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ABSTRACT 

 

Primary brain injury in stroke is followed by oxidative stress and further neural 

damage. Glutathione (GSH) is critical in antioxidant defense. Since cysteine is limiting in 

GSH synthesis, Phase 1 of this study investigated the effect of a dietary sulphur amino 

acid deficiency (-SAA) on neural damage in global hemispheric hypoxia-ischemia 

(GHHI). Rats were fed a -SAA or control diet for 6 days, and subjected to GHHI after 3 

days. Histologically evaluated neural damage at 7 days post hypoxia-ischemia was 

greater in -SAA rats. Brain GSH concentration was decreased in -SAA rats 3 days after 

ischemia. A cysteine precursor, L-2-oxothiazolidine-4-carboxylic acid (OTC) 

administered to -SAA rats did not ameliorate neural damage. GSH is decreased by 

protein-energy malnutrition (PEM) in some tissues. Phase 2 investigated the effect of 

PEM on brain oxidative stress, neural damage and behaviour after global ischemia in 

adult male gerbils.  In a 2x2 factorial design, gerbils were fed an adequate protein (12%; 

C) or low protein (2%; PEM) diet for 4 weeks, then subjected to transient ischemia (I) or 

sham surgery (S). After 12 hours of reperfusion, brain from half the gerbils was collected 

for biochemical analyses. Remaining gerbils were fed pre-surgery diets for 10 more days. 

To assess functional consequences of ischemia, gerbils were placed in an open field on 

Days 3, 7 and 10 after surgery. On Day 10, viable hippocampal CA1 neurons were 

counted.  C-I gerbils did not habituate as readily in the open field on day 3 as C-S, but 

normalized by day 7. PEM-I gerbils failed to habituate by day 10, traveled greater 

distance than other gerbils and 7 of 12 displayed thigmotaxis, a ‘wall-hugging’ 

preference for the outer perimeter of the open field. CA1 neuron loss in I was 61.5% of S, 

but unaffected by PEM. Four of 12 PEM-I gerbils had marked increases in hippocampal 

glia. Hippocampus protein thiols were reduced by PEM and by ischemia, consistent with 

oxidative stress. GSH concentration, glutathione reductase activity and thiobarbituric acid 

reactive substances were not significantly affected by PEM or ischemia. Findings from 

these two studies suggest well-nourished but not nutritionally-deficient rodents tolerate a 

mild brain insult. This is clinically relevant because many elderly stroke victims suffer 

from PEM at the time of ischemia, which may compromise recovery. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 RATIONALE 

 

Health Canada and the Heart and Stroke Foundation of Canada define 

cerebrovascular disease (ICD-9, 430-438) as the sudden development of a focal 

neurologic deficit due to disease of one or more blood vessels of the brain. Stroke, either 

focal or global (ICD-9, 430-432, 434, 436) is simply a reduction in blood flow to the 

brain. Stroke can be thromboembolytic or ischemic, with blockage of a blood vessel 

supplying the central nervous system (CNS), or hemorrhagic, with bleeding into the 

parenchyma or subarachnoid space. Global ischemia results from conditions such as 

cardiac arrest, head trauma and shock, often secondary to an episode of significant 

systemic hypotension. At 7% of all deaths, stroke remains the third most common cause 

of death in Canada (Heart and Stroke Foundation of Canada,1999; Yager and 

Thornhill,1997). Direct and indirect costs of stroke in Canada total $2.8 billion annually, 

with mortality costs responsible for $1.2 billion or 44% of total costs (Heart and Stroke 

Foundation of Canada,1999). Although mortality rates for all cardiovascular disease 

have been declining since the 1960s, and rates of ischemic heart disease and acute 

myocardial infarction continue to decline modestly, mortality rates for stroke have not 

changed significantly in the last ten years in Canada. In Saskatchewan, 20% of stroke 

victims die and 30% suffer permanent disability (Juurlink,1999). There remains a need 

to identify both treatment strategies to improve outcome and compromised nutritional 

states that could worsen outcome after stroke. As in cardiovascular disease, diet and 

nutritional status may play a role in prevention of stroke and amelioration of deficits for 

survivors. The focus of this thesis is therefore on the effect of nutritional status on 

outcome in stroke.



 2

Although stroke occurs in all age groups, the elderly are at high risk for stroke. 

Many elderly have compromised nutritional status due to a variety of factors such as 

anorexia, poor dental status, drug therapy, decreased activity levels, and chronic 

diseases (Abbasi and Rudman,1994; Lipschitz,1991; Marcus and Berry,1998). Several 

studies have reported evidence of compromised protein-energy status at the time of 

admission to hospital for stroke and deterioration of this status during the hospital stay 

(Axelsson et al.,1988; Choi-Kwon et al.,1998; Davalos et al.,1996; Gariballa et 

al.,1998b; Gariballa et al.,1998a). In a Canadian study, 49% of stroke patients suffered 

from protein-energy malnutrition (PEM) at the time of admission to rehabilitation units 

(Finestone et al.,1995; Finestone et al.,1996). Authors suggested there was inadequate 

nutritional intervention immediately post-injury which could compromise antioxidant 

defense mechanisms. A large, multicentre randomized trial evaluating feeding policies 

after stroke, the Feed Or Ordinary Diet Trial (FOOD), has determined nutritional status 

at baseline and early after stroke to be an important predictor of long term outcome 

(FOOD Trial Collaboration,2003). Patients undernourished immediately after stroke 

suffered reduced survival, functional ability and living circumstances six months later. 

The length of time to start of feeding after stroke varies, and stroke patients fed within 

seventy-two hours of injury have a shorter hospital stay (Nyswonger and 

Helmchen,1992). Low serum albumin, often an indicator of poor protein status, has been 

associated with increased length of stay, complications, and death in medical, surgical 

and stroke patients, and is considered an indicator of poor outcome (Aptaker et al.,1994; 

Axelsson et al.,1988; Choi-Kwon et al.,1998; Davalos et al.,1996; Finestone et al.,1996; 

Gariballa et al.,1998b; Gariballa et al.,1998a; Gariballa and Sinclair,1998). 

Primary brain injury in stroke is followed by an excitotoxic cascade, production 

of reactive oxygen and nitrogen species, oxidative stress and further neural damage. The 

endogenous tripeptide glutathione (GSH) is critical in antioxidant defense, and depleted 

in conditions of oxidative stress. The sulphur amino acid cysteine, supplied primarily by 

dietary protein, is limiting in glutathione synthesis. Liver and erythrocyte glutathione are 

responsive to dietary protein or short-term food deprivation, while brain glutathione is 

relatively preserved (Bauman et al.,1988a; Benuck et al.,1995; Taylor et al.,1992). 

However, an acute dietary sulphur amino acid deficiency decreases brain glutathione 
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concentration in some brain regions (Paterson et al.,2001). Reduced availability of 

critical substrate for glutathione synthesis in the face of high demand for glutathione 

during oxidative stress may further deplete brain glutathione. Sub-optimal protein-

energy status or sulphur amino acid status due to inadequate intake may thus 

compromise antioxidant defense in stroke and increase neural damage. Delivery of 

various cysteine precursors has been shown to enhance glutathione synthesis in some 

tissues, particularly in conditions of glutathione depletion (Jain et al.,1995; Kamencic et 

al.,2001; Taylor et al.,1992; Yao et al.,1997).  

This research investigates first the effect of an acute dietary sulphur amino acid 

deficiency on brain and liver glutathione concentration and neural damage in a rat model 

of global hemispheric hypoxia-ischemia, followed by administration of a cysteine 

precursor in an attempt to ameliorate neural damage. Since it is extremely unlikely any 

human would be deficient only in sulphur amino acids, the second part of this research 

investigates the effect of a short-term, severe dietary protein-energy deficiency on 

functional outcome, neural damage, and some biochemical markers of oxidative stress 

in a gerbil model of transient bilateral carotid artery occlusion. Behaviour and function 

are investigated in the gerbil ischemia model, due to evidence suggesting histological 

assessment of neural damage is not necessarily reflective of cognitive and motor 

function (Bothe et al.,1986; Hori and Carpenter,1994; Ishimaru et al.,1995). 

 

1.2 HYPOTHESIS 

 

The research project described in this thesis tested the following hypotheses: 

1. Sulphur amino acid-deficiency or protein-energy deficiency will decrease 

brain glutathione concentration in critical regions secondary to reduced 

synthesis of glutathione and uptake of key glutathione precursors, 

compromising antioxidant defense and increasing neural damage in stroke.  

2. Administration of L-2-oxothiazolidine-4-carboxylic acid (OTC), a cysteine 

precursor, will enhance glutathione synthesis in brain and ameliorate neural 

damage due to stroke. 
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1.3 OBJECTIVES 

 

The objectives of this research were divided into two experiments as follows: 

 

Experiment 1: Sulphur amino acid deficiency, global hemispheric hypoxia-

ischemia and OTC in the rat 

1. To investigate the effect of sulphur amino acid deficiency on brain 

glutathione concentration after global hemispheric hypoxia-ischemia 

(GHHI) in the rat. 

2. To investigate whether OTC protects against neural damage in the 

sulphur amino acid-deficient rat subjected to GHHI. 

 

Experiment 2: Protein-energy malnutrition and temporary bilateral carotid artery 

occlusion in the Mongolian gerbil 

1. To characterize a gerbil model of moderate protein-energy malnutrition 

(PEM). 

2. To investigate whether PEM exacerbates neural damage in global 

ischemia, as measured by histological assessment and behavioural (open 

field) outcome.  

3. To determine whether moderate PEM depletes brain glutathione and 

increases oxidative stress in a gerbil model of transient bilateral carotid 

artery occlusion (TBCAO). 

 

1.4 SUMMARY 

Oxidative stress causes secondary damage after initial brain injury in stroke. 

Availability of substrates for antioxidant defense may be compromised by dietary 

deficiencies. Epidemiological evidence suggests poor nutritional status at the time of 

stroke is a predictor of worse outcome for survivors. This thesis, entitled Nutritional 

Influence on Oxidative Stress in Global Ischemia, was investigated first with an acute, 

severe dietary sulphur amino acid deficiency in a rat model of hemispheric hypoxia-
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ischemia, and secondly with moderate protein-energy malnutrition in a gerbil model of 

transient global ischemia with reperfusion.
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CHAPTER 2 

 
REVIEW OF LITERATURE 

 

 

2.1 PATHOPHYSIOLOGICAL MECHANISMS IN STROKE 

The brain comprises 2% of body weight, but receives 20% of cardiac output and 

accounts for 20% of total body oxygen consumed (Shivakumar et al.,1995). Under 

aerobic conditions, glucose is the major source of energy for metabolism in the brain, 

which has few endogenous reserves of either glucose or glycogen. Ketone bodies can act 

only as a limited energy source in times of chronic metabolic imbalance. Glucose 

crosses the blood brain barrier in an insulin-independent manner (Peters et al.,2002), is 

taken into neurons via a membrane transporter and phosphorylated, and enters 

glycolysis then the tricarboxylic acid pathway. Ultimately, reducing equivalents pass to 

oxygen in the mitochondria with release of adenosine triphosphate (ATP), the energy 

‘currency’ of the cell, to the cytoplasm (Gunter et al.,1994). The mitochondria produce 

~95% of cell ATP requirements. The brain cannot oxidize free fatty acids, and is 

therefore susceptible to injury resulting from disturbance of blood flow and interruption 

of oxygen and glucose supply, such as in stroke. Anaerobic metabolism is insufficient to 

meet the demands of nervous tissue. When lack of oxygen removes the final electron 

acceptor from the respiratory chain, the system fails.  

Several secondary mechanisms activated following primary brain injury and 

stroke contribute to extensive damage. These mechanisms resulting from reduction in 

blood flow involve depletion of glucose, ATP and ADP, membrane depolarization and 

glutamate release from the cell initiating an excitotoxic cascade, calcium overload and 

finally production of strong oxidants leading to oxidative stress and activation of 

inflammatory pathways (Juurlink and Paterson,1998; Schmidt-Kastner and 

Freund,1991). Oxidative stress is a threshold phenomenon occurring when antioxidant 
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defenses are overwhelmed and free radical production exceeds elimination 

(Wilson,1997). Ischemia and subsequent reperfusion generate reactive oxygen (ROS) 

and nitrogen (RNS) species, toxic to the brain. During reperfusion, oxidative stress 

increases as oxygen is restored to the brain (Grace,1994; Juurlink and Paterson,1998; 

Shivakumar et al.,1995; Yano et al.,1998). 

2.1.1 Excitatory amino acid transmitters in the central nervous system 

In order to understand the mechanisms leading to oxidative stress, some 

background on neurotransmitters will be discussed. The predominant excitatory 

neurotransmitters (EAA) in the mammalian CNS are L-glutamate (glutamate) and L-

aspartate, two structurally similar acidic amino acids. Glutamate is the most abundant 

free amino acid, able to stimulate almost every type of CNS neuron. Identified 

glutamatergic pathways include hippocampal, cerebellar, corticocortical and 

corticofugal (Greene and Greenamyre,1996). Glutamate is concentrated in synaptic 

vesicles at nerve terminals. Release of glutamate is calcium-dependent, with active, 

high-affinity, sodium-dependent re-uptake into perisynaptic astrocytes by excitatory 

amino acid transporter proteins (mainly EAAT-1, EAAT-2) (Milton et al.,1997; 

Rothstein et al.,1994). There is some re-uptake by neurons, but the majority is via the 

perisynaptic astrocytes, wherein glutamate is transaminated to glutamine via glutamine 

synthase, and diffused back into nerve terminals, where it is deaminated to glutamate via 

a mitochondrial phosphate-activated glutaminase (Greene and Greenamyre,1996). 

Glutamate receptors are of two types, ionotropic and metabotropic. Ionotropic 

receptors are linked to cation channels and fall into three categories, named for the 

agonists that specifically stimulate them: α-amino-3-hydroxy-5-methyl-4-

isoxazoleproprionic acid (AMPA), kainate, and N-methyl-D-aspartate (NMDA). Both 

AMPA and NMDA receptors are usually involved in excitatory post-synaptic potentials.  

Metabotropic receptors are coupled to second messenger systems. 

2.1.1.1 Ionotropic receptors 

AMPA and kainate receptors are mediators of fast, voltage-independent synaptic 

responses, and promote activation of voltage-dependent NMDA receptors 

(Nakanishi,1992). The AMPA receptors are usually heteromeric, made up of five 
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subunits in combinations of four types, GluR1-GluR4 (Nakanishi,1992; Nakanishi and 

Masu,1994). Receptors containing subunits GluR1, GluR3 or GluR4 are permeable to 

calcium, but presence of GluR2, which is in majority, will confer calcium 

impermeability (Hume et al.,1991). Each subunit consists of 4 transmembrane domains 

(TM-I - TM-IV). Substitution of arginine (as in GluR2) for a glutamine (as in 

GluR1,3,4) in TM-II confers calcium impermeability to the channel pore 

(Nakanishi,1992). The kainate receptors are similar in structure to AMPA receptors: 

subunits GluR5-GluR7 confer low-affinity kainate binding in brain membrane, while 

subunits KA-1 and KA-2 confer high affinity binding (Nakanishi and Masu,1994). 

AMPA/kainate receptors are found in both neurons and glia, including microglia (Noda 

et al.,2000; Steinhauser and Gallo,1996).   

 NMDA receptors are unique in that they are both voltage- and ligand-gated. At 

resting membrane potential, the ion channel is blocked by extra-cellular magnesium; 

post-synaptic depolarization is required for magnesium release. Both glutamate and 

glycine (‘co-agonist’) binding is required for activation (Nakanishi and Masu,1994). 

NMDA receptors are therefore activated by coincident post-synaptic depolarization and 

agonist binding. Unlike AMPA receptors, NMDA receptors have a high calcium 

conductance, and also can transduce sodium. Calcium is the primary mediator of both 

physiological and toxic properties of the NMDAs. Several NMDA subunits have been 

identified: NMDA R1, NMDA  R2A-R2D, NMDA-L(c-1) (Ciabarra et al.,1995; 

Nakanishi et al.,1998). 

 

2.1.1.2  Metabotropic Receptors 

 Metabotropic receptors are coupled to guanine nucleotide-binding proteins (G-

proteins) and, depending on cell type and receptor subtype, can be linked to 

phosphoinositol turnover, arachidonic acid metabolism or cyclic AMP (Greene and 

Greenamyre,1996; Nakanishi and Masu,1994). Eight identified subunits have been 

named mGluR1-mGluR8.  In contrast to ionotropic receptors, the metabotropic 

receptors have not been well-studied, since there are no specific, potent antagonists for 
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this class. The function of glutamate receptors is intimately involved in the 

pathophysiology of stroke. 

 

2.1.2 Ischemic Brain Damage 

 Ischemic brain damage is thought to be due to passive processes involving 

reduced oxygen availability leading to decreased energy production and subsequent 

diminished survival, as well as active processes leading to the production of free 

radicals, activation of inflammatory responses, and finally apoptotic mechanisms 

(Love,1999). At the onset of ischemia, anaerobic metabolism leads to a fall in tissue pH, 

depletion of ATP and first slowing, then failure of the critical sodium-potassium 

ATPase pump (Na+K+-ATPase ) (Sweeney et al.,1995). As a result of this failure, ion 

homeostasis is disturbed as ions move down their electrochemical gradients across 

plasma membranes, such that sodium moves into the cell and potassium moves out 

(Love,1999; Shuaib and Kanthan,1997). Although this is initially a gradual process, by 

two minutes after onset of ischemia, depolarization of the membrane is pronounced and 

ion movement is more rapid (Love,1999). The Na+K+-ATPase pump further depletes 

ATP as the cell attempts to correct the ion imbalance. Since even under normal 

conditions, 40% of neuronal ATP is used by this pump to maintain resting membrane 

potential and ion gradients, ATP can be rapidly depleted at a time when demand is high 

(Greene and Greenamyre,1996). As the membrane depolarizes, calcium also moves into 

the cell through voltage-gated channels, causing the release of excitatory 

neurotransmitters, especially glutamate. Extracellular glutamate activates post-synaptic 

glutamate receptors, allowing further sodium entry, depolarization and ATP 

consumption.  Depolarization of the membrane releases magnesium from the voltage- 

and ion-gated NMDA receptors, which are then activated by glutamate and yet more 

sodium and calcium enter the cell. There are many consequences to calcium influx, such 

as activation of ATP-consuming calcium pumps, futile mitochondrial calcium cycling, 

activation of second messenger pathways resulting in changes in gene expression and 

calcium-dependent phospholipases, proteases, kinases, phosphatases and endonucleases, 

and finally production of ROS, leading to activation of phospholipase C, the arachidonic 
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acid cascade, production of inflammatory molecules and further ROS production (Alexi 

et al.,2000; Juurlink and Paterson,1998; Siesjo et al.,1995; Sweeney et al.,1995). There 

is a biphasic rise in intracellular calcium (Love,1999). The primary rise is coupled to 

accumulation of extracellular glutamate and activation of NMDA receptors, while the 

secondary rise occurs two to three hours after reperfusion and indicates irreversible cell 

damage. While not believed to be tied to glutamate release, the secondary calcium rise 

may be due to a post-ischemic potentiation of calcium influx through NMDA and 

AMPA receptors and/or recurrent spreading depression (Obrenovitch and 

Richards,1995; Walz,1997). Surrounding the primary infarct core of damage is an area 

of reduced blood flow, the penumbra (Hakim,1987). Waves of depolarization from the 

ischemic core spread across the penumbric region (spreading depression), leading to 

depletion of ATP in an area already compromised by poor circulation (Walz,1997). The 

penumbra may be rescuable, however, if this process can be minimized or halted 

(Juurlink and Sweeney,1997; Walz,1997). 

 

2.1.2.1  The role of sodium 

 Sodium is an important mediator of secondary active transport in brain. In 

ischemia, glutamate re-uptake is impaired by the decrease in sodium gradient, leading to 

the calcium-independent release of glutamate via reversal of the sodium-dependent 

glutamate transporter (Blaustein et al.,1991). The sodium gradient is important for 

maintenance of intra-cellular calcium via the low-affinity, high-capacity calcium/sodium 

exchange, which is dependent on a large sodium gradient, and critical in reducing 

increased intracellular calcium levels, such as occur in ischemia (Mattson et al.,1989). 

Metabolic inhibition thus impairs the exchange, increasing neuronal intracellular 

calcium, with all its consequences (Mattson et al.,1989). The sodium /H+ exchange is 

critical in maintenance of neuronal pH, and is also thus impaired by the decreased 

sodium gradient in ischemia, resulting in acidic intracellular conditions (Greene and 

Greenamyre,1996).  

 

2.1.2.2  Mitochondrial calcium transport 
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 Mitochondrial calcium transport is integral to the evolution of oxidative stress.  

Extracellular calcium concentration is 1-2mM, while cytoplasmic calcium concentration 

is often less than 100nM (Gunter and Pfeiffer,1990). These concentrations are 

maintained by the outward calcium ATPase pump and the calcium/sodium exchange. 

When cytoplasmic calcium increases above 200-300nM, mitochondria begin to 

accumulate calcium in the matrix. Influx of calcium into the matrix is via a passive 

uniporter in the membrane, dependent on membrane potential, and modulated by 

calcium, magnesium, and ADP. Efflux of calcium from mitochondria is energy-

dependent via both sodium-dependent and sodium-independent mechanisms. 

Accumulation of calcium in mitochondrial matrix, as well as many other stimulants such 

as oxidative stress and decreased glutathione concentrations, activates a ‘transition pore’ 

in the membrane. Solutes can then move across the membrane by facilitated diffusion, 

driven by their concentration gradients, destroying membrane potentials and allowing 

the mitochondria to swell, resulting eventually in reduced ADP phosphorylation, and 

increased production of ROS (Gunter et al.,1994; Gunter and Pfeiffer,1990; Juurlink and 

Paterson,1998). 

 

2.1.2.3  Glutamate  

 The release of glutamate to the extracellular space during ischemia is 

contributory to oxidative stress through more than one mechanism. Three classes of 

membrane proteins in the CNS mediate the physiological consequences of increased 

extracellular glutamate, namely ionotropic receptors, metabotropic receptors, and the 

cystine/glutamate Xc
- antiporter (Schubert and Piasecki,2001). 

 

2.1.2.3.1  Excitotoxicity 

 The action of glutamate released at synapses is normally terminated via neuronal 

and predominantly glial uptake by glutamate transporter proteins. Glutamate and sodium 

are co-transported into the cell while potassium moves out, resulting in one net proton-

equivalent into the cell (Love,1999). It remains unclear whether this proton-equivalent is 
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due to hydrogen ion (H+) in or hydroxyl ion (OH-) out. During ischemia, when the 

membrane is depolarized, this glutamate/sodium transporter cannot work efficiently, and 

glutamate thus accumulates extracellularly. Excessive stimulation of all types of 

ionotropic and even metabotropic glutamate receptors occurs, followed by neuronal 

damage or death (Greene and Greenamyre,1996). Calcium influx and loss of calcium 

homeostasis play an additional role in this process (Greene,1999; Greene and 

Greenamyre,1996; Siesjo et al.,1995), termed classic excitotoxic glutamate toxicity 

(Juurlink and Sweeney,1997; Tan et al.,1998). 

 

2.1.2.3.2  Oxidative glutamate toxicity 

 Glutamate can also be toxic in the CNS via a transporter-mediated mechanism 

known as oxidative glutamate toxicity, which has characteristics of both necrotic and 

apoptotic cell death (Tan et al.,1998). Necrotic cell death is a passive process, cell 

‘murder’ (Alexi et al.,2000), characterized by formation of vacuoles, cell swelling, 

random DNA degradation, and early loss of plasma membrane integrity (Ratan et 

al.,1994a; Tan et al.,1998). On the other hand, apoptotic cell death, or cell ‘suicide’ 

(Alexi et al.,2000), is associated with depolarization of the mitochondrial membrane, a 

rise in intracellular calcium, generation of ROS, chromatin condensation, cytoplasmic 

and nuclear shrinkage, ‘laddering’ of DNA into reproducible oligonucleosomal 

fragments, late loss of membrane integrity, and active RNA and protein synthesis 

(Pereira and Oliveira,2000; Tan et al.,1998). Oxidative glutamate toxicity appears to 

involve both a rapid necrotic phase and a delayed apoptotic phase that includes nuclear 

condensation and chromatin cleavage into oligonucleosomal fragments (Ratan et 

al.,1994a; Schubert and Piasecki,2001; Tan et al.,1998).   

 Almost all mammalian cells contain a sodium-independent, anionic amino acid 

transporter that is highly specific for cystine and glutamate (Sato et al.,1999). This Xc
-  

antiporter, enriched in brain membranes and concentrated in neurons, exchanges 

extracellular cystine for intracellular glutamate in a 1:1 fashion, and has a higher affinity 

for cystine than glutamate (Murphy et al.,1989; Sato et al.,1999). Mammalian 

extracellular brain cysteine concentration is less than 1µM, intracellular glutamate 
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concentration is greater than 3mM, and extracellular glutamate can reach 200-300µM 

after initial excitotoxic cell lysis (Murphy et al.,1990; Schubert and Piasecki,2001). 

Since the Xc
- antiporter is critical for intracellular supply of cystine, which is rapidly 

reduced to cysteine in the cell and used for synthesis of acetyl-CoA, protein and 

glutathione, the higher affinity for cystine is essential (Murphy et al.,1990). Transporter 

activity is induced by electrophilic agents, depletion of cystine, and oxygen, all of which 

can deplete glutathione (Sato et al.,1999). Cystine uptake is inhibited by glutamate. 

Thus, in conditions such as ischemia when there is excessive extracellular glutamate, 

transport of cystine to the cell via this mechanism is inhibited, there is a loss of cystine 

homeostasis, and intracellular glutathione concentrations fall (Pereira and Oliveira,2000; 

Tan et al.,1998). The subsequent rise in ROS leads to lipid peroxidation, decreased 

mitochondrial membrane potential, perturbation of calcium homeostasis, and ultimate 

mitochondrial dysfunction, decreased ATP production and cell death (Pereira and 

Oliveira,2000; Tan et al.,1998). This oxidative glutamate toxicity has been described in 

primary neuronal cultures (Davis and Maher,1994; Murphy et al.,1989; Murphy et 

al.,1990), neuronal cell lines (Davis and Maher,1994; Murphy et al.,1989), and tissue 

slices (Schubert et al.,1992). Oxidative glutamate toxicity can be blocked in vitro by 

antioxidants such as vitamin E (Murphy et al.,1990; Schubert et al.,1992), inhibition of 

arachidonic acid metabolism and 12-lipoxygenase (Li et al.,1997; Murphy et al.,1989) 

and by inhibition of macromolecular synthesis (Ratan et al.,1994a). It has been 

suggested that inhibitors of macromolecular synthesis may protect against oxidative 

glutamate toxicity via shunting of cysteine to glutathione synthesis (Ratan et al.,1994b). 

However, since apoptotic cell death requires some protein synthesis as well, perhaps 

inhibition of this synthesis may contribute to the observed protection. 

 

2.1.3 Oxidative Stress  

2.1.3.1  ROS/RNS 

A free radical is any species having one or more unpaired electrons (Halliwell 

and Gutteridge,1990). Free radicals and other chemically reactive species include the 

ROS superoxide anion (O2
•-), hydrogen peroxide, hydroxyl radical (OH•), and singlet 
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oxygen, and the RNS nitric oxide radical (NO•) and peroxynitrite (ONOO-) (Juurlink 

and Paterson,1998).   

The superoxide anion is produced in the cell by various mechanisms, including 

normal mitochondrial respiration, in which 3% of oxygen consumed is only partially 

reduced to superoxide instead of water (Juurlink,1997). The superoxide anion has a 

number of reactions in the cell: reaction with thiols, de-esterifying membrane lipids and 

releasing arachidonic acid, which initiates a metabolic cascade, leading to increased 

formation of superoxide anion; depletion of cellular NADH stores via a chain reaction 

with NADH bound to lactate dehydrogenase; reaction with nitric acid, producing 

peroxynitrite, a strong oxidant; dismutation to hydrogen peroxide and singlet oxygen 

with release of iron (ferrous ion) from ferritin stores (Fe3+ Fe2+) (Fridovich,1986; Hall 

and Braughler,1993; Juurlink and Paterson,1998). Hypoxanthine, a metabolite of ATP 

via AMP, adenosine and inosine, is normally converted to xanthine and then uric acid by 

xanthine dehydrogenase, using NAD+ as an electron acceptor. During and following 

ischemia, intracellular calcium rise activates proteases that convert xanthine 

dehydrogenase to xanthine oxidase. Xanthine oxidase uses molecular oxygen as its 

electron acceptor, thus increasing the potential for superoxide anion production and/or 

hydrogen peroxide (Juurlink,1997; McCord,1985). Significant is that in ischemia, ATP 

is depleted, resulting in elevation of AMP and thus a ready supply of hypoxanthine 

substrate for xanthine oxidase (Juurlink,1997; McCord,1985), i.e.- in ischemia, not only 

does the harmful enzyme appear, but also its substrate.  As well, reperfusion brings a 

ready supply of oxygen, the second substrate required by xanthine oxidase for free 

radical production (Sussman and Bulkley,1990). Superoxide dismutase can scavenge 

cellular superoxide by dismutation to hydrogen peroxide and molecular oxygen 

(Juurlink and Paterson,1998). 

Hydrogen peroxide is also formed by other mechanisms, such as by 

oxidoreductases in the cellular peroxisome organelles (Juurlink and Paterson,1998). 

Hydrogen peroxide is not a free radical as it does not have an unpaired electron.  

Although relatively unreactive, hydrogen peroxide diffuses easily across biological 

membranes (Halliwell and Gutteridge,1990), and in the presence of ferrous ion (Fe2+) or 
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cuprous ion (copper, Cu+), hydrogen peroxide converts to the hydroxyl radical (Fenton, 

reaction 2.1). Oxidized iron (Fe3+) can then be reduced by superoxide anion (reaction 

2.1).  Reactions 2.1 and 2.2 together are known as the Haber-Weiss reaction 

(Juurlink,1999). The hydroxyl radical is the most potent oxidant in biological systems. It 

will extract an electron from thiol-containing enzymes such as glutathione reductase and 

glutathione peroxidase, DNA and polyunsaturated lipids, or hydroxylate another 

molecule. Hydroxyl radical interferes with mitochondrial function, inactivating electron-

carrying proteins and mitochondrial ATPase and peroxidizing membrane lipids 

(Halliwell,1992; Juurlink and Paterson,1998).  

 Fe2+ + HOOH → Fe3+ + OH• + OH-      (2.1) 

 Fe3+ +  O2
•- → Fe2+ + O2      (2.2) 

Singlet oxygen can be formed from the interaction of superoxide anion with 

superoxide anion, peroxynitrite with hydrogen peroxide, or superoxide anion with 

hydrogen peroxide. Singlet oxygen may inactivate calcium ATPase, denature proteins, 

inactivate superoxide dismutase and catalase, and oxidize polyunsaturated lipids to yield 

lipid hydroperoxides and endoperoxides. These peroxides, with transition ions, can 

initiate propagation of lipid peroxidation chains or produce more singlet oxygen 

(Juurlink and Paterson,1998).  

Nitric oxide, a normally innocuous signaling molecule used by most cells, is 

synthesized from arginine by nitric oxide synthase (NOS). Two constitutive isoforms, 

NOS-I in neuronal and epithelial cells, and NOS-III in endothelial cells, are calcium and 

calmodulin dependent, while a third isoform, NOS-II or iNOS is inducible through 

cytokine activation of second messenger pathways and does not require elevation of 

cytosolic calcium (Hara et al.,1996; Juurlink,1999).  Inducible NOS produces toxic 

levels of nitric oxide, and is expressed in CNS in pathological states such as cerebral 

ischemia (Iadecola et al.,1997). Nitric oxide can interact with superoxide anion to 

produce peroxynitrite, which generates nitrogen dioxide (an oxidant similar to hydroxyl 

radical in reactivity), oxidizes thiol-containing proteins, DNA bases and polyunsaturated 

lipids, and inhibits mitochondrial electron transport, leading to decreased ATP 

production and increased production of ROS (Halliwell,1992; Juurlink and 
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Paterson,1998). In brain injury, polymorphonuclear leukocytes can produce nitric oxide 

and superoxide. Neurons and oligodendrocytes are susceptible to nitric oxide and 

peroxynitrite effects on mitochondrial respiration (Juurlink and Paterson,1998).  

 

2.1.3.2  Lipid peroxidation 

 Since the brain is rich in polyunsaturated fatty acids, ROS can easily propagate 

lipid peroxidation (Shivakumar et al.,1995). Superoxide anion can de-esterify membrane 

phospholipids to release fatty acids. Hydroxyl radical extracts a hydrogen atom from the 

methylene carbon of unsaturated fatty acids (LH), yielding a carbon-centred lipid radical 

(L•, reaction 2.3).  The lipid radical reacts with molecular oxygen to form a peroxy 

radical (reaction 2.4), which is converted to a lipid hydroperoxide (LOO•) by abstraction 

of a hydrogen atom from the methylene carbon of an adjacent unsaturated fatty acid 

(reaction 2.5) (Juurlink,1997). The propagation (reactions 2.4 and 2.5) continues until 

either two lipid radicals interact, or an antioxidant (such as vitamin E) stops the chain 

reaction (Kinuta et al.,1989). 

   LH + OH• → L• + HOH       (2.3) 

   L• + O2 → LOO•        (2.4) 

   LOO• + LH → L• + LOOH      (2.5) 

Lipid peroxidation can also be initiated by non-radical ROS such as singlet oxygen and 

hypochlorite. As well, in the presence of iron or iron complexes, lipid hydroperoxides 

can form alkoxy (reaction 2.6) or peroxy (reaction 2.7) radicals to propagate new chains 

of peroxidation (reactions 2.8 and 2.9), particularly in acidic conditions such as arise 

during and following ischemia (Hall and Braughler,1993; Juurlink,1997). 

