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ABSTRACT 

Ascochyta blight may be caused by the fungal pathogens Peyronellaea pinodes, Ascochyta pisi, 

Phoma medicaginis var. pinodella, and Phoma koolunga. While P. pinodes has been the most 

important pathogen in Saskatchewan, A. pisi has become more prevalent in southern and 

southern-western parts of the province. Conidial germination of A. pisi and P. pinodes on glass 

slides and infection of plants of pea cultivar CDC Cooper by both pathogens were evaluated 

under controlled conditions at temperatures ranging from 10 to 30°C and wetness periods of 0 

to 12 h to determine whether they had different optimal environmental requirements. For both 

pathogens, conidial germination and disease severity increased with increasing temperature and 

leaf wetness period up to the optimum of 20 to 25°C. Overall, P. pinodes had consistently 

higher germination and disease severity compared to A. pisi. For conidial germination, these 

differences became obvious starting at 20°C after more than 4 h incubation, and at 25 and 30°C 

P. pinodes had consistently higher germination after 2 h of incubation. Similarly, disease 

severity caused by P. pinodes was consistently higher at 20 and 25°C compared to that caused 

by A. pisi. The role of infected seed in the epidemiology of A. pisi in pea was studied with 

naturally infected seeds under field conditions in 2012, 2013 and 2014 at two locations where 

low natural inoculum were expected. Results revealed a significant effect of A. pisi seed 

infection on emergence of seedlings (P < 0.05). Seed infection levels of 10 and 14.5% resulted 

in reduced emergence compared to 0.5% seed infection, but the level of seed infection at 

planting had no impact on A. pisi disease severity, seed infection levels of harvested seed or 

seed yield. No visible symptoms caused by A. pisi appeared on the aerial parts of the seedlings. 

Results suggest that disease did not progress from seeds, or contributed to infection of aerial 

parts of the plants, hence infected seeds cannot be regarded as a source of inoculum in the 

epidemiology of this pathogen. Assessing seed components of seeds with varying levels of A. 

pisi infection and seed staining revealed that the pathogen was present in all components of the 

seed, regardless of the severity of seed staining. Field studies were conducted to assess yield 

loss caused by A. pisi between 2012 and 2014 at Swift Current and Stewart Valley where a high 

incidence of A. pisi had been reported in the past, and under irrigation with inoculation at 

Saskatoon (2014). Two (2012, 2013) or three (2014) fungicides (pyraclostrobin, chlorothalonil, 

or pyraclostrobin and boscalid) were applied to create plots with low levels of A. pisi infection 
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that were compared with a non-sprayed treatment. The more susceptible pea cultivars Cooper 

and SW Midas were compared with the more resistant cultivars CDC Bronco and CDC Golden. 

Disease pressure was low in all three years and no differences in yield between fungicide 

treated and non-sprayed treatments were observed. Nevertheless, the incidence of A. pisi 

isolated from harvested seeds of the fungicide treatments was lower than that of the non-

sprayed treatment, despite similar A. pisi severity on plants before harvest. 

The response of the recombinant inbred line (RIL) pea population PR-10 developed from a cross 

between the susceptible variety Cooper and the partially resistant variety CDC Bronco to A. pisi 

infection was evaluated in 2012, 2013 and 2014 under field conditions. RILs were inoculated 

with A. pisi in 2014 at Saskatoon under irrigation. Under low disease pressure in all three years, 

no difference in A. pisi severity was observed between the parents and among RILs. Yields 

differed among RILs and were attributed to genetic differences. Considering that the parents did 

not differ in resistance to A. pisi it was concluded that this population might not be suitable for 

the study of genetic control of resistance to A. pisi. 
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1.0 Introduction 

Field pea (Pisum sativum, 2n = 14) is a dicotyledonous, self-pollinated annual cool season crop, 

belonging to the family Fabaceae that is cultivated throughout the world. Canada is the leading 

producer and exporter of field pea (Government of Canada, 2016). Field pea seeds are a good 

source of complex carbohydrates, minerals, vitamins, and proteins and have some medicinal 

properties. This crop is usually used as a rotational crop, as its roots have the ability to fix 

atmospheric nitrogen through a symbiotic relationship with rhizobial bacteria. Pea is sensitive to 

flooding during the seedling stage. Pea uses less water and can tolerate drought stress well, 

whereas excess moisture leads to disease development and death of the plant. 

Ascochyta blight is one of the major diseases affecting field pea production. Ascochyta blight of 

field pea can be caused by four pathogens with anamorphs in the genus Ascochyta, which are 

collectively known as the Ascochyta blight complex. The pathogens causing Ascochyta blight 

are Peyronellaea pinodes, Ascochyta pisi, Phoma medicaginis var. pinodella, and Phoma 

koolunga. Ascochyta blight is a major disease of field pea in western Canada that has caused 25-

30% yield loss (Wallen, 1965). Peyronellaea pinodes is considered to cause most economic 

damage worldwide (Basu et al., 1973; Beasse et al., 1999; Bretag and Ward, 2001; Lawyer, 

1984), and can cause yield loss of 50-75 % when the conditions are favorable (Wallen, 1974; 

Xue et al., 1997). 

Ascochyta pisi is a seed-borne pathogen that can cause leaf and stem blight and pre-emergence 

damping off in pea (Smith et al, 1988). In the early 1950’s A. pisi was the most commonly 

isolated pathogen from pea seeds originating from different parts of Canada (Skolko et al., 

1954). After 1967, once resistance to A. pisi had been incorporated into pea cultivars, P. pinodes 

developed into the most destructive pathogen in pea growing areas of Canada (Wallen et al., 

1967a). Seed testing results and field observations showed that in the last 10 years A. pisi has 

been more commonly seen in the southern and south-western parts of Saskatchewan than P. 
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pinodes (Morrall et al., 2011; Warkentin et al., 2012), which may have reduced the quality of 

seed produced by growers. 

The Ascochyta blight pathogens are usually transmitted through soil, air and infected seeds. The 

pathogens can survive on infested stubbles for long periods of time (Carter and Moller, 1961; Ali 

et al., 1982). When compared to A. pisi, P. pinodes and Ph. medicaginis var. pinodella are more 

destructive. Peyronellaea pinodes and Ph. medicaginis var. pinodella can infect the emerging 

seedlings and the grown plants at the lower and higher nodes increasing the problem of lodging 

that can cause severe yield loss (Snoad, 1985). Ascospores of P. pinodes are transmitted through 

air, making it difficult to control the infection. Sometimes the symptoms produced by Ph. 

medicaginis var. pinodella are not easily distinguishable from P. pinodes, but Ph. medicaginis 

var. pinodella tends to cause less infection than P. pinodes. 

A variety with complete resistance to P. pinodes has not been found, and most pea cultivars are 

either partially resistant or fully susceptible (Ali et al., 1978; Kraft et al., 1998a, Xue and 

Warkentin, 2001). Management of the disease can be achieved by spraying chemical fungicides, 

but this is often not economically viable (Davidson and Kimber, 2007). A study conducted by 

the Danish Research Centre for Organic Farming in 2005 showed that intercropping of pea with 

barley resulted in a 40% reduction in seed infection (Wolffhechel and Bodker, 2005). Burying of 

infected stubble through tillage resulted in a decline of survival of the pathogen in the field 

(Sheridan, 1973). Long-term crop rotation of 3 - 5 years has also proven to control the blight 

caused by P. pinodes (Bailey et al, 1992). The severity of disease is promoted by wet and warm 

conditions (Warkentin et al., 1996; Xue et al., 1996). Late sowing practices carried out in some 

parts of Australia reduced infection by P. pinodes. Davidson and Kimber (2007) showed that 

sowing of peas after the autumn rain showed reduced infection of plants with P. pinodes. 

However, the success of these practices can only be achieved by fully understanding the 

epidemiology of the pathogens and their interaction with environmental factors. 

As A. pisi appears to be more commonly found than P. pinodes on harvested seeds from pea 

fields in parts of Saskatchewan, research is warranted to determine the reasons for this re-

emergence. The effect of this fungus on pea plants, as they develop, and its epidemiology has not 

been studied under field conditions in Saskatchewan. There is a lack of data to determine 

whether a more conducive climate in the southern and southwestern parts of Saskatchewan is 

http://www.agrsci.dk/afdelinger/forskningsafdelinger/pbs/medarbejdere/hwo
http://www.agrsci.dk/afdelinger/forskningsafdelinger/pbs/medarbejdere/lab
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causing the predominance of A. pisi in this region. Research is also needed to determine whether 

this disease is of economic importance in Saskatchewan. 

1.1 Research hypotheses 

1. Ascochyta pisi and P. pinodes have different optimum moisture and temperature 

requirements for conidial germination and infection. 

2. Ascochyta pisi seed infection plays a major role in disease development in pea. 

3. Ascochyta pisi infection will result in significant yield loss in pea. 

4. Resistance to A. pisi in a Recombinant Inbred Line (RIL) population is conferred by a 

single gene. 

1.2 Objectives 

1. To determine and compare temperature and moisture optima of A. pisi and P. pinodes; 

2. To assess the role of seed infection with A. pisi on disease development in field pea through a 

seed component study and through field experiments; 

3. To assess yield loss caused by A. pisi under field conditions; 

4. To determine the genetic control of resistance to A. pisi in the field using a RIL population. 

  



4 

 

 

 

 

2.0 Literature Review 

2.1 Economic importance of pea 

Humans have known field pea production for more than 10,000 years. Pea is said to have 

originated in the southwestern part of Asia (Makasheva, 1983). French settlers introduced pea to 

Canada in 1535 (Slinkard 1994; Ali et al., 1995). Field cultivation of pea first occurred in 

Ontario and Manitoba at a large scale, and it became the most popular crop in eastern Canada in 

1902. Pea cultivation in Canada is now mostly restricted to the Prairie Provinces. Pea production 

in Canada began to increase in 1985 due to the opening of the European market to pea (Slinkard, 

1994). Lower prices for cereal grains also promoted pea as a field crop (Slinkard, 1994; Ali et 

al., 1995). Saskatchewan became the major producer of pea in 1986, followed by Alberta and 

Manitoba. 

In 2010, Canada produced 32% of world pea production (Pulse Canada, 2016). Pea production in 

Canada had gradually increased to 3.8 million tonnes by 2014, but the production decreased to 

3.2 million tonnes by 2015 due to 8% reduction in yield and 7% reduction in harvested area 

compared to 2014 (Canadian Grain Commission, 2015). Canadian pea exports increased to 3.2 

million tonnes in 2014 (Government of Canada, 2016). Saskatchewan produced about 56% of 

the total Canadian pea production, while Alberta and Manitoba produced about 42% and 2%, 

respectively, (Canadian Grain Commission, 2015, Saskatchewan Pulse Growers, 2016). More 

than 80% of the pea grown in Canada are exported, with India, China, and Bangladesh being the 

major importers (Government of Saskatchewan, 2012; Kissinger and Consulting, 2016). 

Field pea cultivation in Canada is well suited to the Black, Dark Brown and Brown soil zones. 

Pea can tolerate a pH of up to 8, but the ideal pH for cultivation is 6 - 6.5. In Canada, pea is 

planted in late April to early May and harvested in August or September, depending on 

environmental conditions during the growing season. Most Canadian pea varieties are semi-

determinate, early maturating and high yielding (Cousin, 1997). The semi leafless varieties have 

additional tendrils that support the plants to grow upright, which reduce the problem of lodging 
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thereby reducing the incidence of fungal diseases in the crop (Bretag and Brouwer, 1995a). The 

average yield in Saskatchewan is 2500 kg per ha (Ali-Khan and Zimmer, 1989). 

2.2 Ascochyta Blight complex in Canada 

2.2.1 Peyronellaea pinodes (Berk. & A. Bloxam) 

Peyronellaea pinodes can cause Ascochyta blight of pea and is one of the most important 

endemic Ascomycete pathogens of pea, causing heavy yield losses and reduction in the quality 

of seeds. Peyronellaea pinodes is the sexual stage of A. pinodes (Kraft et al., 1998a). 

Peyronellaea pinodes was originally named Mycosphaerella pinodes (Punithalingham and 

Holliday, 1972a), but based on DNA sequence data of the internal transcribed spacer region the 

isolates were shown to cluster with Didymella exigua (type species for Didymella) and not with 

Mycosphaerella spp. (Chilvers et al., 2009). This species was recently named as the new 

combination Peyronellaea pinodes (Berk. & A. Bloxam) Aveskamp, Gruyter & Verkley 

(Aveskamp et al., 2010). 

The pathogen P. pinodes produces two types of fruiting bodies. Asexual reproduction of the 

fungus results in the production of pycnidia in which pycnidiospores develop that are easily 

transported by rain splash (Lawyer, 1984). Pycnidia produced by P. pinodes are globose or pear 

shaped and dark brown with an opening at the top (ostiole), through which pycnidiospores are 

released. Pycnidiospores of P. pinodes are hyaline and two septate, similar to those of Ph. 

medicaginis var. pinodella, but the spores of P. pinodes are smaller than those of Ph. 

medicaginis var. pinodella (Bowen et al., 1997; Fig 2.1). Pycnidia production increases with long 

light periods and decreases with lowered temperature under controlled conditions (Hare and 

Walker, 1994). Pycnidiospores are produced throughout the growing period when conditions are 

favorable in the field. Sexual reproduction of this fungus produces pseudothecia, which release 

ascospores. Ascospores are hyaline, 2-celled in nature and constricted at the septum 

(Punithalingham and Holliday, 1972a). Ascospores are easily transmitted by wind (Bretag, 

1991). The rupture of asci within pseudothecia and the release of ascospores will be triggered by 

rainfall, high humidity or heavy dew (Wallen, 1965). Chlamydospores produced by P. pinodes 

are dark brown, spherical or irregular in shape, and are produced in single or in chains 

(Punithalingham and Gibson, 1976).  
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2.2.2 Ascochyta pisi 

In 1830, Libert (reviewed in Skoglund et al., 2011) first described Ascochyta pisi in Europe. 

Ascochyta pisi causes leaf and pod spots of pea (Wallen, 1974; Lawyer, 1984). Halste (1893, as 

reviewed in Van Hook, 1906) was the first to describe A. pisi as a seed borne pathogen. The 

sexual stage of A. pisi was found to be Didymella pisi, but was observed only in laboratory 

conditions (Chilvers et al., 2009). During its asexual reproduction A. pisi produces spherical or 

globose brown pycnidia. Pycnidiospores produced inside pycnidia are septate with a slight 

constriction at the septum, hyaline, slightly curved and with rounded tips (Punithalingham and 

Gibson, 1972b; Fig 2.2). Colonies on potato dextrose agar produce abundant pycnidia and 

pycnidial exudates are carrot red, which, in addition to the light colored mycelium, distinguished 

it from P. pinodes. Chlamydospores are absent in A. pisi. Ascochyta pisi produces a metabolic 

toxin called ascochytin, which is not produced by any other pathogen associated with the 

Ascochyta blight complex (Marcinkowska et al., 1991). Ascochyta pisi is easily transferred from 

one field to another by infected seeds, debris and rain splash (Smith et al., 1988). 

2.2.3 Phoma medicaginis var. pinodella 

In 1987 White et al (reviewed in Davidson et al., 1999) was first to identify Ph. medicaginis var. 

pinodella in 1927 as Ascochyta pinodella, but based on morphological features it was renamed as 

Ph. medicaginis var. pinodella (Punithalingham and Gibson, 1976). During its asexual 

reproduction the fungus produces pycnidia. Pycnidiospores are transmitted through diseased 

seeds and by rain splash. Cool temperatures favour the growth of spores and the severity of the 

infection. Pycnidia produced are brown to black with a sub-globose to globose shape and are 

usually larger than those of P. pinodes (Punithalingham and Gibson, 1976). Colonies grown on 

agar media look darker than P. pinodes due to the production of chlamydospores, which are 

dark-brown and are produced in single or in chains (Punithalingham and Gibson, 1976). 

The teleomorphic stage of Ph. medicaginis var pinodella was first reported in 1997 from infected 

material collected from the field (Bowen et al., 1997). Originally, it was not described 

morphologically since other researchers were unable to reproduce the teleomorphic stage of Ph. 

medicaginis var. pinodella (Tivoli and Banniza, 2007). The teleomorphic stage has been 

named P. pinodella (Aveskamp et al., 2010). Pseudothecia produced by this fungus are globose, 

dark brown, cylindrical and larger than those of P. pinodes and asci produced are cylindrical to 
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sub-clavate. Ascospores are hyaline, bicellular and have round ends at the septum. Phoma 

medicaginis var pinodella differs from P. pinodes in producing larger pycnidiospores (Bowen et 

al., 1997). 

Phoma medicaginis var pinodella causes diseases in pea as well as other crops of the 

Leguminaceae (Punithalingham and Gibson, 1976). The disease caused by Ph. medicaginis var 

pinodella is considered secondary to Ascochyta blight caused by the P. pinodes. This pathogen 

has been isolated from pea fields throughout the world (Hare and Walker, 1944; Knappe and 

Hoppe, 1995). The severity of foot rot disease increases when the fields are waterlogged 

(Barbetti and Khan, 1987). Crop rotation is found to be one of the successful practices to control 

Ph. medicaginis var pinodella. 

2.3 Epidemiology and life cycle of Peyronellaea pinodes and Ascochyta pisi  

2.3.1 Infection process  

The spread of inoculum to other plants occurs through wind, water, rain and debris. The 

penetration of a plant surface by a fungal pathogen is accomplished either by direct penetration 

through the leaf cuticle or through natural openings or wounds. Cutin present on the outer plant 

cell wall acts as a physical barrier to protect the cell from pathogens. In addition to cutin, xylan 

and pectin are also present in the cell wall of the host plant. The secretion of cell wall degrading 

enzymes contributes both, to the attachment of, and penetration by the pathogen. Cutinase 

produced by the pathogen degrades the plant cuticle into cutin monomers, which help in the 

attachment of spores to the host. Nasraoui et al (1990) observed inhibition of penetration and 

subsequent infection due to a cutinase inhibitor, suggesting that a cutinase-mediated process of 

penetration across the cuticle was involved in successful infection by P. pinodes and A. pisi. Six 

hours after inoculation, pycnidiospore of P. pinodes germinate to produce one or more germ-

tubes, which form appressorium-like structures that attach themselves to the host (Roger et al., 

1999a). Peyronellaea pinodes penetrates 8 h after inoculation (Nasir et al., 1992) without 

disturbing the stomatal region of the host plant (Hare and Walker, 1944). An infection vesicle is 

formed partly in the cell lumen and partly in the epidermal cell wall, which then forms 

penetration and inter-cellular hyphae (Nasir et al., 1992). With the help of cell wall degrading 

enzymes, penetration and rapid colonization by P. pinodes occurs within 24 h of inoculation. The 
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colonization of pea leaves by P. pinodes and A. pisi leads to the death of the tissue, visible as 

browning of the infected cells; pycnidia are formed after three days (Heath and Wood, 1969). 

Nasir et al (1992) found that in resistant genotypes the formation of infectious vesicles and 

hyphal growth is retarded. 

The size of lesions produced by P. pinodes was shown to be 3 - 6 times larger than those of A. 

pisi (Heath and Wood, 1969; Makasheva, 1984). Peyronellaea pinodes develops faster than A. 

pisi, but the rate of germination of pycnidiospores for both pathogens is the same. However, 

penetration of the host by P. pinodes was 26% higher than A. pisi (Heath and Wood, 1969). Pea 

plants protect themselves through the production of phytoalexins such as pisatin that was shown 

to reduce the growth of germ tubes (Paxton, 1980). When the environmental conditions are 

favorable and when there is enough moisture on the surface of the leaves, pisatin produced by 

the plant is easily detoxified by P. pinodes (Delserone et al., 1992) and certain pathogenic strains 

of A. pisi (Heath and Wood, 1971) through a demethylation process causing severe damage to 

the plants. 

2.3.2 Life cycle and disease symptoms 

Pseudothecia of Ascochyta spp. can overwinter in soil, seeds, or infected plant debris and release 

ascospores in spring as primary inoculum. Initially visible symptoms may start to appear within 

24 hours of inoculation, after which lesions spread and coalesce to kill the entire leaf. Within 3 - 

5 days pycnidia are formed on the infected leaves (Heath and Wood, 1969). As the concentration 

of the inoculum of P. pinodes increases in the field, disease severity also increases by expansion 

of small lesions to affecting the entire leaf, but it does not affect the number of lesions produced 

on the leaf (Heath and Wood, 1969; Roger et al., 1999a). 

Symptoms produced by P. pinodes and Phoma spp. are similar, but A. pisi produces very 

distinctive lesions. Peyronellaea pinodes produces small purplish irregular lesions without a 

well-defined margin on the pods, stems and the leaves (Punithalingham and Holiday, 1972a). 

Later the purple spots enlarge to form brownish black lesions with defined margins (Fig 2.3; 

Roger and Tivoli, 1996). The infected leaves and stems senescence but remain attached to the 

plant (Hegedorn, 1985). Punithalingham and Holiday (1972a) described that stem lesions 

initially start as small streaks, which later coalesce, leading to the girdling of stems that weaken 
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the crown region, eventually causing lodging of pea plants. Allard et al (1993, as reviewed in 

Garry et al., 1996) reported that the flowers infected with P. pinodes wilt and drop, which leads 

to yield loss. The shape of pycnidiospores can be used to identify each Ascochyta blight 

pathogen. 

Ascochyta pisi produces pale brown spots of varying size on leaves, which are round and 

encircled by dark brown margins (Fig 2.3 A, B, C). During favorable conditions the lesions 

enlarge and the pathogen spreads to other plants by rain splash. Recently tested samples in 

Canada indicated that A. pisi is increasing in frequency in some areas of Saskatchewan (Morrall 

et al., 2007). 

