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ABSTRACT 

In modern separation design, an important part of many phase-equilibrium calculations is 

the mathematical representation of pure-component and mixture enthalpies. Mixture enthalpy 

data are important not only for determination of heat loads, but also for the design of distillation 

units. Further, mixture enthalpy data, when available, are useful for extending vapor-liquid 

equilibria to higher (or lower) temperatures, through the use of the Gibbs-Helmholtz equation.  

In this connection excess molar enthalpies for several binary and ternary mixtures 

involving ethers and hydrocarbons have been measured at the temperature 298.15 K and 

atmospheric pressure, over the whole mole fraction range. Values of the excess molar enthalpies 

were measured by means of a modified flow microcalorimeter (LKB 10700-1) and the systems 

show endothermic behavior.  

The Redlich-Kister equation has been used to correlate experimental excess molar 

enthalpy data of binary mixtures. Smooth representations of the excess molar enthalpy values of 

ternary mixtures are accomplished by means of the Tsao-Smith equation with an added ternary 

contribution term and are used to construct excess enthalpy contours on Roozeboom diagrams. 

The values of the standard deviations indicate good agreement between experimental results and 

those calculated from the smoothing equations.  

The experimental excess enthalpy data are also correlated and predicted by means of 

solution theories (Flory theory and Liebermann-Fried model) for binary and ternary mixtures, 

respectively. These solution theories correlate the binary heats of mixing data with reasonable 

accuracy. The prediction of ternary excess molar enthalpy by means of the solution theories are 
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also presented on Roozeboom diagrams. The predictions of ternary excess enthalpy data by 

means of these theories are reasonably reliable.  
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1 INTRODUCTION 

1.1 Purpose 

 The addition of oxygenated compounds to gasoline as additives instead of lead reduces 

the emissions of hazardous compounds mainly carbon monoxide. Ethers have been suggested as 

gasoline additives (Marsh et al. 1999). In this context the use of ethers as gasoline blending 

agents, requires the thermodynamic properties of mixtures involving hydrocarbons and ethers. 

Experimental data of the thermodynamic properties of these mixtures are required for process 

design calculation as well as to provide essential knowledge (i.e., types of molecular interaction) 

from the theoretical point of view. 

 Excess thermodynamic properties (excess molar enthalpy, excess molar volume, etc.) are 

of considerable practical importance to the development of chemical and petrochemical 

processes. The effects resulting from the mixing of two or more pure streams at constant 

temperature and pressure is of direct relevance to the design of process equipment. In particular 

the heat effect is directly related to the design of heat exchangers. For example the heat duty is 

directly proportional to excess molar enthalpy; which is one of the important thermodynamic 

properties of mixtures. Excess molar enthalpies can be either measured experimentally or 

estimated on the basis of solution theories.  

The main purpose of the present study is to measure the experimental excess molar 

enthalpy (or heat of mixing) for several binary and ternary mixtures. Experimental data are used 

to test the applicability of existing solution theory/models (Flory theory and Liebermann-Fried 

model). Excess molar enthalpies of multicomponent mixtures are presented by this solution 

theory, using the parameters of constituent binary systems and properties of pure components. 
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1.2 Excess Molar Enthalpy 

 Thermophysical properties of real solutions are best described by the excess properties. 

An excess molar property, ��
� , is defined by the following relation 

��
� = ∆�� − ∆��

�           (1.1) 

where ∆�� is the molar property change of mixing of the real fluids, and ∆��	
�  is the molar 

property change of mixing of the same system when it behaves like an ideal solution. The molar 

property change of mixing for a real solution is given by the following equation 

∆�� = �� − ∑ ����,��          (1.2) 

where �� is the molar property of the real solution and ��,� is the molar property of the pure 

component �, and �� is its mole fraction in the mixture. Equations (1.1) and (1.2) give 

��
� = ��� − ∑ ����,�� � − ∆��

�         (1.3) 

There are several excess properties that describe the behavior of a real solution mixture. 

They are the excess molar Gibbs free energy	(��
�), excess molar entropy	(��

� ), excess molar 

volume	(��
�), and excess molar enthalpy	(��

� ). In an ideal solution, the changes of these four 

molar properties due to mixing are  

∆��
� = ��∑ �� ln ���           (1.4) 

∆��
� = −�∑ �� ln ���           (1.5) 

∆��
� = 0           (1.6) 

∆��
� = 0           (1.7) 

While the molar volume and molar enthalpy changes on mixing are zero at all (�, �, �) 

conditions for ideal solutions, the molar Gibbs free energy and molar entropy changes on mixing 

are non-zero for ideal solutions. 
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Thus the excess molar enthalpy, which is the main object of interest in the current study, 

is defined as 

 ��
� = ∆��           (1.8) 

The excess molar enthalpy is identical with the molar enthalpy change on mixing and 

therefore is often termed as the heat of mixing. In experimental thermodynamics, this excess 

molar enthalpy is very important due to certain characteristics. First of all, it provides 

information about the energy content of the mixture, and secondly, it reflects the types of 

interaction involved between the molecules in the particular mixture (Smith et al. 2007).  The 

information contained in the excess molar enthalpy (��
� )  or excess molar Gibbs free 

energy	(��
�) is the same as that contained in the activity coefficients	(��), according to the 

equation 

��
� = −��� �

�(��
� )

��
�
�,�

= −��� ∑ �� �
�(�� ��)

��
�
�,�

�       (1.9) 

The activity coefficients are one of the fundamental properties used for the design of 

chemical processes involving phase equilibria. In this connection, the excess molar enthalpy is 

very important not only for theoretical purposes but also for practical process design. 

   

1.3 Objectives and Scope 

This study is a part of a research program initiated in our laboratory to measure and 

describe the hydrocarbons and ethers mixtures thermodynamic properties such as excess 

enthalpies. The main experimental technique used in this work is flow calorimetry. 

Flow calorimeters, similar to the one used in this work, are flexible and universal 

research tools. This excess enthalpy data can be used to obtain the vapor-liquid equilibria data. 
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Besides this the mixture prepared for measuring the ternary excess enthalpy can be used to 

determine the excess volumes. 

The objectives of this work were the following: 

1. Measure excess molar enthalpy for selected hydrocarbons and ethers systems over the 

whole mole fraction range at atmospheric pressure and temperature condition. 

2. Correlate and predict the excess enthalpy data by means of the solution theories. 

This study focuses on the calorimetric measurement of the excess enthalpy of a 

significant number of hydrocarbons-ethers systems (i.e., 10 binary and six ternary). The 

correlation of binary excess enthalpy data for the systems of interest is considered by means of 

the two solution theory (Flory theory, and Liebermann-Fried model). The parameters obtained in 

the correlation process of binary systems will be of considerable importance in predicting the 

multicomponent excess enthalpy of the systems containing the species considered in this study.  

This experimental investigation will enrich the thermophysical properties required for process 

design, especially system containing hydrocarbons and ethers.  

 

1.4 Thesis Outline 

This thesis is divided into five chapters. Chapter 1 provides a general overview of the 

importance of the excess molar enthalpy of hydrocarbons and ethers.  The definition of the 

excess molar enthalpy is also presented in this chapter and the objectives and scope are stated. 

Chapter 2 presents the review of the literature related to different types of calorimeters 

currently available for measuring the heats of mixing as well as different methods of representing 

excess molar enthalpy data.  
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Chapter 3 describes the material properties along with a detail description of the 

equipment and procedures used in this project. Validation of experimental set up and procedures 

are also presented in this chapter. 

Chapter 4 presents and discusses the results obtained in this study. The representations of 

the experimental data are also stated in this chapter. 

Finally, several conclusions and recommendation for future work have been summarized 

in chapter 5. 
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2 LITERATURE REVIEW 

 This chapter covers the review of literature related to different types of calorimeters for 

measuring heats of mixing, a search of literature for heat of mixing values, and the advantages 

and shortcomings for correlation and prediction of excess molar enthalpy data. 

 

2.1 Methods for Obtaining Heats of Mixing 

 Excess molar enthalpy measurement is carried out by means of a calorimeter. Although, 

heat of mixing can, in principle, be calculated directly from excess molar Gibbs free energy 

measurements at multiple temperatures using the Gibbs-Helmholtz relation below. 

��
� = −�� �

����
� �⁄ �

��
�
�,�

         (2.1) 

 In practice, the results from this procedure are rarely of comparable accuracy to the heats 

of mixing values measured directly in a calorimeter and often do not even agree in sign. To 

obtain accurate values of excess molar enthalpy (heat of mixing) it is necessary to use a 

calorimeter.   

A calorimeter is a device for measuring the heat effect that arises from the physical or 

chemical processes upon mixing of two or more components. Various types of calorimeters have 

been developed based on different modes of operation for measuring heats of mixing during the 

last several decades. There are three types of commercial calorimeters that are currently 

employed for measuring heats of mixing: flow microcalorimeters, isothermal titration 

calorimeters, and differential scanning calorimeters. This review is limited to those calorimeters 

that are operated under normal temperatures and pressures. 
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2.1.1 Flow Calorimeter 

 In a flow calorimeter, two component liquids are added to the mixing cell at steady flow 

rates and the change of enthalpy resulting from mixing process is measured under constant 

temperature and pressure. Monk and Wadso (1968) described a prototype of a flow reaction 

microcalorimeter (LKB 10700-1) for determining the heat of dilution of aqueous electrolyte. 

Later Tanaka et al. (1975) depicted the potential application of the flow microcalorimeter (LKB 

10700-1) to non-electrolyte solutions. In the same paper they presented a modification of the 

flow microcalorimeter (LKB 10700-1) to measure the heat of mixing of hydrocarbons. In their 

modification, they improved the accuracy of heat of mixing measurement by modifying several 

auxiliary components of the calorimeter. The operating techniques of the flow microcalorimeter 

(LKB 10700-1) were further modified by Kimura et al. (1983). They reported 0.5% better 

precision than the previous measurement with the same type of calorimeter. The flow calorimeter 

became extremely popular among the investigators because these calorimeters can be used to 

generate high quality data. Their introduction also gave new momentum to the study of heats of 

mixing (Marsh and O’Hare, 1994). The research group of Dr. Benson at the University of Ottawa 

reported a substantial number of reliable excess molar enthalpy data of non-electrolyte systems 

with this calorimeter. The flow microcalorimeters have a variety of applications ranging from 

heats of mixing to kinetics of chemical reaction, and bio-molecular interaction (Leskiv et al. 

2009). 

One of the main advantages of the flow calorimeter is that with a variable flow setting a 

complete excess molar enthalpy composition curve can be produced very efficiently.  
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2.1.2 Isothermal Titration Calorimeter 

  Isothermal titration calorimeters are built on the similar heat conduction principle as the 

flow calorimeters. In a titration calorimeter, a fixed amount of liquid A is placed inside a vessel. 

While liquid A is continuously stirred by a magnetic stirrer, a second liquid B is injected by a 

syringe pump. The heat evolved during the interaction of liquid A with liquid B is monitored by 

the calorimeter. Liquid B can be introduced either continuously or periodically in fixed volumes. 

A prototype of an isothermal titration calorimeter was first described and developed by 

Christensen et al. (1968) and Wadso (1968). Initially the calorimeter was developed for 

measuring the heat of reaction of aqueous solutions. Holt and Smith (1974) modified the 

calorimeter for measuring the heats of mixing of hydrocarbons. The reported accuracy in excess 

molar enthalpy measurement by Holt and Smith (1974) is higher than that of the previous results. 

For measuring the heats of mixing with greater accuracy, the isothermal titration calorimeters are 

further developed by Rodriguez de Rivera et al. (2009). Previously this type of calorimeter was 

mostly used for measuring the thermodynamic properties of bio-molecular interaction. Most 

recently, Liao et al. (2010) reported an improved accuracy in excess enthalpy measurements for 

hydrocarbon containing systems with a commercial isothermal titration calorimeter. The 

advantage of using an isothermal titration calorimeter for measuring excess molar enthalpy is 

that it requires a smaller amount of component liquid and the measurement requires less time 

when compared with other types of calorimeters. But the use of isothermal titration calorimeters 

in excess molar enthalpy measurement is still in its preliminary stage. 
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2.1.3 Differential Scanning Calorimeter 

 Another versatile calorimeter is the differential scanning calorimeters (DSC). DSCs are 

used to measure a wide range of thermophysical properties of pure components as well as 

mixtures. The technique used with this type of calorimeter is known as differential thermal 

analysis (DTA). In differential thermal analysis “the difference in energy inputs into a substance 

(and/or its reaction product(s)) and a reference material is measured as a function of temperature 

whilst the substance and reference material are subjected to a controlled temperature 

programme” (Mackenzie, 1985). The first differential scanning calorimeter was developed by 

Watson et al. (1964). Differential scanning calorimeters are mainly used for glass transition 

temperature, crystallization, fusion, oxidation, heats of reaction, and heat capacity measurement. 

Application of differential scanning calorimeters to excess enthalpy measurement is very limited. 

Jablonski et al. (2003) applied the differential isothermal scanning technique which is one of the 

modes of operation of DSC that is suitable for measuring the heats of mixing. The reported 

accuracy of the measured excess molar enthalpy for the ethylene glycol + water system by means 

of the DSC was higher than that measured by the flow calorimeter. Though the accuracy of 

measurement is low in comparison with the flow calorimeter, it has several advantages over the 

others. For example, this type of calorimeter requires a very small amount of calorimetric fluid 

and measurement is relatively faster. 

On the basis of the above discussion, a flow type calorimeter is selected for this study. 

However, the selection of calorimeter is dependent on the research requirements. As for the 

nature of the calorimetric experiments, a differential scanning calorimeter and an isothermal 

titration calorimeter is usually suitable for processes such as chemical reaction, phase change, 
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and bio-processes, whereas a flow calorimeter is much more efficient and reliable for measuring 

heat of mixing of liquid systems. 

 

2.2 System Studied 

 Marsh et al. (1999) reviewed several thermophysical properties (excess enthalpy, excess 

volume, and vapor-liquid equilibria) of binary and ternary mixtures containing oxygenates 

(gasoline additives) and hydrocarbons. This review presents that there are still significant 

number of systems for which thermodynamic property measurement are insufficient. Based on 

that review, six (6) species (hydrocarbons and ethers) were selected in this study.  

1. 1-hexene (1HX) 

2. 2,2-dimethylbutane (22DMB) 

3. 2,3-dimethylbutane (23DMB) 

4. Di-n-butyl ether (DNBE) 

5. Di-n-propyl ether (DNPE) 

6. Tetrahydrofuran (THF) 

 Automotive fuels usually contain six main classes of organic compounds: paraffins, 

isoparaffins, olefins, naphtenes, aromatics (including polyaromatic compounds), and oxygenates. 

In this study the three hydrocarbon’s (1HX, 22DMB, and 23DMB) are selected as they are the 

usual component of gasoline. The three ethers; DNBE, DNPE, and THF, are selected as the 

oxygen containing compound of gasoline. These ethers are currently being used or have potential 

to be used as a gasoline additive. Marsh et al. (1999) found that there is very little excess molar 

enthalpy measurement on systems containing branched alkanes and ethers. In the case of the 
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ethers, a large amount excess enthalpy data is available for systems containing DNBE but little 

excess enthalpy data is available for systems containing either of the other two ethers (DNPE, 

and THF). This six (6) species forms 15 binary systems. This is shown in a matrix as given by 

Table 2.1. 

Table 2.1. Matrix of binary mixtures of interest in the current study 

Species 1HX DNBE DNPE THF 22DMB 23DMB 

1HX 
 

Wang et 
al. 

(2004b) 
  

Lan et al. 
(2006) 

Wang et 
al. 

(2004a) 

Wang et 
al. (2004a) 

DNBE 
  

        

DNPE 
   

      

THF 
    

    

22DMB 
     

Hamam 
and 

Benson 
(1986) 

23DMB             

 

Heats of mixing for the binary systems 1HX + 22DMB and 1HX + 23DMB were 

reported by Wang et al. (2004a). Since the structures of 22DMB and 23DMB are similar, the 

difference in magnitude of the heat of mixing for these systems is small. For the systems of 1-

hexene with di-n-butyl ether and tetrahydrofuran, the excess molar enthalpy values have been 

reported by Wang et al. (2004b) and Lan et al. (2006), respectively. For the 1-hexene + di-n-

butyl ether system, the heat of mixing values are exothermic and their magnitude is low, whereas 

  Mixtures studied in this project 
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in the case of 1-hexene + tetrahydrofuran the heat of mixing values are endothermic with 

magnitude that are much higher than the other binary system. This is because during the mixing 

process the bond breaking of cyclic ether (tetrahydrofuran) requires more energy than the normal 

ether. Hamam and Benson (1986) reported excess enthalpy values for the 22DMB and 23DMB 

binary system. Since the components are similar in structure, they form a nearly ideal mixture, 

which is evident from the magnitude of excess enthalpy values. For the other ten binary mixtures 

involved in this work, there are no experimental results reported in the literature. 

Twenty ternary systems can be formed by the six (6) species. There are no experimental 

results reported for these 20 ternary systems. However, as shown in Table 2.2, only six (6) 

among this 20 ternary systems have been chosen for this study due to the time constrain and a 

vast amount of experimental work.  

Table 2.2. Six (6) ternary systems studied in this project 

 

The literature search was performed using DECHEMA and DDBST GmbH online 

databank. 

 

 

Substance 1 Substance 2 Substance 3 

Di-n-butyl ether 2,2-dimethylbutane 2,3-dimethylbutane 

1-hexene 
Tetrahydrofuran 2,2-dimethylbutane 

Tetrahydrofuran 2,3-dimethylbutane 

Di-n-propyl ether 

2,2-dimethylbutane 2,3-dimethylbutane 

Di-n-butyl ether Tetrahydrofuran 

Di-n-butyl ether 1-hexene  
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2.3 Correlation of Excess Molar Enthalpy 

 In thermodynamics, immense effort has been dedicated to finding ways of reliably 

correlating the thermodynamic properties of mixtures, particularly of two or more liquids. Data 

correlation approaches are very important in experimental work, because correlations reduce the 

difficulties involved in experimental procedures. There are several approaches available for 

correlating thermodynamic data of mixtures, some of them are empirical and some of them are 

theoretical. In the present study both of these two correlation approaches have been used for 

experimental data correlation.   These two data correlation approaches for binary and ternary 

systems are described in the following section.  

 

2.3.1 Empirical Expression 

 In scientific practice, a mathematical model can often be used to describe a property 

quantitatively. Empirical expressions are mathematical models that describe the general behavior 

of a property. In the representation of a thermodynamic property, empirical expressions are very 

useful and convenient but empirical expressions have limitations. The parameters of these 

expressions are fitted to the experimental data and the number of parameters can be determined 

according to the correlation accuracy required.  

 

Binary Systems 

 There are several empirical expressions available in the literature for presenting excess 

thermodynamic properties of binary liquid mixtures. A universally used one is the simple 

algebraic relation of Redlich and Kister (1948), who assumed a particular form of ��	as a 
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function of mole fraction (�) with one or more adjustable parameters. The parameters are chosen 

by the method of least square to minimize the error in	��. This equation obeys the general 

characteristic of 	�� i.e., for both pure components, the 	�� become zero. By choosing a 

sufficient number of parameters this equation can be fit to any set of experimental data. The 

expression of the Redlich-Kister polynomial is presented in section 4.1.1 of chapter 4. 

