6. If polarities of the spikes are different, record the time and send this value to relay 

at the other end. 

7. Calculate difference of the times recorded by the relays. Record the value as Td. 

8. Calculate the time that a traveling wave takes to travel the full length of the 

transmission line. Record this value as T. 

9. If Td is less than T, fault is on the protected line.  

10. Send trip signals to the circuit breakers and calculate the distance of the fault. 

11. Otherwise, fault is external to the line. Normal operation of the relay is resumed. 

3.7  Features of Single-Ended Technique and Double-Ended Technique 

Features of the proposed techniques are summarized as follows. 

•  The techniques are capable of distinguishing between faults, internal and external 

to the protected line. 

•  The techniques are applicable on single circuit lines as well as on double circuit 

lines for detecting and locating faults. 

•  Computational time is small in these techniques. For example, the time needed by 

the relay, based on single-ended technique, for detecting a fault on the remote end 

of a 150 km transmission line is 

001.0
103

101502
T

8

3

max =
×

××=  s    (3.19) 

The total time required to isolate the faulted line is less than 3 ms. This time is very 

low in comparison to 16 ms, taken by the relays, which use fundamental 

component of the signal to detect faults. 
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Figure 3.19: Flowchart for the double-ended technique 
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3.8  Summary  

Single-ended and double-ended techniques for detecting and locating faults on 

transmission lines are proposed in this chapter.  The techniques use traveling waves of 

modal components of voltages and currents. The techniques and their algorithms for 

protection of single circuit transmission lines and double circuit transmission lines are 

described.  Relays based on the proposed techniques are very fast in operation. 
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Chapter 4  

Hardware, Software and Programming 

4.1  Introduction 

The hardware and software used to implement the digital techniques for 

transmission line protection is described in this chapter. The hardware used to implement 

the techniques is a DSP module and a personal computer. A real time operating system 

was used to load the code on the processor. 

4.2  DSP Module 

A DSP module, generally, contains a microprocessor, an external memory and 

various peripheral devices. The main components of the DSP module, SMT335 [13, 14], 

are shown in the block diagram in Figure 4.1. 

 

Figure 4.1: Block diagram of SMT335 

 

The voltages and currents obtained from the power system are digitized by 

passing them through an analog to digital (A/D) converter unit, SMT356 [15], which 

consist of eight A/D converters (AD9240). This 14-bit A/D converter can process 10 

million samples in a second. It has four-stage pipeline architecture with on-chip input 

sample and hold circuit, and voltage reference. The device utilizes one cycle to
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acquire samples and three cycles to process them.  The device also contains digital 

output error correction logic to guarantee no missing codes over the operating 

temperature range. All A/D converters, sample the inputs simultaneously using the same 

clock. 

The protection techniques were coded in C language and linear assembly 

language. These programs were loaded and executed on a microprocessor. The DSP 

module, SMT335, was used in this project and has the following features. 

•  The module contains a fixed point processor, TMS320C6201 [2], running at 200 

MHz. 

•  The module has six communication ports, which can transfer data at a maximum 

speed of 20 MB/s. 

•  The module has 512 KB of Synchronous Burst Static Random Access Memory 

(SBSRAM) and 16 MB of Synchronous Dynamic Random Access Memory 

(SDRAM). 

The Random Access Memory (RAM) provides very fast access speed, which is 

needed by the processor for temporary storage of the data during the program 

execution. The DRAM, composed of a transistor and a capacitor, requires periodic 

rewriting of the information in order for data to remain valid. On the other hand, 

Static Random Access Memory (SRAM) is made up of a flip-flop circuitry and the 

data stored in it does not need to be refreshed. The data remains in the device as 

long as the power is on. In synchronous mode, the device uses a clock to 

synchronize the signal input and the signal output. In burst mode, SRAM transmits 

a series of consecutive addresses when the processor requests a single address.  

•  The module has 512 KB of Flash memory, a Read Only Memory (ROM), reserved 

for the configuration (boot code) and field programmable gate array (FPGA) 

programming. Flash memory is a solid-state device, which is non-volatile and can 

be rewritten. 

•  The module is equipped with a global bus expansion connector, which allows the 

processor to access additional features like I/O expansion and memory. 
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•  The module has two Sundance Digital Bus (SDB) interface ports. SDB is a 16-bit 

parallel communication link, which can transfer data between processors at the 

speed of 200 Mbps.  

4.2.1 Digital Signal Processor 

The main components of a DSP are shown in the block diagram in Figure 4.2. 

The central processing unit (CPU) is the heart of the processor, which performs all 

arithmetic and logic calculations. The memory on a microprocessor chip, called the on-

chip memory, is used by the processor for temporary storage during execution of the 

program. CPU communicates with the internal memory and other peripheral devices via 

internal buses. The two types of buses are present in a processor. A control bus is used 

by the control unit of the CPU to control the flow of data among peripherals connected 

to the CPU. The other type of bus is a data bus, which transports data from memory to 

the CPU. 

The external memory and other peripherals can also communicate with the 

processor through various ports available on the processor. 

 

 

 

 

 

 

Figure 4.2: Block diagram of a digital signal processor 

 

4.2.1.1 Digital Signal Processor C6201 

TMS320C6201, a fixed point DSP, has the following features [2, 14]. 
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1 High performance 

i. The processor has clock rate of 200 MHz, which provides 5 ns instruction cycle 

time. 

ii. The CPU contains eight functional units, which operate in parallel to execute up 

to eight 32-bit instructions in each clock cycle. 

2 Very Long Instruction Word 

i. The functional units of the CPU are six Arithmetic and Logic Units (ALU) and 

two multipliers. The ALU can process 32-bit as well as 40-bit instructions. The 

multipliers can process two 16-bit instructions to produce a result of 32-bit. The 

eight functional units are placed on the chip in two identical sections; section A 

and section B. Each section has its general purpose registers, which allow the 

transfer of data between the sections. 

ii. The processor has thirty-two 32-bit general purpose registers, which are used to 

load and store instructions. 

3 On-chip SRAM 

The on-chip SRAM is 1 MB in size, which is divided on the chip as 512 KB of 

program memory and 512 KB of data memory. The program memory and the 

data memory are used by the processor to load the instructions and data, 

temporarily, during the execution.  

4 Peripherals 

i. External Memory Interface (EMIF): The processor has a 32-bit external memory 

interface, which transfers data between the processor and the external memory. 

ii. Direct Memory Access (DMA): It is a feature that allows the transfer of data 

from the external devices to the memory located on the processor, without the 

intervention of the processor. 

iii. Host Port Interface (HPI): 16-bit HPI provides access of the entire memory map 

to the host processor. 

iv. Timers: The processor has two 32-bit general purpose timers. 
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4.3  Real Time Operating System: Diamond 

The Diamond [16] is a real time operating system, which gives high performance 

with simplified structure. Diamond loads a program on the processor, and displays the 

results after the execution of the program. Diamond has the following features: 

•  It has a graphical user interface for interaction with the user. It can take user inputs 

and displays the results. 

•  It has a microkernel with multi-tasking and multi-threading ability to handle 

multiple processors efficiently. Multi-tasking is an ability by virtue of which 

multiple tasks can be handled concurrently. Multi-threading is an ability that 

allows processor to process multiple simultaneous requests. 

•  It includes a configuration software, which optimizes the system performance by 

moving tasks around a multi-processor network. 

4.4  Programming 

The code for the proposed techniques was written in linear assembly language 

and C language. The logic of the proposed techniques was implemented in a linear 

assembly program. Linear assembly language code [17, 18] used along with the 

assembly optimizer, efficiently generates the assembly language code without worrying 

about register usage, pipelining, functional units and delay slots. The C program was 

made to fetch data from the files stored on personal computer. The samples were scaled 

and stored in arrays and pointers to these arrays were passed to the assembly language 

program by the C program. C program also provided results to the real time operating 

system, Diamond, which displays them on a graphical interface. 

Data collected by running simulated cases in EMTDC was stored in a personal 

computer. The C language program and the linear assembly language program were 

compiled and linked using code composer studio compiler and linker. The resulting task 

files were configured by using Diamond configurer. The configurer, interlinked the tasks 

and specified the processor on which program was to be loaded. Configurer produced an 

application file, which was loaded on the processor by using Diamond.  

The execution of the program was controlled from the Diamond’s user interface. 

When the program was executed, the DSP accessed the data files stored on the personal 
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computer. The program checked the data for the presence of traveling waves and detects 

the fault. It calculates the location of the fault on the transmission line. The linear 

assembly program saved the results in an array. The C program provides the results to 

the Diamond. The results include; time of arrival of the traveling waves and distance of 

the fault. The Diamond shows the results on the graphical user interface. Application 

execution sequence is shown in Figure 4.7. 

 

Figure 4.3: Program execution sequence 
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4.5  Summary  

High performance hardware is required to implement the traveling wave 

techniques for fast and reliable performance of the relay. Linear assembly language 

programming is used to implement the protection logic in the relay for better 

optimization of the code. Diamond is used for loading and connecting multiple tasks on 

the microprocessor.  
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Chapter 5  

System Studies 

5.1  Introduction 

The two proposed techniques for detecting and locating faults on transmission 

lines are introduced in Chapter 4. This chapter describes the test power system, which 

was simulated in EMTDC to generate data. The parameters, which affect the properties 

of the traveling waves, are described. The results obtained by implementing the 

techniques in a DSP are also discussed. 

5.2  Test Power System 

A test power system was modeled in the EMTDC program. A case of the 

modeled power system is shown in Figure 5.1. Model of a source, a transformer, a 

transmission line, an induction motor and a load are shown in Figures 5.2, 5.3, 5.4 and 

5.5 respectively. Test power system consists of 17 buses, 8 transformers, 14 

transmission lines, 2 sources, 2 induction motors and 4 loads. The transmission lines; 

T5, and T7a and T7b in parallel configuration, were considered for applying faults. The 

line to line voltage of T5 is 500 kV and that of T7a and T7b is 735 kV. The transmission 

line, T5, is 100 km long and T7a and T7b are 130 km long.  The single-ended and 

double-ended techniques were implemented to find the distance of faults on the 

transmission lines. 