Pea plants can get infected with P. pinodes at any growth stage from seeds to mature plants (Fig 

2.3 D, E, F). Infection on plants can be seen on all plant parts except the roots. After maturation 

of pea plants, P. pinodes produces pycnidia and perithecia, spores of which act as the secondary 

inoculum in the field. The spread of infection on the stem starts from the soil and crop residues. 

Lesions expand, which can lead to girdling of the stem, resulting in lodging and the death of 

plants (Punithalingham and Gibson, 1976). Research conducted by Heath and Wood (1971) 

showed that the spreading of a lesion by P. pinodes was the result of more cell wall degrading 

enzymes compared to A. pisi. The pathogenicity and survival of these Ascochyta blight 

pathogens as saprophytes is due to the production of enzymes, which allow them to digest 

cellulose (Rattan, 1974), providing them with a readily available carbon source when the host 

plant tissue is dead. 

The planting of infected seeds can cause foot rot or death of seedlings (Hare and Walker, 1944; 

Tivioli et al., 1996). Infection of flowers results in spotted lesions, which lead to flower abortion. 

Affected pods are shrivelled and distorted. The pathogen can survive in infected stubble and 

seeds for a long period of time. During adverse conditions, P. pinodes produce chlamydospores, 

but they are rarely seen on plant debris (Wallen et al., 1967a). 

2.3.3 Primary inoculum 

All three fungi can be transferred through infected seed and infected stubble from the field, but 

A. pisi does not survive in the soil for long compared with other pathogens causing Ascochyta 

blight (Gossen et al., 2011). Halste (1893, as reviewed in Van Hook, 1906) reported that infected 
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seed is the primary source of transmission for A. pisi. Ascospores are the primary source of 

inoculum for P. pinodes. Large amounts of ascospores are released from the infected stubble 

during the first spring rain in Australia (Carter and Moller, 1961). Abundant pseudothecia 

develop in lesions on senescent plant parts, at any time of the season. Moisture is the important 

factor for the release of ascospores into the air. When the moisture level is high pseudothecia 

become turgid and due to the turgoid pressure the walls of asci rupture at the tip releasing 

ascospores into the air (Hare and Walker, 1944; Roger and Tivoli, 1996). Generally, 

pseudothecia develop 3 - 4 weeks after senescence, but this varies depending on the availability 

of moisture. The released ascospores travel long distance and spread the pathogen to other fields 

(Bretag and Ward, 2001). Carter and Moller (1961) reported that dewdrops can also trigger 

ascospores to be released into the air, but a larger amount is released at the time of rain due to 

high humidity in the air and in the plant canopy. Schoeny et al (2007) in France observed that 

there were low numbers of ascospore released in early spring, compared to the release of 

ascospore in southern Australia at that time. Experiments conducted under controlled conditions 

showed that optimum temperatures of 15-20˚ C with 4-6 h of leaf wetness favour the release of 

ascospores in diurnal intervals. The release of high amounts of ascospores was triggered during 

the late afternoon but was lower at night. The production of pseudothecia happens after the 

senescence of the crop parts, when environmental conditions are favourable. 

2.3.4 Secondary Inoculum 

The secondary spread of ascospores and pycnidiospores causes the greatest damage in pea 

(Bretag, 1991). The severity of the secondary infection depends upon the abundance of primary 

inoculum, spacing between plants and the prevailing environmental conditions in the region. 

Both pycnidia and pseudothecia are produced on the same plant. Pycnidia and pseudothecia are 

only produced after the senescence of the crop parts resulting in greater disease expression on 

those tissues (Roger and Tivoli, 1996). This secondary inoculum usually spreads through wind or 

rain splash, and infection is also promoted by heavy dew, or by any other cultural practices done 

during wet periods (Punithalingham et al., 1972b). These secondary infection cycles can occur 

many times in the field throughout the growing season (Roger and Tivoli, 1996). 

In France, during wet periods pycnidia may be formed within 11 days after the initial symptom 

appeared, and can continue to form until the end of the vegetative cycle of the crop (Roger and 
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Tivoli, 1996). Pseudothecia may be formed 13 days after the appearance of the first disease 

symptom. Under Australian conditions, ascospores of P. pinodes are released in larger amounts 

during spring rains (Davidson et al., 1999, McDonald and Peck, 2009). Ascospores are dispersed 

through wind causing the uniform spread of disease throughout the field. The amount of 

ascospore dispersal decreases as the canopy in the field increases until the end of the season 

(Roger and Tivoli, 1996). Hare and Walker (1944) showed that in case of secondary infection 

ascospores are more important for an epidemic than pycnidiospores for spread and dissemination 

of the fungus to other fields. An important part of Ascochyta blight management is to delay the 

process of senescence in plants in order to lower pseudothecia production (Roger and Tivoli, 

1996). 

2.4.3 Mode of infection through soil 

Few studies have been conducted to study the behaviour of P. pinodes in the soil, although this 

fungus has the ability to survive in the soil for many years (Bretag and Ward, 2001). The soil-

borne infection of this pathogen can cause foot rot of pea at the base of the stem and rain splash 

can cause the spread of pycnidiospores to the leaves (Sakar et al., 1982). The survival of P. 

pinodes in the soil is due to the production of chlamydospores. The survival of chlamydospores 

is based on the presence of thick protective cell walls. Chlamydospores act as partial 

saprophytes. 

Peck et al (2001) in the southern part of Australia observed that soil-borne inoculum of P. 

pinodes began to decline in the field after three years without pea, whereas the stubble-borne 

inoculum in the soil started to decline in the soil after one year. When the infected stubble is 

buried, the survival of P. pinodes is limited to less than 12 months (Zhang et al., 2005), probably 

due to the absence of oxygen and other enzymatic activity. Wallen and Jeun (1968) showed that 

Ph. medicaginis var. pinodella and P. pinodes are strongly antagonistic to A. pisi in the soil, 

which reduced the population of A. pisi in the soil under controlled condition. 

2.4.4 Mode of infection through seeds 

Hare and Walker (1944) showed that the transmission of Ascochyta pathogens through seeds is 

one of the major survival mechanisms of these pathogens. Infected seed can act as the carrier and 

transfer P. pinodes and A. pisi from diseased fields to uninfected fields of pea in the next 
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growing season. Severely infected seeds may not emerge from the soil. While the seeds 

germinate, the pathogen can infect the hypocotyl and epicotyl region of the seedlings, potentially 

leading to the death of the seedling (Wallen, 1965; Wallen et al., 1967). A study conducted by 

Skolko in 1954 in western Canada showed that out of 5000 seed lots tested, 37% of isolates were 

A. pisi, 13% P. pinodes and 5% Ph. medicaginis var. pinodella. A similar study conducted in 

Ottawa showed that 85% of the seed lots tested were infected, of which 40% were infected with 

A. pisi, 28% with P. pinodes, and 10% with Ph. medicaginis var. pinodella (Wallen et al., 1965). 

In Australia, out of 691 seed lots tested 463 lots were infected with the Ascochyta blight 

complex pathogens, of which 98% of the isolates were P. pinodes, 5% Ph. medicaginis var. 

pinodella and 1% A. pisi (Bretag and Brouwer, 1995a). Only a few studies have been conducted 

to study the spread of the disease from seeds to stems and other plant parts. Under controlled 

condition, seed-to-seedling transmission was 100% for P. pinodes (Xue, 2000) and 40% for A. 

pisi leading to seedling death (Maude, 1966), but it has been shown that seed infection of 

Ascochyta spp. is not destructive when compared to other sources of inoculum (Moussart et al., 

1998). 

Seed-borne inoculum is influenced by factors including rainfall, temperature and seeding date 

(Bretag and Brouwer, 1995a; Bretag et al., 1995b). Areas with low rainfall often produce 

disease-free seeds in the field (Cruickshank, 1957; Bretag et al., 1989; Bathgate et al., 1989). 

Peyronellaea pinodes can survive on pea seed coats for several years (Bretag et al., 1995b). 

Surface sterilization of seeds before sowing resulted in a reduction of seed infection by 60%, 

which indicated that most of P. pinodes was carried on the seed coat of pea (Bathgate et al., 

1989). When seed infection levels with P. pinodes are higher than 15% and the environmental 

conditions are conducive, the pathogen can cause severe economic damage to the crop (Xue, 

2000; Moussart et al., 1998). Seed-borne infection of other species of the Ascochyta blight 

complex such as Phoma spp., has not been identified as important in causing Ascochyta blight in 

the field. The storage of pea seed for several years showed a reduction of A. pisi on the seed, but 

this technique is not of practical use (Wallen, 1955). 
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Fig 2.1 Peyronellaea pinodes A. Pseudothecia containing asci B. asci (sacs) containing 

ascospores C. Ascospores  D. Pycnidium E. Conidiophore on substratum F. Conidia (secondary 

spores) are produced on leaves (Punithalingham and Holliday 1972a) 

 

Fig 2.2 Ascochyta pisi A. Immersed pycnidium B. Colony of conidiophore on substratum C. 

Conidiophore D. Conidia (Punithalingham and Gibson 1972b) 
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Fig 2.3 A. Ascochyta pisi lesions on leaves B. A. pisi lesions on stem C. A. pisi pod infection D. 

P. pinodes lesions on plants E. Peyronellaea pinodes symptoms on leaves F. P. pinodes girdling 

of stem  
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Fig 2.4 Life cycle of Peyronellaea pinodes and Ascochyta pisi 
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2.5 Effects of temperature and moisture on disease development 

2.5.1 Effects of temperature 

Temperature is one of the important factors that limits or encourages the infection process of the 

pathogens. Studies on relationships among temperature, moisture, and various stages of the 

infection processes have been conducted under controlled environments for P. pinodes (Roger et 

al., 1999a, 1999b). Conidial germination began 2 h after inoculation at 18˚C, appressoria were 

observed after 4 h, and hyphal penetration began after 8 h at 15 to 30˚C. The optimum 

temperature required for the pathogen to develop was found to be 20˚C (Roger et al., 1999a; 

Wallen et al., 1967a). Chen et al (1994, as reviewed in Bretag et al., 2004) reported that pod 

infection by P. pinodes is stimulated at temperatures between 24-30˚C. In India, research 

conducted by Pushpinder et al (2005) revealed that A. pisi have an optimum temperature of 25˚C 

and maximum temperature of 32˚C with 67% disease severity when wetness periods ranged from 

12-24 h. Temperatures of 5 and 10˚C delayed infection processes, and temperatures of 5, 10, and 

30˚C resulted in limited pycnidial formation by P. pinodes (Roger et al., 1999a). 

Wallen et al (1967a) assessed the growth and infection of the P. pinodes on plants, and evaluated 

the effect of temperature (10, 15, 18, 25 and 30˚C). Lesions on plants appeared smaller at 10˚C 

and 30˚C. At 15˚C and 25˚C, small streaks were observed on the epicotyl region of the plants. At 

18˚C, P. pinodes caused severe infection and lesions were coalesced leading to the development 

of black girdling lesions in the epicotyl region. Peyronellaea pinodes can survive at temperatures 

between -20˚C to 25˚C under sterile conditions (Wallen and Jeun, 1968). Chlamydospores can 

withstand 100˚ C for 12-15 h and also survive in sterile soil for more than 12 months (Wallen 

and Jeun, 1968). The formation of pycnidia and perithecia is induced at 20˚C under controlled 

conditions (Roger and Tivoli, 1996). Peyronellaea pinodes can adapt to a wider range of 

temperatures than A. pisi (Makasheva, 1984). 

2.6.2 Effects of moisture 

Moisture is another important factor for initiation and development of Ascochyta blight. 

Moisture is introduced into the environment in different forms such as rainfall, dew, irrigation 

and humidity due to evaporation. Moisture is essential for conidial germination and penetration 

of germ tubes into the host plant. Viability of the pycnidiospores is lower during a prolonged dry 

period during infection, specifically during germination. However, once the hyphae penetrate 
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into the plant cell, leaf wetness conditions become less relevant (Roger et al., 1999b). A 

minimum of 2 h of moisture is needed for conidia of P. pinodes to germinate (Roger et al., 

1999b). The viability of conidia was reduced to 2% if moisture was not available until 12 days 

after inoculation. The canopy structure of `plants can also preserve moisture, particularly in the 

bottom of the canopy, promoting infection at the bottom of the plants. Studying the development 

of disease and fruiting bodies of the P. pinodes at constant temperatures of 5, 10, 15, 20, 25 or 

30˚C with 60 to 70% RH revealed that 20˚C resulted in the most severe infection on plants 

(Roger et al., 1999b). If moisture was removed before 6 h post inoculation, disease development 

was severely limited, whereas longer wetting periods of 12-72 h promoted higher disease 

severity. In France, frequent rain in the spring season often results in optimum temperature and 

moisture conditions creating disease epidemics (Roger et al., 1999b). 

2.6 Ascochyta blight management 

2.6.1 Crop rotation and tillage 

Peyronellaea pinodes and A. pisi are able to survive in infected stubble for only a few years in 

the absence of an appropriate host plant, therefore a three-year crop rotation can reduce the 

incidence or fully eradicate the inoculum from the field (Zhang et al., 2005). In Australia, crop 

rotation intervals of five years and delayed sowing are recommended to control Ascochyta blight 

(Davidson and Ramsey, 2000) However, Holm et al (2006) argued that crop rotation has very 

little or no effect on the severity of the disease caused by P. pinodes, because airborne 

ascospores from a nearby field may be a major source of inoculum of the pathogen. A diversified 

rotation of crops generally resulted in a low disease incidence of P. pinodes and also improved 

the health of the soil (Nayyar et al., 2009). Wallen and Jeun (1968) showed that P. pinodes 

infection in pea plots was much higher in continuous pea rotations, when compared to rotations 

that included corn and vegetables. Tillage is also one of the major practices for control of 

Ascochyta blight. Bailey et al (2001) observed that burying infected stubble after harvest of pea 

led to a reduction in the severity of P. pinodes in the early growing season. However in western 

Canada, burying of infected crop residue by tillage is not a common practice, since most of the 

growers have switched to the zero tillage crop production to reduce soil erosion. As a 

consequence, the infected stubble is left on the field surface and increases the disease potential. 
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2.6.2 Cultural method and biocontrol agents 

Reducing the amount of primary inoculum in the form of seed-borne inoculum can control 

Ascochyta blight. Commercial seed production in low rainfall areas reduces seed infection by 

Ascochyta spp. (Walker, 1961). If harvested seeds are used for seeding a new crop,  t h e  

Saskatchewan Pulse Growers and the Government of Saskatchewan recommend a threshold 

level of 10% for seed infection with Ascochyta blight pathogens; as long as the percentage of 

germination is high and seedlings have good vigor. Cleaners and color sorters can be used to 

remove some diseased or damaged seed to improve the seed quality for planting (Saskatchewan 

Ministry of Agriculture, 2015). Wallen (1948) showed that the percentage of A. pisi in pea seed 

was 60% lower after three years of storage compared to freshly stored seed, suggesting the 

viability of A. pisi on seed is reduced to nearly half over a period of three years. Gadd (1950) 

showed that hot water treatment at 100˚C for 10 min without damaging seeds reduced viability 

of pathogens on the seed coat, but the treatment of larger quantities of seed is not practical. 

In most pea growing regions there are seasonal fluctuations in the amount of air-borne inoculum. 

In Western Australia, Salam et al (2011a, b) developed G1 Blackspot Manager Software, which 

can predict the release of ascospores of P. pinodes. Farmers use this information to delay the 

sowing date until 50% of the ascospores have been released and landed on the soil. However, 

sometimes-late sown crops can be severely affected due to air-borne spores produced from early 

sown pea crops on nearby infected plants (Walker and Hare, 1943). In India research conducted 

by Reddy and Singh (1993) showed that sowing in early winter might increase yield by 50%, 

when compared to sowing in spring. 

Many studies conducted on biological control of Ascochyta blight indicated that it might be 

possible to reduce disease severity by pre-inoculation either with non-pathogenic fungi or non-

pathogenic bacteria. Pre-inoculation with A. fabae, A. pisi, avirulent strains of P. pinodes, 

Pseudomonas phaseolicola and pea lectin are said to effectively protect pathogen infection sites 

or reduce the size of the lesions (Lepoivre, 1979, as reviewed in Bretag et al., 2006). The 

mechanism underlying the suppression of disease severity is still unclear. Boy (1981, as 

reviewed in Bretag et al., 2006) showed that pea plants inoculated with A. fabae prior to 

inoculating with P. pinodes showed reduced disease severity. However, at present, biological 

control for P. pinodes pathogen is not economical for larger scale control in Saskatchewan.  
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2.6.3 Seed treatment and foliar fungicides 

 Peyronellaea pinodes is a seed-borne pathogen that can be partly controlled by seed treatment 

with fungicides. The first fungicidal seed treatments used for seed dressing against Ascochyta 

blight pathogens were mainly copper and mercury based (Walker, 1961). Maude (1966) 

suggested that infected seeds could be treated with captan or thiram at a concentration of 0.2% 

for 24 h before sowing at 30˚C to control P. pinodes and A. pisi infection. Maude (1966) showed 

that chemical fungicides could be applied through slurries, instead of powder seed treatment. 

Soaking seeds in fungicide suspension of captan and thiram had better penetration and effective 

control of Ascochyta blight (Maude, 1966). Both fungicides were equally effective to control 

these two pathogens, and better than methyl mercuric dicyanamide (Wallen et al., 1967a). 

Hwang et al (1991) showed that there was no significant difference between captan and 

manganese ethylene-bis-dithio carbonate in controlling Ascochyta blight pathogens. Thiram and 

iprodine were shown to control A. pisi by controlling the pathogen’s growth, resulting in 28% 

increased emergence of seedlings (Wallen et al., 1966). In Australia, few growers use seed 

dressing to control P. pinodes in the field. A potential problem with application of fungicidal 

seed treatment is that it can be harmful to Rhizobium, which affects nodulation of legume crops 

(Rennie et al., 1985). 

The use of chemical fungicides is common to control Ascochyta blight on foliar parts of the 

plants. In Australia, P. pinodes is controlled by applications of chlorothalonil and mancozeb in 

the field (Bretag et al., 2000). Warkentin et al (1996) showed that chlorothalonil and benomyl 

reduced the severity of P. pinodes blight and increased pea seed yield and weight in Canada. 

Although the incidence of Ascochyta blight in Canadian field pea can be reduced by application 

of foliar fungicides during flowering, applications of fungicides are often not cost effective. 

Environmental conditions also play a major role and need to be considered before an application 

of fungicides (Xue et al., 2003; Warkentin et al., 2000). In France, plants are sprayed with 

fungicides from flowering to maturity at intervals of 10 - 15 days (Schoeny et al., 2007). In 

Australia, recent evidence showed that pea cultivars Kaspa and Parafield produced an economic 

crop yield of at least 2.5 t/ha after spraying fungicides (Davidson et al., 2004). The correct time 

of identification of pycnidia release can help to optimize the time of spraying of a fungicide to 

reduce the number of maturing pycnidia (Roger et al., 1996; 1999a). Several fungicides have 
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been registered for control of Ascochyta blight in Canada and it is documented that one or two 

applications of fungicides per season can reduce Ascochyta blight severity (Warkentin et al., 

1996). 

2.6.4 Host plant resistance 

2.6.4.1 Inheritance of resistance to Ascochyta pisi 

The inheritance of resistance to Ascochyta spp. in pea is poorly understood. The introduction of 

varieties resistant to A. pisi reduced the incidence of A. pisi blight in Canada (Wallen and Jeun, 

1968). Resistance to A. pisi were found to be governed by three dominant genes, two 

complementary genes (Wallen and Jeun, 1968) and a single dominant and recessive gene (Darby 

et al., 1985). However, Brittain (1987) found a wide range of resistance in Pisum lines to 

infection by A. pisi. Three new genes, Rap-1, Rap-3 and Rap-4, were identified for control of 

resistance to A. pisi. Rap-1 appeared to confer general resistance while Rap-3 and Rap-4 

appeared to be race-specific. However, Csizmadia (1995) suggested that a single dominant gene 

governs resistance to A. pisi. 

The presence of physiological races for each pathogen species makes it more difficult to identify 

resistance and to develop resistant varieties. Jones (1927) reported on physiological 

specialisation in A. pisi and differences in pathogenicity among isolates of A. pisi from different 

countries. In Canada at least four distinct races of A. pisi were found, each of which had a 

geographically limited distribution. It was speculated that this may be due to similar pea varieties 

in each region and different climatic conditions in those regions (Wallen, 1957). After the 

introduction of varieties with resistance to leaf and pod spot caused by A. pisi, this disease was 

really observed in Canada (Wallen and Jeun, 1968) until recently (Warkentin et al., 2012). Sakar 

et al. (1982) suggested that the method used for resistance screening to Ascochyta blight and the 

scoring methods can influence whether accessions are considered resistant or susceptible. 

2.6.4.2 Inheritance of resistance to Peyronellaea pinodes 

Screening for resistance to P. pinodes have been carried out in many countries, but only minor 

resistance genes have been reported to control P. pinodes in Canada (Xue and Warkentin, 2001) 

and the United Kingdom (Clulow et al., 1991). Resistance in plants to P. pinodes is only partial, 

and heritability and the expression of resistance can be affected by temperature, the amount of 
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inoculum in the field and also depends on the age of the plants (Zhang et al., 2006). A single 

recessive gene in P. fulvum could be used to transfer resistance to P. sativum by conventional 

breeding (Wroth, 1998a). Gurung et al (2002) reported that the good sources of resistance to P. 

pinodes have been found in primitive Pisum and Lathyrus species, but attempts to transfer this 

resistance to conventional pea types have been unsuccessful. Dolgikh et al (1971, as reviewed in 

Bretag et al., 2004) showed increased resistance to P. pinodes in mutant pea varieties developed 

through radiation. 

