Effect of application method on fate of phosphorus fertilizer

Jordan Wiens and Jeff Schoenau Dept. of Soil Science University of Saskatchewan jordan.wiens@usask.ca

Justification

- Larger acreage farms = time constraints for seeding. Fertilizer placement looked at to save time.
 - Changes to placement strategy?
 - Changes to rate?
- Loss of P to water affects aquatic health
- Nature of P compounds in water affect P bioavailability in aquatic systems.

P fertilizer challenges

- Reactive
 - Readily adsorbed, precipitated in soil
 - Limits plant availability
- Immobility
 - Barrier to plant uptake, especially early season
- Mobility
 - Small amounts moved can be still be environmentally significant

Figure 1: Fate of applied fertilizer P in agricultural ecosystems. Red boxes mark processes resulting in P export from the system.

Research question

How does P fertilizer placement influence:

- 1) plant and soil response to P fertilizer?
- yield, residual soil P
- 2) export of P in snowmelt runoff?
- amounts, forms

Design

• P placement study treatments

Control	In-soil @ 20 kg P ₂ O ₅ ha ⁻¹	Surface Applied
Control-no P	Seed placed	Broadcast @ 20 kg P ₂ O ₅ ha ⁻¹
	Deep banded	Broadcast @ 40 kg P ₂ O ₅ ha ⁻¹
	Broadcast & Incorporated	Broadcast @ 80 kg P ₂ O ₅ ha ⁻¹

- Foliar P study
 - 20 kg P₂O₅ ha⁻¹ total with varying proportion of P applied in foliar form
- Run-off
 - Slabs taken from one block in P placement study for P run-off amounts and forms

Site and Methodology

- Brown soil-climatic zone, Echo Association
- History: no-till, P fertilized
- RCBD field trials
- Single row seeder
 - Three rows per plot
- Soil and plant nutrient status
 - Extractions
 - Resin membrane
 - Digests
- Snowmelt runoff
 - Wet chemical assessment
 - ³¹P NMR spectroscopy

Monolith P Mapping

Seed Row

Increasing Soil Depth

One moment!

Table 1: Background nutrient values at P placement plots in Central Butte.

Depth (cm)			Nut		
		NO ₃	Р	К	SO ₄
			kg	ha ⁻¹	
Upslope	0-15	9	30	703	12
	15-30	7	7	299	30
Lowslope	0-15	9	32	684	14
	15-30	7	6	362	52

• Will limit response

Figure 3. Canola grain yield at Central Butte, 2016. Growth conditions were much better in 2016 resulting in a much greater yield than the previous year.

Treatment								
Depth (cm)	С	SP	DB	B/I	B(20)	B(40)	B(80)	P Value
μg cm ⁻²								
0-15	0.63	0.50	0.58	0.34	0.44	0.57	0.84	0.0574
15-30	0.07	0.03	0.03	0.05	0.02	0.04	0.11	0.2096

Table 2: Central Butte upslope fall 2015 membrane exchangeable P.

Note: Treatments are abbreviated as follows: C=control, SP=seed placed, DB=deep band, B/I=broadcast and incorporated, B(20)=broadcast at 20 kg ha⁻¹, B(40)=broadcast at 40 kg ha⁻¹, B(80)=broadcast at 80 kg ha⁻¹. Treatments were applied at 20 kg ha⁻¹ unless otherwise specified.

+ taken from different site, cannot be directly compared to other treatments

Table 3: Residual MK- P distribution in soil monolith after two successive treatments. Units are $\mu g P g^{-1}$ dry soil.

	Broadcast					
	Distance from seed row					
Depth	10 cm	5 cm	0 cm	5 cm	0 cm	
1 cm	20.8	22.2	23.0	17.6	20.0	
4 cm	14.1	13.8	12.9	12.3	12.7	
7 cm	9.2	7.8	6.0	3.9	6.7	
10 cm	4.6	3.3	3.9	3.1	4.7	
	Seed placed					
	Distance from seed row					
Depth	10 cm	5 cm	0 cm	5 cm	0 cm	
1 cm	19.5	17.9	18.6	20.2	21.1	
4 cm	18.8	19.6	28.0	21.1	18.5	
7 cm	18.9	15.2	19.3	15.4	13.3	
10 cm	7.0	7.1	12.3	11.2	8.1	

Key Takeaways

- Factors influencing P response
 - Weather in western Canada can be more important factor affecting P response than placement method
 - Soil available P supply will affect response to fertilizer
 - Related to past management: no-till, history of P fertilization
- Broadcasting is not good for reducing P export
 - Broadcasting increases labile, mobile P at surface
 - High rates show more P in soluble reactive form

Acknowledgement

- Team Schoenau
 - Cory, Ranjan, Ben, Lindsey, Paul, Serena, Tom, Ryan, Blake, Jing, Noabur, Nancy, Katya, Wally, Raul
- Dr. Barb Cade-Menun (AAFC)
- Funding Agencies

FOUNDATION FOR AGRONOMIC RESEARCH