5.3  Simulated Cases 

A total of 1250 different cases were simulated in EMTDC by applying different 

types of faults on transmission lines and by assuming different values of fault location, 

fault resistance and fault inception angle. The cases were run with the time-step of 1 µs. 

The data generated by running these cases was saved in a personal computer.  
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Figure 5.1: Model of the test power system in EMTDC 
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Figure 5.2: Model of a source and a transformer in EMTDC 
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Figure 5.3: Model of a transmission line in EMTDC 
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Figure 5.4: Model of a transformer and a machine in EMTDC 
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Figure 5.5: Model of a load in EMTDC 

 

5.3.1  Fault Distance 

Different types of faults ware applied at one km intervals on the 10 km sections 

adjacent to the terminals of the transmission lines.  Faults were also applied at 10 km 

intervals on the remaining length of the lines. The traveling waves propagate with a 

finite velocity and their intensity decreases as the distance traveled increases. A traveling 

wave originated at a farther location takes longer time to reach the relay than a wave 

originated at a nearer location. 

5.3.2  Fault Types 

The types of faults applied on the transmission lines are  

1. single phase to ground fault,  

2. double phase fault,  

3. double phase to ground fault, and 

4. three phase fault.  

When a fault occurs, the traveling waves also exist on the healthy phases due to 

the mutual coupling between the conductors of the transmission line. 

5.3.3  Fault Resistance 

The intensity of the traveling waves decreases with the increase in the value of 

fault resistance. The cases were simulated by assuming the following values of fault 

resistance. 

1. 3 ohm, 
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2. 15 ohm, 

3. 50 ohm, and 

4. 100 ohm. 

5.3.4  Fault Inception Angle 

The intensity of a traveling wave largely depends on the angle of the voltage 

wave at the time of occurrence of the fault. When the fault inception angle is close to 

90º, the intensity of a generated traveling wave is highest. The intensity of a traveling 

wave decreases with the deviation of the fault inception angle from 90º. No traveling 

waves are generated, if, the voltage angle is close to 0º at the time of occurrence of a 

fault. Cases were developed with the fault inception angle equal to 90º, 60º, 30º and 0º. 

5.4  Effect of Transformer on Traveling Waves 

When a traveling wave encounters an inductance at a terminal of a line, the 

inductance appears to be an open circuit initially because the initial current in the 

inductor is zero.  Gradually, the current starts increasing, and ultimately, the inductance 

appears to be a short circuit. The wave reflected by the inductor initially has the same 

polarity as the polarity of the incident wave [6]. The transformers have high inductive 

reactance and therefore, the voltage and current traveling waves reflected by a 

transformer have initially the same polarities as the polarities of the incident waves. The 

traveling waves reflected from a transformer, therefore, do not exhibit the up-down 

pattern in the outputs of the current sequence filters as observed in the waves reflected 

from buses on which no transformers connected to them.  The EHV transmission line, 

T7a, has transformers at its terminals. The sample of the output of a sequence filter at 

T7a is shown in Figure 5.6. 

 A capacitance in the path of traveling waves appears to the wave as a short 

circuit initially.  Gradually, the charge builds up on the capacitor and the capacitor acts 

as an open circuit [6].  
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5.5  Case Discussion 

The cases with the single-ended and double-ended techniques, implemented for 

protecting EHV transmission lines, T5, T7a and T7b, are discussed in the following 

sections. 

5.5.1  Single-Ended Technique Cases 

The six cases with the single-ended technique are discussed. In three of the six 

cases, a fault is applied on the transmission line, T7a, and in other three, a fault is 

applied on the transmission line, T5. 

5.5.1.1 Phase ‘a’ to Ground Fault at 10 km on Transmission Line T7a 

A phase ‘a’ to ground fault, at a distance of 10 km from bus B7, is applied on the 

transmission line, T7a. The high-speed digital relays, located at bus B7 and B9, take 

phase voltages and currents as inputs from the system. The aerial modes, 1 and 2, of the 

voltages and currents are calculated and then, passed through the sequence filters. The 

outputs of the sequence filters are shown in Figures 5.6, 5.7, 5.8 and 5.9. The spikes in 

the outputs indicate the arrival of traveling waves at the relays. The different polarities 

of the spikes in the outputs of the voltage and current sequence filters at bus B7 confirm 

the occurrence of a fault. The spikes are not present in the outputs of the sequence filters 

on line T7b; therefore, the line is healthy. The time recorded by the relay on line T7a, at 

the arrival of the first set of traveling waves, is 133 µs. The set of traveling waves, which 

arrived after reflection from the fault, is recorded by the relay at the time, 199 µs. The 

distance of fault, calculated by the relay, is as follows 

( )
v

2

0.0001330.000199
D ×−=  = 9.89 km 

where, v, the velocity of propagation of the traveling waves = 299792.468 km/s. 

The calculated distance is less than the length of the transmission line; therefore, 

a fault has occurred on the transmission line, T7a. Relay sends a trip signal to the circuit 

breakers and the line is isolated from the rest of the system. 
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5.5.1.2 Phase ‘a’ to ‘b’ to Ground Fault at 60 km on Transmission Line T7a 

A phase ‘a’ to ‘b’ to ground fault, at a distance of 60 km from bus B7, is applied 

on the transmission line, T7a. The high-speed digital relays, located at bus B7 and B9, 

take phase voltages and currents as inputs from the system. The aerial modes, 1 and 2, of 

the voltages and currents are calculated and then, passed through the sequence filters. 

The outputs of the sequence filters are shown in Figures 5.14, 5.15, 5.16 and 5.17. The 

spikes in the outputs indicate the arrival of traveling waves at the relays. The different 

polarities of the spikes in the outputs of the voltage and current sequence filters in 

relays, on line T7a, confirm the occurrence of a fault. The spikes are not present in the 

outputs of the sequence filters of relays on line T7b; therefore, the line is healthy. The 

time recorded by the relay on line T7a, at the arrival of the first set of traveling waves, is 

300 µs. The set of traveling waves, which arrived after reflection from the fault, is 

recorded by the relay at the time, 700 µs. The distance of fault, calculated by the relay, is 

as follows 

( )
299792.458

2

000300.0000700.0 ×−=D  = 59.96 km 

The calculated distance is less than the length of the transmission line; therefore, 

a fault has occurred on the transmission line, T7a. Relay sends a trip signal to the circuit 

breakers and the line is isolated from the rest of the system. 

5.5.1.3 Phase ‘b’ to ‘c’ Fault at 110 km on Transmission Line T7a 

A phase ‘b’ to ‘c’ fault, at a distance of 110 km from bus B7, is applied on the 

transmission line, T7a. The relays calculate the aerial modes of the voltages and currents 

and pass them through the sequence filters. The outputs of the filters are shown in 

Figures 5.22, 5.23, 5.24 and 5.25. The different polarities of the spikes in the outputs of 

the voltage and current sequence filters of relays on line T7a confirm the occurrence of a 

fault. The time recorded by the relay, at the arrival of the first set of traveling waves, is 

467 µs. The time, when the set of traveling waves, arrived after the reflection from the 

fault, is recorded by the relay as 1201 µs.  The distance of the fault is calculated as 

follows 

( )
299792.458

2

0.0004670.001201 ×−=D  = 110.02 km 
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The calculated distance is less than the length of the transmission line; therefore, 

a fault has occurred on the transmission line, T7a. Relay sends a trip signal to the circuit 

breakers and the line is isolated from the rest of the system.  

5.5.1.4 Phase ‘b’ to Ground Fault at 20 km on Transmission Line T5 

A phase ‘b’ to ground fault, at a distance of 20 km from bus B3, is applied on the 

transmission line, T5. The relays calculate the aerial modes of the voltages and currents 

and pass them through the sequence filters. The outputs of the filters are shown in 

Figures 5.30 and 5.31. The different polarities of the spikes in the outputs of the voltage 

and current sequence filters confirm the occurrence of a fault. The time recorded by the 

relay, at the arrival of the first set of traveling waves, is 167 µs. The time, when the set 

of traveling waves, arrived after the reflection from the fault, is recorded by the relay as 

300 µs.  The distance of the fault is calculated as follows 

( )
299792.458

2

0.0001670.000300 ×−=D  = 19.94 km 

The calculated distance is less than the length of the transmission line; therefore, 

a fault has occurred on the transmission line, T5. Relay sends a trip signal to the circuit 

breakers and the line is isolated from the rest of the system. 

5.5.1.5 Phase ‘a’ to ‘b’ to ‘c’ to Ground Fault at 70 km on Transmission 

Line T5 

A phase ‘a’ to ‘b’ to ‘c’ to ground fault, at a distance of 70 km from bus B3, is 

applied on the transmission line, T5. The relays calculate the aerial modes of the 

voltages and currents and pass them through the sequence filters. The outputs of the 

filters are shown in Figures 5.34 and 5.35. The different polarities of the spikes in the 

outputs of the voltage and current sequence filters confirm the occurrence of a fault. The 

time recorded by the relay, at the arrival of the first set of traveling waves, is 334 µs. The 

time, when the set of traveling waves, arrived after the reflection from the fault, is 

recorded by the relay as 801 µs.  The distance of the fault is calculated as follows 

( )
299792.458

2

0.0003340.000801 ×−=D  = 70.00 km 
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The calculated distance is less than the length of the transmission line; therefore, 

a fault has occurred on the transmission line, T5. Relay sends a trip signal to the circuit 

breakers and the line is isolated from the rest of the system. 

5.5.1.6 Phase ‘c’ to ‘a’ Fault at 90 km on Transmission Line T5 

A phase ‘c’ to ‘a’ fault, at a distance of 90 km from bus B3, is applied on the 

transmission line, T5. The relays calculate the aerial modes of the voltages and currents 

and pass them through the sequence filters. The outputs of the filters are shown in 

Figures 5.38 and 5.39. The different polarities of the spikes in the outputs of the voltage 

and current sequence filters confirm the occurrence of a fault. The time recorded by the 

relay, at the arrival of the first set of traveling waves, is 400 µs. The time, when the set 

of traveling waves, arrived after the reflection from the fault, is recorded by the relay as 

1002 µs.  The distance of the fault is calculated as follows 

( )
299792.458

2

0.0004000.001002 ×−=D  = 90.24 km 

The calculated distance is less than the length of the transmission line; therefore, 

a fault has occurred on the transmission line, T5. Relay sends a trip signal to the circuit 

breakers and the line is isolated from the rest of the system.  