Kraft et al (1998b) reported that they found no pea lines with major gene resistance to P. 

pinodes. Xue and Warkentin (2001) tested 335 pea lines from different countries for resistance to 

P. pinodes and identified seven lines that showed partial resistance. Kraft et al (1998b) screened 

2,936 accessions of Pisum sativum from the USDA collection under field conditions in Ireland 

from 1991 to 1994 for resistance to P. pinodes with no replicated trial due to limitation in seeds, 

but results showed that high level of resistance to P. pinodes did not exist in this collection. 

Cultivar Radley (commercially grown variety in Canada in the 1990s) was among the group of 

accessions with best resistance and Radley was used as a check in the western Canadian pea 

registration trials. A total of 151 lines of P. sativum were found promising and further screening 

was done in replicated trials in Ireland and New Zealand in 1995. P. sativum accessions PI 

142441 (Peru), PI 142442 (Peru), PI 381132 (Ethiopia), PI 404221 (Russia) and PI 413691 

(Hungary) were resistant in both Ireland and New Zealand, but none were more resistant than 

check cultivar Radley. Foliar screening with P. pinodes showed that most lines were moderately 

to extremely susceptible as the age of the plant increased. No correlation was found between 

foliar disease and foot rot scorings based on disease incidence (Nasir and Hoppe, 1991; Ali et al., 

1978). In Turkey, PI173052 of P. sativum was found to be resistant to different pathotypes of A. 

pisi and P. pinodes (Ali, 1986). The resistance in varieties should be confirmed with the local 

pathotype (Bretag and Ward, 2001, Darby et al., 1986). 

Fondevilla et al (2005) observed that Pisum sativum ssp. syriacum accession P665 had good 

resistance to five different isolates of P. pinodes obtained from different countries. Fondevilla et 

al (2007) suggested that resistance to P. pinodes was controlled by a complex system. Clulow et 

al (1991) classified genotypes based on a qualitative approach, where disease scoring of 0 - 2 

indicated resistance and 3 - 5 susceptibility. He found four genes that conditioned resistance to P. 
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pinodes at the seedling stage (Rmp1 and Rmp2) and stem resistance (Rmp3 and Rmp4). Recent 

screenings for resistance to P. pinodes has been focused on identifying molecular markers and 

Quantitative Trait Loci (QTL). Timmerman-Vaughan et al (2002, 2004) identified thirteen QTLs 

for resistance to P. pinodes, which were scattered across the seven linkage groups of pea. 

Timmerman-Vaughan et al (2004) also found that the QTLs for resistance to P. pinodes were co-

located with those for plant height and flowering date. Three QTLs were also identified for 

resistance to P. pinodes under field condition (Tar' a et al., 2003). Prioul et al (2004) identified 

six QTLs for resistance to P. pinodes at the seedling stage under controlled conditions and ten 

QTLs for resistance at the adult stage under field conditions. 

Fondevilla et al (2008, 2010) derived a genetic map from a cross between P. sativum ssp. 

syriacum accession P665 and P. sativum ssp. sativum cv. Messire, which was used to identify 

QTLs controlling resistance to P. pinodes at different developmental stages and under different 

environmental conditions. Even though these studies have increased knowledge of the genetic 

architecture of partial resistance in pea to P. pinodes, when screening pea varieties for disease 

resistance the resistance to P. pinodes varied between individual plants (Skolko et al., 1954). 

Sometimes this can be caused by genetic heterogeneity within varieties but it might also be due 

to environmental variations (Ali-Khan et al., 1973). Further research is being carried out to 

identify the biochemical reactions taking place that control resistance, which will provide an 

alternative or supplemental method for evaluating disease resistance in controlling P. pinodes 

(Hwang et al., 2004, Jha et al., 2012, Jha et al., 2013). 
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3. Evaluation of optimum temperature and moisture requirements for Ascochyta pisi and 

Peyronellaea pinodes 

3.1 Introduction 

Pea is an important crop in Canada. Saskatchewan is the major Canadian pea producer, followed 

by Alberta and Manitoba. Successful pea cultivation, to a large part, depends on climatic 

conditions. Pea can tolerate drought stress better than lentil but excess moisture leads to disease 

development. Diseases are a major constraint to pea production in Saskatchewan. Ascochyta 

blight, root rot, powdery mildew, Sclerotinia stem rot, rust and Septoria leaf blotch are the 

common diseases of pea that have been associated with yield losses, but epidemic disease 

development always depends on prevailing conditions. Ascochyta blight caused by Peyronellaea 

pinodes is considered a major pathogen in Saskatchewan and causes economic damage 

worldwide (Bretag, 2001; Lawyer, 1984). In the last decade, Ascochyta pisi has been more 

commonly found on the seed lots obtained from southern and south-western parts of 

Saskatchewan than P. pinodes (Morrall et al., 2011; Warkentin et al., 2012). 

The ability of A. pisi and P. pinodes to infect pea is dependent on the pathogen’s ability to adapt 

to the environmental conditions prevalent in Saskatchewan. As with all host-pathogen 

interactions, temperature and moisture are primary environmental factors influencing both 

conidial germination, and disease development caused by A. pisi (Pushpinder et al., 2005) and P. 

pinodes (Roger et al., 1999a, 1999b). Allard et al (1992, as reviewed in Garry et al., 1996) 

reported that the presence of free water on the leaf surface at optimal temperature promotes 

germination, disease and fruiting body development of P. pinodes. The optimum temperature for 

P. pinodes infection was determined to be between 15-20˚C (Bretag, 1991; Wallen, 1965). A 

study on the effects of dry periods during the infection process of P. pinodes revealed that if 

plant surfaces dried up within 6 h after inoculation, disease development was severely limited 

whereas longer wetness periods of 12-72 h promoted higher disease severity (Roger et al., 

1999b). In India research conducted by Pushpinder et al (2005) observed that A. pisi had an 

optimum temperature of 25˚C and maximum temperature of 32˚C with 67% disease severity 
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when wetness periods ranged from 12-24 h. Temperatures of 5 and 10˚C delayed the infection 

process, and temperatures of 5, 10, and 30˚C resulted in limited pycnidial formation by P. 

pinodes (Roger et al., 1999a). Heath and Wood (1971) found that the efficiency of disease 

development by P. pinodes depended on the number of pycnidiospores present at the time of 

inoculation. Lawyer (1984) observed an increase in pycnidia development under high levels of 

humidity. The secretion of cell wall degrading enzymes contributes both to the attachment of 

fungal structures on the plant surface, and to penetration of the host tissue. A cutinase-mediated 

process is involved in the penetration across the cuticle and is required for successful infection 

by P. pinodes and A. pisi (Nasraoui et al., 1990). 

Specific effects of environmental factors on A. pisi under a semi-arid climate are not known. 

There is a lack of data to determine whether a more conducive climate in the southern and south-

western parts of Saskatchewan may be contributing to the predominance of A. pisi in this region. 

The objective of this study was to evaluate the effects of temperature and wetness periods on the 

development of A. pisi and P. pinodes, which may help to explain why A. pisi has been observed 

more frequently in southern and south-western parts of Saskatchewan compared to P. pinodes. 

Two experiments were established, a) germination of conidia in well slide, and b) inoculation of 

pea seedlings incubated at different temperatures and with different leaf wetness periods. 

3.2 Materials and Methods 

3.2.1 Isolate selection and preparation of conidial suspensions 

Single-spored field isolates of A. pisi and P. pinodes were retrieved from the culture collection 

of the Pulse Crop Pathology Program of the Crop Development Centre, University of 

Saskatchewan. Isolates were tested for their ability to sporulate after 7 days of incubation 

at room temperature. Ascochyta pisi isolate AP6 (collected from Canora, 2006) and P. pinodes 

MP25 (collected from Lake Lenore, 2006) showed good conidial production and higher 

conidial germination and were selected for further study. Refreshed single-spored isolates of 

AP6 and MP25 were obtained from stem lesions of artificially inoculated pea (cv. Cooper). 

Small pieces of mycelium from both cultures were used to prepare the stock cultures, which 

were stored in Cryoprotective media (Cryoinstant TM) and all cultures used in experiments 

were derived from a single stock. Conidia of A. pisi and P. pinodes were obtained by 

culturing the fungi in 9 mm Petri dishes containing oatmeal agar and were incubated at 
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room temperature under fluorescent light with a photoperiod of 16 h light per day for 10 

days to achieve optimum sporulation of the cultures. Conidia were harvested by flooding the 

dish with sterile tap water and scraping the culture gently using a sterile glass slide before 

filtering the suspension through cheese-cloth to remove culture residues. The number of 

conidiospores was determined using a hemocytometer and adjusted by adding sterile tap water. 

3.2.2 Effects of temperature and incubation period on conidial germination using well slides 

Experiments using a randomized complete block designs with four replications were conducted. 

All germination tests were carried out on well slides. Conidial suspensions (1 x 104 conidia ml-

1) of A. pisi AP6 and P. pinodes MP25 were prepared from 10-day-old cultures for this study. 

An aliquot of 100 µl of conidial suspension was evenly spread into the well of a well s l ide, 

which was placed on top of moist filter paper in a labeled Petri dish. Petri dishes were 

incubated at 10, 15, 20, 25 or 30˚C under continuous fluorescent light (Panasonic cooled 

incubator MIR 254 series). Slides were sampled destructively, so separate slides were 

prepared for 0, 2, 4, 6, 8, 10 and 12 h incubation periods. Conidial germination was 

determined by evaluating 100 conidia per slide, selected randomly from left to right across 

the slides. Conidia were considered to have germinated when the germ-tube was half the 

width of the conidium. The total number of germinated conidia was expressed as percentage 

of conidia germinated. The experiment was conducted twice. 

3.2.3 Effects of temperature and leaf wetness periods on disease development 

3.2.3.1 Planting and maintenance of pea 

Pisum sativum L. cv. Cooper, a cultivar susceptible to A. pisi infection was used in the 

experiment. Disease-free seeds were grown at room temperature under fluorescent light with 

a photoperiod of 16 h light per day. The seeds were planted four seeds per 4” pot filled 

with commercial potting mixture (Sunshine mix # 4 - Peat, Dolmite lime and Perlite) and plants 

were fertilized with a complete fertilizer solution (PlantProd ® 20-20-20 plus micronutrients) 

11 days after planting at a rate of 3 g l-1 water. Pots were randomly assigned to treatments. 

3.2.3.2 Plant inoculation 

Conidial suspensions of isolates AP6 and MP25 were prepared as described in Section 2.1.1 

and adjusted to 1 x 105 conidia ml-1. One drop of the surfactant Tween 20 was added to the 
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conidial suspension. Sixteen-day-old plants were inoculated with 5 ml of conidial suspension 

per plant using a CO2-air brush sprayer (model RUH8210, Oxygen regulator, Uniweld, 

U.S.A). The inoculated plants were staked and covered with plastic bags to ensure high 

humidity and leaf wetness periods of the desired length. Pots were placed in incubators kept 

at daytime (16 h) temperatures of 10, 15, 20, 25 and 30˚C and a night temperature of 10˚C 

with relative humidity of 90% ± 5%. Bags were removed 0, 2, 4, 6, 8, 10, and 12 h after 

inoculation and the plants were dried using the cold air setting of a hair dryer. Pea plants 

remained in the incubator at respective temperature for a total of 14 days and were watered as 

required. Non-inoculated plants were included as controls. 

3.2.3.3 Disease assessment 

Assessment of disease severity was carried out 7 and 14 days after inoculation using a 0-10 

scale (grading system) based on 10% incremental increases in the percentage of disease 

severity on leaves and stems. Plants were individually assessed and disease scores were 

converted to percentage of infected plant tissue using the class midpoint values. The average of 

four plants per pot was used for data analysis. 

3.3 Statistical analysis 

Data were analyzed using the mixed model procedure of the SAS program (9.3 SAS 

Institute Inc., 2010). Prior to analysis, data from each repeat and pooled data were tested for 

homogeneity of variances using the Levene’s test. Heterogeneous variances were modeled with 

the repeated statement as required. 

Initially, separate data analyses for each pathogen were conducted for each repeat separately 

and for pooled data to determine the effect of temperature and incubation period or wetness 

period on conidial germination of, and disease severity caused by A. pisi and P. pinodes. 

Temperature and incubation period or wetness period were considered fixed effects, whereas 

blocks and repeats (for pooled data) were considered random effects. Incubation period or 

wetness period were identified as repeated measures and were modeled with an autoregressive 

covariance structure. Non-inoculated controls as well as conidia and plants with 0 h incubation 

period or wetness period had no sporulation or disease development, and were not included in 

the analysis of variance. 
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Differences in conidial germination and disease progress between A. pisi and P. pinodes at 

each temperature were determined with repeated measures analysis of combined data from 

both repeats using the mixed model procedure. Pathogens and incubation period or leaf 

wetness period were considered fixed effects, whereas repeats and block nested in repeat were 

considered random effects. Incubation period or leaf wetness period were considered the 

factors for repeated measures. An autoregressive covariance structure was used to model 

repeated measures. 

Regression analyses were performed on combined data to evaluate the germination rate of 

conidia and the rate of disease increase in response to incubation period at different 

temperatures. All regression analyses were performed separately for each pathogen. As an 

initial step, data were transformed using linear forms of logistic, Gompertz and exponential 

models. Linear regression analyses were conducted with the regression procedure of SAS. 

Goodness-of-fit for each data set was examined by plotting residuals versus predicted values 

and examining coefficients of determination (R
2
), Mean Square Errors (MSE) and Standard 

Errors (SE) of the parameter estimates from linear regression analysis (Campbell et al., 

1990). After selection of appropriate models based on statistical fit, conidial germination and 

disease progress data were further analyzed with the nonlinear regression procedure of SAS 

with Marquardt’s compromise method. Initial parameters for non-linear regression for each 

pathogen were given as y0 = 0.1 and the rate parameters generated through linear regressions 

analyses. 

3.4 Results 

3.4.1. Germination of conidia in well slide 

Conidial germination was examined at temperatures of 10, 15, 20, 25 and 30˚C on glass 

slides containing conidial suspensions. Conidia of A. pisi and P. pinodes germinated at all 

temperatures. Conidial germination progressed similarly in both repeats (Appendices 1 and 2); 

so only results from combined data analyses are presented. As an initial step, the effects of 

temperature and incubation period were explored for each pathogen (Fig A1.1 of Appendix 1), 

followed by a comparison of the pathogens at the different temperatures (Fig 3.1). For both 

pathogens, conidial germination in general increased with increasing incubation period, and 

temperature up to the optimum (Fig A1.1 of Appendix 1).  
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For A. pisi, analysis of combined conidial germination data revealed that temperature, 

incubation period and the incubation period by temperature interaction had significant effects 

on percentage of conidial germination (P < 0.0001). At 10˚C, conidial germination did not 

change from 2 to 6 h, but increased after 8, 10 and 12 h of incubation period reaching an 

average maximum of 25% (Fig 3.1). At 15˚C conidial germination did not change from 2 to 4 

h, significantly increased after 6 h, and remained at a similar level up to 8 h of incubation. 

Germination increased further after 10 h incubation period and remained similar up to 12 h 

reaching 43% on average. At 20 and 25˚C conidial germination had significantly increased at 

each sampling point up to 12 h of incubation, reaching 62 and 51%, respectively. At 30˚C 

conidial germination steadily increased up to 10 h of incubation and remained at a similar 

level after 12 h of incubation period with a mean of 41%. 

For P. pinodes, analysis of combined conidial germination data showed that temperature, 

incubation period and incubation period by temperature interaction had significant effects on 

percentage of conidial germination (P < 0.0001). At 10˚C, conidial germination did not change 

from 2 to 4 h, but increased steadily after that up to 12 h of incubation reaching a mean of 

31%. At 15˚C conidial germination steadily increased up to 10 h of incubation and 

remained at a similar level after 12 h of incubation period with a mean germination of 52%. At 

20, 25 and 30˚C conidial germination steadily increased after 2 h up to 12 h of incubation 

period reaching 87, 79 and 76%, respectively. 

Comparison of conidial germination between both pathogens at 10˚C through repeated 

measures analysis based on combined data revealed that pathogens (P = 0.0630) and the 

pathogens by incubation period interaction (P = 0.0510) had no effect, whereas incubation 

period had a significant effect on conidial germination (P < 0.0001). At 15˚C, incubation period 

(P < 0.0001) and the pathogens by incubation period interaction (P = 0.0045) had significant 

effects on percentage of conidial germination, but the pathogen effect was non-significant (P = 

0.0815).  

At 20˚C, pathogens,  incubation period (both P < 0.0001) and the pathogens by incubation 

period interaction (P = 0.0002) had significant effects on percentage of conidial germination. 

There was no difference in conidial germination between A. pisi and P. pinodes up to 4 h after  
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Fig 3.1. Effect of incubation period on percentage of conidial germination of Ascochyta pisi 

and Peyronellaea pinodes at 10 to 30˚C. Error bars represent standard errors of the means. * 

Indicates significant differences between A. pisi and P. pinodes at P ≤ 0.05 
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which P. pinodes had higher conidial germination compared to A. pisi. At 25 and 30˚C, 

pathogens,  incubation period and pathogens by incubation period interaction had highly 

significant effects on percentage of conidial germination (P < 0.0001), and with the exception 

of 2 h of incubation, P. pinodes had consistently higher germination compared to A. pisi. 

The Gompertz model best described conidial germination at each temperature over a period of 

12 h in linear regression analyses, and was subsequently used for describing the progression of 

germination through non-linear regression modeling (Table 3.1 & Appendix 3). As analyses 

were done separately for each temperature and pathogen, comparisons of the rate of 

germination and intercepts are only descriptive. The rate of germination increased from 10 to 

20°C and then declined towards 30°C for both pathogens. The intercepts were lowest at 10°C 

and highest at 25°C for both pathogens.  

Table 3.1. Rate parameter estimates and intercepts generated through non-linear regression 

analysis using the Gompertz model to describe conidial germination of Ascochyta pisi isolate 

AP6 and Peyronellaea pinodes isolate MP25 in response to incubation periods of 0, 2, 4, 6, 8, 

10 and 12 h at temperatures of 10 to 30°C.  The analyses are based on data from 2 repeats of the 

experiment. 

 Ascochyta pisi Peyronellaea pinodes 

Temperature 

(°C) 

Intercept Rate 

parameter 

Intercept Rate 

parameter 

10 0.000809 0.1401 0.00105 0.1510 

15 0.00666 0.1570 0.00398 0.1895 

20 0.00139 0.2210     0.00408 0.2956 

25 0.0196 0.1533 0.0218 0.2230 

30 0.0127        0.1281     0.0171 0.2292 
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3.4.2 Disease severity on inoculated plants 

Disease severity was examined at temperatures of 10, 15, 20, 25 and 30˚C on pea plants 

inoculated with spore suspensions. Disease progressed at all temperatures for both A. pisi and 

P. pinodes with increasing wetness periods. Disease severity progressed similarly in both 

repeats, so only combined data analyses are presented. Results from single repeats are presented 

in Appendices 4 and 5. As an initial step, the effects of temperature and leaf wetness were 

explored for each pathogen (Fig A4.2 of Appendix 4), followed by a comparison of the 

pathogens at the different temperatures (Fig 3.2). For both pathogens, disease severity in 

general increased with increasing leaf wetness periods, and temperature up to the optimum (Fig 

A4.2 of Appendix 4).  

Analysis of combined A. pisi severity data revealed that temperature, leaf wetness period and 

the leaf wetness period by temperature interaction had significant effects on percentage of 

disease severity caused by A. pisi (P < 0.0001). At 10˚C, disease severity did not change from 2 

to 8 h but increased after 10 h and remained at a similar level after 12 h of leaf wetness 

reaching a final mean severity level of 23%. At 15˚C disease severity did not change from 2 to 

4 h, significantly increased after 6 h, and was at a similar level after 8 h of leaf wetness. 

Disease severity at 10 and 12 h after inoculation was higher than that observed at 8 h with a 

mean level of 42% after 12 h of leaf wetness. At 20 and 25˚C disease severity did not 

change from 2 to 4 h, and then steadily increased further up to 12 h reaching average 

severity levels of 66 and 71%, respectively. At 30˚C, disease severity did not change from 2 to 

8 h, but increased after 10 h up to 12 h of leaf wetness, but only reached on average 20% after 

12 h. 

Combined data analysis for P. pinodes revealed that temperature, leaf wetness period and 

t h e  leaf wetness period by temperature interaction had significant effects on percentage of 

disease severity (P < 0.0001). At 10˚C, disease severity did not change from 2 to 6 h, but 

increased after 8h. Disease severity increased further after 10 h and then remained constant 

after 12 h of leaf wetness with a final mean of 26%. At 15˚C, disease severity did not change 

from 2 to 4 h, and then steadily increased further up to 12 h reaching 42%. At 20 and 25˚C, 

disease severity had significantly increased after each sampling point up to 12 h when disease 

severity means reached 85 and 83%, respectively. At 30˚C, disease severity increased after 6 h, 
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and remained constant up to 8 h. Disease severity increased further after 10 and 12 h of leaf 

wetness, but only reached 27%. 