LOOH + Fe2+ → Fe3+ + LO• + OH-     (2.6) 

LOOH + Fe3+ → Fe2+ + LOO• + H+     (2.7) 

LO• + LH  → LOH + L•                  (2.8) 

LOO• + LH  → LOOH + L•      (2.9) 
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Lipid peroxidation can alter membrane fluidity and permeability, and function of 

membrane-bound ion pumps, further compromising ion homeostasis, resulting finally in 

loss of membrane integrity and cell rupture (Juurlink,1997). Lipid peroxides can also 

break down into harmful pro-inflammatory isoprostanoids and strong oxidants such as 

4-hydroxynonenal (4-HNE) (Christman et al.,2000).   

 

2.1.3.3  The Arachidonic Acid Cascade and Inflammation 

 Both normal physiological mechanisms and pathological conditions such as 

mechanical damage, lipid peroxidation, and increased cytosolic calcium can release the 

polyunsaturated 20-carbon arachidonic acid (5,8,1,14-cis-eicosotetraenoic acid) from 

esterified membrane phospholipids via activation of calcium-dependent phospholipase 

A2 (Dayton and Major,1996; Juurlink and Paterson,1998; Shimizu and Wolfe,1990). 

Phosphatidylcholine and phosphatidylinositol, where arachidonate is in the sn-2 

position, are the most important sources of arachidonic acid. Phospholipase C is also 

activated by high intracellular calcium, giving rise to diacylglycerol which can release 

arachidonic acid via the action of lipases (Juurlink and Paterson,1998). The resultant 

arachidonic acid cascade involves oxidation of arachidonic acid by several enzyme 

families to produce prostaglandins, thromboxanes, leukotrienes, lipoxins, epoxy-

eicosatrienoic acids, and hydroperoxy acids, potent biological signaling molecules 

acting as short-range messengers (Shimizu and Wolfe,1990). Arachidonic acid can also 

be transformed into hydroperoxy acids by nonenzymatic autooxidation. Collectively 

termed eicosanoids, these arachidonate derivatives are responsible for a wide variety of 

modulatory physiological responses.  

 Two isoforms of the enzyme cyclooxygenase, constitutive (COX-1) and 

inducible (COX-2) are responsible for the conversion of arachidonic acid to 

prostaglandins and thromboxanes. COX-1 activity regulates prostaglandins and 

thromboxanes production under normal physiological conditions. COX-2 is rapidly 

inducible by mitogens, cytokines, lipopolysaccharide, and hypoxia/ischemia, and 

promotes pro-inflammatory prostaglandins and thromboxanes and free radicals, leading 

to permeability changes in the blood brain barrier, neutrophil activation, platelet and 
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leukocyte adhesion to endothelium (Juurlink and Paterson,1998; Sairanen et al.,1998).  

COX-2 is the main isoform in the CNS, and is present in both neuronal and glial cells 

(Sairanen et al.,1998). 

 Leukotrienes and lipoxins are produced by the lipoxygenase pathways, are 

potent mediators of inflammation, are released in response to cerebral trauma/ischemia, 

and stimulate leukocyte chemotaxis, neutrophil superoxide generation and release, 

vasospasm, and increased microvascular permeability (Feuerstein and Hallenbeck,1987; 

Juurlink and Paterson,1998). Five-lipoxygenase requires calcium and ATP for activity, 

thus is activated following ischemia and intracellular calcium rise, and will further 

deplete ATP. Free radicals may also act directly on arachidonic acid, with resultant 

isoleukotrienes, biologically active free radicals (Harrison and Murphy,1995). 

 Platelet-activating factor can be formed after acetylation of the sn-2 position of 

phosphatidylcholine following phospholipase A2-mediated release of arachidonic acid 

from that position (Juurlink and Paterson,1998). Platelet-activating factor has several 

actions, including increasing permeability of microvessels, promotion of neutrophil 

transmigration and adhesion, acting as a second messenger to release more arachidonic 

acid and superoxide anion, and enhancing glutamate release (Juurlink and 

Paterson,1998).   

 Neutrophils become activated and invade CNS parenchyma following CNS 

injury and phopholipase-mediated lipid inflammatory molecule formation. Arachidonic 

acid stimulates neutrophil NADPH-oxidase, the ‘respiratory burst oxidase’ normally 

active in host defense against microbial invasion (Chanock et al.,1994). The consequent 

production of superoxide anion, however, can cause considerable tissue damage as well 

(Juurlink and Paterson,1998). 

 

2.1.3.4  Nuclear factor kappa B 

 Nuclear factor kappa B (NF-κB) is a protein transcription factor, required for the 

transcription of pro-inflammatory molecules such as intracellular adhesion molecule-1 

(ICAM-1), the enzymes inducible nitric oxide synthase (iNOS) and COX-2, cytokines 
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interleukin-1 B (IL-1B), interleukin-6 (IL-6) and tumour necrosis factor alpha (TNF-α), 

and chemokines regulated upon activation normal T-cell expressed and secreted protein 

(RANTES) and monocytes chemoattractant protein-1 (MCP-1) (Christman et al.,2000; 

Schneider et al.,1999). NF-κB is thus a mediator of the inflammatory cascade. In 

resting, unstimulated cells, NF-κB is sequestered in the cytoplasm as a complex with an 

inhibitory component, IκB. Upon stimulation, the IκB is phosphorylated, 

polyubiquitinated and degraded by the 26S proteasome, unmasking a nuclear location 

signal on NF-κB, which then locates to the nucleus to activate gene transcription 

(Schneider et al.,1999). NF-κB is stimulated by both receptor-dependent signals such as 

lipopolysaccharide, TNF-α, and IL-1B, and by non-receptor activation such as 

ultraviolet radiation, physical stress/trauma, hydrogen peroxide and 

ischemia/reperfusion, whose mechanisms are not well understood. 

 

2.1.3.5  Advanced Glycation Endproducts 

 Advanced glycation endproducts (AGEs) are formed by the nonenzymatic 

interaction of highly reactive dicarbonyls, or 2-oxo-aldehydes, with the nitrogen of 

protein-bound amino acids and nucleic acids (Juurlink,1999). The dicarbonyls glyoxal 

and methylglyoxal are derived from glucose via transition metal ion catalyzed oxidation, 

and glycolysis, respectively. Alternatively, glucose can undergo Amadori rearrangement 

to yield another dicarbonyl, 3-deoxyglucosone. Advanced glycation endproduct 

formation is accelerated in hyperglycemia and oxidative stress (Juurlink,1999). 

Advanced glycation endproducts inactivate proteins such as glutathione reductase, and 

act with receptors that increase ROS and NF-κB activation, as well as with scavenger 

receptors whose activation causes release of arachidonic acid and ROS (Juurlink,2001; 

Shinpo et al.,2000).  

 

2.1.4 Summary 

 Many complicated and as yet incompletely understood mechanisms contribute to 

tissue damage during and following stroke, and pathways are interrelated and 
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interwoven. Juurlink (1999) talks of four phenomena: glutamate excitotoxicity, 

intracellular calcium influx, oxidative stress and ATP depletion as responsible for 

activation of a vicious spiral ending in cell death, with additional influence of oxidative 

stress in promotion of inflammatory processes, also damaging. Alexi et al. (2000) 

describe the ‘lethal triplet’ of metabolic compromise, excitoxicity and oxidative stress in 

both acute and chronic pathological states. It is clear that cell death in stroke occurs by 

rapid necrotic and delayed apoptotic mechanisms, the latter providing some hope of 

intervention before irrevocable damage occurs. 

 

2.2 ANTIOXIDANT DEFENSE 

 Antioxidant defense is essential to survival, since cells are exposed to free 

radicals from the environment and from normal physiological processes. Both 

enzymatic and non-enzymatic cellular systems exist, designed to scavenge or inactivate 

free radicals. 

 

2.2.1 Enzymatic defense 

 The superoxide dismutase (SOD) family removes superoxide anion and converts 

it to hydrogen peroxide, according to reaction 2.10.  Mammalian cells contain two types 

of SODs, a tetrameric mitochondrial SOD containing manganese (MnSOD), and a 

dimeric cytosolic SOD containing copper and zinc (CuZnSOD) (Halliwell,1994; 

Nordberg and Arner,2001). Leakage of electrons from the respiratory chain in 

mitochondria produces much of the superoxide anion encountered in the cell, and 

MnSOD can be induced by thioredoxin and by oxidative stress. In contrast, CuZnSOD 

is not induced by oxidative stress (Chan,1994; Nordberg and Arner,2001). 

            SOD 

2 O2
•- + 2H+ → H2O2 + O2      (2.10) 

  The catalase enzymes are mainly heme-containing, located in peroxisomes. They 

remove hydrogen peroxide (reaction 2.11) and can detoxify phenols and alcohols 

(reaction 2.12), but cannot affect lipid peroxides (Halliwell,1994; Nordberg and 
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Arner,2001). Catalase also lowers the risk of hydroxyl radical formed from hydrogen 

peroxide via the Fenton reaction, thus acting as an antioxidant.  Binding of catalase to 

NADPH will protect the enzyme from inactivation as well as increase its efficiency 

(Nordberg and Arner,2001). 

2 H2O2  → O2 + H2O       (2.11) 

H2O2  + R´H2  → R´ + 2H2O      (2.12) 

The peroxiredoxins (thioredoxin peroxidases), only recently discovered, can 

directly reduce peroxides such as hydrogen peroxide  and alkyl hydroperoxides and can 

inhibit apoptosis (Chae et al.,1999).  Oxidized peroxiredoxin is regenerated by 

thioredoxin. The glutaredoxins, whose function overlaps that of thioredoxins, can reduce 

glutathione mixed protein disulfides formed in oxidative stress, and are themselves 

reduced by glutathione (Nordberg and Arner,2001). 

The selenocysteine-containing glutathione peroxidases (GPx) catalyze the 

reduction of both hydrogen and lipid peroxides using glutathione as a substrate (reaction 

2.13). This is in contrast to catalase, which can act only on hydrogen peroxides. The 

cytosolic glutathione peroxidase 1 and the membrane-bound glutathione peroxidase 4 

(phospholipid hydroperoxide glutathione peroxidase) isoforms are present in most 

tissues. Glutathione peroxidase 4 has broad specificity for membrane-bound 

hydroperoxides, fatty acid peroxides and others, including hydrogen peroxide (Ursini et 

al.,1985). Glutathione peroxidase 2 is the gastrointestinal isoform, and glutathione 

peroxidase 3, or plasma glutathione peroxidase, is mainly expressed in the kidney 

(Nordberg and Arner,2001), although has also been found in the eye, lung, brain, heart, 

breast, placenta, and liver (of humans, but not rodents) (Arthur,2000; Chu et al.,1992). 

Glutathione peroxidase 3 can be catalytically regenerated by the thioredoxin system. 

           GPx   

     ROOH + 2GSH  →  ROH + GSSG + H2O   (2.13) 

The thioredoxin system consists of two oxidoreductase enzymes: thioredoxin, a 

general protein disulfide reductant, and thioredoxin reductase, which catalyzes reduction 

of the active site disulfide in thioredoxin using NADPH (Nordberg and Arner,2001).  
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Thioredoxin is ubiquitous in mammalian cells, targeting ribonucleotide reductase, 

protein-disulfide isomerase, and transcription factors including p53, NF-κB, and 

Activator Protein-1 (AP-1) for reduction. In humans, the isoform thioredoxin 1 is in 

cytosol, thioredoxin 2 in mitochondria, and Sp thioredoxin in spermatozoa, all 

containing a cysteine-glycine-proline-cysteine active site (Nordberg and Arner,2001). 

Thioredoxin is an electron donor for the peroxiredoxins, thus important in reduction of 

peroxides. When reduced, thioredoxin prevents apoptosis via inhibitory binding to 

apoptosis signal-regulating kinase 1. Expression of thioredoxin is induced by oxidative 

stress, some forms of which cause translocation of thioredoxin to the nucleus where it 

enhances DNA binding of NF-κB by reduction of its cysteine residue, exacerbating the 

production of pro-inflammatory molecules (Matthews et al.,1992).   

All thioredoxin reductase isoenzymes contain selenocysteine, which is essential 

for their activity. Thioredoxin reductase is NADPH-dependent and directly reduces 

hydrogen peroxide and lipid peroxides, especially when peroxide levels are elevated.  

This function is thought to be handled normally by glutathione peroxidase 4 (Nordberg 

and Arner,2001). In addition to thioredoxin, some thioredoxin reductase substrates are 

protein-disulfide isomerases, L-cystine, dehydroascorbic acid, α-lipoic acid, ubiquinone, 

and glutathione peroxidase (Nordberg and Arner,2001). Inhibition of thioredoxin 

reductase impairs function of thioredoxin system-dependent or -regulated reactions, 

resulting ultimately in significant intracellular oxidative stress. 

 

2.2.2 Non-enzymatic defense 

2.2.2.1  Glutathione 

2.2.2.1.1  Roles of glutathione 

The tripeptide glutathione (L-γ-glutamyl-L-cysteinylglycine), the most prevalent 

nonprotein intracellular thiol, is involved in many functions in the body, including 

regulation of cellular redox balance, leukotriene and prostaglandin metabolism, 

deoxyribonucleotide synthesis, immune function, cell proliferation, transport and 

storage of cysteine, detoxification of xenobiotics, and antioxidation of reactive oxygen 
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species and free radicals (Akerboom and Sies,1981; Bray and Taylor,1993; Bray and 

Taylor,1994; Halliwell and Gutteridge,1990; Juurlink,1999; Philbert et al.,1991). 

Intracellular concentrations of glutathione range from ~1-2µmol/g in brain to ~8-

10µmol/g in liver (Bauman et al.,1988a ; Bray and Taylor,1994; Paterson et al.,2001). 

The most abundant thiol in the CNS, glutathione, along with glutathione peroxidase, is 

the major protection against peroxide and reactive oxygen species in the cell, and is thus 

critical in antioxidant defense (Barker et al.,1996; Bray and Taylor,1993; Bray and 

Taylor,1994; Jain et al.,1991; Juurlink,1997; Wullner et al.,1999).   

As mentioned, glutathione peroxidase converts any peroxide (including lipid 

peroxides) to water and molecular oxygen (or hydroxy group) through oxidation of 

glutathione, which acts as the electron donor (reaction 2.13). Oxidized glutathione 

(GSSG) can then be reduced to glutathione, dependent on glutathione reductase (GRed) 

and NADPH (reaction 2.14). The activity of glutathione reductase and availability of 

NADPH thus can regulate the activity of glutathione peroxidase. The ability of 

glutathione peroxidase to scavenge peroxides is dependent on the concentration of 

glutathione, increasing markedly with small increases in glutathione (Juurlink,1999; 

Thorburne and Juurlink,1996). 

                                                        

              GRed 
 GSSG + NADPH + H+  →  2GSH + NADP+    (2.14) 

 2GSH + 2R•  → 2RH + 2GS•      (2.15) 
 GS• + GS• → GSSG       (2.16) 

 

Glutathione can also scavenge free radicals directly, forming glutathiyl radicals 

(GS•), which interact to form GSSG (reactions 2.15, 2.16) (Dringen et al.,2000). 

Vitamin E (α-tocopherol, TOH) can inactivate lipid radicals, forming the tocopherol 

radical which is in turn reduced by ascorbate (AscH2) (reactions 2.17, 2.18). Two 

ascorbate radicals dismutate to ascorbate and dehydroascorbate (oxidized), which is 

reduced back to ascorbate by glutathione (reactions 2.19, 2.20) (Juurlink,1997). 

Glutathione and ascorbate together prevent oxidative damage to mitochondria. Meister 

and co-workers found glutathione can spare ascorbate, and ascorbate can spare 
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glutathione (Martensson et al.,1993; Martensson et al.,1991a; Martensson and 

Meister,1989; Martensson et al.,1991b; Meister,1991; Meister,1994). Ascorbate 

increased mitochondrial glutathione in glutathione-deficient animals, while 

administration of glutathione esters delayed the onset of scurvy in ascorbate-deficient 

animals. Ascorbate may provide an alternative cytosolic antioxidant defense in neuronal 

somata (Philbert et al.,1991). 

 

 LOO• + TOH → LOOH + TO•     (2.17) 

 TO• + AscH2 → TOH + AscH•     (2.18) 

 2AscH• → AscH2 + Asc      (2.19) 

 2GSH + Asc → GSSG + AscH2     (2.20) 

 

The hydroperoxides produced in reaction 2.17, in the presence of free iron, can 

be converted to alkoxyl and peroxyl radicals, potentially initiating more lipid 

peroxidation (reactions 2.6, 2.7) (Juurlink and Paterson,1998). Glutathione and the 

glutathione peroxidase family scavenge these radicals. Glutathione also forms 

glutathione S-conjugates, nonenzymatically or via glutathione S-transferase enzymes, 

important in detoxification of endogenous and exogenous compounds, as well as in 

normal cellular metabolism, such as leukotriene C formation (Anderson and Luo,1998). 

Lipid peroxides can break down into strong oxidant aldehydes such as 4-

hydroxynonenal, which can be inactivated through the action of glutathione S-

transferase to form glutathiyl adducts (Christman et al.,2000). Glutathione S-

transferases also form these adducts with lipid epoxides and hydroperoxides (Christman 

et al.,2000).   

The transcription factor NF-κB mediates the inflammatory response in brain 

ischemia, and, through its redox capacity, glutathione can inhibit the signal transduction 

pathway that results in NF-κB activation (Christman et al.,2000). Glutathione plays an 

important role in prevention of advanced glycation endproduct formation, via reaction of 

glutathione with methylglyoxal and glyoxalase I, for example, to produce a 

hemithioacetyl, which is then converted to D-lactic acid and glutathione with glyoxalase 

II (Thornalley,1988). 
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Glutathione deficiency leads to mitochondrial damage in tissues, including lung, 

gastrointestinal tract, eye, skeletal muscle, liver, kidneys, and brain (Meister,1995a).  

Decreased tissue glutathione levels have been associated with several diseases, 

including hereditary glutathione deficiencies, hepatitis C, AIDS, myocardial infarction, 

stroke, ischemic reperfusion injury, Parkinson’s disease, adult respiratory distress 

syndrome, chronic digestive diseases and burns (Anderson and Luo,1998; Bray and 

Taylor,1994). Deficient glutathione status contributes to a weakened antioxidant defense 

system (Jain et al.,1991; Juurlink et al.,1998; Mizui et al.,1992; Thorburne and 

Juurlink,1996) and decreased immune response in malnourished individuals, especially 

when associated with these diseases (Bray and Taylor,1994).  

In summary, glutathione plays many roles in antioxidant defense, such as direct 

scavenging of free radicals, scavenging of hydrogen and lipid peroxides as well as their 

peroxidation products, interaction with vitamin E and ascorbate in lipid peroxidation 

defense, prevention of advanced glycation endproduct formation, and finally redox 

regulation of NF-κB activation. 

 

2.2.2.1.2  Metabolism and homeostasis of glutathione 

Glutathione is synthesized in two ATP-requiring steps in almost all animal cells 

(Meister,1995a).  Step 1 (reaction 2.21) requires the enzyme glutamate-cysteine ligase 

(GL, γ-glutamylcysteine synthetase, GCS), is the rate-limiting step in glutathione 

synthesis, and is regulated by glutathione via negative feedback inhibition (Juurlink et 

al.,1998). The feedback inhibition of γ-glutamylcysteine synthetase can be alleviated by 

glutamate, suggesting that high intracellular glutamate may be able to increase 

intracellular glutathione (Juurlink,1999).  Step 2 (reaction 2.22) is catalyzed by 

glutathione synthetase. 

 

L-glutamate + L-cysteine + ATP → L-γ -glutamyl-L-cysteine + ADP + Pi (2.21) 

L-γ -glutamyl-L-cysteine + glycine + ATP → glutathione + ADP + Pi (2.22) 
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Glutathione is synthesized in the cytoplasm (Anderson and Luo,1998; Meister,1995a; 

Wullner et al.,1999). Since mitochondria do not contain the enzymes required for 

glutathione synthesis, about 10-20% of total cellular glutathione is transported into 

mitochondria from the cytoplasm by at least two transport systems (Cooper,1997). 

Activity of γ-glutamylcysteine synthetase and availability of cysteine are the rate-

limiting factors for glutathione synthesis (Bauman et al.,1988a; Lu,1999). Glutamate 

and glycine are readily synthesized via several metabolic pathways, and are not believed 

to limit the rate of glutathione synthesis (Bannai and Tateishi,1986). The most important 

source of cysteine is dietary, but it can also be supplied by cleavage of cystine or by 

trans-sulphuration of methionine via the cystathionine pathway in the liver (Bauman et 

al.,1988a; Bray and Taylor,1994). Although glutathione is exported from many cells 

under normal conditions, and exported glutathione enters plasma (Meister and 

Anderson,1983), the liver is the main source of plasma glutathione (Cooper,1997). 

Sources of glutathione in the intestine include the diet, hepatic glutathione exported into 

bile, desquamated epithelial cells, and export from epithelial cells of the stomach and 

intestine (Bray and Taylor,1994; Cooper,1997). Generally, glutathione does not freely 

enter cells, but uptake depends on γ-glutamyl transpeptidase, an enzyme present on the 

external surface of the cell membrane in many tissues (Anderson and Luo,1998; Bray 

and Taylor,1994; Jain et al.,1991). However, there is some evidence for direct 

absorption and local use of intact glutathione in the small intestine (Bray and 

Taylor,1994; Hagen and Jones,1987), and transport of intact glutathione from the blood 

into the brain by carriers identified in capillaries and endothelial cells (Kannan et 

al.,2000; Kannan et al.,1990). Cellular glutathione concentration is determined by 

several factors including consumption by formation of conjugates via glutathione S-

transferase, oxidation to GSSG, de novo synthesis and by reduction of oxidized 

glutathione by glutathione reductase (Juurlink,1999). Changes in γ-glutamylcysteine 

synthetase activity and gene expression will also alter glutathione concentration, and are 

mediated by factors such as oxidative stress, Phase II enzyme inducers, and antioxidants 

(Juurlink,2001; Lu,1999).  

 At the centre of glutathione homeostasis is the γ-glutamyl cycle. The enzyme γ-

glutamyl transpeptidase is bound to the outer surface of most cell membranes, is 



 27

enriched in secretory and absorptive cells, and has also been found in brain (Jain et 

al.,1991; Meister and Anderson,1983). Breakdown of glutathione, oxidized glutathione 

or S-substituted glutathione can occur at the cell membrane in the presence of γ-

glutamyl transpeptidase, which transfers the γ-glutamyl moiety to acceptors such as 

cystine, glutamate, methionine, some dipeptides, water, or even glutathione (Meister and 

Anderson,1983). Plasma or extracellular glutathione can react with amino acids or water 

to form γ-glutamyl amino acids or glutamate, respectively, and cysteinylglycine. The γ-

glutamyl amino acids are transported into the cell and split into amino acid and 5-

oxoproline by γ-glutamylcyclotransferase. Five-oxoproline is then ring-opened by 5-

oxoprolinase, with ATP, to glutamate. If the γ-glutamyl moiety is transferred to cystine 

by γ-glutamyl transpeptidase, then γ-glutamylcystine transported into the cell can enter 

Step 2 of glutathione synthesis directly, thus by-passing the glutathione feedback 

inhibition of γ-glutamyl cysteine synthetase (Anderson and Luo,1998). Cysteinylglycine 

can be hydrolyzed by dipeptidases at the cell membrane to free amino acids for 

transport, or can be transported as the dipeptide and cleaved by intracellular dipeptidases 

to cysteine and glycine to be used in protein or glutathione synthesis (Anderson and 

Luo,1998). Inhibition of γ-glutamyl transpeptidase will increase plasma glutathione, 

while inhibition of γ-glutamyl cysteine synthetase will decrease plasma glutathione, 

confirming that glutathione is exported from the cell (Meister and Anderson,1983). 

Nonenzymatic or enzymatic (via glutathione S-transferase) reaction of glutathione with 

electrophilic compounds forms S-substituted glutathione derivatives. Gamma-glutamyl 

transpeptidase can remove the γ-glutamyl moiety of these compounds, resulting in a γ-

glutamyl amino acid and an S-substituted cysteinylglycine moiety. The dipeptide can 

then be cleaved by dipeptidase to yield corresponding S-substituted cysteines which 

may be either N-acetylated or undergo a further transpeptidation to yield a γ-glutamyl 

derivative (Meister and Anderson,1983). By these mechanisms, referred to as the 

‘salvage pathway’, there is transport of various amino acids across cell membranes, as 

well as conservation and redistribution of glutathione constituents (Anderson and 

Luo,1998; Meister and Anderson,1983). If dietary cysteine is decreased, glutathione 

may be used to supply cysteine for critical proteins, limiting glutathione available for 

antioxidant defense (Hunter and Grimble,1997). 
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2.2.2.1.3                        Brain glutathione and glutathione peroxidase 

Brain glutathione and glutathione peroxidase activity help regulate the extent of 

tissue damage in stroke.  Brain glutathione arises from synthesis from amino acids and 

reduction of oxidized glutathione, and concentration decreases with age (Benuck et 

al.,1995). Jain et al. (1991) suggest brain glutathione may exist in several distinct pools, 

such as mitochondria, neurons and glial cells. Philbert and co-workers (1991) examined 

cellular and regional distribution of glutathione in the nervous system of the rat. They 

found glutathione in the CNS appears localized in the non-neuronal components of 

neuropil and in the white matter tracts, with only small amounts in the neuronal somata, 

confirming results demonstrated by others (Slivka et al.,1987). Brain cells have been 

shown to release glutathione into the extracellular space during conditions such as 

ischemia (Janaky et al.,1999).  Neurons contain lower concentrations of glutathione than 

astrocytes, and in culture, neurons cannot utilize exogenous cystine, relying on cysteine 

either in the culture medium or released by astrocytes/glia for glutathione synthesis 

(Dringen and Hamprecht,1999; Dringen et al.,1997; Iwata-Ichikawa et al.,1999; 

Juurlink,1996; Raps et al.,1989). Wang and Cynader (2000) suggest cystine is 

transported from blood to the CNS extracellular fluid, where it reacts in a 

thiol/disulphide exchange with glutathione released from astrocytes. The resultant 

formation of cysteine and a cysteine-glutathione disulphide allows neurons access to 

cysteine. There is some evidence that neurons can utilize cysteine, or cysteinylglycine 

and γ-glutamylcysteine as cysteine precursors at lower concentrations than those 

required by astrocytes (Dringen et al.,1999). As well, buthionine sulfoximine, an 

inhibitor of γ-glutamyl cysteine synthetase, inhibits utilization of both cysteinylglycine 

and γ-glutamylcysteine, suggesting these dipeptides are hydrolyzed before glutathione 

synthesis in neurons (Dringen et al.,1999). In contrast, in cultured astroglial cells, the 

first step of glutathione synthesis can be bypassed (Dringen et al.,1997). There is some 

breakdown and re-synthesis of glutathione via γ-glutamyl transpeptidase on the luminal 

side of brain capillaries (Jain et al.,1991).   

Husain and Juurlink (1995) cultured rat astrocytes and oligodendrocyte 

precursors under conditions of anoxia and hypoxia. Both cell types survived anoxia, but 
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only astrocytes survived twenty-four hours of hypoxia. More lipid peroxidation was 

seen under hypoxia than anoxia, suggesting free radical induced damage. 

Oligodendroglial precursors in culture contain more iron, less glutathione, and suffer 

more oxidative stress than astrocytes in the same culture medium (Thorburne and 

Juurlink,1996). Chelating iron or increasing glutathione content protects 

oligodendroglial precursors from oxidative damage, suggesting glutathione plays an 

important role in antioxidant defense in these cells. Wullner et al. (1999) studied 

glutathione in cerebellar granule neurons in vitro, and found inhibition of cytosolic 

synthesis of glutathione by buthionine sulfoximine had little effect on mitochondrial 

glutathione or mitochondrial transmembrane potential. Direct conjugation of glutathione 

with ethacrynic acid resulted in a rapid depletion of both cytosolic and mitochondrial 

glutathione, and subsequent generation of ROS with impairment of the electrochemical 

mitochondrial gradient. When mitochondrial respiration was inhibited with rotenone, 

ROS production was suppressed, confirming mitochondria as the source of ROS in 

neurons.  Mizui et al. (1992) depleted rat brain glutathione with buthionine sulfoximine 

and found increased damage due to ischemic insult. 

Ushijima et al. (1986), using a peroxidase-anti-peroxidase immunohistochemical 

method, studied the distribution of glutathione peroxidase in rat brain. They found 

glutathione peroxidase was localized in the nuclei of some nerve cells in the cerebral 

cortex, hippocampus, and cerebellar cortex, and absent in the Purkinje cells of the 

cerebellum.   Distribution of cells lacking glutathione peroxidase coincided with those 

cells more vulnerable to hypoxia.  They concluded differences in the distribution of 

glutathione peroxidase in brain might contribute to the selective vulnerability of neurons 

in post-hypoxic damage.  Juurlink et al. (1998) examined astrocytes and 

oligodendrocyte precursors in culture, and found oligodendrocyte precursors to have 

50% of the glutathione reductase activity and 15% of the glutathione peroxidase activity 

of astrocytes. 

 

2.2.2.1.4 Response of tissue glutathione to dietary protein, energy and                

sulphur amino acids 
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Hepatic glutathione concentration is responsive to dietary protein (Bauman et 

al.,1988a).  There is a diurnal rhythm to liver glutathione in rats, with the level rising 

during the night as feeding proceeds, and falling during the day. When animals are 

fasted or given pure sucrose or fat diets, glutathione levels are low and the diurnal 

rhythm disappears (Beck et al.,1958). Liver glutathione responds to the sulphur amino 

acid (SAA) content of protein, and increasing protein levels above normal will not 

increase glutathione above those levels found when adequate protein is fed (Bauman et 

al.,1988a). When rats, however, were first fed low-protein diets and hepatic glutathione 

was depleted, supplementation with a cysteine precursor increased hepatic glutathione 

beyond physiological maximum (Bauman et al.,1988b; Taylor et al.,1992). Benuck et 

al. (1995) deprived both young and aged rats of food for forty-eight hours, and found 

loss of hepatic protein and glutathione, but no loss of brain glutathione and little change 

in brain protein or amino acid levels. They suggested there is relative stability of protein, 

amino acids and glutathione in brain in short-term food deprivation, and brain protein 

may be spared even in extreme conditions. In food deprivation, there appears to be 

recycling of glutathione constituents within the brain and/or transportation of precursors 

across the blood brain barrier (Dringen,2000). Seemingly in contrast, but likely due to 

the acute nature of the dietary treatment, our laboratory has recently shown that 

glutathione concentration is decreased in certain brain regions by an acute dietary SAA 

deficiency (Paterson et al.,2001). Although plasma glutathione and cysteine levels are 

determined by efflux of hepatic glutathione, which is decreased in protein deficiency 

(Adachi et al.,1992), levels and function of liver glutathione-synthesizing enzymes 

appear to be maintained in food deprivation (Tateishi et al.,1974). Enzymes involved in 

glutathione synthesis are present in brain (Dringen,2000), but their function in food 

deprivation has not been investigated. 

 

2.3  SULPHUR AMINO ACID METABOLISM 

2.3.1 Methionine  

 Methionine and cysteine have important roles in organism survival in their 

capacity as amino acids for protein synthesis, precursors to essential metabolites, and for 

their catalytic roles in the active sites of enzymes, primarily due to their sulphur content 
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(Griffith,1987). Homocysteine is readily converted to methionine in mammals, and is 

the intermediate in the transsulphuration pathway to cysteine, but is absent from 

mammalian diets, rendering methionine the only indispensable sulphur amino acid 

(Finkelstein,2000). One essential function of methionine is the synthesis of the primary 

methyl group donor in biological systems, S-adenosylmethionine, via the action of 

methionine adenosyltransferase. Cellular methionine is partitioned between protein 

synthesis and S-adenosylmethionine synthesis. Although S-adenosylmethionine was not 

thought to be exported from its cell of origin, recent evidence suggests the liver may 

export some S-adenosylmethionine to the CNS and other tissues (Finkelstein,2000).  

Approximately 95% of S-adenosylmethionine forms S-adenosylhomocysteine by 

transmethylation with an acceptor such as glycine, guanidinoacetate, 

phosphatidylethanolamine, the lysine residues in some proteins, pyrimidine and purine 

bases of tRNA, and some xenobiotics (Griffith,1987). The next step is the formation of 

homocysteine via adenosylhomocysteinase. If homocysteine is in excess, it is 

irreversibly converted to cystathionine with the addition of serine via cystathionine-β-

synthase, and cystathionine is cleaved to α-ketobutyrate and cysteine with γ-

cystathionase (Finkelstein,2000; Griffith,1987). Thus, cysteine is unable to serve as a 

precursor to homocysteine or methionine in mammals. Alternatively, excess 

homocysteine can be exported to the liver and other tissues. When in short supply, the 

homocysteine moiety is conserved in the methionine cycle, wherein homocysteine is 

converted to methionine by accepting a methyl group from betaine, which becomes 

dimethylglycine; or from 5-methyltetrahydrofolate, which becomes tetrahydrofolate. 

There is some competition for homocysteine between cystathionine-β-synthase and the 

two enzymes involved in homocysteine conservation, betaine homocysteine 

methyltransferase and methylfolate methyltransferase (Finkelstein,2000). Activity of 

cystathionine-β-synthase is increased in an oxidative environment, but methylfolate 

methyltransferase is vulnerable to oxidation. It is therefore plausible that conditions of 

oxidative stress tip the balance in favour of trans-sulphuration, cysteine production, and 

glutathione synthesis (Finkelstein,2000). As well, the enzymes of the methionine 

conserving cycle tend to be inhibited by their products, while the trans-sulphuration 

pathway enzymes tend to be activated by their metabolites. 
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 Methionine is transported by the sodium-independent system L, subject to trans-

stimulation, meaning an amino acid on one side of a membrane can stimulate transport 

of another amino acid on the other side (Bannai and Tateishi,1986; Lu,1999; Lu,2000). 