5.5.2  Double-Ended Technique Cases 

The cases, given in the previous section, are discussed in this section with the 

double-ended technique implementation. 

5.5.2.1 Phase ‘a’ to Ground Fault at 10 km on Transmission Line T7a 

A phase ‘a’ to ground fault, at a distance of 10 km from bus B7, is applied on the 

transmission line, T7a. The high-speed digital relays, located at the terminals of the 

transmission lines, T7a and T7b, take phase voltages and currents as inputs from the 

system. The aerial modes, 1 and 2, of the voltages and currents are calculated and then, 

passed through the sequence filters. The outputs of the sequence filters are shown in 

Figures 5.6, 5.7, 5.8, 5.9, 5.10, 5.11, 5.12 and 5.13. The first spikes in the outputs of 

sequence filters on line T7a indicate the arrival of initial traveling waves at the relays. 

The different polarities of the voltage and current spikes confirm the occurrence of a 
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fault. The spikes are not present in the outputs of the sequence filters of relays on line 

T7b; therefore, the line is healthy. The time recorded by the relays at bus B7 and bus B8 

on arrival of the first set of traveling waves is 133 µs and 500 µs respectively. The relay, 

at bus B8, sends the recorded time to the relay at bus B7. The difference of the time 

recorded by the relay is 

500133Td −=  

367Td = µs 

The time taken by a traveling wave to cover the full length of the line can be 

calculated as 

v

L
T =  

where, L , the length of the transmission line = 130 km, and 

v , the velocity of propagation of the traveling waves = 299792.468 km/s. 

Therefore, 

434T = µs 

Since, TTd < , the fault is on the protected line. The relays send the trip signals 

to the circuit breakers to isolate the faulted line from the rest of the system. 

The distance of the fault is calculated by using Equation 3.17 as  

2

299792.458

299792.458

130
 0.0005000.000133 ×















+−=D  

     = 9.99 km 

5.5.2.2 Phase ‘a’ to ‘b’ to Ground Fault at 60 km on Transmission Line T7a 

A phase ‘a’ to ‘b’ to ground fault, at a distance of 60 km from bus B7, is applied 

on the transmission line, T7a. The high-speed digital relays, located at the terminals of 

the transmission lines, T7a and T7b, take phase voltages and currents as inputs from the 

system. The aerial modes, 1 and 2, of the voltages and currents are calculated and then, 

passed through the sequence filters. The outputs of the sequence filters are shown in 

Figures 5.14, 5.15, 5.16, 5.17, 5.18, 5.19, 5.20 and 5.21. The first spikes in the outputs of 

filters on the line T7a indicate the arrival of initial traveling waves at the relays. The 

different polarities of the spikes in the outputs of the voltage and current sequence filters 
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confirm the occurrence of a fault. The spikes are not present in the outputs of the 

sequence filters of relays on line T7b; therefore, the line is healthy. The time recorded by 

the relays at bus B7 and bus B8 on arrival of the first set of traveling waves is 300 µs 

and 333 µs respectively. The relay, at bus B8, sends the recorded time to the relay at bus 

B7. The difference of the time recorded by the relay is 

333300Td −=  

33Td = µs 

The time taken by a traveling wave to cover the full length of the line is 

434T = µs 

Since, TTd < , the fault is on the protected line. The relays send the trip signals 

to the circuit breakers to isolate the faulted line from the rest of the system. 

The distance of the fault, calculated by the relay at bus B7, is as follows 

2

299792.458

299792.458

130
 0.0003330.000300 ×















+−=D  

     = 60.05 km 

5.5.2.3 Phase ‘b’ to ‘c’ Fault at 110 km on Transmission Line T7a 

A phase ‘b’ to ‘c’ fault, at a distance of 110 km from bus B7, is applied on the 

transmission line, T7a. The high-speed digital relays calculate the aerial modes, 1 and 2, 

of the voltages and currents and pass them through the sequence filters. The outputs of 

the filters are shown in Figures 5.22, 5.23, 5.24, 5.25, 5.26, 5.27, 5.28 and 5.29. The 

different polarities of the spikes in the outputs of the voltage and current sequence filters 

on line T7a confirm the occurrence of a fault. The time recorded by the relays at bus B7 

and bus B8 on arrival of the first set of traveling waves is 467 µs and 166 µs 

respectively. The relay, at bus B8, sends the recorded time to the relay at bus B7. The 

difference of the time recorded by the relay is 

166467Td −=  

301Td = µs 

The time taken by a traveling wave to cover the full length of the line is 

434T = µs 
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Since, TTd < , the fault is on the protected line. The relays send the trip signals 

to the circuit breakers to isolate the faulted line from the rest of the system. 

The distance of the fault, calculated by the relay at bus B7, is as follows 

2

299792.458

299792.458

130
 0.0001660.000467 ×















+−=D  

     = 110.12 km 

5.5.2.4 Phase ‘b’ to Ground Fault at 20 km on Transmission Line T5 

A phase ‘b’ to ground fault, at a distance of 20 km from bus B3, is applied on the 

transmission line, T5. The high-speed digital relays calculate the aerial modes, 1 and 2, 

of the voltages and currents and pass them through the sequence filters. The outputs of 

the filters are shown in Figures 5.30, 5.31, 5.32 and 5.33. The different polarities of the 

spikes in the outputs of the voltage and current sequence filters on the line confirm the 

occurrence of a fault. The time recorded by the relays at bus B3 and bus B4 on arrival of 

the first set of traveling waves is 167 µs and 367 µs respectively. The relay, at bus B4, 

sends the recorded time to the relay at bus B3. The difference of the time recorded by 

the relay is 

367167Td −=  

200Td = µs 

The time taken by a traveling wave to cover the full length of the line is 

334T = µs 

Since, TTd < , the fault is on the protected line. The relays send the trip signals 

to the circuit breakers to isolate the faulted line from the rest of the system. 

The distance of the fault, calculated by the relay at bus B3, is as follows 

2

299792.458

299792.458

100
 0.0003670.000167 ×















+−=D  

     = 20.02 km 
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5.5.2.5 Phase ‘a’ to ‘b’ to ‘c’ to Ground Fault at 70 km on Transmission 

Line T5 

A phase ‘a’ to ‘b’ to ‘c’ to ground fault, at a distance of 70 km from bus B3, is 

applied on the transmission line, T5. The high-speed digital relays calculate the aerial 

modes, 1 and 2, of the voltages and currents and pass them through the sequence filters. 

The outputs of the filters are shown in Figures 5.34, 5.35, 5.36 and 5.37. The different 

polarities of the spikes in the outputs of the voltage and current sequence filters confirm 

the occurrence of a fault. The time recorded by the relays at bus B3 and bus B4 on 

arrival of the first set of traveling waves is 334 µs and 200 µs respectively. The relay, at 

bus B4, sends the recorded time to the relay at bus B3. The difference of the time 

recorded by the relay is 

200334Td −=  

134Td = µs 

The time taken by a traveling wave to cover the full length of the line is 

334T = µs 

Since, TTd < , the fault is on the protected line. The relays send the trip signals 

to the circuit breakers to isolate the faulted line from the rest of the system. 

The distance of the fault, calculated by the relay at bus B3, is as follows 

2

299792.458

299792.458

100
 0.0002000.000334 ×















+−=D  

     = 70.09 km 

5.5.2.6 Phase ‘c’ to ‘a’ Fault at 90 km on Transmission Line T5 

A phase ‘c’ to ‘a’ fault, at a distance of 90 km from bus B3, is applied on the 

transmission line, T5. The high-speed digital relays calculate the aerial modes, 1 and 2, 

of the voltages and currents and pass them through the sequence filters. The outputs of 

the filters are shown in Figures 5.38, 5.39, 5.40 and 5.41. The different polarities of the 

spikes in the outputs of the voltage and current sequence filters confirm the occurrence 

of a fault. The time recorded by the relays at bus B3 and bus B4 on arrival of the first set 
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of traveling waves is 400 µs and 133 µs respectively. The relay, at bus B4, sends the 

recorded time to the relay at bus B3. The difference of the time recorded by the relay is 

133400Td −=  

267Td = µs 

The time taken by a traveling wave to cover the full length of the line is 

334T = µs 

Since, TTd < , the fault is on the protected line. The relays send the trip signals 

to the circuit breakers to isolate the faulted line from the rest of the system. 

The distance of the fault, calculated by the relay at bus B3, is as follows 

2

299792.458

299792.458

100
 0.0001330.000400 ×















+−=D  

     = 90.02 km 

5.6  Summary 

The type of fault, fault location, fault inception angle and fault resistance were 

the parameters, which were changed in EMTDC cases and data was generated. The 

performance of the high speed digital techniques was verified on the input data, obtained 

from the EMTDC by simulating a power system. A set of cases and their results are 

reported and discussed. Results show that the single-ended and double-ended techniques 