Comparing both pathogens through repeated measures analyses revealed that at 10 and 15˚C 

pathogens (P > 0.1294) and the pathogens by leaf wetness period interaction (P > 0.2180) had 

no effects on disease severity. Leaf wetness period had significant effects on disease severity (P 

< 0.0001). At 20 and 25˚C, pathogens and leaf wetness periods (both P < 0.0001) had 

significant effects on disease severity, whereas the pathogens by leaf wetness period interaction 

was non-significant (P > 0.0598). At 20˚C, there was no difference in disease severity caused 

by A. pisi and P. pinodes up to 2 h of leaf wetness, but after 4 h, P. pinodes-infected plants had 

higher disease severity than those infected with A. pisi (Fig. 3.2). At 25˚C, there was no 

difference in disease severity caused by the pathogens up to 4 h of leaf wetness, whereas 

thereafter P. pinodes caused higher disease severity than A. pisi. At 30˚C, pathogens (P = 

0.0050) and the pathogens by leaf wetness period interaction (P < 0.0001) had significant 

effects on disease severity. Leaf wetness period (P = 0.4131) had no effect on disease severity. 

There were no significant differences in disease severity caused by A. pisi and P. pinodes up 

to 8 h, but P. pinodes induced higher disease severity at 10 and 12 h leaf wetness compared to 

A. pisi. 
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Fig 3.2. Effect of leaf wetness period on percentage of disease severity caused by Ascochyta 

pisi and Peyronellaea pinodes at 10 to 30˚C. Error bars represent standard errors of the means. 

* Indicates significant differences between A. pisi and P pinodes at P ≤ 0.05. 
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In linear regression analysis, the Gompertz model also best described disease severity at each 

temperature over a period of 12 h, and was subsequently used for describing the progression of 

disease through non-linear regression modeling (Table 3.2 & Appendix 6). As before, only 

descriptive comparisons are possible. The rate of disease increase and disease severity increased 

with temperature. The rate of disease increase increased from 10 to 20˚C and then declined as 

temperature increased to 30˚C for both pathogens. The intercepts were lowest at 10˚C and was 

highest at 25˚C for both pathogens. 

Table 3.2. Rate parameter estimates and intercepts generated through non-linear regression 

analysis using the Gompertz model to describe disease severity cause by Ascochyta pisi isolate 

AP6 and Peyronellaea pinodes isolate MP25 in response to leaf wetness periods of 0, 2, 4, 6, 8, 

10 and 12 h at temperatures from 10 to 30˚C. The analyses are based on data of 2 experiments.  

 Ascochyta pisi Peyronellaea pinodes 

Temperature 

(°C) 

Intercept Rate 

parameter 

Intercept Rate 

parameter 

10 0.000058 0.1493 0.000528 0.1536 

15 0.00561 0.1607 0.00116 0.1753 

20 0.00301 0.2285 0.00133 0.3005 

25 0.000776 0.2527 0.000800 0.3036 

30 0.000036        0.1539 0.00117 0.1360 

 

  



 

35 

 

3.5 Discussion 

In Saskatchewan, summers are usually warm and dry with daytime temperatures ranging from 

15°C in May to the mid 30°C in July and August and cool nights. To mimic the mean 

temperature observed in the field, temperatures of 10, 15, 20, 25 and 30˚C for day time (16 h) 

and a constant 10°C at night (8 h) were maintained in the incubators. Conidial germination and 

disease severity induced by A. pisi and P. pinodes on pea increased with increasing 

temperatures up to 20 to 25˚C. Overall, P. pinodes had higher conidial germination and induced 

higher disease severity compared to A. pisi. The differences in conidial germination between the 

two pathogens became obvious starting at 20˚C with more than 4 h incubation, and at 25 and 

30˚C P. pinodes had consistently higher germination after 2 h of incubation. The rates of 

increases in germination based on regression analyses were at least numerically also higher for 

P. pinodes than for A. pisi. Differences in disease severity caused by the two pathogens at 20 

and 25˚C were similar to those observed in conidial germination. At 30˚C P. pinodes only 

induced higher disease severity with 10 and 12 h of leaf wetness. The rate of disease increase 

based on regression analysis was also higher for P. pinodes up to 25˚C, but then declined 

sharply. From the results of this study, it appears that both pathogens have their temperature 

optimum between 20 and 25˚C. 

Earlier studies suggested optimum temperatures for conidial germination and disease 

development of 15 to 18˚C for P. pinodes (Wallen, 1965) and 20˚C (Bretag, 1991). Sattar 

(1934) also reported that optimum range for P. pinodes spore germination is 20-25˚C. Bretag 

(1991) reported that at lower temperature, longer leaf wetness period are needed by P. pinodes 

for spore germination and disease severity. He also reported that at 10˚C, a 12 h leaf wetness 

period was required for infection, but at 20˚C, 6 h leaf wetness period was sufficient. The 

incubation periods reported for initial disease development vary in length from 2 to 4 days for 

P. pinodes to 6 to 8 days for A. pisi (Schroeder, 1953). Periods of moisture of at least 4 to 8 h 

were required for the pathogens at the lowest and highest temperatures for the appearance of 

disease symptoms compared to 2 h for temperatures of 15 to 25˚C. Brewer (1960) reported that 

the temperature after infection also influences disease development. He observed increases in 

lesion size and the number of lesions caused by P. pinodes at 5 to 10˚C when compared with 15 

to 25˚C. Carter and Moller (1961) reported that spores of P. pinodes were able to survive 
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interrupted leaf wetness period and have the ability to infect when the conditions were 

favourable. Roger et al (1999a) observed that conidiospores of P. pinodes were able to survive 

dry periods of up to 21 days after inoculation. The effects of wet and dry periods depended on 

when the dry period occurs during the infection and appressorium formation and hyphal 

penetration was continued throughout the dry period. Infection remained asymptomatic until the 

leaves were re-wetted. 

Ascochyta pisi has become more prominent in Saskatchewan over the past 10 years. Results 

here confirm that while P. pinodes is the more aggressive pathogen, as previously reported, the 

temperature optimum of both pathogens is the same, hence rejecting the hypothesis that the 

prevalence of A. pisi in south and south-western Saskatchewan is due to different temperature 

and moisture optima for the two pathogens. However, results obtained under controlled 

conditions for conidial germination of, and disease severity caused by, A. pisi and P. pinodes on 

pea plants in response to wetness periods and temperature may not reflect the complex 

situations encountered in the field. For example, in the field pathogens are exposed to daily 

temperature fluctuations. Also, prolonged periods of wetness are not common in Saskatchewan, 

particularly in the southern and south-western regions. Thus, there is a need to investigate the 

effect of interrupted leaf wetness on A. pisi and P. pinodes. 
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4. Assessment of the role of seed infection with Ascochyta pisi on disease development in 

peas 

4.1 Introduction 

Ascochyta blight is caused by a complex of pathogens. Peyronellaea pinodes, Ascochyta pisi and 

Phoma medicaginis var pinodella are the major pathogens of this disease complex in Canada. 

Ascochyta blight is widespread in major pea growing areas around the world (Wallen, 1965). 

The transmission of Ascochyta spp. including A. pisi through seeds is one of the major survival 

mechanisms of these pathogens. Deneufbourg et al (1994, as reviewed in Moussart et al., 1998) 

showed that infected seed can act as carriers and transfer P. pinodes from diseased fields to 

uninfected fields of pea in the next growing season with varying levels of seed infection from 

year to year, depending on local climatic conditions. While the seeds germinate P. pinodes can 

infect the hypocotyl and epicotyl region of the seedlings, resulting in poor crop establishment 

(Wallen, 1965). Very little information is available on the importance of transmission of A. pisi 

from seed to stem and other parts of the plant. Under controlled condition, seed-to-seedling 

transmission was 100% for P. pinodes (Xue, 2000) and 40% for A. pisi (Maude, 1966) which led 

to the death of the seedlings, but it has been observed that seed inoculum of P. pinodes is not 

very destructive when compared to other sources of inoculum (Moussart et al., 1998). 

The impact of seed-borne inoculum is influenced by many factors including rainfall, 

temperature and seeding date (Bretag and Brouwer, 1995a; Bretag et al., 1995b). Areas with 

low rainfall often produce disease free seeds in the field (Bretag et al., 1989; Bathgate et al., 

1989). Studies on seed-borne inoculum of P. pinodes and disease development revealed a 

negative correlation indicating that seed infection appears to be more important as a cause of 

poor emergence than as a source of inoculum for aerial infection (Bretag and Brouwer, 1995a). 

Peyronellaea pinodes can survive on pea seed coats for several years (Bretag et al., 1995b). 

Surface sterilization of seed before sowing resulted in a reduction of seed infection by 60%, 

which indicated that P. pinodes was carried on the seed coat of pea (Bathgate et al., 1989). 
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Under suitable environmental conditions, and when the proportion of P. pinodes infected seed 

is more than 15% the pathogen can cause severe economic damage to the crop (Xue, 2000; 

Moussart et al., 1998). Seed-borne infection of other species of the Ascochyta blight complex 

such as Phoma spp. has not been identified as important in causing Ascochyta blight in the 

field. Wallen (1955) reported reduction of A. pisi on the seed when the harvested seed was 

stored for several years, but this is not practical. 

The recent increase in A. pisi occurrence on seeds from southern and south-western parts of 

Saskatchewan (Morrall et al., 2011; Warkentin et al., 2012) has warranted research to determine 

the economic importance of this pathogen for pea production in Canada. The objective of this 

study was to assess the role of seed infection in the epidemiology of A. pisi in order to 

understand the importance of seed-to-seedling transmission of this pathogen under field 

conditions, and to determine the nature of A. pisi seed borne infection. Two experiments were 

established: a) seed-to-seedling transmission experiments under field conditions, and b) a seed 

component study from naturally A. pisi infected pea seeds under laboratory condition. 

4.2 Materials and Methods 

4.2.1 Experimental design and assessments for field experiments 

CDC Patrick seeds, a green cotyledon field pea cultivar, were used for this experiment. 

Commercial seed lots with natural A. pisi seed infection levels of 0.5% and 14.5% and low or 

no P. pinodes infection, confirmed by a commercial seed testing lab, were obtained from a seed 

grower. Samples were combined to obtain A. pisi infection levels of 0.5, 5, 10 and 14.5%, 

which were confirmed through seed testing. The experiment were established on 25 May, 

2012 at Outlook; on 30 May, 2012, 10 May, 2013 and 12 May, 2014 at Saskatoon; and on 7 

May, 2013 and 11 May, 2014 at Milden where levels of A. pisi infection had been low in 

previous years. Experiments were designed as randomized complete blocks with 4 replicates; 

plots size was 1.2 x 3.7 m with a seeding density of 86 seeds per m². 

During the growing season, plant emergence was assessed by counting the number of seedlings 

per meter in an arbitrarily selected row of each plot. Disease severity caused by A. pisi and P. 

pinodes were assessed at the seedling stage, during flowering, at the podding stage and at 

maturity using the 0-10 scale described in Section 3.2.3.3. Five arbitrarily selected plants were 
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rated in each plot and data were transformed to percentage disease severity using the class mid 

points. The averages per plot were calculated for further data analyses. At harvest, seed yield 

were determined for each plot, and seed assessments of size, thousand seed weight (TSW), and 

disease seed testing were performed. 

For seed testing, harvested pea seeds were evaluated for A. pisi and P. pinodes infection by 

plating 100 seeds per plot onto Potato Dextrose Agar (PDA). Seeds were surface-sterilized by 

soaking in 0.6% sodium hypochlorite (NaOCl) for 3 min with constant agitation, rinsing with 

sterile distilled water for 2 min, and drying on a sterile distilled paper towel before being placed 

on PDA. Seeds were incubated at 20˚C for 7 days under continuous fluorescent light on the 

bench top. Each seed were assessed for infection and fungal growth was identified by spore 

evaluation under the microscope. 

4.2.2 Seed component study 

For this experiment, seeds of CDC Patrick naturally infected with 14.5% A. pisi infection 

were used. Assuming that seed coat staining was caused primarily by A. pisi infection, the 

seeds were visually sorted into four categories based on the amount of seed coat staining: 0% 

(clean seeds without any staining), 1 to 25%; 26 to 50%; 51 to 75%; 76 to 100% (Fig 4.1). 

Components of the infected seed were tested for infection with A. pisi. For each category, 

seven replicates of 50 seeds were soaked in sterile distilled water for 2 h. Seeds were 

dissected into seed coat, cotyledon and embryo. Seed components were surface-sterilized by 

soaking in 0.6% sodium hypochlorite (NaOCl) for 3 min with constant agitation, rinsing with 

sterile distilled water for 2 min, dried on a sterile distilled paper towel before being placed on 

PDA. Seeds were incubated at 20˚C for 7 days under continuous fluorescent light inside 

bench top incubators. Each plate was assessed for infection and fungal growth were 

identified to the species level with a compound microscope. 
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Fig 4.1. Visual categorization of pea seeds of cv. CDC Patrick into four categories based on 

seed coat staining due to Ascochyta pisi. 
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4.2.2 Data analysis 

All data were analyzed using the mixed model procedure of the SAS program (9.3 SAS 

Institute Inc., 2010). Prior to analysis, the data were tested for homogeneity of variance using 

the Levene’s test. Heterogeneous variances were modeled with the repeated statement in SAS 

as required. Data from the field experiment were analyzed for each location separately and also 

pooled for analysis to determine the effect of A. pisi seed infection on pea plants. Seed infection 

levels were considered fixed effects, whereas blocks, years and locations were considered 

random effects. 

For the seed component study, seed staining categories and seed components were considered 

fixed effects, whereas replications were considered random effects. Initially, other pathogens 

detected in seed samples were used as covariates. Final modeling of A. pisi data was done with 

the significant covariate(s) and means were separated by Fisher’s least significant difference test. 

4.3 Results 

4.3.1 Seedling emergence in field experiments 

Data analysis revealed that except at Saskatoon, 2012 and for the combined data analysis, seed 

infection levels with A. pisi had no effect on the emergence of the seedlings (P > 0.3). At 

Saskatoon, 2012 and when all data were pooled, seed infection levels of 10 and 14.5% 

resulted in reduced emergence compared to 0.5% seed infection (Fig 4.2). 
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Fig 4.2 Seedling emergence of cv. CDC Patrick field pea from seed with different levels of 

infection with Ascochyta pisi from Outlook, Milden and Saskatoon in 2012, 2013 and 2014. 
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4.3.2 Disease severity  

Disease severity caused by A. pisi and P. pinodes was very low at Outlook, Milden and 

Saskatoon in all six location- years. Ascochyta pisi lesions and fruiting bodies were seen on 

the older leaves at the end of the growing season. With the exception of Saskatoon, 2013, 

seed infection with A. pisi had no effect on A. pisi severity on plants at maturity, and pooling 

of data did not change that (P > 0.8; Fig 4.3). At Saskatoon,  2013, seed infection levels had 

a significant effect on A. pisi severity on the plants (P = 0.0372). Plots seeded with a 14.5% 

seed infection level had higher A. pisi disease severity on plants at maturity compared to those 

with 0.5 and 5% seed infection. As expected, seed infection levels had no effect on disease 

severity of P. pinodes (P > 0.1; Fig 4.3). 
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Fig 4.3 Ascochyta blight severity caused by Ascochyta pisi and Peyronellaea pinodes on pea 

plants cv. CDC Patrick developing from seed with different levels of infection with Ascochyta 

pisi from Outlook, Milden and Saskatoon in 2012, 2013 and 2014. 
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4.3.3 Yield  

Seed yield at Saskatoon, 2014 were higher than at Milden, 2014, but were similar at both 

locations in 2012 and 2013. Analysis of 2012, 2013 and 2014 data, irrespective of whether they 

were analyzed separately or pooled, revealed that seed infection levels had no effect on yield 

(P > 0.5; Fig 4.4). 
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Fig 4.4 Seed yields of pea cultivar CDC Patrick grown from seeds with different levels of 

Ascochyta pisi infection from Outlook, Milden and Saskatoon in 2012, 2013 and 2014. 
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4.3.4 Seed infection of harvested seed 

Seed testing of harvested CDC Patrick seeds revealed infections with A. pisi, P. pinodes, 

Colletotrichum spp, Fusarium spp., Alternaria spp., Epicoccum spp., unidentified green 

moulds and bacteria. Only A. pisi and P. pinodes infection data were analyzed. Individual 

site-year analyses revealed that A. pisi seed infection levels of 0.5, 5, 10 and 14.5% had no 

effect on infection levels with A. pisi on harvested seeds (P > 0.1). Seed infection after 

harvest with P. pinodes was higher at Milden 2014 than other sites. No differences in P. 

pinodes seed infection of seeds harvested were observed at Outlook, Milden and Saskatoon, 

2012, 2013 and 2014 (P > 0.2). Pooled data from 2012, 2013 and 2014 revealed that seed 

infection levels had significant effects on infection levels with A. pisi from harvested seeds (P 

< 0.0001; Fig 4.5). Seed infection levels of 10 and 14.5% used for planting resulted in higher 

A. pisi infection from harvested seeds compared to 0.5% seed infection. There was also a 

significant difference in P. pinodes seed infection of harvested seeds (P < 0.0001). 
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Fig 4.5 Incidence of seed infection with A. pisi and P. pinodes of seeds harvested from CDC 

Patrick pea plots seeded with different levels of infection with Ascochyta pisi from Outlook, 

Milden and Saskatoon in 2012, 2013 and 2014. 
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4.3.5 Seed component study 

Results from the seed component study revealed that components without staining were not 

infected with A. pisi. Seeds of all other four seed staining categories revealed infection of the 

three seed components with A. pisi. In addition to A. pisi, other organisms, such as 

Colletotrichum spp, Fusarium spp, Alternaria spp, Epicoccum spp, unidentified green moulds 

and bacteria were also identified on the stained seed components (Fig 4.6). Only Epicoccum spp 

had a significant effect on the model as a co-variate (P = 0.0212) and were included in the 

model. Analysis of A. pisi infection data showed that seed staining category, seed components, 

and the seed staining category by seed component interaction (P < 0.0001) had significant 

effects on A. pisi seed infection. Seed staining categories 51-75% and 76-100 % had higher 

seed coat infection compared to that in staining category of 26-50%.  Seeds staining categories 

1-25% and 76-100 % had higher cotyledon infection compared to staining categories of 26-50% 

and 51-75%. The analysis showed that there was no difference in embryo infection among the 

seed staining categories (Fig 4.7). 

 

 

Fig 4.6 Infection levels of seed with Ascochyta pisi (mean of 3 seed components) on seed coat, 

cotyledon and embryo from CDC Patrick field pea seeds naturally infected with Ascochyta pisi 

and separated into four seed coat staining categories 
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Fig 4.7 Percentage of seed infected with Ascochyta pisi on the seed coat, cotyledon and 

embryo from CDC Patrick field pea seeds naturally infected with Ascochyta pisi and separated 

into four seed coat staining categories. 

4.4.4 Discussion 

The aim of this study was to determine the importance of seed-borne inoculum of A. pisi in seed-

to-seedling transmission by using naturally infected field pea seed. Field experiments revealed 

that seedling emergence from seeds with 10 % or higher A. pisi infection was lower than from 

seeds with 0.5 or 5 % infection. However, this was of minor importance in the epidemiology of 

the disease under field conditions considering that final A. pisi severity was low. Similar to a 

study of P. pinodes (Moussart et al., 1998), no visible symptoms caused by A. pisi appeared on 

the aerial parts of the seedlings. At physiological maturity, however, older leaves were visibly 

infected and had fruiting bodies of both A. pisi and P. pinodes. Overall, disease severity at  

harvest in plots seeded with seeds that had 0.5% infection levels with A. pisi was not different 

from those in plots seeded with 14.5% seed infection, which suggests that the disease did not 

progress from seed, or contributed to infection of aerial parts of the plants. This also agrees with 

the study conducted on P. pinodes, which showed that seed infection can have negative effects 

on seedling emergence and vigor, but seed-to-seedling transmission of these pathogens in the 

field is low (Moussart et al., 1998). 
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A seed component study conducted on P. pinodes showed that in seeds with less than 25% seed 

coat staining, P. pinodes was only detected within the tissues of the seed coat, and when the 

infection reached 25% the pathogen could be found in all seed components (Moussart et al., 

1998). However, A. pisi was present in all components of the seed, regardless of the staining 

categories. When compared to the study conducted on P. pinodes, the field study and the seed 

component study on A. pisi had lower seed infection (Moussart et al., 1998). Unlike P. pinodes, 

A. pisi did not have visible fruiting bodies on the seed coat which makes it difficult to identify it 

on the seed. 

At harvest, there was no difference in yield among plots planted with seeds that had different 

levels of seed infection. In spite of only low to moderate A. pisi symptoms on the pods and top 

nodes at physiological maturity of the plants, seed infection with A. pisi of more than 3% were 

observed. If harvested seed is used for seeding a crop, the Saskatchewan Pulse Growers and the 

Government of Saskatchewan recommends a threshold level of 10% of seed infection with 

Ascochyta blight pathogens, as long as the percentage of germination is high and seedlings have 

good vigor (Saskatchewan Pulse Growers, 2016). Diseased seeds are often shrunken or 

discolored, but from the seed component studies, it was also evident that visual categorization of 

seeds based on seed staining was a challenge, because sometimes seeds might be shrunken or 

discolored in the absence of A. pisi infection or there were other pathogens on the seeds. 

Cleaners and color sorters can be used to remove some diseased or damaged seed to improve the 

seed quality for planting (Saskatchewan Ministry of Agriculture, 2015). 