System L appears to consist of both a high affinity, low capacity phase and a low 

affinity, high capacity phase. In hepatocytes, methionine is transported by both phases 

(Lu,2000). 

  

2.3.2 Cysteine 

 Cysteine is a dispensable amino acid in mammals, but only if methionine intake 

meets the sulphur amino acid requirement. It follows, then, that the requirement for 

methionine in the diet is reduced if cysteine intake is adequate. Cysteine is unique in that 

it occurs predominantly in the oxidized form extracellularly as the disulphide cystine, 

but as the reduced sulphhydryl cysteine intracellularly.   

Cysteine is transported across membranes as a neutral amino acid via the ASC 

system, which is pH sensitive and decreased in acidic conditions (Kranich et al.,1996; 

Lu,1999). This may be significant in acidosis of ischemia, especially if cysteine has 

been depleted in diet, for example. The ASC system also transports other neutral amino 

acids of short length, such as alanine and serine, in a competitive fashion. This system is 

subject to trans-stimulation: intracellular cysteine depends on the intracellular and 

extracellular concentrations of other ASC amino acids. As well, increased extracellular 

cysteine will increase intracellular concentrations of other ASC amino acids in addition 

to cysteine because of competitive inhibition, termed cis-inhibition, thereby stimulating 

efflux of cysteine via trans-stimulation (Lu,1999). 

Cystine, with four ionizable groups, is present at neutral pH as the tetrapolar ion, 

while approximately 20% will exist as the tripolar ion at physiological pH. As covered 

under ‘oxidative glutamate toxicity’, cystine is generally transported via the sodium-

independent Xc
- antiporter in a 1:1 exchange with glutamate. In culture, activity of the 

Xc
- antiporter can be induced by exposure to electrophilic agents or oxygen, and 

inhibited by extracellular glutamate or homocysteate (Bannai,1986). In brain, transport 

of cystine is complex and not yet completely elucidated. In cultures of fetal or neonatal 

rat brain, both astrocytes and neurons appear to have a high affinity, low capacity 
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transport system for cystine, identified as the Xc
- system (Allen et al.,2001; Murphy et 

al.,1990). In addition, astroglia have a sodium-dependent, low affinity, high capacity 

XAG
- transport system that is inhibited by glutamate and D-aspartate (Allen et al.,2001; 

Murphy et al.,1990). Although the Xc
- antiporter is enriched in brain membranes and 

concentrated in neurons, (Murphy et al.,1989; Sato et al.,1999), Sagara’s group 

(1993a;1993b) found neurons cannot take up cystine, but rely on astroglial cystine 

uptake and subsequent release of cysteine into the extracellular medium. Wade and 

Brady (1981) reported that they found no evidence for carrier-mediated uptake of 

plasma cystine in rat brain. 

Cystine entering the cell or released during protein catabolism is reduced by 

transhydrogenation with glutathione to cysteine. Cysteine is used for protein or 

glutathione synthesis, or catabolized by two distinct pathways. Both of these pathways 

generate pyruvate and sulphate, but only the cysteine sulphinate-dependent pathway, the 

major pathway for cysteine catabolism in mammals, can produce taurine (Griffith,1987). 

In the first step, cysteine dioxygenase catalyzes the formation of cysteine sulphinate, 

which then can be transaminated to β-sulfinylpyruvate ending in the production of 

pyruvate and sulphate. Alternatively, cysteine sulphinate can undergo decarboxylation 

via cysteine sulphinate decarboxylase to hypotaurine and finally oxidation to taurine 

(Bella and Stipanuk,1996). Partitioning between transamination and decarboxylation 

varies between mammalian species (Griffith,1987). The cysteine sulphinate-independent 

pathway involves γ-cystathionase and formation of pyruvate, ammonia and hydrogen 

sulphide from cysteine, or pyruvate, ammonia and S-mercaptocysteine from cystine. 

The S-mercaptocysteine is then reduced to cysteine and hydrogen sulphide. Cysteine is 

required for synthesis of pantetheine and enzyme CoA, which can be catabolyzed to 

cysteamine and further to hypotaurine and taurine. If intracellular cysteine accumulates 

above its normal 30-200µM concentration, it can react with the co-enzyme pyridoxal 

phosphate to produce a thiazolidine derivative, thus depleting pyridoxal phosphate. The 

multiple pathways of cysteine degradation may serve to prevent its toxic accumulation 

(Griffith,1987). 
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2.3.3 Cysteine delivery systems 

2.3.3.1  Cysteine 

A number of methods of increasing intracellular glutathione in conditions of 

oxidative stress have been investigated. Cysteine, the limiting amino acid in glutathione 

synthesis, can be administered, but it is toxic to neonatal rodents and cultured cells 

(Anderson and Luo,1998; Olney et al.,1971; Olney et al.,1972). Neonatal rats given a 

single intravenous dose of cysteine (1.52 or 1.14g/kg body weight) or OTC (1.8 or 

1.35g/kg body weight) had mortality rates of 80%, 50%, 10% and 0% respectively, 

demonstrating cysteine toxicity compared to OTC (White et al.,1993). Cysteine is 

rapidly oxidized to cystine which has limited solubility and poses physical 

administration problems (Anderson and Luo,1998).  

 

2.3.3.2  Glutathione 

Administration of glutathione has had limited success, since glutathione is 

generally not absorbed or transported intact, but is broken down to its constituents by γ-

glutamyl transpeptidases at the cell membrane. Administration of glutathione to rats 

increased plasma and urinary glutathione, but not tissue glutathione (Anderson and 

Luo,1998). Ozaki et al. (1994) starved rats overnight and gave an intraperitoneal dose of 

glutathione one hour before a one-hour hepatic ischemia epsiode. Glutathione had no 

effect on liver glutathione levels or lipid peroxidation. Gotoh and co-workers (1994) 

gave rats an intraperitoneal injection of glutathione after two and one-half hours of 

middle cerebral artery occlusion ischemia. They examined brain sodium, water and 

glutathione levels, and found no changes with glutathione administration compared to 

controls.  

 

2.3.3.3  N-acetylcysteine 

 N-acetylcysteine (NAC) is an effective intracellular cysteine delivery system.  

NAC is used clinically in acetaminophen overdose, as an antimucolytic agent, and more 

recently has been investigated in HIV infection. Oral NAC is absorbed, deacetylated and 

catabolyzed in the intestinal wall and liver, resulting in about 10% bioavailability (Bray 
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and Taylor,1994). NAC can also be given parenterally. Banks and Stipanuk (1994) 

cultured rat hepatocytes with [35S]NAC and found NAC was taken up by cells and 

converted to cysteine. Dringen and Hampbrecht (1999) cultured embryonal rat brain 

neurons with NAC and found increased intracellular glutathione, concluding neurons in 

culture contain acylase which can cleave NAC to cysteine for intracellular synthesis. 

However, NAC does not appear to cross the blood brain barrier (McLellan et al.,1995). 

Pretreatment of rats with intraperitoneal NAC before bilateral common carotid artery 

occlusion (BCCAO) increased hippocampal neuronal survival at seven days post-insult, 

but post-ischemic administration of NAC only partially improved neuronal survival in 

moderate insult (45mmHg hypotension during BCCAO) and offered no protection in 

severe insult (30mmHg) (Knuckey et al.,1995). High oral doses of NAC can cause 

nausea, vomiting and diarrhea, and intravenous doses can produce anaphylactic 

reactions such as angioedema, bronchospasm, flushing, and hypotension (Bray and 

Taylor,1994).  

 

2.3.3.4  L-2-oxothiazolidine-4-carboxylic acid 

2.3.3.4.1  In vitro studies 

 A thiazolidine analog of 5-oxoproline, OTC has been extensively studied as a 

cysteine precursor. OTC is transported into most cells and ring-opened by 5-

oxoprolinase to yield 5-carboxycysteine (rapidly decarboxylated to cysteine) and carbon 

dioxide, which is exhaled (Anderson and Luo,1998). All tissues except erythrocytes and 

the ocular lens contain 5-oxoprolinase (Bray and Taylor,1994), and incubation of 5-

oxoprolinase with OTC and ATP yields rapid formation of ADP and cysteine 

(Williamson and Meister,1981). Guinea pig liver and kidney homogenates incubated 

with OTC increased intracellular cysteine (Nishina et al.,1987).  Coloso et al. (1991) 

cultured each of [35S]OTC, [35S]methionine, and [35S]cysteine with rat hepatocytes, 

renal tubule cells, and enterocytes. All three compounds were metabolized to 

glutathione, inorganic sulphur and taurine by renal cells and enterocytes, although the 

transport and metabolic rate for OTC was slower than for the amino acids. Hepatocytes 

from weanling rats fed a protein-poor diet were incubated with OTC, methionine or 

cysteine. Glutathione levels depressed by the low protein diet (82% lower than controls) 
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were increased to normal levels in culture (Goss et al.,1994). Banks and Stipanuk (1994) 

incubated [35S]OTC, [35S]NAC, or [35S]cysteine with rat hepatocytes and measured 

intracellular sulphates, taurine and glutathione. OTC was transported into the cells, 

converted to cysteine, and glutathione was synthesized.  [35S]glutathione accounted for 

78% of OTC metabolism. Embryonal rat brain neurons cultured with OTC did not show 

increased glutathione levels (Dringen and Hamprecht,1999). 

 

2.3.3.4.2  Animal studies 

 Fasted mice given an intraperitoneal injection of OTC increased liver glutathione 

(Williamson and Meister,1981). Buthionine sulfoximine is a compound which 

irreversibly inhibits γ-glutamylcysteine synthetase (Pileblad and Magnusson,1992). 

Mice given intraperitoneal acetaminophen (to deplete glutathione) and then OTC had 

liver glutathione levels two and one-half times higher than controls, even when OTC 

was given two hours after acetaminophen. Subsequent administration of buthionine 

sulfoximine decreased liver glutathione, with no recovery after OTC addition, 

demonstrating OTC can be synthesized to glutathione (Williamson et al.,1982). Guinea 

pigs given intra-peritoneal OTC had increased liver and kidney glutathione and 

increased kidney cysteine levels compared to controls (Nishina et al.,1987). Both chicks 

and rats fed a cysteine-free diet with the addition of OTC had increased liver glutathione 

levels (Chung et al.,1990). Weanling PEM rats fed OTC and exposed to hyperoxia (85% 

oxygen) had increased glutathione levels in liver and lung, but not kidney and blood. 

These levels exceeded those in rats on a normal diet exposed to hyperoxia. Authors 

suggest oral OTC given to PEM rats is effective in protecting the lung against oxygen 

toxicity (Taylor et al.,1992). Jain et al. (1995) fed rats a sulphur amino acid-deficient 

diet supplemented with OTC for three weeks. Bronchoalveolar lavage fluid, liver, lung 

and lymphocyte glutathione levels increased over those of rats fed sulphur amino acid-

deficient diet alone. Rats supplemented with OTC gained more weight than sulphur 

amino acid-deficient rats (Jain et al.,1995). Weanling rats fed a protein deficient diet for 

fourteen days, then supplemented with OTC and exposed to hyperoxia (85% oxygen) or 

normoxia for four days showed decreased lung/body weight ratio (oxidative damage in 

lung increases the lung/body weight ratio) and increased lung glutathione compared to 
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protein deficient or protein sufficient rats (Levy et al.,1998). Elevation of lung 

glutathione via OTC was more effective than protein repletion in protecting against 

hyperoxia-induced lung damage in PEM rats. 

 Rats and mice given intraperitoneal [35S]OTC at various doses showed increased 

brain cysteine but little or no change in brain glutathione(Anderson and Meister,1989). 

OTC did appear to cross the blood brain barrier. Authors concluded the rate of transport 

of OTC to the brain is greater than the rate of conversion to cysteine, glutathione 

synthesis in the brain is slow, and cysteine concentration is not a factor in brain 

glutathione synthesis. In contrast, Mesina et al. (1989) gave rats subcutaneous injections 

of OTC and found brain glutathione to increase significantly over controls. 

Intraperitoneal administration of OTC to rats after a spinal cord crush injury decreased 

oxidative stress with a sparing of white matter at the site of injury, leading to partial 

return of function, while vehicle-treated animals remained paraplegic (Kamencic et 

al.,2001). 

 

2.3.3.4.3  Human studies 

 OTC has been studied in humans.  Porta (1991) and co-workers gave single oral 

doses of OTC to healthy volunteers and found increased plasma OTC and cysteine, no 

change in plasma glutathione, and increased lymphocyte glutathione and cysteine. OTC 

given twice weekly for six weeks to asymptomatic HIV positive volunteers increased 

whole blood glutathione (Kalayjian et al.,1994). In contrast, a single intravenous OTC 

infusion (4500mg) or multiple infusions (70 or 100mg/kg every eight hours for four 

doses) were given to fasting male volunteers. OTC increased total blood cysteine but not 

glutathione. OTC was 84% converted to cysteine in this study.  Small frequent doses 

were considered more efficient than a single large dose (Gwilt et al.,1998). Cudkowicz 

et al. (1999) gave a single intravenous OTC dose (4500mg) or oral OTC (3000mg three 

times a day for 29 days or [mean] 4.9 months) to volunteers with amyotrophic lateral 

sclerosis. Cerebrospinal fluid glutathione levels are not known to be depressed in 

amyotrophic lateral sclerosis, and there was no change after OTC administration. Both 

oral and intravenous OTC were well tolerated and OTC was found to enter 
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cerebrospinal fluid efficiently. Authors also noted cerebrospinal fluid glutathione level 

decreased with age. 

 

2.3.3.5  Esters and related compounds 

 There has been recent interest in a number of γ-glutamylcysteine esters and a 

glucose-cysteine adduct.  Anderson and Meister (1987) have reported administration of 

γ-glutamylcystine leads to increased renal glutathione. Gamma-glutamylcystine is 

transported intracellularly and hydrolyzed to γ-glutamylcysteine and cysteine, both of 

which can be synthesized to glutathione. Isolated rat hepatocytes pretreated with diethyl 

maleate (to deplete glutathione) and incubated with γ-glutamyl cysteine ester or 

glutathione (at two doses) demonstrated increased intracellular glutathione only with γ-

glutamyl cysteine ester (Nishida et al.,1996). 

Kobayashi et al. (1992) pretreated rats with γ-glutamylcysteine ethyl ester or 

glutathione before exposure to two hours of ischemia with or without one hour of 

reperfusion. Gamma-glutamylcysteine ethyl ester maintained liver glutathione and 

mitigated post-ischemic injury while glutathione had no effect. Rats starved overnight 

and then given an intraperitoneal injection of γ-glutamylcysteine ethyl ester, γ-

glutamylcysteine ethyl ester plus glycine, glycine or glutathione one hour before a one-

hour period of hepatic ischemia with reoxygenation showed decreased thiobarbituric 

acid reactive substances (TBARS), decreased lipid peroxidation and increased liver 

glutathione with γ-glutamylcysteine ethyl ester and γ-glutamylcysteine ethyl ester plus 

glycine (Ozaki et al.,1994). Hoshida and group (1994) exposed dogs to ninety minutes 

of coronary occlusion followed immediately by intravenous γ-glutamylcysteine ethyl 

ester (at two doses) and five hours of reperfusion. Infarct size was reduced and 

myocardial glutathione levels increased in dogs given γ-glutamylcysteine ethyl ester 

compared to controls.  

 YM737 (N-[N-r-L-glutamyl-L-cysteinyl]glycine 1-isopropyl ester sulphate 

monohydrate) was given as an intra-peritoneal injection zero, one, and two hours post-

ischemia in bilateral common carotid artery occluded rats, and inhibited lipid 

peroxidative responses in brain (Yamamoto et al.,1993). Gotoh et al. (1994) exposed 

rats to two and one-half hours of middle cerebral artery occlusion ischemia and gave 
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intraperitoneal YM737 or glutathione.  They found the post-ischemic brain increases in 

sodium and water were suppressed by YM737. There was amelioration of post-ischemic 

decrease in brain glutathione with YM737, but no change with glutathione. Yao et al. 

(1997) investigated the effect of a glucose-cysteine adduct, 2-(D-gluco-

pentahydroxypentyl)-thiazolidine-4-carboxylic acid, as an intraperitoneal injection in 

rats alone or after pre-treatment with diethyl maleate, on liver and kidney cysteine and 

glutathione. Liver and kidney cysteine increased and although there was no change in 

glutathione, depressed glutathione due to pre-treatment with diethyl maleate was 

restored. 

 

Summary 

 In summary, various methods of intracellular cysteine delivery have been 

investigated. Cysteine is considered toxic and difficult to administer.  Glutathione is 

broken down to its constituents before intracellular resynthesis. NAC is effective in 

increasing cysteine and glutathione in some tissues, but does not readily cross the blood 

brain barrier, and is associated with some adverse effects in humans. OTC is transported 

into many tissues, including brain, and its cysteine moiety can be used to synthesize 

glutathione. OTC moderately increases cellular glutathione in cultured cells, animal 

studies and human clinical trials. The γ-glutamylcysteine esters appear promising, and 

some glutathione mono and diesters have also been studied. 

 

2.4  ANIMAL MODELS OF STROKE 

 Although many different animal models of stroke have been developed, no 

single model has been able to successfully mimic the diverse etiologies and 

characteristics of human stroke. There are, however, advantages to animal models, in 

that physiological parameters can be strictly controlled, allowing for reproducible and 

systematic study of the mechanisms involved in ischemic damage (Ginsberg and 

Busto,1989). Ideally, an animal model would closely parallel human anatomy, 

physiology and function, suggesting the primate as most closely approximating the 

human condition.  Financial and animal welfare considerations render this and most 

large animal models all but impossible to study extensively. Rodents remain the most 
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accepted compromise for several reasons: cerebrovascular anatomy and physiology 

closely resemble that of higher species (Ginsberg and Busto,1989); they are small, easy 

to handle and relatively inexpensive to house, allowing for large numbers; their brain 

size is suitable for rapid fixation; intra-strain variability is relatively low (Ginsberg and 

Busto,1989; Seta et al.,1992). Disadvantages to the use of rodents include difficulty with 

physiological monitoring due to size constraints (blood gases, pressure, sampling, etc.); 

difficulty with neurological and functional assessments; respiratory, seizure and 

consciousness problems (Seta et al.,1992). The most commonly used models produce 

either focal or global ischemia. 

 

2.4.1 Focal ischemia 

 Embolism models generally do not require craniotomy, but lesions are 

unpredictable and permanent. They include such methods as homologous blood clot 

fragment injection, microsphere injection, arachidonate-induced thrombosis and 

photochemically initiated thromboembolism (Ginsberg and Busto,1989). Middle 

cerebral artery occlusion is focal, reversible, and highly mimics human ischemic stroke 

(Seta et al.,1992). The lesion presents with an ischemic core and a penumbric region, 

allowing for intervention strategies. The contralateral hemisphere conveniently provides 

an internal ‘control’. Surgical procedures, however, are invasive and traumatic, 

requiring skill and specialized equipment. Several techniques have been developed to 

produce middle cerebral artery occlusion, ranging from ligation of the artery to laser 

illumination after rose bengal injection to insertion of a microfilament of defined size 

(Seta et al.,1992). Ginsberg and Busto (1989) provide a comprehensive description of 

many methods. Cerebral hemorrhages and infarcts occur spontaneously in ~80% of 

males in the stroke-prone spontaneously hypertensive rat (SHRSP) strain (Okamoto et 

al.,1974). This rat strain has been extensively investigated and brain damage 

characterized in both spontaneous ‘strokes’ (Okamoto et al.,1974; Sadoshima et 

al.,1981; Yamasaki et al.,1991) and induced ischemia of various types (Brint et 

al.,1988; Carswell et al.,1999; Coyle,1984; Duverger and MacKenzie,1988; Gemba et 

al.,1992; Nordborg and Johansson,1996; Sadoshima et al.,1988; Shima et al.,1994; 

Slivka et al.,1995; Tagami et al.,1999; Watanabe et al.,1998).   
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2.4.2 Global ischemia 

 Induction of global cerebral ischemia in rodents involves mainly either two or 

four vessel occlusion. Since rats have an intact circle of Willis (posterior communicating 

arteries) in the brain, the four-vessel occlusion model was developed to produce 

forebrain ischemia. This involves occlusion, often by coagulation, of the vertebral 

arteries in a first procedure, followed about twenty-four hours later by isolation and 

transient occlusion of the common carotid arteries (Pulsinelli and Buchan,1988). This 

procedure induces a high-grade incomplete forebrain ischemia, but requires considerable 

expertise to avoid death from brainstem ischemia and post-ischemic seizures after the 

first stage (Ginsberg and Busto,1989). 

The two-vessel common carotid artery occlusion produces reversible forebrain 

ischemia similar in histopathology to the four-vessel occlusion.  In the rat and other 

animals with an intact circle of Willis, the procedure is combined with systemic 

hypotension to reduce forebrain blood flow. A similar model, of global hemispheric 

hypoxia-ischemia (GHHI), developed by Yager and group (Yager et al.,1996; Yager and 

Thornhill,1997), is a modification of the Levine preparation (Levine,1960). The right 

common carotid artery is exposed, ligated and severed, and the animal is subjected to a 

35-minute period of hypoxia (12% oxygen). Body temperature is controlled throughout.  

The advantages of this model are several: its size makes physiological monitoring 

possible, the surgical procedure is relatively minor and not subject to a hypermetabolic 

response, the model has been well-characterized, and the hemispheric nature of damage 

allows internal comparison with the contralateral side of the brain. However, this stroke 

model subjects the entire brain to a period of hypoxia, and ischemia is achieved by 

ligation and severing of the carotid artery. Thus reperfusion is somewhat compromised 

in this model. Results are variable, partially due to lack of control of blood glucose and 

head/brain temperature, both of which can contribute to variability (Dijk et al.,1994; 

Ginsberg and Busto,1989; Mhairi Macrae,1992). 

The Mongolian gerbil is unique in that it lacks a circle of Willis (Seta et 

al.,1992), thus avoiding the necessity of subjecting the animal to global hypoxia, 

hypotension or four-vessel occlusion to achieve mimicking of human stroke (Ginsberg 
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and Busto,1989). Bilateral transient occlusion of the common carotid arteries results in 

reproducible, consistent and well-characterized forebrain ischemic damage (Corbett and 

Crooks,1997; Corbett and Nurse,1998; Corbett et al.,1997; Nurse and Corbett,1994). 

Ischemia is of more abrupt onset and reversal than in the rat GHHI model. Surgical 

procedures are minor, as in the rat model, but due to the small size of the gerbil, 

physiological monitoring is usually limited to body and head/brain temperature. 

Functional and histological endpoints for this model have been published (Colbourne 

and Corbett,1994; Colbourne and Corbett,1995; Corbett and Nurse,1998; Ginsberg and 

Busto,1989). As well, oxidative stress has been demonstrated in susceptible brain 

regions by this model of ischemia (Baek et al.,2000; Candelario-Jalil et al.,2001; Park et 

al.,2000; Stanimirovic et al.,1988). Unilateral common carotid artery occlusion has also 

been used (Ginsberg and Busto,1989). The hippocampus is selectively vulnerable in 

models of transient ischemia (Akai and Yanagihara,1993; Nunn and Hodges,1994; 

Pulsinelli et al.,1982a; Schmidt-Kastner and Freund,1991). Temporary bilateral 

common carotid artery occlusion (TBCAO) in the gerbil produces delayed neuronal 

death mainly in the CA1 region of the hippocampus (Domanska-Janik et al.,1999; 

Kirino,1982; Kirino and Sano,1984; Kirino et al.,1986; Mitani et al.,1991), similar to 

vulnerability of human hippocampus to ischemia (Petito et al.,1987; Zola-Morgan et 

al.,1986).  

 

2.4.3 Evaluation of deficit after ischemia 

 Evaluation of the effects and impact of ischemia in laboratory animals has 

traditionally been confined to histological examinations such as quantifying damage via 

cell counts, assessing infarct size etc., and biochemical, immunocytochemical and 

Southern/Northern/Western blot methods to elucidate pathways and regulatory 

mechanisms. All of these are valuable in characterizing the damage wreaked by 

ischemia in the various animal models, but animals subjected to ischemia show learning 

and locomotor function deficits (Colbourne and Corbett,1995; Wang and Corbett,1990). 

Morphological damage does not necessarily correlate with functional outcome (DeVries 

et al.,2001). Neurons may have a normal or near-normal histological appearance but 

compromised function (Colbourne and Corbett,1994; Colbourne and Corbett,1995; 
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Colbourne et al.,1999; Corbett and Nurse,1998; Dong et al.,2001). Recently, researchers 

have been characterizing the electrophysiological properties of neurons, particularly the 

vulnerable CA1 neurons of the hippocampus, in an effort to better understand the 

functional state of neurons before, during and after ischemia, both in short-term and 

long-term survival (Dong et al.,2001; Hori and Carpenter,1994; Nurse and 

Corbett,1994; Shinno et al.,1997; Urban et al.,1989; Xu and Pulsinelli,1994). 

Ischemia in humans can result in profound impairments in memory, 

sensorimotor and cognitive function (DeVries et al.,2001; Petito et al.,1987; Zola-

Morgan et al.,1986). In Saskatchewan, 30% of stroke victims suffer permanent 

disability (Juurlink,1999). In the United States, stroke is the most common cause of 

permanent sensorimotor and cognitive disability (DeVries et al.,2001). Ultimately, it is 

brain function after stroke that is the most clinically significant outcome, and 

behavioural assessment of learning, memory and locomotor skills in animal ischemia 

models is essential to understanding implications of deficits. Many neurobehavioural 

tests have been developed, some of which are as follows: (1) tactile stimulation test, to 

measure recovery from lesion-induced somatosensory deficits (DeVries et al.,2001); (2) 

rotarod task, to assess fine motor and postural control (Hogg et al.,1998); (3) the 

elevated plus maze, to measure anxiety and motivation (Hogg et al.,1998); (4) the open 

field, to measure ability to habituate to a novel environment and possibly spatial 

mapping (Wang and Corbett,1990). The open field apparatus is simply a white box 

approximately 75cm square, with high walls. The animal is placed in one corner of the 

apparatus and activity recorded for ten minutes. An intact animal will typically 

investigate the entire apparatus, then decrease activity over the ten-minute period, or 

habituate, and on repeated exposure habituate more quickly. An animal that has suffered 

ischemia will tend not to habituate, or habituate more slowly, even with repeated 

exposure (Dowden and Corbett,1999; Dowden et al.,1999). There is some evidence the 

degree of CA1 neural loss is correlated with the inability to habituate, making this test a 

good indicator of ischemic damage to the hippocampus (Babcock et al.,1993; Mileson 

and Schwartz,1991; Wang and Corbett,1990). It is easy to perform, requires minimal 

equipment, and is non-invasive. 
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2.5  NUTRITIONAL REQUIREMENTS OF THE MONGOLIAN GERBIL  

The advantages of using the gerbil as an animal model of transient bilateral 

common carotid artery occlusion have been discussed, but little is known of the 

nutritional requirements of the gerbil, and the requirement for protein is not well 

established. The Mongolian gerbil (Meriones unguiculatus) is a desert rodent, used in 

research since 1893 (Cheal,1986). The gerbil is herbivorous in its wild habitat, 

consuming little water, eating leaves in summer and seeds in winter. Leaves and seeds 

have approximate protein contents of 2% and 11% wet weight respectively (Edwards et 

al.,1983).  The relatively low protein content of the natural diet can be an advantage in 

the desert environment when water supply is minimal, since the gerbil will not have to 

dispose of excessive amounts of urea, a process which requires water for osmotic 

reasons (Edwards et al.,1983). Laboratory gerbils, however, grow well on laboratory 

rodent chow, which is about 16-24% protein (water content usually less than 10%) 

(Arrington et al.,1973; Edwards et al.,1983). When protein content of a diet is higher 

than that of laboratory chow, gerbil intake will decrease and growth declines (Arrington 

et al.,1973). As well, consumption of purified diet tends to be low for the first two to 

three days, then increases to that of laboratory chow with satisfactory catch-up growth 

(Arrington et al.,1973).   

 The metabolic pathways for methionine, cyst(e)ine, choline are interdependent. 

While the S-adenosylmethionine pathway can fulfill the requirement for cyst(e)ine and 

choline in most laboratory animals, gerbils appear to have a requirement for choline 

(Otken and Yolanda,1983). When choline is absent from the diet, liver lipid increases 

(Otken,1984). When the dietary choline is adequate, but methionine is deficient, 

methionine deficiency develops very slowly in the gerbil, in contrast to the rat, 

suggesting gerbil sulphur amino acid metabolism may differ from that of the rat (Otken 

and Yolanda,1983). In the absence of cystine and choline, no amount of methionine 

supports good growth in the gerbil (Otken and Yolanda,1983), although methionine 

metabolism should provide some cysteine. Cereal grains have more cystine than 

methionine, in roots and nuts the proportion is about equal, and in meat methionine is 

greater than cystine (Otken,1984). Otken suggests the gerbil may have adapted to a diet 
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high in cystine. The gerbil also appears to have a requirement for taurine in the diet 

(Otken et al.,1985).  

 

2.6 HUMAN PROTEIN REQUIREMENT: DIETARY REFERENCE INTAKES 

2.6.1 Background 

Protein is a critical structural and functional component of all cells, comprising 

enzymes, hormones, transport molecules, intracellular matrices, collagen, keratin, 

portions of membranes, hair, and fingernails (Institute of Medicine of the National 

Academies,2002b). Mammalian proteins are macromolecules made up of long chains of 

α-amino acids and the α-imino acid proline. The amino acids are also precursors to 

nucleic acids, hormones, coenzymes and other physiologically important molecules such 

as glutathione, for example. The physical structure of proteins is complex: the primary 

structure is determined by the sequence of amino acids in the chain; the secondary 

structure, coiling and pleating, is due to hydrogen bonding between side chain residues; 

disulphide bonding and hydrophobic interactions between non-polar side chains are 

responsible for the tertiary structure that results in folding of helices on each other; and 

finally quaternary structure involves interaction of more than one protein molecule 

(subunit) with another, forming complex units with specific structures and functions 

(Institute of Medicine of the National Academies,2002b).  

Dietary protein is essential as a supply of amino acids. The following amino 

acids are considered indispensable, meaning they either cannot be synthesized in the 

body, or cannot be synthesized in sufficient quantities to meet metabolic needs, and 

must be supplied in the diet: histidine, leucine, isoleucine, lysine, methionine, 

phenylalanine, threonine, tryptophan and valine (Laidlaw and Kopple,1987). Some 

amino acids are conditionally indispensable, meaning a dietary source is required when 

endogenous production does not meet metabolic needs, such as in some physiological 

conditions or disease states; these are arginine, cysteine, glutamine, glycine, proline and 

tyrosine (Laidlaw and Kopple,1987). Finally, alanine, aspartic acid, asparagine, 

glutamic acid, serine and selenocysteine (Leinfelder et al.,1999) are dispensable amino 

acids, and can be synthesized in the body from other amino acids or complex 

nitrogenous metabolites (Laidlaw and Kopple,1987). 
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2.6.2 Protein digestion and absorption: a brief overview 

Dietary protein is denatured by stomach acid and cleaved into peptide fragments 

by pepsin, which is activated by the decrease in stomach pH upon feeding. The pancreas 

releases proteolytic enzymes such as trypsin, chymoptrypsin, elastase and 

carboxypeptidases into the small intestine, where peptides are hydrolyzed to smaller 

peptides and free amino acids. By various mechanisms, these small peptides and free 

amino acids enter intestinal mucosal cells and are subjected to further hydrolysis, 

whereupon free amino acids are either metabolized directly within the gut or released 

into the portal blood and transported to the liver. Some of these amino acids may be 

used within the liver, or secreted into the systemic circulation for use in peripheral 

tissues (Institute of Medicine of the National Academies,2002b). 

 

2.6.3 Body protein and obligatory losses 

Approximately half of body protein reserve is as skeletal muscle, about 15% 

each as skin and blood, and the remainder as liver, kidney, brain, lung, heart and body 

(Lentner, 1981). There exists in the body a small ‘labile protein reserve’, believed to be 

mainly in the liver and visceral tissues, which can be gained or lost as a short-term store 

to temper day-to-day variations in protein intake (Swick and Benevenga,1977). Body 

protein is continuously turned over, and determination of maintenance needs must take 

into account recycling of amino acids as well as obligatory losses of nitrogen. 

Protein secretion into the intestinal lumen, primarily from sloughed mucosal cells 

and proteolytic enzymes, occurs even in the absence of dietary protein intake. Fecal 

nitrogen losses (as bacteria in the feces) account for approximately 25% of obligatory 

nitrogen loss, and intestinal loss of amino acids is significant to maintenance protein 

needs (Fuller and Reeds,1998; Taverner et al.,1981). Other losses of intact amino acids 

occur in urine, sweat, hair and skin, all of which may be significant, especially when 

estimating protein requirements in disease states (Matthews,1999).  

 

2.6.4 Protein synthesis, degradation and turnover 
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The sequence of nucleotides on messenger RNA synthesized in the nucleus from 

DNA via transcription determines the sequence of individual amino acids in a protein. 

Transfer RNA in the cytoplasm binds each amino acid to the messenger RNA in a 

process known as translation, which is regulated by hormones and amino acids such as 

leucine.  In the steady state, although there is no net growth or loss of protein, protein 

synthesis is in balance with protein degradation. In conditions of inadequate protein 

intake, or imbalance of amino acid intake, the balance shifts such that the rate of some 

protein synthesis decreases, while protein degradation proceeds to effect an endogenous 

source of those amino acids most in need. 