are suitable for protecting EHV transmission lines. 
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Figure 5.6: Output of mode 1 voltage and current sequence filters at bus B7 for phase ‘a’ to ground 
fault at 10 km on T7a 
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Figure 5.7: Output of mode 2 voltage and current sequence filters at bus B7 for phase ‘a’ to ground 
fault at 10 km on T7a 
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Figure 5.8: Output of mode 1 voltage and current sequence filters at bus B9 for phase ‘a’ to ground 
fault at 10 km on T7a 
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Figure 5.9: Output of mode 2 voltage and current sequence filters at bus B9 for phase ‘a’ to ground 
fault at 10 km on T7a 
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Figure 5.10: Output of mode 1 voltage and current sequence filters at bus B8 for phase ‘a’ to ground 
fault at 10 km on T7a 
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Figure 5.11: Output of mode 2 voltage and current sequence filters at bus B8 for phase ‘a’ to ground 
fault at 10 km on T7a 
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Figure 5.12: Output of mode 1 voltage and current sequence filters at bus B10 for phase ‘a’ to 
ground fault at 10 km on T7a 
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Figure 5.13: Output of mode 2 voltage and current sequence filters at bus B10 for phase ‘a’ to 
ground fault at 10 km on T7a 
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Figure 5.14: Output of mode 1 voltage and current sequence filters at bus B7 for phase ‘a’ to ‘b’ to 
ground fault at 60 km on T7a 
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Figure 5.15: Output of mode 2 voltage and current sequence filters at bus B7 for phase ‘a’ to ‘b’ to 
ground fault at 60 km on T7a 
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Figure 5.16: Output of mode 1 voltage and current sequence filters at bus B9 for phase ‘a’ to ‘b’ to 
ground fault at 60 km on T7a 
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Figure 5.17: Output of mode 2 voltage and current sequence filters at bus B9 for phase ‘a’ to ‘b’ to 
ground fault at 60 km on T7a 
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Figure 5.18: Output of mode 1 voltage and current sequence filters at bus B8 for phase ‘a’ to ‘b’ to 
ground fault at 60 km on T7a 
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Figure 5.19: Output of mode 2 voltage and current sequence filters at bus B8 for phase ‘a’ to ‘b’ to 
ground fault at 60 km on T7a 
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Figure 5.20: Output of mode 1 voltage and current sequence filters at bus B10 for phase ‘a’ to ‘b’ to 
ground fault at 60 km on T7a 
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Figure 5.21: Output of mode 2 voltage and current sequence filters at bus B10 for phase ‘a’ to ‘b’ to 
ground fault at 60 km on T7a 
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Figure 5.22: Output of mode 1 voltage and current sequence filters at bus B7 for phase ‘b’ to ‘c’ 
fault at 110 km on T7a 
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Figure 5.23: Output of mode 2 voltage and current sequence filters at bus B7 for phase ‘b’ to ‘c’ 
fault at 110 km on T7a 
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Figure 5.24: Output of mode 1 voltage and current sequence filters at bus B9 for phase ‘b’ to ‘c’ 
fault at 110 km on T7a 
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Figure 5.25: Output of mode 2 voltage and current sequence filters at bus B9 for phase ‘b’ to ‘c’ 
fault at 110 km on T7a 
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Figure 5.26: Output of mode 1 voltage and current sequence filters at bus B8 for phase ‘b’ to ‘c’ 
fault at 110 km on T7a 
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Figure 5.27: Output of mode 2 voltage and current sequence filters at bus B8 for phase ‘b’ to ‘c’ 
fault at 110 km on T7a 
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Figure 5.28: Output of mode 1 voltage and current sequence filters at bus B10 for phase ‘b’ to ‘c’ 
fault at 110 km on T7a 
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Figure 5.29: Output of mode 2 voltage and current sequence filters at bus B10 for phase ‘b’ to ‘c’ 
fault at 110 km on T7a 
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Figure 5.30: Output of mode 1 voltage and current sequence filters at bus B3 for phase ‘b’ to 
ground fault at 20 km on T5 
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Figure 5.31: Output of mode 2 voltage and current sequence filters at bus B3 for phase ‘b’ to 
ground fault at 20 km on T5 
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Figure 5.32: Output of mode 1 voltage and current sequence filters at bus B4 for phase ‘b’ to 
ground fault at 20 km on T5 
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Figure 5.33: Output of mode 2 voltage and current sequence filters at bus B4 for phase ‘b’ to 
ground fault at 20 km on T5 
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Figure 5.34: Output of mode 1 voltage and current sequence filters at bus B3 for phase ‘a’ to ‘b’ to 
‘c’ to ground fault at 70 km on T5 
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Figure 5.35: Output of mode 2 voltage and current sequence filters at bus B3 for phase ‘a’ to ‘b’ to 
‘c’ to ground fault at 70 km on T5 
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Figure 5.36: Output of mode 1 voltage and current sequence filters at bus B4 for phase ‘a’ to ‘b’ to 
‘c’ to ground fault at 70 km on T5 
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Figure 5.37: Output of mode 2 voltage and current sequence filters at bus B4 for phase ‘a’ to ‘b’ to 
‘c’ to ground fault at 70 km on T5 
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Figure 5.38: Output of mode 1 voltage and current sequence filters at bus B3 for phase ‘c’ to ‘a’ 
fault at 90 km on T5 
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Figure 5.39: Output of mode 2 voltage and current sequence filters at bus B3 for phase ‘c’ to ‘a’ 
fault at 90 km on T5 
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Figure 5.40: Output of mode 1 voltage and current sequence filters at bus B4 for phase ‘c’ to ‘a’ 
fault at 90 km on T5 
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Figure 5.41: Output of mode 2 voltage and current sequence filters at bus B4 for phase ‘c’ to ‘a’ 
fault at 90 km on T5 
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Chapter 6  

Summary and Conclusions 

The objective of this thesis was to propose a digital technique, based on traveling 

waves, for protecting EHV transmission lines and to test the performance of the 

technique. 

A fault on an EHV transmission line, if not detected and eliminated quickly, has 

potential to destroy the power system equipment permanently. The replacement of the 

equipment costs large amount of money, time and labor. The faults and the protection 

relays were discussed in the first chapter. The protection techniques, which are used 

commercially for protecting transmission lines, were also described. The traveling 

waves were introduced in the second chapter. The properties and behavior of the 

traveling waves on a transmission lines were also discussed. 

Most of the transmission line protection relays, in the industry, use the 

fundamental frequency components of the voltages and currents as inputs. These relays 

take at least one frequency cycle, i.e. 16 ms, to detect a fault. This time is quite long, if, 

the fault level is very high. 

Earlier studies have concluded that the protection techniques, based on the 

traveling waves, have high potential for detecting and locating faults on the transmission 

lines. The analog techniques, based on the traveling waves, for protecting transmission 

lines have been proposed in the past. The techniques implemented with analog 

technology have several limitations, which make them slow. The techniques, proposed 

in this thesis and implemented with digital electronics technology, can identify a fault on 

a transmission line in less than 3 ms.  The development of a single-ended as well as a 

double-ended digital technique has been presented in the third chapter.  
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The techniques were tested on data generated by running various cases in 

EMTDC. The code for the protection techniques was written in the linear assembly 

language and C language. The logic for detecting and locating a fault on the 

transmission line was coded in the linear assembly program. The C program was coded 

to fetch data from the files saved on the personal computer and provide the results to the 

real time operating system, Diamond. The DSP module used and the software developed 

to implement the proposed techniques are discussed in Chapter 4. 

The cases were simulated by applying faults on two transmission lines in a 

selected power system. Various types of faults were applied at various locations on the 

transmission lines. The cases were also run by varying the fault resistance and the fault 

inception angle.  Chapter 5 described the test power system, which was simulated in 

EMTDC. The single-ended technique and double-ended technique were tested for their 

performance by executing the programs on the microprocessor. The fault data, saved on 

a personal computer, was used by the programs; they implemented the proposed 

traveling wave techniques for the presence of faults and calculated the distances of the 

faults. Some results from the programs are also discussed in Chapter 5.  

The results, obtained from implementing the single-ended technique and the 

double-ended technique in hardware, are satisfactory. The techniques provide correct 

results for different types of faults and for different values of the fault resistance. 

However, both techniques do not detect faults on a transmission line when the fault 

inception angle is close to zero degree. This behavior of the techniques is expected 

because traveling waves are not generated at fault, when fault occurs at zero fault 

inception angle. Also, the techniques do not detect when a fault occurs within 1 km of 

the relay location. Therefore, backup protection relays are needed for protecting the 

transmission lines during such occurrences.  

The contributions made by this thesis are as follows  

1. Single-ended and double-ended techniques for protecting EHV transmission lines 

using traveling waves are proposed. The techniques can detect and locate faults 

with high speed. The techniques are capable of protecting single circuit as well as 

double circuit transmission lines. 
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2. The performance of the techniques by implementing them in a microprocessor and 

testing on data generated from EMTDC simulations was found satisfactory. 

3. The relays based on these techniques can be installed in a power system along with 

the backup relays for protecting the EHV transmission lines. 
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Appendix A 

Modal Analysis 

The modal transformation decouples the power system equations [19]. This 

transformation is used to model electric systems in steady-state, under balanced and 

unbalanced operation, to analyze transients, dynamics and harmonics. The equation, 

which represents the phase currents in terms of the modal components, 0I , 1I  and 2I , is 
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The modal components of the currents can be expressed in terms of the phase 

components as 
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Similar equations are also applicable for the voltages. The modal currents during 

different types of faults are expressed in terms of the phase currents in Table A.1. 
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Table A.1 Modal current analysis during faults 
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Appendix B 

Test Power System 

 

Figure B.2: Test power system for simulation studies 
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B.1 System Parameters 

B.1.1 Source 

Name S1 S2 
Rated Power (MW) 
Rated rms L-L Voltage (kV) 
Xd (p.u.) 
Base Angular Frequency (rad/s) 
Inertia Constant (s) 
Mechanical Friction and 
Windage (p.u.) 
Neutral Series Resistance (p.u.) 
Neutral Series Reactance (p.u.) 
Iron Loss Resistance (p.u.) 
Armature Resistance (p.u.) 

2000 
15 
0.866 lagging 
376.992 
1.7 
 
0.0 
1.0E5 
0 
300 
0.002 

1500 
15 
0.866 lagging 
376.992 
1.7 
 
0.0 
1.0E5 
0 
300 
0.002 

 

B.1.2 Motors 

Name M1 M2 
Power (MW) 
Rated Voltage (kV) 
Power Factor 
Base Angular Frequency (rad/s) 
Stator to Rotor Turns Ratio 
Angular Moment of Inertia 
Mechanical Damping (p.u.) 
Stator Resistance (p.u.) 
Wound Rotor Resistance (p.u.) 
Mutual Inductance (p.u.) 
Stator Leakage Inductance (p.u.) 
Wound Rotor Leakage 
Reactance (p.u.) 

600 
15 
0.866 lagging 
376.99 
1 
0.3 
0.05 
0.043 
0.0 
1.0 
0.0613 
 
0.0613 

500 
15 
0.866 lagging 
376.99 
1 
0.3 
0.05 
0.043 
0.0 
1.0 
0.0613 
 
0.0613 

 

B.1.3 Transformers 

Name Tfr1 Tfr2 Tfr3 Tfr4 
3-Phase Transformer MVA 
Voltage Ratio (kV) 
Positive Sequence Leakage 
Reactance (p.u.) 
No Load Loss (p.u.) 