 

Ternary Systems 

 As the number of components in the mixture increases, the determination of 

thermodynamic properties becomes more painstaking. Therefore, the applicability of predictive 

methods is of great interest for estimating ternary properties from the constituent binary 

experimental data. The main advantage of using empirical expressions is that they usages the 

binary excess enthalpy data to calculated the ternary excess enthalpy data. There are several 

correlations have been proposed for predicting ternary heats of mixing from constituent binary 

mixtures. Some of the model proposed are; Redlich and Kister (1948), Scatchard et al. (1952), 

Tsao and Smith (1953), and Kohler (1960). All of these models can be used satisfactorily to 

predict ternary heats of mixing from corresponding binaries.  Among these, the Tsao and Smith 

(1953) correlation method with an added ternary contribution term by Morris et al. (1975) is 

popular used due to its prediction accuracy. Bensons and coworkers (1992-2006) found that the 

Tsao and Smith (1953) correlation method with a Morris et al. (1975) type ternary contribution 

term provides the best fit of excess molar enthalpy for ternary mixtures over the other correlation 

approach. These equations are presented in section 4.2 of chapter 4. 
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2.3.2 Solution Theories 

 Another approach for �� correlation and prediction is based upon solution theory. The 

main purpose of the solution theories is to describe the behavior of the liquid mixture in terms of 

intermolecular interaction and structure of the molecules.  There are several solution theories 

available in the literature and most of these solution theories are based on two concepts of liquid 

mixtures; the regular solution theory and the local composition theory. Although many solution 

theories have been developed to date, due to a limited understanding of intermolecular forces, 

they are still in an empirical or semi-empirical level. Usually, some of the parameters of these 

models have to be determined by regressing experimental data. 

The very first solution theory that was developed for excess molar enthalpy was the van 

Laar model in the year 1906, which is based on the assumption that	�� = �� = 0. Later this 

assumption of van Laar termed as the regular solution theory (Sandler, 1999). The regular 

solutions obey the relations	�� = �� = ��, 	�� = �� = 0, i.e. the same assumption as van Laar 

used.   

The regular solution models are based on random mixing of molecules. However, due to 

intermolecular forces, the mixing of molecules is never entirely random; Wilson (1964) found a 

way to account for the non-randomness which led him to the famous Gibbs free energy equation 

based on the local composition concept. 

�� ��⁄ = −∑ �� ln(1 − ∑ ��Λ��� )�         (2.2) 

 There are several models, which employ the local composition concept. As the local 

composition models account for the non-randomness of molecules, they can describe the mixture 

behavior more rationally than the regular solution models. Although there are many successful 

local composition models, it could be reasonably argued that the most well known and widely 
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used ones are the Wilson (Wilson, 1964), NRTL (Renon and Prausnitz, 1968), and UNIQUAC 

(Abrams and Prausnitz, 1975) equations. These local composition models are reported in the 

literature, and they all rely on different expression for excess Gibbs free energy.  These models 

are originally developed for phase equilibria calculation and are also called activity coefficient 

models. These activity coefficient models can be used to represent the excess molar enthalpy of 

binary and multicomponent systems by means of the Gibbs-Helmholtz relation (eq 2.1) 

Benson and coworkers (1993-2006) studied the heats of mixing for large number of 

binary and ternary mixtures involving hydrocarbons and oxygenates (alcohols & ethers). During 

the course of their study, they found that the Flory theory (Flory, 1965; Abe and Flory, 1965) and 

the Liebermann-Fried Gibbs free energy model (Liebermann and Fried, 1972a,b) have great 

potential to correlate and predict the excess molar enthalpy of non-polar binary and ternary 

systems, especially system containing hydrocarbons and ethers. Hence, these two solution 

models are adopted in this study to investigate the present binary and ternary mixtures. A short 

review of these two solution models is presented in the following section. 

 

Flory Theory 

 The Flory theory (Flory, 1965; Abe and Flory, 1965) was originally proposed for liquid 

mixture of chain molecules. Based on the simple partition function, an equation of state was 

derived which is related to the excess function of mixtures (Flory, 1965). Benson and Pflug 

(1970) used the Flory equation for correlating the excess molar enthalpies of binary mixtures. In 

their approach they used the pure component properties, such as molar volume (��) isobaric 

thermal expansivity (��), and the isothermal compressibility (��), and a single binary 

parameter, the interchange energy parameter (���), which is usually determined from the 
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regression of experimental data. Realizing the potential application of Flory theory in predicting 

a multicomponent mixture excess molar enthalpy using only the interaction parameters obtained 

from the constituent binary mixture and pure component properties, Wang et al. (1993), 

successfully applied the Flory theory to multicomponent mixture using the equation outlined by 

Brostow and Sochanski (1975). Later, Benson and coworkers (1993-2001) applied the Flory 

theory to a significant number of multicomponent systems. Peng et al. (1999) correlated the 

interchange energy parameter (���) of the Flory theory for 94 binary system in terms of acentric 

factor. The Flory equation for excess molar enthalpy for multicomponent system is presented in 

section 4.1.1 of chapter 4. 

 

Liebermann-Fried Model 

 Many solution theories cannot be used to predict Gibbs free energy (��) from the 

experimental excess molar enthalpy (��)  data with the aid of Gibbs-Helmholtz equation (eq 

2.1) or vice versa. Realizing this fact, Liebermann and Fried (Liebermann and Fried, 1972a,b) 

proposed a Gibbs free energy (��) model, which is based on the sum of two separate terms. 

�� = ��
� − ��f(��

�)          (2.3) 

For binary system these two terms have the following expression 

��
� = −

���� ��(������)

(��������)(��������)
         (2.4) 

and  

��f(��
�) = ��[�� ln��� + �� ���

���
⁄ � + �� ln(�� + �� ���

���
⁄ )   (2.5) 
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The first term is responsible for the non-ideal behavior of liquid mixture due to 

intermolecular interaction. The second term accounts for the presence of different sized 

molecules in the mixture. This proposed model of Liebermann and Fried has two empirical 

parameters, which were determined by regressing either experimental �� or �� data. Another 

shortcoming of many solution theories is the temperature independency of the empirical 

parameter. This was also overcome by Liebermann and Fried (1972b) who introduced a 

correlation to account for the temperature dependency of the interaction parameter. The 

expression of the correlation presented by Liebermann and Fried (1972b) is 

� =
���

��

���
�             (2.6) 

where, ���
�  is the interaction parameter at a reference temperature �� obtained by regressing the 

experimental data. ���
��  is the interaction parameter at a different temperature ���. And the 

constant k is obtained from the following relation 

2 ln � − � �
��

����
�

ln(���
� ���

� ) + ln(���
� ���

� ) = 0      (2.7) 

Wang and Lu (2000) used the Lieberman-Fried model to correlate the experimental 

excess molar enthalpy and successfully predicted the binary vapor-liquid equilibria (VLE) for a 

methyl tert-butyl ether + alkanes mixture using the parameters determined earlier at a different 

temperature. Peng et al. (2001a, b) predicted the multicomponent VLE from the Liebermann-

Fried model using only the binary interaction parameters determined from the excess molar 

enthalpy values of the constituent binary mixtures. They also showed that the parameter 

determined from the excess molar enthalpy data at one temperature can be used to predict VLE 

of the same system at another temperature. Wang et al. (2001) also showed that the Lieberman-

Fried model can be employed for the prediction of ternary excess molar enthalpy using only the 
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constituent binary interaction parameters. The equation for representing the excess molar 

enthalpy from the Liebermann-Fried model is presented in section 4.1.1 of chapter 4.  
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3 MATERIALS AND METHODS 

3.1 Materials 

 The properties along with the source and purities of the chemicals used in this study are 

listed in Table 3.1. Apart from storing the ethanol over Type 4A molecular sieve beds, all the 

chemical were used without further purification. All the chemicals were degassed prior to use by 

means of the vacuum technique.  

Table 3.1. Source, purity and densities of component liquids at 298.15 K 

Materials 
Source 

 
Purity (%) 

 

 Density/	(g ∙ cm��) 

 Measured Literature 

Ethanol Alcohol Inc. >99.9  0.78520 0.78560(a) 

n-hexane Alfa Aesar >99  0.65516 0.65512(a) 

1-hexene Alfa Aesar >99  0.66876 0.66873(b) 

2, 2-dimethylbutane Alfa Aesar >99  0.64459 0.64492(b) 

2, 3-dimethylbutane Sigma-Aldrich >99  0.65702 0.66236(b) 

Di-n-propyl ether Alfa Aesar >99  0.74198 0.74259(c) 

Di-n-butyl ether Sigma-Aldrich >99  0.76399 0.76394(d) 

Tetrahydrofuran Sigma-Aldrich >99  0.88208 0.88209(e) 

(a)Wang et al. (1992); (b)Wang et al. (2004a); (c)Liao et al. (1997)(d); Peng et al. (2002); 
(e)Lan et al. (2006). 

 
The densities of these materials were determined by means of an Anton Paar digital 

density meter (DMA-5000M). The uncertainty of density and temperature measurement were 

±0.000005	g. cm�� and	±0.001	℃, respectively as provided by the manufacturer. In Table 3.1 

the measured density (at t = 24.999	℃) in the current study were given along with literature 

values. 
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3.1.1 Degassing of Liquid 

 Dissolved gases in pure component liquid have erroneous effect on the thermodynamic 

property measurement (excess molar enthalpy, vapor-liquid equilibria and density). Most of the 

gases (air, nitrogen, oxygen, hydrogen and carbon dioxide etc) that are dissolved in hydrocarbons 

decrease the density except carbon dioxide, which increases the density (Ashcroft and Isa, 1997). 

In flow microcalorimetric excess molar enthalpy measurement, dissolved gas increases the 

possibility of bubble formation in the mixing cell. This bubble formation leads to erroneous 

results of excess molar enthalpy (Tanaka et al. 1975). To avoid these shortcomings, all the 

component liquids were degassed by means of the vacuum (pressure reduction) method (Figure 

3.1).  

The flask (a) with a pure component liquid was placed on a magnetic stirrer (b), which 

drove the magnetic bar (c) inside the flask to agitate the liquid. The outlet of the flask was 

connected to a vacuum trap (d) through a 3-way valve (e). The other end of the vacuum trap was 

connected to the vacuum pump (f). When the vacuum pump was turned on a negative pressure 

was created in the system, which reduced the solubility of the dissolved gas in the component 

liquid. Stirring under reduced pressure helps to increase the efficiency of degassing. The 

degassing process is relatively faster and easier than other method of degassing (Heating, 

Substitution by inert gas). The vacuum trap was placed in an ice batch, which prevents the 

release of the component liquid as vapor, the component vapor condensing with the trap. This 

degassing process continues until the gas bubbles in the pure liquid have disappeared. This 

process requires about five to ten minutes.   
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Figure 3.1. Schematic diagram of vacuum degassing process 
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3.2 Experimental Setup 

 Excess molar enthalpies have been measured by means of a modified flow 

microcalorimeter (LKB 10700-1). The auxiliary equipment and the operating procedure of the 

microcalorimeter were modified by Tanaka et al. (1975) to improve the precision of heats of 

mixing measurement. The modification made in particular to the original air bath temperature 

controlling system. The output of the thermopile circuit was digitized by acquiring the data in a 

microcomputer through amplification. The original calibration circuit was modified to provide a 

digital measure of the current supplied. Also the original flow system of the calorimeter was 

modified. 

       

Figure 3.2. Schematic diagram of experimental setup for heats of mixing measurement 

Calibration Unit

External 
Cooling Bath

Pump A Pump B
Data 

Acquisition 
Unit

Water Bath

Waste

Calorimeter 
Unit

Fluid Flow

Electrical 
Line



24 
 

Figure 3.2 shows the schematic diagram of experimental setup, which consist of a 

calorimeter, a calibration unit, an external thermostatic bath, flow system, and data acquisition 

unit. The calorimeter unit is placed in the water bath whose temperature is controlled by the 

external thermostatic bath at a desired temperature. The temperature of the water bath is 

monitored by means of thermometer (HP, Model-2804A). The temperature of the water bath is 

maintained at 0.005	℃ variation under the experimental condition.  Two precision positive 

displacement syringe pumps with four adjustable gear ratios, built in the national research 

council Canada (NRCC) is used to delivered the calorimetric fluid through the teflon tubing at a 

constant flow rate in the calorimeter mixing cell. The previous analog flow measuring unit 

(Tanaka et al. 1975) is replaced by a microprocessor equipped flow measuring unit. The details 

of the modification are presented in Appendix A1. The details of the calibration unit and 

calibration process are described in section 3.2.1. The data acquisition unit consists of a signal 

amplifier (NUDAM, ND-6011), a digital signal converter (NUDAM, ND-6520) and a 

microcomputer.  

 

 

 

 

 

 

 Figure 3.3. Schematics of the calorimeter unit 
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The microcalorimeter unit (Figure 3.3) consists of an auxiliary heat exchanger, two 

calorimetric cells and a series of thermocouples (thermopile). Originally, of the two calorimetric 

cells, one was functioning as the main mixing cell and the other as a reference cell. Tanaka et al. 

(1975) found that the baseline voltage of the calorimeter can be reduced if the reference cell was 

kept empty and they connected the inlet and outlet of the reference cell together. The mixing cell 

was sandwiched between two thermopiles (series of thermocouples). Any changes in temperature 

in the mixing cell are detected by these thermopiles and the thermopile differential voltage is 

collected in the computer through the data acquisition system. 

 

3.2.1 Calibration of the Calorimeter 

 Calibration plays a very important role in the heat of mixing measurement. It establishes 

the relation between the heat effect and thermoelectric output when there is no mixing of fluids. 

This relation is established for each pure fluid at constant temperature, and for each syringe 

pump at different flow rates. For establishing this relation there are two different approaches 

available in calorimetric practice: electrical and chemical. Only the electrical calibration 

procedure is discussed here. In this procedure, one pure component liquid was pumped at a 

constant motor speed (i.e., 450, 690, 830, 1070, 1310 and 1650 counts ∙ s��) through the mixing 

cell. The baseline voltage due to flow (��
�) was recorded. The calibration heater was then turned 

on, to simulate the mixing process. At this point the baseline voltage shifts, after a certain period 

of time the voltage became steady, and then the voltage (�� ) was recorded. 
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For this purpose a constant DC voltage from a power supply (Trygon PLS 50-1) was 

applied to the calorimeter heater through a standard resistance ��  in series, while the fluid flow 

through the calorimeter at a selected flow rate. The potential across the resistance and the current 

passes through the heater were recorded using a digital multimeter (Keithly Model 171). The 

current	(� = �/��) passing through the calorimeter heater having a resistance ��,	supplies a 

power of ���� to the calorimetric cell. This power causes the baseline voltage to shift to	�� . The 

calibration constant is thus, calculated by the following equation. 

ℰ (� ∙ ��� ∙ ���)⁄ =
����

��
����

=
(�/��)

���

��
����

		       (3.1) 

where the units of �,�	(�	&	�� ),and	�	(��	&	��) are ampere(A),volts(v),and	ohm(Ω) 

respectively. The value of the standard resistance,	��,was	10.00Ω, and the calibration resistance, 

��,was	49.52Ω. 

This procedure was repeated for different flow rates. A calibration curve showing 

ℰ	��. counter	reading(ℛ) was then obtained for each calorimetric fluid.  

Tanaka et al. (1975) found that the calibration constant is a function of volumetric flow 

rate and the volumetric heat capacity.  Later Kimura et al. (1983) used a water bath instead of the 

Figure 3.4. Calibration circuit diagram 
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air bath originally used by Tanaka et al. (1975) and found that the effect of volumetric heat 

capacity is negligible for normal operation. Replacement of the air bath by the water bath also 

improves the stability of the baseline voltages. A similar relation between calibration constant, ℰ,  

and flow rate, ℛ , has been found in the present: 

ℰ = �� + ��ℛ            (3.2) 

where �� and �� are constant for a given liquid, and the flow rate ℛ  has units of counts ∙ s��. 

 

3.3 Operational Procedure 

3.3.1 Binary System 

 The heat of mixing measurement was started when the external water bath had been kept 

running for several hour to get a steady temperature of 25.000	±	0.005	℃. For a binary system, 

the component liquids after degassing were charged to the syringe pump. Then both the 

component liquids were pumped at specified constant flow rates that would lead to the combined 

flow rate of the two pumps equal to	0.005	cm�� ∙ s��. By doing this, it was possible to set the 

motor speed and gear ratio to produce any mole fraction within an estimated error of 	±	0.0005 

(Tanaka et al. 1975). 

 To check the repeatability of the measurement, the measurement was started at a mole 

fraction near �� = 0.5 and ended with a pure component 1(i. e., �� = 1.0) changing the mole 

fraction in increments of 0.05. This finished one half of the run. The measurement was started 

again near �� = 0.5 and ended with pure component 2(i. e., �� = 0.0). 

 The voltage readings at �� = 0.0 and �� = 1.0 were taken as baseline voltages ��
�(��) 

and	��
�(��), respectively, for the pure component liquids. The baseline voltage for a 

mixture	��
� (�) , the same as that presented by Tanaka et al. (1975).  
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��
� (�) = ����

�(�) + � ���
�(�)        (3.3) 

where �� is the volume fraction of component	�, which is defined as 	�� = �� ∑ ���⁄ .  

The voltage reading for every experimental point was registered on a computer through 

an instrument coupler (ICS Electronics Corporation, Model: 4880). An average of 200 data 

points was taken as the final voltage reading of the mixture.  

The values of excess molar enthalpies of the mixture are calculated from the relation given by 

Tanaka et al. (1975): 

��
� =

ℰ� [�� (�)���
� (�)]

��� �� ��⁄ �� �� �⁄ �×(���� �)
        (3.4) 

where �� �
 is the molar volume of component �. The mixture calibration constant,	ℰ� , for the 

mixture was obtained from the pure component calibration constant, ℰ� and the flow rates of the 

constituent pure substances by the following equation. 

ℰ� (J ∙ v�� ∙ cm�)⁄ = ��ℰ� + � �ℰ�        (3.5) 

 Details of the calculation procedure for binary system are presented in Appendix B1. 

 

3.3.2 Ternary System 

 Measurement of ternary heats of mixing involved several steps. First of all, the excess 

molar enthalpy for the binary mixtures of component 2 and component 3 were measured over the 

whole mole fraction range. Then the experimental data was fitted with a smoothing equation 

(Redlich-Kister) to get excess molar enthalpy at any desired mole fraction. In the second step, 

three binary mixture of component 2 and component 3 at a fixed mole fraction ration (�� ��⁄ =

0.25,0.50,0.75) were prepared. The prepared binary mixtures were taken to be a pseudo-pure 

component to measure the excess molar enthalpy ��,����
�  for the ternary mixture consisting of 
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component 1 and the binary mixture of component 2 and component 3. Since the mixtures of 

components 1+23 used in this step are not true binary mixtures, they are referred to as pseudo-

binary mixture. Finally, the ternary excess molar enthalpy ��,���
�  was determined by means of 

the following equation. 