Wallen (1948) showed that the percentage of pea seed infected with A. pisi was 60% lower after 

three years of storage compared to when it was fresh; suggesting the viability of A. pisi on seed 

is greatly reduced over a period of three years. Experiments here indicate that 14.5% seed 

infection with A. pisi gave rise to less than 10 % infection from the harvested seeds, which is the 

threshold level for Ascochyta blight pathogen. Although there was no seed-to-seedling 

transmission or reduction in yield as a result of such seed infection levels, there was a reduction 

in emergence with the treatments seeded with 10 and 14.5% infection level. Maude (1966) 

suggested that infected seeds can be treated with captan or thiram at a concentration of 0.2% for 

24 h before sowing at 30˚C to control P. pinodes and A. pisi infection in seeds. Maude (1966) 

showed that chemical fungicides could be applied through slurries, instead of a seed treatment as 
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a powder. Better penetration of captan and thiram into seeds can be achieved by soaking seeds in 

the fungicides suspension (Maude, 1966). Thiram and iprodine were shown to control A. pisi by 

controlling the pathogen’s growth, resulting in increased emergence of 28 % (Wallen et al., 

1966). However, due to the relatively low economic impact of A. pisi, seed treatment does not 

appear to be warranted here. 
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5. Yield loss caused by Ascochyta pisi in four field pea cultivars 

5.1 Introduction 

Field pea is one of the major crops grown in western Canada. Pea production in Canada has 

gradually increased to 3.8 million tonnes by 2014, but decreased to 3.2 million tonnes in 2015 

due to a 7% reduction in harvested area compared to 2014 (Canadian Grain Commission, 2015). 

Ascochyta blight of pea is widespread throughout the world. Peyronellaea pinodes, one of 

several fungal species that can cause Ascochyta blight, is considered to cause the most economic 

damage worldwide (Bretag and Ward 2001; Lawyer, 1984), and can cause yield loss of 50-75 % 

under favorable conditions (Wallen, 1974; Xue et al., 1997). In Canada, P. pinodes has caused 

yield loss up to 25-30% by affecting leaves, stems and also pod weight (Wallen, 1965). Studies 

to develop a crop model by Le May et al (2005) for spring pea cultivation in France showed that 

all cultivars used, despite differences in their canopy structure, were affected by Ascochyta 

blight, which caused a reduction in photosynthesis resulting in growth and yield reductions and 

early senescence. 

Most research on Ascochyta blight of pea since 1927 has focused on P. pinodes. In Canada, field 

samples collected from 1939 to 1950 identified that most of the Ascochyta blight was spread 

through seed (Skolko et al., 1954). Severe yield losses were noted in Alberta, Manitoba and 

Saskatchewan. Surveys conducted during the early 1970's showed P. pinodes was the major 

cause of Ascochyta blight in Canada (Xue and Burnett, 1994). Infection of nodes during the 

flowering stage leads to a reduction in the number of pods and mean seed weight of harvested 

seeds (Garry et al., 1996; Xue et al., 1997). Yield loss due to P. pinodes was 34 % when 

infections occurred at the seed filling stage, however, infection after the seed filling stage 

reduced seed weight by 40% (Garry et al., 1998; Xue et al., 1997). Control of Ascochyta blight is 

largely dependent on fungicide treatment and cultural practices. Fungicide applications of 

mancozeb, chlorothalonil, benomyl, have been used to control Ascochyta blight and increase 

yield (Warkentin et al., 1996, 2000). However, fungicide application timing and frequency need 

to be optimized for different fields in different regions. In France, chemical sprays currently 
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manage Ascochyta blight caused by P. pinodes as a preventive and are applied on a systematic 

schedule. However, fungicide application is questionable due to various factors such as high 

fungicide cost, variable yield potential of the cultivars, early harvest and late onset of disease in 

the field. 

Much less is known about the relationship between disease severity and yield losses caused by A. 

pisi. Wallen (1964) found that greater loss was caused by P. pinodes and Phoma medicaginis 

var. pinodella than A. pisi. He also found that plots seeded with seeds infected with P. pinodes 

and Ph. medicaginis var. pinodella had foot rot symptom, but seeds infected with A. pisi did not. 

Similar results were obtained in research conducted in 1972, when yield loss up to 50% was 

recorded in plots inoculated with P. pinodes and Ph. medicaginis var. pinodella, whereas less 

yield loss was observed in plots inoculated with A. pisi (Wallen, 1974). Premature defoliation 

and high infection was also observed in the plots inoculated with P. pinodes and Ph. medicaginis 

var. pinodella, when compared to A. pisi (Wallen, 1974). 

An understanding of the relationship between disease severity and yield loss is essential for 

implementing a disease management strategy. The aim of the present study was to examine the 

effect of A. pisi on yield components under field conditions, and to identify the relationship 

between disease severity and yield loss in trials using four different pea cultivars. Fungicides 

were applied to keep the disease levels in control plots as low as possible. 

5.2 Materials and Methods 

5.2.1 Experimental design and agronomic management 

For this study, the AAFC Swift Current Research Center and a field at Stewart Valley were 

chosen in 2012 and 2013 where there had been a high incidence of A. pisi in the past. In 2014, 

experiments were established under natural conditions at Swift Current and under irrigation at 

Saskatoon. 

The experiment was designed as a split plot with four replications where the main plots were 

treated twice in 2012, 2013 at the 5-node to early flowering stages, and three times in 2014 at the 

5-node, early flowering and pod filling stages with fungicides pyraclostrobin (Headline), 

chlorothalonil (Bravo), or pyraclostrobin/ boscalid (Headline Duo) or were not sprayed to create 

plots with different levels of A. pisi infection (Appendix 8). Sub-plot treatments were four 
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cultivars of which two were considered more susceptible to A. pisi (Cooper and SW Midas) and 

two to have partial resistance to A. pisi (CDC Bronco and CDC Golden), based on previous data, 

with a subplot size of 2 x 6 m. The experiment was established on 11 May, 2012, 7 May, 2013 

and 5 May, 2014 at Swift Current, on 9 May, 2012 and 8 May, 2013, and on 10 May, 2014 at 

Stewart Valley. At Saskatoon, 2014, pyraclostrobin/boscalid (Headline Duo) and chlorothalonil 

(Bravo) were sprayed on 17 June, 3 July, and 17 July, 2014 (podding stage) respectively. Plots 

were irrigated immediately after inoculum was spread and as needed. Information on agronomic 

management and the timings of fungicide application at each site-year and the rate of active 

ingredient used during the field season is given in Appendix 8. 

5.2.2 Preparation of artificial inoculum 

In 2014 at Saskatoon, plots were artificially inoculated with A. pisi seed inoculum. Faba beans 

were soaked overnight in cold water, then autoclaved in Nalgene bottles for 2 cycles with a 

cooling period between cycles. Once cooled, faba beans were inoculated with a spore suspension 

of 2 x 105 spores ml-1 of A. pisi prepared as previously described. Nalgene bottles were placed 

under fluorescent lamps and shaken every third day to ensure even growth of the A. pisi 

inoculum on seeds. After 1 to 2 weeks, beans were covered with mycelium and were dried inside 

a bio-safety cabinet before storage under cool and dry conditions. The seeds were roughly 

ground before being spread in the field at approximately 65 g m2 on 15 June and 13 July, 2014. 

All plots were inoculated with A. pisi including the unsprayed plots. 

5.2.3 Data collection and statistical analysis 

Severity of A. pisi and P. pinodes were scored at the flowering, podding stage and at maturity of 

pea plants, using the disease rating scale of 0-10 described in Section 3.2.3.3. Seed quality and 

infection levels were assessed at the end of the season through seed testing as previously 

described (Section 4.1.1.4). The experiments were harvested on 13 August, 2012, 19 August, 

2013, and 2 September, 2014 at Swift Current, on 16 August, 2012 and 19 August, 2013 at 

Stewart Valley, and on 21 August, 2014 at Saskatoon. 

Statistical analyses were carried out for individual years and locations and the data were also 

pooled for analysis to assess yield loss caused by A. pisi. Data were tested for homogeneity of 

variance using the Levene’s test. Heterogeneous variances were modeled with the repeated 
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statement in SAS as required. Data were analyzed using the mixed model procedure of the SAS 

program (9.3 SAS Institute Inc., 2010). Foliar fungicide treatments and pea cultivars were 

considered fixed effects. Block and block by fungicide effects were considered as random effects 

for data from each location and year, whereas for pooled data location-year, replication nested in 

location-year and replication by fungicide treatments nested in location-year were considered 

random effects. At Swift Current 2014, there was irregular germination of seeds, so data analysis 

was done using germination percentage as a covariate in the analysis. The result revealed that the 

co-variate emergence had no effect, so was dropped from the model. 

5.3 Results 

5.3.1 Disease severity 

Disease severity caused by A. pisi and P. pinodes were very low to moderate in all three years 

ranging between 5 and 45 % (Fig 5.1), primarily because of warm and relatively dry weather in 

the second half of each growing season (Appendix 7). Except for Swift Current 2013, Saskatoon 

2014 and the pooled data from all three years, fungicide treatments had no significant effects on 

the A. pisi severity on the plants (P > 0.2). At Swift Current 2013 (P = 0.0287), Saskatoon 2014 

(P = 0.0075) and pooled data from all three years (P = 0.0004), the fungicide treatment had a 

significant effect on the A. pisi severity on plants; unsprayed treatments had higher A. pisi 

severity compared to fungicide treatments. Except for Swift Current 2013 (P < 0.0001), cultivars 

had no significant effect on the A. pisi severity on the plants at any location (P > 0.3). At Swift 

Current 2013, CDC Bronco had higher A. pisi severity compared to CDC Golden, Cooper and 

SW Midas. Except for Swift Current 2013 (P < 0.0001) and on the pooled data (P = 0.0113), the 

fungicide by cultivar interaction was not significant in any of the experiments (P > 0.4). In Swift 

Current 2013, unsprayed treatments of Cooper and CDC Bronco had higher disease when 

compared to fungicide treatments of Cooper and CDC Bronco, but there was no difference 

between unsprayed and fungicide treatments of CDC Golden and SW Midas. In pooled data, 

Cooper, SW Midas CDC Golden and CDC Bronco unsprayed treatments had higher disease 

severity when compared to fungicide treatments of Cooper, SW Midas CDC Golden and CDC 

Bronco (Fig 5.1). 
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Fig 5.1 Disease severity caused by A. pisi in plots treated with fungicides to create low diseased 

plots, and unsprayed plots to create highly diseased plots of pea cv. CDC Bronco, Cooper, CDC 

Golden, SW Midas under natural inoculum conditions at Stewart Valley 2012, 2013, 2014 and 

Swift Current 2012, 2013 and 2014, and in an inoculated experiment at Saskatoon in 2014. 
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Except at Stewart Valley 2012 and for the pooled data (P = 0.0156), fungicide treatments had no 

significant effects on the P. pinodes disease severity on the plants (P > 0.2). At Stewart Valley 

2012 and pooled data, unsprayed treatments had higher disease severity when compared to 

fungicide treatments. Except for Swift Current 2014, cultivars had significant effects on the P. 

pinodes severity (Swift Current 2012: P = 0.0002; Stewart Valley 2012: P = 0.0356; Swift 

Current 2013: P = 0.0016; Stewart Valley 2013: P = 0.0045; Saskatoon 2014: P = 0.0042; Pooled 

data: P < 0.0001). In Swift Current 2012, 2013 and Stewart Valley 2012 CDC Golden and SW 

Midas had higher P. pinodes severity compared to CDC Bronco and Cooper, whereas at 

Saskatoon 2014, CDC Golden had higher P. pinodes disease severity compared to CDC Bronco, 

Cooper and SW Midas. Pooled data analysis showed that SW Midas and CDC Golden had 

higher disease severity compared to Cooper and CDC Bronco. At Stewart Valley 2013, CDC 

Bronco had high P. pinodes severity when compared to Cooper and SW Midas. Pooled analysis 

done for P. pinodes showed that the fungicide by cultivar interaction (P = 0.8359) had no 

significant effect on P. pinodes severity (Fig A8.1). 

 

5.3.2 Yield  

Except for Swift Current 2012 and Saskatoon 2014 (P < 0.4), cultivars had significant effects on 

yield (Stewart Valley 2012: P = < 0.0001; Swift Current 2013: P = 0.0234; Stewart Valley 2013: 

P = 0.0031; Swift Current 2014: P < 0.0001; Pooled data: P = 0.0134). SW Midas had 

significantly lower yield compared to that of Cooper, CDC Golden and CDC Bronco at Stewart 

Valley 2013 and Swift Current 2014, whereas at Swift Current 2013 CDC Golden had lower 

yield compared to CDC Bronco (Fig 5.2). At all locations and for the pooled data fungicide 

treatments and the fungicide by cultivar interaction had no significant effect on yield (P > 0.2) 

(Fig 5.2). 
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Fig 5.2 Seed yield from plots treated with fungicides to create low diseased plots, and unsprayed 

plots to create highly diseased plots of pea cv. CDC Bronco, Cooper, CDC Golden, SW Midas 

under natural inoculum conditions at Swift Current 2012, 2013, 2014 and at Stewart Valley 2013 

and in an A. pisi inoculated experiment at Saskatoon in 2014. 
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5.3.3 Seed Infection of harvested seeds 

In 2012, disease severities caused by A. pisi on plants were extremely low, so testing for seed 

infection was not carried out. In other years, the incidence of seed infection ranged from 5 to 

13%. Seed infection levels of A. pisi and P. pinodes from the harvested seeds from 2013 were 

very low. Cultivars, fungicide treatments and fungicide by cultivar interaction had no significant 

effect on the seed infection with A. pisi (P > 0.2). At Saskatoon 2014, Swift Current 2014 and for 

pooled data (Fig 5.3) from 2013 and 2014 fungicide treatments had a significant effect on the A. 

pisi seed infection (P < 0.03). The unsprayed treatments had higher A. pisi seed infection from 

the harvested seeds when compared with fungicide-treatments. Cultivar or fungicide by cultivar 

interaction had no effect on A. pisi seed infection. 
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Fig 5.3 Incidence of seed infection with A. pisi of seeds harvested from plots treated with 

fungicides to create low diseased plots, and unsprayed plots to create highly diseased plots of pea 

cv. CDC Bronco, Cooper, CDC Golden, and SW Midas under natural inoculum conditions at 

Swift Current 2012, 2013, 2014 and at Stewart Valley 2013 and in an A. pisi inoculated 

experiment at Saskatoon in 2014. 
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5.4 Discussion 

Ascochyta pisi has been reported on pea in Saskatchewan since the early 1960’s, but the 

introduction of resistant varieties during that period controlled Ascochyta leaf spot caused by this 

pathogen (Lyall and Wallen, 1958). No quantification of yield loss due to this pathogen has been 

done in recent decades; therefore, this study were conducted to determine the relationship of A. 

pisi symptom severity and yield losses using two susceptible and two partially resistant cultivars. 

There was no difference in yield between fungicide treatments and non-treated controls. This 

may have been because disease severity was very low in all three years. Indeed, results from the 

2012 and 2013 showed that there were no differences in A. pisi severity between the fungicide 

treated and non-treated plots or among cultivars. In both years, fungicides were applied at the 5-

node to early flowering stages, at which time the canopy were not yet closed facilitating spray 

penetration, but not disease development. It is possible that this was too early, which may 

explain the lack of fungicide treatment effects in those years. In 2014 at Saskatoon, fungicide 

treatments were applied during the 5-node stage, early flowering and pod setting stages resulted 

in a significant reduction of disease under irrigation with artificial inoculation of A. pisi. 

The level of P. pinodes infection on the plants can vary according to the micro-climate inside the 

canopy or the inoculum concentration (Roger et al., 1998). He also reported that lower leaves on 

the plant were heavily infected due to the longer wetness period, which creates a more 

favourable environment for these pathogens than on the upper leaves. Gent (1988) reported that 

crops watered by overhead sprinklers had high A. pisi infection because the foliage remained wet 

for long periods. In an experiment conducted in 2014 at Saskatoon it was observed that artificial 

grain inoculation and with overhead sprinkler irrigation did not increase the disease level in the 

field. Despite low disease severity in the field, A. pisi was isolated from harvested seed. Seed 

from the fungicide treatments in 2014 and for pooled data from 2013 and 2014 had lower seed 

infection than seed from the unsprayed treatment, although fungicides had no effect on A. pisi 

severity on the plants at all sites and in either years. Therefore, the mechanism of spread to seeds 

is unclear considering that plants had low A. pisi symptoms. Unlike for P. pinodes, sexual 

fruiting structures that could release airborne ascospores of A. pisi have only been observed 

under controlled condition. Nevertheless observations here indicate that late season ascospore 

showers may be the cause of seed infection. Seed infection data indicate that an application of a 
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foliar fungicide can reduce A. pisi seed infection. However, whether a fungicide treatment to 

protect seed is economical is questionable considering that experiments on seed-to-seedling 

transmission showed that although seed infection of A. pisi can reduce seedling emergence, this 

has no effect on disease severity on plants or on seed yields. 

It was previously shown that the impact of fungicide to control P. pinodes on seed yield is less 

consistent than its effect on disease severity (Gossen et al., 2001). Experiments conducted to 

evaluate the effect of different races of A. pisi on yield showed that Race 3 and 4 reduced yield 

and plots inoculated with the combined races reduced yield by 11%, but only in cases of very 

severe infection with A. pisi (Wallen, 1964). Wallen (1964) reported that spraying or dusting pea 

crops with fungicides had little value in controlling A. pisi. He also found that one antibiotic and 

cycloheximide controlled A. pisi, but only at high concentrations, which resulted in phytotoxic 

effects. From this experiment he also observed that only a high incidence of A. pisi seed infection 

resulted in yield loss whereas much lower seed infection of P. pinodes and A. pinodella was 

sufficient to cause yield loss in pea. From my experiment, three fungicide applications had a 

positive effect on pea seed infection with A. pisi, but due to the relatively low economic impact 

of A. pisi, application of a fungicide for disease control was likely not cost-effective. 
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6. Genetic control of Ascochyta pisi resistance 

6.1 Introduction 

Pea is an important source of vegetable protein and plays a major role in fixing atmospheric 

nitrogen in the soil. Pea production in Canada began to increase in 1985 due to the opening of 

the European market and is now widely cultivated in Saskatchewan, Alberta and Manitoba. 

(Slinkard, 1994). The average yield of pea in Saskatchewan is 2500 kg per ha. Pea yields are 

unstable due to adverse effects of biotic and abiotic stresses. One of the greatest biotic stresses 

reducing potential yield is Ascochyta blight, caused by a complex of pathogens that is known to 

cause yield losses 50% to 75% in severely affected fields (Wallen, 1974; Xue et al., 1997). 

Progress in pea resistance breeding to the Ascochyta blight pathogens has been slow due to the 

complex nature of resistance (Skolko et al., 1954) and the suggestion that resistance to foliar, 

stem, seed and root infection appears to be controlled by different genes for each pathogen 

(Clulow et al., 1992). Resistance to A. pisi was found to be governed by three dominant genes, 

two complementary genes and a single dominant and recessive gene (Wallen and Jeun, 1968; 

Darby et al., 1985), while no genes have been identified conveying good resistance to P. pinodes. 

Another difficulty in breeding resistance to Ascochyta blight pathogens is the potential presence 

of physiological races for each species. In Canada, at least four distinct races of A. pisi were 

identified, each with a geographically limited distribution (Jones, 1927). Studies of P. pinodes 

suggests that pathotypes exist among P. pinodes in Canada (Xue et al., 1998) and Germany 

(Nasir and Hoppe, 1991), but in Western Australia (Wroth, 1998b) and France (Onfroy et al., 

1999) no pathotypic groups among isolates are identified. 

In Canada (Xue and Warkentin, 2001) and the United Kingdom (Clulow et al., 1991), potential 

resistance sources were found to convey moderate resistance to P. pinodes. After the 

introduction of varieties with resistance to leaf and pod spot caused by A. pisi, this disease was 

rarely observed in Canada (Wallen and Jeun, 1968), until the recent report in 2012 (Warkentin et 

al., 2012). Resistance identified in pea against P. pinodes so far provides only partial resistance. 

The heritability and the expression of resistance to P. pinodes can be affected by temperature, the 
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amount of inoculum in the field and also depends on the age of the plants (Zhang et al., 2006). 

Quantitative Trait Loci (QTL) for developing resistant genotypes are increasingly used in 

breeding programs. 

Thirteen QTLs have been identified for resistance to P. pinodes, which are scattered across the 

seven linkage groups of pea (Timmerman-Vaughan et al. 2004). QTLs for resistance to P. 

pinodes pathogens were co-located with those are associated with plant height and flowering 

date (Timmerman-Vaughan et al., 2002; 2004). Six QTLs for resistance to P. pinodes were 

identified at the seedling stage under controlled conditions and ten QTLs for resistance at the 

adult stage under field conditions were identified (Prioul et al., 2004). Study of these QTLs to 

improve resistance has increased knowledge of the genetic architecture of partial resistance in 

pea to P. pinodes, but the exact genes controlling resistance are still unknown. At present, there 

are breeding efforts for P. pinodes, but the recent re-emergence of A. pisi has warranted the need 

to increase the genetic resistance to A. pisi. 

The aim of this study was to determine the genetic control of A. pisi by testing the Recombinant 

Inbred Line (RIL) population PR-10 developed by single seed descent method from a cross 

between the susceptible variety Cooper and the partially resistant variety CDC Bronco. The 

susceptibility of Cooper and partial resistance in CDC Bronco had previously been determined in 

greenhouse experiments when screening 18 pea cultivars commonly grown in Saskatchewan for 

resistance to this A. pisi. Disease severity reached 6% on CDC Bronco and 29% on Cooper 

(Banniza et al., 2007).  