3000 
15/500 
 
0.1 
0.0 

1500 
15/500 
 
0.1 
0.0 

800 
500/15 
 
0.1 
0.0 

800 
500/15 
 
0.1 
0.0 
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Name Tfr5 Tfr6 Tfr7 Tfr8 
3-Phase Transformer MVA 
Voltage Ratio (kV) 
Positive Sequence Leakage 
Reactance (p.u.) 
No Load Loss (p.u.) 

1000 
500/735 
 
0.1 
0.0 

1000 
735/500 
 
0.1 
0.0 

1000 
500/735 
 
0.1 
0.0 

1000 
735/500 
 
0.1 
0.0 

 

B.1.4 Transmission Lines 

Name T1 T2 T3 T4 T5 
Length of Line (km) 
Number of Conductors 
Sub ‘c’onductors in a 
Bundle 
Shunt Conductance 
Number of Ground 
Wires 

55 
3 
 
1 
1.0 e-10 
 
1 

120 
3 
 
1 
1.0 e-10 
 
1 

60 
3 
 
1 
1.0 e-10 
 
1 

45 
3 
 
1 
1.0 e-10 
 
1 

100 
3 
 
1 
1.0 e-10 
 
1 

 

Name T6 T7a T7b T8 T9 
Length of Line (km) 
Number of Conductors 
Sub ‘c’onductors in a 
Bundle 
Shunt Conductance 
Number of Ground 
Wires 

65 
3 
 
1 
1.0 e-10 
 
1 

130 
3 
 
1 
1.0 e-10 
 
1 

130 
3 
 
1 
1.1 e-10 
 
1 

45 
3 
 
1 
1.0 e-10 
 
1 

50 
3 
 
1 
1.0 e-10 
 
1 

 
Name T10 T11 T12 T13 
Length of Line (km) 
Number of Conductors 
Sub-conductors in a 
Bundle 
Shunt Conductance 
Number of Ground 
Wires 

45 
3 
 
1 
1.0 e-10 
 
1 

55 
3 
 
1 
1.0 e-10 
 
1 

30 
3 
 
1 
1.0 e-10 
 
1 

45 
3 
 
1 
1.0 e-10 
 
1 

 

B.1.5 Loads 

Name L1 L2 L3 L4 
Rated Real Power (MW) 
Rated Reactive Power (MVAR) 
Rated L-L Voltage (kV) 

200 
75 
500 

150 
50 
230 

150 
50 
500 

250 
50 
500 
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Appendix C 

Linear Assembly Language Programs 

The linear assembly programs for single-ended technique and double-ended 

technique are given in the following sections. 

C.1 Linear Assembly Program: Single-Ended Technique 

   .text 

   .global _algologic 

 _algologic:  .cproc Easamp_arr, Iasamp_arr, Ebsamp_arr, Ibsamp_arr, Ecsamp_arr, 

Icsamp_arr, EMAX, IMAX, cntr1, Array 

   .reg Easamp1, Easamp2, Easamp3, Ebsamp1, Ebsamp2, Ebsamp3, 

Ecsamp1, Ecsamp2, Ecsamp3 

   .reg Iasamp1, Iasamp2, Iasamp3, Ibsamp1, Ibsamp2, Ibsamp3, Icsamp1, 

Icsamp2, Icsamp3 

   .reg i, i1, n, n4, T, il3, ff, gg, nl5, q1, x, d2, d3, d4, one, Time, yset, PkSet1 

   .reg Emod11, Emod21, Emod31, Emod12, Emod22, Emod32  

   .reg Imod11, Imod21, Imod31, Imod12, Imod22, Imod32 

   .reg Emod1, Imod1, Ires1, Eres1, AIres1, AEres1, Ires2, Eres2, AIres2, 

AEres2 

   .reg E1pos, I1pos, M1Fault, wait, pset1, pset2, T3, T4, ATcnt 

   .reg I2, I1, Ipost2, Ipost1, set1pol, Gtr, Gtr1, Gtr2, count, sampT, T1, T2, 

c1, c2, AbsI1, AbsGtr, cnt4, nzero, PkTrue , pol 

   .reg n1, neq1, hang, hangh, nlx2 

   .reg p, px, ff2, Tskip, Yskip, TFT, TD, T11, T22, PolDiff, ValSet1 

 

   MVK  5, x   

   MVK  1, i 

   SUB  cntr1, 1, cntr1 

   MVK  1,T 

 

   ZERO  T1 

   ZERO  T2 
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   ZERO  Time 

 

   MVK  1, one 

   ZERO  count 

   ZERO  Ipost2 

   ZERO  I2 

   ZERO  Ipost1 

   ZERO  I1 

   ZERO  wait 

 

   MVK  1, ATcnt 

   MV  x, n 

   MVK  2, ff 

   ZERO  gg 

   ZERO  PkSet1 

   ZERO  yset 

   ZERO  p 

 

   ZERO  n1 

   ZERO  hang 

   ZERO  Tskip 

   ZERO  T11 

   ZERO  T22 

   ZERO  TFT 

   ZERO  ValSet1 

 

Loop1: 

   CMPEQ  i, Tskip, Yskip 

 [Yskip]  ADD  i, 6, i 

 

   ZERO  Yskip 

   ZERO  TD 

   ZERO  i1 

   ZERO  il3 

   ZERO  pol 

   ZERO  Emod1 

   ZERO  Imod1 

   ZERO  Eres1 
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   ZERO  Eres2 

   ZERO  Ires1 

   ZERO  Ires2 

   ZERO  pset1 

   ZERO  pset2 

   ZERO  M1Fault 

   ZERO  nzero 

   ZERO  PkTrue 

   ZERO  q1 

   ZERO  nl5 

 

   ZERO  neq1 

   ZERO  d2 

   ZERO  d3 

   ZERO  d4 

   ZERO  nlx2 

   ZERO  hangh 

   MVK  1, PolDiff 

   ZERO  px 

 

   CMPEQ  i, 1, i1 

 [i1]  B  Loop11 

 

   MV  Easamp2, Easamp1 

   MV  Iasamp2, Iasamp1 

   MV  Ebsamp2, Ebsamp1 

   MV  Ibsamp2, Ibsamp1 

   MV  Ecsamp2, Ecsamp1 

   MV  Icsamp2, Icsamp1 

 

   MV  Easamp3, Easamp2 

   MV  Iasamp3, Iasamp2 

   MV  Ebsamp3, Ebsamp2 

   MV  Ibsamp3, Ibsamp2 

   MV  Ecsamp3, Ecsamp2 

   MV  Icsamp3, Icsamp2 
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Loop11: 

   LDW  *Easamp_arr[i], Easamp3 

   LDW  *Iasamp_arr[i], Iasamp3 

   LDW  *Ebsamp_arr[i], Ebsamp3 

   LDW  *Ibsamp_arr[i], Ibsamp3 

   LDW  *Ecsamp_arr[i], Ecsamp3 

   LDW  *Icsamp_arr[i], Icsamp3 

 

 [i1]  B  J1 

 

   MV  Emod21, Emod11 

   MV  Emod22, Emod12 

   MV  Emod31, Emod21 

   MV  Emod32, Emod22 

 

   MV  Imod21, Imod11 

   MV  Imod22, Imod12 

   MV  Imod31, Imod21 

   MV  Imod32, Imod22 

 

J1: 

   SUB  Easamp3, Ebsamp3, Emod31 

   SUB  Easamp3, Ecsamp3, Emod32 

   SUB  Iasamp3, Ibsamp3, Imod31 

   SUB  Iasamp3, Icsamp3, Imod32 

 

   MPY        2, Emod21, Emod1   

   MPY  2, Imod21, Imod1   

 

   SUB  Emod31, Emod21, Eres1 

   SUB  Imod31, Imod21, Ires1 

   SUB  Eres1, Emod21, Eres1 

   SUB  Ires1, Imod21, Ires1 

 

   ADD  Eres1, Emod11, Eres1 

   ADD  Ires1, Imod11, Ires1 

 

   ABS  Eres1, AEres1 
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   ABS  Ires1, AIres1 

 

   SUB  Emod32, Emod22, Eres2 

   SUB  Imod32, Imod22, Ires2 

   SUB  Eres2, Emod22, Eres2 

   SUB  Ires2, Imod22, Ires2 

 

   ADD  Eres2, Emod12, Eres2 

   ADD  Ires2, Imod12, Ires2 

 

   ABS  Eres2, AEres2 

   ABS  Ires2, AIres2 

 

   SUB  cntr1, 1, cntr1 

   ADD  i, 1, i 

   MV  i, T 

   MV  T, sampT        

   ADD  T, 1, T 

 

   CMPEQ  n, x, n4 

 

 [wait]  SUB  wait, 1, wait 

 [wait]  MV  x, n 

 [wait]  ZERO  count 

 [wait]  ZERO  hang 

 [wait]  B  Out_Fault2 

 

   CMPLT  i, 15, il3 

 [il3]  B  Out_Fault2 

 

Mode1: 

   CMPEQ  PkSet1, 1, q1 

 

TEST1: 

   CMPGT  AIres1, IMAX, d2 

 [!d2]  MV  AIres2,  AIres1 

 [!d2]  MV  Ires2, Ires1 

 [!d2]  CMPGT  AIres2, IMAX, d2 
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   CMPGT  AEres1, EMAX, d3 

 [!d3]  MV  AEres2, AEres1 

 [!d3]  MV  Eres2, Eres1 

 [!d3]  CMPGT  AEres1, EMAX, d3 

 [d2]  CMPEQ  d3, 1, d4 

 

 [q1]  B  Loop80 

 [d4]  B  TEST2 

 [d2]  B  TEST2 

    B  Out_Fault2 

    

TEST2: 

   CMPGT  Eres1, 0, E1pos 

   CMPLT  Ires1, 0, I1pos 

   CMPEQ  E1pos, I1pos, PolDiff 

 [!PolDiff] MVK  1, M1Fault 

 [M1Fault] B  Loop85 

 

Loop80: 