��,���
� = ��,����

� + (1 − � �)��,��
�         (3.6) 

where ��,��
�  is the excess molar enthalpy of particular binary mixture and �� is the mole fraction 

of component 1.  

 

Preparation of the Pseudo-Binary Mixture 

 A Mettler H315 precision balance (Fisher Scientific Company) with a readability of 0.1 

mg and a range of 1000 g was used for preparing all the binary mixtures in this study. An 

appropriate amount of degassed component 2 was weighed and poured in to a flask. Then 

component 3 was weighed and poured into the same flask. Prepared binary mixture were stored 

in a glass flask with a magnetic stirring bar and place on a magnetic stirrer for proper mixing. 

Before the measurement the room temperature, barometric pressure and relative humidity were 

recorded to correct the measurement to give the weight in vacuum. 

The preparation of a specified composition binary mixture involves two steps: pre-

estimation of weights and the correction of the measurements to give the weights in vacuum. 

 

Pre-estimation of Weights 

Before the preparation of a specific binary mixture, the amounts of each component 

required were estimated. The weight estimation process is described in the following example: 

For a specific binary mixture, the mole fractions were calculated by the following formula: 
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�� =
� �
� �

� �
� �

�
� �
� �

 and  �� =
� �
� �

� �
� �

�
� �
� �

        (3.7) 

where, � �	and		� � are the molecular weight and expected mass of component �, respectively. 

For a binary mixture of �� = �� = 0.50 the weight ratio is as follows 

� �

� �
=

� �

� �
	��	�� = � �

� �

� �
         (3.8) 

The � �	and	� � can be expressed in terms of the volume by the following equation 

� � = ����           (3.9)  

where, ��	and	�� are density and volume of component �, respectively. 

With equations (3.8) and (3.9), the volume ratio of the two components was then determined as  

�� =
� �

��
=

� �� �

� ���
          (3.10) 

Equations (3.7) to (3.10) provide a guideline for preparing binary mixture at a selected mole 

fraction. 

 

Weight Correction 

 According to Archimedes principle, when an object is weighed while immersed in a fluid 

environment that object is subject to a buoyancy effect from the surrounding fluid. In this 

connection, when a sample is weighed upon any analytical balance, the sample experiences the 

effect of buoyancy of the surrounded air (Bauer, 1959). In the present study, the pure component 

liquid being weighed also experiences this buoyant effect of air. So, before calculating the mole 

fraction and molecular weight of the prepared binary mixture, the weight of pure component 

liquid must be corrected to account for the buoyancy of air by means of the formula given by 

Bauer (1959). A sample calculation of the weight correction in vacuum is presented in Appendix 

B2.  
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Measurement of � �,����
�  Pseudo Binary mixtures 

 Pure component 1 was pumped into the calorimeter by pump A, while a prepared binary 

mixture consisting of component 2 and component 3 was pumped as a pseudo-pure component 

to the mixing cell by pump B. Excess molar enthalpy calculation procedure for the pseudo binary 

mixture is identical to that for a binary mixture. 

All the prepared ‘fixed composition’ binary mixtures were calibrated using pump B. The 

calibration procedure for the mixture is the same as that outlined for the pure substance in section 

3.2.1.  A complete sample calculation of heat of mixing for a pseudo binary mixture is presented 

in Appendix B3. 

 

3.4 Verification of the Calorimeter 

 It was necessary to check the reliability of the experimental setup in order to ensure the 

accuracy of the experimental results. In this respect, the ethanol (1) + n-hexane (2) binary system 

was used to check the reliability of the calorimeter. O’Shea and Stokes (1986) measured the heat 

of mixing of this system by means of an isothermal dilution calorimeter. 

The works of O’Shea and Stokes (1986) presents the most complete set of data and is 

taken as the main reference system. However, current data is also compared with the data from 

Wang et al. (1992), who used a flow microcalorimeter (LKB 10700-1), and from Mato et al. 

(2006) whose data were measured by a Calvet microcalorimeter. The result of the present study 

along with the results of the above mentioned three different investigations of the same binary 

system have been correlated using the smoothing function given by O’Shea and Stokes (1986).  

 



32 
 

 

Figure 3.5. Deviations ��� = ���
� − � �,��

� 	(eq	3.11)� of the excess molar enthalpy at 

temperature 298.15K for �� ethanol(1) + �� n-hexane(2) plotted against mole fraction	��. 

Experimental Results:	⊕ , Present work; ∎, O’Shea and Stokes (1986); ∆, Wang et al. (1992); ⊡ , 

Mato et al. (2006); Curves:        , ±1% , and        , ±2%  deviation from equation (3.11). 

 

��
� (J ∙ mol��)⁄ = ��(1 − ��){1 + 0.96(2�� − 1 )}��{2227.55(2�� − 1 ) + 1472.22(2�� −

																										1)� + 470.59(2�� − 1 )� + 641.92(2�� − 1 )� + 212.41(2�� − 1 )�} (3.11)  
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The deviations of experimental results from the smoothed results of O’Shea and Stokes 

are plotted and compared with other sets of data from the literature in Figure 3.5. The figure 

serves to show that the average discrepancy of the present data is less than		±1%  of the 

calculated enthalpy from the O’Shea and Stokes correlation for each mole fraction in the central 

range of composition.  
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4 RESULTS AND DISCUSSION 

The heats of mixing for the ten binary and six ternary systems of interest are presented 

and discussed in this chapter. The experimental results for the binary mixtures along with the 

Redlich-Kister correlation are presented first. The experimental results are also correlated using 

the Flory theory (1965) and the Liebermann-Fried model (1972). The excess molar enthalpy for 

six ternary mixtures and the correlation of the experimental data by means of the Tsao and Smith 

(1953) equation are then presented and discussed. The excess enthalpy predictions of the ternary 

systems by means of the solution theories are also presented. 

 

4.1 Excess Molar Enthalpy of the Binary Systems  

 The ten (10) binary systems studied in this project are listed in Table 4.1. The 

experimental excess molar enthalpy data for these mixtures were determined at 298.15	K and are 

summarized in Tables 4.2a and 4.2b.  

Table 4.1. Binary mixtures of current interest  

System Component 1 Component 2 

1 THF 22DMB 

2 THF 23DMB 

3 DNBE 22DMB 

4 DNBE 23DMB 

5 DNBE THF 

6 DNPE THF 

7 DNPE 1HX 

8 DNPE DNBE 

9 DNPE 22DMB 

10 DNPE 23DMB 
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Table 4.2a. Experimental mole fractions �� and excess molar enthalpies, ��,��
� , at 298.15 K, for 

the binary systems 

 

 

 

�� 
��,��
�

(J ∙ mol��)
 �� 

��,��
�

(J ∙ mol��)
 �� 

��,��
�

(J ∙ mol��)
 �� 

��,��
�

(J ∙ mol��)
 

THF (i) + 22DMB (j) 

0.0500 128.4 0.2999 568.4 0.5001 685.0 0.7500 525.0 
0.1000 240.4 0.3498 619.4 0.5500 679.5 0.8002 448.4 
0.1500 344.3 0.4000 655.8 0.6003 660.2 0.8501 359.9 
0.2000 431.5 0.4500 675.4 0.6499 628.1 0.9000 255.3 
0.2505 507.7 0.5002 684.7 0.7001 584.2 0.9500 136.4 

THF (i) + 23DMB (j) 

0.0500 126.7 0.3000 566.7 0.5002 678.0 0.7500 516.6 
0.0999 241.7 0.3500 614.7 0.5502 671.2 0.7999 445.0 
0.1500 343.3 0.4000 648.1 0.6000 652.1 0.8500 356.9 
0.2000 431.6 0.4499 669.5 0.6502 619.0 0.9000 255.7 
0.2500 507.1 0.5002 677.9 0.6999 576.3 0.9500 137.1 

DNBE (i ) + 22DMB (j) 

0.0500 27.2 0.2996 93.7 0.5004 102.5 0.7501 72.3 
0.1000 46.7 0.3501 99.1 0.5499 99.8 0.8000 62.2 
0.1499 62.7 0.3998 102.9 0.6002 95.3 0.8500 49.7 
0.2001 75.2 0.4497 104.2 0.6498 89.3 0.9000 36.8 
0.2502 85.7 0.5003 102.9 0.6999 82.6 0.9500 22.1 

DNBE (i) + 23DMB (j) 

0.0500 25.4 0.3000 90.0 0.5002 101.2 0.7500 75.8 
0.1000 43.6 0.3499 95.6 0.5493 100.0 0.8001 66.7 
0.1501 58.9 0.3998 99.5 0.5999 95.9 0.8500 55.5 
0.2000 72.0 0.4501 101.8 0.6501 90.6 0.9001 42.4 
0.2502 82.0 0.5000 101.7 0.7000 83.5 0.9500 28.1 

DNBE (i) + THF (j) 

0.0500 78.8 0.3000 305.6 0.4998 339.3 0.7501 240.4 
0.0998 143.6 0.3499 324.9 0.5498 331.9 0.8000 204.1 
0.1502 198.4 0.4000 336.8 0.6002 318.2 0.8500 162.2 
0.2000 243.4 0.4502 341.5 0.6499 297.9 0.9000 112.1 
0.2500 278.7 0.4998 339.0 0.7000 272.7 0.9500 59.5 
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Table 4.2b. Experimental mole fractions �� and excess molar enthalpies,	��,��
� , at 298.15 K, for 

the binary systems 

�� 
��,��
�

(J ∙ mol��)
 �� 

��,��
�

(J ∙ mol��)
 �� 

��,��
�

(J ∙ mol��)
 �� 

��,��
�

(J ∙ mol��)
 

DNPE (i) + THF(j) 

0.0500 52.3 0.2998 216.9 0.4998 248.6 0.7499 184.5 
0.1000 96.9 0.3503 232.8 0.5499 244.6 0.7999 159.4 
0.1501 136.1 0.3998 242.6 0.5999 236.3 0.8500 127.7 
0.2000 168.2 0.4500 247.3 0.6502 223.7 0.9000 90.5 
0.2498 195.9 0.4998 248.3 0.7003 206.2 0.9500 48.1 

DNPE (i) + 1HX(j) 

0.0529 6.6 0.3002 24.9 0.5001 28.0 0.7500 21.5 
0.1001 12.1 0.3499 26.5 0.5500 27.7 0.8003 18.8 
0.1500 16.5 0.4001 27.4 0.5998 26.8 0.8500 15.4 
0.2001 20.1 0.4501 28.1 0.6499 25.5 0.9000 11.3 
0.2500 22.8 0.5001 28.0 0.6996 23.9 0.9500 6.1 

DNPE (i) + DNBE(j) 

0.0500 2.2 0.3000 9.6 0.5004 11.9 0.7500 9.9 
0.1000 4.3 0.3500 10.3 0.5500 11.9 0.8000 8.2 
0.1500 5.9 0.3998 10.9 0.6001 11.9 0.8503 6.7 
0.2001 7.3 0.4497 11.5 0.6500 11.3 0.9000 4.6 
0.2500 8.6 0.4998 11.9 0.6999 10.9 0.9500 2.6 

DNPE (i) + 22DMB (j) 

0.0500 37.9 0.2998 137.1 0.5497 151.1 0.8001 94.5 
0.1000 68.1 0.3499 145.9 0.6001 145.1 0.8500 74.8 
0.1500 89.7 0.3998 150.8 0.6500 135.8 0.9000 53.2 
0.2000 109.4 0.4501 154.7 0.7001 124.8 0.9500 28.3 
0.2499 124.6 0.4995 154.7 0.7503 111.0   

DNPE (i) + 23DMB (j) 
0.0500 35.4 0.3001 134.2 0.4998 157.6 0.7502 117.0 
0.1000 63.6 0.3499 144.6 0.5500 155.5 0.8000 101.4 
0.1500 86.0 0.4000 152.5 0.5999 150.3 0.8500 80.9 
0.2001 105.4 0.4498 156.4 0.6501 142.4 0.9000 57.9 
0.2500 120.5 0.4998 157.3 0.7000 131.5 0.9500 31.4 
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4.1.1 Experimental Data Correlation: Binary Mixtures 

 The experimental excess molar enthalpies of the binary systems are correlated by means 

of an empirical expression (Redlich-Kister polynomial) and two theories of solution; the Flory 

theory and the Liebermann-Fried model.   

 

Representation by means of the Redlich-Kister Polynomial 

 The equation presented by Redlich and Kister (1948) for correlating excess 

thermodynamic properties is widely used for the representation of excess molar enthalpy. The 

Redlich-Kister polynomial used in correlating the experimental data has the following form: 

��
� (J ∙ mol��)= ��(1 − � �)∑ ℎ�(1 − 2� �)

����
����       (4.1) 

For fitting the Redlich-Kister polynomial to the binary excess molar enthalpy values, the 

unweighted least square method was used. The values of the coefficients ℎ� were determined 

based on the minimization of the standard error of the estimates. The standard error is defined as  

� = �
∑ �����,�

� �����,�
� �

��
���

(���)
         (4.2) 

In equations (4.1) and (4.2) ����
�  and ����

�  stand for the experimental and calculated 

excess molar enthalpy values, respectively; � denotes the number of experimental observations 

and � refers to the number of parameter used in the polynomial. The number of parameters is 

determined by applying an F-test. Details of the statistical test are given in Appendix C1. Results 

of the data correlation for the binary systems by means of equation (4.1) are summarized in 

Table 4.3, along with the standard deviations of the representations. Plots of the experimental 

data along with the representation from equation (4.1) are shown in Figures 4.1(a) to 4.1(d). In 



38 
 

general, excess molar enthalpy for the ten binary systems tested show endothermic behavior 

(��
� > 0) over the whole mole fraction range. The maximum value of the excess molar enthalpy 

occurs at �� ≈ 0.45	to	0.50.  Over most of the composition range, the errors of excess molar 

enthalpies and those of the mole fractions of the measurement are estimated to be less than 

0.005 ∙ |��
� | and less than	5 ∙ 10��, respectively. 

 

 Table 4.3. Coefficients ℎ� and standard deviations � for the representations of the excess molar 

enthalpies	��,��
�  of the constituent binary mixtures at 298.15 K by means of equation (4.1) 

 (1)Wang et al. (2004b); (2)Lan et al. (2006); (3)Wang et al. (2004a); (4)Hamam and Benson (1986) 

 

Component 
ℎ� ℎ� ℎ� ℎ� ℎ� 								

�

(J ∙ mol��)
 

� � 

THF 22DMB 2738.75 -74.77 40.42 -39.65 - 1.05 

THF 23DMB 2707.62 -31.43 82.59 100.42 - 0.66 

DNBE 22DMB 412.27 72.41 3.32 -7.41 130.29 0.60 

DNBE 23DMB 406.56 44.46 15.30 -51.56 155.96 0.34 

DNBE THF 1358.44 193.12 111.25 30.86 - 0.49 

DNPE THF 993.78 66.65 91.65 -36.23 -23.01 0.43 

DNPE 1HX 111.98 7.48 26.22 -3.83 - 0.10 

DNPE DNBE 47.28 -7.34 3.61 6.59 - 0.06 

DNPE 22DMB 617.19 63.00 20.45 47.60 88.93 0.45 

DNPE 23DMB 630.19 10.77 -5.69 38.46 117.65 0.39 

1HX DNBE -96.38 -4.17 -8.76 - - 0.20(1) 

1HX THF 1461.17 -50.90 68.34 -34.75 - 0.94(2) 

1HX 22DMB 250.01 9.09 12.29 - - 0.62(3) 

1HX 23DMB 317.88 25.12 -11.17 -18.03 - 0.29(3) 

22DMB 23DMB 5.27 - - - - 0.03(4) 
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Figure 4.1(a). Excess molar enthalpies,	��,��
� , for the binary systems presented in Tables 4.2a 

and 4.2b at the temperature 298.15 K.  Experimental results:	∆, 	�1THF + (1 − � 1)	22DMB ; 
⊞, 	�1DNPE + (1 − � 1)	22DMB ; 	⊕ , 	�1DNBE + (1 − � 1)	22DMB  Curves:         , calculated from 

the representations of the results by equation (4.1) with values of the coefficients given in Table 
4.3.    
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Figure 4.1(b). Excess molar enthalpies,	��,��

� , for the binary systems presented in Tables 4.2a 

and 4.2b at the temperature 298.15 K.  Experimental results:	∆, 	�1THF + (1 − � 1)	23DMB ; 

⊞, 	�1DNPE + (1 − � 1)	23DMB ; 	⊕ , 	�1DNBE + (1 − � 1)	23DMB  Curves:         , calculated from 
the representations of the results by equation (4.1) with values of the coefficients given in Table 
4.3.    
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Figure 4.1(c). Excess molar enthalpies,	��,��
� , for the binary systems presented in Tables 4.2a 

and 4.2b at the temperature 298.15 K.  Experimental results:	∆, 	�1DNPE + (1 − � 1)	THF; 	⊕
, 	�1DNBE+ (1 − � 1)	THF  Curves:         , calculated from the representations of the results by 
equation (4.1) with values of the coefficients given in Table 4.3.    
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Figure 4.1(d). Excess molar enthalpies,	��,��

� , for the binary systems presented in Tables 4.2b at 

the temperature 298.15 K.  Experimental results:	∆, 	�1DNPE + (1 − � 1)	DNBE ; 	⊕ , 	�1DNPE +
(1 − � 1)	1HX  Curves:         , calculated from the representations of the results by equation (4.1) 
with values of the coefficients given in Table 4.3.    
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Figures 4.1(a) and 4.1(b) show that the excess molar enthalpy values for systems 

containing branched alkanes (22DMB or 23DMB) and ethers (THF, DNBE, DNPE) increases 

with the decrease of the carbon number in the ether molecule. As the structures of the branched 

alkanes are similar the heats of mixing of mixtures containing these two branched alkanes are of 

the same order of magnitude. 

  The maximum excess enthalpy value for the THF (1) + 22DMB (2), or THF (1) + 

23DMB (2) system is highest among the three ethers and the difference in magnitude with 

normal ethers is fairly significant. During the mixing process for breaking the bond between the 

molecules of cyclic-ether usually requires more energy than the normal chain ethers (Castro et al. 

1994). It can be noticed from Figures 4.1(a) and 4.1(b) that for the THF containing systems, 

denoted by the symbol(∆), the maximum value occurs at	�� ≈ 0.5000, and the magnitudes are 

	��
� (J ⋅ mol��)= 685.0	and⁄ 678.0 for 22DMB and 23DMB, respectively. 

For the DNBE (1) + 22 DMB (2), and DNBE (1) + 23DMB (2) systems, the magnitude 

of excess molar enthalpy at the mole fraction 	�� ≈ 0.5000 is the lowest among the three ethers.   

In Figures 4.1 (a) and 4.1 (b), the symbol(⊕) , represent these systems, which are slightly 

skewed toward pure DNBE. The maximum values occur at	�� ≈ 0.4500, and the magnitudes are 

��
� (J ⋅ mol��)= 104.2	and	101.8	⁄  for 22DMB and 23DMB, respectively. 