Intracellular protein degradation occurs via two systems, lysosomal and 

proteasomal. The lysosomal system consists of membrane-enclosed, proteolytic 

enzyme-containing intracellular vesicles which engulf portions of cytoplasm and 

degrade proteins, usually unselectively (Cuervo and Dice,1998). Regulation of the 

lysosomes requires an acidic pH and insulin or glucocorticoids (Inubushi et al.,1996). 

The proteasomal system is ATP-dependent (Goldberg and Rock,1992). A molecule of 

ubiquitin ‘targets’ a specific protein for degradation by binding to its lysine residues. 

The proteasome is a protein complex which recognizes the targeted protein and degrades 

it. This process is selective and usually involves abnormal, damaged or regulatory 

proteins in the cell. 

Approximately 250g of protein are turned over daily in the adult male body, 

although daily intake is in the range of 55-100g (Waterlow,1984). Tissues differ in their 

protein turnover rate, such that liver and intestine account for almost 50% of the total 

(McNurlan and Garlick,1980; Waterlow,1984 ). Skeletal muscle, on the other hand, 

accounts for about 43% of body protein, but only 25% of protein turnover (Reeds and 

Garlick,1984; Waterlow,1984). Turnover is generally greater in infants and lower in the 

elderly. 

 

2.6.5 Dietary Reference Intakes for protein 

The Dietary Reference Intakes (DRIs) have defined adequacy of requirement as the 

lowest daily intake value for a nutrient that will meet the need for apparently healthy 

individuals (Institute of Medicine of the National Academies,2002b). The DRIs consist 
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of  the Recommended Dietary Allowance , Adequate Intake, Tolerable Upper Intake 

Level, and Estimated Average Requirement, defined as follows (Institute of Medicine of 

the National Academies,2002a): 

 

Recommended Dietary Allowance (RDA): the average daily dietary 
nutrient intake level sufficient to meet the nutrient requirement of 
nearly all (97-98 percent) healthy individuals in a particular life 
stage and gender group. 
Adequate Intake (AI): the recommended average daily intake level 
based on observed or experimentally determined approximations 
or estimates of nutrient intake by a group (or groups) of 
apparently healthy people that are assumed to be adequate- used 
when an RDA cannot be determined. 
Tolerable Upper Intake Level (UL): the highest average daily 
nutrient intake level that is likely to pose no risk of adverse health 
effects to almost all individuals in the general population. As 
intake increases above the UL, the potential risk of adverse effects 
may occur. 
Estimated Average Requirement (EAR): the average daily nutrient 
intake level estimated to meet the requirement of half the healthy 
individuals in a particular life stage and gender group.a 
 
 a In the case of energy, an Estimated Energy Requirement (EER) 
is provided; it is the average dietary energy intake that is 
predicted to maintain energy balance in a healthy adult of a 
defined age, gender, weight, height and level of physical activity, 
consistent with good health. In children and pregnant and 
lactating women, the EER is taken to include the needs associated 
with the deposition of tissues or the secretion of milk at rates 
consistent with good health. 

 
  

While protein is essential for proper function, diet must also be adequate in non-

protein components so that amino acids are not used for energy. Further, ingested amino 

acids must be in the correct balance so that utilization is maximized. To determine the 

DRIs for protein, the committees examined both factorial and nitrogen balance methods 

to estimate requirements, and in adults, conclusions were heavily drawn from a large 

meta-analysis by Rand et al. (2003). Conflicting reports of energy requirements of the 

elderly being greater (Roberts,1996) or less (Zanni et al.,1979) than younger adults were 

resolved by Rand’s analysis, which concluded there was no significant effect of age on 
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the protein requirement of older adults, recognizing that lean body mass as percent of 

body weight, and protein content of the body decrease with age. A summary of 

recommended protein intakes for all age groups is presented in Table 2.1 (Institute of 

Medicine of the National Academies,2002b). 

 

2.7 PROTEIN-ENERGY MALNUTRITION (PEM) 

2.7.1 Characteristics of PEM 

Undernutrition is defined as a disorder of nutritional status resulting from reduced 

nutrient intake, impaired metabolism, increased metabolic demands, or increased 

nutrient losses (Corish and Kennedy,2000). Undernutrition can cause alterations in 

 

 

 

Table 2.1. Dietary Reference Intakes for Protein* 

AI EAR RDA Age Gender 

 g/kg/day  

0-6 months M/F 1.52   

7-12 months M/F  1.1 1.5 

1-3 years M/F  0.88 1.1 

4-8 years M/F  0.76 0.95 

9-13 years M/F  0.76 0.95 

14-18 years M  0.73 0.85 

14-18 years F  0.71 0.85 

19-30 years M/F  0.66 0.8 

31-50 years M/F  0.66 0.8 

51-70 years M/F  0.66 0.8 

>70 years M/F  0.66 0.8 

Pregnancy F  0.88 1.1 

Lactation F  1.05 1.1 

*Institute of Medicine of the National Academies,2002b 
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structure and function of the gastrointestinal system leading to atrophy and impairment 

of epithelial integrity. Deterioration occurs in three stages: (1) availability of nutrients 

becomes inadequate due to poor diet, increased requirement, decreased utilization, or 

excessive loss, (2) nutrient stores become depleted and there is impairment of 

physiological and/or biochemical processes, (3) severe nutrient deficiency leads to 

cellular or tissue deterioration (Corish and Kennedy,2000). The consequences of 

undernutrition can include increased risk of respiratory and cardiac problems, immune 

dysfunction, infection, deep vein thromboses, pressure ulcers, peri-operative mortality, 

and multi-organ failure (Omran and Morley,2000). The prevalence of intake of too few 

macronutrients is estimated at 1-15% of the ambulatory population, 25-60% of 

institutionalized patients, and 35-65% of hospitalized patients (Omran and 

Morley,2000).  

PEM is characterized by muscle wasting and loss of subcutaneous tissue. In 

severe PEM, or kwashiorkor, particularly pediatric, serum albumin is decreased, skin 

and hair suffer dyspigmentation, sodium and water are retained resulting in edema, and 

the liver becomes fatty (Corish and Kennedy,2000; Rana et al.,1996; Swails et al.,1996; 

Waterlow,1975). In kwashiorkor, energy intake may be somewhat sufficient, but protein 

content is minimal. It has been suggested, but not proven, that the fatty liver results from 

a diet providing a relative excess of carbohydrate compared to protein (Waterlow,1975). 

Fatty liver cis believed to result from one of two main mechanisms: (1) factors leading 

to an increase in triglyceride synthesis beyond the capacity for their removal, or (2) 

factors blocking utilization of liver triglycerides which are normally excreted into 

plasma (Flores et al.,1970). It is thought the fatty liver in kwashiorkor is due to 

decreased ability for synthesis of the apolipoprotein required for low density lipoprotein 

transport of triglycerides out of the liver (Flores et al.,1970; Truswell et al.,1969; 

Waterlow,1975). Serum lipids, particularly triglycerides and β-lipoprotein cholesterol, 

are often decreased in kwashiorkor (Flores et al.,1970; Truswell et al.,1969). With 

recovery, serum lipids increase and liver fat decreases. Erythrocyte glutathione can be 

decreased in kwashiorkor (Golden and Ramdath,1987). Rana et al. (1996) fed rats a low 

protein (5%) or adequate protein (20%) diet for four weeks. They included a 20% 

protein group pair-fed to the intake of the 5% protein group, since appetite was 
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decreased by 65% of control in the 5% protein group. They found fatty liver and low 

blood glutathione in the 5% protein and 20% protein pair-fed groups.   

In marasmus, there is general insufficient energy intake with muscle wasting and 

loss of subcutaneous fat, but edema, hypoalbuminemia, or fatty liver are not seen 

(Corish and Kennedy,2000; Golden and Ramdath,1987).  Erythrocyte glutathione is 

normal in marasmus (Golden and Ramdath,1987). A combination of both conditions, 

marasmic kwashiorkor, characterized by wasting of muscle and fat with 

hypoalbuminemia, is most often seen in hospitalized patients (Corish and 

Kennedy,2000). 

Protein synthesis is necessarily decreased in PEM, for preservation of essential 

protein-dependant functions (Torun and Chew, 1999). In early PEM, there is some loss 

of visceral protein, but loss is primarily from skeletal muscle as the condition 

progresses, until nonessential tissue proteins are depleted, at which point further 

depletion of visceral protein may signal imminent death. When dietary protein is 

reduced, recycling of the free amino acid pool (from diet and body tissues) increases, 

while amino acid catabolism decreases compared to normal conditions. Albumin 

synthesis initially decreases, and within days its half-life increases. There is a shift of 

albumin from the extravascular pool into the blood. With severe protein depletion, 

however, albumin and other serum proteins decrease, reducing intravascular oncotic 

pressure, resulting in extravasation of water and edema, as is typical of advanced 

kwashiorkor.  

Hormonal changes and altered cellular responses to hormones occur in PEM in 

order to maintain energy homeostasis via increased glycolysis and lipolysis, 

mobilization of amino acids, preferential breakdown of skeletal muscle for preservation 

of visceral protein, decreased glycogen, fat and protein storage, and reduced energy 

metabolism (Torun and Chew, 1999). More specifically, there is reduced insulin 

secretion, tissue insulin sensitivity, somatomedin activity, and active thyroid hormone 

levels and higher glucagon secretion, epinephrine release, glucocorticoid production, 

and growth hormone levels (favouring amino acid recycling). 

Reduction of lean body mass in PEM and lowered physical activity level 

contribute to decreased oxygen consumption and need for hematopoiesis, further 
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conserving amino acids for more essential protein synthesis. Other body functions, 

however, are not as well-adapted. There can be reduced cardiac output and peripheral 

blood flow, immune system defects with depression of T lymphocytes and complement 

components, alterations in monokine response (mediators of response to injury), 

electrolyte imbalances, impaired gastrointestinal function, and compromised brain and 

central nervous system function.  

 

2.7.2 Assessment of PEM 

Nutritional status may be assessed by anthropometric measurements such as 

weight for height (current status) and height/length for age (past history); body mass 

index (Quetelet’s index) for adolescents and adults; triceps skin fold; mid-arm 

circumference; and upper-arm muscle circumference (Axelsson et al.,1988; Newmark et 

al.,1981; Torun and Chew,1999). Urinary creatinine excretion can be used to estimate 

body muscle mass. Serum protein concentrations may provide a useful estimation of 

protein status, but caution must be exercised in interpreting results. Serum albumin, as 

discussed above, may or may not be depressed in PEM, and with a half-life of eighteen 

to twenty days, may not provide information on more recent status. As well, albumin 

synthesis rate, distribution, and turnover rate can be altered by PEM (Benjamin,1989). 

Serum proteins with shorter half-lives, such as transferrin (T1/2 8-9 days), prealbumin 

(transthyretin, T1/2 2-3 days), retinol-binding protein (T1/2 12 hours), and somatomedin C 

(insulin-like growth factor-1, T1/2 2-6 hours) may be more sensitive indicators of recent 

status (Benjamin,1989). Tests of immunocompetence using injection of antigen to 

determine delayed cutaneous hypersensitivity can also be indicators of PEM (Newmark 

et al.,1981). Of course, diet histories, if obtainable, can also yield useful information. 

The Mini Nutritional Assessment has been developed as a quick, convenient tool for 

rapid assessment of the elderly in hospitalized settings (Guigoz et al.,1996; Vellas et 

al.,1999). No single parameter is sufficient to evaluate nutritional status, and depending 

on clinical situation, appropriate combinations of available tools need to be employed. 

  

2.8 STROKE AND PROTEIN-ENERGY STATUS 
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There has been a decrease in cerebrovascular disease mortality in Japan since 

1970, and increased per capita consumption of protein, especially animal protein (beef, 

eggs, dairy products) (Kodama,1993; Omura et al.,1987). The Honolulu Heart Program 

showed an inverse association between protein intake and stroke incidence, and a 

sixteen year follow-up showed consumption of animal protein was inversely associated 

with the incidence of thromboembolic stroke, independent of other risk factors (Kagan 

et al.,1985; Lee et al.,1988). There is a paradox of high risk of stroke in populations 

with a low risk of cardiovascular disease (Reed,1990). This is attributed to a diet low in 

animal sources. Animal studies with SHRSP rats have mimicked human epidemiology 

(Sarwar et al.,1999; Yamori et al.,1984). SHRSP rats fed a Japanese diet (15% protein) 

had higher incidence of stroke than those fed an American diet (22% protein), despite no 

differences in blood pressure. The American diet contained more methionine and lysine 

than the Japanese, suggesting more animal protein in this formulation.  

Of more relevance to this thesis are those studies that investigated the effect of 

PEM on stroke outcome. Although two studies did not find a relationship between 

protein intake and stroke mortality (Khaw and Barrett-Connor,1987; Lapidus et 

al.,1986), Klag and Whelton (1993) suggest the discrepancy with other studies could be 

due to the overall higher level and narrower range of protein intake in these two groups. 

The elderly are a group at high risk for stroke (Gariballa and Sinclair,1998), and many 

elderly have compromised nutritional status due to a variety of factors such as anorexia, 

poor dental status, drug therapy, decreased activity levels, and chronic diseases (Abbasi 

and Rudman,1994; Lipschitz,1991; Marcus and Berry,1998). Several studies have 

reported evidence of compromised protein/energy status at the time of admission to 

hospital for stroke and deterioration of this status during the hospital stay (Axelsson et 

al.,1988; Choi-Kwon et al.,1998; Davalos et al.,1996; FOOD Trial Collaboration,2003; 

Gariballa et al.,1998b; Gariballa et al.,1998a). Data from the National Health and 

Nutrition Examination Study I (NHANES I) suggest low serum albumin is a risk factor 

for stroke (Gillum et al.,1994). Although serum albumin is not necessarily the best 

indicator of protein status, low serum albumin has been associated with increased length 

of stay, complications, and death in medical, surgical and stroke patients, and is 

considered an indicator of poor outcome (Aptaker et al.,1994; Axelsson et al.,1988; 
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Choi-Kwon et al.,1998; Davalos et al.,1996; Finestone et al.,1996; Gariballa et 

al.,1998b; Gariballa et al.,1998a; Gariballa and Sinclair,1998). Finestone and co-

workers studied Canadian stroke patients at the time of admission to rehabilitation units, 

and reported PEM in 49% of admissions, with dysphagia in 47%. Authors suggested 

there was inadequate nutritional intervention immediately post-injury which could 

compromise antioxidant defense mechanisms (Finestone et al.,1995; Finestone et 

al.,1996).  Nyswonger et al. (1992) determined the length of time to start of feeding 

after stroke varies, and stroke patients fed within seventy-two hours of injury have a 

shorter hospital stay.  

Compromised nutritional status resulting in low protein status, particularly in the 

elderly, may be an important risk factor for stroke and for poorer outcome after stroke.  

Feeding after a stroke is often delayed, further exacerbating pre-existing poor nutritional 

status. There may be a ‘window of opportunity’ for optimizing survival and recovery 

from stroke with adequate nutritional support, especially with respect to increasing 

glutathione status.
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CHAPTER 3 

 

OVERVIEW OF EXPERIMENTAL PROGRESSION OF THESIS 

 

This thesis was investigated in two phases. Since glutathione is critical in 

antioxidant defense, and the sulphur amino acid cysteine, supplied primarily by dietary 

protein, is limiting at the cellular level for glutathione synthesis, we wanted first to 

explore one mechanism by which a dietary protein deficiency might limit antioxidant 

defense under the increased demands of oxidative stress in cerebral ischemia. In 

Experiment 1 of Phase 1, described in Chapter 5, a rat model of GHHI was used to 

examine the effect of an acute dietary sulphur amino acid deficiency on glutathione 

status and neural damage. In this model, the right common carotid artery was ligated, 

followed by a period of hypoxia, resulting in unilateral damage, providing an internal 

control with the contralateral (unaffected) hemisphere. The rat GHHI stroke model was 

well-established at the University of Saskatchewan (Yager et al.,1996). Our focus was 

on removing the dietary supply of the limiting glutathione precursor, cysteine. A rat 

dietary sulphur amino acid deficiency model had been previously established in our 

laboratory (Paterson et al.,2001). Neural damage was assessed in neocortex, 

hippocampus, striatum and thalamus, brain regions vulnerable to damage in this stroke 

model, and previously shown to be sensitive to dietary sulphur amino acid deficiency. 

We initially used a previously published semi-quantitative system of neural damage 

assessment, but as a more sensitive system of detecting damage was desirable, our 

laboratory also designed a more quantitative scoring system. This system, called the 

hippocampal grid score, became the preferred assessment tool. Rat brain sections, 

stained with hematoxylin and eosin (H&E), were evaluated with both systems, and 

results obtained with the two methods were well-correlated. Sections adjacent to those 

used for H&E were stained with antibody against microtubule-associated protein 2 

(MAP-2), the absence of which is an early indicator of neural damage (Kitagawa et
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 al.,1989; Matesic and Lin,1994). Although not quantified, areas of MAP-2 deficit 

correlated visually with areas of H&E-evaluated damage. This experiment demonstrated 

that neural damage in GHHI was exacerbated by an acute dietary sulphur amino acid 

deficiency. 

 To determine if the increased neural damage in sulphur amino acid deficient rats 

exposed to GHHI was due to glutathione depletion, glutathione concentration was 

determined in neocortex, hippocampus, striatum and thalamus at six and seventy-two 

hours after GHHI (for assay procedure, see Appendix A). Glutathione concentration was 

unchanged at six hours. At seventy-two hours after GHHI, glutathione concentration in 

the ipsilateral hemisphere was decreased in neocortex and striatum, with a trend towards 

significance in hippocampus. Glutathione concentration, however, was not different 

between neocortex taken from the two hemispheres at seventy-two hours, suggesting 

diet, but not GHHI, decreased glutathione in susceptible regions. These results were in 

agreement with those obtained previously in our laboratory in sulphur amino acid 

deficient rats not exposed to GHHI (Paterson et al.,2001).   

Given the hypothesis that a sulphur amino acid deficiency combined with an 

hypoxic-ischemic insult would deplete glutathione in specific brain regions, the effect of 

a cysteine precursor, OTC, was also tested, using the experimental conditions of 

Experiment 1, repeated in a two by two factorial design. Rats were fed an adequate or 

sulphur amino acid deficient diet, and given injections of OTC or saline immediately 

after GHHI, and every twelve hours for six additional doses. At seven days post-GHHI, 

brains were collected, sectioned and stained with H&E as in the first experiment. 

Assessment of neural damage was with the two scoring systems used previously. OTC 

did not have any effect on neural damage. The results of this experiment in rats fed a 

sulphur amino acid deficient diet were published in (Bobyn et al.,2002) and are 

discussed in Chapter 5. Appendix B describes results obtained in rats fed a sulphur 

amino acid sufficient diet. It was intended that this experiment be repeated with 

collection of tissue for glutathione concentration, but this was not pursued further due to 

the negative findings described in the paragraph above and the identification of a 

histological artifact, discussed below. 
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During H&E slide assessment, it became clear that damage appeared in regions 

not theoretically sensitive to GHHI, and in some cases there was more damage in the 

hemisphere contralateral to the occlusion. We were later able to attribute this 

phenomenon to the existence of ‘dark’ neuron, an artifact of post-mortem handling of 

tissue before complete fixation (Cammermeyer,1962). Chapter 4 of this thesis describes 

this artifact. All slides in Experiments 1 and 2 were re-evaluated, and although 

differences between groups remained relatively unchanged, overall damage in this 

GHHI model was concluded to be very mild and virtually non-existent in rats fed the 

control diet. The pattern of brain damage, however, was now consistent with what had 

been expected. At this point, it was also concluded that the GHHI model was not 

suitable for further investigations, since: 1) severing of the carotid artery precluded true 

reperfusion and thus perhaps generation of oxidative stress, 2) the level of hypoxia was 

mild and did not generate much neural damage, and 3) the damage was extremely 

variable.  

The experiments of Phase 1 investigated the effect of an acute dietary sulphur 

amino acid deficiency on outcome in global ischemia, recognizing the unlikelihood of 

humans suffering this selective deficiency. Part of the rationale for this thesis was based 

on evidence that approximately 16% of the elderly admitted to hospital for stroke suffer 

from PEM, and that this condition deteriorates during the course of hospital stay 

(Gariballa et al.,1998b; Gariballa et al.,1998a; Gariballa and Sinclair,1998). Elderly 

stroke victims who are malnourished have a longer hospital stay and worse outcome 

than well-nourished patients, such that almost half of those admitted to long-term care 

facilities after stroke have PEM (Finestone et al.,1995; Finestone et al.,1996). For these 

reasons, combined with mechanistic reasons previously discussed, Phase 2, described in 

Chapter 6, investigated the effect of PEM on outcome after global ischemia. Since 

oxidative stress and glutathione depletion is primarily expected during and after 

reperfusion, a global model of transient ischemia in the Mongolian gerbil was chosen to 

test this hypothesis. Because the gerbil lacks a circle of Willis, a transient bilateral 

occlusion of the common carotid arteries is sufficient to effect a reproducible, consistent 

model of global ischemia producing mainly CA1 hippocampal damage, well-

characterized in the literature (Kirino and Sano,1984). Functional (behavioural) and 
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histological outcomes in this ischemia model are well-documented (Babcock et al.,1993; 

Colbourne and Corbett,1995; Wang and Corbett,1990). Typically, brain temperature 

falls during ischemia, and can be neuroprotective (Babcock et al.,1993; Colbourne and 

Corbett,1995; Colbourne et al.,1993b; Wang and Corbett,1990). This can be overcome, 

since regulation of brain temperature is non-invasive, achievable, and reduces variability 

in this stroke model. The author spent two weeks at the Memorial University of 

Newfoundland learning the gerbil transient bilateral carotid artery occlusion model, 

histological evaluation (hippocampal neuron counting), and behavioural outcome (the 

open field and T-maze tests) from Dr. Dale Corbett. His laboratory uses a five-minute 

occlusion with controlled brain temperature, achieving consistent loss of CA1 

hippocampal neurons in the range of 90-95%. Since we theorized PEM might 

exacerbate neural damage, it was first necessary to vary ischemic conditions to achieve 

less neuronal loss. A pilot study tested various occlusion time and brain temperature 

combinations (four minutes at 37°C; three and one-half, four and five minutes at 

36.5°C). Variability was high with lower occlusion times, and maintaining constant 

brain temperature above 36.5°C was difficult, especially with a shorter occlusion time. 

Ultimately a five-minute occlusion at 36.5°C produced the most consistent results, 

presented in Appendix C. 

The nutritional requirements of the Mongolian gerbil, including protein, are not 

well investigated. It is known this animal does well on standard rodent laboratory chow, 

which is about 16-24% protein. An early pilot study, testing whether the response of the 

gerbil to a purified sulphur amino acid deficient diet was similar to that of the rat, 

determined that 1) the animals did as well on the ‘control’ (sulphur amino acids 

included) crystalline amino acid modified AIN-93G rat diet (for diet composition, see 

Appendix D) as on rodent laboratory chow, and 2) liver and brain neocortex glutathione 

concentrations were decreased by the sulphur amino acid deficient diet. For description 

of the pilot study and results, see Appendix D. Gerbils in this pilot study were housed 

individually in suspended stainless steel cages for six days. Without bedding and 

companionship, the gerbils appeared ungroomed and ‘jumpy’. These animals normally 

groom each other, construct nests out of their bedding, and sleep together buried within. 
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Phase 2 studies would therefore house gerbils in groups of three in shoebox cages with 

bedding material.  

A second pilot feeding study was designed, using a modified AIN-93M pelleted 

rodent diet without the antioxidant tertiary butyl hydroquinone (TBHQ), containing 

adequate or low protein∗, fed for four weeks as described in Appendix E. Gerbils on the 

low protein diet ate less, lost weight, and had increased liver lipid compared to the 

adequate protein group, confirming a model of PEM. These diets were thus used in 

Phase 2 experiments.  

In Phase 2 experiments, described in Chapter 6, two sets of gerbils were treated 

identically pre-ischemia/sham surgery. Gerbils were housed in groups of three in 

shoebox cages and randomized to adequate protein (control diet, C) or low protein 

(PEM§) pelleted diet, both without TBHQ. The diet was modified from the AIN-93M 

rodent diet (Reeves et al.,1993) and fed for four weeks. On day 28, gerbils were 

subjected to a five-minute bilateral carotid artery occlusion (I) or sham surgery (S). 

Following surgery, group one was continued on randomized diet for ten days, and tested 

in the open field on Days 3, 7, and 10. The open field test was chosen as an indicator of 

hippocampal function, well-documented in the literature as mentioned previously. Brain 

was harvested for histology after the Day 10 open field exposure. The brains from 

gerbils in group 2 were collected twelve hours after ischemia/sham surgery for 

biochemical analyses of indicators of oxidative stress. Glutathione concentration (see 

Appendix A), soluble protein content, glutathione reductase activity, and protein thiols 

concentration were determined in brain hippocampus and neocortex, while 

thiobarbituric acid reactive substances were determined in neocortex only, due to 

availability of tissue. Liver glutathione concentration and lipid were determined as 

measures of PEM.  Phase 2 experiments showed that 1) a gerbil model of moderate 

PEM was achieved; 2) ischemic gerbils fed the control diet recovered normal behaviour 

in the open field by Day 7 post-ischemia, while PEM ischemic gerbils did not recover 

even by Day 10; 3) although PEM did not affect the survival of hippocampal CA1 

                                                           
∗ Adequate protein and low protein diets were formulated to contain 12% and 2% protein as casein, 
respectively. 
§ Since gerbils fed the 2% protein diet voluntarily reduced intake, leading to a reduction in both protein 
and energy, the group fed the low protein diet was given the abbreviation of PEM. 
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neurons after ischemia, four of twelve PEM-ischemic gerbil brains had marked increases 

in hippocampal glia; 4) hippocampus protein thiol concentration was decreased by PEM 

and by ischemia. These results suggest PEM gerbils recover more slowly from ischemia 

and may experience more oxidative stress than ischemic animals fed a diet adequate in 

protein. 

A concurrent study, described in Appendix F, was conducted to characterize the 

temporal change in neocortex and hippocampus glutathione concentration in response to 

brain global ischemia in gerbils fed a nutritionally adequate diet. Glutathione 

concentration was determined in neocortex and hippocampus immediately after sham 

surgery, and after zero and thirty minutes, one, two, six, twelve, and twenty-four hours 

of reperfusion following ischemia. Although the literature reports decreases in brain 

glutathione concentration at early reperfusion periods (Baek et al.,2000; Candelario-Jalil 

et al.,2001; Park et al.,2000; Shivakumar et al.,1992), we were unable to reproduce 

these data.
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CHAPTER 4 
 

DARK NEURON 
 

Confronted, however, with the vast 
literature which has accumulated in the 
last 10 years on the dark and light liver 
cells, the statement that they are 
artifacts settles a question on which 
much work has been wasted. Ernest 
Scharrer, “On Dark and Light Cells in 
the Brain and in the Liver”, p.57 
(Scharrer,1938), quoted by Jan 
Cammermeyer (Cammermeyer,1962). 

  

A study in our laboratory of rats subjected to global hemispheric hypoxia-

ischemia (GHHI) yielded some unexpected results in brain tissue stained with 

hematoxylin and eosin (H&E). Dark, shrunken, and shriveled neurons were noticed 

during evaluations of tissue for neuronal damage. Initially these cells were thought to be 

damaged neurons and assessed as such, even though there was neither cytoplasmic 

eosinophilia nor chromatin clumping characteristic of injured neurons (Petito et 

al.,1987). There was no pattern to the occurrence of these ‘damaged’ neurons. They 

were seen randomly, in the hemisphere contralateral to carotid artery ligation (the 

control), in areas not vulnerable to damage in this stroke model, such as the dentate 

gyrus, or surrounding obvious tissue tears at the edge of the neocortex. We were unable 

to explain this pattern of ‘damage’. Further investigation yielded a wealth of literature 

on the ‘artifact complex’ and ‘dark’ neuron. The literature descriptions matched what 

we had seen on our slides. We had removed formalin:acetic acid:methanol-perfused 

brains from skulls immediately after perfusion with fixative, resulting in many 

postmortem artifactual ‘dark’ neurons. Re-evaluation of brain damage, armed with this 

new information, yielded quite different patterns and extent of neuronal damage that 

now fit the expected results for the model. Before recognition of ‘dark’ neuron, two
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 groups of rats subjected to GHHI had apparent damage scores of 1.9 and 3.2 out of 

maximum 8 using one scoring system, and 9.7% and 11.1% using a second scoring 

system, both described in Bobyn et al., 2002 (Table 4.1, Groups 2, 4). After re-

assessment, these scores were 0.1 and 0.4 out of 8, and 0.1% and 0%, showing 

essentially no brain damage from this stroke model once the artifact was identified. An 

additional two groups of rats (Table 4.1, Groups 1, 3) fed a sulphur amino acid-deficient 

diet for three days before and after GHHI had similar reductions in damage after artifact 

identification, although overall damage was greater than in Groups 2 and 4 in Table 4.1.   

In a subsequent experiment with gerbils, intact heads were refrigerated in 

phosphate buffered 10% formalin overnight after trans-cardiac whole body perfusion 

with saline followed by fixative. Brains were carefully removed from the skulls 18-24 

hours later. Only one brain of forty-five had some ‘dark’ neurons, this attributed (in 

retrospect) to forcing the severed head into a container whose opening was too small. In 

another study in our laboratory, dark neurons were noted in one brain from a gerbil 

improperly perfused with fixative (Figures 4.1, 4.2). 

Jan Cammermeyer has written many papers on the ‘dark’ neuron, and in his 

review (Cammermeyer,1962) discusses the history of observation of this phenomenon, 

identified as early as 1894 by Nissl, and again in 1903 (Turner), 1922 (Spielmeyer), 

1932 (Scherer), 1938 (Greenfield) and 1946 (Weil).  These researchers attributed the 

‘dark’ neuron to both pathology and postmortem artifactual change, but did not 

distinguish between the two. Others thought these neurons were a normal cell type, 

since they were found in normal brains as well as those exhibiting pathologies, and 

ignored them. By 1916, rapid perfusion of fixative was known to largely avoid ‘dark’ 

neuron, but even slight errors in technique could not wholly prevent its occurrence 

(Scharrer,1938). Cammermeyer demonstrated that ‘dark’ neurons could be avoided if 

several hours elapsed between perfusion fixation and removal of brain from the skull 

(Cammermeyer,1960). Following is a description of the ‘dark’ neuron as reviewed by 

Cammermeyer (Cammermeyer,1961; Cammermeyer,1962). Whatever the mode of 

death, fixation technique or staining method, ‘dark’ neurons have the same appearance 

in humans and animals. These neurons are more abundant near a cut or tear, and in 

compressed, bent or pulled areas. Pyknosis of nuclei in neuroglia and cerebral blood  
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Table 4.1.  The effect of ‘dark’ neuron identification on neural damage scores in rats 
exposed to global hemispheric hypoxia-ischemia‡ (GHHI), evaluated with two 
assessment systems† 
 Original 

Global Score* 
Revised 
Global Score* 

Original 
Hippocampal Grid 
Score** 
% 

Revised 
Hippocampal Grid 
Score** 
% 

Group 1# 4.1 ± 0.6 2.5 ± 0.7 44.0 ± 7.9 34.9 ± 9.3 

Group 2§ 1.9 ± 0.3 0.1 ± 0.1   9.7 ± 3.3   0.1 ± 0.1 

Group 3# 4.5 ± 0.4 1.9 ± 0.6 32.3 ± 9.1 25.6 ± 8.7 

Group 4§ 3.2 ± 0.3 0.4 ± 0.2 11.1 ± 2.3         0 

Mean ± SEM 
‡ Table shows original scores (before ‘dark’ neuron identification) and revised scores 
(after ‘dark’ neuron identification). 
 †For detailed explanation of scoring systems, see Bobyn et al.(2002). 
# Groups 1 & 3: rats fed sulphur amino acid deficient diet for 3 days before and after 
GHHI.  
§ Groups 2 & 4: rats fed purified crystalline amino acid defined AIN-93G diet (Paterson 
et al.,2001)  
*Global score: 0 = no damage; 1 = <50% damage; 2 = >50% damage; maximum score 
of 2 in each region (striatum, thalamus, neocortex, hippocampus) for total maximum 
score of 8. 
** Hippocampal Grid Score: a grid was superimposed on an image of the hippocampus; 
any grid square containing one or more damaged cells of 15-20 cells per grid was 
counted as one damaged square and the damage score was expressed as percentage of 
baseline squares.  
 

 

 

vessels are often seen as well, contributing to the broader ‘artifact complex’, of which 

the ‘dark’ neuron is only a part. The cytoplasm of the ‘dark’ cell is shrunken, the 

compacted basophil material therein causing the dark appearance. The cell may be 

separated from the parenchyma by a vacuole of varying size and shape. Often the 

shrunken nucleus is indistinguishable from the dark cytoplasm, yet is sometimes within 

a rim of clear cytoplasm. The nucleolus appears larger than normal because of the 

shrunken cytoplasm. The apical processes may have a corkscrew-like configuration. 

While there is often random occurrence of single ‘dark’ neurons (Cammermeyer,1978), 

haphazard mingling of ‘dark’ and unaffected neurons is common, as is a more ordered 

arrangement “lined up like schools of fish” (Cammermeyer,1961). Similarly, before 
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Figure 4.1. Gerbil hippocampus CA4 neurons. Abundant ‘dark’ neurons with twisted 
apical processes and surrounding vacuoles are shown. Arrows point to normal 
neurons. 