6.2 Materials and Methods 

6.2.1 Experimental design and agronomic management 

The experiments were seeded at the AAFC Swift Current Research Center and at Stewart Valley 

in 2012 and 2013, where there had been a high incidence of A. pisi in the past and at Saskatoon 

under irrigation and at the AAFC Swift Current Research Center in 2014. Due to limitations in 

space, only the 29 most resistant and 29 most susceptible RILs and the parents were selected for 

evaluation in this field trial. The RILs in the F7 generation had been selected based on their 

response to A. pisi in a replicated greenhouse experiment. The field experiments were conducted 

using an RCBD with three replications and were established on 25 April, 2012, 8 May, 2013 and 
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1 May, 2014 at Swift Current, on 9 May, 2013 at Stewart Valley and on 10 May, 2014 at 

Saskatoon. Agronomic data collected during the field seasons is listed in Appendix 9. Inoculum 

of A. pisi was prepared as described above, and was spread in the field on 15 June, 2014 and 13 

July, 2014 at Saskatoon, and 20 June, 2014 at Swift Current (Appendix 9).  

6.2.2 Plant assessment and statistical analyses 

Plants were assessed for severity of A. pisi and P. pinodes infection at the flowering stage and at 

maturity using the 0-10 scale as previously described. All statistical analyses were carried out 

using SAS (SAS 9.3 Institute Inc., 2010). The data from each location were tested for 

homogeneity of variance. Heterogeneous variances were modelled with the repeated statement as 

required. Means of disease severity calculated from five plants per plot and yield from entire 

plots were analyzed with the mixed model procedure where RILs were considered fixed effects, 

whereas block was considered a random effect. For pooled data, location-year and block nested 

in location-year were considered random effects. Linear contrast analysis was done to compare 

responses of the parents (CDC Bronco and Cooper) to A. pisi.  

6.3 Results 

6.3.1 Disease Severity 

Disease levels on pea were moderately high in Swift Current 2012, but low in 2013 and 2014. 

The lowest A. pisi level of 5% was observed in cv. Cooper peas at Swift Current and Stewart 

Valley 2013 and the highest level of 45 % in Cooper at Swift Current 2012 (Fig 6.1). Except for 

Swift Current 2014 (P < 0.0001), RILs did not differ significantly in A. pisi severity (P > 0.3). 

For all three years, locations and for pooled data contrast analysis revealed no difference 

between the parents in A. pisi severity (P > 0.3). Except for pooled data analysis (P = 0.0023), 

RILs also had no significant effect on P. pinodes severity (P > 0.2). Contrast analysis between 

the parents showed that they did not differ in P. pinodes severity (P > 0.1). 
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Fig 6.1. Disease severity caused by Ascochyta pisi and Peyronellaea pinodes on PR-10 RILs 

developed from a cross of pea cv. CDC Bronco and Cooper tested under natural condition at 

Swift Current and Stewart Valley in 2012 and 2013, and under irrigation at Saskatoon and 

natural condition in Swift Current 2014.  
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6.3.2 Yield 

There was variability in seed yields among the RILs at Swift Current 2013 (P < 0.0001), Stewart 

Valley 2013 (P < 0.0001), Saskatoon 2014 (P = 0.0142) and Swift Current 2014 (P < 0.0001) 

that appeared to be unrelated to A. pisi and P. pinodes severity. Contrast analysis revealed that 

the parents differed in yield (Swift Current 2012: P = < 0.0001; Stewart Valley 2013: P < 0.0001; 

Saskatoon 2014: P = 0.0043; Swift Current 2014: P = 0.0338) and CDC Bronco yielded more 

than Cooper, except for Swift Current 2013 and the pooled data (P < 0.2). However, pooled data 

analysis shows that RILs had no significant effect on yield (P > 0.5).  
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Fig 6.2 Seed yields (averaged across locations and years) for PR-10 RILs developed from a cross 

of pea cv. CDC Bronco and Cooper tested under natural condition at Swift Current and Stewart 

Valley in 2012, 2013 and under irrigation at Saskatoon and natural condition in Swift Current 

2014.  
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6.4 Discussion 

The inheritance of resistance to Ascochyta spp. in pea is poorly understood. The introduction of 

varieties resistant to A. pisi reduced the incidence of A. pisi blight in Canada (Wallen and Jeun, 

1968). Screening of RIL population PR-10 developed from a cross between the susceptible 

variety Cooper and the partially resistant variety CDC Bronco showed there was not enough 

disease caused by A. pisi to differentiate between the parents and RILs. Disease severity on RILs 

was generally consistently low over three years, even with artificial inoculation of A. pisi under 

irrigated conditions at Saskatoon in 2014. There were differences in yield among the RILs, 

however these may not have been due to disease severity caused by A. pisi as the disease level 

was very low, but rather due to genetic differences. 

Resistance to A. pisi were previously found to be governed by three dominant genes, two 

complementary genes (Wallen and Jeun, 1968) and a single dominant and recessive gene (Darby 

et al., 1985). Brittain (1987) found a wide range of resistance in Pisum lines to infection by A. 

pisi and identified three new genes, Rap-1, Rap-3 and Rap-4. Rap-1 appeared to confer general 

resistance while Rap-3 and Rap-4 appeared to be race-specific. However, Csizmadia (1995) 

suggested that a single dominant gene governs resistance to A. pisi. The presence of 

physiological races for each pathogen species will makes it more difficult to identify resistance 

and to develop resistant varieties. Jones (1927) was the first to report on physiological 

specialisation in A. pisi and differences in pathogenicity between isolates of A. pisi from different 

countries. Since then, many studies have reported the distinction of races in P. pinodes, A. pisi 

and Ph. medicaginis var pinodella. In Canada, at least four distinct races of A. pisi were found 

and each race had a geographically limited distribution. It was speculated that this might be due 

to similar pea varieties in each region and different climatic conditions in those regions (Wallen, 

1954). Vladimirseva et al (1989) isolated and identified 31 races of A. pisi based on the 

pathogenic behavior on pea. Matthews and Dow (1974) from the John Innes Institute (UK) 

reported that the resistance to Race 3 of A. pisi is controlled by a single recessive gene. At 

present, the resistance to P. pinodes is studied around the world, but efforts to improve the 

resistance to A. pisi are needed if its frequency increases. Ali Raza Jamali et al (2005) found that 

eight pea genotypes inoculated with ten isolates of A. pisi collected from different locations in 
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Pakistan showed a significant variability in disease severity. All genotypes were susceptible to 

the Race-1 the most virulent one, whereas the least virulent was Race-6.  

Field evaluation of PR‐10 suggests that disease resistance levels in the parents did not differ as 

reported previously, which has raised the question whether they may not be suitable to study the 

genetic control of resistance to A. pisi. Understanding the control of resistance in pea is still of 

relevance and breeders will continue to search for better parents to study the inheritance of 

resistance. 
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7. General discussion and conclusion 

Global food production must increase by 50% to meet the demand of the world’s population by 

2050. Research on the impact of climate change on plant diseases is limited (Coakley et al., 

1999) due to the predictability of climate change and knowledge of its impacts on disease 

epidemics (Chakraborty et al., 1998). Saskatchewan is the heart of the Canadian pulse industry 

with 64% of the total production of field pea. Researchers at the Crop Development Center of the 

University of Saskatchewan are focused on meeting the overall goals of higher yield, better 

quality and disease resistance in pea. Ascochyta blight is the most important biotic constrain 

affecting the Saskatchewan pea industry. Peyronellaea pinodes is one of the major pathogen, 

which cause Ascochyta blight, but A. pisi has also increasingly been observed during the last 

decade in southern and south-western Saskatchewan. In Saskatchewan, the shift in the regional 

predominance of Ascochyta spp. may be due to a loss of resistance in the existing cultivars, 

climate change or variation in the timing of A. pisi ascospore production. 

Development of plant diseases is determined by the availability of moisture and optimal 

temperature. The present study shows that differences in conidial germination between the two 

pathogens became obvious at 20°C with more than 4 h incubation, and at 25 and 30°C P. pinodes 

had consistently higher germination after 2 h of incubation. Differences in disease severity 

caused by the two pathogens at 20 and 25°C were similar to those observed in conidial 

germination. The rate of disease increase based on regression analysis was also higher for P. 

pinodes up to 25°C, but then declined sharply. From the results of this study, it appears that for 

both pathogens the temperature optimum is between 20 to 25˚C. Wallen (1965) reported that 

optimum temperature for P. pinodes is between 15 and 18°C. Similar studies have reported that 

optimum temperature for disease development was at 20°C (Bretag, 1991). Longer leaf wetness 

period of 8 to 12 h were required for P. pinodes at lower and higher temperature of 10 and 30°C 

for spore germination and disease severity. Roger et al (1999b) observed that for P. pinodes 

severe disease development during dry periods were only observed if conidial germination and 
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hyphal development occurred before they dry periods at incubation temperature of 15 to 25°C 

with a leaf wetness period of 6 to 8 h. Fewer disease symptoms developed when appressorium 

and penetration occurred after dry periods. At high temperature (30°C), an initial leaf wetness of 

72 to 96 h was insufficient for severe disease development during subsequent dry periods. He 

also observed that the spores resumed infection when there were favourable conditions, but 

disease development on the plants was delayed. The tolerance of A. pisi to interrupting dry 

periods, repeated wetness periods and their survival mechanisms under these conditions are 

poorly understood. 

Seeds are often an important source of primary inoculum. Therefore, the seed-to-seedling 

transmission rate of a pathogen is important, because the number of infected seeds may 

determine how many infected seedlings develop. Studies in sterile grit showed that A. pisi-

infected seeds gave rise to 40% infected seedlings with lesions on the stem and on the first two 

leaves, whereas seeds infected with P. pinodes had infection developing from below and above 

ground symptoms (Maude 1966; Moussart et al., 1988). The present study on A. pisi showed 

14.5% A. pisi infected seed used for planting had slightly reduced emergence. However, an effect 

of seed-to-seedling transmission of this pathogen on disease development on the plants and yield 

loss was not observed under field conditions. A seed component study conducted on P. pinodes 

showed that in seeds with less than 25% seed coat staining, P. pinodes was only detected within 

the tissues of the seed coat, and when the infection reached 25% the pathogen could be found in 

all seed components (Moussart et al., 1998). In the current study, A. pisi were present in all 

components of the seed, regardless of the staining categories. When compared to the study 

conducted on P. pinodes, the field study and the seed component study on A. pisi had lower seed 

infection (Moussart et al., 1998). Unlike P. pinodes, A. pisi did not have visible fruiting bodies 

on the seed coat which makes it difficult to identify it on the seed. The frequencies of 

transmission of P. pinodes increased at lower temperatures (Moussart et al., 1998) and were 

100%, 61%, and 70% at 15°C, 18°C and 25°C, respectively (Corbiere et al., 1994). Even though 

there were a high P. pinodes frequency on pea seeds in Australia, a negative correlation between 

seed infection and Ascochyta blight severity were observed (Bretag and Brouwer, 1995a). 

Incubation of seed components showed that seeds with or without discoloration showed infection 

with A. pisi of all seed components. It is therefore difficult to visually distinguish between 



 

76 

 

infected and non-infected seeds. Considering that disease levels in the field were low, the 

mechanism of seed infection for this pathogen is mysterious and further studies are needed in 

this area. There is the potential for airborne ascospores to play a role in the epidemiology of A. 

pisi in Saskatchewan. Seed infection with A. pisi showed minimal effect on crop establishment, 

and no effect on disease development or seed yield. 

Breeding for disease resistance is time-consuming and expensive, so it needs to focus on 

economically important diseases. There are many reports on yield loss caused by P. pinodes, 

whereas there are few reports on yield loss caused by A. pisi. Trials in Denmark showed that 

seed-borne Ascochyta pisi infection causes 0.059 kg/ha yield reduction, and sowing of seeds with 

20% infected seeds were expected to reduce yield by 1.18 kg/ha (Wolffhechel and Bodker, 

2005). Fungicide application was shown to control P. pinodes severity in pea and to increase 

yield by 15 to 75% (Bretag 1989b; Warkentin et al., 1996). A study by Bretag and Brouwer 

(1995a) showed different pea cultivars had different levels of tolerance to P. pinodes severity 

and yield loss under the same level of disease pressure. In the present study, fungicide 

application at low and moderate disease levels was of no benefit. When A. pisi infection reached 

45%, it had minimal effect on pea performance. Fungicide applications may therefore not be 

profitable considering the fungicide cost, variable yield potential of the cultivars, early harvest 

and late onset of disease in the field.  

Resistance to P. pinodes has been assessed under field conditions, but has only been done in 

controlled conditions for A. pisi (Ali et al., 1978; Kraft et al., 1998b). Resistance breeding in pea 

to the Ascochyta blight pathogens has progressed slowly due to the complex nature of resistance 

(Skolko et al., 1954) and the suggestion that resistance to foliar, stem, seed and root infection 

appears to be controlled by different genes for each pathogen (Clulow et al., 1992). In the present 

study, screening of different RILs for resistance to A. pisi revealed no difference in reaction of 

the parents, possibly due to the low disease pressure. Brittain (1987) found that three genes 

controlled resistance. Gene Rap-1 controlled general resistance to A. pisi while Rap-3 and Rap-4 

appeared to be race specific. However, resistance to A. pisi were found to be governed by three 

dominant genes, two complementary genes and a single dominant and recessive gene (Wallen 

and Jeun (1968); Darby et al., (1985)). Csizmadia (1995) found that resistance to A. pisi is 

governed by single dominant gene. For P. pinodes, Clulow et al (1991) suggested that single 

http://www.agrsci.dk/afdelinger/forskningsafdelinger/pbs/medarbejdere/hwo
http://www.agrsci.dk/afdelinger/forskningsafdelinger/pbs/medarbejdere/lab
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dominant genes controlled stem and foliar resistance for P. pinodes. Field evaluation of PR-10 

here suggested that disease resistance levels in the parents may not be as different as previously 

reported, which has raised the question of the suitability of this population to study the genetic 

control of A. pisi resistance.  

In conclusion, experiments here showed that P. pinodes were more aggressive than A. pisi, but 

both pathogens had a temperature optimum of 20 to 25°C. Thus it cannot explain why A. pisi is 

more prevalent in south and south-western Saskatchewan. However, results obtained under 

controlled conditions for conidial germination, and disease severity caused by A. pisi and P. 

pinodes on pea plants in response to wetness periods and temperature may not reflect the 

complex situations encountered in the field and also prolonged wetness period is not common in 

Saskatchewan. Seed-to-seedling transmission were not observed, but seed infection was common 

even under low disease development on plants. No yield losses were observed, but A. pisi 

severity were only moderate at best. Results indicate that A. pisi does not appear to pose a major 

risk to pea production in Saskatchewan.  

Further studies should be focused on the search for more suitable parents with differential 

resistance to A. pisi in order to study the inheritance of resistance to this pathogen. In spite of low 

disease severity, seed infection with A. pisi was observed from the harvested seeds, which 

warrants further research on the potential for latent infections of flowers by A. pisi, differences in 

the production of airborne ascospores of P. pinodes and A. pisi, and also to assess the possibility 

of an erosion of resistance to A. pisi in south and south-western Saskatchewan. 
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Appendix 

Appendix 1 Progression of conidial germination for Ascochyta pisi and Peyronellaea 

pinodes 

For A. pisi, data analysis for repeat 1 revealed that incubation period (P < 0.0001) and the 

incubation period by temperature interaction (P = 0.0009) had significant effects on 

percentage of conidial germination of A. pisi. Temperature had no effect on conidial 

germination (P = 0.0596). At 10˚C, conidial germination did not change from 2 to 6 h, but 

increased after 8 and 10 h and then remained at a similar level after 12 h of incubation (Fig 

A1.1). At 15˚C, conidial germination did not change from 2 to 4 h, significantly increased 

after 6 h, and remained at a similar level up to 8 h of incubation. Germination at 10 h 

after inoculation had increased further and remained at a similar level after 12 h. At 20˚C, 

conidial germination did not change from 2 to 4 h, and increased after 6 h, up to 10 h and 

remained similar level up to 12 h. At 25˚C, conidial germination increased after 4 h and 

remained steady up to 6 h of incubation before increasing further after 8 h of incubation. 

Germination after 10 and 12 h was similar to that at 8 h. At 30˚C, conidial germination 

increased after 4 h and 6 h and then remained steady up to 8 h of incubation. 

Germination after 10 and 12 h of incubation was similar, but higher compared to that at 8 h. 

Data analyses for repeat 2 revealed that temperature, incubation period and the incubation 

period by temperature interaction had significant effects on percentage of conidial germination 

of A. pisi (P < 0.0001). At 10˚C, conidial germination did not change from 2 to 6 h, but 

increased after 8 h, 10 and 12 h of incubation. At 15˚C conidial germination did not change 

from 2 to 4 h, significantly increased after 6 h, and remained at a similar level after 8 h of 

incubation. Germination at 10 and 12 h after inoculation was higher to that observed at 6 and 

8 h. At 20, 25 and 30˚C conidial germination had significantly increased after at each 

sampling up to 12 h. 

For P. pinodes, data analysis for repeat 1 revealed that temperature (P = 0.0002), incubation 

period and the incubation period by temperature interaction (both P < 0.0001) had 

significant effects on percentage of conidial germination of P. pinodes. At 10˚C, conidial 

germination did not change from 2 to 6 h, but increased after 8 and 10 h and then remained at 

a similar level after 12 h of incubation (Fig A1.1). At 15˚C, conidial germination did not 
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change from 2 to 4 h and increased after 6 h and 8 h of incubation. Germination after 10 and 12 

h of incubation was similar, but higher compared to that at 8 h. At 20˚C conidial germination 

did not change from 2 to 4 h, and then steadily increased up to 12 h. At 25˚C conidial 

germination significantly increased after 4 h and remained at a similar level up to 8 h of 

incubation. Germination had increased further by 10 and 12 h of incubation. At 30˚C 

conidial germination steadily increased up to 10 h of incubation and remained at a similar 

level after 12 h of incubation period. 

Data analyses for repeat 2 revealed that temperature, incubation period and the incubation 

period by temperature interaction had significant effects on percentage of conidial germination 

of P. pinodes (P < 0.0001). At 10˚C, conidial germination did not change from 2 to 4 h, but 

steadily increased thereafter up to12 h of incubation (Fig A1.1). At 15˚C, conidial 

germination did not change from 2 to 4 h, then increased steadily up to 10 h and remained a t  

a  similar level at 12 h. At 20, 25 and 30˚C conidial germination steadily increased from 2h 

of incubation up to 12 h. 
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Fig A1.1 Effect of temperature (˚C) and incubation period (h) on percentage of conidial 

germination of Ascochyta pisi and Peyronellaea pinodes. Error bars represent standard errors 

of the means. 

                  Repeat 1              Repeat 2    Combined data 
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Appendix 2 Comparison of conidial germination of Ascochyta pisi and Peyronellaea pinodes 

at different temperatures 

Analysis for repeat 1 revealed that at 10 and 15˚C, pathogens and the pathogens by 

incubation period interaction had no significant effect on conidial germination (P > 0.05). 

Incubation period had significant effects on conidial germination at both temperatures (P < 

0.0001). At 20˚C, pathogens (P = 0.0138) and incubation period (P < 0.0001) had significant 

effects on percentage of conidial germination, whereas the pathogens by incubation period 

interaction was non-significant (P = 0.2201). There was no difference in conidial germination 

between A. pisi and P. pinodes up to 4 h, but after that P. pinodes conidia had consistently 

higher germination compared to A. pisi conidia. At 25˚C, pathogens (P = 0.0015) and 

incubation period (P < 0.0001) had significant effects on percentage of conidial germination. 

Here too, the pathogens by incubation period interaction had no effect on conidial germination 

(P = 0.0682). There were no significant differences in conidial germination between A. pisi 

and P. pinodes at 2, 4 and 8 h of incubation. Peyronellaea pinodes had higher germination at 

6, 10 and 12 h compared to A. pisi. At 30˚C, pathogens,  incubation period (both P < 0.0001) 

and the pathogens by incubation period interaction (P = 0.0036) had significant effects on 

percentage of conidial germination. With the exception of 2 h incubation period, P. pinodes had 

consistently higher germination compared to A. pisi. 

Analysis from repeat 2 revealed that at 10˚C pathogens (P = 0.0016) and incubation period 

(P < 0.0001) had significant effects on percentage of conidial germination of A. pisi and P. 

pinodes. The pathogens by incubation period interaction had no effect on conidial germination 

(P = 0.0537). There was no significant difference in conidial germination between A. pisi 

and P. pinodes at 2 ,  4 and 8 h of incubation period. Peyronellaea pinodes had higher 

germination at 6, 10 and 12 h compared to A. pisi. At 15˚C, pathogens,  incubation period 

and the pathogens by incubation period interaction had significant effects on percentage of 

conidial germination (P < 0.01). There was no difference in conidial germination between A. 

pisi and P. pinodes up to 4h after which P. pinodes had consistently higher germination up to 

12h compared to A. pisi. At 20, 25 and 30˚C pathogens,  incubation period and the pathogens 

by incubation period interaction had very highly significant effects on percentage of conidial 

germination (P < 0.0001). At 20˚C, Peyronellaea pinodes conidia had higher germination 
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from 2h up to 12h compared to A. pisi whereas at 25 and 30˚C that was the case for 4h 

up to 12h of incubation. 

 

Table A2.1 Analysis of variance of the effect of temperature (˚C) and incubation period (h) on 

the percentage of conidial germination of Ascochyta pisi. 

Type 3 Tests of Fixed Effects 

Experiment Effect Num DF Den DF F Value Pr > F 

Repeat 1 temperature 4 16.5 2.81 0.0596 

 incubation period 5 22.9 37.20 <.0001 

 temperature*incubation 

period 

20 22.9 4.03 0.0009 

Repeat 2 temperature 4 22.7 72.84 <.0001 

 incubation period 5 28.6 530.53 <.0001 

 temperature*incubation 

period 

20 28.6 14.84 <.0001 

Repeat 1& 2 temperature 4 37.5 13.80 <.0001 

 incubation period 5 62.7 151.88 <.0001 

 temperature*incubation 

period 

20 62.7 9.54 <.0001 
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Table A2.2 Analysis of variance of the effect of temperature (˚C) and incubation period (h) on 

the percentage of conidial germination of Peyronellaea pinodes. 