For the DNPE (1) + 22DMB (2), and DNPE (1) + 23DMB (2) systems, the maximum 

values of excess enthalpy are ��
� (J ⋅ mol��)= 154.7	and	157.6	⁄ , for 22DMB and 23DMB, 

respectively. The symbol(⊞) , represent these two systems in Figures 4.1(a) and 4.1(b) note that 

these systems appear to be symmetric about 	�� = 0.5000. In general, it can be conclude that the 

excess enthalpy value for the system of branched alkanes (22DMB, or 23DMB) with ethers 

(THF, DNPE, and DNBE) decreases with the increase of carbon number in ether molecule. 
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The excess molar enthalpy of mixtures of THF with the two normal chain ethers (DNPE 

and DNBE) are presented in Figure 4.1(c). The DNPE (1) + THF (2) binary system is 

represented by the symbol(∆), and has a maximum value of  248.6	J ⋅ mol�� which occurs at the 

mole fraction,	�� ≈ 0.5000. In DNBE (1) + THF (2) system the maximum value of heats of 

mixing occurs at 	�� ≈ 0.4500 with a magnitude of ��
� (J ⋅ mol��)= 341.5	⁄ .  

In Figure 4.1(d) the excess molar enthalpies of the DNPE (1) + DNBE (2),  and DNPE 

(1) + 1HX (2) mixtures are presented. For the DNPE (1) + DNBE (2) system, the magnitude of 

the excess molar enthalpy is moderately low. This phenomenon occurs due to the similar 

structures of DNPE and DNBE. For the DNPE (1) + 1HX (2) the maximum excess molar 

enthalpy occurs at 	�� ≈ 0.5000 with a magnitude of ��
� (J ⋅ mol��)= 28.0.⁄  
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Representation of Binary Heats of Mixing by Means of the Solution Theories 

 For representing the experimental excess molar enthalpy data for binary and ternary 

systems, a solution theory is understandably superior to empirical correlation in terms of 

theoretical view point. It is a fact that solution theories describe the behavior of real liquid 

mixture in terms of molecular interaction where as empirical approaches are only mathematical.  

In this section, the Flory theory (1965) and the Liebermann-Fried model (1975) are used 

to correlate the binary excess molar enthalpies of hydrocarbon and ether binary systems.  

 

Flory Theory 

 The equation for the excess molar enthalpy from the Flory theory was simplified and 

presented by Benson and Pflug (1970). Wang et al. (1993) presented a generalized Flory 

equation for a multicomponent system. For a better understanding of the representation of excess 

molar enthalpy by means of the Flory theory, only the expressions for ternary excess molar 

enthalpy are presented here. 

The expression of excess molar enthalpy for a multicomponent mixture using the Flory theory is  

��
� = (∑ ����

∗)�∑ �Φ���
∗ �

�

���
−

�

��
��+

�

��
Ψ�       (4.3) 

where, ��
∗	and	��

∗ are the hardcore (characteristic) pressure and volume of pure component, 

respectively, and are obtained by the relation give by Flory (1965): 

��
∗ = �

���

���
�����

�          (4.4) 

and 

���
� �⁄ = �

���

��
∗ �

� �⁄

= 1 +
����

���������
        (4.5) 
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In equations (4.4) and (4.5) � is the system temperature and, ���, ���, �
�
� , and	���

 represent, 

respectively, the isobaric thermal expansivity, isothermal compressibility, reduced volume, and 

molar volume of pure component	�.  

Table 4.4. Parameters used in Flory theory correlation 

Component 
���

(��������)
  

���
�

(����)
  �� �×��

��

(�����)
  

DNPE 137.71 1.261 145.46 

DNBE 170.50 1.126 122.30 

THF 81.75 1.138 901.29 

1HX 125.84 1.411 171.14 

22DMB 133.69 1.468 203.62 

23DMB 131.17 1.391 181.39 

 aWang et al. (2005); bPeng et al. (1999) 
 

This reduced volume of mixing in equation (4.3) is calculated from the relation  

�� = ∑ Φ����           (4.6) 

where Φ�	 is the segment fraction and is defined by  

Φ� =
����

∗

∑ ����
∗            (4.7) 

In equation (4.3) �� is defined as the site fraction and is obtained from the relation 

�� =
Φ�

∑ Φ���� ��⁄ �
           (4.8) 

Finally, Ψ in equation (4.3) is given by 

 Ψ = Φ������ + Φ������ + Φ������(s� s�⁄ )      (4.9) 

and the sums are taken over the three components �. 

The parameter ���	(� < �)  in equation (4.9) is the mixed-pair interchange interaction 

energies between sites on species i and j. Also in this equation the factor s� s�⁄  is introduced to 

allow the asymmetry in the definition of ���	in the Flory theory.  The interchange energy 
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parameter ��� in eq (4.3) is determined by regressing the experimental excess molar enthalpy 

��,��
�  data of the constituent binary mixtures. In representing the excess molar enthalpy from the 

Flory theory all molecules of interest are assumed to be spherical and the site ratio is calculated 

by the relation given by 

�� ��⁄ = ���
∗ ��

∗⁄ �
� �⁄

          (4.10) 

 
Table 4.5. Interchange energy parameter,	���, site fraction ratio, �� ��⁄ , and standard 

deviations, �, for the representations of the excess molar enthalpies ��,��
�  of the 

constituent binary mixtures at 298.15 K by equation (4.3) 
 

 

 

 

 

 

 

 

Another parameter, ��� can be obtained from the following relation  

��� = ������
∗ ��

∗⁄ �
� �⁄

          (4.11) 

 

 

 

Components 
��� �� ��⁄  								

�

(J ∙ mol��)
 

� � 

THF 22DMB 34.6610 1.1599 20.77 

THF 23DMB 34.5493 1.1565 22.21 

DNBE 22DMB 3.8860 0.9073 3.46 

DNBE 23DMB 3.6515 0.9046 3.28 

DNBE THF 12.7194 0.7822 9.20 

DNPE THF 10.6922 0.8456 7.90 

DNPE 1HX 1.1899 0.9637 0.80 

DNPE DNBE 0.5216 1.0810 0.21 

DNPE 22DMB 5.8503 0.9809 5.03 

DNPE 23DMB 5.8475 0.9779 2.06 
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Figure 4.2. Excess molar enthalpies ��,��

� 	for the binary systems presented in Tables 4.2a and 

4.2b at the temperature 298.15 K. Experimental results:	∆, 	�1THF + (1 − � 1)	22DMB ; ⊞

, 	�1DNPE + (1 − � 1)	22DMB ; 	⊕ , 	�1DNBE + (1 − � 1)	22DMB  Curves:         , calculated from 
the representations of the results by equation (4.1) with values of the coefficients given in Table 
4.3;             ,calculated by means of the Flory theory.    
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For a binary system, equation (4.3) reduces to the form 

��,��
� = ����

∗��
∗�

�

���
−

�

��
� + � ���

∗��
∗ �

�

���
−

�

��
� + � ���

∗�����
�

��
    (4.12) 

The pure component properties used in the Flory equation and the values of the interchange 

energy parameter, ���, (obtained by fitting the Flory theory to the experimental data of the 

binary mixtures by the method of least square) are presented in Tables 4.4 and 4.5, respectively.  

Figure 4.2 serves to present the correlation of the THF (1) + 22DMB (2), DNPE (1) + 

22DMB (2), and the DNBE (1) + 22DMB (2) excess enthalpies using the Redlich-Kister 

polynomial and the Flory theory.  The correlated excess molar enthalpies for the ten binary 

systems using the Flory theory are presented in Appendix C2.  

 

Liebermann-Fried Model 

Previously, Wang et al. (2001) found that the Liebermann-Fried model can be used for 

representing both binary and multicomponent mixtures. For representing multicomponent 

mixtures, only the properties of the pure components and interaction parameters derived from an 

analysis of the excess enthalpies of their constituent binaries are required. This approach was 

investigated for the present binary and ternary mixtures. Details of the thermodynamic relations 

in connection with the derivation of Liebermann-Fried model are described by Peng et al. (2001). 

To facilitate the understanding of the application of the Liebermann-Fried model, only the 

equations used in the excess molar enthalpy calculation process were presented here.  

The expression for ��
�  of a N-component mixture has the following form  

��
� = ��

� + ��
�          (4.13)  

where ��
� has the form 
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��
� = ��� ∑ ∑ ����	

�
���

�
���

⎣
⎢
⎢
⎢
⎢
⎢
⎡�
����
��

�

���
+
�
����
��

�

���
−l n(������)

⎩
⎪
⎨

⎪
⎧∑ ���

����
��

��
�=1

∑ ��
�
�=1 ���

+
∑ ���

����
��

��
�= 1

∑ ��
�
�= 1 ���

⎭
⎪
⎬

⎪
⎫

2�∑ ���
�=1 �����∑ ���

�= 1 ����

⎦
⎥
⎥
⎥
⎥
⎥
⎤

  (4.14)  

where 
�

���

����
��

= �
�

�
�

ln(������)

ln(������)−2
=

�

���

����
��

       (4.15)  

and  

��
� = ���

∑ ∑ ����	
�
�� �

�
��� ����(��)��(��)��

∑ �����	
�
�� �

,       (4.16)                                                              

��
� represents the non-ideal behavior that arises from interaction between molecules and	��

�, 

accounts for the different sizes of molecules present in the mixture. �� and �� represent the 

molar volume and isobaric thermal expansivity of pure component, respectively. 

Pure component properties used in the Liebermann-Fried model are presented in Table 

4.6. 

 

Table 4.6. Parameter used in the Liebermann-
Fried model correlation 

Component 
���

(��������)
  

���
�

(����)
  

DNPE 137.71  1.261  

DNBE 170.50 1.126  

THF  81.75 1.138  

1HX  125.84 1.411  

22DMB 133.69   1.468  

23DMB  131.17 1.391  

 aWang et al. (2005) 
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For binary mixture equation (4.13) reduces to 

��
� =

�������[��(������)]
�

(��������)(��������)[����(������)]
× �

�����

��������
+

�����

��������
−

�

��(������)
� 

											−� �� �
����������������������

�����������

�       (4.17) 

 
Table 4.7. Liebermann-Fried model parameters	���	and		���, and standard 

deviations, �, for the representations of the excess molar enthalpies ��,��
�  of the 

constituent binary mixtures at 298.15 K by means of the equation (4.17) 
 

 

 

 

 

 

 

 

Values of the Liebermann-Fried model interaction parameters ��� and ���, for each binary 

mixture are given in Table 4.7. These parameters are obtained by fitting the Liebermann-Fried 

model (eq 4.17) to the experimental results of the binary systems listed in Tables 4.1(a) and 

4.1(b). Also included in Table 4.7 are values of the standard deviation found in the fitting 

process.  

Components 
��� ��� 	

�

(J ∙ mol��)
 

� � 

THF 22DMB 0.8220 0.7855 2.00 

THF 23DMB 0.8171 0.7896 1.56 

DNBE 22DMB 0.8065 1.1299 2.33 

DNBE 23DMB 0.8844 1.0332 3.44 

DNBE THF 0.7579 1.0287 2.41 

DNPE THF 0.8743 0.9575 2.38 

DNPE 1HX 0.9329 1.0455 0.86 

DNPE DNBE 1.1072 0.8908 0.15 

DNPE 22DMB 0.8276 1.0718 2.20 

DNPE 23DMB 0.9058 0.9775 2.08 
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Figure 4.3. Excess molar enthalpies ��,��
� 	for the binary systems presented in Tables 4.2a and 

4.2b at the temperature 298.15 K. Experimental results:	∆, 	�1THF + (1 − � 1)	22DMB ; ⊞

, 	�1DNPE + (1 − � 1)	22DMB ; 	⊕ , 	�1DNBE + (1 − � 1)	22DMB  Curves:         , calculated from 
the representations of the results by equation (4.1) with values of the coefficients given in Table 
4.3;           ,calculated from the Liebermann-Fried model.    
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Figure 4.3 shows the correlation of the THF (1) + 22DMB (2), DNPE (1) + 22DMB (2), 

and DNBE (1) + 22DMB (2) systems using the Redlich-Kister polynomial and the Liebermann-

Fried model.  The fits of the Liebermann-Fried model for all the binary systems analyzed are 

presented in Appendix C2. 

 

4.2 Excess Molar Enthalpy of Ternary systems  

 The six (6) ternary systems studied are presented in Table 4.8. Experimental result for the 

ternary mixture DNPE (1) + DNBE (2) + 1HX (3) and the correlation using the Tsao and Smith 

(1953) equation are presented in this section.  The experimental and correlated results of the five 

(5) remaining ternary mixtures are also presented here. 

Table 4.8. Ternary mixtures studied  
 

 

 

 

 

 

 

Ternary System: DNPE (1) + DNBE (2) + 1HX (3) 

Experimental results for the DNPE (1) + DNBE (2) + 1HX (3) mixture are reported in 

Table 4.9, where values of ��,����
�  are listed against the mole fraction �� of component 1. Also 

included in the table are the corresponding values of ��,���
� . In studying the ternary 

system	��DNPE + 	� �DNBE +	(1 −	� � − 	��)1HX	 , the excess molar enthalpies ��,����
�  were 

System Component 1 Component 2 Component 3 

1 DNPE DNBE 1HX 

2 DNPE DNBE THF 

3 DNPE 22DMB 23DMB 

4 DNBE 22DMB 23DMB 

5 1HX THF 22DMB 

6 1HX THF 23DMB 
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determined for several pseudo-binary mixtures. The ternary mixture was formed by adding 

component 1 (DNPE ) to binary mixtures of fixed composition of component 2 (DNBE ) and 

component 3(1HX). The excess molar enthalpy ��,���
�  for the ternary mixture was then obtained 

by means of equation (3.6). 

The excess enthalpy values of ��,����
�  are plotted in Figure 4.4, along with curves for the 

constituent binary mixtures having �� + � � = 1.0 and �� = 0.0. 

Calculation of the values of ��,����
�  is based on the relation (Tsao and Smith, 1953)     

��,����
� = �

��

����
���,��

� + �
��

����
���,��

� + ��,�
�       (4.18)                                                     

which consists of the sum of the binary contributions and an added ternary term ��,�
� . The 

ternary term is given by   

��,�
� /(J ∙ mol��)= � ��� �

�������

�������
� (�� + ���� + � ��� + � ���

� + � ����� + � ���
� + ⋯) (4.19) 

and is similar to that used by Morris et al. (1975) with an extra skewing factor (1 − � � + � �)
�� 

(Benson and coworker, 1993-2006). 
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Table 4.9. Experimental excess molar enthalpies	��,����
�  and the calculated values of ��,���

�  for the ��DNPE +

��DNBE	 + (1 − � � − ��)1HX  ternary system at 298.15 K  

 

 

 

 

 

 

 

 

 

 

 

�� 
��,����
�

(J ∙ mol��)
 

��,���
�

(J ∙ mol��)
 �� 

��,����
�

(J ∙ mol��)
 

��,���
�

(J ∙ mol��)
 �� 

��,����
�

(J ∙ mol��)
 

��,���
�

(J ∙ mol��)
 

�� ��⁄ = 0.3333, 	��,��
� (J ∙ mol��⁄ )= − 18.9 

0.0500 5.2 -12.8 0.4001 25.6 14.2 0.7003 23.4 17.7 
0.1000 9.6 -7.4 0.4496 26.4 16.0 0.7500 21.4 16.7 
0.1500 13.6 -2.5 0.5002 26.7 17.3 0.7998 19.0 15.2 
0.1998 17.0 1.9 0.5002 26.8 17.3 0.8500 15.8 13.0 
0.2501 20.0 5.9 0.5503 26.6 18.1 0.9000 12.2 10.3 
0.3001 22.3 9.1 0.5999 26.0 18.5 0.9500 7.1 6.2 
0.3501 24.3 12.1 0.6501 24.9 18.3    

�� ��⁄ = 0.9996, 	��,��
� (J ∙ mol��⁄ )= − 24.1 

0.0500 4.3 -18.6 0.4001 22.7 8.2 0.7001 21.3 14.1 
0.1000 8.2 -13.5 0.4502 23.4 10.2 0.7499 19.6 13.6 
0.1499 11.7 -8.8 0.5000 23.9 11.8 0.8001 17.3 12.5 
0.2001 14.7 -4.5 0.5000 23.9 11.9 0.8500 14.7 11.1 
0.2499 17.3 -0.8 0.5500 23.9 13.1 0.9000 11.7 9.2 
0.2999 19.5 2.6 0.6003 23.5 13.9 0.9500 7.8 6.6 
0.3502 21.2 5.5 0.6500 22.5 14.1    

�� ��⁄ = 3.0000, 	��,��
� (J ∙ mol��⁄ )= − 18.1 

0.0500 3.0 -14.2 0.4000 16.9 6.0 0.6997 16.8 11.3 
0.1000 5.8 -10.5 0.4501 17.6 7.7 0.7497 15.4 10.9 
0.1500 8.5 -6.9 0.4996 18.1 9.1 0.7998 13.9 10.3 
0.1999 10.7 -3.8 0.4997 18.2 9.1 0.8497 12.1 9.3 
0.2501 12.8 -0.8 0.5497 18.3 10.1 0.9000 9.7 7.9 
0.3001 14.4 1.8 0.6001 18.1 10.8 0.9500 6.4 5.5 
0.3499 15.9 4.1 0.6497 17.5 11.2    
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Table 4.10. Values of the coefficients in equation (4.19) and standard deviations, �, of the fit 
for the ternary mixtures of current interest 

 

Values of the coefficients ��	were obtained from a least-square analysis in which 

equations (4.18) and (4.19) were fitted to the experimental values of the ternary systems. In 

doing this, the values of ��,��
�  for the binary contributions were calculated from equation (4.1) 

using appropriate coefficients	(ℎ�). Table 4.2 provided the coefficients for the ten binary 

mixtures studied. Coefficients for the other five binary mixtures were found in literature and are 

also provided in Table 4.2. For the six ternary systems, the coefficients (��) in equation (4.19) 

are presented in Table 4.10 along with the standard deviations, �, of the fit.  The solid curves 

representing ��,����
� 	in Figure 4.4 were calculated from equation (4.18). Equations (4.1), (4.18), 

and (4.19) were also used to calculate the constant ��,���
�  contours plotted on the Roozeboom 

diagram in Figure 4.5. For the DNPE (1) + DNBE (2) + 1HX (3) ternary system in Figure 4.5 an 

Coefficient System 1 System 2 System 3 System 4 System 5 System 6 

 �� -251.11 -2979.96 -929.15 -196.20 -4330.81 -3780.64 

 �� 1270.01 2782.56 3541.70 989.91 6637.49 -3943.23 

 �� 699.74 675.29 2218.97 -352.02 3842.48 3038.73 

 �� -2238.89 -1947.11 -5901.97 3253.08 -14765.93 14887.28 

 �� -428.01 -2677.41 -1690.83 2380.02 -5726.64 2911.24 

 �� -789.02 - -3488.55 -2.44 - -7566.06 

 �� 1557.48 - 3580.01 3415.04 - -11671.61 

 �� - - - - - -22359.71 

 
�

(�∙�����)
  0.43  0.69  0.72  0.97  2.47  1.74 



57 
 

internal saddle point exists. The maximum value of ��,���
�  is located on the edge of the plot for 

the constituent binary comprising of DNPE and 1HX.  