   MVK  0, PolDiff 

 [d4]  CMPGT  Eres1, 0, E1pos 

 [d4]  CMPLT  Ires1, 0, I1pos 

 [d4]  CMPEQ  E1pos, I1pos, PolDiff 

 [PolDiff] MVK  1, M1Fault 

 [d4]  B  Loop85 

    

 [hang]  CMPGT  hang, 0, hangh 

 [hangh]  CMPLT  n, x, nlx2 

 [nlx2]  SUB  hang, 1, hang 

 [nlx2]  B  Out_Fault3 

 

Loop85: 

 [p]  B  Loop2D 

 [M1Fault] B  Loop2 

    B  Out_Fault2 

 

Out_Fault1: 

   MVK  2, wait  
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   MV  x, n 

 

   ZERO  count 

   ZERO  hang 

 

   CMPEQ  ATcnt, 1, pset1  

   CMPEQ  ATcnt, 2, pset2 

 

 [pset1]  STW  T1, *+Array[1] 

 [pset1]  STW  T2, *+Array[2] 

 [pset1]  MV  T1, T3 

 [pset1]  B  Decide 

 

   STW  T1, *+Array[3] 

   STW  T2, *+Array[4] 

   MV  T1, T4 

 

Decide: 

   ADD  ATcnt, 1, ATcnt 

 [pset2]  B  End_Prog1 

 

Out_Fault2: 

   CMPLT  n, x, nl5 

 [nl5]  ADD  n1, 1, n1 

 [nl5]  CMPGT  n1, 3, neq1 

 [neq1]  MV  x, n 

   ZERO  hang 

 

 [cntr1]  B  Loop1 

 [!cntr1]  B  End_Prog2 

 

Out_Fault5: 

   ADD  i, 5, i 

   ZERO  p 

   B  Out_Fault3 

 

Out_Fault4: 

   LDW  *Array[1], TFT 
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   SUB  T11, TFT, TD 

   MVK  364, gg 

   ADD  TD, gg, Tskip 

   ADD  Tskip, TFT, Tskip 

 

   STW  T11, *+Array[5] 

   STW  T22, *+Array[6] 

   STW  one, *+Array[0]  

 

   MVK  2, wait  

   ZERO  p 

   ZERO  count 

   ZERO  hang 

 

Out_Fault3: 

 [cntr1]  B  Loop1 

 [!cntr1]  B  End_Prog2 

 

Loop2D: 

   CMPEQ  ff, 2, ff2 

 [!ff2]  B  Out_Fault5 

 

   CMPEQ  p, x, px 

 [!px]  B  Loop3D 

 

   MV  Ires1, I2 

   CMPGT  I2, 0, Ipost2 

 

Loop50D: 

   MV  I2, Gtr 

   MV  Gtr, Gtr1 

   MVK  1, count 

   MV  sampT, T11   

   SUB  p, 1, p 

   B  EndCheckD 

 

Loop3D:  

   SUB  p, 1, p 
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   CMPEQ  count, 1, c1 

   CMPEQ  count, 2, c2 

 

   MV  Ires1, I1 

   CMPGT  I1, 0, Ipost1 

   CMPEQ  Ipost1, Ipost2, pol 

 

 [pol]  B  Loop4D 

 

   MV  Ires1, Gtr 

   MV  Ipost1, Ipost2 

   MV  I1, I2 

   ADD  count, 1, count 

 

   CMPEQ  count, 2, c2 

 [c2]  MV  sampT, T22 

 [c2]  MV  Gtr, Gtr2 

 

   B  EndCheckD 

 

Loop4D: 

   ABS  I1, AbsI1 

   ABS  Gtr, AbsGtr 

 

   CMPGT  AbsI1, AbsGtr, cnt4 

 [!cnt4]  B  EndCheckD 

 

   MV  I1, Gtr 

 

 [c1]  MV  sampT, T11 

 [c2]  MV  sampT, T22 

 [c1]  MV  Gtr, Gtr1 

 [c2]  MV  Gtr, Gtr2 

 

EndCheckD: 

   MVK  1, hang  

   CMPLT  p, 2, nzero 

 [nzero]  CMPEQ  count, 2, PkTrue 
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 [PkTrue] SUB  ff, 1, ff 

 [PkTrue] B  Out_Fault4 

   B  Out_Fault3 

 

Loop2: 

 [!n4]  B  Loop3 

 

   MV  Ires1, I2 

   CMPGT  I2, 0, Ipost2 

 

 [!PkSet1] MV  Ipost2, set1pol 

 [PkSet1]  CMPEQ  Ipost2, set1pol, yset 

 [PkSet1]  B  YSET1 

   B  Loop50 

 

YSET1: 

 [!yset]  MV  x, p 

 [!yset]  ZERO  count 

 [!yset]  B  Loop2D 

 

Loop50: 

   MV  I2, Gtr 

   MV  Gtr, Gtr1 

   MVK  1, count 

   MV  sampT, T1 

   MV  Ires1, ValSet1 

   SUB  n, 1, n 

 

   B  EndCheck 

 

Loop3:  

   SUB  n, 1, n 

   CMPEQ  count, 1, c1 

   CMPEQ  count, 2, c2 

 

   MV  Ires1, I1 

   CMPGT  I1, 0, Ipost1 

   CMPEQ  Ipost1, Ipost2, pol 
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 [pol]  B  Loop4 

 

   MV  Ires1, Gtr 

   MV  Ipost1, Ipost2 

   MV  I1, I2 

   ADD  count, 1, count 

 

   CMPEQ  count, 2, c2 

 [c2]  MV  sampT, T2 

 [c2]  MV  Gtr, Gtr2 

 

   B  EndCheck 

 

Loop4: 

   ABS  I1, AbsI1 

   ABS  Gtr, AbsGtr 

   CMPGT  AbsI1, AbsGtr, cnt4 

 [!cnt4]  B  EndCheck 

 

   MV  I1, Gtr 

 [c1]  MV  sampT, T1 

 [c1]  MV  Ires1, ValSet1 

 

 [c2]  MV  sampT, T2 

 [c1]  MV  Gtr, Gtr1 

 [c2]  MV  Gtr, Gtr2 

 

EndCheck: 

   MVK  1, hang  

   CMPLT  n, 2, nzero 

 [nzero]  CMPEQ  count, 2, PkTrue 

 [PkTrue] MVK  1, PkSet1 

 [PkTrue] B  Out_Fault1 

 

   B  Out_Fault3 

 

End_Prog1: 

   SUB  T4, T3, Time 
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End_Prog2: 

   .return  Time 

   .endproc 

 

C.2 Linear Assembly Program: Double-Ended Technique 

   .text 

   .global _algologic 

 _algologic:  .cproc Easamp_arr, Iasamp_arr, Ebsamp_arr, Ibsamp_arr, Ecsamp_arr, 

Icsamp_arr, EMAX, IMAX, cntr1, Array 

   .reg Easamp1, Easamp2, Easamp3, Ebsamp1, Ebsamp2, Ebsamp3, 

Ecsamp1, Ecsamp2, Ecsamp3 

   .reg Iasamp1, Iasamp2, Iasamp3, Ibsamp1, Ibsamp2, Ibsamp3, Icsamp1, 

Icsamp2, Icsamp3 

   .reg i, i1, n, n4, T, il3, ff, gg, nl5, q1, x, d2, d3, d4, one, Time, yset, PkSet1 

   .reg Emod11, Emod21, Emod31, Emod12, Emod22, Emod32  

   .reg Imod11, Imod21, Imod31, Imod12, Imod22, Imod32 

   .reg Emod1, Imod1, Ires1, Eres1, AIres1, AEres1, Ires2, Eres2, AIres2, 

AEres2 

   .reg E1pos, I1pos, M1Fault, wait, pset1, T3, T4, ATcnt 

   .reg I2, I1, Ipost2, Ipost1, set1pol, Gtr, Gtr1, Gtr2, count, sampT, T1, T2, 

c1, c2, AbsI1, AbsGtr, cnt4, nzero, PkTrue , pol 

   .reg n1, neq1, hang, hangh, nlx2 

   .reg p, px, ff2, Tskip, Yskip, TFT, TD, T11, T22, PolDiff, ValSet1 

 

   MVK  5, x   

   MVK  1, i 

   SUB  cntr1, 1, cntr1 

   MVK  1,T 

 

   ZERO  T1 

   ZERO  T2 

   ZERO  Time 

 

   MVK  1, one 

   ZERO  count 

   ZERO  Ipost2 

   ZERO  I2 
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   ZERO  Ipost1 

   ZERO  I1 

   ZERO  wait 

 

   MVK  1, ATcnt 

   MV  x, n 

   MVK  2, ff 

   ZERO  gg 

   ZERO  PkSet1 

   ZERO  yset 

   ZERO  p 

 

   ZERO  n1 

   ZERO  hang 

   ZERO  Tskip 

   ZERO  T11 

   ZERO  T22 

   ZERO  TFT 

   ZERO  ValSet1 

 

Loop1: 

   CMPEQ  i, Tskip, Yskip 

 [Yskip]  ADD  i, 6, i 

 

   ZERO  Yskip 

   ZERO  TD 

   ZERO  i1 

   ZERO  il3 

   ZERO  pol 

   ZERO  Emod1 

   ZERO  Imod1 

   ZERO  Eres1 

   ZERO  Eres2 

   ZERO  Ires1 

   ZERO  Ires2 

   ZERO  pset1 

   ZERO  M1Fault 

   ZERO  nzero 
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   ZERO  PkTrue 

   ZERO  q1 

   ZERO  nl5 

 

   ZERO  neq1 

   ZERO  d2 

   ZERO  d3 

   ZERO  d4 

   ZERO  nlx2 

   ZERO  hangh 

   MVK  1, PolDiff 

   ZERO  px 

 

   CMPEQ  i, 1, i1 

 [i1]  B  Loop11 

 

   MV  Easamp2, Easamp1 

   MV  Iasamp2, Iasamp1 

   MV  Ebsamp2, Ebsamp1 

   MV  Ibsamp2, Ibsamp1 

   MV  Ecsamp2, Ecsamp1 

   MV  Icsamp2, Icsamp1 

 