Figure 4.2. Gerbil hippocampus dentate gyrus. Abundant shrunken ‘dark’ neurons with 
surrounding vacuoles are shown. Arrows point to normal neurons. 
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awareness of the ‘dark’ neuron in our laboratory, this ordered arrangement was 

described by the author of this thesis as ‘soldiers standing at attention’, and was 

prominent in the dentate gyrus. The exact mechanism by which the artifact complex 

occurs has been a subject of much debate over the years, and is beyond the scope of this 

thesis. The reader is referred to reviews (Brierley et al.,1973; Brown and Brierley,1968; 

Cammermeyer,1960; Cammermeyer,1961; Cammermeyer,1962; Cammermeyer,1978; 

Cammermeyer,1979; Kepes et al.,1995). 

Others have discussed this artifact as well. Brown and Brierley (1968) talk of an 

“histological artefact of hyperchromatic neurons”, the result of trauma at the time of 

brain removal and immersion in fixative. They say this artifact can easily be confused 

with early ischemic damage.  Described are several brains exhibiting dark cells, 

shrunken, heavily stained, with corkscrew-like apical dendrites, occurring in brains 

removed immediately or soon after perfusion-fixation, and seen more frequently in 

ipsilateral hemispheres, likely due to inadequate perfusion of fixative. Levy et al. (1975) 

describe the location of artifactual ‘dark’ or ‘hydropic’ neurons occurring in brains with 

only fair perfusion-fixation, and provide an image as example. They also reiterate, 

described in their previous paper (Brierley et al.,1973), that 1) distribution of ‘dark 

cells’ may bear no relation to pattern of regions vulnerable to hypoxia, and 2) that the 

incidence of the ‘dark cells’ is not proportional to severity of hypoxia, as is true 

ischemic cell damage. Petito et al. (1987) describe a study of postmortem human brains 

after cardiac arrest, identifying criteria by which neuronal necrosis is distinguished from 

‘artifactually dark neurons’. Halsey et al. (1991) placed rat skulls in fixative overnight, 

recognizing that fixation artifact must be differentiated from severe neuron damage in 

evaluation, but did not elaborate further.  

In our laboratory, ‘dark’ neuron has now been largely avoided in experimental 

animals by trans-cardiac saline perfusion followed by buffered formalin and immersion 

of intact skull in refrigerated buffered formalin for eighteen to twenty-four hours before 

gentle removal of brain. Although the artifact complex is well-documented, its existence 

may not be widely appreciated or acknowledged. This was significant to our laboratory 

in that once the artifact was recognized and removed from tissue assessment, a model of 
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global ischemia thought to be inducing mild damage was found to result in no damage 

unless the animals were also subjected to a nutritional insult. 

Care to allow time for adequate tissue fixation before handling will be rewarded 

with specimens free of confounding ‘dark’ neurons. If conditions make this artifact 

unavoidable, familiarity with its description will assist in distinguishing it from true 

neuronal necrosis. 
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CHAPTER 5 

 

THE EFFECTS OF DIETARY SULFUR AMINO ACID DEFICIENCY ON RAT 

BRAIN GLUTATHIONE CONCENTRATION AND NEURAL DAMAGE IN 

GLOBAL HEMISPHERIC HYPOXIA-ISCHEMIA∗ 

 

5.1 ABSTRACT   

  Primary brain injury in stroke is followed by an excitotoxic cascade, oxidative 

stress and further neural damage. Glutathione is critical and depleted in oxidative stress. 

Since cysteine is limiting in glutathione synthesis, this study investigated the effect of 

dietary sulphur amino acid deficiency on neural damage in a rat model of global 

hemispheric hypoxia-ischemia. Animals were fed a sulphur amino acid deficient 

(‘deficient’) or control diet for 3 days, subjected to right common carotid artery ligation 

and hypoxia, and diet continued for 3 more days. Histologically evaluated neural 

damage at 7 days post hypoxia-ischemia was greater in ‘deficient’ rats, shown by mean 

(± SEM) global and hippocampal grid scores of 2.5 ± 0.7 and 34.9% ± 9.3 respectively 

vs. controls’ scores of 0.1 ± 0.1 and 0.1% ± 0.1 respectively. Mean brain (± SEM) 

reduced glutathione was not different between groups at 6 hours post hypoxia-ischemia, 

but was decreased in ‘deficient’ animals 3 days later in neocortex (1.46 µmole/g wet 

weight ± 0.05 vs. 1.67 ± 0.04 in controls) and thalamus (1.60 µmole/g wet weight ± 

0.05 vs. 1.78 ± 0.03 in controls). Administration of a cysteine precursor to ‘deficient’ 

animals did not ameliorate neural damage. These findings suggest that well-nourished 

but not ‘deficient’ animals tolerate a mild brain insult. The decline in brain glutathione 

in the ‘deficient’ animals may be one of several contributing mechanisms.

                                                           
∗ A modification of this chapter was published: Bobyn, P. J., J. L. Franklin, C. M. Wall, J. A. Thornhill, B. 
H. Juurlink and P. G. Paterson (2002). The effects of dietary sulfur amino acid deficiency on rat brain 
glutathione concentration and neural damage in global hemispheric hypoxia-ischemia. Nutr. Neurosci. 
5(6): 407-416., and is reproduced in this thesis by permission of Taylor and Francis Group, 
http://www.tandf.co.uk. 
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5.2 INTRODUCTION 

Stroke (ICD-9, 430-438), is a reduction in blood flow to an area of the brain, and 

the third most common cause of death in the developed world. Primary brain injury due 

to stroke is followed by activation of several mechanisms contributing to extensive 

further damage (Juurlink and Paterson,1998). These mechanisms include depletion of 

glucose, ATP and ADP, membrane depolarization, and glutamate release, initiating an 

excitotoxic cascade, calcium overload and finally production of reactive oxygen (ROS) 

and nitrogen species, leading to oxidative stress (Juurlink and Paterson,1998). The 

acidic conditions promote formation of the potent hydroxyl radical which can initiate 

peroxidation of membrane polyunsaturated lipids, a self-propagating process that 

ultimately alters membrane fluidity and function (Juurlink and Paterson,1998). Calcium 

influx activates an inflammatory cascade, resulting in production of more ROS and also 

isoleukotrienes, biologically active free radicals (Harrison and Murphy,1995). ATP 

depletion, excitotoxicity, increased intracellular calcium and oxidative stress eventually 

lead to cell death (Juurlink,1999). 

Glutathione (γ-glutamylcysteinylglycine) is the most prevalent cellular thiol, 

critical in antioxidant defense (Juurlink,1999). Vitamin E, whose regeneration is 

dependent on ascorbate and reduced glutathione, can convert lipid peroxyl radicals into 

less reactive lipid hydroperoxides. These hydroperoxides, however, in the presence of 

free iron released under acidic conditions, can be converted to alkoxyl and peroxyl 

radicals, potentially initiating more lipid peroxidation (Juurlink and Paterson,1998). 

Glutathione and the glutathione peroxidase family scavenge these radicals, and the GSH 

S-transferases detoxify the aldehyde breakdown products (Juurlink,1999). The 

transcription factor nuclear factor kappa B (NFκB) mediates the inflammatory response 

in brain ischemia, and glutathione can inhibit the signal transduction pathway that 

results in NFκB activation (reviewed in Christman et al.,2000; Juurlink,1999). That 

maintaining optimal glutathione levels is of principal importance in minimizing cell 

damage in stroke is supported by a report that glutathione depletion with buthionine 

sulfoximine exacerbates injury in a rat focal ischemia model (Mizui et al.,1992). N-

acetylcysteine, a cysteine precursor, or glutathione ester administration are also both 

neuroprotective in brain ischemia (Gotoh et al.,1994; Knuckey et al.,1995). 
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  Tissue glutathione concentration is determined by its utilization, reduction of 

oxidized glutathione (GSSG) by glutathione reductase, and de novo synthesis. 

Glutathione will be depleted in conditions of severe oxidative stress such as stroke. The 

sulphur amino acid (SAA) cysteine is limiting for glutathione synthesis. It has long been 

known that liver and lung GSH is responsive to dietary protein and SAA content of 

protein (Bauman et al.,1988a), and our laboratory has recently shown that glutathione 

concentration is decreased in certain brain regions by an acute dietary SAA deficiency  

(Paterson et al.,2001). Intracellular cysteine can also be increased by the administration 

of a cysteine precursor such as L-2-oxothiazolidine-4-carboxylic acid (OTC) 

(Juurlink,1999). OTC is transported into many tissues, incorporated into glutathione 

(Meister et al.,1986), crosses the blood brain barrier and increases brain cysteine 

(Anderson and Meister,1989) and glutathione concentrations (Mesina et al.,1989). Oral 

OTC given to protein-energy malnourished rats increases liver, lung and spleen 

glutathione, and protects against hyperoxia-induced lung damage (Bray and 

Taylor,1994; Taylor et al.,1992). Intraperitoneal administration of OTC to rats after a 

spinal cord crush injury decreases oxidative stress with a sparing of white matter at the 

site of injury and partial return of function, while vehicle-treated animals remain 

paraplegic (Kamencic et al.,2001). These encouraging results suggest OTC may have a 

beneficial effect in stroke, particularly if nutritional substrate for glutathione synthesis is 

compromised. 

  Our study investigated whether SAA deficiency would decrease rat brain 

glutathione and exacerbate neural damage in a rat model of global hemispheric hypoxia-

ischemia (GHHI). This model of stroke has been shown to cause neuronal cell loss in 

the hippocampus, striatum, thalamus and neocortex (Thornhill and Asselin,1999). We 

also investigated if OTC administration to SAA deficient animals would ameliorate 

neural damage due to GHHI. 

 

5.3 MATERIALS AND METHODS 
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5.3.1 Experiment 1 

5.3.1.1  Animals, diets and surgical procedures 

Male Long-Evans rats aged 9-10 weeks were acclimated for 10 days, then 

housed individually in suspended stainless steel cages and randomized to an amino acid-

based diet as previously described (Paterson et al.,2001), but without the antioxidant 

tertiary butylhydroquinone. Sulphur amino acids methionine and cysteine were omitted 

from the formulation for the sulpur amino acid deficient (-SAA) diet. The control diet 

(+SAA) was formulated to contain L-methionine (6g/kg diet) and L-cystine (4g/kg 

diet), levels recommended for a crystalline amino acid-based diet (Baker and 

Boebel,1981). Diets were made isocaloric and isonitrogenous by varying sucrose and 

glycine. Animals had free access to food and water, and daily body weights and feed 

intake were recorded. Diets were obtained from Dyets, Inc. (Bethlehem, PA, USA). The 

animals were maintained at 22°C with a 12-hour light/dark cycle. All animal care and 

procedures adhered to the Canadian Council on Animal Care guidelines and were 

approved by the University of Saskatchewan Committee on Animal Care and Supply. 

Control or -SAA diets were fed for 3 days before and after surgery (total 6 days), after 

which all animals were fed the control diet. Following 3 days on experimental diet, 

animals (aged 9-11 weeks) were subjected to GHHI according to a modification of the 

Levine preparation  (Levine,1960) described by Yager et al. (1996). Under halothane 

anesthesia, the right common carotid artery was isolated, ligated in 2 positions and 

severed. The wound was closed and after 5 minutes of stabilization, the animal was 

exposed to 35 minutes of 12% oxygen in nitrogen (hypoxic period) under light 

halothane anesthesia. Animals were recovered and returned to their cages. Throughout 

surgery, core temperature was monitored with a rectal probe and maintained at 36.6 ± 

0.5°C with a thermal blanket. There were no spontaneous deaths in any experiments 

(n=70). Any animals experiencing seizures post-GHHI (n=2; 3%), cessation of 

breathing during surgery (n=5; 7%), or opening of incision sites (n=2; 3%) were 

eliminated for an overall failure rate of 9 of 70 (13%). 
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5.3.1.2  Global scoring system for neural damage   

    Seven days after GHHI, rats were anesthesized with halothane and perfused 

transcardially with normal saline to remove blood contamination, followed by FAM 

fixative (formaldehyde 1 part, glacial acetic acid 1 part, methanol 8 parts) (n=15 per 

group). Brains were removed intact and stored in FAM. Brains were then embedded in 

paraffin, sectioned at coordinates of approximately -0.4mm (anterior section) and -

3.1mm (posterior section) from bregma, and stained with hematoxylin and eosin (H&E). 

Neural damage to neocortex, striatum, hippocampus and thalamus was assessed in H&E 

stained sections in the hemisphere ipsilateral to the ligated artery according to the semi-

quantitative method of Thornhill and Asselin (Thornhill and Asselin,1999): 0 = no 

damage; 1 = <50% damage; 2 = >50% damage; maximum score of 2 in each region for 

total maximum score of 8. Damage in the ipsilateral hemisphere was assessed against 

the contralateral hemisphere, to account for a possible effect of global hypoxia. To 

increase the sensitivity for detecting more subtle forms of neuronal dysfunction, 

adjacent sections were stained with a mouse monoclonal anti-microtubule-associated 

protein 2 (MAP-2) IgG, using the avidin-biotin method of immunocytochemistry with 

3,3’-diaminobenzidine tetrachloride as the chromagen (Miller,1996). All slides were 

assigned a blinded number to avoid assessment bias. 
 
5.3.1.3  Hippocampal grid scoring system   

    Since the global hemispheric hypoxia-ischemia model produces mainly 

forebrain damage, and the hippocampus is particularly vulnerable (Schmidt-Kastner and 

Freund,1991), our laboratory also developed a more quantitative scoring system 

restricted to the hippocampal region. The hippocampal area of the H&E stained 

posterior section of rat brain (approximately -3.1mm from bregma) was visualized at 

100 x magnification on a Zeiss microscope with attached SonyPowerHAD colour video 

camera, and images were captured on computer with Northern Eclipse 2.0 software. A 

grid was superimposed on each image, and a hardcopy composite image of the entire 

hippocampal area constructed (about 5-9 images per collage) using Microsoft 

PowerPoint (for representative image with superimposed grid, see Appendix G). The 

densest regions of the subiculum/CA1, CA2/CA3, CA4 and dentate gyrus were defined 
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on the collage and baseline numbers of grid squares in each area counted. Each grid 

square held approximately 15-20 cells. To score damage, slides were viewed under a 

microscope at 400 x magnification and damaged cells located and marked by hand on 

the corresponding composite image. Any grid square containing one or more damaged 

cells was counted as one damaged square and the damage score was expressed as 

percentage of baseline squares in each area of the hippocampus. This score will be 

called the ‘hippocampal grid score’ in this paper to differentiate from the score assigned 

to the hippocampal region in the original global scoring system. 

 

5.3.1.4  Brain and liver glutathione concentration 

    At 6 hours (n=8 per group) or 3 days (n=8, -SAA; n=7, +SAA) after GHHI, rats 

were anesthesized with halothane and perfused transcardially with cold phosphate-

buffered saline (PBS). Brains were quickly removed and cut coronally into 2mm 

sections (brain slicer from Zivic-Miller, Portersville, PA, USA), and neocortex, 

striatum, hippocampus and thalamus from the ipsilateral hemisphere dissected, quickly 

frozen in liquid nitrogen and stored at -70°C until analysis. Slicing and dissection were 

on ice. To examine whether any change in glutathione in brain was due to diet alone or 

exacerbated by the GHHI, glutathione level in neocortex was determined in the 

contralateral hemisphere at 3 days post-GHHI. Small portions of liver were also 

harvested, frozen and stored as for brain. All tissue collection was between 1100 hours 

and 1300 hours to minimize diurnal variation in glutathione content. Tissues were 

weighed, homogenized in 5% 5-sulfosalicylic acid containing 0.1mM EDTA (on ice) 

and centrifuged at 4°C, at approximately 12,000 x g for 15 minutes to separate the 

protein precipitate. The supernatant was stored at -70°C until analysis. Final dilutions 

for brain and liver were 1:50 and 1:200, respectively. Glutathione was analyzed in brain 

regions and liver by reverse-phase high performance liquid chromatography (HPLC) 

with ultraviolet detection and precolumn derivatization with 5,5’-dithio-bis(2-

nitrobenzoic acid) as previously described (Paterson et al.,2001). A standard curve was 

run with samples daily, all in duplicate. 
 

5.3.2 Experiment 2 
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    Under the same housing and surgical conditions as Experiment 1, a separate 

group of SAA deficient animals was randomized to receive injections of OTC (n=14) or 

placebo (PBS vehicle, n=15). Fifteen minutes after the end of hypoxia, animals were 

administered a subcutaneous injection of vehicle or 1 mol/L OTC (Sigma) in PBS, 

adjusted to pH 7-7.4 with NaOH at a dose of 12mmol/kg body weight, followed by 

4mmol/kg body weight every 12 hours for 6 doses. Injection regimen concluded at the 

same time as the test diet. Neural damage was assessed histologically at 7 days after 

GHHI by the methods described under Experiment 1. 

 

5.3.3 Statistical analysis 

    Global score of H&E stained slides was analyzed by Mann-Whitney U. The 

hippocampal grid score and GSH levels were analyzed by unpaired, 2-tailed Student’s t-

test. Differences between groups were considered significant at p<0.05.  SPSS 10 for 

Windows (SPSS Inc., Chicago, IL) was used for all statistics. 
 

5.4 RESULTS 

5.4.1 Experiment 1 

    Body weight at entry into the study was the same for both groups of rats. 

Animals on the -SAA test diet lost a mean (± SEM) of 64g (± 1.7) over the 6 day period 

while the +SAA animals gained a mean of 20g (± 2.6). Feed intake of the -SAA rats 

was about 40% that of the +SAA rats (Table 5.1). At three days post-GHHI, -SAA rats 

were given the +SAA diet for 4 days until tissue harvest for histology. During this time, 

their intake normalized (mean 4-day intake [± SEM] 130.5g ± 2.8 vs. original +SAA 

group 120.9g ± 2.5) and they gained weight (51.4g ± 2.4 vs. original +SAA group 21.1g 

± 3.1). Animals in both experimental groups ate little on the day of surgery, but returned 

to normal intake for the group within 24 hours (data not shown). 

    Using the global scoring system, rats in the -SAA group had significantly more 

damage in neocortex (p<0.05), striatum (p<0.01) and hippocampus (p<0.01) and a 

higher total score (p<0.01) when compared to those in the +SAA group (Table 5.2). 

Total damage scores in -SAA and +SAA animals ranged from 0 to 6 and 0 to 1 

respectively. Figure 5.1 illustrates total scores of (a) 0 and (b) 8. Adjacent sections  
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Table 5.1. Effect of sulfur amino acid deficiency on weight gain and food intake* 

 Sulfur amino acid 

deficient (-SAA) 

Sulfur amino acid 

sufficient (control, +SAA) 

Initial body weight (g) 356.1 ± 3.0 357.3 ± 2.2 

Total weight gain/6 days (g) -64.2 ± 1.7† 20.1 ± 2.6 

Total food intake/6 days (g) 70.2 ± 2.5† 177.0 ± 3.4 

*Values are expressed as mean ± SEM; n includes animals for histology (15/group) and 
for tissue GSH analysis (n=8 -SAA; n=7 +SAA) totaling n=23 -SAA and n=22 +SAA.  
†Indicates significant difference between groups by unpaired t-test (p<0.001). 

 

 

 

 

Table 5.2. Global score of neural damage in GHHI with dietary SAA deficiency* 

 Sulfur amino acid 

deficient (-SAA) 

Sulfur amino acid 

sufficient (control,+SAA)  

Neocortex 0.5 ± 0.2† 0 

Striatum 0.7 ± 0.2† 0.1 ± 0.1# 

Hippocampus 1.1 ± 0.3† 0.1 ± 0.1# 

Thalamus 0.2 ± 0.1 0 

Total Score 2.5 ± 0.7† 0.1 ± 0.1 

 *Values are expressed as mean ± SEM; n= 15/dietary treatment group; Global score: 0 
= no damage; 1 = <50% damage; 2 = >50% damage; maximum score of 2 in each 
region for total maximum score of 8. 
†Indicates significant difference between groups by Mann-Whitney U (p<0.02). 
#Only 1 animal of 15 showed damage to the striatum, and 1 animal showed damage to 
the hippocampus. 
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Figure 5.1. Hematoxylin and eosin stained anterior (~ -0.4mm from bregma, A) and 
posterior (~ -3.1mm from bregma, A’) sections of rat brain 7 days post global 
hemispheric hypoxia-ischemia showing (a) a global neural damage score of 0, and (b) a 
global neural damage score of 8; with corresponding adjacent MAP-2 stain (anterior, B, 
and posterior, B’). Global scoring: 0 = no damage; 1 = <50% damage; 2 = >50% 
damage; maximum score of 2 in each region for total maximum score of 8. 



 76

stained for MAP-2 were compared visually to the matched H&E stained slides. By 

visual inspection alone, areas and amounts of staining of MAP-2 appeared to correlate 

well with areas of damage on H&E stains (Figure 5.1). Using the hippocampal grid 

score, damage to the hippocampal area was significantly greater (p<0.01) in -SAA 

animals than in +SAA animals in the subiculum/CA1, CA2/CA3, CA4, hippocampus 

proper and total hippocampus areas (Table 5.3). Damage to the dentate gyrus was 

highly variable in -SAA animals (range 0-100%) and completely absent in +SAA 

animals.  

    At 6 hours after GHHI, representing approximately 3 days of dietary treatment, 

there was no significant difference in glutathione concentration between dietary 

treatment groups in any area of the brain analyzed (Figure 5.2a). Three days after GHHI 

(6 days of dietary treatment), there was a significant decrease in mean glutathione 

concentration of neocortex and thalamus (p < 0.01) in -SAA animals compared to 

+SAA, while the difference in glutathione in hippocampus approached significance at p 

= 0.06 (Figure 5.2b). There was no apparent difference in glutathione concentrations in 

striatum between groups.   

   At 3 days post-GHHI, mean glutathione (±SEM) concentration in ipsilateral and 

contralateral neocortex was 1.46 ± 0.05 and 1.39 ± 0.05 µmol/g wet weight respectively 

in -SAA animals, and 1.67 ± 0.04 and 1.67 ± 0.02 µmol/g wet weight in +SAA animals. 

Thus, there was no difference in neocortex glutathione between left and right 

hemispheres at 3 days post-GHHI. 

   Mean (± SEM) liver glutathione concentration was dramatically lowered in the -

SAA group at 3 days post-GHHI (-SAA 2.7µmol/g wet weight ± 0.4 vs. +SAA 

6.6µmol/g wet weight ± 0.5). 

 

5.4.2 Experiment 2     

Animals on the -SAA diet with vehicle or OTC injection lost a mean (± SEM) of 

57.1g ± 1.9 and 53.2g ± 3.0 respectively over the 6 day test diet period, and this was not 

statistically different between groups. Food intake was not different from that of -SAA 

animals in experiment 1 (data not shown). There was no effect of OTC on neural  
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Table 5.3. Hippocampal grid score of neural damage after GHHI and dietary SAA 
deficiency* 
 SAA deficient (-SAA) 

% 

Control (+SAA)  

Subiculum/CA1 51.9 ± 13.0 † 0.2 ± 0.2# 

CA2/CA3 24.1 ± 7.7† 0 

CA4 45.7 ± 12.7† 0 

Dentate Gyrus 15.2 ± 8.8 0 

Hippocampus Proper‡ 44.3 ± 11.3† 0.1 ± 0.1# 

Hippocampus Total¶ 34.9 ± 9.3† 0.1 ± 0.1# 
*Values are expressed as mean percent damaged grid squares per region ± SEM 
[(number of damaged grid squares / number of baseline grid squares) x 100]; n= 
15/dietary treatment group. 
‡Hippocampus Proper = Subiculum/CA1 + CA2/CA3 + CA4.   
¶Hippocampus Total = Hippocampus Proper + Dentate Gyrus. 
†Indicates significant difference between groups by unpaired t-test (p<0.01). 
# In +SAA, only 1 animal of 15 showed damage, in the subiculum/CA1 region. 
 
 
damage in any brain region assessed by the global scoring system (Figure 5.3a), or by 

the hippocampal grid score (Figure 5.3b). 

5.5 DISCUSSION 

    Rats fed the SAA deficient diet lost weight and consumed less food. The 

phenomenon of appetite loss is characteristic of amino acid imbalance (Harper et 

al.,1970), and would be expected to cause generalized reduced protein synthesis and 

enzyme function. Consistent with other studies of reduced sulphur amino acid or protein 

intake (Bauman et al.,1988a; Hum et al.,1992), liver glutathione was dramatically 

lowered after 6 days on the sulphur amino acid deficient diet, confirming that a sulphur 

amino acid deficiency was achieved. Brain glutathione was unaltered by a sulphur 

amino acid deficient diet fed for 3 days, when measured 6 hours after the hypoxic-

ischemic insult. By 3 days post-ischemia (6 days of dietary treatment), brain glutathione 

was significantly reduced in neocortex and thalamus of sulphur amino acid deficient 

rats, and a similar trend (p = 0.06) was observed in the hippocampus. Striatal  
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Figure 5.2.  Effect of dietary SAA deficiency on brain glutathione concentration. Values 
are expressed as mean ± SEM. At (a) 6 hours post-GHHI, there are no significant 
differences in any brain region between groups, n= 8/ group; (b) 3 days post-GHHI, n=8 
-SAA, n=7 +SAA. *Significantly different from control (+SAA) by unpaired t-test 
(p<0.01). Hippocampal GSH approached significance (p=0.06).  
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Figure 5.3. Effect of subcutaneous administration of L-2-oxothiazolidine-4-carboxylic 
acid (OTC) on neural damage in GHHI with dietary SAA deficiency. Values are 
expressed as mean ± SEM; n= 15 -SAA/-OTC; n=14 -SAA/+OTC. There was no effect 
of OTC in any brain region evaluated in -SAA animals by (a) global score: 0 = no 
damage; 1 = <50% damage; 2 = >50% damage; maximum score of 2 in each region for 
total maximum score of 8; using Mann-Whitney U; or (b) hippocampal grid score: 
percent damaged grid squares per region [(number of damaged grid squares/number of 
baseline grid squares) x 100]; Sub/CA1 = Subiculum/CA1, Hpc Proper = Hippocampus 
Proper (Sub/CA1 + CA2/CA3 + CA4), Hpc Total = Hippocampus Total (Hpc Proper + 
Dentate gyrus); using unpaired t-test. 
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glutathione did not respond to the dietary treatment. These regional differences are 

similar to what we have previously found (Paterson et al.,2001), suggesting the dietary 

sulphur amino acid deficiency decreased availability of cysteine for glutathione 

synthesis. Glutathione is synthesized in two steps in the cytosol of most cells, and 

concentration is highly regulated (Taylor et al.,1996). The formation of γ-

glutamylcysteine in the first step is catalyzed by glutamate-cysteine ligase (GL, γ-

glutamylcysteine synthetase, γ-GCS) and regulated by glutathione via negative feedback 

inhibition (Anderson,1997). Availability of cysteine from diet and/or trans-sulphuration 

of methionine in the liver and activity of γ-GCS are the rate-limiting factors in 

glutathione synthesis (Lu,1999). Glutamate and glycine are readily synthesized via 

several metabolic pathways, and are not believed to limit the rate of glutathione 

synthesis (Bannai and Tateishi,1986). When dietary cysteine is decreased, glutathione 

may be used to supply cysteine for critical proteins, whose synthesis is favoured over 

that of glutathione in response to cellular stress, limiting glutathione available for 

antioxidant defense (Hunter and Grimble,1997). Brain cells have been shown to release 

glutathione into the extracellular space during conditions such as ischemia (Janaky et 

al.,1999). Extracellular cysteine rapidly auto-oxidizes to cystine, which is transported 

into the cell via System Xc- in exchange for glutamate (Bannai and Tateishi,1986). If 

the normally steep glutamate concentration gradient is unbalanced, such as in the 

glutamate excitoxicity occurring following stroke, there may be temporary compromise 

of cystine transport. This could reduce intracellular glutathione synthesis at a time when 

demand for glutathione is critical (Griffith,1999; Schubert and Piasecki,2001). Changes 

in γ-GCS activity and gene expression will also alter glutathione concentration, and are 

mediated by factors such as oxidative stress, Phase II enzyme inducers, and antioxidants 

(Juurlink,2001; Lu,1999).  

    We suggest the decrease in glutathione concentration in certain brain regions of 

sulphur amino acid deficient rats is one of several mechanisms contributing to their 

greater neural damage following hypoxia-ischemia. Neural damage assessed by two 

scoring systems was significantly higher in the sulphur amino acid deficient rats than in 

controls. Cellular damage visible on MAP-2-stained slides mirrored that seen with 

hematoxylin and eosin staining. MAP-2, abundant in the dendrites of neurons, provides 
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information on dendritic function (Schwartz,1991). Absence of MAP-2 has been used as 

an early marker of ischemic damage (Kitagawa et al.,1989; Matesic and Lin,1994). 

Variability in brain damage was high among animals. Although core body temperature 

was controlled, variation in brain temperature may have contributed to variability in our 

model. Damage in this stroke model was mild, as shown by the mean score of 2.5 and 

0.1 out of 8 in sulphur amino acid deficient and control animals respectively. As well, 

there was no significant difference in GSH levels between ipsilateral and contralateral 

neocortex. This suggests the observed depletion of GSH in some brain regions of 

sulphur amino acid deficient rats was due primarily to decreased synthesis resulting 

from absence of cysteine in the diet; increased GSH utilization resulting from the 

hypoxia-ischemia appears to have made little contribution. GSH as an antioxidant 

becomes critical in reperfusion after stroke, as large quantities of reactive oxygen 

species are produced during this period, contributing to oxidative stress (Juurlink and 

Paterson,1998). Oxidative stress may have been milder than anticipated in the stroke 

model studied, as the brain may not be truly ischemic (Ginsberg and Busto,1989), and 

reperfusion may be compromised since the carotid artery was severed. We suggest this 

model did not adequately test the effect of nutrition on GSH homeostasis in ischemic 

brain. In contrast, some other rodent models of stroke deplete brain GSH markedly 

(Rehncrona et al.,1980; Shivakumar et al.,1995).   

    A pair fed control group was not included in this experiment. Since food intake 

was substantially decreased, we cannot be certain that SAA deficiency was the sole 

determinant of the increased neural damage and modest reduction in brain glutathione 

concentration that developed sometime between 6 hours and 3 days post-insult. 

Generalized lack of other essential nutrients may have exacerbated the findings. 

However, brain glutathione, in comparison with liver glutathione, is relatively protected 

in food deprivation (Benuck et al.,1995), when there appears to be recycling of 

glutathione constituents within the brain and/or transportation of precursors across the 

blood brain barrier (Dringen,2000). Although plasma glutathione and cysteine levels are 

determined by efflux of hepatic glutathione, which is decreased in protein deficiency 

(Adachi et al.,1992), levels and function of liver glutathione-synthesizing enzymes 

appear to be maintained in food deprivation (Tateishi et al.,1974). Enzymes involved in 
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glutathione synthesis are present in brain (Dringen,2000), but their function in food 

deprivation has not been investigated. 

    Histological assessment of neural damage showed no effect of administration of 

a cysteine precursor to SAA deficient animals subjected to global hemispheric hypoxia-

ischemia. Although we did not measure brain glutathione concentration following OTC 

administration, the dose given has been shown to partially replete spinal cord 

glutathione concentrations following a spinal cord crush injury (Kamencic et al.,2001). 

Activity of 5-oxoprolinase appears to be maintained during protein energy malnutrition 

(Tateishi et al.,1974; Taylor et al.,1992), and it was expected brain intracellular cysteine 

and glutathione levels would be increased. OTC releases cysteine slowly in the cell, 

avoiding the induction of cysteine dioxygenase, although feedback inhibition of 

glutathione synthesis can occur (Bray and Taylor,1994). However, since OTC cannot 

increase tissue glutathione concentration above a physiological maximum (Bauman et 

al.,1988b) and brain glutathione was not yet depleted at the time of hypoxia-ischemia 

by either sulfur amino acid deficiency or the ischemic insult, our study failed to 

adequately test the efficacy of OTC.  

   Several studies have reported compromised protein-energy status at the time of 

admission to hospital for stroke (Axelsson et al.,1988; Choi-Kwon et al.,1998; Davalos 

et al.,1996; Gariballa et al.,1998b). Feeding after a stroke is often delayed, further 

exacerbating pre-existing poor nutritional status. In our study, the almost complete 

absence of neural damage after GHHI in animals fed the control diet suggests a mild 

insult to the brain may be tolerated in an adequate nutritional state. Sulphur amino acid 

deficiency, in conjunction with poor food intake, however, rendered the animals in this 

study less able to cope with mild ischemia. Recognizing that acute sulphur amino acid 

deficiency is uncommon, this study attempted to examine a mechanism whereby 

protein-energy deficiency, which will be next examined, might play a role in neural 

damage due to stroke. Glutathione can be increased with nutritional intervention in 

animal studies of protein or sulphur amino acid deficiency, and animals 

‘preconditioned’ with decreased protein intake show an overshoot phenomenon of 

glutathione synthesis upon introduction of a cysteine precursor (Bauman et al.,1988b). 
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There may exist a ‘window of opportunity’ for nutritional support after stroke, 

especially with respect to optimizing glutathione status in malnourished patients.
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CHAPTER 6 

 

PROTEIN-ENERGY MALNUTRITION ALTERS OXIDATIVE STRESS AND 

FUNCTIONAL OUTCOME, BUT NOT ISCHEMIC CELL DEATH IN A 

GERBIL MODEL OF STROKE 

 

6.1 ABSTRACT 

Primary brain injury in stroke is followed by an excitotoxic cascade, oxidative 

stress and further neural damage. Since glutathione (GSH), a key component of 

antioxidant defense, is sensitive to protein-energy malnutrition (PEM), we investigated 

whether PEM would deplete brain GSH concentration, increase oxidative damage, and 

exacerbate neural damage after global ischemia. In a 2 x 2 factorial design, adult male 

gerbils were fed an adequate protein (12%;C) or low protein (2%;PEM) diet for 4 

weeks, then subjected to 5 minutes of bilateral carotid artery occlusion (I, ischemia) or 

sham surgery (S). After 12 hours of reperfusion, hippocampus and neocortex, brain 

regions selectively damaged by this stroke model, and liver were collected from half the 

gerbils in each group for biochemical analyses. The remaining gerbils were continued 

on pre-surgery diets for 10 more days. To assess functional consequences of global 

ischemia, gerbils were placed in an open field on Days 3, 7 and 10 after I or S. On Day 

10, viable hippocampal CA1 neurons were counted in 3 stained brain sections.  By 

surgery day, PEM gerbils consumed 15% less food, lost 13% of initial body weight, and 

had 62% higher liver lipid and 49% lower liver GSH concentration than C gerbils, 

confirming PEM. C-I gerbils did not habituate as readily in the open field on Day 3 as 

sham-operated gerbils, but normalized by Day 7. PEM-I gerbils did not habituate well 

by Day 10, traveled greater distance than all other gerbils, and 7 of 12 displayed 

thigmotaxis in the open field. Mean CA1 neuron loss in I was 61.5% of S, but not 

different between PEM and C. Four of 12 PEM-I gerbils had marked increases in 

hippocampal glia.  Hippocampus protein thiols were significantly reduced in PEM
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 compared to C (p<0.05), and in I compared to S. There was a trend for ischemia to 

reduce hippocampus GSH concentration (p=0.08), but diet or surgery did not alter 

neocortex GSH concentration. Neocortex thiobarbituric acid reactive substances were 

unaffected by any treatment. There was a trend for ischemia to reduce hippocampus 

GSH reductase activity in PEM but not C gerbils (p=0.07). Although ability to maintain 

brain GSH concentration was not altered by PEM, these results suggest PEM gerbils 

experienced more oxidative stress and recovered normal activity more slowly following 

global ischemia than well-nourished animals. This is clinically relevant because many 

elderly stroke victims suffer from PEM at the time of ischemia, which may compromise 

recovery. 