 Ternary systems (2-6), as presented in Table 4.1, have been treated by an identical 

procedure. The experimental data along with their correlated plots are provided in the following 

section. For the DNPE (1) + DNBE (2) + THF (2) ternary system, Figure 4.7 shows that there is 

no internal extremum. That is, the point representing the maximum value of ��,���
� (341.5	J ∙

mol��) is located on the DNBE-THF edge. 

The ternary systems, DNPE (1) + 22DMB (2) + 23 DMB (3), and DNPE (1) + 22DMB 

(2) + 23 DMB (3) are very similar, both of which show an internal saddle point. However, the 

maximum value of ��,���
�  for DNPE (1) + 22DMB (2) + 23 DMB (3) ternary system, occurs on 

the DNPE + 23DMB edge where as for DNPE (1) + 22DMB (2) + 23 DMB (3)  ternary system, 

the maximum value occurs on the DNBE + 22DMB edge of the triangles (Figures 4.9 and 4.11). 

For the ternary systems of 1HX (1) + THF (2) with either 22DMB or 23DMB (3), the 

form of the contours presented in Figures 4.13 and 4.15 are identical. There is no indication of 

internal maxima and all the contours extend to the edge of the triangle.  
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Figure 4.4. Excess molar enthalpies,	��,����
� , for the ��DNPE + � �DNBE	 + (1 − � � − ��)1HX  

mixture at the temperature 298.15 K. Plotted against mole fraction	��. Experimental results:
,	�� = 0.0;	⊙	, �� ��⁄ = 0.3333;  ∎, �� ��⁄ = 0.9996; ⊡, �� ��⁄ = 3.0000; ∇,�� = 0.0; Curves:  
         , calculated from the representation of the results by equations (4.18) and (4.19) using the 
ternary term ��,�

� . 
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Figure 4.5. Contours for constant values of ��,���
� (J ∙ mol��)⁄  for the ��DNPE + � �DNBE	 +

(1 − � � − ��)	1HX  system at 298.15 K. Calculated from the representation of the experimental 
results by equations (4.18) and (4.19). 
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Ternary System: DNPE (1) + DNBE (2) + THF (3) 

 

 

Table 4.11. Experimental excess molar enthalpies	��,����
�  and the calculated values of ��,���

�  for the 

��DNPE + � �DNBE	 + (1 − � � − ��)THF  ternary system at 298.15 K  

 

 

 

 

 

 

�� 
��,����
�

(J ∙ mol��)
 

��,���
�

(J ∙ mol��)
 �� 

��,����
�

(J ∙ mol��)
 

��,���
�

(J ∙ mol��)
 �� 

��,����
�

(J ∙ mol��)
 

��,���
�

(J ∙ mol��)
 

�� ��⁄ = 0.3332, 	��,��
� (J ∙ mol��⁄ )= 278.7 

0.0500 21.2 286.0 0.4002 104.2 271.3 0.7016 91.3 174.5 
0.1000 38.8 289.6 0.4497 106.8 260.2 0.7501 82.8 152.4 
0.1500 55.3 292.2 0.5001 108.1 247.4 0.8000 70.8 126.5 
0.2002 69.2 292.1 0.5001 108.1 247.4 0.8500 58.2 100.0 
0.2502 80.9 289.9 0.5501 107.2 232.6 0.9001 42.5 70.4 
0.3000 90.8 285.9 0.5999 104.6 216.1 0.9500 24.1 38.1 
0.3499 98.4 279.5 0.6503 98.9 196.4    

�� ��⁄ = 1.0004, 	��,��
� (J ∙ mol��⁄ )= 339.7 

0.0500 6.5 329.2 0.4002 35.1 238.9 0.7000 33.2 135.1 
0.1000 12.6 318.3 0.4502 36.5 223.2 0.7498 30.3 115.2 
0.1500 17.9 306.6 0.5002 37.3 207.1 0.8001 26.7 94.6 
0.2000 22.8 294.5 0.5001 37.3 207.1 0.8500 21.9 72.8 
0.2503 27.0 281.7 0.5501 37.3 190.1 0.9000 15.9 49.9 
0.3002 30.2 267.9 0.5998 36.6 172.6 0.9500 8.7 25.7 
0.3499 32.9 253.7 0.6500 35.1 154.0    

�� ��⁄ = 3.0000, 	��,��
� (J ∙ mol��⁄ )= 241.0 

0.0500 1.93 230.9 0.4002 8.50 153.1 0.7001 7.80 80.09 
0.1000 3.52 220.4 0.4503 8.80 141.3 0.7498 7.11 67.40 
0.1555 5.01 208.5 0.5001 8.91 129.4 0.8000 6.25 54.45 
0.2000 5.95 198.8 0.5001 8.91 129.4 0.8500 5.13 41.29 
0.2498 6.89 187.7 0.5501 8.89 117.3 0.9000 3.75 27.86 
0.2999 7.55 176.3 0.6000 8.68 105.1 0.9500 2.03 14.07 
0.3502 8.16 164.8 0.6501 8.35 92.68    
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Figure 4.6. Excess molar enthalpies, ��,����

� , for the	��DNPE + � �DNBE	 + (1 − � � − ��)THF  

mixture at the temperature 298.15 K. Plotted against mole fraction	��. Experimental results:
,	�� = 0.0;	⊙	, �� ��⁄ = 0.3332;  ∎, �� ��⁄ = 1.0004; ⊡, �� ��⁄ = 3.0000; ∇,�� = 0.0; Curves:  
          , calculated from the representation of the results by equations (4.18) and (4.19) using the 
ternary term ��,�

� . 
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Figure 4.7. Contours for constant values of ��,���

� (J ∙ mol��⁄ ) for the ��DNPE + � �DNBE	 +
(1 − � � − ��)THF  system at 298.15 K. Calculated from the representation of the experimental 
results by equations (4.18) and (4.19). 
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Ternary System: DNPE (1) + 22DMB (2) + 23DMB (3) 

 

Table 4.12. Experimental excess molar enthalpies	��,����
�  and the calculated values of �m,123

E  for the �1DNPE +

�222DMB	 + ( 1 − � 1 − �2)23DMB ternary system at 298.15 K 

 

 

 

 

 

 

�� 
��,����
�

(J ∙ mol��)
 

��,���
�

(J ∙ mol��)
 �� 

��,����
�

(J ∙ mol��)
 

��,���
�

(J ∙ mol��)
 �� 

��,����
�

(J ∙ mol��)
 

��,���
�

(J ∙ mol��)
 

�� ��⁄ = 0.3257, 	��,��
� (J ∙ mol��⁄ )= 1.0 

0.0500 30.9 31.8 0.4000 148.7 149.3 0.7003 128.1 128.4 
0.1000 59.0 59.9 0.4498 152.9 153.4 0.7505 115.4 115.7 
0.1501 82.7 83.5 0.4998 154.1 154.6 0.8001 97.2 97.4 
0.1998 100.6 101.3 0.4998 154.2 154.7 0.8500 79.3 79.4 
0.2499 119.1 119.8 0.5500 151.9 152.3 0.9000 58.4 58.5 
0.2999 132.6 133.2 0.6000 145.9 146.3 0.9500 30.1 30.2 
0.3499 142.1 142.7 0.6501 138.5 138.8    

�� ��⁄ = 0.9747, 	��,��
� (J ∙ mol��⁄ )= 1.3 

0.0500 32.1 33.3 0.4000 147.6 148.4 0.7002 127.3 127.7 
0.1000 58.5 59.7 0.4499 152.2 152.9 0.7501 114.7 115.0 
0.1500 81.5 82.6 0.4999 153.9 154.5 0.8003 98.5 98.7 
0.2000 101.3 102.3 0.4999 153.8 154.4 0.8501 79.6 79.8 
0.2501 118.1 119.1 0.5496 151.4 152.0 0.9000 58.1 58.2 
0.2999 131.6 132.5 0.5999 146.0 146.5 0.9500 32.2 32.3 
0.3498 140.4 141.3 0.6500 137.8 138.3    

�� ��⁄ = 2.9968, 	��,��
� (J ∙ mol��⁄ )= 1.0 

0.0500 31.4 32.3 0.4001 144.6 145.2 0.7002 125.7 125.9 
0.1000 58.1 58.9 0.4499 149.2 149.7 0.7500 111.3 111.6 
0.1500 79.6 80.4 0.4999 150.6 151.0 0.7999 96.3 96.5 
0.2002 99.3 100.1 0.5000 150.6 151.1 0.8500 76.1 76.3 
0.2499 115.3 116.0 0.5501 148.5 149.0 0.9000 55.5 55.6 
0.2999 128.4 129.1 0.6000 143.9 144.3 0.9500 31.2 31.2 
0.3498 138.0 138.6 0.6502 135.9 136.2    
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Figure 4.8. Excess molar enthalpies, ��,����

� , for the	��DNPE + � �22DMB	 + (1 − � � −

��)23DMB  mixture at the temperature 298.15 K. Plotted against mole fraction	��. Experimental 
results: ,	�� = 0.0;	⊙	, �� ��⁄ = 0.3257;  ∎, �� ��⁄ = 0.9747; ⊡, �� ��⁄ = 2.9968; ∇,�� =
0.0; Curves:         , calculated from the representation of the results by equations (4.18) and 
(4.19) using the ternary term ��,�

� . 
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Figure 4.9. Contours for constant values of ��,���

� (J ∙ mol��⁄ ) for the ��DNPE + � �22DMB	 +

(1 − � � − ��)23DMB  system at 298.15 K. Calculated from the representation of the 
experimental results by equations (4.18) and (4.19). 
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Ternary System: DNBE (1) + 22DMB (2) + 23DMB (3) 

 

 

Table 4.13. Experimental excess molar enthalpies	��,����
�  and the calculated values of ��,���

�  for the 

��DNBE + � �22DMB	 + (1 − � � − ��)23DMB  ternary system at 298.15 K 

 

 

 

 

 

 

 

 

 

�� 
��,����
�

(J ∙ mol��)
 

��,���
�

(J ∙ mol��)
 �� 

��,����
�

(J ∙ mol��)
 

��,���
�

(J ∙ mol��)
 �� 

��,����
�

(J ∙ mol��)
 

��,���
�

(J ∙ mol��)
 

�� ��⁄ = 0.3261, 	��,��
� (J ∙ mol��⁄ )= 1.0 

0.0500 23.1 24.0 0.4001 100.3 100.8 0.7000 88.6 88.9 
0.1000 41.4 42.2 0.4497 102.7 103.3 0.7490 81.0 81.3 
0.1500 57.0 57.9 0.4999 103.0 103.4 0.8000 73.3 73.5 
0.2000 70.8 71.6 0.5000 102.9 103.3 0.8500 63.9 64.1 
0.2499 80.9 81.7 0.5499 102.3 102.8 0.9000 49.8 49.9 
0.3001 90.0 90.7 0.6002 99.1 99.47 0.9500 29.3 29.3 
0.3497 95.6 96.3 0.6504 94.8 95.14    

�� ��⁄ = 0.9747, 	��,��
� (J ∙ mol��⁄ )= 1.3 

0.0500 23.8 25.0 0.3998 103.4 104.2 0.7004 91.1 91.5 
0.1000 43.3 44.4 0.4500 105.8 106.5 0.7502 83.6 83.9 
0.1498 59.5 60.6 0.4996 106.6 107.3 0.8000 73.9 74.1 
0.1999 73.2 74.2 0.4997 106.9 107.6 0.8501 62.5 62.7 
0.2499 84.3 85.2 0.5500 104.7 105.3 0.9000 48.7 48.8 
0.2998 93.2 94.1 0.6003 102.2 102.8 0.9500 28.3 28.4 
0.3499 99.1 100.0 0.6504 97.1 97.6    

�� ��⁄ = 2.9968, 	��,��
� (J ∙ mol��⁄ )= 1.0 

0.0500 24.1 25.1 0.4000 105.9 106.4 0.7002 92.2 92.5 
0.1005 44.0 44.9 0.4501 107.7 108.2 0.7499 84.0 84.2 
0.1505 60.3 61.2 0.4998 108.4 108.9 0.8000 73.4 73.6 
0.1998 74.5 75.3 0.4998 108.5 109.0 0.8500 61.7 61.9 
0.2497 85.7 86.4 0.5501 107.1 107.6 0.9000 46.9 47.0 
0.2998 94.3 95.0 0.5999 104.3 104.7 0.9500 26.4 26.5 
0.3500 101.0 101.6 0.6504 99.0 99.3    
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Figure 4.10. Excess molar enthalpies, ��,����
� , for the	��DNBE + � �22DMB		 + (1 − � � −

��)23DMB  mixture at the temperature 298.15 K. Plotted against mole fraction	��. Experimental 
results: ,	�� = 0.0;	⊙	, �� ��⁄ = 0.3261;  ∎, �� ��⁄ = 0.9747; ⊡, �� ��⁄ = 2.9968; ∇,�� =
0.0; Curves:         , calculated from the representation of the results by equations (4.18) and 
(4.19) using the ternary term ��,�

� . 
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Figure 4.11. Contours for constant values of ��,���
� (J ∙ mol��⁄ ) for the ��DNBE +

��22DMB		 + (1 − � � − ��)23DMB  system at 298.15 K. Calculated from the representation of 
the experimental results by equations (4.18) and (4.19). 
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Ternary System: 1HX (1) + THF (2) + 22DMB (3) 

 

Table 4.14. Experimental excess molar enthalpies	��,����
�  and the calculated values of ��,���

�  for the ��1HX +

��THF	 + (1 − � � − ��)22DMB  ternary system at 298.15 K 

 

 

 

 

 

�� 
��,����
�

(J ∙ mol��)
 

��,���
�

(J ∙ mol��)
 �� 

��,����
�

(J ∙ mol��)
 

��,���
�

(J ∙ mol��)
 �� 

��,����
�

(J ∙ mol��)
 

��,���
�

(J ∙ mol��)
 

�� ��⁄ = 0.3329, 	��,��
� (J ∙ mol��⁄ )= 507.2 

0.0500 3.2 481.9 0.3999 18.0 304.4 0.6998 15.8 152.3 
0.1000 6.1 456.5 0.4497 18.7 279.1 0.7504 14.1 126.6 
0.1501 9.1 431.1 0.4997 18.7 253.8 0.8000 11.6 101.5 
0.2002 11.4 405.7 0.4997 18.9 253.8 0.8500 9.3 76.1 
0.2502 13.5 380.3 0.5500 18.6 228.3 0.9001 6.5 50.7 
0.2999 15.6 355.1 0.5999 18.0 203.0 0.9500 3.5 25.4 
0.3498 17.1 329.8 0.6500 17.2 177.5    

�� ��⁄ = 1.0004, 	��,��
� (J ∙ mol��⁄ )= 684.7 

0.0500 9.8 650.5 0.4001 52.4 410.8 0.6998 47.7 205.5 
0.1000 19.2 616.2 0.4504 54.6 376.3 0.7499 42.5 171.3 
0.1501 27.2 581.9 0.4998 55.1 342.5 0.8002 36.8 137.0 
0.2000 33.7 547.7 0.4999 55.3 342.4 0.8500 29.6 102.7 
0.2501 40.0 513.4 0.5501 55.0 308.0 0.9000 21.8 68.5 
0.3002 45.1 479.2 0.6000 53.5 273.9 0.9500 11.3 34.3 
0.3500 49.1 445.0 0.6501 51.5 239.6    

�� ��⁄ = 3.0000, 	��,��
� (J ∙ mol��⁄ )= 523.4 

0.0500 30.2 497.2 0.3999 156.3 314.1 0.7002 143.4 156.9 
0.1000 56.8 471.1 0.4499 161.7 287.9 0.7499 130.5 130.9 
0.1498 80.9 445.0 0.4998 164.5 261.8 0.8000 111.3 104.7 
0.1999 100.4 418.8 0.4998 164.6 261.8 0.8500 89.2 78.5 
0.2500 118.7 392.5 0.5499 164.3 235.6 0.9000 65.9 52.3 
0.2998 132.9 366.5 0.5997 161.2 209.5 0.9500 34.3 26.2 
0.3502 146.3 340.1 0.6501 154.0 183.1    
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Figure 4.12. Excess molar enthalpies, ��,����
� , for the	��1HX + � �THF	 + (1 − � � −

��)22DMB  mixture at the temperature 298.15 K. Plotted against mole fraction	��. Experimental 
results: ,	�� = 0.0;	⊙	, �� ��⁄ = 0.3329;  ∎, �� ��⁄ = 1.0004; ⊡, �� ��⁄ = 3.0000; ∇,�� =
0.0; Curves:         , calculated from the representation of the results by equations (4.18) and 
(4.19) using the ternary term ��,�

� . 
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Figure 4.13. Contours for constant values of ��,���
� (J ∙ mol��⁄ ) for the	��1HX + � �THF	 +

(1 − � � − ��)22DMB  system at 298.15 K. Calculated from the representation of the 
experimental results by equations (4.18) and (4.19). 
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Ternary System: 1HX (1) + THF (2) + 23DMB (3) 

 

 

Table 4.15. Experimental excess molar enthalpies	��,����
�  and the calculated values of ��,���

�  for the ��1HX +

��THF	 + (1 − � � − ��)23DMB  ternary system at 298.15 K 

 

 

  

�� 
��,����
�

(J ∙ mol��)
 

��,���
�

(J ∙ mol��)
 �� 

��,����
�

(J ∙ mol��)
 

��,���
�

(J ∙ mol��)
 �� 

��,����
�

(J ∙ mol��)
 

��,���
�

(J ∙ mol��)
 

�� ��⁄ = 0.3332, 	��,��
� (J ∙ mol��⁄ )= 510.8 

0.0500 1.7 485.2 0.4001 9.0 306.4 0.6999 7.8 153.3 
0.1000 3.4 459.7 0.4498 9.3 281.0 0.7502 7.0 127.6 
0.1500 4.7 434.1 0.4998 9.3 255.5 0.8002 5.9 102.0 
0.2002 6.0 408.5 0.4998 9.4 255.5 0.8501 4.6 76.6 
0.2499 6.8 383.1 0.5500 9.3 229.8 0.9000 3.2 51.1 
0.2998 7.7 357.6 0.6000 9.0 204.3 0.9500 1.6 25.6 
0.3501 8.5 332.0 0.6498 8.6 178.9    

�� ��⁄ = 0.9996, 	��,��
� (J ∙ mol��⁄ )= 676.9 

0.0500 8.4 643.1 0.4001 44.7 406.1 0.6999 40.0 203.2 
0.1000 16.1 609.2 0.4504 46.3 372.0 0.7498 36.4 169.4 
0.1503 23.0 575.2 0.4999 47.1 338.5 0.8000 31.2 135.4 
0.2001 29.4 541.4 0.4999 47.1 338.5 0.8499 24.9 101.6 
0.2502 34.5 507.6 0.5502 46.7 304.5 0.9000 18.2 67.9 
0.3001 38.4 473.8 0.6002 45.4 270.6 0.9500 9.6 33.9 
0.3501 41.9 439.9 0.6498 43.1 237.0    

�� ��⁄ = 3.0000, 	��,��
� (J ∙ mol��⁄ )= 512.1 

0.0500 28.9 486.5 0.4002 151.6 307.2 0.7005 139.6 153.4 
0.1000 55.0 460.9 0.4497 157.1 281.8 0.7501 125.9 128.0 
0.1499 78.0 435.3 0.5002 161.8 256.0 0.8001 106.9 102.4 
0.1999 99.5 409.7 0.5001 161.2 256.0 0.8500 86.6 76.8 
0.2501 117.1 384.1 0.5498 160.8 230.8 0.9000 62.2 51.2 
0.3000 130.9 358.5 0.5996 157.2 205.0 0.9500 32.9 25.6 
0.3500 142.9 332.9 0.6501 149.7 179.2    
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Figure 4.14. Excess molar enthalpies, ��,����
� , for the	��1HX + � �THF	 + (1 − � � −

��)23DMB  mixture at the temperature 298.15 K. Plotted against mole fraction	��. Experimental 
results: ,	�� = 0.0;	⊙	, �� ��⁄ = 0.3329;  ∎, �� ��⁄ = 1.0004; ⊡, �� ��⁄ = 3.0000; ∇,�� =
0.0; Curves:         , calculated from the representation of the results by equations (4.18) and 
(4.19) using the ternary term ��,�

� . 
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Figure 4.15. Contours for constant values of ��,���
� (J ∙ mol��⁄ ) for the ��1HX + � �THF + (1 −

�� − ��)23DMB  system at 298.15 K. Calculated from the representation of the experimental 
results by equations (4.18) and (4.19). 
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4.2.1 Predictions by means of the Flory Theory 

 Benson and coworkers (1993-2001) predicted the excess molar enthalpy values with the 

Flory theory, for a large number of ternary systems. In Table 4.16, the interchange energy 

parameters for the constituent binary systems along with the standard deviations, �, of the 

estimates are presented for the six ternary systems involved in this study. As an example of the 

ternary excess enthalpy prediction by means of the Flory theory, the DNPE (1) + DNBE (2) + 

1HX (3) system is presented. 