   MV  Easamp3, Easamp2 

   MV  Iasamp3, Iasamp2 

   MV  Ebsamp3, Ebsamp2 

   MV  Ibsamp3, Ibsamp2 

   MV  Ecsamp3, Ecsamp2 

   MV  Icsamp3, Icsamp2 

 

Loop11: 

   LDW  *Easamp_arr[i], Easamp3 

   LDW  *Iasamp_arr[i], Iasamp3 

   LDW  *Ebsamp_arr[i], Ebsamp3 

   LDW  *Ibsamp_arr[i], Ibsamp3 

   LDW  *Ecsamp_arr[i], Ecsamp3 

   LDW  *Icsamp_arr[i], Icsamp3 
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 [i1]  B  J1 

 

   MV  Emod21, Emod11 

   MV  Emod22, Emod12 

   MV  Emod31, Emod21 

   MV  Emod32, Emod22 

 

   MV  Imod21, Imod11 

   MV  Imod22, Imod12 

   MV  Imod31, Imod21 

   MV  Imod32, Imod22 

 

J1: 

   SUB  Easamp3, Ebsamp3, Emod31 

   SUB  Easamp3, Ecsamp3, Emod32 

   SUB  Iasamp3, Ibsamp3, Imod31 

   SUB  Iasamp3, Icsamp3, Imod32 

 

   MPY        2, Emod21, Emod1 

   MPY  2, Imod21, Imod1 

 

   SUB  Emod31, Emod21, Eres1 

   SUB  Imod31, Imod21, Ires1 

   SUB  Eres1, Emod21, Eres1 

   SUB  Ires1, Imod21, Ires1 

 

   ADD  Eres1, Emod11, Eres1 

   ADD  Ires1, Imod11, Ires1 

 

   ABS  Eres1, AEres1 

   ABS  Ires1, AIres1 

 

   SUB  Emod32, Emod22, Eres2 

   SUB  Imod32, Imod22, Ires2 

   SUB  Eres2, Emod22, Eres2 

   SUB  Ires2, Imod22, Ires2 

 

   ADD  Eres2, Emod12, Eres2 
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   ADD  Ires2, Imod12, Ires2 

 

   ABS  Eres2, AEres2 

   ABS  Ires2, AIres2 

 

   SUB  cntr1, 1, cntr1 

   ADD  i, 1, i 

   MV  i, T 

   MV  T, sampT        

   ADD  T, 1, T 

 

   CMPEQ  n, x, n4 

 

 [wait]  SUB  wait, 1, wait 

 [wait]  MV  x, n 

 [wait]  ZERO  count 

 [wait]  ZERO  hang 

 [wait]  B  Out_Fault2 

 

   CMPLT  i, 15, il3 

 [il3]  B  Out_Fault2 

 

Mode1: 

   CMPEQ  PkSet1, 1, q1 

 

TEST1: 

   CMPGT  AIres1, IMAX, d2 

 [!d2]  MV  AIres2,  AIres1 

 [!d2]  MV  Ires2, Ires1 

 [!d2]  CMPGT  AIres2, IMAX, d2 

   CMPGT  AEres1, EMAX, d3 

 [!d3]  MV  AEres2, AEres1 

 [!d3]  MV  Eres2, Eres1 

 [!d3]  CMPGT  AEres1, EMAX, d3 

 [d2]  CMPEQ  d3, 1, d4 

 

 [q1]  B  Loop80 

 [d4]  B  TEST2 
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 [d2]  B  TEST2 

    B  Out_Fault2 

    

TEST2: 

   CMPGT  Eres1, 0, E1pos 

   CMPLT  Ires1, 0, I1pos 

   CMPEQ  E1pos, I1pos, PolDiff 

 [!PolDiff] MVK  1, M1Fault 

 [M1Fault] B  Loop85 

 

Loop80: 

   MVK  0, PolDiff 

 [d4]  CMPGT  Eres1, 0, E1pos 

 [d4]  CMPLT  Ires1, 0, I1pos 

 [d4]  CMPEQ  E1pos, I1pos, PolDiff 

 [PolDiff] MVK  1, M1Fault 

 [d4]  B  Loop85 

    

 [hang]  CMPGT  hang, 0, hangh 

 [hangh]  CMPLT  n, x, nlx2 

 [nlx2]  SUB  hang, 1, hang 

 [nlx2]  B  Out_Fault3 

 

Loop85: 

 [p]  B  Loop2D 

 [M1Fault] B  Loop2 

    B  Out_Fault2 

 

Out_Fault1: 

   MVK  2, wait  

   MV  x, n 

 

   ZERO  count 

   ZERO  hang 

 

   CMPEQ  ATcnt, 1, pset1  

 

 [pset1]  STW  T1, *+Array[1] 
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 [pset1]  STW  T2, *+Array[2] 

 [pset1]  MV  T1, T3 

 [pset1]  B  Decide 

   B  Out_Fault3 

 

Decide: 

   ADD  ATcnt, 1, ATcnt 

 [pset1]  B  End_Prog1 

 

Out_Fault2: 

   CMPLT  n, x, nl5 

 [nl5]  ADD  n1, 1, n1 

 [nl5]  CMPGT  n1, 3, neq1 

 [neq1]  MV  x, n 

   ZERO  hang 

 

 [cntr1]  B  Loop1 

 [!cntr1]  B  End_Prog2 

 

Out_Fault3: 

 [cntr1]  B  Loop1 

 [!cntr1]  B  End_Prog2 

 

Loop2: 

 [!n4]  B  Loop3 

 

   MV  Ires1, I2 

   CMPGT  I2, 0, Ipost2 

 

 [!PkSet1] MV  Ipost2, set1pol 

 

Loop50: 

   MV  I2, Gtr 

   MV  Gtr, Gtr1 

   MVK  1, count 

   MV  sampT, T1 

   MV  Ires1, ValSet1 

   SUB  n, 1, n 
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   B  EndCheck 

 

Loop3:  

   SUB  n, 1, n 

   CMPEQ  count, 1, c1 

   CMPEQ  count, 2, c2 

 

   MV  Ires1, I1 

   CMPGT  I1, 0, Ipost1 

   CMPEQ  Ipost1, Ipost2, pol 

 [pol]  B  Loop4 

 

   MV  Ires1, Gtr 

   MV  Ipost1, Ipost2 

   MV  I1, I2 

   ADD  count, 1, count 

 

   CMPEQ  count, 2, c2 

 [c2]  MV  sampT, T2 

 [c2]  MV  Gtr, Gtr2 

 

   B  EndCheck 

 

Loop4: 

   ABS  I1, AbsI1 

   ABS  Gtr, AbsGtr 

   CMPGT  AbsI1, AbsGtr, cnt4 

 [!cnt4]  B  EndCheck 

 

   MV  I1, Gtr 

 [c1]  MV  sampT, T1 

 [c1]  MV  Ires1, ValSet1 

 

 [c2]  MV  sampT, T2 

 [c1]  MV  Gtr, Gtr1 

 [c2]  MV  Gtr, Gtr2 
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EndCheck: 

   MVK  1, hang  

   CMPLT  n, 2, nzero 

 [nzero]  CMPEQ  count, 2, PkTrue 

 [PkTrue] MVK  1, PkSet1 

 [PkTrue] B  Out_Fault1 

 

   B  Out_Fault3 

 

End_Prog1: 

   SUB  T4, T3, Time 

 

End_Prog2: 

   .return  Time 

   .endproc 
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Appendix D 

C Language Programs 

D.1 C Program for Single-Ended Technique 

#include <stdio.h> 

#define N 1500 

#define Emax 5 

#define Imax 5 

int algologic(int*, int*, int*, int*, int*, int*, int, int, long, int*); 

main() 

{ 

 long  c = 299792.458; 

 float  Ia1[N], Ea1[N], Eb1[N], Ib1[N], Ec1[N], Ic1[N], Dist; 

 int  Results[7], j, Ea[N], Ia[N], Eb[N], Ib[N], Ec[N], Ic[N]; 

 FILE  *Eaptr, *Iaptr, *Ebptr, *Ibptr, *Ecptr, *Icptr; 

 Eaptr = fopen("T5\\01km\\ABCG\\T51\\P51EA.out", "r"); 

 Iaptr = fopen("T5\\01km\\ABCG\\T51\\P51IA.out", "r"); 

 Ebptr = fopen("T5\\01km\\ABCG\\T51\\P51EB.out", "r"); 

 Ibptr = fopen("T5\\01km\\ABCG\\T51\\P51IB.out", "r"); 

 Ecptr = fopen("T5\\01km\\ABCG\\T51\\P51EC.out", "r"); 

 Icptr = fopen("T5\\01km\\ABCG\\T51\\P51IC.out", "r"); 

 for(j=0; j<=(N-1); j++) 

 { 

  fscanf(Eaptr,"%f",&Ea1[j]); 

  fscanf(Iaptr,"%f",&Ia1[j]); 

  fscanf(Ebptr,"%f",&Eb1[j]); 

  fscanf(Ibptr,"%f",&Ib1[j]); 

  fscanf(Ecptr,"%f",&Ec1[j]); 

  fscanf(Icptr,"%f",&Ic1[j]); 

  Ia1[j] = (Ia1[j]*1000); 

  Ea1[j] = (Ea1[j]*100); 

  Ib1[j] = (Ib1[j]*1000);
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  Eb1[j] = (Eb1[j]*100); 

  Ic1[j] = (Ic1[j]*1000); 

  Ec1[j] = (Ec1[j]*100); 

  Ea[j] = (int)Ea1[j]; 

  Ia[j] = (int)Ia1[j]; 

  Eb[j] = (int)Eb1[j]; 

  Ib[j] = (int)Ib1[j]; 

  Ec[j] = (int)Ec1[j]; 

  Ic[j] = (int)Ic1[j]; 

 } 

 Dist = algologic(Ea, Ia, Eb, Ib, Ec, Ic, Emax, Imax, N, Results);   

  printf("\nDistance of Fault from Bus : %f km\n", (c*Dist/2000000)); 

  printf("\nTime of 1st peak of 1st set  : %d usec", Results[1]); 

  printf("\nTime of 2st peak of 1st set  : %d usec", Results[2]); 

  printf("\nTime of 1st peak of 2st set  : %d usec", Results[3]); 

  printf("\nTime of 2st peak of 2st set  : %d usec", Results[4]); 

 if(Results[0]==1) 

  { 

  printf("\n\nTime of 1st peak from remote end  : %d usec", Results[5]); 

  printf("\nTime of 2st peak from remote end  : %d usec", Results[6]); 

  } 

 printf("\n\n*****************************************************); 

 fclose(Eaptr); 

 fclose(Iaptr); 

 fclose(Ebptr); 

 fclose(Ibptr); 

 fclose(Ecptr); 

 fclose(Icptr); 

} 

D.2 C Programs for Double-Ended Technique 

Three programs were developed for the double-ended technique. The relays at 

two ends of the transmission line are represented by two stand alone programs: Prog1 

and Prog2. These programs, along with the linear assembly program, run simultaneously 

in multithreading mode [16]. When Prog1 and Prog2 detect the fault generated traveling 

waves, they send the time of arrival of the traveling waves to the main program, Mprog. 
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Mprog waits for the values of time from Prog1 and Prog2, which when received; Mprog 

calculates the distance of the fault. 