 

6.2 INTRODUCTION 

Stroke (ICD-9, 430-432, 434, 436), usually associated with the elderly, occurs in 

all age groups and at 7% of all deaths remains the third most common cause of death in 

Canada.  Although mortality rates for all cardiovascular disease have been declining 

since the 1960s, and rates of ischemic heart disease and acute myocardial infarction 

continue to decline modestly, mortality rates for stroke have not changed significantly in 

the last ten years in Canada. At present, no specific therapy for stroke is available, with 

the exception of thrombolytic treatment (del Zoppo et al.,2000). There is a need to 

identify potential factors that either have detrimental effects on or improve outcome 

after stroke.  

Primary brain injury in stroke is followed by an excitotoxic cascade, calcium 

overload, production of reactive oxygen and nitrogen species, oxidative stress, and 

eventual cell death extending into the penumbra surrounding the infarct region (Juurlink 

and Paterson,1998). Post-ischemic inflammatory processes are also important 

contributors to secondary brain damage in stroke ( for reviews, see del Zoppo et 

al.,2000; Feuerstein et al.,1997; Hallenbeck,1996; Kogure et al.,1996; Tomita and 

Fukuuchi,1996). 

Glutathione (γ-glutamylcysteinylglycine) is the most prevalent cellular thiol, 

critical in antioxidant defense (Lu,1999) and depleted in conditions of oxidative stress 

such as stroke (Candelario-Jalil et al.,2001; Rehncrona et al.,1980; Shivakumar et 
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al.,1995). Synthesis of glutathione is limited by availability of the sulphur amino acid 

cysteine, supplied primarily by dietary protein (Anderson,1997). Liver and lung 

glutathione concentration is sensitive to dietary protein and to sulphur amino acid 

content of dietary protein (Bauman et al.,1988a), and is reduced by severe protein-

energy malnutrition (PEM) (Taylor et al.,1992).  Although brain glutathione 

concentration is not responsive to decreased dietary protein intake alone (Zhang et 

al.,2002), dietary protein deficiency may limit brain glutathione synthesis during 

oxidative stress, when the demand for glutathione is high. This laboratory has previously 

shown that glutathione concentration in some brain regions is decreased by an acute, 

severe dietary sulphur amino acid deficiency (Paterson et al.,2001), and that rats fed a 

sulphur amino acid-deficient diet suffer more neuronal loss after a mild global ischemia 

than well-nourished rats (Bobyn et al.,2002). Further, animals fed a diet containing 

protein-deficient (6% protein or less) diet will voluntarily reduce intake (Eisenstein and 

Harper,1991; Hum et al.,1992; Rana et al.,1996), resulting in both protein and energy 

malnutrition. 

Compromise of antioxidant defense in brain by PEM at the time of a stroke is a 

clinically relevant problem. The elderly are a group at high risk for stroke (Gariballa et 

al.,1998a), and many elderly have compromised nutritional status due to a variety of 

factors  (Abbasi and Rudman,1994; Lipschitz,1991; Marcus and Berry,1998).  Several 

studies have reported evidence of PEM in the elderly at the time of admission to hospital 

for stroke and deterioration of this status during the hospital stay (Axelsson et al.,1988; 

Choi-Kwon et al.,1998; Davalos et al.,1996; Gariballa et al.,1998b; Gariballa et 

al.,1998a).  Pre-existing PEM, particularly in the elderly, may be an important risk 

factor for poorer outcome after stroke, when feeding is often delayed.   

  This study investigated the effect of PEM on functional, histological and 

biochemical outcome in a gerbil model of global ischemia. We hypothesized PEM 

would increase neural damage due to increased oxidative stress secondary to limited 

supply of essential precursors for glutathione antioxidant defense, and negatively affect 

functional outcome. The ischemia model used in our study produces neural damage 

mainly in the CA1 region of the hippocampus (Kirino and Sano,1984; Pulsinelli et 

al.,1982a), and we assessed neuronal survival in this brain region by counting viable 
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neurons ten days after ischemia. The ability to habituate to an open field was utilized as 

a measure of hippocampal function (Babcock et al.,1993; Wang and Corbett,1990). 

Glutathione concentration, protein thiols, glutathione reductase activity, and 

thiobarbituric acid reactive substances were measured as indices of oxidative stress in 

susceptible brain regions after twelve hours of reperfusion following ischemia. 

 

6.3 METHODS 

6.3.1 Animals and diets  

Adult male Mongolian gerbils (Meriones unguiculatus, Charles River Canada, 

Saint-Constant, QC, Canada), age eleven to twelve weeks, were acclimated for seven 

days, and then randomized to adequate protein¶ (control diet, C) or low protein¶ (PEM∗) 

pelleted diet (Dyets, Inc., Bethlehem, PA, USA). The basal diet was modified from the 

AIN-93M rodent diet (Reeves et al.,1993), and did not contain the antioxidant tertiary 

butyl hydroquinone (Table 6.1). Diets were made isocaloric by varying cornstarch and 

dextrinized cornstarch. Animals were housed at 22○C with a twelve-hour light/dark 

cycle in groups of three in shoebox cages with CareFRESH® (Absorption Corp, 

Bellingham, WA, USA) bedding and free access to food and water. Biweekly body 

weights and daily food intakes were recorded. Food pellets were white, facilitating 

retrieval of food wastage from the brown bedding. All animal care and procedures 

adhered to the Canadian Council on Animal Care guidelines and were approved by the 

University of Saskatchewan Committee on Animal Care and Supply. Diets were fed for 

twenty-eight days.  

 

6.3.2 Surgical Procedures 

On day 28, gerbils were subjected to a five minute bilateral carotid artery occlusion 

(ischemia, I) or sham surgery (S) according to the procedure of Dowden and Corbett 

(1999). Under 1.5%-2.0% isoflurane anesthetic with 30% O2, the common carotid 

arteries were isolated through a ventral midline incision. A continuous thread of surgical  

silk, passed under both arteries, was looped to allow gentle lifting of the arteries. Core 
                                                           
¶ Adequate and low protein diets were formulated to contain 12% and 2% protein as casein, respectively. 
∗ Since gerbils fed 2% protein will voluntarily reduce intake, leading to a reduction in both protein and 
energy, the group fed the low protein diet was given the abbreviation of PEM. 
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Table 6.1. Modified AIN-93M Rodent Diet 

Component 

 

Adequate protein§ (Control, C) 

g/kg  

Low protein§§ (PEM) 

g/kg 

Vitamin free casein 140 22.4 

L-cystine 1.8 0.29 

Sucrose 100 100 

Cornstarch 465.7 543.049 

Dextrinized Cornstarch 155 181.001 

Soybean oil 40 40 

Cellulose 50 50 

Mineral mix*  35 35¶ 

Calcium phosphate dibasic 0 12.4 

Calcium carbonate 0 3.36 

Vitamin mix†  10 10 

Choline bitartrate 2.5 2.5 
§ Control diet was formulated to contain 12% protein, 10% fat, 78% carbohydrate. 
§§ PEM diet was formulated to contain 2% protein, 10% fat, 88% carbohydrate. 
* AIN-93M mineral mix (Reeves et al.,1993). 
¶ AIN-93M modified mineral mix: calcium and phosphorus deleted, potassium 
citrate·H2O increased from 28 to 226.55g/kg, sucrose increased from 209.806 to 618.256 
g/kg mineral mix. 
† AIN-93M vitamin mix (Reeves et al.,1993). 
 

 

 

 body temperature was monitored with a rectal probe and maintained at 37 ± 0.5○C with 

a homeothermic blanket (Harvard Apparatus Canada, Saint-Laurent, QC, Canada). 

Brain temperature was approximated with a tympanic membrane probe (Barnant Type T 

Digi-Sense Thermometer) and maintained at 36.5 ± 0.2○C throughout occlusion with a 

Mul-T-Pad® water-heated blanket (Global Medical Products, Inc., Burlington, ON, 

Canada) wrapped around the head. When brain temperature was stable at 36.5○C, 8 x 

1.5mm micro-aneurysm clips providing 60g pressure (World Precision Instruments, 

Inc., Sarasota, FL, USA) were applied to the arteries for five minutes. Blockage of blood 
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flow was visually verified. After clip removal, carotid artery reflow was visually 

confirmed and the incision closed. Animals were warmed with a red 40 watt bulb in an 

overhead lamp for thirty to sixty minutes until they became active, and returned to their 

shoebox cages. For sham surgery animals, procedures were identical: arteries were 

isolated, looped with silk and released, but not occluded, and the incision was closed. 

Groups were as follows: control diet with sham surgery (C-S, n=21), control diet with 

ischemia (C-I, n=24), PEM with sham surgery (PEM-S, n=21), and PEM with ischemia 

(PEM-I, n=24).  

 

6.3.3 Assessment of Protein-Energy Malnutrition 

On day 28, twelve hours after surgery, half the gerbils in each group were 

anesthesized with isoflurane, perfused trans-cardially with heparinized saline, and livers 

and brains collected on ice (C-S, n=10; C-I, n=13; PEM-S, n=12; PEM-I, n=12). Whole 

organ weights were recorded. Since liver glutathione concentration is responsive to 

PEM (Taylor et al.,1992), samples of liver (C-S, n=7; C-I, n=8; PEM-S, n=8; PEM-I, 

n=8) were analyzed for glutathione using reverse-phase high performance liquid 

chromatography with ultraviolet detection and pre-column derivatization with 5,5΄-

dithio-bis(2-nitrobenzoic acid) as previously described (Paterson et al.,2001) (See 

appendix A). Brain hippocampus and neocortex regions were dissected on ice and 

frozen at -70○C until biochemical analyses (see below, Biochemical Assessment of 

Oxidative Stress). Liver lipid can be elevated in PEM (Rana et al.,1996; 

Waterlow,1975), and was analyzed using a modification of the methods of Folch et 

al.(1956), and Miyazawa et al. (1994) (C-S, n=10; C-I, n=13; PEM-S, n=12; PEM-I, 

n=12). Liver was homogenized with 0.1M NaCl, and lipid extracted with 

chloroform:methanol 2:1. After centrifugation at 1000 x g for ten minutes, the upper 

layer was removed with a glass pipet and discarded. Anhydrous Na2SO4 was added to 

remaining tissue/chloroform layer to dehydrate, and tube contents filtered through #1 

Whatman paper into a pre-weighed glass tube. Solvent was evaporated under N2 gas for 

fifteen to thirty minutes at 37○C, until dry. The tube was re-weighed to determine lipid 

content. 
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6.3.4 Behavioural testing 

The remaining gerbils in each group were continued on pre-surgery diet for ten 

additional days. On Days 3, 7, and 10 after surgery, animals were weighed and placed in 

an open field (75 x 75 x 75cm) for ten minutes of exploration, similar to the protocol of 

Colbourne and Corbett (1995). The open field was surrounded by sound-absorbing free-

standing partitions in a secluded room with constant lighting conditions during testing. 

Activity was recorded continuously for ten minutes with a suspended video camera, and 

analyzed later with an EthoVision Basic Program (Version 2.3.19, Noldus Information 

Technology): (1) by using the entire field, and (2) by dividing the field into an inner 

zone and a perimeter zone measuring approximately one and one-half times gerbil body 

width at mid-hip.  

 

6.3.5 Histology 

Following the Day 10 open field exploration, gerbils were anesthesized with 

isoflurane, and perfused trans-cardially with heparinized saline (four minutes at 

12mL/min) followed by 10% phosphate-buffered formalin (eight minutes at 12mL/min). 

To minimize the occurrence of dark neuron artifact (Cammermeyer,1962), intact heads 

were refrigerated in the formalin for eighteen to twenty-four hours, then brains gently 

removed and stored in formalin until paraffin embedding. Brains were sectioned in 6µm 

thicknesses and stained with hematoxylin and eosin (H&E). Viable-looking neurons, 

non-eosinophilic with defined cell membrane and nucleus, were counted bilaterally in a 

200µm square grid (10 x 10) at median, middle and lateral sectors in the CA1 region of 

the hippocampus at levels ‘A’ (anterior, ~-1.7mm from bregma) and ‘B’ (middle, ~-

2.2mm from bregma) and in the middle sector at level ‘C’ (posterior, ~-2.7mm from 

bregma) at 400 x magnification (Colbourne and Corbett,1995) (Figure 6.1). The slides 

were assigned a blinded number to avoid assessment bias. 

 

6.3.6 Biochemical Assessment of Oxidative Stress 

Twelve hours after surgery, brain hippocampus and neocortex (collected as described 

under Assessment of Protein-Energy Malnutrition) were analyzed for reduced 
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Level A 
~ -1.7mm
from bregma

Level B 
~ -2.2mm
from bregma

Level C 
~ -2.7mm
from bregma

Hematoxylin & eosin stain. Bar = 2.5 mm
Copyright 1995 by the Society for Neuroscience 

(Colbourne & Corbett, 1995)

 
 

Figure 6.1.  Hippocampal CA1 neuron regions for histological assessment. 

 

 

 

GSH using the same method as for liver. Although the hippocampus is selectively 

vulnerable in this model of ischemia, variable damage can also be seen in the neocortex 

in similar models (Pulsinelli et al.,1982a; Stanimirovic et al.,1988). The gerbil 

hippocampus is very small, providing limited amounts of tissue for biochemical 

analyses, and thus neocortex collection allowed for additional analyses. Since 

glutathione reductase activity can be reduced by oxidative stress (Barker et al.,1996; 

Powell and Puglia,1987; Stanimirovic et al.,1988), glutathione reductase was analyzed 

in hippocampus and neocortex using a modification of the methods of Carlberg and 

Mannervik (1975;1985) and Racker (1955). Tissue was homogenized 1:10 in 20mM 

sodium phosphate buffered saline containing 1mM Na2EDTA·2H2O (pH 7.6) on ice and 

centrifuged at 4○C at 16,000 x g for thirty minutes. Supernatant was further diluted to 

1:40 with incubation buffer (0.1M sodium phosphate buffer, pH 7.6 containing 0.5mM 

Na2EDTA·2H2O). The reaction mixture of 140µL incubation buffer, 30µL 1mM 
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NADPH in 0.1% NaHCO3, and 100µL sample was incubated at room temperature in a 

96-well plate for 10 minutes, followed by addition of 30µL 10mM oxidized glutathione 

(GSSG) in incubation buffer and immediate reading at thirty second intervals for four 

minutes at 340nm in a Spectramax 190® plate reader, analyzed with SOFTmax PRO® 

software (both Molecular Devices Corp., Sunnyvale, CA, USA). A standard calibration 

curve was prepared using incubation buffer and NADPH, and a molar absorption 

coefficient for NADPH of ε = 6.22 x 103M-1cm-1. All analyses were run in triplicate.  

Protein thiols are susceptible to oxidation and thus decreased under conditions of 

oxidative stress (Castilho et al.,1996; Netto et al.,2002). Protein thiols were analyzed in 

hippocampus and neocortex with a modification of the methods of Netto et al. (2002) 

and Visser et al. (2002). Tissue was homogenized on ice, 1:25 in 10mM HEPES, pH 

7.4, containing 137mM NaCL, 4.6mM KCL, 1.1mM KH2PO4, 0.6mM MgSO4, and 

1.1mM Na2EDTA·2H2O, with the following protease inhibitors added immediately 

before homogenization (final dilutions): 0.5µg/mL leupeptin, 0.7µg/mL pepstatin A, 

40µg/mL phenylmethylsulfonylfluoride (PMSF), and 0.5µg/mL aprotinin. Leupeptin 

and aprotinin were initially dissolved in HEPES buffer pH 7.4, pepstatin A in methanol 

and PMSF in isopropanol. Homogenate was centrifuged at 4○C at 16,000 x g for fifteen 

minutes. To precipitate proteins, equal volumes (100µL) of supernatant and 4% 

sulphosalicylic acid were allowed to stand at room temperature for fifteen minutes, 

centrifuged, and supernatant discarded. The protein pellet was re-suspended in 50µL 

10% sodium dodecyl sulphate (sodium lauryl sulphate) with vortexing, then incubated in 

the dark for twenty minutes after addition of 950µL 0.5M TRIS buffer, pH 8.3 

containing 0.5mM Na2EDTA·2H2O and 100µM 5,5’-dithio-bis(2-nitrobenzoic acid) 

(DTNB, Ellman’s reagent). Absorbance was read at 412nm in a 96-well plate, in 

triplicate, with the plate reader and software described above. A standard calibration 

curve was prepared using glutathione and the same TRIS buffer containing EDTA and 

DTNB. 

As a measure of lipid peroxidation, thiobarbituric acid reactive substances 

(TBARS) were analyzed in neocortex only, due to availability of tissue samples, using a 

modification of the method of Ohkawa et al. (1979). Tissue was homogenized on ice 

with 1.15% KCl (1:9), then 50µL added to a glass tube containing 100µL 8.1% SDS, 
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750µL 20% acetic acid at pH 3.5, 20µL 2% butylated hydroxytoluene in methanol and 

330µL deionized, distilled water, followed by addition of 750µL 0.8% thiobarbituric 

acid. A glass marble was placed on the top of the tube during incubation for one hour at 

95○C. After cooling, 500µL deionized, distilled water was added, followed by 2500µL 

n-butanol:pyridine 15:1. The glass tube was stoppered, shaken vigourously and 

centrifuged at 1000 x g for 10 minutes. The tube was allowed to stand for thirty to sixty 

minutes until the two layers were completely clear. Absorbance of the upper, organic 

layer was read in triplicate in a 96-well plate with reader and software as described, at 

532nm. A standard calibration curve was prepared using 1,1,3,3-tetramethoxypropane 

(malondialdehyde bis[dimethylacetal] ) reacted with 1% H2SO4 to yield 

malondialdehyde, and 1.15% KCl for dilutions.  

Neocortex and hippocampus soluble protein content was determined with each 

assay using the bicinchoninic acid (BCA) method of Smith et al. (1985), and the 

appropriate homogenization buffer. Tissue was homogenized ~1:10 in buffer, 

centrifuged, and supernatant diluted to 1:250. To 20µL sample in a 96-well plate was 

added 200µL working BCA solution (1 part 4% cupric sulphate pentahydrate:50 parts 

stock BCA solution [Sigma B-9643]), in triplicate. The plate was incubated for thirty 

minutes at 37○C, cooled to room temperature, and absorbance read at 562nm with the 

above microplate reader and software as described. Standard calibration curves were 

prepared for each assay using dilutions of 1mg/mL bovine serum albumin in the 

homogenization buffers specific to each assay. 

 

6.3.7 Statistical analyses 

 All statistical analyses were conducted using SPSS 11.0 for Windows (SPSS 

Inc., Chicago, IL). Body weights, feed intake, and organ weights used for the 

assessment of the PEM model were analyzed by unpaired Student’s t-test. Open field 

data were analyzed using General Linear Model Repeated Measures or two-way 

ANOVA accordingly, followed by posthoc LSD means comparison where appropriate.  

Biochemical data, including liver lipid and glutathione concentration, were analyzed by 

two-way ANOVA, followed by posthoc LSD means comparison where appropriate. 
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Differences were considered statistically significant at p< 0.05. All data are presented as 

means ± SEM. 

 

6.4 RESULTS 

6.4.1 Exclusions 

 There were ninety-six gerbils at the beginning of the study. Two gerbils were 

excluded due to inadequate  brain temperature control during occlusion, three died 

within twenty-four hours of surgery (two PEM-I and one C-S), and one gerbil was 

excluded due to abnormal toenail formations, enlarged spleen and liver growths. The 

overall failure rate was 6.25%. 

 

6.4.2 PEM Model 

Except for liver lipid (vide infra), there were no differences between sham-

operated and ischemic animals within each dietary treatment group (data not shown) for 

any of the parameters used to assess PEM. Initial mean body weight (± SEM) was not 

different between experimental groups, but by day 28, PEM mean weight was 

significantly lower than that of gerbils fed control diet (p<0.001) (Table 6.2). PEM 

gerbils lost 13% of initial body weight, and mean feed intake of PEM was 85% that of 

gerbils fed control diet over the 28-day period. Liver gross weight or weight per g body 

weight, and gross brain weight of PEM were significantly lower than those of gerbils in 

the control diet group, while brain weight per g body weight was significantly higher in 

PEM (all p<0.001). Liver lipid content was higher in PEM gerbils compared to those fed 

control diet (p<0.001), and was increased by ischemia in both dietary treatment groups 

(p=0.01). Liver from PEM gerbils contained a lower concentration of glutathione than 

that of gerbils fed control diet (p<0.001), but this parameter was unaffected by ischemia. 

Body weight on Day 10 after surgery was lower in PEM gerbils than those fed 

the control diet (p<0.001), and lower in ischemic gerbils than sham-operated (p=0.03), 

but there was no interaction of diet and surgery (Table 6.3). During the ten post-surgical 

days, PEM gerbils ate less than those fed control diet (p<0.001), but there was no 

difference between PEM-ischemic and PEM sham-operated animals. On the other hand, 

ischemic gerbils fed control diet ate significantly less than sham-operated (p<0.001).  
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Table 6.2.  Effect of experimental diet on body weight, feed intake, organ weights, liver 
lipid and liver glutathione concentration 

 

Parameter Adequate Protein 
Diet (Control diet, C) 

Low Protein Diet 
(PEM) 

Initial body weight (g)† 67.5±0.7 69.1±0.5 

Day 28 body weight (g) † 72.1±0.7 59.5±0.4* 

28-day feed intake (g) † 111.2±1.3 94.7±0.7* 

Liver weight (g)¶  2.4±0.1 1.7±0.1* 

Liver weight (mg/g body wt.) ¶ 34.5±0.7 28.7±0.4* 

Brain weight (g) ¶ 1.03±0.01 0.99±0.01* 

Brain weight (mg/g body wt.) ¶ 14.8±0.2 16.7±0.1* 

 C-S C-I PEM-S PEM-I 

Liver lipid (mg/g wet wt.)‡ 35.4±1.4a 46.5±2.9b 58.0±3.2c 77.7±3.8d 

Liver GSH (µmole GSH/g wet wt.)§ 5.6±0.4 5.5±0.2 3.1±0.4∆ 2.6±0.2∆ 

Mean ± SEM.                                                                                                                       
† n=45 per group; ¶ C, n=22; PEM, n=24; tissue weights obtained after whole body 
perfusion with heparinized saline; ‡ C-S, n=10; C-I, n=12; PEM-S, n=13; PEM-I, n=12; 
§ C-S, n=7; C-I, n=8; PEM-S, n=8; PEM-I, n=8.                                                                
* Indicates significant difference from control group by unpaired t-test, p<0.05.        
Letters indicate significant difference between groups by two way ANOVA followed by 
posthoc LSD test of means, p<0.05.                                                                                                                             
∆ Indicates significant difference between dietary treatment groups by two way 
ANOVA, p<0.05. 
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Table 6.3. Effect of ischemia on post-surgical feed intake and body weight 

 C-S PEM-S C-I PEM-I 

Body weight Day 10 post-
surgery 

74.3 ± 1.3 59.9 ± 1.2Φ 72.8 ± 1.1# 55.4 ± 0.9#Φ 

Feed intake:10 post-surgical 
day total 

36.4 ± 0.9a 26.6 ± 0.8c 32.6 ± 1.0b 27.3 ± 0.9c 

Mean ± SEM; C-S, n=11; PEM-S, n=9; C-I n=11; PEM-I, n=12. 
# Indicates significant difference between surgical treatment groups by two way 
ANOVA. 
ΦIndicates significant difference between dietary treatment groups by two way ANOVA.                         
Letters indicate significant differences between groups by two way ANOVA followed 
by posthoc LSD test of means, p<0.05. 
 

 

 

6.4.3 Behavioural Testing 

Decreasing activity level during an exposure to the open field, measured as total 

distance traveled, is an indicator of ability to adapt or habituate to a novel environment. 

Sham-operated gerbils in both dietary treatment groups habituated well in the open field 

beginning on Day 3 post-surgery (Figure 6.2). Ischemic gerbils did not habituate on Day 

3, but by Day 7, ischemic gerbils fed control diet habituated as well as their sham-

operated controls. PEM ischemic gerbils failed to habituate even by Day 10. Although 

not statistically different from gerbils fed the control diet, PEM sham-operated gerbils 

tended to have a lower overall activity level. Total distance traveled significantly 

decreased on repeated exposure to the open field (p<0.001) in all groups (within-

subjects effects). Collapsed across days, total distance traveled was greater in ischemic 

than in sham-operated gerbils (p<0.001), and in PEM ischemic gerbils compared to 

ischemic gerbils fed the control diet (p=0.005, between-subjects effects) (Figure 6.3). 

The three-day average of total distance traveled was significantly greater for PEM 

ischemic gerbils compared to all other groups (p=0.002). 

Seven of twelve PEM ischemic gerbils, and one of eleven ischemic gerbils fed 

control diet displayed marked thigmotaxis, a wall-hugging behaviour, readily apparent  
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Figure 6.2.  Distance traveled in the open field.  Closed squares: control diet, sham 
surgery, n=11; open squares: control diet, ischemia, n=11; closed triangles: PEM, sham 
surgery n=9; open triangles: PEM, ischemia, n=12. 
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Figure 6.3.  Three-day average of total distance traveled in the open field. C-S: control 
diet with sham surgery; PEM-S: PEM with sham surgery; C-I: control diet with 
ischemia; PEM-I: PEM with ischemia 
 

 

 

on videotape (Figure 6.4). The percent of distance traveled spent in the outer zone 

remained constant in sham-operated gerbils from day to day, but decreased on repeated 

exposure to the open field in ischemic gerbils (Figure 6.5). Analysis of between-subjects 

effects showed the percent of distance traveled spent in the outer zone was greater in 

PEM than in gerbils fed the control diet (p=0.03), and greater in ischemic than in sham-

operated gerbils (p=0.005)(Figure 6.6). Post hoc LSD means comparison of percent of 

distance traveled in the outer zone also showed significantly greater values for PEM 

ischemic gerbils compared to all other groups. 

To examine the pattern of habituation during each open field exposure from day 

to day, the approximated slopes of the ten-minute activity patterns within each day were 

calculated using the difference between distance traveled in minute one and minute ten, 

normalized by dividing this value by the sum of distance traveled in minute one and 

minute ten (Figure 6.7). Repeated measures analysis of within-subjects effects showed 

the effect of ischemia on pattern of habituation from day to day was altered by diet 

(p=0.01). A repeated measures analysis of pattern of habituation by individual group 

showed a change in pattern of activity over repeated exposures for the.PEM  
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A B

 
Figure 6.4.  Tracks from videotape of ten-minute exposure to the open field. (A): 
Normal activity pattern of sham-operated gerbil fed control diet; (B): Thigmotaxis 
observed in protein-energy malnourished ischemic gerbil.  
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Figure 6.5.  Open field: percent of total distance traveled spent in the outer zone. C-S: 
control diet with sham surgery; PEM-S: PEM with sham surgery; C-I: control diet with 
ischemia; PEM-I: PEM with ischemia. 
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Figure 6.6.  Open field: three-day average of percent of total distance traveled spent in 
the outer zone. C-S: control diet with sham surgery; PEM-S: PEM with sham surgery; 
C-I: control diet with ischemia; PEM-I: PEM with ischemia. Letters indicate significant 
differences among groups by two way ANOVA followed by posthoc LSD test of means, 
p<0.05. 
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Figure 6.7.  Open field: pattern of habituation. C-S: control diet with sham surgery; 
PEM-S: PEM with sham surgery; C-I: control diet with ischemia; PEM-I: PEM with 
ischemia. 
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sham-operated group only. This group had a flattening of the approximated ‘slope’ by 

Day 10, due to lower activity in the first few minutes of placement in the open field. 

This was in sharp contrast to the PEM ischemic group, which did not change the pattern 

of activity over all three days. Looking at each day individually using two-way 

ANOVA, surgical treatment was significant (p=0.001) for Day 3, while the interaction 

between diet and surgery was significant for Day 7 (p=0.03). By Day 10, only dietary 

treatment had an effect on the pattern of habituation (p<0.001). Between groups, 

collapsing all three days, the ‘slope’ of habituation was independently flattened by PEM 

(p=0.005) and ischemia (p=0.02) (Figure 6.8).  

 

6.4.4 Histology 

 The number of viable hippocampal CA1 neurons at each level, and totalled was 

unaffected by dietary treatment, in sham or ischemic gerbils. Ischemia resulted in a 

mean of ~63% and ~ 60% total loss of CA1 neurons in the representative sectors in 

gerbils fed control diet and PEM gerbils, respectively (Figure 6.9). There was no  
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Figure 6.8.  Open field: pattern of habituation averaged over three days of exposure.     
C-S: control diet with sham surgery; PEM-S: PEM with sham surgery; C-I: control diet 
with ischemia; PEM-I: PEM with ischemia. 
 



 102

0
100
200
300
400
500
600
700
800

CA1

Vi
ab

le
 C

A1
 N

eu
ro

ns

C-S  n=11 PEM-S n=9 C-I n=11 PEM-I n=12

a a

b b

 
Figure 6.9.  Viable hippocampal CA1 neurons ten  days post-surgery. C-S: control diet 
with sham surgery; PEM-S: PEM with sham surgery; C-I: control diet with ischemia; 
PEM-I: PEM with ischemia. Letters indicate significant differences among groups by 
two way ANOVA followed by posthoc LSD test of means, p<0.05. 
 

 

 

significant interaction between diet and ischemia in effects on histological outcome. 

Four of twelve PEM ischemic brains had a marked increase in numbers of hippocampal 

glia, a phenomenon not seen in any other group (Figure 6.10). Among a subset of 

ischemic gerbils displaying thigmotaxis in the open field (n=1, C-I and n=7, PEM-I), 

which included all four gerbils with increased glial numbers, viable CA1 neuron 

numbers at any level were not different between gerbils with and without increased glial 

numbers (data not shown). All ischemic gerbils displaying visually observed 

thigmotaxis, however, had significantly fewer surviving CA1 neurons than those 

ischemic gerbils not displaying thigmotaxis, at levels B (p=0.01) , C (p=0.01)and total 

of A,B and C (p=0.02), while level A approached significance at p=0.07 (Table 6.4).  

 

6.4.5 Biochemical assessment of tissue protein and oxidative stress 

Protein content of hippocampus was higher in ischemic than in sham-operated 

gerbils in both dietary treatment groups (p=0.04), while neocortex protein was not 

affected by diet or ischemia (Table 6.5). Hippocampus protein thiols were significantly 
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Figure 6.10.  Representative images of hippocampal CA1 neurons at ~ - 1.7mm from 
bregma: intact neurons from sham-operated gerbil fed (A) control diet, (B) PEM diet; 
neuronal damage in ischemic gerbil fed (C) control diet, (D) PEM diet; and (E), 
increased number of glial cells in ischemic gerbil fed PEM diet.  
 

 

 

Table 6.4.  Numbers of viable hippocampal CA1 neurons in ischemic gerbils, 
categorized by observation of thigmotaxis in the open field 
 
Ischemic gerbils Level A Level B Level C Total all levels 

Thigmotaxis‡ 60 ± 4  66 ± 5* 26 ± 3* 152 ± 9* 

No thigmotaxis§ 124 ± 24 158 ± 24 59 ± 9 341 ± 55 

Mean ± SEM. 
‡ Control diet, n=1; PEM, n=7.  
§ Control diet, n=10; PEM, n=5. 
* Indicates significant difference between groups by unpaired by t-test, p< 0.05. 
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Table 6.5. Effect of dietary treatment and ischemia on tissue soluble protein and 
biochemical assessment of oxidative stress in hippocampus and neocortex 
 

Experimental Groups§  
Assessment  

 
Region¶ 

C-S PEM-S C-I PEM-I 

Protein*  
(mg/g wet wt) 

HPC 42.4 ± 2.1 43.6 ± 2.1 46.0 ± 2.6# 49.3 ± 1.5# 

 NC 46.5 ± 2.9 49.7 ± 3.0 45.2 ± 1.0 47.4 ± 2.3 

      

GSH*  
(mMol GSH/mg 
protein) 

HPC 
 
NC 

26.4 ± 1.9 
 
27.7 ± 4.4 

24.9 ± 1.4 
 
26.4 ± 2.7 

22.8 ± 1.6 
 
28.6 ± 1.5 

22.2 ± 2.0 
 
25.2 ± 2.1 

      

GSH Reductase†  
(nMol NADPH/min/ 
mg protein) 

HPC 
 
NC 

24.9 ± 2.1 
 
19.7 ± 1.4 

26.3 ± 1.1 
 
17.0 ± 1.1 

25.9 ± 1.8 
 
19.0 ± 0.8 

21.6 ± 0.7 
 
20.9 ± 1.3 

      

Protein Thiols* 
(nMol GSH 
equiv/mg protein) 

HPC 
 
NC 

93.5 ± 6.8 
 
78.2 ± 1.0 

83.5 ± 1.1Φ 
 
75.1 ± 2.5 

87.2 ± 3.4# 
 
82.6 ± 1.9# 

75.8 ± 3.2Φ# 
 
84.0 ± 3.4# 

      

TBARS‡  
(nMol MDA/g wet 
wt.) 