Type 3 Tests of Fixed Effects 

Experiment Effect Num DF Den DF F Value Pr > F 

Repeat 1 temperature 4 16.3 10.42 0.0002 

 incubation period 5 33.4 137.46 <.0001 

 temperature*incubation 

period 

20 33.4 8.42 <.0001 

Repeat 2 temperature 4 20.2 154.11 <.0001 

 incubation period 5 31 978.80 <.0001 

 temperature*incubation 

period 

20 31 25.09 <.0001 

Repeat 1& 2 temperature 4 39.1 39.83 <.0001 

 incubation period 5 78.8 427.47 <.0001 

 temperature*incubation 

period 

20 78.8 16.17 <.0001 
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Table A2.3 Analysis of variance of comparison of conidial germination of Ascochyta pisi and 

Peyronellaea pinodes at different temperatures. 

Type 3 Tests of Fixed Effects 

Experiment Temperature Effect Num DF Den 

DF 

F 

Value 

Pr > F 

Repeat 1 10˚C pathogens 1 33 0.39 0.5381 

  incubation period 5 33 32.11 <.0001 

  incubation 

period*pathogens 

5 33 0.52 0.7615 

 15˚C pathogens 1 33 1.25 0.2715 

  incubation period 5 33 30.84 <.0001 

  incubation 

period*pathogens 

5 33 0.54 0.7415 

 20˚C pathogens 1 33 6.76 0.0138 

  incubation period 5 33 30.14 <.0001 

  incubation 

period*pathogens 

5 33 1.49 0.2201 

 25˚C pathogens 1 33 12.03 0.0015 

  incubation period 5 33 23.72 <.0001 

  incubation 

period*pathogens 

5 33 2.29 0.0682 

 30˚C pathogens 1 33 20.71 <.0001 

  incubation period 5 33 25.39 <.0001 

  incubation 

period*pathogens 

5 33 4.38 0.0036 

Repeat 2 10˚C pathogens 1 33 11.86 0.0016 

  time 5 33 120.30 <.0001 

  incubation 

period*pathogens 

5 33 2.45 0.0537 
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Type 3 Tests of Fixed Effects 

Experiment Temperature Effect Num DF Den 

DF 

F 

Value 

Pr > F 

 15˚C pathogens 1 33 7.52 0.0098 

  incubation period 5 33 304.05 <.0001 

  incubation 

period*pathogens 

5 33 8.41 <.0001 

 20˚C pathogens 1 33 939.34 <.0001 

  incubation period 5 33 1390.80 <.0001 

  incubation 

period*pathogens 

5 33 40.44 <.0001 

 25˚C pathogens 1 33 185.10 <.0001 

  incubation period 5 33 307.78 <.0001 

  incubation 

period*pathogens 

5 33 10.74 <.0001 

 30˚C pathogens 1 33 192.04 <.0001 

  incubation period 5 33 269.95 <.0001 

  incubation 

period*pathogens 

5 33 12.11 <.0001 

Repeat 1&2 10˚C pathogens 1 77 3.56 0.0630 

  incubation period 5 77 104.25 <.0001 

  incubation 

period*pathogens 

5 77 2.32 0.0510 

 15˚C pathogens 1 77 3.12 0.0815 

  time 5 77 121.75 <.0001 

  incubation 

period*pathogens 

5 77 3.73 0.0045 

 20˚C pathogens 1 77 31.00 <.0001 

  incubation period 5 77 125.12 <.0001 
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Type 3 Tests of Fixed Effects 

Experiment Temperature Effect Num DF Den 

DF 

F 

Value 

Pr > F 

  incubation 

period*pathogens 

5 77 5.50 0.0002 

 25˚C pathogens 1 77 39.25 <.0001 

  incubation period 5 77 92.66 <.0001 

  incubation 

period*pathogens 

5 77 6.05 <.0001 

 30˚C pathogens 1 77 44.19 <.0001 

  incubation period 5 77 79.27 <.0001 

  incubation 

period*pathogens 

5 77 8.51 <.0001 
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Appendix 3. Rate parameters and coefficients of determination (R2) of Gompertz 

models describing germination of Ascochyta pisi isolate AP6 and Peyronellaea pinodes 

isolate MP25 conidia at 10, 15, 20, 25 and 30°C through linear regression modeling. 

  Ascochyta pisi Peyronellaea pinodes 

Temperature 

(°C) 

Rep Intercept Rate 

parameter 

R2 Intercept Rate 

parameter 

R2 

 

10 

 

1 

 

-2.17163 
 

0.15188 
 

0.8500 
 

-2.18064 
 

0.16441 
 

0.8404 

 2 -2.13979 0.15563 0.9134 -2.19293 0.17868 0.9035 

 1 & 

2 

-2.15571 0.15375 0.8797 -2.18679 0.17154 0.8697 

15 1 -2.00481 0.18427 0.7937 -1.86577 0.20172 0.9191 

 2 -2.15075 0.21899 0.8780 -2.06209 0.22953 0.9568 

 1 & 

2 

-2.07778 0.20163 0.8338 -1.96393 0.21563 0.9358 

20 1 -2.08038 0.22706 0.7742 -2.04745 0.32518 0.9096 

 2 -1.75857 0.22246 0.9748 -1.66864 0.30779 0.9782 

 1 & 

2 

-1.91947 0.22476 0.8415 -1.85804 0.31648 0.9298 

25 1 -1.72397 0.17638 0.7546 -1.73905 0.25801 0.7737 

 2 -1.69864 0.20548 0.9523 -1.71487 0.29550 0.9435 

 1 & 

2 

-1.71131 0.19093 0.8399 -1.72696 0.27675 0.8485 

30 1 -1.89559 0.17042 0.8130 -1.88690 0.29872 0.8491 

 2 -1.95561 0.20162 0.9274 -1.85231 0.26370 0.9221 

 1 & 

2 

-1.92560 0.18602 0.8644 -1.86960 0.28121 0.8716 
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Appendix 4. Progression of disease development caused by Ascochyta pisi and Peyronellaea 

pinodes on inoculated plants 

Analysis o f  A. pisi severity data for repeat 1 revealed that temperature, leaf wetness period 

and t h e  leaf wetness period by temperature interaction had no significant effects on 

percentage of disease severity caused by A. pisi (P > 0.05).  

Data analyses for repeat 2 revealed that temperature, leaf wetness period and the leaf wetness 

period by temperature interaction had significant effects on percentage of disease severity 

caused by A. pisi (P  0.0001). At 10˚C, disease severity did not change from 2 to 8 h but 

increased after 10 h and remained at similar level after 12 h of leaf wetness period. At 15˚C 

disease severity did not change from 2 to 4 h, significantly increased after 6 h, and remained at 

a similar level after 8 h of leaf wetness period. Disease severity increased further by 10 and 12 

h of leaf wetness period. At 20 and 25˚C disease severity did not change from 2 to 4 h, 

increased after 6, 8 and 10 h and then remained steady up to 12 h of leaf wetness period. At 

30˚C, disease severity did not change up to 8h, but increased at 10 an d  ag a i n  a t  1 2 h  o f  

leaf wetness period.  

For P. pinodes, analysis for repeat 1 revealed that temperature, leaf wetness period and t h e  

leaf wetness period by temperature interaction had significant effects on percentage of 

disease severity caused by P. pinodes (P < 0.0001). At 10 and 15˚C disease severity did not 

change from 2 to 6 h, disease severity increased further after 8 and 10 h leaf wetness period 

and remained similar up to 12 h (Figure 3.2). At 20˚C disease severity had significantly 

increased after at each sampling point up to 12 h. At 25˚C, disease severity increased after 4 

and 6 h, and remained at a similar level up to 8 h. Disease severity at 10 and 12 h was similar 

but higher to that of observed at 6 and 8 h of leaf wetness period. At 30˚C, disease severity did 

not change from 2 to 8 h, but increased after 10 h and then remained at a similar level after 12 h 

of leaf wetness period. 

Data analysis for repeat 2 revealed that temperature, leaf wetness period and t h e  leaf 

wetness period by temperature interaction had a significant effects on percentage of disease 

severity caused by P. pinodes (P < 0.0001). At 10˚C, disease severity remained similar from 

2 to 6 h and increased after 8 and 10h (Figure 3.2). Disease severity at 10 and 12h remained 
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similar but higher to that of observed at 2 to 8h of leaf wetness period. At 15˚C, disease severity 

increased after 4 h and remained at similar level up to 6 h of leaf wetness period. Disease 

severity increased after 8 and 10h of incubation and remained at a similar level up to 12 h of 

leaf wetness period. At 20˚C disease severity had significantly increased after at each sampling 

up to 12 h. At 25˚C, disease severity did not change from 2 to 4 h, and increased after 6, 8 and 

10 h and remained a t  a  similar level up to 12 h. At 30˚C, disease severity did not change 

from 2 to 4 h, but increased after 6 h and again after 12 h. 
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Fig. A4.1Effect of temperature (˚C) and leaf wetness periods (h) on percentage disease severity 

caused by infection with Ascochyta pisi and Peyronellaea pinodes. Error bars represent 

standard errors of the means. 

                Repeat 1                                     Repeat 2                                          Combined data 
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Appendix 5 Comparison of Ascochyta pisi and Peyronellaea pinodes in their ability to cause 

disease at different temperatures 

Analysis for repeat 1 revealed t h a t  at 10˚C pathogens (P = 0.0027),  leaf wetness period 

(P < 0.0001) and the pathogens by leaf wetness period interaction (P = 0.0155) had significant 

effects on percentage of disease severity caused by A. pisi and P. pinodes. There was no 

difference in disease severity between A. pisi and P. pinodes-infected plants exposed to leaf 

wetness periods up to 6h, but and after 8 h of leaf wetness percentage of disease 

severity caused by P. pinodes was higher than A. pisi (Figure 3.2). At 15˚C, pathogens (P = 

0.1992) and the  pathogens  by leaf wetness period interaction (P = 0.2249) had no effects 

on disease severity caused by A. pisi and P. pinodes. Leaf wetness periods had significant 

effects on disease severity (P < 0.0001). At 20˚C, pathogens (P = 0.0050) and leaf wetness 

period interaction (P < 0.0001) had significant effects on disease severity caused by A. pisi and 

P. pinodes. The pathogens by leaf wetness period had no effect on disease severity (P = 

0.4051). There was no difference in disease severity between A. pisi and P. pinodes-infected 

plants up to 8h of leaf wetness periods. After 10 h of leaf wetness, P. pinodes had caused higher 

disease severity than A. pisi. At 25˚C, it revealed that pathogens,  leaf wetness period (both P < 

0.0001) and the pathogens by leaf wetness period interaction (P = 0.0175) had significant 

effects on disease severity induced by A. pisi and P. pinodes. After 6 to 10 h of leaf wetness, 

P. pinodes-infected plants had higher disease severity than A. pisi, but not when leaf wetness 

periods were shorter or longer. At 30˚C,  pathogens (P = 0.2709) and the pathogens by 

leaf wetness period interaction (P = 0.7963) had no effects on disease severity caused by A. pisi 

and P. pinodes. Leaf wetness period had significant effect on disease severity (P < 0.0001).  

Analysis of repeat 2 data revealed that at 10 and 15˚C pathogens (P > 0.2519) and the 

pathogens by leaf wetness period interaction (P > 0.6042) had no effects on disease severity 

cause by A. pisi and P. pinodes. Leaf wetness period (P < 0.0001) had significant effect on 

disease severity.  At 20˚C, pathogens and the pathogens by leaf wetness period interaction 

(both P < 0.0001) had significant effects on disease severity. Leaf wetness period (P = 0.1555) 

had no effect on disease severity.  There was no difference in disease severity caused by A. pisi 

and P. pinodes after 2 h of leaf wetness, but after longer wetness periods P. pinodes-

infected plants had higher disease severity than A. pisi. At 20 and 25˚C, pathogens (P < 
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0.0001) and the pathogens  by leaf wetness period interaction (P < 0.0014) had significant 

effects on disease severity. Leaf wetness period (P > 0.2013) had no effect on conidial 

germination. There was no difference in disease severity caused by A. pisi and P. pinodes up 

to 4 h, but with leaf wetness periods of 6 h and higher, P. pinodes had higher disease severity 

than A. pisi. 

 

Table A5.1 Analysis of variance of effect of temperature (˚C) and leaf wetness periods (h) on 

percentage disease severity caused by infection with Ascochyta pisi. 

Type 3 Tests of Fixed Effects 

Experiment Effect Num DF Den DF F Value Pr > F 

Repeat 1 temperature 4 1 72.35 0.0879 

 wetness period 5 1 146.46 0.0626 

 temperature* wetness period 20 1 23.92 0.1599 

Repeat 2 Temperature 4 17.9 11.08 0.0001 

 wetness period 5 37.3 99.36 <.0001 

 temperature* wetness period 20 35.4 4.29 <.0001 

Repeat 1& 2 temperature 4 30.7 38.79 <.0001 

 wetness period 5 79.2 156.88 <.0001 

 temperature* wetness period 20 79.1 11.66 <.0001 
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Table A5.2 Analysis of variance of effect of temperature (˚C) and leaf wetness periods (h) on 

percentage disease severity caused by infection with Peyronellaea pinodes. 

Type 3 Tests of Fixed Effects 

Experiment Effect Num DF Den DF F Value Pr > F 

Repeat 1 temperature 4 1 155.14 0.0601 

 wetness period 5 1 400.21 0.0379 

 temperature* wetness period 20 1 38.23 0.1269 

Repeat 2 temperature 4 21.1 72.17 <.0001 

 incubation wetness 5 30.2 240.95 <.0001 

 temperature* wetness period 20 30.2 11.54 <.0001 

Repeat 1& 2 temperature 4 52.7 192.24 <.0001 

 wetness period 5 74.3 486.91 <.0001 

 temperature* wetness period 20 74.3 32.53 <.0001 
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Table A5.3 Analysis of variance of comparison of Ascochyta pisi and Peyronellaea pinodes in 

their ability to cause disease at different temperatures 

Type 3 Tests of Fixed Effects 

Experiment Temperature Effect Num DF Den 

DF 

F 

Value 

Pr > F 

Repeat 1 10˚C pathogens 1 33 10.56 0.0027 

  wetness period 5 33 27.46 <.0001 

  wetness 

period*pathogens 

5 33 3.32 0.0155 

 15˚C pathogens 1 33 1.72 0.1992 

  wetness period 5 33 52.74 <.0001 

  wetness 

period*pathogens 

5 33 1.47 0.2249 

 20˚C pathogens 1 32 9.09 0.0050 

  wetness period 5 32 82.49 <.0001 

  wetness 

period*pathogens 

5 32 1.05 0.4051 

 25˚C pathogens 1 30 27.59 <.0001 

  wetness period 5 30 278.26 <.0001 

  wetness 

period*pathogens 

5 30 3.29 0.0175 

 30˚C pathogens 1 33 1.25 0.2709 

  wetness period 5 33 10.17 <.0001 

  wetness 

period*pathogens 

5 33 0.47 0.7963 

Repeat 2 10˚C pathogens 1 33 0.01 0.9106 

  wetness period 5 33 13.90 <.0001 

  wetness 5 33 0.26 0.9310 
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Type 3 Tests of Fixed Effects 

Experiment Temperature Effect Num DF Den 

DF 

F 

Value 

Pr > F 

period*pathogens 

 15˚C pathogens 1 32 1.36 0.2519 

  wetness period 5 32 13.11 <.0001 

  wetness 

period*pathogens 

5 32 0.73 0.6042 

 20˚C pathogens 1 33 35.58 <.0001 

  wetness period 5 33 115.35 <.0001 

  wetness 

period*pathogens 

5 33 1.73 0.1555 

 25˚C pathogens 1 32 26.65 <.0001 

  wetness period 5 32 106.32 <.0001 

  wetness 

period*pathogens 

5 32 1.55 0.2013 

 30˚C pathogens 1 33 12.13 0.0014 

  wetness period 5 33 34.05 <.0001 

  wetness 

period*pathogens 

5 33 1.20 0.3287 

Repeat 1&2 10˚C pathogens 1 77 1.54 0.2180 

  wetness period 5 77 27.58 <.0001 

  wetness 

period*pathogens 

5 77 0.94 0.4607 

 15˚C pathogens 1 76 0.31 0.5817 

  wetness period 5 76 38.45 <.0001 

  wetness 

period*pathogens 

5 76 1.77 0.1294 
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Type 3 Tests of Fixed Effects 

Experiment Temperature Effect Num DF Den 

DF 

F 

Value 

Pr > F 

 20˚C pathogens 1 76 34.85 <.0001 

  wetness period 5 76 174.81 <.0001 

  wetness 

period*pathogens 

5 76 2.08 0.0767 

 25˚C pathogens 1 73 45.49 <.0001 

  wetness period 5 73 271.56 <.0001 

  wetness 

period*pathogens 

5 73 2.23 0.0598 

 30˚C pathogens 1 77 8.37 0.0050 

  wetness period 5 77 36.79 <.0001 

  wetness 

period*pathogens 

5 77 1.02 0.4131 
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Appendix 6. The rate parameters and coefficients of determination (R2) of Gompertz 

models describing disease severity of Ascochyta pisi isolate AP6 and Peyronellaea pinodes 

isolate MP25 conidia at 10, 15, 20, 25 and 30°C through linear regression modeling. 

  Ascochyta pisi Peyronellaea pinodes 

Temperature 

(°C) 

Replicate Intercept Rate 

parameter  

R2 Intercept Rate 

parameter 

R2 

 

10 

 

1 

 

-2.18509 

 

0.11687 

 

0.5408 

 

-2.25451 

 

0.15199 

 

0.7436 

 2 -2.15817 0.15664 0.6990 -2.17540 0.17084 0.8988 

 1 & 2 -2.18509 0.12918 0.5408 -2.21331 0.16225 0.8013 

15 1 -2.00481 0.18427 0.7937 -2.37513 0.20200 0.8049 

 2 -1.85098 0.17768 0.5721 -1.94471 0.17859 0.7947 

 1 & 2 -2.04861 0.18246 0.6824 -2.17390 0.19283 0.7881 

20 1 -2.14990 0.28511 0.8968 -2.17282 0.35123 0.9493 

 2 -1.97828 0.23113 0.9503 -1.84157 0.28407 0.9524 

 1 & 2 -2.08247 0.26006 0.9073 -2.00212 0.31899 0.9426 

25 1 -2.24522 0.30091 0.9261 -2.03336 0.32234 0.9604 

 2 -2.07970 0.25116 0.9161 -1.99517 0.29703 0.9269 

 1 & 2 -2.13413 0.27172 0.9048 -1.98956 0.31049 0.9459 

30 1 -2.19580 0.09969 0.4293 -2.22895 0.14077 0.7120 

 2 -2.20455 0.13811 0.7870 -2.08688 0.15969 0.8238 

 1 & 2 -2.20018 0.11890 0.5780 -2.15791 0.15023 0.7421 
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Appendix 7. Rainfall data, irrigation dates and temperature data for the period of field trials, 

from May to August in Saskatoon, Milden and Outlook (http://climate.weather.gc.ca/). 

Location Year Month Rainfall 

(mm) 

Temperature data (°C) 

Max Min Mean 

Saskatoon 2012 May 108 16.4 3.8 10.1 

  June 121.1 21.5 10.0 15.8 

  July 80.9 25.3 14.1 19.7 

  August 48.5 23.9 10.7 17.3 

Outlook 2012 May 99.7 16.9 4.7 10.8 

  June 137.3 22.2 10.5 16.3 

  July 55.7 25.9 14.1 20.0 

  August 51.0 25.2 11.1 18.1 

Saskatoon 2013 May 15.2 20.8 5.1 13.0 

  June 115.9 20.9 10.0 15.5 

  July 35.2 23.6 11.1 17.4 

  August 14.7 26.4 11.3 18.9 

Milden 2013 May 12.7 20.8 5.0 12.9 

  June 73.5 21.8 10.0 15.9 

  July 28.0 23.7 11.4 17.5 

  August 28.8 26.3 11.3 18.8 

Saskatoon 2014 May 61.1 17.3 2.8 10.1 

  June 94.8 19.4 8.7 14.1 

  July 44.5 24.5 12.0 18.3 

  August 18.5 24.6 11.2 17.9 

Milden 2014 May 81.2 18.0 3.5 10.8 

  June 98.2 19.8 9.4 14.7 

  July 28.4 24.7 12.0 18.4 

  August 26.5 24.7 11.7 18.2 

 

 

 

http://climate.weather.gc.ca/
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Table A7.1 Analysis of variance of seedling emergence of cv. CDC Patrick field pea from seed 

with different levels of infection with Ascochyta pisi. Pooled data from Outlook, Milden and 

Saskatoon in 2012, 2013 and 2014. 

Year Location A. pisi infection 

levels 

Num DF Den DF F Value Pr > F 

2012 Saskatoon Seed infection 3 9 5.61 0.0191 

 Outlook Seed infection 3 9 1.66 0.2447 

2013 Milden Seed infection 3 9 0.74 0.5546 

 Saskatoon Seed infection 3 9 1.45 0.2925 

2014 Milden Seed infection 3 9 0.69 0.5802 

 Saskatoon Seed infection 3 9 1.04 0.4191 

2012, 2013 

&2014 

Pooled 

data 

Seed infection 3 69 3.96 0.0116 

 

Table A7.2 Analysis of variance of Ascochyta blight severity caused by Ascochyta pisi on pea 

plants cv. CDC Patrick developing from seeds with different levels of infection with Ascochyta 

pisi. Pooled data from Outlook, Milden and Saskatoon in 2012, 2013 and 2014. 