 Table 4.16. Interchange energy parameter ��� and the standard deviation � of the prediction of 

ternary system excess enthalpies by means of the Flory theory 

*These binary interchange energy parameters are obtained by fitting the literature heats of 
mixing data to the Flory theory. (1)Wang et al. (2004b); (2)Lan et al. (2006); (3)Wang et al. 
(2004a); (4)Hamam and Benson (1986) 

 

The other parameters ���, ���, ��� are calculated from equation (4.11). 

 

 

 

System 
Component 

��� ��� ��� 
�

(J ∙ mol��)
 

1 2 3 

1 DNPE DNBE 1HX 0.5216 1.1899 -0.3457*(1) 1.77 

2 DNPE DNBE THF 0.5216 10.6922 12.7194 6.00 

3 DNPE 22DMB 23DMB 5.8503 5.8475 0.0766*(4) 3.37 

4 DNBE 22DMB 23DMB 3.8860 3.6515 0.0776 6.26 

5 1HX THF 22DMB 16.6649*(2) 2.5444*(3) 34.6610 19.65 

6 1HX THF 23DMB 16.6649 3.0702*(3) 34.5493 13.27 
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Ternary System: DNPE (1) + DNBE (2) + 1HX (3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16. Excess molar enthalpies, ��,����
� , for the	��DNPE + � �DNBE	 + (1 − � � −

��)1HX  mixture at the temperature 298.15 K. Plotted against mole fraction	��. Experimental 
results: ,	�� = 0.0;	⊙	, �� ��⁄ = 0.3333;  ∎, �� ��⁄ = 0.9996; ⊡, �� ��⁄ = 3.0000; ∇,�� =
0.0; Curves:           , estimated from the Flory theory. 
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Figure 4.17. Contours for constant values of ��,���
� (J ∙ mol��)⁄  for the ��DNPE + � �DNBE	 +

(1 − � � − ��)	1HX  system at 298.15 K. Estimated by means of the Flory theory. 
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Estimates of	��,����
� , derived from the Flory theory, are shown in Figure 4.16.  It can be 

seen that the theory predicts correctly the magnitude of the three experimental curves and their 

positions relative to the curves for the two constituent binaries. The root mean square deviation 

for the ternary mixtures in Table 4.9 for 60 data points is 1.8	J ∙ mol��.  

Constant ��,���
�  contours, estimated on the basis of the Flory theory, are shown on the 

Roozeboom diagram in Figure 4.17. The contours in the Figure 4.17 show that the Flory theory 

provides estimates of ��,���
� 	for the mixture that include predictions of the locations and 

magnitudes of the internal saddle point with reasonable accuracy. 

The graphical representations of the five (5) ternary systems are presented in the 

Appendix C3.  

For the ternary systems 1HX (1) + THF (2) + 22DMB (3), and 1HX (1) + THF (2) + 

23DMB (3) the standard deviation is relatively higher than the other systems. For these two 

systems there is no indication of internal maxima. However, for the ternary systems DNPE (1) + 

22DMB (2) + 23DMB (3), and DNBE (1) + 22DMB (2) + 23DMB (3) the standard deviation is 

low but the Flory theory cannot represent the internal saddle point. The Flory theory fairly 

estimates the enthalpy of the DNPE (1) + DNBE (2) + THF (3) ternary system. 
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4.2.2 Prediction by means of the Liebermann-Fried Model 

 Excess molar enthalpies of the ternary systems studied have also been estimated by 

means of the Liebermann-Fried model. In predicting the ternary heats of mixing by means of the 

Liebermann-Fried model, only the pure component properties and the interaction parameters of 

the constituent binaries are used. The interaction parameters of the binary system used in the 

prediction of ternary system excess enthalpy, by means of the Liebermann-Fried model, are 

presented in Table 4.17. The standard deviations of the excess enthalpy prediction for six ternary 

systems are presented in Table 4.18. As an example of the ternary excess enthalpy prediction by 

means of the Liebermann-Fried model, the DNPE (1) + DNBE (2) + 1HX (3) ternary system is 

presented.  

Table 4.17. Liebermann-Fried model parameter (���	and	���) matrix for binary 

systems  
 

 

 

 

 

(1)Wang et al. (2004b); (2)Lan et al. (2006); (3)Wang et al. (2004a); (4)Hamam and 
Benson (1986). §These binary interaction parameters were obtained by fitting the 
literature heats of mixing data to the Liebermann-Fried model. 

 

 

 

� 
 � 

DNPE DNBE 1HX THF 22DMB 23DMB 

DNPE 1.0000 1.1072 0.9329 0.8743 0.8276 0.9058 

DNBE 0.8908 1.0000 1.0759(1) 0.7579 0.8069 0.8845 

1HX 1.0455 0.9354(1) 1.0000 0.9371(2) 0.9401(3) 0.9133(3) 

THF 0.9575 1.0287 0.8319(1) 1.0000 0.8220 0.8171 

22DMB 1.0718 1.1299 1.0128(3) 0.7855 1.0000 1.0212§(4) 

23DMB 0.9775 1.0331 1.0291(3) 0.7896 0.9785§(4) 1.0000 
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Table 4.18. Standard deviation, �, of the prediction of excess 
enthalpies for ternary systems by means of the Liebermann-
Fried model 

 

 

                

 

   

 

Figure 4.18 shows the estimate of 	��,����
� by means of the Liebermann-Fried model 

along with the DNPE (1) + DNBE (2) and DNPE (1) + 1HX (2) binary systems. This figure 

shows that the Libermann-Fried model can be used to predict the excess molar enthalpy of the 

three pseudo binary mixtures fairly well. The standard deviation for the 60 data points in Table 

4.9 is 1.6	J ∙ mol��. 

The Roozeboom diagram in Figure 4.19 shows the constant 	��,���
�  contours predicted by 

means of the Liebermann-Fried model. In comparison with Figure 4.5, it is clear that the model 

can used to predict constant ��
�  contours with correct location and magnitude of the internal 

saddle point for the ternary system.   

 

 

 

 
System 

Component �

(J ∙ mol��)
 

1 2 3 

1 DNPE DNBE 1HX 1.59 

2 DNPE DNBE THF 3.18 

3 DNPE 22DMB 23DMB 4.18 

4 DNBE 22DMB 23DMB 6.97 

5 1HX THF 22DMB 1.78 

6 1HX THF 23DMB 14.21 
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Figure 4.18. Excess molar enthalpies, ��,����
� , for the	��DNPE + � �DNBE	 + (1 − � � −

��)1HX  mixture at the temperature 298.15 K. Plotted against mole fraction	��. Experimental 

results: ,	�� = 0.0;	⊙	, �� ��⁄ = 0.3333;  ∎, �� ��⁄ = 0.9996; ⊡, �� ��⁄ = 3.0000; ∇,�� =

0.0; Curves:          , estimated from the Liebermann-Fried model. 
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Figure 4.19. Contours for constant values of ��,���
� (J ∙ mol��)⁄  for the ��DNPE + � �DNBE	 +

(1 − � � − ��)	1HX  system at 298.15 K. Estimated by means of the Liebermann-Fried model. 
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Excess molar enthalpies for the other five ternary systems predicted by means of the 

Liebermann-Fried model are presented in Appendix C3.  

For the ternary system DNPE (1) + DNBE (2) + THF (3) the model predicts the constant 

enthalpy contour within reliable accuracy. But for the DNPE (1) + 22DMB (2) + 23DMB (3), 

and DNBE (1) + 22DMB (2) + 23DMB (3) ternary systems, the model fails to estimate the 

internal saddle point. For the 1HX (1) + THF (2) + 22DMB (3) ternary system, the standard 

deviation is quite low, but for the 1HX (1) + THF (2) + 23DMB (3) ternary system, the standard 

deviation is relatively higher than those for the other systems. For these two systems there is no 

indication of internal maxima.  
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5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

The experimental determination of excess molar enthalpy values for 10 binary and six 

ternary systems has been successfully performed by means of a modified flow microcalorimeter. 

On the basis of the results obtained in this study, the following conclusion can be drawn: 

 The heats of mixing values for binary systems studied are endothermic in nature. 

 Over the most of the composition range, the errors of the excess molar enthalpies 

and those of the mole fractions of the binary and ternary systems are less than 

0.005 ∙ |��
� | and 5 ∙ 10��, respectively. 

 The Flory theory and the Liebermann-Fried model can be used to correlate the 

excess molar enthalpy of binary mixtures successfully.  

 Both the Flory theory and the Liebermann-Fried model predict the ternary excess 

enthalpy values with reasonable accuracy. 

 It appears that the Liebermann-Fried model correlates and predicts the present 

binary and ternary excess enthalpy data better than the Flory theory, respectively. 
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5.2 Recommendation 

 The following recommendations are made for future studies: 

 The excess enthalpy of the systems containing ethers (DNPE and THF) and other 

branched alkanes should be investigated to understand their general 

characteristics. 

 The excess enthalpy of hydrocarbons and ethers binary systems can be performed 

at different temperature to verify the temperature dependency of the Liebermann-

Fried model parameters. 

 The Liebermann-Fried model parameters obtained in this study can be used to 

represent the vapor-liquid equilibria by means of this model. 
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APPENDIX A 

 

A1. Modification of Syringe Pump Motor Controller  

A2. Determination of Pump Constant 
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A1. Modification of Syringe Pump Motor Controller 

 The flow measuring system of the calorimeter was modified to get more precise flow 

rates (i.e., mole fractions). Previously, the displacement pump was driven by a variable-speed 

direct current (DC) motor (Bodine Electric, Type NSH-12). A disk with 120 equally photo 

masked sector was mounted on the motor shaft. The photo masked disk passes through a photo 

sensor, which gives the motor speed in number of counts per second through a feedback  
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controller (Tanaka et al. 1975). In the present study, the variable-speed DC motors along with the  

photo masked disks and the controllers were replaced by stepper motors (Lin Engineering, 

Model-WO-4118S-01) and similar disks with 180 photo masked sector. Each of the stepper 

motors is driven by microprocessor-equipped controller. The controllers were built in the 

Chemical Engineering department electronic shop. Previously, a feedback control circuit was 

used to control the motor speed (Tanaka et al. 1975). In the present study, the microprocessor 

equipped controller uses a precision frequency generator (PFG) to control the stepper motor 

speed. The PFG generates 4400 Hz. for 800 steps ∙ rev�� of the stepper motor. This PFG 

provides a precise speed control for the stepper motor. There are two different buttons to control 

speed, one is coarse that increases or decreases the motor speed by 20 to 40 counts per second 

and the second one is for fine tuning, which allows varying the motor speed by one counts/sec. 

This new pump driver and control system give more precise motor speed control which in turn 

gives a more precise mole fraction. Previously, the motor speed control has an uncertainty of ± 3 

counts ∙ s�� (Tanaka et al. 1975), now it is reduced to ±  1 counts ∙ s��. 
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A2. Determination of Pump Constant 

The purpose of the calibration was to determine the coefficient ��  (pump constant) which 

was used to calculate the volumetric flow rate �,	 delivered by pump �	(� = �,�)	(Tanaka et el. 

1975): 

� = � ��ℛ           (A2.1) 

where, ��  is the characteristic constant of the pump, �  adjustable gear ratio (1.0; 0.1; 0.01; 

0.001), and  ℛ  is the motor speed in counts ∙ s�� displayed by the microcontroller. 

The calibration (characteristic constant determination) procedure of the pump is described as 

follows: 

The calibrations were made by running the pumps filled with the reverse osmosis (RO) water at 

25	℃ and weighing the water collected from the pump output during a known time period. A 

plastic bottle (50 cm�capacity) was dried and weight with stopper. While running the pump, 

water was collected for 30-90 minutes, depending on the flow setting, after which the bottle was 

weight again. The volumetric flow rate was then calculated from the known mass, time interval, 

and the density of water (����
= 0.99705 g ∙ cm��)at 25	℃ . During the course of calibration 

both the pumps were run at gear ratio 0.1, which is the normal operation setting of the syringe 

pumps. The results are summarized in Table A2.1 and A2.2 for pump A and Pump B 

respectively. 
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Table A2.1. Calibration Results for Pump A 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Motor	Speed	 
(ℛ ) 

Time  
Mass	of	 
Water 

Volumetric	 
Flow	Rate	(�)×

10�  

(counts∙ s��) (s) (g) (cm� ∙ s��) 

1800.5 1800.0 9.002 5.0159 

1800.4 1800.0 9.003 5.0165 

1300.3 2500.0 9.020 3.6187 

1300.2 2500.0 9.026 3.6211 

800.0 4050.0 8.992 2.2268 

800.0 4050.0 8.990 2.2263 

300.8 10800.0 8.990 8.3487 

300.8 10800.0 8.991 8.3496 
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Figure A2.1. Calibration Curve for Pump A. Volumetric flow rate (�) plotted against the 
counter reading	(ℛ). ∆, experimental data; −	−, calculated from equation (A2.1). 

 

A calibration curve showing volumetric	�low	rate	(Q)	vs.		counter	reading	(ℛ) was then 

plotted for each pump. The calibration results for both pumps were correlated with equation 

(A2.1) using the least squares method. The pump constants (��) obtained from this analysis are 

2.7847×10-6	cm� ∙ count��and 2.7867×10-6	cm� ∙ count��  for pump A and pump B, 

respectively. 

R/(counts . s
-1

)

0 400 800 1200 1600 2000

Q
/(

cm
3 . 

s-1
)

0.000

0.001

0.002

0.003

0.004

0.005

0.006



97 
 

 

Table A2. 2. Calibration Results for Pump B 
 

 

 

 

 

 

 

Previously, the characteristic constants of the positive displacement pumps were 4.1882×10-

6	cm� ∙ count�� and 4.1889×10-6	cm� ∙ count�� for the pumps designated as pump A and pump 

B (Tanaka et al. 1975), respectively. 

Motor	Speed	 
(ℛ ) 

Time  
Mass	of	 
Water 

Volumetric	 
Flow	Rate	(�)×

10�  

(counts∙ s��) (s) (g) (cm� ∙ s��) 

1800.5 1800 9.021 5.0265 

1800.5 1800 9.023 5.0276 

1300.2 2500 9.047 3.6295 

1300.3 2500 9.038 3.6259 

800.0 4050 9.007 2.2305 

800.0 4050 8.991 2.2266 

300.8 10800 9.027 8.3831 

300.7 10800 9.026 8.3822 
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Figure A2.2. Calibration Curve for Pump B. Volumetric flow rate (�) plotted against the 
counter reading(ℛ). ∎, experimental data; −	−, calculated from equation (A2.1). 
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B1. Heats of Mixing of Binary Mixture 

 Binary heats of mixing were determined using the procedure described in section 

3.3.1. Pure component properties and calibration results, primary and processed experimental 

data, along with a sample calculation are presented. The density of the pure component and 

mixture were measured at (T = 298.15 K) and the uncertainty in density measurement is 

provided in section 3.1. 