NC 371.9 ± 71.9 415.9 ± 70.8 282.7 ± 57.2 339.3 ± 60.0 

Mean ± SEM. 
§ C-S = control diet, sham surgery; PEM-S = PEM, sham surgery; C-I = control diet, 
ischemia; PEM-I = PEM, ischemia. 
¶ HPC = hippocampus; NC = neocortex. 
# Indicates significant difference between surgical treatment groups by two way 
ANOVA. 
Φ Indicates significant difference between dietary treatment groups by two way 
ANOVA. 
*C-S, n=7; PEM-S, n=8; C-I, n=8; PEM-I, n=8. 
† C-S, n=7; PEM-S, n=8; C-I, n=8; PEM-I, n=7. 
‡ C-S, n=5; PEM-S, n=7; C-I, n=7; PEM-I, n=4.  
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reduced in PEM gerbils compared to those fed control diet (p=0.004), and in ischemic 

gerbils compared to sham-operated (p=0.04), but there was no interaction between 

effects of diet and ischemia . Neocortex protein thiols were increased by ischemia 

(p=0.01) but unaffected by diet; there was no interaction between diet and ischemia. 

There was a trend for ischemia to reduce hippocampus glutathione concentration 

(p=0.08), however diet had no effect. Reduction of hippocampus glutathione reductase 

activity by ischemia approached significance in PEM (p=0.07), but not in gerbils fed 

control diet. In contrast, neocortex glutathione reductase activity tended towards an 

increase in PEM (p= 0.06) compared to gerbils fed control diet. There were no 

independent or interactive effects of diet or surgery on neocortex TBARS. 

 

6.5 DISCUSSION 

 Little is known of the nutritional or protein requirements of the Mongolian 

gerbil, but this animal appears healthy when fed laboratory rodent chow containing 16-

24% protein (Arrington et al.,1973; Edwards et al.,1983). The decreased feed intake, 

loss of body weight, decreased liver glutathione and increased liver lipid seen in this 

study all suggest a gerbil model of moderate PEM was achieved by feeding 2% protein 

for four weeks. Various other rodent models of dietary protein deficiency have shown 

voluntary decreases in food intake and decreased liver glutathione concentration, 

consistent with our findings (Bauman et al.,1988a; Bauman et al.,1988b; Eisenstein and 

Harper,1991; Hum et al.,1992; Taylor et al.,1992). Our model can be distinguished from 

that of milder protein deficiency (7.5% protein) where food intake did not decrease 

(Zhang et al.,2002; Bauman et al.,1988a), or more severe PEM, where rats developed 

edema, diarrhea, steatorrhea, mucosal lesions, sparse hair and staggering gait after 

eating a protein-free diet fed for about two weeks (Leme-Brasil et al.,1980; Flores et 

al.,1970). PEM is characterized by muscle wasting and lossof subcutaneous tissue. Rana 

et al. (1996) fed rats a low protein (5%) or adequate protein (20%) diet for four weeks. 

Appetite and body weight decreased, and the liver was ‘fatty’ in the 5% protein group. It 

has been suggested, but not proven, that the fatty liver results from a diet providing a 

relative excess of energy from carbohydrate compared to protein or from decreased 

ability for synthesis of the apolipoprotein required for transport of triglycerides out of 
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the liver (Flores et al.,1970; Truswell et al.,1969; Waterlow,1975). The increase in liver 

lipid in ischemic gerbils may be a response to surgical stress. Surgery stimulates 

adrenocorticotropic hormone (ACTH) release from the pituitary, which elevates 

circulating corticosteroids such as cortisone, corticosterone and cortisol for up to 

twenty-four hours after insult, and activates the sympathetic system to release 

epinephrine and norepinephrine (Guyton, 1982; Souba and Wilmore, 1999). 

Epinephrine, norepinephrine, ACTH and cortisteroids activate triglyceride lipase, 

causing rapid breakdown of stored triglycerides and mobilization of fatty acids, such 

that the blood free fatty acid concentration rises. Epinephrine and norepinephrine also 

suppress insulin and raise glucagon, stimulating hepatic gluconeogenesis and 

glycogenolysis. Higher liver lipid after ischemia may be only transient, reflecting 

corticosteroid influence on lipid metabolism.  

Hippocampal CA1 neurons are particularly sensitive to brief periods of global 

ischemia, surviving initially, but succumbing to programmed (delayed) neuronal death 

over a period of two to four days after the insult (Kirino,1982; Pulsinelli et al.,1982a) 

This delayed death provides a window of opportunity for intervention and neuronal 

preservation. In humans, a brief episode of global ischemia results in severe 

hippocampal CA1 injury with resultant anterograde amnesia (Zola-Morgan et al.,1986). 

In gerbils, certain behaviour tests, such as the open field, are effective in assessing 

hippocampal function after an ischemic insult (Babcock et al.,1993; Colbourne and 

Corbett,1995; Corbett and Nurse,1998; Wang and Corbett,1990).  Decreasing activity 

level during exposure to the open field is an indicator of ability to adapt or habituate to a 

novel environment, testing working memory (Mileson and Schwartz,1991; Nurse and 

Corbett,1994). An increase in open field activity, or failure to habituate, can be a 

predictor of histological outcome and selective injury to hippocampal CA1 neurons 

(Dowden et al.,1999), although after ischemia, morphologically normal-appearing cells 

may be functionally incompetent (Bothe et al.,1986; Hori and Carpenter,1994; Ishimaru 

et al.,1995). Ischemic gerbils in both dietary treatment groups did not habituate well on 

novel exposure to the open field, three days after surgery. By the second exposure, one 

week after surgery, well-nourished ischemic gerbils habituated as well as all sham-

operated gerbils, suggesting recovery or adaptation. Hippocampal damage in our 
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ischemia model was less severe and more variable than expected. Others have reported 

more severe, consistent damage with the same global ischemia model, where, in contrast 

to our results, ischemic gerbils fed a normal diet could be differentiated from sham-

operated animals on all three post-surgical exposures to the open field (Colbourne and 

Corbett,1995; Dowden and Corbett,1999).  

Protein-energy malnourished ischemic gerbils in our study, however, still did not 

habituate well by Day 10 post-surgery. Indeed, the activity of these gerbils could be 

differentiated from PEM sham-operated gerbils on all three days of open field exposure. 

This was in contrast to gerbils fed the control diet, despite almost identical CA1 neuron 

loss from ischemia in both dietary treatment groups. Seven of the twelve gerbils in the 

PEM ischemic group spent over 87% of the total distance traveled in the outer perimeter 

of the open field. This was in sharp contrast to findings in the ischemic gerbils fed 

control diet, where only one of eleven showed this increased affinity for the outer 

perimeter. All other gerbils showed a range of 65-70%, and no sham-operated gerbils 

exhibited this behaviour. Thigmotaxis is considered indicative of ‘behaviour trapping’ 

or anxiety (Schallert et al.,1980; Simon et al.,1994). 

All gerbils except those in the PEM sham-operated group had a similar pattern of 

habituation over each ten-minute exposure from one test day to the next. The lack of 

habituation on first exposure to the open field in ischemic gerbils fed the control diet 

lost significance when averaged over all three exposures. The PEM sham-operated 

group, however, became less active over repeated exposures, and by Day 10 post-

ischemia, although the approximated ‘slope’ of activity over ten minutes suggested no 

habituation, the activity level was slightly lower than that of all gerbils fed the control 

diet, and dramatically lower than that of PEM ischemic gerbils. This suggests the 

continuation of the PEM diet for an additional ten days after sham surgery has a 

depressing effect on level of activity, independent of ischemia. Similar reductions in 

level of physical activity and/or ability to perform manual labour in conditions of PEM 

have been reported in monkeys (Chopra et al.,1987) and humans (reviewed in 

Shetty,1999). In contrast, PEM ischemic gerbils maintained a higher than normal level 

of activity throughout the post-ischemic period, suggesting abnormal hippocampal 

function.  
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Ischemia resulted in a significant loss of hippocampal CA1 neurons, but PEM 

had no additional effect on neuronal death. Unexpectedly, four of twelve PEM ischemic 

gerbils had marked increases in numbers of hippocampal glia, suggesting inflammation, 

although these cells have not yet been stained to identify glial cell types. After ischemia, 

glia are activated to form reactive microglia and reactive astrocytes (reviewed by Liu et 

al.,2001). In transient global ischemia, there is microglial activation very early in 

reperfusion, with a return to normal conditions by seven days post-injury in the 

penumbral region, though microglia may persist in the hippocampal CA1 region for up 

to one month (reviewed by Kato and Walz,2000). Reactive astrocyte proliferation 

appears later, reaching maximal accumulation in hippocampus at three to seven days 

post-ischemia (Domanska-Janik et al.,2001; Kato et al.,1994; Liu et al.,1998). This 

response to ischemia has not been studied in PEM. While lowered immune response is 

one component of PEM, chronic inflammation can occur (reviewed in Mora,1999). 

Inflammatory response in PEM can be abnormal and/or prolonged (Leme-Brasil et 

al.,1980; Wan et al.,1989). A prolonged inflammatory response in PEM may explain in 

part the glial proliferation seen throughout the hippocampus and neocortex in the four 

PEM ischemic gerbil brains. All four gerbils with increased hippocampal glial numbers 

exhibited thigmotaxis in the open field. Ischemic gerbils not displaying thigmotaxis in 

both dietary treatment groups had more surviving CA1 neurons in caudal sections 

(levels B and C) than ischemic gerbils exhibiting thigmotaxis, linking more extensive 

damage with abnormal behaviour in the open field.  

While we did not observe any effect of PEM, in the absence of ischemia, on 

surviving CA1 neurons, others have shown that prolonged PEM in postnatal or adult life 

in rats for fifty days and six months, respectively, resulted in decreased numbers of 

neurons and altered dendritic trees and synapses (Lima et al.,1999; Lukoyanov and 

Andrade,2000). Brock and Prasad (1992) found dendritic spine densities in some brain 

regions of rats were sensitive to dietary protein, while others were spared. To our 

knowledge, there have been no studies on the effect of short term PEM on hippocampal 

neuron numbers, and we did not expect the diet alone to affect this parameter in the 

adult brain.  
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Behaviour in the open field in this experiment was not reflected by extent of 

neuronal loss. Histology cannot predict communication within and between cells, 

making correlation between morphology and functional outcome difficult (DeVries et 

al.,2001). Using the same ischemia model as in this study, Corbett and Crooks 

preconditioned gerbils with two short occlusions seventy-two hours before five minutes 

of ischemia. Ten days later, preconditioned ischemic gerbils had lost only 19% of 

hippocampal CA1 neurons, yet showed significant impairments in the open field 

(Corbett and Crooks,1997). Similar results have been shown by others (Bothe et 

al.,1986; Dooley and Corbett,1998; Kudo et al.,1990). In another study from Corbett’s 

laboratory, the amplitude of CA1 dendritic field excitatory postsynaptic potentials 

(fEPSP) recorded ten days after ischemia in preconditioned gerbils was significantly 

lower than that of sham animals, although CA1 neuron loss was only about 12%. The 

lower fEPSP amplitudes correlated well, however, with increased activity in the open 

field (Dowden and Corbett,1999). These findings emphasize the importance of 

functional testing as an outcome measure in global ischemia models in addition to 

examining morphology. 

The brain, responsible for 20% of body oxygen consumption, is rich in 

polyunsaturated fatty acids and susceptible to free radical damage and lipid peroxidation 

(Comporti,1993; Siesjo et al.,1989). Production of reactive oxygen species during 

reperfusion after transient ischemia can ultimately lead to (1) oxidation of thiol groups 

on proteins and on susceptible enzymes such as glutathione reductase, essential for 

regenerating GSSG, and (2) initiation of lipid peroxidation with resultant decomposition 

of membrane fatty acids (Comporti,1993). Measurement of protein thiols, glutathione 

reductase activity, glutathione concentration and lipid peroxidation products may be 

used as indicators of oxidative stress, a condition in which free radical production 

exceeds antioxidant capacity (Shivakumar et al.,1995). We investigated whether the 

abnormal brain function of PEM gerbils measured post-ischemically could be partially 

attributable to glutathione depletion and increased oxidative stress. To our knowledge, 

the combined influence of PEM and ischemia on brain glutathione concentration and 

markers of oxidative stress has not been studied.  
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Hippocampus protein thiols were independently reduced by PEM and by 

ischemia, but the magnitude of the response to ischemia was not affected by diet. 

Protein thiol groups are susceptible to oxidation (Balijepalli et al.,2000; Sen and 

Packer,2000) and have been shown to decrease at one hour of reperfusion after thirty 

minutes of ischemia and return to normal levels at twenty-four hours (Shivakumar et 

al.,1995). That PEM alone decreases protein thiols may be partially supported by the 

hypothesis of Golden and Ramdath (1987), who suggest some of the pathogenesis in 

PEM is due to favourable conditions for production of free radicals and lipid 

peroxidation, in the milieu of low glutathione status due to high antioxidant demand and 

poor nutritional intake. Surprisingly, neocortex protein thiols did not appear to have 

been oxidized and were increased after ischemia in both dietary treatment groups. The 

neocortex is variably and less vulnerable to damage compared to the hippocampus in 

this model of ischemia. Soluble protein in this region was unchanged by ischemia (vide 

infra), thus it is unlikely there was overall increased protein synthesis or extravasation of 

plasma proteins into the parenchyma to account for the protein thiol content. It is 

possible there was selective synthesis but not inactivation, of sulphhydryl-containing 

proteins important in antioxidant defense, such as glutathione reductase, for example, in 

response to adjacent hippocampal injury or stress. The trend for increased glutathione 

reductase activity in PEM gerbil neocortex would support this suggestion. 

 There was a trend for ischemia to reduce hippocampus glutathione reductase in 

PEM, but not in adequately-nourished gerbils. Glutathione reductase is a flavoprotein 

utilizing NADPH to catalyze the reduction of GSSG to glutathione (Carlberg and 

Mannervik,1985). The thiol groups on glutathione reductase can be oxidized, 

inactivating the enzyme in conditions of oxidative stress (Barker et al.,1996). There is 

some evidence, however, that ischemia may need to be longer than five minutes to see a 

change in the hippocampus (Shivakumar et al.,1995; Stanimirovic et al.,1988; 

Stanimirovic et al.,1994). An interesting theory is proposed by Powell and Puglia 

(1987), who found that a 75% reduction in glutathione reductase activity did not alter 

brain glutathione concentration in a study of oxygen-induced CNS toxicity, and suggest 

under normal conditions, the brain may have an excess capacity for reduction of 

oxidized glutathione.  
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Compared to liver glutathione, brain glutathione is relatively protected in forty-

eight-hour food deprivation (Benuck et al.,1995), and is not altered in mice or rats fed a 

low protein diet (Adachi et al.,1992; Li et al.,2002; Stipanuk et al.,2002; Zhang et 

al.,2002). Various rodent models of stroke have been shown to deplete brain glutathione 

at early reperfusion timepoints (Baek et al.,2000; Candelario-Jalil et al.,2001; Park et 

al.,2000; Rehncrona et al.,1980; Shivakumar et al.,1992; Shivakumar et al.,1995), 

followed by a return to normal levels four to twenty-four hours later (Candelario-Jalil et 

al.,2001; Shivakumar et al.,1992; Shivakumar et al.,1995). We expected that the high 

demand for glutathione in oxidative stress might deplete brain glutathione when 

challenged with limited availability of precursors for glutathione synthesis in PEM. 

Although there was a trend for ischemia to reduce hippocampus glutathione, differences 

among groups were not significant. The extent of lipid peroxidation in neocortex 

measured by TBARS was not affected by diet or ischemia, and variability was high, 

consistent perhaps with variability of this region to damage in this stroke model. Since 

the hippocampus is the region most affected by this model of global ischemia, it would 

have been valuable to assess hippocampus TBARS.  

Although not a marker of oxidative stress, tissue soluble protein was used as a 

means of standardizing cellular content of other measured indices. Neocortex protein 

content was not affected by any treatment, but ischemia significantly increased 

hippocampus protein content in both dietary treatment groups. This may be due to 

increased production of pro-inflammatory enzymes/proteins such as adhesion molecules 

and growth factors, and even immune complement components in response to ischemia 

(reviewed in Petty and Wettstein,2001). Further, post-ischemic edema, with 

extravasation of plasma and accompanying proteins into the parenchyma across a 

compromised blood-brain barrier has been well-documented, and may have contributed 

to the increased hippocampal protein content (Lo et al.,2001; Okada et al.,1994; Petty 

and Lo,2002; Petty and Wettstein,2001; Sato et al.,2003). The change in hippocampus 

protein content may have influenced results of the markers of oxidative stress. 

Our assessment of oxidative stress is limited to one time-point post-surgery. It is 

possible this single timepoint missed detection of critical transient changes in the 

parameters measured, since other rodent models of ischemia have shown hippocampal 
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glutathione concentration (Baek et al.,2000; Candelario-Jalil et al.,2001; Park et 

al.,2000), glutathione reductase activity (Shivakumar et al.,1992), and protein thiols 

(Shivakumar et al.,1995) to be decreased during the first six hours of reperfusion. Tissue 

concentration is only a snapshot, and cannot give information about transport, synthesis, 

and efflux, further limiting assessment of the influence of ischemia on oxidative stress. 

Enzymes important for glutathione synthesis, γ-glutamyl cysteine synthetase and 

glutathione synthetase, are present in brain (Dringen,2000), but to our knowledge, their 

function in ischemia has not been investigated in vivo. Brain γ-glutamyl cysteine 

synthetase activity was found not to respond to a low protein diet fed for two weeks 

(Stipanuk et al.,2002). 

The gerbil brain is fragile and the hippocampus is very small, presenting 

difficulties with dissection and assays, possibly contributing to increased variability 

within groups. As well, since the CA1 region of the hippocampus is selectively damaged 

with this ischemia model, we might not see widespread biochemical changes in the 

hippocampus. The entire hippocampus was harvested from each brain hemisphere and 

used for one analysis, hence our assays might not have been sensitive enough to detect 

small changes primarily limited to the CA1 region. Moreover, our ischemia model 

produced a relatively mild and variable degree of hippocampal damage as evidenced 

from neuron counts, thus may not have generated sufficient oxidative stress to 

adequately test the hypothesis. Variability could also be attributed to individual variation 

amongst gerbils, since there may be a partial or complete circle of Willis in up to half of 

gerbils (Delbarre et al.,1991; Field and Sibold,1999; Ginsberg and Busto,1989). Since 

not all parameters used to assess oxidative stress are likely to be temporally matched, 

further studies should investigate both earlier and later timepoints. 

Although ability to maintain brain glutathione concentration was not 

significantly altered by PEM, the overall results of this experiment indicate PEM gerbils 

recovered normal activity more slowly following global ischemia than well-nourished 

animals. These results are even more dramatic given that significant changes in mean 

functional outcome were observed in PEM gerbils despite the high variability in their 

response to the ischemic insult. While PEM gerbils subjected to global ischemia may 

experience more oxidative stress, the evidence for this was not strong. Although the 
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evidence for increased oxidative stress may be strengthened by decreasing variability in 

the ischemia model and examining other timepoints post-ischemia, other mechanisms by 

which PEM exacerbates neural injury following stroke must be explored.  

Compromised nutritional status resulting in PEM, particularly in the elderly, is 

an important risk factor for stroke and for poorer outcome after stroke. Finestone and 

co-workers (1995;1996) studied Canadian stroke patients at the time of admission to 

rehabilitation units, and reported PEM in 49% of admissions, with dysphagia in 47%. 

Authors suggested there was inadequate nutritional intervention immediately post-

injury, further exacerbating pre-existing poor nutritional status and compromising 

antioxidant defense mechanisms at a time when demand for antioxidants and their 

precursors is high. The Feed Or Ordinary Diet trial (FOOD), a robust multicentre 

randomized trial evaluating various feeding policies after stroke, has shown that 

nutritional status early after stroke is independently associated with long-term outcome 

(FOOD Trial Collaboration,2003). Undernutrition immediately after stroke reduced 

survival, functional ability and living circumstances six months later. Nyswonger et al. 

(1992) determined the length of time to start of feeding after stroke varies, and stroke 

patients fed within seventy-two hours of injury have a shorter hospital stay. There may 

be a ‘window of opportunity’ for optimizing survival and recovery from stroke with 

adequate nutritional support, especially with respect to increasing glutathione and 

antioxidant defense status. Dietary supplementation with cysteine prodrugs were shown 

to increase tissue glutathione, restore redox status, and normalize NFκB activation and 

pro-inflammatory cytokine production in mice with protein malnutrition (Li et 

al.,2002a; Li et al.,2002b). This promising alternative to protein repletion may be 

especially beneficial when feeding difficulties occur after stroke. The additional 

influence of inflammation, chronic due to PEM, and acute due to ischemia, must not be 

overlooked.



 114

CHAPTER 7 

 

GENERAL DISCUSSION AND FUTURE DIRECTIONS 

 

 Reports in the literature suggest a proportion of the elderly admitted to hospital 

for stroke suffer from protein-energy malnutrition at the time of admission, and that this 

condition not only deteriorates after the stroke, but lengthens hospital stay and worsens 

outcome (Axelsson et al.,1988; Gariballa et al.,1998a). Much of the secondary brain 

damage in ischemia-reperfusion injuries such as stroke can be attributed to generation of 

reactive oxygen and nitrogen species during reperfusion, leading to oxidative stress in 

the penumbra surrounding the primary lesion and delayed neuronal death. The 

experiments described in this thesis examined whether part of the mechanism of 

worsened outcome in stroke with pre-existing protein-energy malnutrition could be due 

to impaired antioxidant defense secondary to reduced availability of precursors for 

glutathione synthesis. Glutathione, critical in antioxidant defense, is the most abundant 

thiol in the CNS, and its synthesis depends in large part on supply of amino acids from 

dietary protein. 

 The first experiments with rats were designed to examine the role of dietary 

sulphur amino acids, methionine and cysteine, in maintaining brain glutathione 

concentration following global hemispheric hypoxia-ischemia, when demand for 

antioxidant defense and glutathione synthesis is high. Since cysteine is limiting in 

glutathione synthesis, and the indispensable amino acid methionine can supply cysteine, 

removal of these amino acids from the diet for only five days is sufficient to induce 

weight loss, reduced intake, and reduced glutathione concentration in liver and some 

brain regions (Paterson et al.,2001). The effect of dietary sulphur amino acid deficiency 

on brain glutathione concentration and neural damage after stroke had not been 

previously assessed. It was hypothesized the dietary deficiency would compromise 

antioxidant defense after hypoxia-ischemia, secondary to glutathione depletion, thereby 
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exacerbating neural damage. It was further hypothesized that administration of a 

cysteine precursor, OTC, would restore brain glutathione depleted by dietary treatment 

and hypoxia-ischemia and ameliorate neural damage. Administration of OTC to rats 

after spinal cord trauma restored tissue glutathione depleted by the insult, decreasing 

damage and improving lower limb locomotion (Kamencic et al.,2001). A number of 

animal studies have shown that OTC can restore glutathione in various tissues after 

dietary sulphur amino acid or protein deficiencies (Chung et al.,1990; Jain et al.,1995; 

Levy et al.,1998; Taylor et al.,1992).  

 Although dietary sulphur amino acid deficiency did decrease glutathione 

concentration in rat brain neocortex and thalamus after six days, the hypoxia-ischemia 

administered on day three did not appear to exacerbate this decline, since there was no 

difference in neocortex glutathione concentration in the contralateral hemisphere in both 

deficient and control dietary treatment groups three days later. Neural damage, however, 

was increased in rats fed the sulphur amino acid deficient diet for six days compared to 

those fed control diet, suggesting an effect of diet as opposed to ischemia. That this 

finding was due to compromised antioxidant defense and increased oxidative stress in 

the animals fed the deficient diet was not supported by brain glutathione concentration. 

Measurement of glutathione concentration alone, however, may not have been sufficient 

to predict glutathione status or antioxidant status. The sulphur amino acid deficient diet 

was adequate in other components, but the rats fed this diet voluntarily reduced intake, 

and may therefore have been lacking all essential nutrients to some degree. Possible 

contribution of this added factor to the increased neural damage in the deficient group 

cannot be discounted. There was neither a sham-operated group nor a control group 

pair-fed adequate diet at the intake level of the deficient diet rats. Thus the effect of diet 

independent of ischemia, or reduced intake of all nutrients with and without ischemia on 

neuronal survival could not be evaluated. It was not possible to attribute observed results 

to lack of sulphur amino acids alone. Moreover, since the model of ischemia produced 

virtually no damage in adequately nourished rats, generation of reactive species and 

oxidative stress may have been limited. Reactive species are produced primarily during 

reperfusion (Grace,1994; Juurlink and Paterson,1998; Shivakumar et al.,1995; Yano et 

al.,1998). Although restoration of oxygen supply after thirty-five minutes of hypoxia 
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should generate some oxidative stress, severing of the common carotid artery 

compromised reperfusion in this stroke model. The brain also may not have been truly 

ischemic (Ginsberg and Busto,1989). Another difficulty with this model was that the 

hypoxia was by necessity applied to the entire brain, while only one carotid artery was 

severed, and the contralateral hemisphere was used as an internal control. Hypoxia alone 

of the degree and duration used in this experiment is not sufficient to produce neural 

damage (Levine,1960), but the lack of control groups (sham-operated, hypoxia alone, 

artery ligation alone) may have clouded assessment. Body temperature was controlled 

during ischemia, but brain temperature was not. Brain temperature is known not to be 

reflected by body temperature (Busto et al.,1987; Ginsberg and Busto,1989; Moyer et 

al.,1992; Warner et al.,1993), and typically falls during ischemia, which can be 

neuroprotective (Babcock et al.,1993; Colbourne and Corbett,1995; Colbourne et 

al.,1993b; Wang and Corbett,1990). Lack of brain temperature regulation during 

hypoxia-ischemia may have lessened neural damage and increased variability in the 

model. Other factors unregulated in this experiment may also have influenced variability 

and extent of damage: 1) hyperglycemia during hypoxia-ischemia as a stress response 

(Dijk et al.,1994; Ginsberg and Busto,1989), 2) blood gases and blood pressure can 

influence cerebral blood flow, introduce variability and confound results (Ginsberg and 

Busto,1989; Mhairi Macrae,1992). 

 There was no demonstrable effect of OTC administration to rats fed either 

sulphur amino acid deficient or sufficient diet. Given that there was no observed damage 

from ischemia in rats fed the control diet, OTC could not have had any effect in this 

group. The lack of brain glutathione depletion at the time of ischemia and mildness of 

the insult likely did not generate much, if any, oxidative stress, explaining the lack of 

effect of OTC in the sulphur amino acid deficient group. Glutathione concentration was 

not evaluated in the OTC experiment, but it would have been helpful to determine if 

OTC corrected the decreased brain glutathione seen three days after ischemia in the 

sulphur amino acid deficient rats. Although mouse brain glutathione and glutathione 

redox status were unaffected by three weeks of a low protein diet followed by addition 

of various dietary cysteine prodrugs, other tissues were responsive to the diet and to 

precursor repletion, suggesting OTC may have an effect if glutathione is first depleted 
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(Li et al.,2002a; Li et al.,2002b). The rat global hemispheric hypoxia-ischemia model 

failed to adequately test the hypothesis of dietary sulphur amino acid deficiency 

increasing oxidative stress. Repeating this experiment using either a focal model of 

ischemia or a global model producing more severe damage, and evaluating additional 

parameters such as protein and lipid oxidation and activity of enzymes sensitive to 

oxidative stress could yield data valuable to the original hypothesis. 

The first experiments progressed to completion before awareness of the 

existence of the ‘dark’ neuron, an artifact of post-mortem handling of brain tissue before 

adequate fixation. Initially, ‘dark’ neurons were evaluated as neural damage. Subsequent 

reassessment of damage after identification of the ‘dark’ neuron revealed virtually no 

brain damage in the adequately nourished rats, and only mild damage in sulphur amino 

acid deficient animals, confirming that this ischemia model may not have adequately 

tested the hypothesis. 

The rat sulphur amino acid deficient diet produced a severe, acute deficiency. It 

is unlikely a similar situation could occur in humans. More clinically relevant is 

moderate protein-energy malnutrition, relatively common in the elderly with stroke. It 

was hypothesized that protein-energy malnutrition would limit supply of essential 

precursors for glutathione production, compromising antioxidant defense and 

exacerbating neural damage in transient global ischemia-reperfusion. A gerbil model of 

temporary bilateral carotid artery occlusion is known to produce selective hippocampal 

damage similar to that observed in humans and primates after global ischemia (Zola-

Morgan et al.,1986; Zola-Morgan et al.,1992). Most gerbils lack branches connecting 

the basilar artery branches and the posterior cerebral arteries, resulting in an incomplete 

circle of Willis (Ginsberg and Busto,1989). Forebrain ischemia is easily achieved with a 

two-vessel occlusion and minimal surgical intervention, and brain temperature is easily 

controlled with the use of a water-heated blanket in close contact with the head (Nurse 

and Corbett,1994). Tympanic temperature approximates brain temperature (Brambrink 

et al.,1999; Mariak et al.,1994; Schuhmann et al.,1999) and allows minimal trauma to 

the animal. Neural damage and functional outcome in this gerbil transient ischemia 

model have been well-characterized (Colbourne and Corbett,1995; Corbett and 

Crooks,1997; Kirino and Sano,1984). The gerbil model of transient bilateral carotid 
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artery occlusion was thus chosen for the next phase of this research, even though the 

small size of the gerbil does preclude intra-ischemic monitoring and control of blood 

glucose, gases and pressure, introducing the possibility of more variability than desired. 

Gerbil nutritional and protein requirements are not well known (Arrington et 

al.,1973), and only one paper describing the response of the gerbil to a low protein diet 

was found in the literature (Leitch et al.,1993). Since the response was unpredictable, 

young adult gerbils were chosen as being more robust than older animals to establish 

protein-energy malnutrition, recognizing this as a limitation in clinical relevance of 

findings with respect to the basis for the hypothesis. Gerbils were fed adequate protein 

(control) or low protein diets. The voluntary reduction in food intake in the low protein 

group constituted the energy reduction needed to produce a model of protein-energy 

malnutrition. A limitation of reduced intake is possible inadequacy of other nutrients 

besides protein, and the unknown contribution of same to measured outcomes. This was 

considered unlikely since reduction of intake was not severe and micronutrients are 

provided at greater than requirement levels in the diet formulation. This is in contrast to 

the rat experiments where intake of the sulphur amino acid deficient diet was greatly 

reduced. Based on food intake, weight loss, liver lipid and liver glutathione 

concentration, a gerbil model of moderate protein-energy malnutrition was achieved. 

The gerbils remained well-groomed and active, with no signs of fur abnormalities or 

skin lesions characteristic of more severe malnutrition (Golden and Ramdath,1987).  

Functional, histological and biochemical outcomes were evaluated in a two by 

two factorial design, with two dietary treatments (control and low protein), and two 

surgical treatments (sham and ischemia). The effect of protein-energy malnutrition on 

brain damage after transient global ischemia, assessed by the stated parameters, has not 

been investigated. The open field was used as a test of hippocampal function, testing 

working memory (Babcock et al.,1993; Mileson and Schwartz,1991; Nurse and 

Corbett,1994; Wang and Corbett,1990). Gerbils were exposed to the open field for ten 

minutes on Days 3, 7, and 10 after surgery. Typically a gerbil will explore the field 

vigourously for the first half of the exposure, and decrease activity, or habituate during 

the latter half. A gerbil suffering hippocampal damage will not habituate (Dowden et 

al.,1999). Ischemic gerbils fed the control diet did not habituate on novel exposure to 
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the open field, but recovered similar activity to sham-operated animals one week after 

ischemia. Protein-energy malnourished ischemic gerbils, however, failed to habituate 

even by Day 10, traveling significantly more distance than other groups. As well, half of 

these animals exhibited a wall-hugging behaviour known as thigmotaxis, indicative of 

anxiety or behaviour-trapping (Schallert et al.,1980; Simon et al.,1994). Only one well-

nourished ischemic gerbil exhibited this activity. Sham-operated protein-energy 

malnourished gerbils were lethargic in the open field by Day 10, consistent with reports 

of reduced energy expenditure in similarly malnourished humans (Shetty,1999). Protein-

energy malnutrition had no effect on numbers of surviving CA1 neurons ten days after 

ischemia. This finding strengthens the importance of conducting functional as well as 

histological assessments, as discussed by others (Bothe et al.,1986; Colbourne and 

Corbett,1995; Dowden and Corbett,1999; Hori and Carpenter,1994). Surprisingly, 

dramatically increased numbers of glial cells were evident in brain sections of one third 

of the ischemic protein-energy malnourished gerbils, suggesting inflammation. Pro-

inflammatory cytokine production and NFκB activation has been shown in mice with 

protein malnutrition (Li et al.,2002a). Chronic inflammation is often seen in humans 

with protein-energy malnutrition (Mora,1999), and pro-inflammatory responses to 

ischemia have been identified (Kato and Walz,2000; Petty and Wettstein,2001). 