Type 3 Tests of Fixed Effects 

Year Location A. pisi infection 

levels 

Num DF Den 

DF 

F 

Value 

Pr > F 

2012 Saskatoon Seed infection 3 9 0.16 0.9210 

 Outlook Seed infection 3 9 0.59 0.6378 

2013 Milden Seed infection 3 9 0.36 0.7859 

 Saskatoon Seed infection 3 9 4.36 0.0372 

2014 Milden Seed infection 3 9 0.30 0.8224 

 Saskatoon Seed infection 3 9 0.37 0.7737 

2012, 2013 

&2014 

Pooled 

data 

Seed infection 3 69 0.17 0.9168 



 

114 

 

Table A7.3 Analysis of variance of Ascochyta blight severity caused by Peyronellaea pinodes 

on pea plants cv. CDC Patrick developing from seeds with different levels of infection with 

Ascochyta pisi. Pooled data from Outlook, Milden and Saskatoon in 2012, 2013 and 2014. 

Type 3 Tests of Fixed Effects 

Year Location A. pisi infection levels Num DF Den DF F Value Pr > F 

2012 Saskatoon Seed infection 3 9 0.88 0.4851 

 Outlook Seed infection 3 9 0.31 0.8200 

2013 Milden Seed infection 3 9 2.81 0.1005 

 Saskatoon Seed infection 3 9 2.94 0.0914 

2014 Milden Seed infection 3 9 0.30 0.8224 

 Saskatoon Seed infection 3 9 1.60 0.2577 

2012, 2013 &2014 Pooled data Seed infection 3 69 2.64 0.0566 

 

Table A7.4 Analysis of variance of seed yields from pea cultivar CDC Patrick grown from seeds 

with different levels of infection with Ascochyta pisi. Pooled data from Outlook, Milden and 

Saskatoon in 2012, 2013 and 2014. 

Type 3 Tests of Fixed Effects 

Year Location A. pisi infection levels Num DF Den DF F Value Pr > F 

2012 Saskatoon Seed infection 3 9 1.01 0.4338 

 Outlook Seed infection 3 9 0.29 0.8291 

2013 Milden Seed infection 3 9 0.72 0.5651 

 Saskatoon Seed infection 3 9 0.00 0.9998 

2014 Milden Seed infection 3 9 0.74 0.5558 

 Saskatoon Seed infection 3 9 0.65 0.6004 

2012, 2013 &2014 Pooled data Seed infection 3 67 0.59 0.6212 
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Table A7.5 Analysis of variance of incidence of seed infection with A. pisi of seeds harvested 

from CDC Patrick pea plots seeded with different levels of infection with Ascochyta pisi. Pooled 

data from Outlook, Milden and Saskatoon in 2012, 2013 and 2014. 

Type 3 Tests of Fixed Effects 

Year Location A. pisi infection levels Num DF Den DF F Value Pr > F 

2012 Saskatoon Seed infection 3 9 0.17 0.9162 

Outlook Seed infection 3 9 0.01 0.9975 

2013 Milden Seed infection 3 9 0.37 0.7785 

Saskatoon Seed infection 3 9 0.15 0.9248 

2014 Milden Seed infection 3 9 1.45 0.2915 

Saskatoon Seed infection 3 9 2.59 0.1176 

2012, 2013 &2014 Pooled data Seed infection 3 69 1.241E7 <.0001 

 

Table A7.6 Analysis of variance of Incidence of seed infection with P. pinodes of seeds 

harvested from CDC Patrick pea plots seeded with different levels of infection with Ascochyta 

pisi. Pooled data from Outlook, Milden and Saskatoon in 2012, 2013 and 2014. 

Type 3 Tests of Fixed Effects 

Year Location A. pisi infection levels Num DF Den DF F Value Pr > F 

2012 Saskatoon Seed infection 3 9 0.06 0.9819 

 Outlook Seed infection 3 9 0.97 0.4480 

2013 Milden Seed infection 3 9 1.87 0.2044 

 Saskatoon Seed infection 3 9 3.02 0.0865 

2014 Milden Seed infection 2 9 2.16 0.1711 

 Saskatoon Seed infection 3 9 1.44 0.2952 

2012, 2013 &2014 Pooled data Seed infection 3 69 9.21 <.0001 
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Table A7.7 Analysis of variance of percentage of seed infection with Ascochyta pisi on seed 

coat, cotyledon and embryo from CDC Patrick field pea seeds naturally infected with 

Ascochyta pisi and separated into four seed coat staining categories. 

Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

Seed staining category 4 83 626.60 <.0001 

Seed component 2 83 100.60 <.0001 

Seed staining category * Seed 

component 

8 83 31.81 <.0001 

Epicoccum 1 83 5.52 0.0212 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

117 

 

Appendix 8. Agronomic management of the field experiments in 2012, 2013 and 2014 in Swift 

Current, Stewart Valley and Saskatoon. 

 

  

 

Chemical 

treatments  

2012 2013 2014 

Swift Current Stewart Valley Swift Current Stewart 

Valley 

Swift Current Saskatoon 

Pre-seeding 

herbicide 

 

3May, Roundup 

weathermax 

660ml/ac 
 

3 May, Roundup 

weathermax 

660ml/ac 
 

3May, Roundup 

weathermax 

660ml/ac 
1 May, Edge 

granular17kg/ha 

No 

application 

 

2 May, Roundup 

weathermax 

660ml/ac 
9May, 

Weathermax+ 

Heat (500 ml/ac 
& 10.4 gr/ac) 

 

No 

application 

 

Post-seeding 

herbicide 

 

Glycophosphate 
(Post seeding 

burnoff) 

4 June, Solo 
11.7g/ac 

 

Glycophosphate  
(Post seeding 

burnoff) 

4 June, Solo 
11.7g/ac 

 

4 June, Odyssey 
17.3gm/ac 

 

6 June, 
Odyssey 

17.3gm/ac 

 

10 June, 
Odyssey 

17.3gm/ac 

 

No 
application 

 

Weevil 

pesticide 

 

No application 
 

No application 
 

18 June, Metador 
33ml/ac 

 

5 June, 
Metador 

33ml/ac 

 

30 May, 
Metador 33ml/ac 

 

No 
application 

 

Fungicide 

treatment 

 

June 22, Bravo 500 

1.6L/ac 

July 5, Headline 
Duo 240ml/ac  & 

Lance 170g/a  

 

June 25, Bravo 500 

1.6L/ac 

July 6, Headline 
Duo 240ml/ac  & 

Lance 170g/a  

 

1 June, Bravo 500 

1.6L/ac 

21 June,   Headline 
Duo 240ml/ac  & 

Lance 170g/a 

 

6 June, Bravo 

500 1.6L/ac 

4 July,   
Headline Duo 

240ml/ac  & 

Lance 170g/a 
 

1 June, Bravo 

500 1.6L/ac 

24 June & 17 
July Headline 

Duo 240ml/ac  

& Lance 170g/a 
 

17 June, 

Bravo 500 

1.6L/ac 
3 July & 17 

July Headline 

Duo 240ml/ac  
& Lance 

170g/a 

Artificial A. 

pisi 

inoculum 

No application 
 

No application 
 

No application 
 

No 
application 

 

25 June 2014 
 

15 June &13 
July  65g m-2 

 

Disease ratings 

1st Rating 

2nd Rating 

3rd Rating 

 

5th  July 

31st July 

- 

 

5th  July 

31st July 

- 

 

13th June 

16th July 

7th  August 

 

13th June 

17th July 

9th  August 

 

25th June 

15th July 

30th July 

 

26th June 

16th July 

31th July 
 

Desiccant 

Spray 

1 August, Reglone 

700ml/ac 

7 August, Reglone 

700ml/ac 

14 August, Reglone 

700ml/ac 

17 August, 

Reglone 
700ml/ac 

19 August, 

Reglone 
700ml/ac 

No  

Application 
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Fig A8.1 Disease severity caused by P. pinodes in plots treated with fungicides to create low 

diseased plots, and unsprayed plots to create highly diseased plots of pea cv. CDC Bronco, 

Cooper, CDC Golden, SW Midas under natural inoculum conditions at Stewart Valley 2012, 

2013, 2014 and Swift Current 2012, 2013 and 2014, and in an inoculated experiment at 

Saskatoon in 2014. 
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Table A8.1 Analysis of variance of disease severity caused by A. pisi in plots treated with 

fungicides to create low diseased plots, and unsprayed plots to create highly diseased plots of pea 

cv. CDC Bronco, Cooper, CDC Golden, SW Midas under natural inoculum conditions at Stewart 

Valley 2012, 2013 and Swift Current 2012, 2013 and 2014, and in an inoculated experiment at 

Saskatoon in 2014. 

Type 3 Tests of Fixed Effects 

Year Location Effect Num DF Den DF F Value Pr > F 

2012 Swift Current Splot 3 18 0.68 0.5782 

  Mplot 1 3 0.00 0.9625 

  Mplot*Splot 3 18 0.58 0.6368 

 Stewart Valley Splot 3 18 0.38 0.7657 

  Mplot 1 3 1.34 0.3301 

  Mplot*Splot 3 18 0.14 0.9350 

2013 Swift Current Splot 3 18 1634337 <.0001 

  Mplot 1 3 15.69 0.0287 

  Mplot*Splot 3 18 1634337 <.0001 

 Stewart Valley Splot 3 18 0.39 0.7615 

  Mplot 1 3 2.19 0.2353 

  Mplot*Splot 3 18 0.17 0.9136 

2014 Swift Current Splot 3 18 0.15 0.9258 

  Mplot 1 3 0.37 0.5863 

  Mplot*Splot 3 18 0.31 0.8195 

 Saskatoon Splot 3 18 0.75 0.5384 

  Mplot 1 3 41.81 0.0075 

  Mplot*Splot 3 18 0.23 0.8711 

2012,2013 & 

2014 

Pooled data Splot 3 138 1.70 0.1706 

  Mplot 1 23 17.15 0.0004 

  Mplot*Splot 3 138 3.83 0.0113 

*Splot - Subplot (Cultivars); Mplot - Main plot (Fungicide treated and non-fungicide treated 

plots) 
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Table A8.2 Analysis of variance of disease severity caused by P. pinodes in plots treated with 

fungicides to create low diseased plots, and unsprayed plots to create highly diseased plots of pea 

cv. CDC Bronco, Cooper, CDC Golden, SW Midas under natural inoculum conditions at Stewart 

Valley 2012, 2013 and Swift Current 2012, 2013 and 2014, and in Saskatoon at 2014. 

Type 3 Tests of Fixed Effects 

Year Location Effect Num DF Den DF F Value Pr > F 

2012 Swift Current Splot 3 18 11.55 0.0002 

  Mplot 1 3 0.02 0.8915 

  Mplot*Splot 3 18 0.68 0.5778 

 Stewart Valley Splot 3 18 3.54 0.0356 

  Mplot 1 3 17.87 0.0242 

  Mplot*Splot 3 18 0.84 0.4912 

2013 Swift Current Splot 3 18 7.70 0.0016 

  Mplot 1 3 3.18 0.1727 

  Mplot*Splot 3 18 0.80 0.5113 

 Stewart Valley Splot 3 18 6.18 0.0045 

  Mplot 1 3 4.27 0.1307 

  Mplot*Splot 3 18 1.05 0.3958 

2014 Swift Current Splot 3 18 0.73 0.5464 

  Mplot 1 3 0.05 0.8368 

  Mplot*Splot 3 18 1.90 0.1665 

 Saskatoon Splot 3 18 6.29 0.0042 

  Mplot 1 3 3.74 0.1486 

  Mplot*Splot 3 18 1.66 0.2116 

2012,2013 & 2014 Pooled data Splot 3 138 19.56 <.0001 

  Mplot 1 23 6.83 0.0156 

  Mplot*Splot 3 138 0.29 0.8359 

*Splot - Subplot (Cultivars); Mplot - Main plot (Fungicide treated and non-fungicide treated 

plots) 
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Table A8.3 Analysis of variance of seed yield from plots treated with fungicides to create low 

diseased plots, and unsprayed plots to create highly diseased plots of pea cv. CDC Bronco, 

Cooper, CDC Golden, SW Midas under natural inoculum conditions at Swift Current 2012, 

2013, 2014 and at Stewart Valley 2013 and in an A. pisi inoculated experiment at Saskatoon in 

2014. 

Type 3 Tests of Fixed Effects 

Year Location Effect Num 

DF 

Den DF F Value Pr > F 

2012 Swift Current Splot 3 18 1.41 0.2712 

  Mplot 1 3 0.09 0.7858 

  Mplot*Splot 3 18 0.51 0.6820 

 Stewart Valley Splot 3 17 293.58 <.0001 

  Mplot 1 3 0.15 0.7236 

  Mplot*Splot 3 17 3.75 0.0310 

2013 Swift Current Splot 3 18 4.03 0.0234 

  Mplot 1 3 0.07 0.8121 

  Mplot*Splot 3 18 1.59 0.2271 

 Stewart Valley Splot 3 18 6.72 0.0031 

  Mplot 1 3 0.55 0.5135 

  Mplot*Splot 3 18 0.12 0.9475 

2014 Swift Current Splot 3 18 19.36 <.0001 

  Mplot 1 3 0.03 0.8778 

  Mplot*Splot 3 18 0.11 0.9547 

 Saskatoon Splot 3 18 4.47 0.0164 

  Mplot 1 3 0.17 0.7043 

  Mplot*Splot 3 18 0.67 0.5834 

2012,2013 & 2014 Pooled data Splot 3 136 3.70 0.0134 

  Mplot 1 23 0.02 0.8816 

  Mplot*Splot 3 136 0.13 0.9394 

*Splot - Subplot (Cultivars); Mplot - Main plot (Fungicide treated and non-fungicide treated 

plots) 
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Table A8.4 Analysis of variance of incidence of seed infection with A. pisi of seeds harvested 

from plots treated with fungicides to create low diseased plots, and unsprayed plots to create 

highly diseased plots of pea cv. CDC Bronco, Cooper, CDC Golden, and SW Midas under 

natural inoculum conditions at Swift Current 2013, 2014 and at Stewart Valley 2013 and in an A. 

pisi inoculated experiment at Saskatoon in 2014. 

Type 3 Tests of Fixed Effects 

Year Location Effect Num 

DF 

Den DF F Value Pr > F 

2013 Swift Current Splot 3 18 0.57 0.6429 

  Mplot 1 3 1.99 0.2529 

  Mplot*Splot 3 18 0.65 0.5935 

 Stewart Valley Splot 3 18 0.27 0.8443 

  Mplot 1 3 0.00 1.0000 

  Mplot*Splot 3 18 1.82 0.1800 

2014 Swift Current Splot 3 18 0.85 0.4842 

  Mplot 1 3 52.78 0.0054 

  Mplot*Splot 3 18 1.16 0.3535 

 Saskatoon Splot 3 18 2.21 0.1224 

  Mplot 1 3 15.57 0.0290 

  Mplot*Splot 3 18 1.47 0.2575 

2013 & 2014 Pooled data Splot 3 90 0.51 0.6796 

  Mplot 1 15 13.41 0.0023 

  Mplot*Splot 3 90 0.64 0.5917 

*Splot - Subplot (Cultivars); Mplot - Main plot (Fungicide treated and non-fungicide treated 

plots) 
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Appendix 9. Agronomic management of the field experiments in 2012, 2013 and 2014 in Swift 

Current, Stewart Valley and Saskatoon for genetic control of Ascochyta pisi. 

Agronomic information 2012 2013 2014 

Swift Current Swift Current Stewart Valley Swift Current Saskatoon 

Planting date 25 April 08 May 09 May 01 May 10 May 

Pre-seeding herbicide 23 April, Edge 

granular 

17kg/ac 

01 May, Edge 

granular 

17kg/ha 

No application 

 

25 April, 09 May 

Edge 17kg/ha, 

weathermax+heat 

500ml/ac &10.54 

g/ac 

No application 

 

Post emergence No Application 28 May. 

Odyssey 17.3 

g/ac 

06 June, 

Odyssey 

17.3 g/ac 

No application 

 

No application 

 

Pea weevil treatment 30 May, 

Matador 

33ml/ac 

01 June & 18 

June 

Metador 

33ml/ac 

05 June, 

Metador 

33ml/ac 

27 may & 02 

June, Metador 

33ml/ac 

No application 

 

Seed Inoculum No application No application No application June 20,2014 June 15, 2014 

July 13, 2014 

Disease rating 

1st disease rating 

2nd Disease rating 

3rd Disease rating 

 

 

 

05 July 

 

31 July 

 

- 

 

16 July 

 

07 August 

 

15 August 

 

17 July 

 

09 August 

 

- 

 

 

25 June 

 

15 July 

 

30 July 

 

26 June 

 

16 July 

 

31 July 

Dessicants 07 August, 

Reglone 700 

ml/ac 

17 August, 

Reglone 700 

ml/ac 

17 August, 

Reglone 700 

ml/ac 

16 August, 

Reglone 700 

ml/ac 

 

No application 

 

Harvest date 13 August 26 August 23 August 02 September 25 August 
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Table A9.1 Analysis of variance and linear contrast analysis of disease severity caused by 

Ascochyta pisi on PR-10 RILs developed from a cross of pea cv. CDC Bronco and Cooper tested 

under natural condition at Swift Current and Stewart Valley in 2012 and 2013, and under 

irrigation at Saskatoon and natural condition in Swift Current 2014.  

Type 3 Tests of Fixed Effects 

Year Location Effect Num 

DF 

Den 

DF 

F 

Value 

Pr > F 

2012 Swift Current RILs 57 1 0.82 0.7252 

2013 Swift Current RILs 49 1 8.00 0.2748 

 Stewart Valley RILs 49 1 4.49 0.3611 

2014 Swift Current RILs 49 53 1.00 0.4978 

 Saskatoon RILs 49 5.28 0.56 0.8697 

2012, 2013& 

2014 

Pooled data RILs 57 1 Infty <.0001 

 

Contrasts 

Year Location Label Num 

DF 

Den 

DF 

F 

Value 

Pr > F 

2012 Swift Current CDCBronco 

vs Cooper 

1 4 0.21 0.6680 

2013 Swift Current CDCBronco 

vs Cooper 

1 1 0.43 0.6312 

 Stewart 

Valley 

CDCBronco 

vs Cooper 

1 5.72 0.01 0.9424 

2014 Swift Current CDCBronco 

vs Cooper 

1 53 1.24 0.2705 

 Saskatoon CDCBronco 

vs Cooper 

1 10.2 0.95 0.3517 

2012, 

2013& 2014 

Pooled data CDCBronco 

vs Cooper 

1 1 Infty <.0001 
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Table A9.2 Analysis of variance and linear contrast analysis of disease severity caused by 

Peyronellaea pinodes on PR-10 RILs developed from a cross of pea cv. CDC Bronco and 

Cooper tested under natural condition at Swift Current and Stewart Valley in 2012 and 2013, and 

under irrigation at Saskatoon and natural condition in Swift Current 2014.  

Type 3 Tests of Fixed Effects 

Year Location Effect Num DF Den DF F Value Pr > F 

2013 Swift Current RILs 49 97.1 0.99 0.5087 

 Stewart Valley RILs 49 1 4.43 0.3633 

2014 Swift Current RILs 49 53 3.60 <.0001 

 Saskatoon RILs 49 8.26 0.40 0.9776 

2012, 2013& 

2014 

Pooled data RILs 58 461 1.67 0.0023 

 

 

Contrasts 

Year Location Label Num 

DF 

Den 

DF 

F 

Value 

Pr > F 

2013 Swift Current CDCBronco 

vs Cooper 

1 97.1 1.29 0.2582 

 Stewart Valley CDCBronco 

vs Cooper 

1 1 5.90 0.2487 

2014 Swift Current CDCBronco 

vs Cooper 

1 53 0.00 1.0000 

 Saskatoon CDCBronco 

vs Cooper 

1 11 2.09 0.1760 

2012, 2013& 

2014 

Pooled data CDCBronco 

vs Cooper 

1 235 2.08 0.1506 
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Table A9.3 Analysis of variance and linear contrast analysis of seed yields (averaged across 

locations and years) for PR-10 RILs developed from a cross of pea cv. CDC Bronco and Cooper 

tested under natural condition at Swift Current and Stewart Valley in 2012, 2013 and under 

irrigation at Saskatoon and natural condition in Swift Current 2014.  

Type 3 Tests of Fixed Effects 

Year Location Effect Num 

DF 

Den 

DF 

F 

Value 

Pr > F 

2012 Swift Current RILs 57 1 31.51 0.1408 

2013 Swift Current RILs 49 13 8.74 <.0001 

 Stewart Valley RILs 49 104 3.66 <.0001 

2014 Swift Current RILs 49 53 6.05 <.0001 

 Saskatoon RILs 49 106 408.03 <.0001 

2012, 2013& 

2014 

Pooled Data RILs 5 1 259121 0.0015 

 

Contrasts 

Year Location Label Num 

DF 

Den 

DF 

F 

Value 

Pr > F 

2012 Swift Current CDCBronco 

vs Cooper 

1 3.67 2.06 0.2308 

2013 Swift Current CDCBronco 

vs Cooper 

1 11 1.44 0.2556 

 Stewart Valley CDCBronco 

vs Cooper 

1 104 21.70 <.0001 

2014 Swift Current CDCBronco 

vs Cooper 

1 53 4.75 0.0338 

 Saskatoon CDCBronco 

vs Cooper 

1 106 361.68 <.0001 

2012, 2013& 

2014 

Pooled data CDCBronco 

vs Cooper 

1 1 Infty <.0001 

 