D.2.1  C Program: Mprog 

#include <chan.h> 

#include <stdio.h> 

main(int argc, char *argv[], char *envp[], 

     CHAN * in_ports[], int ins, 

     CHAN *out_ports[], int outs) 

{ 

 int Tr1, Tr2, N; 

 double c = 299792.458; 

 int L =   100; 

 double T,  DelT1, DelT2 ; 

long double TR1, TR2; 

 long double DR1, DR2; 

T = (L/c)*1000000;  

chan_in_word(&Tr1, in_ports[0]); 

chan_in_word(&Tr2, in_ports[1]); 

 DelT1 = Tr1 - Tr2 + T; 

 DR1 = (DelT1/1000000)* c/2; 

 DelT2 = T - (Tr1 - Tr2) ; 

 DR2 = (DelT2/1000000)* c/2; 

 TR1 = 1000000/Tr1; 

 TR1 = 1/TR1 ; 

 TR2 = 1000000/Tr2; 

 TR2 = 1/TR2 ; 

 printf("\n\n*****************************************************); 

 printf("\n\nTime of arrival of Traveling Waves at Relay1: %f s", TR1); 

 printf("\nTime of arrival of Traveling Waves at Relay2: %f s", TR2); 

 printf("\n\nDistance of fault from Relay1 : %f km", DR1); 

 printf("\nDistance of fault from Relay2 : %f km", DR2); 

 printf("\n\n*****************************************************); 

} 
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D.2.2  C Program: Prog1 

/* 

** prog1.c stand-alone processing task. Communicates with mprog.c. 

*/ 

#include <chan.h> 

#include <ctype.h> 

#include <stdio.h> 

#define LLength 100 

#define N 1500 

#define Emax 5   

#define Imax 5    

int algologic(int*, int*, int*, int*, int*, int*, int, int, long, int*); 

main(int argc, char *argv[], char *envp[], 

     CHAN * in_ports[], int ins, 

     CHAN *out_ports[], int outs) 

{ 

 int c, j, Results[5], Ea[N], Ia[N], Eb[N], Ib[N], Ec[N], Ic[N]; 

 float Ia1[N], Ea1[N], Eb1[N], Ib1[N], Ec1[N], Ic1[N], Dist; 

FILE *Eaptr, *Iaptr, *Ebptr, *Ibptr, *Ecptr, *Icptr; 

chan_in_word(&N1, in_ports[0]); 

 Eaptr = fopen("T5\\10km\\A00G\\T51\\P51EA.out", "r"); 

 Iaptr = fopen("T5\\10km\\A00G\\T51\\P51IA.out", "r"); 

 Ebptr = fopen("T5\\10km\\A00G\\T51\\P51EB.out", "r"); 

 Ibptr = fopen("T5\\10km\\A00G\\T51\\P51IB.out", "r"); 

 Ecptr = fopen("T5\\10km\\A00G\\T51\\P51EC.out", "r"); 

 Icptr = fopen("T5\\10km\\A00G\\T51\\P51IC.out", "r"); 

 for(j=0; j<=N; j++) 

 { 

  fscanf(Eaptr,"%f",&Ea1[j]); 

  fscanf(Iaptr,"%f",&Ia1[j]); 

  fscanf(Ebptr,"%f",&Eb1[j]); 

  fscanf(Ibptr,"%f",&Ib1[j]); 

  fscanf(Ecptr,"%f",&Ec1[j]); 

  fscanf(Icptr,"%f",&Ic1[j]); 

 } 

  for(j=0; j<=(N-1); j++) 

 { 
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  fscanf(Eaptr,"%f",&Ea1[j]); 

  fscanf(Iaptr,"%f",&Ia1[j]); 

  fscanf(Ebptr,"%f",&Eb1[j]); 

  fscanf(Ibptr,"%f",&Ib1[j]); 

  fscanf(Ecptr,"%f",&Ec1[j]); 

  fscanf(Icptr,"%f",&Ic1[j]); 

  Ia1[j] = (Ia1[j]*1000); 

  Ea1[j] = (Ea1[j]*100); 

  Ib1[j] = (Ib1[j]*1000); 

  Eb1[j] = (Eb1[j]*100); 

  Ic1[j] = (Ic1[j]*1000); 

  Ec1[j] = (Ec1[j]*100); 

  Ea[j] = (int)Ea1[j]; 

  Ia[j] = (int)Ia1[j]; 

  Eb[j] = (int)Eb1[j]; 

  Ib[j] = (int)Ib1[j]; 

  Ec[j] = (int)Ec1[j]; 

  Ic[j] = (int)Ic1[j]; 

 } 

 Dist = algologic(Ea, Ia, Eb, Ib, Ec, Ic, Emax, Imax, N, Results);    

 c =  Results[1]; 

chan_out_word(c, out_ports[0]); 

 fclose(Eaptr); 

 fclose(Iaptr); 

 fclose(Ebptr); 

 fclose(Ibptr); 

 fclose(Ecptr); 

 fclose(Icptr); 

} 

D.2.3  C Program: Prog2 

/* 

** Prog1.c stand-alone processing task. Communicates with Mprog.c. 

*/ 

#include <chan.h> 

#include <ctype.h> 

#include <stdio.h> 
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#define LLength 100 

#define N 1500 

#define Emax 5   

#define Imax 5    

int algologic(int*, int*, int*, int*, int*, int*, int, int, long, int*); 

main(int argc, char *argv[], char *envp[], 

     CHAN * in_ports[], int ins, 

     CHAN *out_ports[], int outs) 

{ 

 int c, j, Results[5], Ea[N], Ia[N], Eb[N], Ib[N], Ec[N], Ic[N]; 

 float Ia1[N], Ea1[N], Eb1[N], Ib1[N], Ec1[N], Ic1[N], Dist; 

 FILE *Eaptr, *Iaptr, *Ebptr, *Ibptr, *Ecptr, *Icptr; 

chan_in_word(&N1, in_ports[0]); 

 Eaptr = fopen("T5\\10km\\A00G\\T52\\P52EA.out", "r"); 

 Iaptr = fopen("T5\\10km\\A00G\\T52\\P52IA.out", "r"); 

 Ebptr = fopen("T5\\10km\\A00G\\T52\\P52EB.out", "r"); 

 Ibptr = fopen("T5\\10km\\A00G\\T52\\P52IB.out", "r"); 

 Ecptr = fopen("T5\\10km\\A00G\\T52\\P52EC.out", "r"); 

 Icptr = fopen("T5\\10km\\A00G\\T52\\P52IC.out", "r"); 

 for(j=0; j<=N; j++) 

 { 

  fscanf(Eaptr,"%f",&Ea1[j]); 

  fscanf(Iaptr,"%f",&Ia1[j]); 

  fscanf(Ebptr,"%f",&Eb1[j]); 

  fscanf(Ibptr,"%f",&Ib1[j]); 

  fscanf(Ecptr,"%f",&Ec1[j]); 

  fscanf(Icptr,"%f",&Ic1[j]); 

 } 

  for(j=0; j<=(N-1); j++) 

 { 

  fscanf(Eaptr,"%f",&Ea1[j]); 

  fscanf(Iaptr,"%f",&Ia1[j]); 

  fscanf(Ebptr,"%f",&Eb1[j]); 

  fscanf(Ibptr,"%f",&Ib1[j]); 

  fscanf(Ecptr,"%f",&Ec1[j]); 

  fscanf(Icptr,"%f",&Ic1[j]); 

  Ia1[j] = (Ia1[j]*1000); 

  Ea1[j] = (Ea1[j]*100); 
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  Ib1[j] = (Ib1[j]*1000); 

  Eb1[j] = (Eb1[j]*100); 

  Ic1[j] = (Ic1[j]*1000); 

  Ec1[j] = (Ec1[j]*100); 

  Ea[j] = (int)Ea1[j]; 

  Ia[j] = (int)Ia1[j]; 

  Eb[j] = (int)Eb1[j]; 

  Ib[j] = (int)Ib1[j]; 

  Ec[j] = (int)Ec1[j]; 

  Ic[j] = (int)Ic1[j]; 

 } 

 Dist = algologic(Ea, Ia, Eb, Ib, Ec, Ic, Emax, Imax, N, Results);    

 c =  Results[1]; 

chan_out_word(c, out_ports[0]); 

 fclose(Eaptr); 

 fclose(Iaptr); 

 fclose(Ebptr); 

 fclose(Ibptr); 

 fclose(Ecptr); 

 fclose(Icptr); 

} 
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Appendix E 

EMTDC PSCAD 

EMTDC is an electromagnetic transient program, which simulates the practical 

power systems for analysis. In EMTDC, the power system components are defined by 

using FORTRAN code. PSCAD stands for Power System Computer Aided Design, 

which provides a user interface to the EMTDC. PSCAD has a built-in library of models 

of power system components, which can be configured by adjusting their parameters. A 

used defined model can also be created in PSCAD. PSCAD also supports models written 

in C/C++ code. 

All the power system simulations, described in this thesis, were done in EMTDC. 

The data generated from the simulation studies was used to test the performance of the 

proposed transmission line protection techniques. 