Identification of the glial cell types is beyond the scope of this thesis, but is ongoing in 

our laboratory at the time of writing. This phenomenon was not seen in any other 

groups. 

Biochemical evidence for increased oxidative stress in ischemic malnourished 

gerbils compared to those well-nourished was not overwhelming, but nevertheless 

noteworthy. Hippocampus protein content was increased in all ischemic gerbils, 

possibly explained by an inflammatory response, compromise of the blood brain barrier 

and extravasation of plasma proteins (Petty and Wettstein,2001). Protein thiols, sensitive 

to oxidative stress, were reduced by ischemia and further by protein-energy 

malnutrition. Although not significant, there was a trend for ischemia to decrease 

hippocampus glutathione concentration and glutathione reductase activity in 

malnourished gerbils. Taken together, these findings indicate protein-energy 

malnourished gerbils suffered more oxidative stress than adequately-nourished gerbils. 
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The hypothesis of the high demand for glutathione in oxidative stress depleting brain 

glutathione concentration in protein-energy malnutrition was not strongly supported by 

the data, however.  

The temporal change in brain glutathione concentration in rodent models of 

ischemia has been reported in the literature as decreasing during early reperfusion 

timepoints (Park et al.,2000), followed by a return to normal levels within twenty-four 

hours (Shivakumar et al.,1992; Shivakumar et al.,1995), and a further decrease at later 

timepoints (Candelario-Jalil et al.,2001). Protein thiols have been shown to decrease at 

one hour of reperfusion after thirty minutes of ischemia and return to normal levels at 

twenty-four hours (Shivakumar et al.,1995). The glutathione reductase enzyme is 

susceptible to oxidative damage because of its thiol groups, and varied temporal changes 

have been reported (Shivakumar et al.,1995; Stanimirovic et al.,1988). Hippocampus 

glutathione reductase activity is decreased at forty-eight to ninety-six hours (Candelario-

Jalil et al.,2001), and thiobarbituric acid reactive substances are increased at four to 

fourteen days (Haba et al.,1991) after ischemia, following initial early decrease and 

subsequent return to normal levels. The timing suggests these results may be linked to 

delayed neuronal death. The above-mentioned ischemia models did not control brain 

temperature and were of varying durations of ischemia and reperfusion, and none was 

identical to the model used in this research. Comparison of findings therefore cannot be 

made directly. Only one timepoint was examined in the study for this thesis. Critical 

transient changes in measured parameters could easily have been missed. The gerbil 

hippocampus is small, and tissue dissection difficult due to the fragility of gerbil brain. 

The entire hippocampus tissue from each hemisphere was used for one assay, and if 

changes in biochemical indices were concentrated mainly in the susceptible CA1 region, 

the relatively small differences may not have been detectable. As well, it could not be 

expected that all parameters were temporally matched in response to ischemia. In order 

to construct a more complete picture of the evolution of oxidative stress in the ischemia 

model used in this research, it would be helpful to examine biochemistry at multiple 

reperfusion timepoints, in addition to assessment of oxidized glutathione and oxidation 

ratio (to assess glutathione redox status) (Baek et al.,2000), glutathione synthesis, and 

glutathione reductase up/down-regulation. Other markers such as 4-hydroxynonenal-
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modified proteins (Urabe et al.,2000), 8-hydroxy-2’-deoxyguanosine (Baek et al.,2000), 

protein carbonyls (Evans et al.,1999), 4-hydroxyalkenals (Kawai et al.,1998), lipid 

hydroperoxides (Nourooz-Zadeh,1999) could also be considered in order to provide a 

broader spectrum of oxidative stress. 

The damage in this gerbil ischemia model was milder and more variable than 

expected, yet there were still significant effects of protein-energy malnutrition on 

behaviour in the open field and moderate effects on oxidative stress. It was expected that 

the dietary deficiency would exacerbate neuronal damage, and thus length of ischemia 

was chosen to produce less than 90% neuronal loss as observed with the same model in 

another laboratory (Corbett and Crooks,1997).  Greater variability can be expected with 

milder damage. Up to half of gerbils may have a partial or complete circle of Willis, and 

it was impossible to detect vascular anomalies in this research. Selecting only those 

gerbils without the circle of Willis, through examination of retinal blood flow for 

example, would ensure greater homogeneity in response to ischemia (Delbarre et 

al.,1991). The experiments could be repeated with a more severe ischemia, increasing 

likelihood of detecting changes in oxidative stress and perhaps reducing variability.  

In humans, feeding after a stroke is often delayed, exacerbating pre-existing 

protein-energy malnutrition. Secondary brain damage in stroke occurs through delayed 

neuronal death, providing a potential window of opportunity for intervention and 

amelioration of this damage. Further studies designed to feed protein-energy 

malnourished animals an adequate protein diet after ischemia could assess the effect of 

early dietary intervention. The increases in glial cells in some malnourished ischemic 

gerbil brains suggested an inflammatory process. Future studies should incorporate 

assessment of these cell types and testing for markers of inflammation. The open field 

test is a good general indicator of hippocampal malfunction. More specific tests 

designed to detect anxiety, irritability, fine motor function, and memory would add 

greatly to understanding functional behaviour. Young adult gerbils were used in this 

study, but the initial hypothesis was based on epidemiological evidence in the elderly. 

Repeating the experiments with aged gerbils would be more clinically relevant. 

Ischemic gerbils fed the control diet recovered normal behaviour in the open field one 

week after the insult. It is possible that malnourished gerbils may also have recovered or 
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adapted, given dietary repletion and/or enough time. Extending the post-ischemic period 

to thirty to sixty days or longer would also be more clinically relevant (see FOOD trial 

below), and the long-term effects of protein-energy malnutrition and ischemia on 

neuronal survival could be evaluated.  

In summary, the research described in this thesis was designed to test the 

hypothesis of dietary deficiencies influencing oxidative stress and antioxidant defense 

after global ischemia. The hypothesis was investigated in two rodent species with two 

models of ischemia. The first phase examined the effect of an acute sulphur amino acid 

deficiency on neural damage and brain glutathione concentration after hemispheric 

ischemia in the rat, while the second phase encompassed the influence of protein-energy 

malnutrition on functional, histological and biochemical outcomes after transient global 

ischemia in the gerbil. Both ischemia models produced relatively mild brain damage, 

and well-nourished animals generally tolerated this insult well. In both phases, however, 

malnourished animals suffered more brain damage and, although evidence was not 

robust, may have experienced more oxidative stress. Behaviour remained abnormal in 

malnourished ischemic gerbils ten days after the brain insult. The results of this research 

are clinically relevant to those suffering from protein-energy malnutrition at the time of 

stroke, and support the compromised outcome observed in this group of individuals. The 

Feed Or Ordinary Diet trial (FOOD), a robust multicentre randomized trial evaluating 

various feeding policies after stroke, has shown that nutritional status early after stroke 

is independently associated with long-term outcome (FOOD Trial Collaboration,2003). 

Undernutrition immediately after stroke reduced survival, functional ability and living 

circumstances six months later. Although the mechanism for sub-optimal recovery has 

not been clearly elucidated by the research described in this thesis, increased oxidative 

stress may be a contributing factor, emphasizing the need to intervene during the 

window of opportunity immediately after stroke. Future studies with swift dietary 

repletion may determine if oxidative stress can be reduced, delayed neuronal death 

diminished and outcome improved for malnourished stroke victims.
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APPENDIX A 

 
Analysis of tissue glutathione concentration 

 
Methods 
 
Tissue homogenization 

Frozen liver sample was weighed and homogenized on ice with 10 volumes of 

cold 5% sulphosalicylic acid containing 0.1mM Na2EDTA·2H2O, using a Brinkmann® 

Polytron Model PT10-35, at 5 intervals of 6 seconds each, pausing for 30 seconds 

between intervals to allow cooling of homogenate. The homogenate was centrifuged at 

16,000 x g for 15 minutes in a refrigerated Eppendorf® centrifuge model 5415C, and the 

supernatant frozen in liquid nitrogen and stored at -70ºC until analysis. Brain tissue was 

treated in the same fashion as liver, using a Skil®Pistol Grip Drill Model 6225 instead of 

the Polytron. 

 

Analysis of GSH 

Phase 1- Rat Sulphur Amino Acid Study 

GSH (as free reduced sulphhydryl groups) was assayed using a modification of 

the method of Komuro et al. (Komuro et al.,1985), described by Katrusiak et al. 

(Katrusiak et al.,2001) and Paterson et al. (Paterson et al.,2001), by reverse-phase high 

performance liquid chromatography (HPLC) using pre-column derivatization with 5,5’-

dithio-bis(2-nitrobenzoic acid) (Ellman’s reagent, DTNB) and ultraviolet detection at 

330nm. Sulphhydryl-DTNB derivatives were detected using isocratic elution at 37ºC on 

a Supelco LC-18T (150 x 4.6mm, 3µm; Supelco, Bellefonte, PA, USA) with a 

Supelguard LC-18T 2cm pre-column. The mobile phase was 12.5% v/v methanol / 87.5 

% 100mmol/L KH2PO4 (pH 3.89), run for 9 minutes at a flow rate of 1.1mL/minute.  

Excess DTNB was eluted from the column over 7 minutes with  40% methanol / 60% 

100mmol/L KH2PO4 (pH 3.89), and the system was flushed for 12 minutes with the 

12.5% methanol mobile phase before injection of the next sample. The HPLC system 

was Shimadzu® (Tokyo, Japan) SCL-10A system controller, SPD-10A variable 

wavelength spectrophotometric detector, SIL-10A automatic sample injector, LC-10AT 

solvent delivery system, and X-Act-4-channel degasser. A Shimadzu EZChrom version 
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3.2 software program was used to collect data. The program measured peak areas and 

results were expressed as the ratio of peak area of sample or standard to peak area of 

internal standard. A standard (containing L-cysteine, cysteinyl-glycine, glutathione and 

DL-homocysteine) curve was prepared and run daily with each set of samples, all in 

duplicate. 

The reaction mixture, prepared on ice, contained 500µL Tris-HCl buffer (pH 

8.9), 130µL sample or standard, 20µL deionized distilled water, and 20µL internal 

standard (400µM D(-)penicillamine in 5% sulphosalicylic acid containing 0.1mM 

Na2EDTA·2H2O). After addition of 350µL 10mM DTNB in 0.5M K2HPO4 (pH 7.2), the 

mixture was allowed to sit off ice for 5 minutes for derivatization. The reaction mixture 

was acidified by the dropwise addition of 50µL 7N orthophosphoric acid (H3PO4) while 

vortexing, and 50µL injected into the HPLC system for analysis.  Representative 

chromatograms of standard (Figure A.1) and a rat liver sample (Figure A.2) follow. 

 

Phase 2- Gerbil PEM study 

 Analysis of GSH concentration in gerbil tissues was identical to the procedures 

used in Phase one, with the following exceptions: 

1- Mobile phases were prepared at pH 3.85. 

2- The final reaction mixture contained 45 µL 7N H3PO4. 

3- DL-homocysteine was omitted from the standard curve. 

4- The HPLC system consisted of the following: Waters® (Waters Canada, 

Missisauga, ON) Automated Gradient Controller, 486 Tunable Absorbance 

Detector, 717plus Autosampler, 510 HPLC Pump, Temperature Control 

Module. Data were collected with Waters Millenium®32 Chromatography 

Software, Version 4.00(© 2001 Waters Corporation). 

Representative chromatograms of standard (Figure A.3) and a gerbil brain 

(hippocampus) sample (Figure A.4) follow. 
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Figure A.1. Representative HPLC chromatogram of a thiol standard containing cysteine, 
cysteinyl-glycine (Cys-gly), glutathione and homocysteine 
 

 

 
 

Figure A.2. Representative HPLC chromatogram of thiols in rat liver diluted 1:200 
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Figure A.3. Representative HPLC chromatogram of a thiol standard containing cysteine 
(Cys), cysteinyl-glycine (Cys-gly) and glutathione (GSH) 
 

 

 

 
Figure A.4. Representative HPLC chromatogram of thiols in gerbil hippocampus diluted 
1:50 
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APPENDIX B 

 

Administration of L-2-oxothiazolidine-4-carboxylic acid (OTC) following global 

hemispheric hypoxia-ischemia (GHHI) in the Long-Evans rat 

 

Purpose 

 The purpose of this experiment was to investigate whether the administration of 

a cysteine precursor, OTC, after GHHI would ameliorate neural damage secondary to 

increased availability of cysteine and enhanced synthesis of glutathione. 

 

Methods 

Under the same housing, surgical, and OTC treatment regimen described in 

Experiment 2 of Chapter 5 of this thesis, rats were fed a sulphur amino acid sufficient 

crystalline amino acid defined AIN-93G diet without antioxidant (for diet composition 

see Appendix D). After 3 days on diet, rats were subjected to GHHI, and randomized to 

receive injections of OTC (12mmol/kg body weight) or placebo (phosphate-buffered 

saline,equivalent volume) 15 minutes after completion of GHHI and every 12 hours 

thereafter for 6 additional doses at 4mmol/kg body weight. As described in Chapter 5, 

neural damage was assessed by 2 scoring systems and data were analyzed with SPSS for 

Windows 11.0, using Mann-Whitney U for global score, and unpaired student’s t-test 

for hippocampal grid score. 

 

Results 

 GHHI in adequately-nourished rats did not result in any appreciable neural 

damage, assessed by the semi-quantitative global score (Table B.1) or the more 

quantitative hippocampal grid score (Table B.2), and thus there was no significant effect 

of OTC.  
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Table B.1. Effect of global hemispheric hypoxia-ischemia and L-2-oxothiazolidine-4-
carboxylic acid on global score* of neural damage in adequately nourished rats  
 
 Neocortex Striatum Hippocampus Thalamus Total score 
Placebo 0.1 ± 0.1 0.3 ± 0.2 0 0 0.4 ± 0.2 

OTC 0 0 0.1 ± 0.1 0 0.1 ± 0.1 
Mean ± SEM; Placebo, n=15; OTC, n=14. 
*Global score: 0 = no damage; 1 = <50% damage; 2 = >50% damage; maximum score 
of 2 in each region (striatum, thalamus, neocortex, hippocampus) for total maximum 
score of 8. 
 

Table B.2. Effect of global hemispheric hypoxia-ischemia and L-2-oxothiazolidine-4-
carboxylic acid on hippocampal grid score* of neural damage in adequately nourished 
rats 
 
 Subiculum/CA1 CA2/CA3 CA4 Dentate 

gyrus 
Hippocampus 
Proper† 

Hippocampus 
Total‡ 

Placebo 
(%) 
 

0 0 0 0 0 0 

OTC 
(%) 

4.6 ± 4.6 0 0 0 2.5 ± 2.5 1.7 ± 1.7 

Mean ± SEM; Placebo, n=15; OTC, n=14. 
*Hippocampal Grid Score: a grid was superimposed on an image of the hippocampus; 
any grid square containing one or more damaged cells of 15-20 cells per grid was 
counted as one damaged square and the damage score was expressed as percentage of 
baseline squares.  
†Hippocampus Proper = Subiculum/CA1 + CA2/CA3 + CA4.   
‡Hippocampus Total = Hippocampus Proper + Dentate Gyrus. 
 
 
Conclusion 

 Since the model of ischemia used in this experiment did not produce any neural 

damage in adequately-nourished rats in the areas evaluated, it was impossible to 

demonstrate any improvement with the administration of a cysteine precursor. The 

reasons for the failure of the model have been discussed in Chapter 5. This experiment 

was undertaken before the awareness of the ‘dark’ neuron artifact, discussed in Chapter 

4, at a time when it was thought there was a mild degree of neural damage produced by 

the GHHI model, and that administration of a cysteine precursor might enhance 

glutathione synthesis and ameliorate neural insult. This experiment was conducted in 
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conjunction with a second group of rats fed a diet deficient in sulphur amino acids, and 

randomized to receive placebo or OTC injection post-GHHI. That portion of the 

experiment has been discussed in Chapter 5. 
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APPENDIX C 

 
Transient bilateral carotid artery occlusion pilot study 

 

 The gerbil model of transient bilateral carotid artery occlusion (TBCAO) is well-

established in the literature, as discussed in the body of this thesis. The author visited the 

laboratory of Dr. Dale Corbett at the Memorial University of Newfoundland (MUN) to 

learn the model. His laboratory uses a 5-minute occlusion with controlled brain 

temperature (36.5°C), achieving consistent loss of CA1 hippocampal neurons in the 

range of 90-95%. Since we theorized PEM would exacerbate neural damage, we 

required a stroke model with baseline neuronal loss in the range of 70-75%.  

 

Purpose 

 To vary duration of ischemia and/or brain temperatures during ischemia to 

achieve 70-75% hippocampal CA1 neuronal loss while maintaining low variability with 

the model. 

 

Methods  

Male Mongolian gerbils aged 16-18 weeks were subjected to a 5-minute 

TBCAO, with brain temperature (estimated by tympanic temperature) maintained at 

36.5ºC throughout ischemia, or sham surgery, as described in Chapter 6.  

The following variations of the model were evaluated: 

1) 4-minute ischemia with brain temperature of 37°C (at MUN) 

2) 3.5-minute ischemia with brain temperature of 36.5°C (at U of S)  

3) 4-minute ischemia with brain temperature of 36.5°C (at U of S) 

4) 5-minute ischemia with brain temperature of 36.5°C (at U of S) 

On day 10 after surgery, gerbils were anesthesized with isoflurane and perfused trans-

cardially with heparinized saline followed by 10% phosphate buffered formalin. Heads 

were refrigerated in formalin for 18-24 hours before brain removal and embedding in 

paraffin. Brains were sectioned in 6 micron thicknesses and hippocampal CA1 neurons 

counted as described in Chapter 6. 
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Results (Table C.1) 

1) 4-minute ischemia with brain temperature of 37°C  

Neuronal loss was consistent at ~89%. Maintaining constant brain temperature at 37◦C 

was difficult, especially with an ischemia time of 4 minutes. Target mean brain 

temperature (37°C ± 0.2°C) was achieved in only 5 of 10 gerbils.  

2) 3.5-minute or 4-minute ischemia with brain temperature of 36.5°C  

Variability in neuronal loss was high with these ischemia times (range 0-80%, 3.5-

minute; 0-88%, 4-minute) and mean neuronal loss was low. 

3) 5-minute ischemia with brain temperature of 36.5°C 

This model produced an acceptable level of damage with lower variability than other 

durations of ischemia.  

 

Table C.1.  Hippocampal CA1 neuron loss: varied  ischemia times and brain 
temperatures 
Duration of ischemia 4 minutes 3.5  minutes 4 minutes 5 minutes

Brain temperature (°C) 37 36.5          36.5       36.5

% CA1 Neuron Loss*  89 ± 2.2 28.7 ± 8.8    43.2 ±14.4  68.2 ± 5.6

Laboratory MUN U of S U of S U of S

n 5 10 7 7

*Mean ± SEM 

 

Conclusion 

To allow room for the PEM model to exacerbate brain injury in the TBCAO 

model of stroke, we aimed to achieve neuron loss of 70-75%, with low variability. 

Although the 4-minute, 37°C model had consistent damage, the neuron loss was 

considered too high, and the failure rate of 50% in maintaining target brain temperature 

was unacceptable. The 3.5-minute and 4-minute, 36.5°C models produced little mean 

damage with high variability. In our laboratory, a 5-minute ischemia at 36.5°C produced 

the most consistent results with an acceptable level of neuronal loss. The 5-minute 
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ischemia with brain temperature maintained at 36.5°C was used for the main gerbil 

study. 
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APPENDIX D 

 
Gerbil pilot feeding study: A comparison of laboratory chow with purified 

crystalline amino acid defined diets with and without sulphur amino acids 

 

 At the beginning of Phase 2 of this thesis, whether to use a sulphur amino acid 

deficiency in the gerbil was investigated. The response of the rat to a purified dietary 

sulphur amino acid deficiency had been established in our laboratory. The response of 

the gerbil to the same diet was unknown. The nutritional requirements of the gerbil are 

not well-investigated, but since this animal does well on laboratory rodent chow, we 

wanted to compare chow to the sulphur amino acid sufficient and deficient diets used in 

the rat.  

 

Purpose 

1) To test the response of the gerbil to an amino acid defined diet compared to 

laboratory rodent chow. 

2) To test whether the response of the gerbil to a sulphur amino acid deficient 

diet was similar to that of the rat. 

 

Methods 

 Male Mongolian gerbils aged 19-20 weeks were housed individually in 

suspended stainless steel cages and randomized to standard laboratory rodent chow, or 

AIN-93G diet modified to contain crystalline amino acids, with or without sulphur 

amino acids cystine and methionine (n=5 per group) (Table D.1). Diets were fed ad 

libitum for 6 days, with free access to water. Gerbils were maintained at 22°C with a 12-

hour light/dark cycle. Daily food intake, food wastage and body weights were recorded. 

On day 6, gerbils were anesthetized with isoflurane and perfused trans-cardially with 

saline. Brain neocortex and liver were collected on ice, and analyzed for glutathione 

concentration as described in Chapter 5 and Appendix A. Data were analyzed using one 

way ANOVA followed by LSD means test where appropriate, significance p<0.05. 
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Table D.1. Composition of the purified crystalline amino acid based diets 

Component 

  

Sulphur amino acid deficient 

(g/kg) 

Sulphur amino acid sufficient 

(g/kg) 

L-amino acids* 161.3 167 

Cornstarch 419.086 419.086 

Dextrinized cornstarch 140 140 

Sucrose 105.7 100 

Cellulose 50 50 

Soybean oil 70 70 

Mineral mix† 35 35 

Sodium bicarbonate 6.4 6.4 

Vitamin mix¶ 10 10 

Choline bitartrate 2.5 2.5 

* Sulphur amino acid deficient diet supplied the following amino acids (g/kg diet): L-
arginine, 12; L-histidine, 6; L-lysine-HCl, 14; L-tyrosine, 4; L-tryptophan, 2; L-
phenylalanine, 8; L-threonine, 8; L-leucine, 12; L-isoleucine, 8; L-valine, 8; glycine 
24.3; L-proline, 5; L-glutamic acid, 30; L-alanine, 5; L-asparagine·H2O, 5; L-serine, 5; 
L-glutamine, 5. The sulphur amino acid sufficient diet was supplemented with 4g/kg L-
cystine and 6g/kg L-methionine, and L-glycine content was reduced to 20g/kg diet. 
† Modified from that used in the AIN-93G diet to be sulphur-free. 
¶ Vitamin mix was identical to that used in the AIN-93G diet (Reeves et al.,1993). 
 

Results 

 Initial body weights were the same in each group (Table D.2). There was no 

significant difference in weight gain, food intake, liver or neocortex glutathione 

concentration between laboratory chow and sulphur amino acid sufficient diet (p>0.05). 

Gerbils on the sulphur amino acid deficient diet, however, lost weight, ate less food, and 

had reduced liver and neocortex glutathione concentration compared to those in the 

other 2 groups.  
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Table D.2. The effects of feeding adult gerbils purified crystalline amino acid-based 
diets with and without sulphur amino acids 
 
 Laboratory Chow +SAA Diet -SAA Diet 

Initial Weight (g) 73.1 ± 1.2a  75.6 ± 1.3a  75.2 ± 0.5a 

Total weight gain (g)   1.2 ± 1.1a  - 1.7 ± 1.1a -10.9 ± 1.2b 

Total food intake (g) 44.1 ± 2.9a  36.8 ± 3.5a  23.0 ± 2.5b 

Liver [GSH] (µmole/g wet 

weight) 

  6.1 ± 0.3a    5.9 ± 0.2a    3.3 ± 0.2b 

Neocortex [GSH] (µmole/g 

wet weight) 

  1.9 ± 0.1a    1.7 ± 0.0a    1.6 ± 0.1b 

Mean ± SEM; 6 days total treatment; n=5 per group 
a,b Letters indicate significant difference between groups by one way ANOVA, followed 
by posthoc LSD means test, p<0.05 
 

Conclusions 

 According to the parameters measured, gerbils fed the purified crystalline 

sulphur amino acid sufficient diet maintained comparable status to those fed rodent 

chow. The response of the gerbil to a dietary sulphur amino acid deficiency was similar 

to that of the rat (for rat data, see Chapter 5). 

Gerbils are communal animals, grooming each other frequently. In the 

laboratory, gerbils dig in and shred their bedding. They sleep together, hidden inside 

nests of bedding material. By the end of 6 days in suspended individual cages, all gerbils 

were ‘jumpy’ and appeared ungroomed. For this reason, gerbils in Phase 2 of this study 

were housed in shoebox cages, in groups of three, with bedding. 
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APPENDIX E 
 
Gerbil pilot feeding study: A comparison of laboratory chow with purified diets 

containing adequate or low protein 

 

 To test the hypothesis that PEM would exacerbate brain damage in stroke, we 

needed to establish a gerbil PEM model. In the sulphur amino acid pilot feeding study, 

gerbils were found to do well on rodent laboratory chow and an amino acid defined diet 

previously used in the rat. Since the protein requirements of the gerbil are not well-

established, the diet composition in this pilot study was based on rat requirements. 

 

Purpose 

1) To test the response of the gerbil to a rodent casein-based diet compared to 

laboratory rodent chow. 

2) To establish a gerbil model of PEM. 

 
Methods 

 Male Mongolian gerbils aged 11-12 weeks were housed individually in 

suspended stainless steel cages and randomized to standard laboratory rodent chow, or a 

modified AIN-93M pelleted rodent diet without antioxidant, formulated to contain 12% 

protein (adequate) or 2% protein (low) as casein, fed for 4 weeks (n=4 per group). For 

diet composition, see Chapter 6. Diets were fed ad libitum for 28 days, with free access 

to water. Gerbils were maintained at 22°C with a 12-hour light/dark cycle. Daily food 

intake and food wastage and weekly body weights were recorded. On day 28, gerbils 

were anesthetized with isoflurane and perfused trans-cardially with saline. Liver, and 

brain neocortex and hippocampus were collected on ice, and analyzed for glutathione 

concentration as described in Chapter 5. Liver lipid was analyzed as described in 

Chapter 6. Tissue analyses were conducted on adequate and low protein groups only. 

Data were analyzed using one way ANOVA followed by posthoc LSD means tests 

where appropriate, significance p<0.05. 
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Results 

 Initial body weights were the same across groups (Table E.1). Feed intake was 

significantly different between all 3 groups, and highest in gerbils fed laboratory chow. 

Weight gain was the same in gerbils fed laboratory chow and those fed the adequate 

protein diet. Gerbils fed the low protein diet lost more weight than those fed chow, ate 

less than those on both other diets, and had increased liver lipid compared to the group 

fed adequate protein. Glutathione concentration in gerbils fed the low protein diet was 

decreased in liver, unchanged in hippocampus, and increased in neocortex compared to 

gerbils fed the adequate protein diet. 

Table E.1. Influence of feeding a low protein diet to the gerbil 

 Laboratory Chow Adequate 
Protein 

Low Protein 

Initial weight (g) 63.1 ± 1.2a 63.9 ± 0.6a 62.1 ± 0.9a 

Weight gain (g/28days) 12.4 ± 3.5a   5.5 ± 5.7a,b -4.2 ± 1.7b 

Food intake (g/day)   8.2 ± 0.3a   6.3 ± 0.2b   5.5 ± 0.2c 

Liver lipid (mg/g wet wt) N/A 37.3 ± 0.7a 50.7 ± 1.7b 

Liver [GSH] (µmol/g wet wt) N/A   6.8 ± 0.6a   3.5 ± 0.4b 

Hippocampus [GSH] (µmol/g wet wt) N/A   2.6 ± 0.3a   2.5 ± 0.2a 

Neocortex [GSH] (µmol/g wet wt) N/A   2.1 ± 0.1a   2.5 ± 0.1b 

Mean ± SEM; n=4 per group 
Letters indicate significant difference across groups by one-way ANOVA, followed by 
posthoc LSD means test, p<0.05   
 

Conclusion 

 The response of measured parameters was similar in gerbils fed the adequate 

protein diet and those fed laboratory chow. Gerbils fed the low protein diet voluntarily 

reduced intake and as such were lacking in both protein and energy, a phenomenon 

observed in other rodent models of dietary protein content less than 6% (Eisenstein and 

Harper,1991; Hum et al.,1992; Rana et al.,1996). The results measured in gerbils fed the 

low protein diet suggest a moderate model of PEM was achieved, and this diet was used 

for the Phase 2 gerbil study. That neocortex glutathione concentration was elevated in 

the low protein group cannot be explained. As in the sulphur amino acid pilot feeding 
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study, these gerbils were housed individually in suspended steel cages, and were not 

well groomed. Communal housing in shoebox cages with bedding is preferable. 
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APPENDIX F 

 

Characterization of temporal change in brain glutathione concentration at various 

reperfusion time-points after temporary bilateral carotid artery occlusion 

(TBCAO) 

 
With several rodent global ischemia models, the literature reports decreases in 

brain glutathione concentration at early time-points of reperfusion, with a return to 

normal levels between 4-24 hours(Baek et al.,2000; Candelario-Jalil et al.,2001; Park et 

al.,2000; Shivakumar et al.,1992). We wanted to compare the temporal change in 

neocortex and hippocampus glutathione concentration in our model of TBCAO and 

controlled brain temperature to other models in the literature. 

 
Purpose 

To determine brain neocortex and hippocampus glutathione concentrations at 

various reperfusion time-points after a 5-minute TBCAO with brain temperature 

maintained at 36.5 ± 0.2ºC. 

 

Methods 

 Male Mongolian gerbils aged 14-18 weeks were acclimated for 10 days on a 

purified sulphur amino acid sufficient AIN-93G diet modified to contain crystalline 

amino acids (for diet composition, see Appendix D). On day 10, gerbils were subjected 

to a 5-minute TBCAO with brain (tympanic) temperature maintained at 36.5± 0.2ºC 

throughout ischemia or sham surgery, as described in Chapter 6.  Reperfusion time-

points were as follows: 0, 0.5, 1, 2, 6, 12, and 24 hours after occlusion (n=6 per time-

point; exception, n=7 at 1 hour). At each time-point gerbils were re-anesthetized with 

isoflurane and perfused trans-cardially with heparinized saline. Brain neocortex and 

hippocampus were collected on ice and analyzed for glutathione concentration as 

described in Chapter 5 and Appendix C. Data were analyzed by one way ANOVA 

followed by posthoc LSD means test where appropriate, significance p<0.05. 

 

Results 
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 There was no significant difference in neocortex glutathione concentration at any 

timepoint compared to that in sham-operated animals (Table F.1). Hippocampus 

glutathione concentration was elevated compared to that in sham-operated controls at 

0.5, 1 and 2 hours of reperfusion. 

 

Table F.1. Hippocampus and neocortex glutathione concentration at various reperfusion 

times after 5-minute TBCAO* 

Hippocampus       Neocortex  Reperfusion time 

µmoleGSH/g wet wt. 

Sham 2.5 ± 0.2a 2.4 ± 0.03 

0 hour 2.5 ± 0.1a 2.1 ± 0.1 

0.5 hour 2.8 ± 0.1b 2.2 ± 0.1 

1 hour 2.9 ± 0.1b 2.4 ± 0.04 

2 hours 2.9 ± 0.1b 2.4 ± 0.02 

6 hours 2.6 ± 0.1a 2.2 ± 0.1 

12 hours 2.5 ± 0.1a 2.3 ± 0.1 

24 hours 2.7 ± 0.1a 2.3 ± 0.2 

* Brain temperature (estimated by tympanic temperature) maintained at 36.5± 0.2ºC. 
Mean ± SEM; n=6 per reperfusion time except n=7 at 1 hour. 
a,b Letters indicate significant differences from sham surgery within brain region by one 
way ANOVA followed by posthoc LSD means test, p<0.05. 
 

Conclusion 

 We were unable to reproduce temporal changes in brain glutathione 

concentration reported in the literature after TBCAO, although our model varied 

somewhat from those in the literature. The increase in hippocampal glutathione 

concentration at some time-points was unexpected. In tissues such as artery 

endothelium, lung epithelium and kidney, exposure to oxidative stress has been shown 

to upregulate mRNA expression and activity of γ-GCS, the rate-limiting enzyme in 

glutathione synthesis, with subsequent increases in glutathione concentration in these 

cells (Day et al.,2002; Diaz et al.,2001; Rahman and MacNee,2002; Ray et al.,2002; 

Woods and Ellis,1995; Woods et al.,1999). It is possible a similar response occurs in 
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brain, explaining the findings in this study. This is further supported by the lack of 

response in neocortex, a region less vulnerable to damage in this ischemia model. 
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APPENDIX G 

Rat hippocampus: representative image used to evaluate hippocampal grid score of 

neural damage 

The hippocampal area of the H&E stained posterior section of rat brain 

(approximately -3.1mm from bregma) was visualized at 100 x magnification on a Zeiss 

microscope with attached SonyPowerHAD colour video camera, and images were 

captured on computer with Northern Eclipse 2.0 software. A grid was superimposed on 

each image, and a hardcopy composite image of the entire hippocampal area constructed 

(about 5-9 images per collage) using Microsoft PowerPoint. The densest regions of the 

subiculum/CA1, CA2/CA3, CA4 and dentate gyrus were defined on the collage and 

baseline numbers of grid squares in each area counted. Each grid square held 

approximately 15-20 cells. To score damage, slides were viewed under a microscope at 

400 x magnification and damaged cells located and marked by hand on the 

corresponding composite image. Any grid square containing one or more damaged cells 

was counted as one damaged square and the damage score was expressed as percentage 

of baseline squares in each area of the hippocampus. 

 

 

 
 
 
Figure G.1. Rat hippocampus: representative image used to evaluate hippocampal grid 

score of neural damage 