Table B-1.1. Pure component properties 

Component Molecular Weight Density/(g ∙ cm��) 

 THF  72.10572 0.88208  

 22DMB  86.17536 0.64459  

 

 

 

B1.1. Calibration results for pure components 

 

Table B1.2. Calibration results of THF with pump A 

 

Mo tor	 
Speed	(ℛ ) 

Gear	 
ratio	(�) 

��
� �� Δ� � ℰ 

(counts ∙ s��) 
 

(mv) (mv) (mv) (amp) (J∙ v�� ∙ s��) 

1310.4 0.1 -0.0421 -0.4497 -0.4076 0.0113 15.5958 

1650.8 0.1 -0.0409 -0.4488 -0.4079 0.0113 15.6118 

1070.8 0.1 -0.0425 -0.4506 -0.4081 0.0113 15.5766 

830.3 0.1 -0.0411 -0.4480 -0.4069 0.0113 15.5675 

690.8 0.1 -0.0427 -0.4498 -0.4071 0.0113 15.5598 

450.3 0.1 -0.0410 -0.4486 -0.4076 0.0113 15.5407 
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The expression for calibration constant (ℰ) obtained by fitting equation (3.2) to the experimental 

data has the form 

ℰ = 15.5105 + 5.94994 × 10�� ∙ ℛ  

where ℛ  is the pump flow rates in counts ∙ s��. The standard deviation, �, is 0.003 J ∙ v�� ∙ s�� 

having an uncertainty in parameters �� and �� are ± 0.0031 J ∙ v�� ∙ s�� and ± 0.000003 J ∙ v�� ∙

counts�� 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B1.1. Calibration curve for THF in Pump A 
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Table B1.3. Calibration results of 22DMB with pump B 

 

 

The expression for calibration constant (ℰ) obtained by fitting equation (3.2) to the experimental 

data has the form 

ℰ = 15.5129 + 1.397851 × 10�� ∙ ℛ  

where ℛ  is the pump flow rates in counts ∙ s��. The standard deviation, �, is 0.016 J ∙ v�� ∙ s�� 

having an uncertainty in parameters �� and �� are ± 0.0183 J ∙ v�� ∙ s�� and ± 0.000016 J ∙ v�� ∙

counts�� 

 

 

 

 

 

 

 

 

Mo tor	 
Speed	(ℛ ) 

Gear	 
ratio	(�) 

��
� �� Δ� � ℰ 

(counts ∙ s��) 
 

(mv) (mv) (mv) (amp) (J∙ v�� ∙ s��) 

1052.2 0.1 -0.0606 -0.4831 -0.4225 0.0116 15.6628 

1352.3 0.1 -0.0612 -0.4815 -0.4203 0.0115 15.6904 

1653.6 0.1 -0.0652 -0.4834 -0.4182 0.0115 15.7418 

751.5 0.1 -0.0592 -0.4794 -0.4202 0.0115 15.6397 

451.8 0.1 -0.0551 -0.4773 -0.4222 0.0115 15.5657 

1052.2 0.1 -0.0602 -0.4791 -0.4189 0.0115 15.6883 
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Figure B1.2. Calibration curve for 22DMB in Pump B 
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B1.2 Experimental data and calculated results of heats of mixing for THF (1) + 22DMB (2) 

binary system 

 

 
Table B1.4. Primary experimental data for THF (1) + 22DMB (2) binary mixture 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Pump # Component M � (g ∙ cm��)⁄  �� �� × 10�� 

A 1 THF 72.10572  0.88208 15.5105 0.594994  

B 2 22-DMB 86.17536  0.64459 15.5129 1.397851  

Points ℛ�/(counts ∙ s��) ℛ �/(counts ∙ s��) �(mv) 

1 0.0 1794.2 -0.0652  

2 56.0  1738.3  0.2463  

3 114.3  1680.1  0.5303  

4 174.9  1619.5  0.8057  

5 238.1  1556.5  1.0498  

6 304.8  1490.2  1.2762  

7 372.6  1421.5  1.4692  

8 444.3  1349.8  1.6453  

9 520.0  1274.8  1.7894  

10 598.9  1196.1  1.8915  

11 681.7  1113.3  1.9682  

12 681.6  1113.3  1.9688  

13 767.6  1026.3  2.0030  

14 859.6  935.4  1.9987  

15 954.6  840.4  1.9515  

16 1055.6  739.3  1.8634  

17 1162.6  633.3  1.7200  

18 1274.9  520.1  1.5062  

19 1394.1  401.8  1.2384  

20 1519.5  275.9  0.8944  

21 1653.5  142.2  0.4751  

22 1795.4 0.0 -0.0404 
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Sample calculation for heat of mixing for the point no. 12 in table B1.4 
 
Pumps gear ratio (�)= 0.1 

Pump Constants: 

���
= 2.7847 × 10��cm� ∙ count��  

���
= 2.7867 × 10��cm� ∙ count��  

Controllers reading for pump A and B, 

ℛ� = 681.6	counts ∙ s��  

ℛ � = 1113.3	counts ∙ s��  

Volumetric flow rates for component 1 and 2 

�� = ���
× ℛ� = 1.898 × 10��cm� ∙ s��  

�� = ���
× ℛ � = 3.102 × 10��cm� ∙ s��  

Total volumetric flow rate 

� = 5.001 × 10��cm� ∙ s��  

Molar flow rates of for component 1 and 2 

�� =
��

���

= 2.322 × 10��mol ∙ s��  

�� =
��

���

= 2.321 × 10��mol ∙ s��  

where, ���
	and	���

	are the molar volume of component 1 and 2. Molar volumes are calculated 

from molecular weight and density of pure component using the following relation;���
=

� �

��
. 

Total molar flow rate, � = 4.643 × 10��	mol ∙ s�� 

Mole fraction of component 1, �� =
��

�
= 0.5001 
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Controller reading (ℛ) for both the pure components calculated using the relation, ℛ � =
��

��
 

ℛ�����
= 1795.6	counts ∙ s��  

ℛ �����
= 1794.0	counts ∙ s��  

Calibration constant for mixture is calculated using the relation, 

ℇ� = ��ℇ� + ��ℇ� = ����� + ��ℛ�����
�+ ����� + ��ℛ �����

�  

ℇ� = 7.855 × 10��	J∙ v�� ∙ cm�  

Baseline voltage for component 1 and 2, 

��
� = −40.4	μv  

��
� = −65.2	μv  

Mixture baseline voltage, 

 ��
� = ����

� + ����
�, where �� = �� ∑ ��⁄  

��
� = −55.8	μv  

Corrected voltage, 

 ����� = � − ��
� = (1968.8 + 55.8)	μv = 2024.6	μv 

Heat of mixing at �� = 0.5001  

��
� =

ℇ������

�×�
× 10�� = 685.0	J ∙ mol��  

 

Estimation of Error (or Uncertainty) 

 In order to determine the accuracy of the data, it is necessary to consider the propagation 

of the errors which appear as a result of the experimental method. Many methods are available 

for determining a composite error. Among the error estimation methods, the error propagation 



107 
 

method is widely used for determining the error in dependent variable that is a function of one or 

more different measured variables.  

 The general method can be describe by considering a dependent variable, � , to be a 

function of the several measured variables, ��,��, etc. 

� = �(� �,��, …		…)          (B1.1) 

The error in the variable �  (Bevington and Robinson, 2003) 

�� = � �
��

���
�
�

���
� + �

��

���
�
�

���
� + ⋯	        (B1.2) 

where, 

 ���
=  the standard deviation of the �� variable 

 ���
= the standard deviation of the �� variable 

 �� = the standard deviation of �  dependent variable 

 
��

���
= the partial derivative of the variable �  with respect to �� 

 In the present study simpler approximation of the error propagation method is used. 

Different forms of the approximation formulas for obtaining the error are presented. 

Suppose the variables ��	and	�� have uncertainties	∆��	and	∆��, respectively, then the 

uncertainties ∆�	 in the dependent variable �  will be as follows:  

a. For addition and subtraction: � = � � + �� or � = � � + ��    

∆� = �∆��
� + ∆��

�         (B1.3) 

b. For multiplication and division: � = � � × �� or � = � � ��⁄      

∆� = |�|∙ � �
∆��

��
�
�

+ �
∆��

��
�
�

        (B1.4) 
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 Applying the equations (B1.3) and (B1.4) for mole fraction (��) and excess enthalpy 

(��
� ) the uncertainties of these two variables were determined. A sample calculation of the error 

for the section B1.2 is presented. 

 

Mole fraction, �� = �. ���� 

Error in volumetric flow rate, �� 

�� =
��

�� ��
∙

�

����
  

∆�� = |��|∙ � �
∆��

��
�
�

+ �
∆�� ��

�� ��
�
�

+ �
∆�����

�����
�
�

  

where, � = 9.002g, ∆� = ±0.001g; ���� = 0.99705	g ∙ cm��, ∆� = ±0.00001g ∙ cm��; 

���� = 1800	�, ∆���� = ±0.1	�. So, the error in the flow rate measurement with a value of 

�� = 0.0050159	cm� ∙ s�� the error, ∆�� = ±0.0000006	cm� ∙ s��. 

Similarly for �� = 0.0050265	cm� ∙ s�� the error, ∆�� = ±0.0000006	cm� ∙ s��. 

Error in counter reading, ��and	��  

∆�� = ±1.0	counts ∙ s�� and  ∆�� = ±1.0	counts ∙ s�� 

Error in molar volume, ���
 

���
=

� �

��
  

∆���
= ����

�∙ � �
∆��

��
�
�

+ �
∆��

��
�
�

  

where, M � = 72.10572, ∆M� = 0.0	(Assuming); �� = 0.88208	g ∙ cm��, ∆� = ±0.00001g ∙

cm��. So, the error in the molar volume with a value of ���
= 81.1745	cm� ∙ mol�� the error, 

∆���
= ±0.0009	cm� ∙ mol��. 

Similarly for ���
= 133.6902	cm� ∙ mol�� the error,	∆���

= ±0.0021	cm� ∙ mol��. 
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Error in molar flow rate, �� 

�� =
��

���

  

∆�� = |��|∙ � �
∆��

��
�
�

+ �
∆���

���

�
�

  

where, Q� = 0.00188981cm� ∙ s��,	;. So, the error in the molar flow rate with a value of 

�� = 0.00002321	mol ∙ s�� the error, ∆�� = ±0.00000001	mol ∙ s��. 

Similarly for �� = 0.00002321	mol ∙ s�� the error, ∆�� = ±0.00000001	mol ∙ s��.  

And the error in total molar flow rate �, is ∆� = �(∆��)
� + (∆��)

� = ±0.00000001	mol ∙ s�� 

Finally the error in mole fraction measurement for �� = 0.0018981	cm� ∙ s�� and �� =

0.0031024	cm� ∙ s�� is given by  

�� =
��

�
  and 

the error is 

∆�� = |��|∙ � �
∆��

�
�
�

+ �
∆�

�
�
�

=± 0.0002    

        

Excess enthalpy, � �
� = ���.�	� ∙ ����� 

 The excess enthalpy is obtained by the relation: 

��
� =

ℇ������

�×�
  

where, ℇ� = ℇ��� + ℇ��� = � + �  where,  � = ℇ ��� and � = ℇ��� and the error in � and � 

can be estimated by the relation 

∆� = |�|∙ � �
∆ℇ�

ℇ�
�
�

+ �
∆��

��
�
�

  and  ∆� = |�|∙ � �
∆ℇ�

ℇ�
�
�

+ �
∆��

��
�
�

 

Finally the error in ℇ�  can be calculated by the relation 
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∆ℇ� = � (∆�)� + (∆�)�  

The uncertainty in the pure components calibration constants are estimated to be, ∆ℇ� =

±0.0003	J ∙ v�� ∙ s�� and ∆ℇ� = ±0.0016	J ∙ v�� ∙ s��.  

Using these values the uncertainty in the calibration constant due to mixing is estimated for  

ℇ� = 0.07855	J ∙ v�� ∙ cm� the error ∆ℇ� = ±0.00005	J ∙ v�� ∙ cm�. 

The uncertainty in the voltage measurement found to be ∆����� = ±0.01	μv. 

The final uncertainty in the excess molar enthalpy ��
� = 685.0	J ∙ mol�� is  

∆��
� = |��

� |∙ � �
∆ℇ�

ℇ�
�
�

+ �
∆�����

�����
�
�

+ �
∆�

�
�
�

+ �
∆�

�
�
�

=± 1.0	J ∙ mol��  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



111 
 

Table B1.5. Calculated excess molar enthalpy for THF (1) + 22DMB (2) binary system over the 
whole mole fraction range 

 

 

 

 

 

 

 

 

Points ℛ� ℛ � � ��
�  �����  � �� ��

�  

 
(counts
∙ s��) 

(counts
∙ s��) 

(mv) (mv) (mv) (cm� ∙ s��) 
 

(J∙ mol��) 

1 0.0 1794.2 -65.2 -65.2 0.00 0.005 0.0000 0.0 

2 56.0 1738.3 246.3 -64.4 310.7 0.005 0.0500 128.4 

3 114.3 1680.1 530.3 -63.6 593.9 0.005 0.1000 240.4 

4 174.9 1619.5 805.7 -62.8 868.5 0.005 0.1500 344.3 

5 238.1 1556.5 1049.8 -61.9 1111.7 0.005 0.2000 431.5 

6 304.8 1490.2 1276.2 -61.0 1337.2 0.005 0.2505 507.7 

7 372.6 1421.5 1469.2 -60.1 1529.3 0.005 0.2999 568.4 

8 444.3 1349.8 1645.3 -59.1 1704.4 0.005 0.3498 619.4 

9 520.0 1274.8 1789.4 -58.0 1847.4 0.005 0.4000 655.7 

10 598.9 1196.1 1891.5 -56.9 1948.4 0.005 0.4500 675.4 

11 681.7 1113.3 1968.2 -55.8 2024.0 0.005 0.5002 684.7 

12 681.6 1113.3 1968.8 -55.8 2024.6 0.005 0.5001 685.0 

13 767.6 1026.3 2003.0 -54.6 2057.6 0.005 0.5500 679.5 

14 859.6 935.4 1998.7 -53.3 2052.0 0.005 0.6003 660.2 

15 954.6 840.4 1951.5 -52.0 2003.5 0.005 0.6499 628.1 

16 1055.6 739.3 1863.4 -50.6 1914.0 0.005 0.7000 584.2 

17 1162.6 633.3 1720.0 -49.2 1769.6 0.005 0.7500 525.0 

18 1274.9 520.1 1506.2 -47.6 1553.8 0.005 0.8002 448.4 

19 1394.1 401.8 1238.4 -46.0 1284.4 0.005 0.8501 359.8 

20 1519.5 275.9 894.4 -44.2 938.6 0.005 0.9000 255.3 

21 1653.5 142.2 475.1 -42.4 517.5 0.005 0.9500 136.4 

22 1795.4 0.00 -40.4 -40.4 0.0 0.005 1.0000 0.0 
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B2. Correcting of Weights for the Buoyancy of Air 

Buoyancy correction of weight is accomplished by means of the formula given by Bauer 

(1959). The formula has the following form: 

�� = ��

���
��
��

�

���
��
��

�
         (B2.1) 

where �� is the corrected mass of sample, �� the observed mass, �� the density of air, ��  

density of brass, which is the built-in weights in the balance and has value of 8.4	g ∙ cm��, and  

�� the density of sample whose weight has to be corrected. 

As in most of the weighings, the environment surrounding the weighing apparatus is air. And the 

density of air acts as a buoyancy force on the weighed sample. The air density is calculated by 

the following equation (Bauer, 1959) 

�� (g ∙ cm��)⁄ =
�.���������×(�×� � ×�� ��

� )

(���.�����×�)
       (B2.2) 

where, � is the atmospheric pressure in mmHg, �� the relative humidity in % , � the room 

temperature in ℃ , and ����
�  the  vapor pressure of water at room temperature and is calculated by 

the Antoine equation 

log�������
� (mmHg)⁄ �= � −

�

���
        (B2.3) 

where � = 8.184254, � = 1791.3, � = 238.1, and they were obtained from Riddik et al. 

(1986). 
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Table B2.1. Sample calculation: Binary mixture of {THF (1) + 22DMB (2)} of �� ≈
					0.2500. 

Ambient Condition 
Temperature Relative Humidity Pressure 

22.76	℃    45%  710.76	mmHg   

Pure 

Component Molecular Weight 
Density/ 
(g ∙ cm��) 

 THF  72.10572 0.88208  

 22DMB  86.17536 0.64459  

 

 

Table B2.2. Summary of weighing 

Component Weight/ (g) 

THF 25.3861 

22DMB 91.0591 

 

Weight correction for THF 

����
� (mmHg)⁄ = 10

��.��������
����.�

���.����.���
��

  

����
� = 20.7647	mmHg  

�� (g ∙ cm��)⁄ =
�.���������×(���.���×��×��.����)

(���.�����×��.���)
  

�� = 0.00111	g ∙ cm��  

�� = 8.4	g ∙ cm��  

 �� = 25.3861
���

�.�����

�.�
�

���
�.�����

�.�����
�
 

  

�� = 25.4147	g  

Similarly, for 22DMB the corrected weight is 	91.2042	g. 
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So, the calculated mole fraction is 

�� =

��
��

��
��

�
��
��

=
��.����

��.�����
��.����

��.�����
�

��.����

��.�����

= 0.2498  

and the mixture molecular weight is 

���� = ���� + (1 − ��)�� = 82.6604	g ∙ mol��   
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B3. Heats of Mixing of Pseudo-Binary Mixture 

 Excess molar enthalpy measurement of a pseudo-binary mixture involves several steps. 

These are the determination of pure component densities, pre-estimation of weights of pure 

components required for preparing the pseudo-pure mixture of a selected composition. After the 

pseudo binary mixture preparation, the measured weights are corrected for the buoyancy of air 

and then the mole fraction and the molecular weight are calculated. The density of the prepared 

pseudo pure mixture were measured in a densitometer (Anton Paar DMA 5000M). Details of the 

mixture preparation and buoyancy correction are presented in Appendix B2. 

 
Table B3.1. Pseudo pure mixture of {THF (1) + 22DMB (2)} 

 

 

 

Ambient Condition 
Temperature Relative Humidity Pressure 

22.39	℃    40	%  710.91	mmHg   

Pure 

Component Molecular Weight 
Density/ 
(g ∙ cm��) 

 THF  72.10572 0.88208  

 22DMB  86.17536 0.64459 

Mixture 

Component Weight/(g) Mole Fraction 

 THF 50.3156 0.5001 

22DMB 60.1004 0.4999 

Molecular Weight 
Density/ 
(g ∙ cm��) 

79.13861 0.73717 
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Table B3.2. Calibration results of 1-hexene with pump A 

 

 

The expression for calibration constant (ℰ) obtained by fitting equation (3.2) to the experimental 

data has the form 

ℰ = 15.4371 + 1.028193 × 10�� ∙ ℛ  

where ℛ  is the pump flow rates in counts ∙ s��. The standard deviation, �, is 0.006 J ∙ v�� ∙ s�� 

having an uncertainty in parameters �� and �� are ± 0.0066 J ∙ v�� ∙ s�� and ± 0.000006 J ∙ v�� ∙

counts�� 

 

 

 

 

 

 

 

 

Mo tor	 
Speed	(ℛ ) 

Gear	 
ratio	(�) 

��
� �� Δ� � ℰ 

(counts ∙ s��) 
 

(mv) (mv) (mv) (amp) (J∙ v�� ∙ s��) 

830.3 0.1 -0.0429 -0.4544 -0.4115 0.0114 15.5299 

1070.8 0.1 -0.0411 -0.4498 -0.4087 0.0113 15.5538 

1310.3 0.1 -0.0421 -0.4508 -0.4087 0.0113 15.5812 

1650.8 0.1 -0.0409 -0.4496 -0.4087 0.0114 15.6087 

690.9 0.1 -0.0419 -0.4538 -0.4119 0.0114 15.5148 

450.3 0.1 -0.0410 -0.4530 -0.4120 0.0114 15.4837 



117 
 

 

 

 

 

Figure B3.1. Calibration curve for 1-hexene in Pump A 
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Table B3.3. Calibration results of mixture # 2 {THF (1) + 22DMB (2)} with pump B 

 

 

The expression for calibration constant (ℰ) obtained by fitting equation (3.2) to the experimental 

data has the form 

ℰ = 15.5238 + 5.12023 × 10�� ∙ ℛ  

where ℛ  is the pump flow rates in counts ∙ s��. The standard deviation, �, is 0.004 J ∙ v�� ∙ s�� 

having an uncertainty in parameters �� and �� are ± 0.00041 J ∙ v�� ∙ s�� and ± 0.000004 

J ∙ v�� ∙ counts�� 

 

 

 

 

 

 

 

 

Mo tor	 
Speed	(ℛ ) 

Gear	 
ratio	(�) 

��
� �� Δ� � ℰ 

(counts ∙ s��) 
 

(mv) (mv) (mv) (amp) (J∙ v�� ∙ s��) 

830.3 0.1 -0.0414 -0.4526 -0.4112 0.0114 15.5686 

1310.3 0.1 -0.0422 -0.4555 -0.4133 0.0114 15.5986 

1650.8 0.1 -0.0411 -0.4583 -0.4172 0.0115 15.6158 

1070.7 0.1 -0.0428 -0.4615 -0.4187 0.0115 15.5870 

690.9 0.1 -0.0431 -0.4545 -0.4114 0.0114 15.5610 

450.3 0.1 -0.0411 -0.4506 -0.4095 0.0113 15.5508 
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Figure B3.2. Mixture Calibration curve: THF (1) + 22DMB (2) pseudo-pure mixture in Pump B 
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Table B3.4. Primary experimental data for 1-hexene (1) + {THF (1) + 22DMB (2)} (2) 
binary mixture 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Pump # Component M � (g ∙ cm��)⁄  �� �� × 10�� 

A 1 1-hexene 84.15948  0.66876 15.4371 1.028193 

B 2 Mixture 79.13861 0.73717 15.5238 0.512023 

Points ℛ�/(counts ∙ s��) ℛ �/(counts ∙ s��) �(mv) 

1 0.0 1794.4 -0.0402  

2 104.4  1690.3  -0.0112  

3 206.9  1587.1  0.0159  

4 307.9  1486.1  0.0388  

5 406.9  1387.1  0.0566  

6 504.8  1290.1  0.0738  

7 600.9  1194.1  0.0874  

8 694.9  1100.0  0.0975  

9 787.9  1007.1  0.1057  

10 879.8  915.2  0.1106  

11 968.7  826.3  0.1108  

12 968.8  826.2  0.1112  

13 1057.7  737.3  0.1093  

14 1144.6  650.4  0.1039  

15 1230.5  564.6  0.0975  

16 1314.3  480.6  0.0861  

17 1398.2  397.6  0.0715  

18 1480.0  315.0  0.0556  

19 1560.7  234.7  0.0361  

20 1640.8  155.4  0.0154  

21 1718.4  77.2  -0.0118  

24 1795.4 0.0 -0.0408 
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Excess molar enthalpy calculation procedure for the pseudo-binary mixture is similar to that of 

binary mixture described in Appendix B1. Only the final results are presented. 

 
 
 
 

Table B3.5. Calculated excess molar enthalpy for the 1-hexene (1) + {THF (1) + 22DMB (2)} (2) 
pseudo binary mixture over the whole mole fraction range 

 

 

 

 

Points ℛ� ℛ � � ��
�  �����  � �� ��

�  

 
(counts
∙ s��) 

(counts
∙ s��) 

(mv) (mv) (mv) (cm� ∙ s��) 
 

(J∙ mol��) 

1 0.0  1794.4  -40.2  -40.2  0.0  0.005  0.0000  0.00  

2 104.4  1690.3  -11.2  -40.2  29.0  0.005  0.0500  9.8  

3 206.9  1587.1  15.9  -40.3  56.2  0.005  0.1000  19.2  

4 307.9  1486.1  38.8  -40.3  79.1  0.005  0.1501  27.2  

5 406.9  1387.1  56.6  -40.3  96.9  0.005  0.2000  33.7  

6 504.8  1290.1  73.8  -40.4  114.2  0.005  0.2501  40.0  

7 600.9  1194.1  87.4  -40.4  127.8  0.005  0.3002  45.1  

8 694.9  1100.0  97.5  -40.4  137.9  0.005  0.3500  49.1  

9 787.9  1007.1  105.7  -40.5  146.2  0.005  0.4001  52.4  

10 879.8  915.2  110.6  -40.5  151.1  0.005  0.4504  54.6  

11 968.7  826.3  110.8  -40.5  151.3  0.005  0.4998  55.1  

12 968.8  826.2  111.2  -40.5  151.7  0.005  0.4999  55.3  

13 1057.7  737.3  109.3  -40.6  149.9  0.005  0.5501  55.0  

14 1144.6  650.4  103.9  -40.6  144.5  0.005  0.6000  53.5  

15 1230.5  564.6  97.5  -40.6  138.1  0.005  0.6501  51.5  

16 1314.3  480.6  86.1  -40.6  126.7  0.005  0.6998  47.7  

17 1398.2  397.6  71.5  -40.7  112.2  0.005  0.7499  42.5  

18 1480.0  315.0  55.6  -40.7  96.3  0.005  0.8002  36.8  

19 1560.7  234.7  36.1  -40.7  76.8  0.005  0.8500  29.6  

20 1640.8  155.4  15.4  -40.8  56.2  0.005  0.9000  21.8  

21 1718.4  77.2  -11.8  -40.8  29.0  0.005  0.9500  11.3  

22 1795.4  0.0 -40.8  -40.8  0.0  0.005  1.0000  0.0  
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APPENDIX C 

 

1. Statistics of Data Correlation 

2. Solution Theory Representation of Binary Systems 

3. Solution Theory Representation of Ternary Systems 
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C1.1 Statistics of Data Correlation 

Experimental data were fitted to the empirical and solution theory models by means of an 

unweighted least square method. The programs used to fit the experimental data are the same as 

those used by Benson and coworkers (1993-2006). The Marquardt method (Levenberg-

Marquardt algorithm; (Marquardt, 1963)) was used in all the programs to get the best parameters 

of the models. The standard error was used as the objective function and was defined as  

� = �
∑ �������������	������	–	����������	�������

��
���

���
      (C1.1) 

where �, is the number of experimental data points, and �, the number of adjustable parameters 

of the model. The chosen parameters were based on the minimization of this objective function. 

In fitting the experimental excess molar enthalpy data to the solution theory models, there 

are no further statistical test were used as the parameters of these models are fixed. Empirical 

models used in the current study for representing the experimental data, have an arbitrary 

number of parameters. The numbers of parameters of the empirical models were selected by 

means of the F-statistical test. This statistical test is described in the following section. 

 

C1.2 F-statistical test 

In the fitting of the empirical models (Redlich-Kister polynomials) to the experimental 

data, the numbers of parameters selected is based on the F-statistical test. If it is found that 

model # 2 with �� parameters has a smaller standard error than model # 1 with �� parameters 

(where �� > �� ), then the model # 2 provides a somewhat better representation of the 
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experimental data. However, it is known that a model with more parameters will always provide 

a better fit of the experimental data. But, a model with more parameters does not always provide 

a statistically better fit than a model with less number of parameters. To resolve this dilemma 

engineers often uses the F-statistical test to determine if the simpler model is statistically as 

“good” as the more complicated one. The formula for performing the F-statistical test is  

�(�, �) =

(��� ����� �)

(���� �)

��� �
(�� ��)

          (C1.2) 

where 

���� = 	sum	of	square	error	of	model	#	1	with	��	parameters  

���� = 	sum	of	square	error	of	model	#	2	with	��	parameters  

� = number	of	data	points  

� = degree	of	freedom	of	model	#	1	(� = � − ��)  

� = degree	of	freedom	of	model	#	2	(� = � − ��)  

The value of �(�,�) will have an F distribution, assuming errors due to lack of fit are normally 

distributed. At a significance level q(= 0.05), the value can be compared with the tabulated 

values of 	�(���)(�, �). If �(�, �) is greater than 	�(���)(�, �), one concludes that model # 2 is 

better than model # 1 (Bevington and Robinson, 2003; Navidi, 2006).  

As an example, the parameter selection of the Redlich-Kister polynomials for the THF (1) + 

22DMB (2) system is illustrated in Table C1.1. 
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Table C1.1. F-statistical test summary 

*��� = degree	of	freedom; � = 0.05 

This table serves to indicate that the polynomial with four parameters provides a 

statistically better fit than the polynomial with five or six parameters. The tabulated values for 

the F-distribution with a 95% confidence level indicate that any difference in standard deviation 

is due to random error. 

 

 

 

 

 

 

  

Test no. Parameters 
�

(J∙mol��)
 

SSE

(J∙mol��)
 ���  � 	�(���) Result 

1 
3 1.2 23.62 17 

5.455 2.317 � > �(���) 
4 1.1 17.60 16 

2 
4 1.1 17.60 16 

0.015 2.385 � < �(���) 
5 1.1 17.58 15 

3 
5 1.1 17.58 15 

2.400 2.465 � < �(���) 
6 1.0 2.17 14 
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C2. Solution Theory Representation of Binary Systems 

C2.1 Flory theory Representation of Binary systems 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C2.1(a). Excess molar enthalpies ��,��
� 	for the binary systems presented in Table 4.2a 

and 4.2b at the temperature 298.15 K.  Experimental results: 	∆,	�1THF + (1 − � 1)	22DMB ; 

⊞, 	�1DNPE + (1 − � 1)	22DMB ; 	⊕ ,	�1DNBE + (1 − � 1)	22DMB  Curves:           ,  calculated by 
means of the Flory theory.    
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Figure C2.1(b). Excess molar enthalpies ��,��

� 	for the binary systems presented in Table 4.2a 

and 4.2b at the temperature 298.15 K.  Experimental results: 	∆,	�1THF + (1 − � 1)	23DMB ; 

⊞, 	�1DNPE + (1 − � 1)	23DMB ; 	⊕ ,	�1DNBE + (1 − � 1)	23DMB  Curves:             , calculated by 
means of the Flory theory.    
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Figure C2.1(c). Excess molar enthalpies ��,��
� 	for the binary systems presented in Table 4.2a 

and 4.2b at the temperature 298.15 K.  Experimental results: 	∆,	�1DNPE + (1 − � 1)	THF ; 	⊕
,	�1DNBE+ (1 − � 1)	THF  Curves:             , calculated by means of the Flory theory.    
 

 

 

 

 

x1

0.0 0.2 0.4 0.6 0.8 1.0

0

10

20

30



129 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure C2.1(d). Excess molar enthalpies ��,��

� 	for the binary systems presented in Table 4.2b at 

the temperature 298.15 K.  Experimental results:	∆,	�1DNPE + (1 − � 1)	DNBE ; 	⊕ ,	�1DNPE +
(1 − � 1)	1HX  Curves:             , calculated by means of the Flory theory. 
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C2.2 Liebermann-Fried model Representation of Binary systems 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C2.2(a). Excess molar enthalpies ��,��
� 	for the binary systems presented in Table 4.2a 

and 4.2b at the temperature 298.15 K.  Experimental results: 	∆,	�1THF + (1 − � 1)	22DMB ; 

⊞, 	�1DNPE + (1 − � 1)	22DMB ; 	⊕ ,	�1DNBE + (1 − � 1)	22DMB  Curves:             , calculated by 
means of the Liebermann-Fried model.    
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Figure C2.2(b). Excess molar enthalpies, ��,��

� 	for the binary systems presented in Table 4.2a 

and 4.2b at the temperature 298.15 K.  Experimental results: 	∆,	�1THF + (1 − � 1)	23DMB ; 

⊞, 	�1DNPE + (1 − � 1)	23DMB ; 	⊕ ,	�1DNBE + (1 − � 1)	23DMB  Curves:            , calculated by 
means of the Liebermann-Fried model.    
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Figure C.2(c). Excess molar enthalpies, ��,��
� 	for the binary systems presented in Table 4.2a and 

4.2b at the temperature 298.15 K. Experimental results: 	∆,	�1DNPE + (1 − � 1)	THF ; 	⊕
,	�1DNBE+ (1 − � 1)	THF  Curves:           , calculated by means of the Liebermann-Fried model.    
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Figure C2.2(d). Excess molar enthalpies, ��,��

� 	for the  binary systems presented in Table 4.2b 

at the temperature 298.15 K.  Experimental results:	∆,	�1DNPE + (1 − � 1)	DNBE ; 	⊕ ,	�1DNPE +
(1 − � 1)	1HX  Curves:             , calculated by means of the Liebermann-Fried model. 
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C3. Solution Theory Representation of Ternary Systems 

C3.1 Flory theory Representation of Ternary System 

Ternary System: DNPE (1) + DNBE (2) + THF (3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C3.1. Excess molar enthalpies, ��,����
� , for the 	��DNPE + � �DNBE	 + (1 − � � −

��)THF  mixture at the temperature 298.15 K. Plotted against mole fraction	��. Experimental 
results:  , 	�� = 0.0; 	⊙	,�� ��⁄ = 0.3332;  ∎, �� ��⁄ = 1.0004; ⊡, �� ��⁄ = 3.0000; ∇ ,�� =
0.0; Curves:          , predicted by means of the Flory theory. 
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Figure C3.2. Contours for constant values of ��,���
� (J∙ mol��⁄ ) for  the		��DNPE + � �DNBE	 +

(1 − �� − � �)THF system at 298.15 K. Predicted by means of the Flory theory. 
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Ternary System: DNPE (1) + 22DMB (2) + 23DMB (3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C3.3. Excess molar enthalpies, ��,����
� , for the 	��DNPE + � �22DMB	 + (1 − � � −

��)23DMB   mixture at the temperature 298.15 K. Plotted against mole fraction	��. Experimental 
results:  , 	�� = 0.0; 	⊙	,�� ��⁄ = 0.3257;  ∎, �� ��⁄ = 0.9747; ⊡, �� ��⁄ = 2.9968; ∇ ,�� =
0.0; Curves:          , predicted by means of the Flory theory. 
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Figure C3.4. Contours for constant values of ��,���
� (J∙ mol��⁄ )  for the ��DNPE +

��22DMB	 + (1 − � � − � �)23DMB  system at 298.15 K. Predicted by means of the Flory theory. 
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Ternary System: DNBE (1) + 22DMB (2) + 23DMB (3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C3.5. Excess molar enthalpies, ��,����
� , for the 	��DNBE + � �22DMB		 + (1 − � � −

��)23DMB   mixture at the temperature 298.15 K. Plotted against mole fraction	��. Experimental 
results:  , 	�� = 0.0; 	⊙	,�� ��⁄ = 0.3261;  ∎, �� ��⁄ = 0.9747; ⊡, �� ��⁄ = 2.9968; ∇ ,�� =
0.0; Curves:           , predicted by means of the Flory theory. 
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Figure C3.6. Contours for constant values of ��,���
� (J∙ mol��⁄ )  for the 	��DNBE +

��22DMB		 + (1 − � � − � �)23DMB  system at 298.15 K. Predicted by means of the Flory 
theory. 
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Ternary System: 1HX (1) + THF (2) + 22DMB (3) 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure C3.7. Excess molar enthalpies, ��,����

� , for the 	��1HX + � �THF	 + (1 − � � −

��)22DMB   mixture at the temperature 298.15 K. Plotted against mole fraction	��. Experimental 
results:  , 	�� = 0.0; 	⊙	,�� ��⁄ = 0.3329;  ∎, �� ��⁄ = 1.0004; ⊡, �� ��⁄ = 3.0000; ∇ ,�� =
0.0; Curves:            , predicted by means of the Flory theory. 
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Figure C3.8. Contours for constant values of ��,���
� (J∙ mol��⁄ ) for the 	��1HX + � �THF	 +

(1 − �� − � �)22DMB  system at 298.15 K. Predicted by means of the Flory theory. 
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Ternary System: 1HX (1) + THF (2) + 23DMB (3) 

 

 

Figure C3.9. Excess molar enthalpies, ��,����
� , for the 	��1HX + � �THF	 + (1 − �� −

��)23DMB   mixture at the temperature 298.15 K. Plotted against mole fraction	��. Experimental 
results:  , 	�� = 0.0; 	⊙	,�� ��⁄ = 0.3332;  ∎, �� ��⁄ = 0.9996; ⊡, �� ��⁄ = 3.0000; ∇ ,�� =
0.0; Curves:           , predicted by means of the Flory theory. 
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Figure C3.10. Contours for constant values of ��,���
� (J∙ mol��⁄ ) for the ��1HX + � �THF +

(1 − �� − � �)23DMB  system at 298.15 K. Predicted by means of the Flory theory. 
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C3.2 Liebermann-Fried model Representation of Ternary Systems 

Ternary System: DNPE (1) + DNBE (2) + THF (3) 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure C3.11. Excess molar enthalpies, ��,����

� , for the 	��DNPE + � �DNBE	 + (1 − � � −

��)THF  mixture at the temperature 298.15 K. Plotted against mole fraction	��. Experimental 
results:  , 	�� = 0.0; 	⊙	,�� ��⁄ = 0.3332;  ∎, �� ��⁄ = 1.0004; ⊡, �� ��⁄ = 3.0000; ∇ ,�� =
0.0; Curves:           , predicted by means of the Liebermann-Fried model. 
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Figure C3.12. Contours for constant values of ��,���
� (J∙ mol��⁄ )  for the 	��DNPE +

��DNBE	 + (1 − �� − � �)THF system at 298.15 K. Predicted by means of the Liebermann-Fried 
model. 
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Ternary System: DNPE (1) + 22DMB (2) + 23DMB (3) 

 

 

 

Figure C3.13. Excess molar enthalpies, ��,����
� , for the 	��DNPE + � �22DMB	 + (1 − � � −

��)23DMB   mixture at the temperature 298.15 K. Plotted against mole fraction	��. Experimental 
results:  , 	�� = 0.0; 	⊙	,�� ��⁄ = 0.3257;  ∎, �� ��⁄ = 0.9747; ⊡, �� ��⁄ = 2.9968; ∇ ,�� =
0.0; Curves:          , predicted by means of the Liebermann-Fried model. 
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Figure C3.14. Contours for constant values of ��,���
� (J∙ mol��⁄ )  for the ��DNPE +

��22DMB	 + (1 − � � − � �)23DMB  system at 298.15 K. Predicted by means of the Liebermann-
Fried model. 
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Ternary System: DNBE (1) + 22DMB (2) + 23DMB (3) 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure C3.15. Excess molar enthalpies, ��,����

� , for the		��DNBE + � �22DMB		 + (1 − � � −

��)23DMB   mixture at the temperature 298.15 K. Plotted against mole fraction	��. Experimental 
results:  , 	�� = 0.0; 	⊙	,�� ��⁄ = 0.3261;  ∎, �� ��⁄ = 0.9747; ⊡, �� ��⁄ = 2.9968; ∇ ,�� =
0.0; Curves:           , predicted by means of the Liebermann-Fried model. 
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Figure C3.16. Contours for constant values of ��,���
� (J∙ mol��⁄ ) for the 	��DNBE +

��22DMB + (1 − � � − � �)23DMB  system at 298.15 K. Predicted by means of the Liebermann-

Fried model. 
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Ternary System: 1HX (1) + THF (2) + 22DMB (3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 Figure C3.17. Excess molar enthalpies, ��,����

� , for the ��1HX + � �THF	 + (1 − � � −

��)22DMB   mixture at the temperature 298.15 K. Plotted against mole fraction	��. Experimental 
results:  , 	�� = 0.0; 	⊙	,�� ��⁄ = 0.3329;  ∎, �� ��⁄ = 1.0004; ⊡, �� ��⁄ = 3.0000; ∇ ,�� =
0.0; Curves:          , predicted by means of the Liebermann-Fried model. 
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Figure C3.18. Contours for constant values of ��,���
� (J∙ mol��⁄ ) for the	��1HX + � �THF	 +

(1 − �� − � �)22DMB  system at 298.15 K. Predicted by means of the Liebermann-Fried model. 
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Ternary System: 1HX (1) + THF (2) + 23DMB (3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure C3.19. Excess molar enthalpies, ��,����

� , for the ��1HX + � �THF	 + (1 − � � −

��)23DMB  mixture at the temperature 298.15 K. Plotted against mole fraction	��. Experimental 
results:  , 	�� = 0.0; 	⊙	,�� ��⁄ = 0.3332;  ∎, �� ��⁄ = 0.9996; ⊡, �� ��⁄ = 3.0000; ∇ ,�� =
0.0; Curves:          , predicted by means of the Liebermann-Fried model. 
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Figure C3.20. Contours for constant values of ��,���
� (J∙ mol��⁄ ) for the ��1HX + � �THF +

(1 − �� − � �)23DMB  system at 298.15 K. Predicted by means of the Liebermann-Fried model. 
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